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Abstract. Convolutional Neural Networks (CNNs) have been widely
used for many computer vision tasks and produce discriminative and rich
representations for images or regions of an image. Recognizing scenes
requires both local object features and global semantic information as
a scene image is usually composed of multiple objects which are orga-
nized with specific spatial distribution. To address these problems, in this
paper, we propose a deep network architecture which models the sequen-
tial object context of scenes to capture object level information. We first
detect a set of obejcts in a scene image, and then apply a pre-trained
CNN to extract discriminative features for these objects. Then we use a
Long Short-Term Memory (LSTM) network to get the context features
by progressively receiving all contextual objects. The learned sequential
object context incorporates object-object relationship and object-scene
relationship in an end-to-end trainable manner. We evaluate our model
on two benchmark datasets and achieve promising results compared to
state-of-the-art methods.
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1 Introduction

Scene recognition is a critical task in the computer vision community. It has a
wide range of applications such as assistive human companions, robotic agent
path planning, monitoring systems and so on. State-of-the-art approaches in
scene recognition are based on the successful combination of deep representations
and large-scale datasets. Specifically, deep convolutional neural networks (CNNs)
trained on ImageNet [24] and Places [37] have shown significant improvement in
performance over methods using hand-engineered features and have been used
to set baseline performance for visual recognition.

As a scene images is usually composed of multiple objects which are orga-
nized with specific spatial distribution, classifying it requires not only the holistic
features of the whole image, but also the local features of objects in the image.
However, CNNs learn image features in a layer-wise manner where low layers
capture general features that resemble either Gabor filters or color blobs and
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high layers learn specific features which are semantic and representative even
though they greatly depend on the chosen dataset and task [35]. The low layer
general features are gradually transformed into high layer powerful features with
multiple convolutional layers and pooling layers. This feature learning mecha-
nism of CNNs suggests that they might not be the best suited architectures for
classifying scene images where local object features follow a complex distribution
in the spatial space. The reason is that the spatial aggregation implementation
of pooling layers in a CNN is simple in some extent, and does not retain much
information about local feature distributions. When crucial inference happens
in the fully connected layers near the top of the CNN, aggregated features fed
into these layers are in fact global features that neglect local feature distribu-
tions. The global CNN features are not efficient enough to capture contextual
knowledge like the complex interaction of objects in a scene.

In addition to the entire image, it has been demonstrated that an image rep-
resentation based on objects can be very useful in visual recognition tasks for
scenes. Li et al. [14] propose a high-level image representation where an image is
represented as a scale-invariant response map of a large number of pre-trained
generic object detectors. The object-based representation carries rich seman-
tic level image information and achieves superior performance on many high
level visual recognition tasks. Li et al. [15] propose a hierarchical probabilistic
graphical model to perform scene classification with the contextual informa-
tion in form of object co-occurrence is explicitly represented by a probabilistic
chain structure. Liao et al. [19] propose a architecture which encourages deep
neural networks to incorporate object-level information with a regularization of
semantic segmentation for scene recognition. Wu et al. [31] use a region pro-
posal technique to generate a set of high-quality patches potentially containing
objects and then a scene image representation is obtained by pooling the feature
response maps of all the learned meta objects at multiple spatial scales to retain
more information about their local spatial distribution.

In this paper, we propose a architecture to learn sequential object context
which encodes rich object-level context using a LSTM network on top of a set
of discriminative objects, as shown in Fig. 1. This architecture attempts to learn
powerful semantic representations in scenes by modeling object-object and scene-
object relationships within a single system. The intuition is that we human beings
first scan objects in an image and then reason the relationships between these
objects to decide what scene category the image belongs to. The joint existence of
a set of objects in a scene highly influences the final scene category. Additionally,
the LSTM units are capable of modeling the relationship between the objects
by progressively taking in object features at each time step.

In our framework, we first use a region proposal network to detect a set
of objects for each scene image. These objects are sorted by their locations in
the image to form the object-based context sequence. And then, we use scene-
centric Places CNN to extract features for the whole image to capture global
scene information. At the same time, we use object-centric ImageNet CNN to
extract features for the detected objects. After this, the representations of the
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Fig. 1. The framework of our method. Firstly, a set of objects are detected in a scene
image. The objects are arranged by their locations in the image. And then we use Places
CNN and ImageNet CNN to extract features for the whole image and these objects
respectively. The features of these objects are put into the visual context LSTM to form
the sequential object context. At last, the global scene features of the whole image and
the learned context are concatenated and the combination of them are put into a sub
network to classify the image.

object context sequence are put into a LSTM network to form the discriminative
and representative sequential object context. At last, the global scene features of
the whole image and the learned context are concatenated and the combination
of them are put into a sub network to classify the image. In this way, the network
can learn about the scene class probability distribution given it has seen a specific
set of objects through time. In summary, the main contributions of our paper
are as follows:

– We firstly use an LSTM network to explicitly learn sequential object context
for scene recognition. The learned discriminative and representative context
contains information from all of the objects in the image.

– We empirically show that the sequential object context is complementary to
the global scene information extracted form the whole image. Leveraging both
global scene features and local sequential object context, our method achieves
promising results compared to state-of-the-art methods on many challenging
benchmarks.

The rest of the paper is organized as follows. We give a brief overview of related
work in Sect. 2. Section 3 describes the proposed method. Section 4 describes the
experiments and Sect. 5 concludes the paper.
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2 Related Work

Scene recognition. Earlier work in scene recognition focuses on carefully hand
crafted representations such as image contours, high contrast points, histogram
of oriented gradients and so on [28]. Recently, with the great success of deep
convolutional networks, features extracted from CNNs have been the primary
candidate in most visual recognition tasks [4,24,37]. As CNNs trained on Ima-
geNet [24] achieve impressive performance in object recognition, CNNs trained
on Places [37] get significant performance in scene recognition. In order to get
better performance, there are two primary ways to take full advantage of CNN
features. The first way is to extract abundant features from local patches and
aggregate them into effective scene representations [6,8,31,34]. Usually, these
approaches combine multiple local patches and multiple scales features, and
these features are pooled using VLAD [8] or Fisher vector [6] encoding. The sec-
ond way is to leverage features which are extracted from complementary CNNs
[10,16]. Thus, these different features can have complementary characteristics. Li
et al. [16] have demonstrated that the combination of features from deep neural
networks with various architectures can significant improve the performance as
features obtained from heterogeneous CNNs have different characteristics since
each network has a different architecture with different depth and the design
of receptive fields. Herranz et al. [10] have improved that the concatenation of
features extracted from object-oriented and scene-oriented networks results in
significant recognition gains. In this paper, we assume that knowledge about
objects in a scene image is helpful in scene recognition since objects are main
components of scenes. We propose a framework to explore object context for
scene recognition.

Context modeling. The utilization of context information for computer vision
has attracted a lot of attention. Choi et al. [5] propose a graphical model to
exploit co-occurrence, position, scale and global context which together is used
to identify out-of-context objects in a scene. Torrala et al. [27] have shown how to
exploit visual context to perform robust place recognition, categorization of novel
places, and object priming. Izadinia et al. [12] have proposed a method to learn
scene structures that can encode three main interlacing components of a scene:
the scene category, the context-specific appearance of objects, and their layouts.
Recently, RNN-based architectures have been widely used to model context for
a lot of visual tasks, such as object detection [2], segmentation [11,18], scene
labeling [3,25], human re-identification [29] and so on. The primary mechanism
behind RNN is that the connections with previous states enables the network
to memorize information from past inputs and thereby capture the contextual
dependency of the sequential data. In the same spirit, we use a LSTM network
to model context to boost the classification performance for scene images.

CNN-LSTM Models. CNN have been widely used to learn discriminative
features for a wide range of visual tasks [18,23,24,30] and Recurrent Neural
Networks (RNNs) have been widely used for sequence learning. Recently, a lot
of deep architectures use the joint learning of CNN and RNN to get feature
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representations as well as their dependencies. Tasks combining visual and lan-
guage like image captioning [17,30,33] and visual question answering [1,9] use
CNN to get image features while use LSTM to generate natural language expres-
sions as image descriptions or answers. As the architectures which are only com-
posed of CNN can get features from large receptive fields but can not allow
for finer pixel-level label assignment. Architectures with LSTM components can
learn dependencies between pixels and improve agreement among their labels.
A lot of work have used CNN-LSTM architectures for scene labeling [3] and
semantic segmentation [18]. In this work, we use a CNN-LSTM based network
to learn informative and discriminative for scene recognition.

3 Our Method

Overview: As a scene image is usually composed of multiple objects, the context
of a scene image encapsulates rich information about how scenes and objects are
related to each other. Such contextual information has the potential to enable
a coherent understanding of scene images. In order to leverage such informative
information, we propose sequential object context incorporating global scene
information for scene recognition, as shown in Fig. 1. We first detect a set of
objects for each scene image. To model the distribution of these objects, they
are sorted by their locations in the image. And then, we use deep neural networks
to extract features for the whole image and the detected objects. The represen-
tations of the object context sequence are put into a LSTM network to form the
discriminative and representative sequential object context. At last, the global
scene features of the whole image and the learned context are concatenated and
the combination of them are put into a sub network to classify the image. The
goal of our method is to complement the deep CNN features extracted from
the whole image with local context from objects within a scene. The following
sections provide the details of our method and its training procedure.

3.1 Object Proposal Extraction

As we aim to incorporate better local visual context for scene recognition, we
first need to detect objects in scene images. We train a Faster R-CNN [23] detec-
tor and build our system on top of the detections, as shown in Fig. 2. Because a
Region Proposal Network (RPN) in the Faster R-CNN takes an image as input
and outputs a set of rectangular object proposals, each with an objectness score,
we can select discriminative visual objects depending on the output of the RPN.
Specifically, to get local proposals, we select top-n detected objects to represent
important local objects according to their class confidence scores obtained from
Faster R-CNN. We train our Faster R-CNN model using the VGG-16 convolu-
tional architecture [26]. The model is first pre-trained on ImageNet [24] dataset
and then fine-tuned on the training set of MS COCO [20] dataset, as MS COCO
contains a lot of images which are composed of multiple objects.

After this, these objects are sorted by their locations in the image with the
order of from left to right and top to down. Specially, the entire image is also
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considered as a special object and is denoted as R0. We use seq(I) to denote the
initial sequential representations of the local objects, which contains a sequence
of representations seq(I) = {R1, R2, . . . RN}, where R1 to RN are the local
objects. R0 is the corresponding global representation of the entire image.

Fig. 2. The object detector in our model. We select top-n detected objects according
to their class confidence scores.

3.2 Features Extraction

Convolutional Neural Networks (CNNs) have been widely used for many visual
tasks due to its powerful representation ability. In our work, we also use CNNs
to extract features for the whole image R0 and the sequential representations
of the local objects seq(I) = {R1, R2, . . . RN}. It has been demonstrated that
scene-centric knowledge (Places) and object-centric knowledge (ImageNet) are
complementary, and the combination of these two can significantly improve the
performance [10]. So we use a Palces CNN to extract the ‘fc7’ layer features for
R0 and use an ImageNet CNN to extract the ‘fc7’ layer features for sequential
local objects seq(I). The features of the entire image is denoted as V0, where
V0 = CNNP (R0). The features of the i − th object is denoted as Vi, where Vi =
CNNI(Ri). The context sequence can be denoted as seqV (I) = {V1, V2, . . . VN}.

3.3 Sequential Object Context Modeling

The core idea of our work is motivated by the previous works [7,21,29] which
have demonstrated that the LSTM architectures can model abundant context
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Fig. 3. Diagram of the LSTM network of our model. Our LSTM network continuously
receives the detected objects thus progressively capture and aggregate the relevant
contextual information.

features for both visual and language tasks. The internal gating mechanisms in
the LSTM cells can regulate the propagation of certain relevant contexts, which
enhance the discriminative capability of local features. We first introduce the
LSTM network which is used in our method and then present the input and
output of the LSTM module.

The architectural of the visual context LSTM is illustrated in Fig. 3. It
receives the output of the previous time step, as well as the input at the cur-
rent time step, as the inputs of the current unit. Mathematically, the update
equations at time l can be formulated as:

il = σ(Wixxl + Wimml−1) (1)
fl = σ(Wfxxl + Wfmml−1) (2)
ol = σ(Woxxl + Womml−1) (3)
cl = fl � cl−1 + il � φ(Wcxxl + Wcmml−1) (4)

ml = ol � φ(cl) (5)

where il, fl and ol represent the input gate, forget gate, and output gate at
time step l respectively; cl is the state of the memory cell and ml is the hidden
state; � represents the element-wise multiplication, σ(·) represents the sigmoid
function and φ(·) represents the hyperbolic tangent function; W[·][·] denote the
parameters of the model.
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The LSTM takes in seqV (I) = {V1, V2, . . . VN} and encodes each object into
a fixed length vector. Thus, we have encoding hidden states computed from:

ht = LSTM(seqV (I)t, ht−1), t = 1, 2, . . . N (6)

Once the hidden representations from all the context objects are obtained,
they are combined to obtain the sequential object context conV as shown below:

conV = WT
C[(h1)T , (h2)T , . . . (hr)T , . . . , (hN )T ], r = 1, 2, . . . , N (7)

where WC is the transformation matrix we need to learn and [·]T indicates the
transpose operation.

The final features V (I) used to recognize a scene image are obtained from
the combination of the global scene features V0 and the sequential object context
features conV . V (I) are put into a sub network which is mainly composed of a
fully-connected layer and a softmax layer to classify the image.

V (I) = [V0, conV ] (8)

3.4 Training Details

We train our model on the framework of Caffe [13]. The visual context LSTM
and the sub classification network are optimized in a end-to-end manner. For
each scene image, we detect n = 10 objects to form the consequential object
context. We use the mini-batch stochastic gradient descent method with the
batch size of 20. The hidden state size of the visual context LSTM is set to 512,
and the size of the fully-connected layer of the classification network is 4096.

4 Experiments

4.1 Dataset

To verify the effectiveness of our method, we evaluate the performance of our
method on two benchmark datasets: MIT 67 [22] and SUN 397 [32].

MIT 67: MIT Indoor 67 [22] contains 67 categories of indoor images, with
80 images per category available for training as well as 20 ∗ 67 images for test.
Indoor scenes tend to be rich in objects compared to object-centric images, which
in general makes the task more challenging.

SUN 397: SUN 397 [32] is a scene benchmark containing 397 categories, includ-
ing indoor, man-made and natural categories. This dataset is very challenging,
not only because of the large number of categories, but also because the more
limited amount of training data with 50 images per category for training and
50 images per category for test.
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4.2 Quantitative Results

We conduct experiments on two benchmark datasets to qualitatively verify the
effectiveness of our method. Our experiments mainly aim to demonstrate the
usefulness of the consequential context not to get the best performance, so we
just use the Alexnet networks to extract features. Table 1 shows the performance
comparison of the proposed algorithm with the baseline algorithm. Alexnet 205
denotes that we use the Alexnet which is trained on Places 205 to extract fc7
features for the entire image and then feed the features to the sub classification
network. Alexnet 205 & SOC denotes the combination of the features of the
entire image and the learned sequential object context (SOC). It can be seen
that the combination of global and local features of the proposed architecture
outperforms the global scene information of the baseline algorithm for all the
datasets. We get the same results when we use the network trained on Places
365 to extract the features. The comparison of our method with state-of-the-art
methods is also show in Table 1. It shows that our method achieves promising
results compared to state-of-the-art methods.

Table 1. The recognition performance on MIT 67 and SUN 397 datasets. * indicates
that the performance are got with our own implementation. SOC is short for sequential
object context.

Method MIT 67 SUN 397

Alexnet 205* 68.25 54.36

Alexnet 205 & SOC* 69.36 55.78

Alexnet 365* 70.22 56.02

Alexnet 365 & SOC* 71.86 57.72

ImageNet Alexnet [37] 56.79 42.61

Places 205 Alexnet [37] 68.24 54.32

Places 365 Alexnet [36] 70.72 56.12

MS Orderless Pooling [8] 68.88 51.98

5 Conclusion

In this paper, we propose a deep model to model sequential object context
for scene recognition. As scene images are rich in objects and the global scene
information extracted from the entire image with CNNs neglect local object dis-
tributions, the learned sequential object context features are strong complemen-
tary representations which contain full information obtained from local objects.
Experimental results show that the combination of the global scene information
and the learned local sequential object context significantly improves the recog-
nition performance. By using the LSTM module, our network can selectively
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propagate relevant contextual information and thus enhance the discriminative
capacity of the local features.

In future work, we will use deeper networks as our feature extractors to get
more powerful features. We will also incorporate multi-scale CNN features to
our network to get better performance.
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Duch, W., Mandic, D. (eds.) ICANN 2007. LNCS, vol. 4669, pp. 220–229. Springer,
Heidelberg (2007). https://doi.org/10.1007/978-3-540-74695-9 23

8. Gong, Y., Wang, L., Guo, R., Lazebnik, S.: Multi-scale orderless pooling of deep
convolutional activation features. In: Fleet, D., Pajdla, T., Schiele, B., Tuytelaars,
T. (eds.) ECCV 2014. LNCS, vol. 8695, pp. 392–407. Springer, Cham (2014).
https://doi.org/10.1007/978-3-319-10584-0 26

9. Goyal, Y., Khot, T., Summers-Stay, D., Batra, D., Parikh, D.: Making the V in
VQA matter: elevating the role of image understanding in Visual Question Answer-
ing. In: Conference on Computer Vision and Pattern Recognition (CVPR) (2017)

10. Herranz, L., Jiang, S., Li, X.: Scene recognition with CNNs: objects, scales and
dataset bias. In: CVPR (2016)

11. Hu, R., Rohrbach, M., Darrell, T.: Segmentation from natural language expres-
sions. In: Leibe, B., Matas, J., Sebe, N., Welling, M. (eds.) ECCV 2016.
LNCS, vol. 9905, pp. 108–124. Springer, Cham (2016). https://doi.org/10.1007/
978-3-319-46448-0 7

12. Izadinia, H., Sadeghi, F., Farhadi, A.: Incorporating scene context and object lay-
out into appearance modeling. In: CVPR (2014)

13. Jia, Y., Shelhamer, E., Donahue, J., Karayev, S., Long, J., Girshick, R., Guadar-
rama, S., Darrell, T.: Caffe: convolutional architecture for fast feature embedding.
In: Proceedings of the 22nd ACM International Conference on Multimedia, MM
2014, pp. 675–678. ACM, New York (2014)

https://doi.org/10.1007/978-3-540-74695-9_23
https://doi.org/10.1007/978-3-319-10584-0_26
https://doi.org/10.1007/978-3-319-46448-0_7
https://doi.org/10.1007/978-3-319-46448-0_7


118 Y. Wang and W. Pan

14. Li, L., Su, H., Xing, E., Fei-Fei, L.: Object bank: a high-level image representation
for scene classification and semantic feature sparsification. In: Advances in Neural
Information Processing Systems (2010)

15. Li, X., Guo, Y.: An object co-occurrence assisted hierarchical model for scene
understanding. In: Proceedings of the British Machine Vision Conference (2012)

16. Li, X., Herranz, L., Jiang, S.: Heterogeneous convolutional neural networks
for visual recognition. In: Chen, E., Gong, Y., Tie, Y. (eds.) PCM 2016.
LNCS, vol. 9917, pp. 262–274. Springer, Cham (2016). https://doi.org/10.1007/
978-3-319-48896-7 26

17. Li, X., Song, X., Herranz, L., Zhu, Y., Jiang, S.: Image captioning with both
object and scene information. In: Proceedings of the 2016 ACM on Multimedia
Conference, MM 2016, pp. 1107–1110. ACM, New York (2016)

18. Liang, X., Shen, X., Feng, J., Lin, L., Yan, S.: Semantic object parsing with
graph LSTM. In: Leibe, B., Matas, J., Sebe, N., Welling, M. (eds.) ECCV 2016.
LNCS, vol. 9905, pp. 125–143. Springer, Cham (2016). https://doi.org/10.1007/
978-3-319-46448-0 8

19. Liao, Y., Kodagoda, S., Wang, Y., Shi, L., Liu, Y.: Understand scene categories by
objects: a semantic regularized scene classifier using convolutional neural networks.
In: IEEE International Conference on Robotics and Automation (ICRA) (2016)

20. Lin, T.Y., et al.: Microsoft COCO: common objects in context. In: Fleet, D.,
Pajdla, T., Schiele, B., Tuytelaars, T. (eds.) ECCV 2014. LNCS, vol. 8693, pp.
740–755. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-10602-1 48

21. Palangi, H., Deng, L., Shen, Y., Gao, J., He, X., Chen, J., Song, X., Ward, R.: Deep
sentence embedding using long short-term memory networks: analysis and appli-
cation to information retrieval. IEEE/ACM Trans. Audio Speech Lang. Process.
24, 694–707 (2016)

22. Quattoni, A., Torralba, A.: Recognizing indoor scenes. In: Proceedings of the
IEEE Conference on Computer Vision and Pattern Recognition Workshops, CVPR
Workshops 2009, pp. 413–420 (2009)

23. Ren, S., He, K., Girshick, R., Sun, J.: Faster R-CNN: towards real-time object
detection with region proposal networks. In: NIPS (2015)

24. Russakvovsky, O., Deng, J., Su, H., Krause, J., Satheesh, S., Ma, S., Huang, Z.,
Karpathy, A., Kholsa, A., Bernstein, M., Berg, A., Fei-Fei, L.: Imagenet large scale
visual recognition challenge. Int. J. Comput. Vis. 115(3), 211–252 (2015)

25. Shuai, B., Zuo, Z., Wang, G., Wang, B.: DAG-Recurrent neural networks for scene
labeling. In: CVPR (2016)

26. Simonyan, K., Zisserman, A.: Very deep convolutional networks for large-scale
image recognition. In: ICLR (2015)

27. Torralba, A., Murphy, K.P., Freeman, W.T., Rubin, M.A.: Context-based vision
system for place and object recognition. In: ICCV (2003)

28. Tuytelaars, T., Mikolajczyk, K.: Local invariant feature detectors: a survey. Found.
Trends. Comput. Graph. Vis. 3(3), 177–280 (2008)

29. Varior, R.R., Shuai, B., Lu, J., Xu, D., Wang, G.: A siamese long short-term
memory architecture for human re-identification. In: Leibe, B., Matas, J., Sebe,
N., Welling, M. (eds.) ECCV 2016. LNCS, vol. 9911, pp. 135–153. Springer, Cham
(2016). https://doi.org/10.1007/978-3-319-46478-7 9

30. Vinyals, O., Toshev, A., Bengio, S., Erhan, D.: Show and tell: a neural image
caption generator. In: CVPR (2015)

31. Wu, R., Wang, B., Wang, W., Yus, Y.: Harvesting discriminative meta objects
with deep CNN features for scene classification. In: ICCV (2015)

https://doi.org/10.1007/978-3-319-48896-7_26
https://doi.org/10.1007/978-3-319-48896-7_26
https://doi.org/10.1007/978-3-319-46448-0_8
https://doi.org/10.1007/978-3-319-46448-0_8
https://doi.org/10.1007/978-3-319-10602-1_48
https://doi.org/10.1007/978-3-319-46478-7_9


Scene Recognition with Sequential Object Context 119

32. Xiao, J., Hays, J., Ehinger, K.A., Oliva, A., Torralba, A.: Sun database: large-scale
scene recognition from abbey to zoo. In: Proceedings of the IEEE Conference on
Computer Vision and Pattern Recognitions, CVPR 2010, pp. 3485–3492 (2010)

33. Xu, K., Ba, J., Kiros, R., Cho, K., Courville, A., Salakhutdinov, R., Zemel, R.,
Bengio, Y.: Show, attend and tell: neural image caption generation with visual
attention. In: ICML (2015)

34. Yoo, D., Park, S., Lee, J.Y., Kweon, I.S.: Multi-scale pyramid pooling for deep
convolutional representation. In: Computer Vision and Pattern Recognition Work-
shops (CVPRW) (2015)

35. Yosinski, J., Clune, J., Bengio, Y., Lipson, H.: How transferable are features in
deep neural networks? In: NIPS (2014)

36. Zhou, B., Khosla, A., Lapedriza, A., Torralba, A., Oliva, A.: Places: an image
database for deep scene understanding. arXiv preprint arXiv:1610.02055 (2016)

37. Zhou, B., Lapedriza, A., Xiao, J., Torralba, A., Oliva, A.: Learning deep features
for scene recognition using places database. In: Proceedings of the 28th Annual
Conference on Neural Information Processing Systems 2014, NIPS 2014, vol. 1,
pp. 487–495 (2014)

http://arxiv.org/abs/1610.02055

	Scene Recognition with Sequential Object Context
	1 Introduction
	2 Related Work
	3 Our Method
	3.1 Object Proposal Extraction
	3.2 Features Extraction
	3.3 Sequential Object Context Modeling
	3.4 Training Details

	4 Experiments
	4.1 Dataset
	4.2 Quantitative Results

	5 Conclusion
	References


