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Abstract. Most state-of-the-art object detection networks need region
proposals in their two-step framework. Popular region proposal networks
can provide hundred proposals with acceptable accuracy. In this paper,
we introduce a Multiple Filters Region Proposal Network (MFRPN) that
can change its structure with dataset. We calculate the suitable sizes
of filters and use multiple filters with appropriate reference boxes to
make the regression of coordinates of proposals more accurate. To illus-
trate the proposed MFRPN, we adopt the framework of Faster R-CNN
[1] and replace the RPN with the MFRPN. As a result, we get 0.98%
improvement in mean AP on PASCAL VOC 2007 and 1.45% on PASCAL
VOC 2012.
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1 Introduction

Object detection is to detect specific objects in images. Generally, it consists two
steps: finding where the objects are (proposals generation), then giving these
objects category labels and confidence scores (objects classification). This two-
step division matches to visual mechanism of human beings. We first give a scan
of the whole image to get the region we really care about. Then we observe care-
fully for more details to identify what we look at. Although one-step object detec-
tion algorithms (e.g., YOLO [12] and SSD [10]) exist, their prediction accuracy
is lower than two-step algorithms. In this paper, we focus on improving two-step
object detection algorithms. Based on the difference of one-step and two-step
algorithms, we can draw a conclusion that proposals are useful for object detec-
tion asking for high accuracy. Our algorithm Multiple Filters Region Proposal
Network (MFRPN) settles down to generating high-quality proposals. As we will
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show in following sections, detection network with MFRPN shows advantages in
detection accuracy.

In early time, proposals are generated by some classical algorithms (e.g.,
Selective Search [16] and EdgeBox [17]) which provide about thousands of pro-
posals per image to insure covering all the possible objects. However, these solu-
tions are summaried by experts. They have their weaknesses in some situations.
Thanks to the development of deep learning, the work of extracting features from
pictures is done perfectly by Convolutional Neural Networks (CNN). CNN has
rich representation capacity and powerful generalization ability and it can take
advantage of computing ability of GPU. Therefore, we can get more accurate
features of objects easily.

Nowadays, most state-of-the-art object detection networks use the Region
Proposal Network (RPN) [14] to generate proposals for object detection (e.g.,
Faster R-CNN [14] and R-FCN [3]). RPN has several convolutional layers, one
regression layer and one classification layer. To effectively generate different
scales or aspect ratios proposals, RPN uses multiple references for every pre-
dicted boxes regression work (typically, 9 different reference boxes). But in this
method, many hyper-parameters are set directly, such as, the sizes of refer-
ence boxes. The construction of a nice network model should be data-driven.
If parameters of a model are changed with dataset, we believe it has univer-
sality and stability. The original RPN is not suitable for images which include
small (Fig. 1a) or dense (Fig. 1b) objects. Because proposals of these images need
more accurate predicted coordinates and a confined network cannot deal with it
well. We also notice that the sizes of receptive fields are important to generate
proposals. Sizes of receptive fields should be close to the sizes of reference boxes.

If receptive fields are too small, it may cause under-fitting problem. Because
the information is too little to make correct decision. Oppositely, If receptive
fields are too large, it may cause over-fitting problem. Because much information
is redundant. For example, a network may misunderstand that chairs must be
put next to a table. Our MFRPN has the ability to deal with details and all
multiple filters (kernel sizes are different) on the last layer of CNN has suitable
reference boxes. We believe MFRPN can sovle the problems above.

Fig. 1. Example images with complex contents: (a) full of small objects, (b) dense
similar objects.
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Figure 2 shows our idea clearly. The size of receptive field determine how
much information a RPN can get in one time regression. If receptive fields are
too large or too small, the features extracted by a RPN will be more or less then
the object itself. So we choose suitable sizes of reference boxes in our object
detection network. Since different categories of objects have their own standard
sizes. We should use different filters for different objects. And training networks
with multiple filters simultaneously can make regression smoother. In conclusion,
our main contributions are:

1. We emphasis appropriate mount of information is quite important for regres-
sion. The information here is a part of an image in receptive field. So the size
of the filter on the last convolution layer should be changed with dataset and
match the object’s size.

2. We summarize the phenomenon that appropriate sizes of reference boxes are
important for boxes regression. It means the sizes of reference boxes should
match their filters receptive fields rather than the object itself.

3. We design multiple filters region proposal network. For small and dense object
detection, we can use multiple filters with similar sizes. For detecting object
with various sizes, we can use multiple filters with various sizes.

Fig. 2. Our idea: Small receptive field (blue) cannot get the whole features of object.
Large receptive filed (green) will bring wrong features. Appropriate receptive filed (red)
make regression more accurate. (Color figure online)

2 Related Work

There are diverse methods for generating object proposals. The most widely used
unsupervised method is Selective Search [16]. It is a clustering method. Other
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popular clustering method are EdgeBox [17] and MCG [1]. The advantage of
clustering methods is they can provide proposals of multiple scales and sizes
spontaneously. BING [2], MultiBox [4] are typical in supervised methods. BING
uses the binary feature which can be promoted computing speed by registers.
MultiBox uses CNN to generate proposals. But recently proposed promising
solution, Region Proposal Network (RPN) [14], has more excellent performance.
It uses multi-task loss function to combine proposals generation and coordinates
regression together in one step. RPN can reduce the number of proposals to
less than 300 with higher recall rate. In our experiments, we uses RPN as the
baseline algorithm.

The RPN in Faster RCNN adopts 3 aspect ratios (1:1, 1:2, 2:1) and 3 scales
(1282, 2562, 5122) anchor boxes as reference boxes basing on the Simonyan and
Zisserman model (VGG-16) [15]. Different aspect ratios anchor boxes are con-
venient to generate different shape proposals. Different scales anchor boxes are
used for generating multiple scales proposal more accurately. The size of 3 scales
are designed elaborately which are smaller than the receptive field, nearly equal
to the receptive field and larger than the receptive field. But their information
are all come from the same piece of feature map. That is to say if the predicted
field matches the size of receptive field, the predicted result will be more reliable.
So we claim that reference boxes should not much larger than receptive field of
filter. And we should pay more attention to details in receptive field.

YOLO 9000 [13] clusters images by size and changes the reference boxes’ sizes
with dataset. But it doesn’t change the filters’ sizes. We believe that changing
dataset should bring changes in filters’ sizes. And changing filters should bring
changes in reference boxes, too. Appropriate filters are more important than
reference boxes.

As for multiple filters train simultaneously, SPP [6] and Grid Loss [11] does
the similar but different job. SPP proposes a spatial pyramid pooling layer which
uses multiple kernel sizes to get a fixed-length representation. Grid Loss proposes
a novel loss layer for CNN which minimizes error rate on both sub-blocks and
the whole feature map. These algorithms focus on use the relationship of part
and whole to detect objects. Because we expect to focus the whole object itself,
we use kernels of multiple sizes separately.

In recent years, many novel methods have been proposed to improve pre-
diction accuracy given by RPN. HyperNet [8] and FPN [9] are typical two of
these methods. They try to use both high level and low level feature together
to predict proposals. But we put attention to improve accuracy of coordinates
regression. MFRPN is a new path to get better proposals and can cooperate
with their networks.

3 Our Approach

In this section, we introduce Multiple Filter Region Proposal Network
(MFRPN). We will explain how we design our network, how it works, and how
to use MFRPN in an object detection network in detail.
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3.1 Confirming Sizes of Filters

In this step, we will cluster all bounding boxes in our training set. And try to
find appropriate filters which receptive fields are the nearest top K to clustering
result. Figure 3 shows the relationship between reference box and bounding box.
In this paper, we use k-means clustering method to solve this problem. There
are three steps:

1. Run k-means clustering on dataset to divide sizes of objects into K categories.
2. According to the used network, calculate the corresponding relationship

between filters and receptive fields.
3. Confirm sizes of filters on the last convolution layer which receptive fields are

the nearest top K to bounding boxes clustering result.

Fig. 3. The relationship between receptive field (blue) and bounding box (red) in our
network. We try to use filters with appropriate receptive fields. (Color figure online)

3.2 Multiple Filters Region Proposal Networks

After calculating filters’ sizes, We will build our region proposal network. The
MFRPN is several convolutional layers (Fig. 4). We use K small networks to slide
over the feature map output by the last convolutional layer [14]. Note that the
K here is equal to K in k-means clustering. These small networks take n2

1 ∼ n2
k

part of the last feature map. That means the kernel sizes of the networks’ filters
are n1 ∼ nk. Although the sizes of filters are different, we equal the numbers
of outputs of filters. In this paper, the number of outputs is 512. So every fil-
ter generates 512-d lower-dimensional features. Every independent convolutional
layer is followed by two 1 × 1 convolutional layers. One for classification, one for
coordinates regression.



66 D. Zhang et al.

Fig. 4. MFRPN object detection architecture. This architecture can be extended to
include more than two filters to generate high-quality proposals. Our experiments just
use 2 filters for demonstration. Different filters provide different proposals which are
merged by NMS.

In the adopted network (VGG-16), the receptive fields of filters is showed
in Table 1. We will choose the appropriate filter for each category clustered in
Sect. 3.1.

Table 1. The size of receptive fields of filters in VGG-16.

Size of filter 1 × 1 2 × 2 3 × 3 4 × 4 5 × 5 6 × 6

Size of receptive field 1962 2122 2282 2442 2602 2762

3.3 Extensible Loss Function

For training MFRPNs, we use multi-task loss function. And all filters contribute
to the loss. The loss function for an image is defined as:

L(pki, tki) =
1

Ncls

∑

k

∑

i

Lcls(pki, p∗
i ) +

1
Nreg

∑

k

λk

∑

i

p∗
i Lreg(tki, t∗i ). (1)

In this equation, i is the index of a reference box in a mini-batch, k is the
index of multiple filters. pki is the probability of reference box being an object
predicted by filter k. But the ground-truth label p∗

i is independent of filters.
If reference box is positive, p∗

i is 1. And if reference box is negative, p∗
i is 0.

In second part of the equation, tki (t∗i ) is 4-d feature stands for coordinates of
the center of a predicted box (reference box), height and width normalized in
method proposed in [5]. Lcls is log loss, Lreg is robust loss [5], defined as:

Lreg(tki, t∗i ) =
∑

i∈x,y,w,h

smoothL1(tki − t∗i ). (2)

in which

smoothL1 =
{

0.5x2 if |x| < 1
|x| − 0.5 otherwise.

(3)
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The two part loss functions are normalized by Ncls and Nreg. In this paper Ncls

(=256) and Nreg (≈2400) are balanced by λk, and λk are all 10 in this paper. As
we can see, the closer to ground truth, the more accurate regression is. Because
the loss is quadratic, when the difference value is in (−1, 1). But MFRPN uses
multiple filters to train convolutional layers together. In this case, there are more
difference values in (−1, 1). So our algorithm makes the regression smoother.

3.4 Training Object Detection Network with MFRPN

For training MFRPN, we follow the training method in [14]. But we use different
labels and box-targets for different filters. In each mini-batch, we use 256 different
reference boxes for each filter.

In this paper, we use the Fast R-CNN [5] as our classification network. For
traning object detection network with MFRPN, we use 4-Step Alternating Train-
ing [14] algorithm.

4 Experiments

To compare with Faster R-CNN we replace the RPN of Faster R-CNN with our
MFRPN. It is worth mentioning that our convolution layers can be replace by
other CNNs like ResNet [7] and our classification network can be replaced, too.
We use PASCAL VOC 2007 and 2012 dataset in training and testing phase.

4.1 Experiments on Choosing Filters

We choose k-means as our clustering method. The distance between too objects
is defined as:

distance(a, b) = −IOU(a, b) (4)

In this step, the position of object is useless. So we move all the bounding
boxes to the top left corner and then calculate the distance. Table 2 shows some
clustering results on PASCAL VOC 2007 and PASCAL VOC 2012 dataset.

Table 2. Part of clustering results on PASCAL VOC 2007 training set. We change the
number of clustering categories for each experiment.

K = 2 K = 3

VOC 2007 70 × 93 263 × 253 54 × 74 147 × 183 340 × 287

VOC 2012 71 × 90 277 × 262 53 × 67 150 × 188 352 × 294

We will use K = 2 in this paper. Combined with Table 1 can be seen, the
appropriate sizes of filters are 1× 1 and 5× 5 for PASCAL VOC 2007, 1× 1 and
6 × 6 for PASCAL VOC 2012.
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4.2 Experiments on Changing Reference Boxes

We claim that reference box must match the receptive field. We use the Faster
R-CNN [14] as the basic experimental method. Faster R-CNN use the RPN to
generate proposals. On the last convolutional layer, the size of filter is 3. From
the Table 1 we can find the receptive field of this filter is 218. Faster R-CNN
uses multiple references. The sizes of the references are 1282, 2562, 5122. As we
can see, 5122 is much larger than the filter’s receptive field, so we change the
references to 642, 1282, 2562. The results are showed in Table 3.

Table 3. Detection results on PASCAL VOC 2007. We use different sizes of reference
boxes, noting that the receptive fields are all close to 256.

Size of filter Reference boxes Mean AP

1 3 1282, 2562, 5122 69.94

2 3 642, 1282, 2562 70.62

From these results, we find the original network gets the lowest mean AP.
Because the original reference boxes are much larger than the receptive field.
It means, in a mini-batch, there are too many unknown factors to predict. The
reference boxes experimental results meet our idea that appropriate sizes of
reference boxes are good for generating high-quality proposals.

In our next experiments, we chose 1 × 1, 5 × 5 and 6 × 6 filters to extract
feature vectors. So we choose 642, 1282, 2562 as the sizes of our reference boxes.

4.3 Experiments on Using Multiple Filters

We believe multiple filters can improve detection accuracy. Since images of PAS-
CAL VOC are small. So our filters are similar sizes. Our theory is dividing
receptive field more accurately is necessary. So in our experiments, multiple fil-
ters are smaller than single filter. We use multiple filters on the last convolutional
layer of RPN and keep other parameters the same as Faster R-CNN. The results
are showed in Table 4. When using multiple filters, the mean AP increases by
over 0.15%. Although the improvement is little, it proves that multiple filters
have a beneficial effect on generating high-quality proposals.

Table 4. Detection results on PASCAL VOC 2007. We use multiple filters. In this
experiment, sizes of filters are 2 and 3.

Size of filter Reference box Mean AP

1 3 1282, 2562, 5122 69.94

2 2 & 3 1282, 2562, 5122 70.02
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4.4 Object Detection Networks with MFRPNs

So far, we have proved most of our ideas are useful for improving proposals’
quality. We train object detection network (Faster R-CNN) with MFRPN. Since
our dataset is PASCAL VOC, we set the sizes of multiple filters are 1 and 5
for 2007 dataset. And the sizes are changed to 1 and 6, when use 2012 training
set. And the reference boxes are 642, 1282, 2562. If the images are bigger, we
will change the number and sizes of filters and reference boxes as well. We keep
other parameters the same as Faster R-CNN. But the mean AP is 69.7698%,
lower than we expect.

Because we get more proposals and most of these have more accurate vertex
coordinates, mixing some proposals together is important in our experiments.
NMS is a typical solution to proposals fusion. In Faster R-CNN, NMS reduces
the number of proposals to 300 before they are sent to classification network in
the final testing phase. But in our experiments, MFRPN needs more. Further,
several experiments have been performed to find the appropriate number of
proposals that should be kept and the results are shown in Table 5. In order
to indicate our improvement is not the result of more number of proposals.
We give classification network more proposals from original RPN, too. After
these experiments, we keep 1300 proposals left after NMS and finish training
the object detection network with MFRPN. The detection results are showed
in Table 6. The mean AP of proposed MFRPN is higher than our baseline. To
show the stability of our method, we keep the parameters same as what we
set on PASCAL VOC 2007 and change the dataset to PASCAL VOC 2012.
The detection results are showed in Table 7. Our method increases mean AP to
68.44%. The increment proves our method is stable. Figure 5 shows some results
on the VOC test-dev set.

Table 5. Detection results on PASCAL VOC 2007. We use MFRPN or original RPN
to generate proposals and detectors of Faster R-CNN to classify objects. In these
experiments, numbers of proposals kept after NMS are different.

Number of proposals 300 400 500 600 700 800 900 1000 1100 1200 1300 1400

Mean AP (MFRPN) (%) 69.77 69.94 70.23 70.32 70.58 70.61 70.63 70.75 70.84 70.91 70.91 70.78

Mean AP (RPN) (%) 69.94 70.03 70.04 70.00 69.98 70.01 70.02 70.02 70.02 70.02 70.02 70.02

Table 6. Results on PASCAL VOC 2007 test set (trained on VOC 2007 trainval) with
detectors of Faster R-CNN and VGG-16. The proposals are generated by different
methods and MFRPN provide 1300 proposals for the detector.

mean AP areo bike bird boat bottle bus car cat

RPN 69.94 68.55 78.20 67.28 57.66 51.23 79.57 79.36 85.15
MFRPN 70.92 71.66 80.06 69.55 60.63 52.46 81.21 78.96 84.69

chair cow table dog horse mbike person plant sheep sofa train tv

49.44 75.49 64.60 82.53 83.16 77.64 76.20 36.83 72.95 67.30 78.03 67.87
51.30 78.87 66.26 83.55 84.99 75.54 76.84 40.07 71.87 66.03 77.46 66.46
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Table 7. Results on PASCAL VOC 2012 test set (trained on VOC 2012 trainval) with
detectors of Faster R-CNN and VGG-16. The proposals are generated by different
methods. To show the stability of our network, we keep 1300 proposals after NMS in
MFRPN experiment, too.

mean AP areo bike bird boat bottle bus car cat

RPN 66.99 82.33 76.43 71.02 48.37 45.20 72.08 72.27 87.25
MFRPN 68.44 83.92 78.17 71.17 51.69 46.80 77.24 72.63 88.14

chair cow table dog horse mbike person plant sheep sofa train tv

42.18 73.72 50.03 86.76 78.68 78.36 77.35 34.50 70.11 57.08 77.14 58.93
43.47 73.04 51.81 86.96 80.24 81.54 77.86 36.02 69.01 56.64 81.35 61.19

Fig. 5. Examples of our detection results.

We also compare the running time between baseline and our method. Because
we use multi-task loss to implement our method, the training time is almost
the same as the baseline. But during test phase, our method spend more time.
In our experiment (NVIDIA TITAN X (Pascal)), the average test time is 0.350 s.
Although the time is higher than the baseline which is 0.236 s, the speed is
acceptable.

5 Conclusion

In this paper, we propose the Multiple Filters Region Proposal Network
(MFRPN) for generating high-quality region proposals. The proposed MFRPN
can change its structure with dataset. According to the general classification of
objects’ sizes, MFRPN can choose nice filters to cover objects automatically.
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Then MFRPN adopts appropriate reference boxes and multiple filters to get
more accurate proposals.

It can cooperate with most two-step object detection networks. And it is
compatible with other improved methods of RPN. In conclusion, our method
improves state-of-the-art object detection not only accuracy but also stability.
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