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Chapter 11
Efficiency of Constructed Wetland 
Microcosms (CWMs) for the Treatment 
of Domestic Wastewater Using Aquatic 
Macrophytes
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Abstract  Constructed wetland microcosms (CWMs) are engineered wastewater 
treatment systems that are designed to treat wastewater from small communities, 
involving aquatic plants, a variety of substrate materials, soils and their associated 
microbial fauna. CWMs are considered as promising  ecological technology that 
requires low or no energy input, low operational cost and provides more benefits 
and better alternative to conventional wastewater treatment systems. In CWMs dis-
solved oxygen (DO), pH and temperature are controlled to achieve the desirable 
treatment efficiency. Several other components such as plant, substrate, water depth, 
hydraulic loading rates (HLRs) and hydraulic retention time (HRT) are also critical 
to establishing viable CWMs for the better performance. The literature on CWMs 
suggests excellent nutrient removal performances which are achieved with low and 
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stable effluent concentrations. Further, the choice of appropriate macrophyte spe-
cies having high uptake of pollutants and high pollutant tolerance and choice of 
substrate materials are critical for treatment performance. CWMs can be differenti-
ated based on existing native vegetation type (such as floating leaved macrophytes, 
free-floating macrophytes, emergent macrophytes and submerged macrophytes, in 
which emergent macrophytes are common)  and, hydrology (surface flow con-
structed wetlands (SFCWs), subsurface flow constructed wetlands (SSFCWs) and 
hybrid systems). The focus of this paper is to review the state of the art in improving 
the overall efficiency of CWMs for wastewater treatment. The paper documents 
both the design and operation of CWMs which are critically dependent on environ-
mental, operational and hydraulic factors. It further outlines key challenges and 
future prospects for their wider replication.

Keywords  Constructed wetland microcosms · Hydraulic loading rates · Hydraulic 
retention time · Macrophytes · Treatment efficiency

�Introduction

Rapid urbanization due to enormous population growth and changing living stan-
dards, intensification of agricultural activities and over-exploitation of freshwater 
ecosystems have caused both global and regional water scarcities (Wang et  al. 
2017). There has been an emergent need of moving towards new and alternative 
technologies for improving the quality of water in both developed and developing 
countries. The treatment of wastewater containing high proportion of nutrients and 
organic matter (OM) or refuse water from communities has been a great challenge 
and sometimes hard to achieve in conventional treatment processes (Wojciechowska 
et al. 2017). Therefore, wastewater treatment technologies such as constructed wet-
lands (CWs) have emerged as an innovative, economical and sustainable way of 
protecting and rehabilitating freshwater ecosystems in developing countries 
(Vymazal 2011). Designer CWs have emerged as novel engineered systems that 
have primarily been developed and implemented in Europe and the USA. These 
systems are now routinely used in subtropical and tropical regions in countries like 
India and Brazil (Machado et al. 2017). CWs with better control systems have been 
also widely implemented in Central and Eastern Europe having higher proportion of 
inhabitants living in small rural settlements (Istenic et  al. 2015). In China, CWs 
have been used for ecological engineering since more than 20 years (Zhang et al. 
2012). In India, CWs are used as decentralized wastewater systems for smaller com-
munities as well as for small drains outfalling in large rivers (Rai et al. 2013). The 
use of this technology has grown more progressively in recent decades because of 
their low and easy operational and maintenance cost, reliable efficiency and envi-
ronmental friendliness, relying fully on natural and continuous ongoing processes 
compared with other conventional treatment technologies (Zhang et  al. 2014). 
Natural wetlands provide us a wide range of ecosystem services, such as CO2 uptake 
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and release as a regulating service (Yamochi et al. 2017), while CWs are promising 
technology for the treatment of various types of wastewater such as domestic sew-
age, industrial drainage, storm water runoff, animal wastewaters, agricultural run-
off, leachates and polluted river water (Wu et al. 2015a; Maine et al. 2017; Li et al. 
2017) (Table 11.1). In a CW, community composition and species richness both 
represent a diverse effect on nutrient removal. Higher plant species richness habitu-
ally results in increased primary production (Naylor et al. 2003) that reduces efflu-
ent nutrient concentration due to increased plant uptake (Wang et  al. 2013; Han 
et al. 2016; Zhao et al. 2016a, b).

�Constructed Wetland Microcosms (CWMs)

CWs are engineered systems that are used to forecast the behaviour of natural wet-
lands under more controlled conditions (Zhang et al. 2014). A CWM unit has differ-
ent kind of filter material (substrates), planted with different macrophytes (Fig. 11.1). 
Wastewater passes through the basin and flows over the surface to meet with sub-
strate and is discharged out from the CWM unit through a discharge point (Sudarsan 
et al. 2015).

A CWM unit has the following main components (Sudarsan et al. 2015):

	a.	 Basin
	b.	 Substrate
	c.	 Vegetation
	d.	 Inlet system
	e.	 Outlet system

Table 11.1  Treatment of different types of wastewater in CWs using emergent macrophytes

S. 
no.

Type of 
wastewater Vegetation References

1 Domestic 
wastewater

H. psittacorum, P. australis ,P. karka, T. 
latifolia, T. angustifolia, A. halimus, J. 
acutus, S. perennis

Bohórquez et al. (2017), 
Butterworth et al. (2016), 
Fountoulakis et al. (2017)

1 Industrial 
wastewater

T. latifolia, T. domingensis, S. 
cyperinus, P. australis, J. articulates

Khan et al. (2009)

2 Sewage T. latifolia, S. acutus, S. validus, P. 
australis, P. karka

Ladu et al. (2012), Mulling et al. 
(2013)

3 Agriculture 
runoff

P. karka, T. angustifolia, S. mucronatus Sim et al. (2011)

4 Runoff + 
sewage

P. australis, T. orientalis, C. 
malaccensis

Wang et al. (2011)

5 Pesticides in 
runoff

P. australis, T. latifolia Elsaesser et al. (2011)

6 Eutrophic 
water

T. angustifolia Li et al. (2008)
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On the basis of hydrology, CWs are characterized mainly into surface flow con-
structed wetlands (SFCWs) or free water surface (FWS), subsurface flow con-
structed wetlands (SSFCWs) and hybrid systems (or mixed systems) (Wu et  al. 
2015a). SSFCWs may further be categorized into horizontal flow constructed wet-
lands (HFCWs) and vertical flow constructed wetlands (VFCWs) on the basis of 
effluent flow. According to the macrophytic growth, they are further categorized 
into emergent, free floating, submerged and floating leaved. Most widely used CWs 
are subsurface flow, and nowadays hybrid system has gained great attention in com-
parison with others because of their high treatment efficiency. They are designed to 
acquire benefit of the natural wetlands under controlled environment. Gaining a 
better knowledge of the mechanisms linked with CWs, various designs and opera-
tional mode are available to achieve greater efficiency of domestic sewage treat-
ment, e.g. single-stage modification (Kumari and Tripathi 2014), multistaged in 
series (Melián et al. 2010) and/or combination with other treatment technologies 
(Singh et al. 2009). Accordingly, a number of researchers have published review 
articles related to the use of CWs for wastewater treatment (Haynes 2015; Liu et al. 
2015; Vymazal and Březinová 2015; Wu et al. 2015a). Nevertheless, there are rela-
tively few studies on the present knowledge aimed at on-site treatment of wastewa-
ter. Still, there is an uncertainty about the selection of the suitable type of CWs 
which is more appropriate for domestic wastewater treatment in decentralized sys-
tem. Most of the research on the use of macrophytes in CWs has been done in tem-
perate regions; while there are much more untested macrophytes in tropical regions. 
Tropical conditions can lead to considerable uptake of wastewater nutrients by mac-
rophytes (Zhang et al. 2014). The roots of the macrophytes provide substrate for 
microbial growth and transfer oxygen and dissolved organic matter from leaves and 
aerial parts to the rhizosphere (Meng et al. 2014).

Fig. 11.1  CWM unit 
planted with emergent 
macrophyte. (Shao et al. 
2014)
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More recent research on CWs has primarily focused on water purification (Ávila 
et  al. 2014), selection of appropriate plant and configuration (Wang and Sample 
2013), choice of substrates (Ge et  al. 2015), hydraulic loading rates (HLR) 
(Mexicano et al. 2013) and hydraulic retention time (HRT) (Dzakpasu et al. 2015). 
Some studies have also found how physical properties of the substrates, such as 
substrate depth and size, influence pollutant removal.

�Mechanism Involved in CWs for the Domestic Wastewater 
Treatment

�Components Involved

The main components involved in CWs are wetland vegetation, media material 
(which are either natural, industrial by-product or artificially prepared material) and 
microbial communities. Together, these systems utilize a combination of biological, 
chemical and physical processes to remove most of the contaminants from 
wastewater.

�Wetland Vegetation

In CWs, a number of wetland plants have been employed having several properties 
required for the treatment process. Most often used macrophytes in CWs systems 
are broadly categorized into free-floating plants, submerged plants, floating-leaved 
plants and emergent plants, typically grown in water or soil media. Even though 
more than 150 macrophytic plant species have been reported that are used in CWs 
globally, only a few of these are very frequently used (Saeed and Sun 2012; Vymazal 
2013a). Highly dense macrophytes provide more substrates to the biofilms for 
microbial action to enhance treatment (Badhe et al. 2014; Zheng et al. 2015, 2016; 
Wang et al. 2016; Wu et al. 2016).

Floating-Leaved Macrophytes

These are rooted in submerged sediments with the water depth of 0.5–3.0 m and 
have slightly aerial or floating leaves; examples include Nymphaea odorata and 
Nuphar lutea.
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Free-Floating Macrophytes

They freely float on surface water. These plants are able to remove nitrogen (N) and 
phosphorus (P) by means of increased plant biomass and by denitrification, and they 
also remove suspended solids; main examples are Eichhornia crassipes 
(Pontederiaceae), Nymphaea  tetragona (Nymphaeaceae), Trapa bispinosa 
(Lythraceae), Marsilea quadrifolia (Marsileaceae), Salvinia natans (Salviniaceae), 
Azolla spp. (Salviniaceae) and Lemna minor (Arecaceae).

Emergent Macrophytes

Emergent plants are generally observed on water-saturated or submerged soil and 
are able to grow in water depth of 0.5 m or more. Commonly used emergent macro-
phytes are Phragmites spp. (Poaceae), Typha spp. (Typhaceae), Canna indica 
(Cannaceae), Scirpus spp. (Cyperaceae), Iris spp. (Iridaceae), Juncus spp. 
(Juncaceae) and Acorus calamus (Acoraceae). They transfer oxygen from roots to 
rhizosphere, which gives rise to degradation of pollutants aerobically.

Use of emergent macrophytes in CWs greatly reduces surface speed, enhances 
sedimentation and makes the available substrate for periphyton breeding to support 
pollutant degradation. The most often used macrophyte species are Typha, Scirpus, 
Phragmites and Juncus (Vymazal 2013b).

Submerged Macrophytes

These have their tissues submerged in water, grow healthy in oxygenated water and 
are principally used for polishing wastewater after secondary treatment. Examples 
include Hydrilla verticillata (Hydrocharitaceae), Ceratophyllum demersum 
(Ceratophyllaceae), Vallisneria natans (Hydrocharitaceae), Potamogeton crispus 
(Potamogetonaceae) and Myriophyllum spicatum (Haloragaceae). 

From the above-mentioned macrophytes, emergent macrophytes are the key spe-
cies in CWs for wastewater treatments because of their high treatment efficiency 
(Vymazal 2013b); amongst them Phragmites australis is the most frequent species 
in Asia and Europe (Vymazal 2011).

�Media material (Substrates)

Substrates are selected on the basis of hydraulic permeability and the ability to 
absorb pollutants. Poor hydraulic conductivity may cause clogging of systems, 
decrease the efficiency of the system, lower the adsorption and also affect the per-
formance of CWs for long-term applications (Wang et al. 2010). Previous studies 
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for the choice of wetland substrate media especially for phosphorus removal from 
wastewater explain that the substrates mainly include natural materials, artificial 
media and industrial by-products (Table 11.2) (Yan and Xu 2014). From these stud-
ies it is proved that most of the natural substrates are less efficient for long-term 
phosphorus removal; in contrast, industrial and artificial products with high hydrau-
lic conductivity have high phosphorus sorption capacity. Several other studies also 
provided some knowledge on substrate choice in order to maximize the removal 
efficiency of nitrogen and organics. Substrates such as alum sludge, compost, peat, 
rice husk and marble are the best choices (Babatunde et al. 2010).

�Microorganisms

The well-known microbial population in CWs is present in the form of the biofilms 
associated with plant’s roots or attached with the surface of the filter media 
(Faulwetter et al. 2009). The structure of microbial community in various layers of 
planted soil in wetlands system for the treatment of domestic wastewater was given 
by Truu et al. (2005). They observed that the depth is a crucial factor affecting the 
microbial community composition and microbial activity (Truu et  al. 2009) in 

Table 11.2  Common media substrates used in CWs systems

S. no. Substrate type Source

1 Artificial material
Compost Saeed and Sun (2012)
Activated carbon Ren et al. (2007)
Lightweight aggregates Saeed and Sun (2012)
Calcium silicate hydrate
Basic oxygen furnace slag (BOFS)

Li et al. (2011)
Barca et al. (2014)

2 Industrial by-products
Fly ash Xu et al. (2006)
Coal cinder Ren et al. (2007)
Slag Cui et al. (2010)
Alum sludge Babatunde et al. (2010)
Oil palm shell Chong et al. (2013)
Hollow brick crumbs Ren et al. (2007)

3 Natural material
Sand Saeed and Sun (2013)
Gravel Calheiros et al. (2008)
Clay Calheiros et al. (2008)
Calcite Ann et al. (1999)
Limestone Tao and Wang (2009)
Zeolite Bruch et al. (2011)

Wu et al. (2015a)
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CWMs (Iasur-Kruh et al. 2010). Various studies have experimented microbial popu-
lations in full-scale CWs and laboratory-scale units under controlled conditions 
(Zhang et al. 2010; Dong and Reddy 2010). However, there is a short of information 
on the changes of the microbial communities and diversity in long-term operations 
for the domestic wastewater treatment (Adrados et al. 2014). It is represented by 
several studies that the below- and above-ground parts of the macrophytic plants 
increase the diversity of microorganisms which make available large surface area 
for the growth of well-defined biofilms, responsible for nearly all of the microbial 
processes taking place in the wetlands (Chen et  al. 2014; Button et  al. 2015). 
Excessive nutrients such as N and P (eutrophication) (Giaramida et al. 2013) and the 
presence of other toxic substances affect biofilms and their structure (Calheiros 
et al. 2009) in the wetland system. In CWs different wetland plants, rhizospheric 
zones are able to provide unique add-on sites for certain microbial populations and 
mediate the environment by the release of oxygen and root exudates which can 
control the function and development of certain microbial communities (Lv et al. 
2017; Zhang et al. 2016).

�Treatment Efficiency of CWMs

Recent research in CWs for domestic wastewater treatment using halophytes shows 
that they have great potential to build up salts in their tissues (Fountoulakis et al. 
2017). The design parameters and operational phase must be chosen according to 
the environmental conditions of the site and the effluent quality needed after treat-
ment (Bohórquez et al. 2017). HLR and HRT both are significant design parameters 
for determining the treatment efficiency of a CW; removal efficiencies decreased 
with increasing HLR and decreasing HRT (Abou-Elela et al. 2017).To date nearly 
all of the developing countries have warm tropical and subtropical climates through-
out the year, and it is commonly known that CWs are more feasible in tropical 
regions compared to temperate regions (Zhang et al. 2015). In tropical regions, wet-
lands are exposed to higher temperatures and direct sunlight throughout the year 
and show higher year-round plant productivity and a simultaneous decrease in the 
time needed for microbial biodegradation. A warm climate is favourable for plant 
growth and microbiological activity, which have positive effects on treatment per-
formances (Zhang et al. 2014). In CWs, the core mechanisms associated with con-
taminant removal are microbial activities. However macrophytes also play a central 
role in contaminant removal from wastewater. They utilize nutrients and add them 
into plant tissue and consequently increase plant biomass (Zhang et  al. 2007; 
Mthembu et al. 2013).

Different types of wastewater such as industrial, agricultural, landfill leachate 
and storm water runoff are hard to be treated in a single-stage system. Recently 
hybrid systems of different configurations were built together for the treatment of 
combined sewer overflow (Ávila et al. 2013) or refinery effluent (Vymazal 2005; 
Wallace and Kadlec 2005; Elfanssi et al. 2017). It is reported that CWs with differ-
ent designs and planted with different macrophytes obtain high percentage reduction 
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of organic load, total phosphorus and ammonium ions, at short detention times in 
small communities (Kadlec and Wallace 2008).

�Removal of Organics

In CWs organic matter degradation involves both aerobic and anaerobic microbes 
(Table 11.3). Removal efficiency of organic pollutants which are present in waste-
water used in CWs is dependent on influent strength (Saeed and Sun 2012; Wu et al. 
2015b). The aerobic heterotrophic bacteria have comparatively faster metabolic rate 
than autotrophs to oxidize organics that make use of oxygen as the final electron 
acceptor and release carbon dioxide, ammonia and other stable chemical com-
pounds (Garcia et al. 2010). The intensity of organic matter biodegradation in CWs 
is also dependent on the biodegradability of the organic matters; such characteristics 
are best represented by the biological oxygen demand (BOD) and chemical oxygen 
demand (COD) ratio of the wastewater. Usually, the ratio of BOD and COD for 
untreated domestic wastewater ranges from 0.3 to 0.8. A BOD and COD ratio of 0.5 

Table 11.3  Mechanisms of wastewater treatment by using CWs

S. no. Wastewater components Removal mechanisms

1 Suspended solids Sedimentation
Filtration

2 Soluble organics Aerobic microbial degradation (biotransformation)
Anaerobic microbial degradation

3 Nitrogen Ammonification and microbial nitrification
Denitrification (conversion of NO3 to N2)
Plant uptake ( accumulation into plants parts)
Matrix sorption (sorption through the substrates)
Ammonia volatilization (vaporization)

4 Phosphorus Matrix sorption
Plant uptake

5 Metals Adsorption and cation exchange
Complexation ( formation of coordination compounds)
Plant uptake
Precipitation (formation of insoluble compound)
Microbial oxidation/reduction

6 Pathogens Sedimentation
Filtration
Natural die-off
Predation
UV irradiation
Excretion of antibiotics from macrophytes

Cooper et al. (1997), Mthembu et al. (2013)
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or more indicates that the organics are simply degraded, while the ratio below 0.3 
shows that the available organics which are present are difficult to degrade by the 
microorganism (Saeed and Sun 2012). Organic matter degradation is enhanced with 
sufficient and efficient oxygen supply (Vymazal and Kröpfelová 2009; Ong et al. 
2010). Therefore, by increasing the airflow rate, COD removal efficiencies were 
progressively enhanced because of additional oxygen supply and the highest effi-
ciency to be found at the aeration rate of 2.0 L min−(1) (Saeed and Sun 2012).

Earlier researches pointed out that intermittent aeration strategy greatly enhances 
the removal efficiency in CWs (Jiang et al. 2017). Removal efficiencies in intermit-
tently aerated CWs with biochar or without biochar were better than non-aerated 
CWs with or without biochar that means a significant improvement was achieved in 
organic matter removal through artificial aeration (Headley et  al. 2013), while 
removal efficiency of COD was greater than other CW treatments such as bioaug-
mentation (Zhao et  al. 2016a, b), polyvinyl alcohol immobilized nitrifier, (Wang 
et al. 2016) and earthworm eco-filters (Zhao et al. 2014).

�Removal of Nitrogen

Discharge of nitrogen in excessive is able to cause serious environmental conse-
quences, like eutrophication, which deteriorates water quality and downgrades the 
aquatic ecosystems (Li et al. 2014; Fan et al. 2016). Nitrogen in wastewater is pres-
ent mainly in two forms, organic and inorganic (Stefanakis et al. 2014), and removal 
mechanisms include ammonification (conversion of organic nitrogen to ammonia), 
nitrification (conversion of ammonia to nitrite and then nitrite to nitrate), denitrifica-
tion (conversion of nitrate to N2 gas), nitrate usually used as electron sink and to end 
with dinitrogen gas (Drizo et al. 1997; Elfanssi et al. 2017), plant uptake (nitrogen 
taken by plants as nutrients in the form of mainly nitrates and ammonia) and adsorp-
tion (mostly ammonia adsorbed on the media material) (Table 11.4) (Tsihrintzis 
2017).

In CWs, both nitrification and denitrification are extensively accepted pathways 
for biological nitrogen removal (Fig. 11.2). The process requires both aerobic and 
anaerobic environments, while nitrification can convert nitrogen into various forms 
but cannot achieve its removal from the wastewater (Fan et al. 2013). A continuous 
aeration strategy has been developed and adopted to attain complete nitrification 
(Ong et al. 2010; Wu et al. 2015b). However intermittent aeration mode is known to 
be a more cost-effective strategy because it has more nitrifying and other viable 
bacteria in comparison with non-aerated CWs (Foladori et al. 2013; Fan et al. 2013). 
They greatly increased total nitrogen (TN) removal efficiency by creating favour-
able conditions (alternate aerobic and anaerobic conditions). It is reported that the 
removal efficiency of TN in CWs can be altered by using different designing mod-
els, by controlling environmental conditions (e.g., temperature, pH and dissolved 
oxygen, etc.) and by different operational factors (e.g., C/N ratio, HLRs, HRT, etc.) 
(Saeed and Sun 2012). Recently, a lot of investigations were carried out by the 
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Table 11.4  Significance of novel and classical routes for the removal of nitrogen in wastewater

Mode Route Significance

Microbiological Partial 
Nitrification–
denitrification

NO2 removal over NO3, reducing TN content of 
wastewater

Microbiological Anammox Anaerobic NH4
+ oxidation into N2

Microbiological Canon Completely autotrophic NO2 removal over NO3

Microbiological Ammonification Transforms N2 in wastewater, e.g. from organic 
nitrogen to NH4–N

Microbiological Nitrification Changes NH4–N to NO2–N and NO3–N. Net quantity 
of TN remains constant

Microbiological Denitrification Reduces NO3–N to N2 gas. The process also reduces 
TN when combined with nitrification

Microbiological Dissimilatory nitrate 
reduction

Reduces NO2–N and NO3–N to NH4–N. As such, the 
quantity of TN remains constant

Microbiological Biomass assimilation Adsorbs NH4–N, thereby reducing nitrogen content of 
wastewater

Biological Plant uptake Remove nitrogen from wastewater by accumulation 
into plants parts

Physico-
chemical

Volatilization Converts NH4
+ to NH3 gas, followed by gaseous strip, 

and then eliminates N2 from wastewater
Physico-
chemical

Adsorption Adsorbs NH4–N from wastewater, reducing TN 
content. However, aerobic environment can nitrify the 
adsorbed NH4–N, followed by desorption

Saeed and Sun (2012)

Assimilation

Assimilation

ammonification

Plants

Organic
nitrogen

NH4

NH3

NO2 NO3 NO2

NO

N2O

N2

decomposition

plant
uptake

plant
uptake

fixation

volatilization

nitrogen fixation

nitrification

+

- - -

denitrification

denitrification

nitrification

dissimilatory
reduction

dissimilatory
reduction

Fig. 11.2  Classical nitrogen removal routes in CWs. (Source: Saeed and Sun 2012)
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researchers to study the role of C/N ratio on nitrogen removal in treatment of waste-
water (Zhao et al. 2010). From the study done previously, it is stated that the TN 
removal efficiency was found to be higher at C/N ratio of 2.5–5. In addition, another 
study (Fan et al. 2013) shows that the high removal rate of TN (82%) was found in 
aerated SSFCWs with C/N ratio of 10. Later (Zhu et al. 2014) it was reported that 
the highest removal efficiency of TN was at a C/N ratio of 5, and the removal effi-
ciency rose with an increase of C/N ratio. Nevertheless, the best possible C/N ratios 
to attain maximum nitrogen removal in SFCWs still remain uncertain especially for 
purifying the effluent of sewage treatment plant. Actually, the higher removal effi-
ciencies for TN are always coupled with higher C/N ratios. In CWs, degradation of 
organic matter consumes more DO which threatens the activity of nitrifying micro-
organisms (Zhu et al. 2014).

�Removal of Total Phosphates (TP)

Anthropogenic activities such as agricultural practices and rapid urbanization have 
altered the biogeochemical cycling of phosphorus (Bouwman et al. 2013; Penuelas 
et al. 2013; Geng et al. 2017). In wastewater, phosphorus can be found in organic or 
inorganic forms; orthophosphates (PO43−) is the common form. In CWs phosphate 
removal is done primarily by adsorption, precipitation and immobilization by 
microbes (Seo et al. 2005) and high removal efficiency is achieved when there is 
more oxygen exposure to the rhizosphere through the vascular bundle transforma-
tion (Wu et al. 2015c). Dissolved phosphorus is taken by macrophytes or adsorbed 
onto the substrate media and precipitated, predominantly when Al, Fe, Ca or Mg 
cations are present at high proportion. Some specialized media materials such as 
zeolite, bauxite, dolomite, limestone, etc. are probably used to enhance phosphorus 
adsorption (Stefanakis and Tsihrintzis 2012; Stefanakis et al. 2014). However, high 
water depth, subsequent to a low flow velocity, is complimentary to increase the rate 
of this removal process (Guo et al. 2017). TP removal rates varied according to the 
seasons, linked to the rising of plant biomass and microbial activity from cold to 
warm one. A positive correlation was found in between total phosphorus removal 
and seasonal variation (Zhao et al. 2011). Precipitation and adsorption can easily 
saturate the adsorption sites during pollutant treatment, thus decreasing the treat-
ment efficiency. Consequently, the selection of filter media with high adsorption 
capacity is necessary to achieve higher treatment efficiency and for the longevity of 
a CW. Therefore, ongoing study to develop new filter media with enhanced phos-
phate adsorption capacity has become a main concern for researchers in the last two 
decades (Park et al. 2017).

Recently a number of substrate materials have been used in CWs to improve 
phosphate treatment capacity among  which basic oxygen furnace slag (BOFS) 
(Barca et al. 2014) and electric arc furnace (EAF) slag (Okochi and McMartin 2011) 
are promising substrates.
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�Sustainability of CWs

The physical functions and chemical composition of wetlands affect all natural bio-
logical processes. The DO, pH and temperature are the most significant factors 
affecting the performance of CWs (Kadlec and Wallace 2008). The criteria for suit-
able CW design and sustainable operation include site, substrate selection, waste-
water type, plant selection, (based on their role in treatment process as a whole plant 
or by their tissues) (Table 11.5), HLR, HRT and water depth (Akratos et al. 2009; 
Kadlec 2009; Wu et al. 2014). Particularly, the factors such as plant, substrate, water 
depth, HLR, HRT and feeding mood are vital for development of sustainable CW 
system to achieve maximum treatment performance (Fig.  11.3). Brundtland 
Commission on Sustainable Development (formally known as the World 
Commission on Environment and Development (WCED)) defined cost–benefit 
analysis for the sustainability of any project that aims at improving the quality of the 
environment. In CWs criteria such as land acquisition, energy consumption, eco-
logical benefits, investment and operation costs must be considered during con-
struction and operation phase. A number of earlier studies point out that CWs have 
an evident advantage of construction and operation cost savings in comparison with 
other conventional wastewater treatment plants (WWTPs) (Zhang et al. 2012; Wu 
et al. 2014).

Table 11.5  Parts of macrophytes and their role in treatment process

S. no. Plant parts Role in treatment process

1 Aerial plant tissue Reduced growth of phytoplanktons by light 
attenuation
Reduced wind velocity and risk of resuspension
Influence of microclimate–insulation during winter
Store nutrients and add aesthetic values

2 Plant tissue in water Filtering effect – filter out bulky debris
Amplified rate of sedimentation, reduced current 
velocity
and risk of resuspension
Enhanced aerobic degradation
Nutrient uptake
Acts as a filter medium, provides oxygen

3 Roots and rhizomes in the 
sediment

Stabilizing the sediment surface – less erosion
Offers surface for bacterial growth
Prevents clogging of the medium
Increases degradation by release of oxygen
Release of antibiotics
Promotes biodegradation

Vymazal (2011)
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�Future Prospects

The performance of CWs has improved considerably by innovation in the design 
and mode of operation in recent years. The exceptional treatment efficiency and 
performance of CWs for treating high strength wastewater containing nutrients can 
be achieved by appropriate selection of plants and substrates, proper management 
of the hydraulic loads, mode of operation and pollutant loading rate. These factors 
can be effectively controlled through innovations in design criteria. Therefore, opti-
mization of these conditions requires extensive research in the future. The challenge 
is to develop appropriate plant harvest strategies as well as recycling of plant 
resources because when they die and decay, they could release nutrients and other 
pollutants into receiving water which may decrease the overall removal perfor-
mance. There is an emergent need for more research and improvement for tradi-
tional CWs to develop new technologies for the enhancement in treatment 
efficiencies, which are required for sustainable water quality improvement, espe-
cially in developing countries. Future research should be devoted to develop artifi-
cial aeration, various filter media (non-conventional media materials such as 
industrial by-products, agricultural wastes, etc.), additional carbon addition, tidal 
operation, step feeding, microbial augmentation, baffled flow and hybrid CWs.

Fig. 11.3  Recent developments and future considerations for improving the sustainability of the 
CWs. (Wu et al. 2015a)
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�Conclusion

CWs are considered as an environmental-friendly wastewater treatment technology. 
CWs have emerged as an alternate, cost-effective solution for treatment of different 
types of wastewater especially in remote locations of developing countries. The 
focus of this review has been on the efficiency of CWMs for domestic wastewater 
treatment. Both the design and operation of a CW are crucial to achieve the sustain-
able treatment performance which is critically dependent on environmental, opera-
tional and hydraulic conditions. There will also be a significant change in removal 
efficiencies with HLR and HRT, as pollutant removal efficiencies decreased when 
the HLR is increased and HRT is decreased and removal efficiency increased when 
HLR is decreased and HRT is increased. However, the removal of plant nutrients (N 
and P) is highly variable. Still, the choice of appropriate macrophyte species (i.e. 
supply more oxygen, high uptake of pollutants, and tolerate high pollutant loadings) 
and substrates are critical for the sustainable wastewater treatment performance.
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