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Abstract Frequent itemset extraction is a very important task in data mining
applications. This is useful in applications like Association rule mining and
co-relations. They are using some algorithms to extract the frequent itemsets, like
Apriori and FP-Growth. The algorithms used by these applications are inefficient to
support balancing, distributing the load, and automatic parallelization with good
speed. Data partitioning and fault tolerance is also not possible because of excessive
data. Hence, there is a need to develop algorithms which will remove these issues.
Here, a novel approach is used to work on the extracting the frequent itemsets using
MapReduce. This system is based on the Modified Apriori, called as Frequent
Itemset Mining using Modified Apriori(FIMMA). To automate the data paral-
lelization, well balance the load and to reduce the execution time FIMMA works
concurrently and independently using three mappers. It uses decomposing strategy
to work concurrently.

Keywords Association rules � Frequent itemsets � Data partitioning
Load balancing � MapReduce � Hadoop � FIMMA

1 Introduction

Frequent itemset extraction is the basic problem in data mining applications, such as
association rule, correlations, sequences, and many more data mining tasks. Hence,
this becomes an important research topic to extract the frequently used itemsets.
These frequent patterns are useful to take decisions in product marketing, sales, etc.
[1]. Association rule mining is popular in data mining [2]. The main goal of
Association rule is to find all the rules that fulfill a user-defined threshold. The first
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phase of association rule is to identify frequent itemsets whose support is greater
than the threshold and the second phase is to form conditional implication rules,
among the frequent itemsets. Frequent itemsets generation defines the two similar
itemsets. The first itemset is similar to another. Now a day, there are enormous data
generated from different areas such as IT companies and web applications. Existing
data mining applications are unable to handle vast data and are only suited for a
typical database. Thus, to extract the frequent itemsets from the excessive database
is a very critical task [3]. For better utilization of frequent itemsets using large size
database, speed is very important. Speeding up the process of FIM is very complex
because it consumes most of the time to calculate the input/output intensity. In this
modern era, datasets are excessively large and sequential FIM algorithms are unable
to compute large database. They, however, failed to analyze data accurately and
they suffer from performance degradation. To solve these problems, MapReduce is
used to calculate frequent itemsets. Using this approach, the data will not only be
distributed in an efficient way but also balanced in the cluster. Hence, the perfor-
mance of finding frequent itemsets will be optimized [3].

This MapReduce is using the FIM which is based on the Modified Apriori,
called FIMMA. In this strategy, we are focusing the data partitioning method, load
balancing of data with a parallel approach. FIMMA consumes less time compared
with the traditional Apriori. The working of mappers and reducers is done con-
currently to optimize the speed, well balancing the load across various clusters [3].

The rest of this paper is partitioned as follows. Section 2 gives the review of the
literature. Section 3 defines the problem statement. Section 4 gives the present
system architecture. Section 5 explains the algorithms and methodology for the
system and discussed the expected results in Section 6. Section 7 concludes this
paper.

2 Related Work

The authors of “Association Rule mining extracting frequent itemsets from the large
database” have presented a problem of finding the frequent items from the excessive
database. The authors have developed the rules that have minimum transactional
support and minimum confidence. For this, an algorithm is used that carefully
estimates the itemsets for one pass. It adjusts the data between the number of passes
and itemsets that are measured in a pass. This process uses pruning system for
avoiding certain itemsets. Hence, this gives exact frequent itemsets from excessive
databases [4, 5]. A number of parallelization procedures is used to increase the
performance of Apriori-like algorithms to find frequent itemsets. MapReduce has
not only created but also exceeds in the mining of datasets of gigabyte scale or
greater in either homogeneous or heterogeneous groups. The authors have imple-
mented three algorithms, DPC, FPC, and SPC [6]. SPC has straightforward func-
tions and the FPC has static passes merged checking capacities. DPC consolidates
the dataset of various lengths by utilizing dynamic strategy and it gives good
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performance over the other two calculations. Accordingly, these three calculations
will scale up to the expanded dataset [6].

When dataset gets larger the mining algorithms becomes inefficient to deal with
such excessive databases. The authors have presented a balanced parallel
FP-Growth algorithm BPFP [7], a revised version of PFP algorithm [4]. FP-growth
algorithm is utilized with the MapReduce approach named as Parallel FP-growth
algorithm. BPFP balances the load in PFP, which boosts parallelization and auto-
matically enhances execution. BPFP gives a good performance by utilizing PFP’s
grouping system [7].

FIUT suggests a new technique for mining frequent itemsets called as Frequent
Itemset Ultrametric Tree(FIUT) [8]. It is a sequential algorithm. It consist two main
stages to scan the database. First-stage calculates the support count for all itemsets
in a large database. The second stage uses pruning method and gives only frequent
itemsets. While calculating frequent one itemsets, stage two will construct small
ultrametric trees. These results will be shown by constructing small ultrametric trees
[8]. Dist-Eclat, BigFIM are two FIM algorithms used with MapReduce Framework.
Dist-Eclat focuses on speed by load balancing procedure using k-FIS. BigFIM
concentrates on hybrid approach for mining excessive data [9]. Apriori algorithm is
additionally used to create kth FIS itemsets. The Kth FIS is used to search frequent
itemsets based on the Eclat system. These three algorithms are used with
round-robin technique which achieves a better data distribution [9].

PARMA uses parallel mining approach with the benefits of Randomization for
extracting frequent itemsets from a vast number of databases. This divides the
functionality into two parts, gathering the arbitrary data samples and secondly it
uses parallel computing method that is utilized to increase the mining speed. This
method avoids the replication that is very expensive. A mining algorithm applies to
every segment individually with parallel approach [10]. K-Nearest Neighbor Joins
utilizes MapReduce and distributes the excessive information on the number of
machines. This is done by the mappers and the reducers give the results in terms of
the KNN join. KNN Join is the key component to search the kth-nearest neighbor.
MapReduce is utilized for effective computing the data to obtain the best perfor-
mance result [11, 12]. To diagnose the Heterogeneous Hadoop Cluster and to
search primary faults, this paper is used Hadoop schedulers to produce efficient
Hadoop clusters even if they are in heterogeneous clusters [13]. It proposes the
DHP algorithm (direct hashing and pruning) which is used for minimized candidate
set generation for large itemsets. It solves performance degradation problem of
large dataset mining. It minimizes candidate itemsets.

FIUT is used with MapReduce to find frequent itemsets. MapReduce is a
popular programming approach used for computing massive datasets [14]. It
divides into three MapReduce phases. The database is divided into number of input
files and given to each mapper. The first MapReduce phase finds out frequent-1
itemset and Second MapReduce phase scans the frequent one itemsets and gener-
ates k-frequent itemsets. Third MapReduce phase uses FIUT algorithm and it will
create ultrametric tree [3]. FiDoop-DP Data Partitioning uses the Map Reduce
programming and gives the effective data partitioning technique for frequent
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itemset mining. This increases the performance by using the data partitioning
technique, which is based on the Voronoi diagram. It extracts the correlations
between the transactions. By consolidating the similarity and the Locality-Sensitive
Hashing strategy, FiDoop-DP puts most similar records in data partition to increase
locality and this is done without repeating records [5, 15]. To differentiate and
extract frequent and infrequent itemsets from the massive database two-phase
scanning will be done here. In the first scan, it accepts input and distributes it into
mappers and finds out infrequent itemsets using minimum support. The reducer
combines the result and sends it to the second phase. In this phase, it scans first
phase output and gives the final result [16].

3 Problem Statement

Problem statement concentrates on the investigation of Frequent Itemset
Ultrametric Tree (FIUT) and to find the efficient way for its execution in HDFS
framework Implementation on FIMMA. To show that the proposed algorithm on
the cluster is sensitive to data distribution and dimensions, as itemsets with different
lengths have different decomposition and construction costs. Improving energy
efficiency of FIMMA running on the Hadoop clusters. To improve the performance,
a workload balance metric to measure across the clusters computing nodes is
developed.

4 System Architecture

FIMMA suggests parallel frequent itemset mining algorithm which uses
MapReduce programming technique for development. This removes the issues of
existing system and applies automatic parallelization, balancing the load of the
excessive database, and well distribution of given data. FIMMA is based on
Modified Apriori algorithm to overcome the issues of FIUT algorithm with reduced
time. It uses hash-based technique [17].

4.1 Objectives of Proposed System

• Better performance and improved accuracy using automatic parallel processing.
It performs with less time execution to scan the database.

• Keeping the cost constraint as it is and dealing with load balancing with
automatic parallelization.

• Hashing technique is used to differentiate the traditional Apriori.
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The proposed system consists three MapReduce phases. The user is responsible
to give the input. This input will be accepted by the job manager as shown in Fig. 1.
Job manager splits the input into a number of blocks, processes it and gives the
output to the reducer. This output is in the form of frequent one itemset.

The output of the first MapReduce is applied to the mapper of the second phase.
It scans all the data to give frequent-k itemsets. It uses pruning method to find out
frequent and infrequent itemsets. The result is obtained from reducer, in the form of
k-frequent itemsets. The system architecture is as shown in Fig. 1. This is dis-
tributed into two main parts.

1. HDFS framework
2. MapReduce Approach.

HDFS is a Hadoop distributed file system and used to store the log files. HDFS
framework accepts the data from the user. The user gives the input using SQL
queries or in the form structured data and uploads it. This uploaded dataset accessed
by the Job manager. Job manager is responsible to distribute the dataset to the
available mappers of each data node.

Here, the transactions from input dataset are distributed to the mappers. Each
mapper access the input scans it and generates the results in terms of key and
values. Key is the item-name and value is the item-count. Using the minimum
support the mappers gives the result to the reducers in the form of key and values.
Each mapper calculates frequent-1 itemset. Reducer combines the result of each

Fig. 1 System architecture
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mapper, sorts it and generate a final list. This is frequent-1 itemset list. This output
gives to the next MapReduce. It applies another round of scan. In this stage, it
accepts the frequent-1 items and compares it with the minimum support and
removes the infrequent items. This is called pruning system. Depending upon the
users given threshold value of k this MapReduce generates k-frequent itemsets.
(where k-itemsets < n number of dataset) It makes the possible combination of
frequent itemset from each mapper and gives to the reducer. Second MapReduce
updates the list and gives k-frequent itemset. This frequent-k-itemsets applies to the
third MapReduce. In this MapReduce, it accepts all k- itemsets and gives the result
in terms of top most k-frequent itemset.

FIMMA uses hash-based technique. There is a hash table used after each result
of MapReduce. These hash tables are used to store the result generated from
frequent-1 itemset to the k-itemset. These hash tables give a unique value to the
stored frequent items. Unique value is obtained by calculating mod hash formula.
Whenever there comes new input then hash table compares that items with stored
one. When new input from first mappers matches with stored one then hash table
sets a bit to 1 otherwise 0. This same procedure applies to the result of second
MapReduce (i.e., k-frequent itemsets) and on the third MapReduce. In last
MapReduce, it checks all set bit and stores into a new list, update it and gives the
final result. FIMMA helps to reduce the candidate generation of items by using hash
tables, therefore automatically it reduces the time. It controls the huge generation of
candidates with minimum support. It avoids the transaction record which does not
have any frequent items by comparing hash tables.

5 System Analysis

5.1 Algorithm for Frequent 1 Itemsets [3]

Input: minimum-support, Database D
Output: Frequent-1 itemset
Mapper Algorithm
Step 1: Mapper function is used with-MAPPPER (key offset, values Database D)
Step 2: //TR shows the transaction in Database D
Step 3: for loop is used for all Transactions TR in Database D do
Step 4: Candidate-items < – Splited each transaction TR.
Step 5: Use for loop for all candidate-items in all items, do
Step 6: output(candidate-item, 1)
Step 7: Here ends second for loop
Step 8: Here ends first for loop
Step 9: Mapper Function ends with each items count.

440 P. G. Kulkarni and S. R. Khonde



Step 10: The reducer takes input from mappers as input = (candidate-item, 1)
Reducer Algorithm

Step 11: REDUCE function starts with key, value (key candidate-item, values 1)
Step 12: take a variable total to store output, i.e., total = 0;
Step 13: Use for loop to calculate all candidate-item do
Step 14: Add new frequent item in total +=1 // Here ends for loop
Step 15: Output (frequent1-itemset, total).

5.2 Algorithm for Frequent-K-Itemsets

Input: minimum-support, Database D
output: frequent-k-itemsets.
Mapper Algorithm:
Step 1: In step 1 mapper function is used i.e. MAPPER (key offset, values

Database)
Step 2: //TR shows the transaction in Database D
Step 3: for loop is used for all Transactions TR in Database D do
Step 4: Candidate-items ← Splited each transaction TR. //Here input database D is

frequent-1 itemset
Step 5: Use for loop for all candidate-items in all item, do
Step 6: Step 6 applies pruning system using if condition for infrequent items

if Candidate-item = infrequent item then
Step 7: Remove the Candidate-item which is infrequent from the Transaction TR;
Step 8: If conditions ends here
Step 9: variable Frequent-k-itemset is used to store all k-frequent items and shown

by-Frequent-k-itemset ← (frequent-k, fr-set)
//After applying pruning system fr-set is the result with frequent-k items

Step 10: output (Frequent– itemset, 1);
Step 11: Here ends second for loop
Step 12: Here ends first for loop
Step 13: Mapper function is ends here by giving all mappers output.

Reducer Algorithm
Step 14: Reducer starts from this step using function REDUCER (key k-itemset,

values 1)
Step 15: Total = 0;
Step 16: used for a loop to count all items from mapper as-for all (k-itemset): do
Step 17: Total += 1;//For loop ends here
Step 18: output = (frequent-k items + total)
Step 19: Reducer function ends here with final k output.

A Novel Approach of Frequent Itemset Mining Using HDFS Framework 441



5.3 Algorithm for FIMMA

Step 1: Consider C be the variable for selection of one cluster at a time
Step 2: Here, the database will be scanned using minimum support and it will

generate frequent items. It will combine all the possible combinations of
frequent itemsets

Step 3: Function Fre1 stores the frequent itemsets ! Fre1 = find-freq-1itemset(T)
Step 4: for k = 2 to fk−1 6¼ Ø; generate Ø from fk−1 items
Step 5: Consider H1 is the hash table of size 8. B1 is buckets in the hash table and

A1 is Unique value to the frequent itemsets. V1 is the bit vector
Step 6: Calculate the items I up to user threshold value w from ck with min support;

ft(1 � w � k); end for
Step 7: Calculate frequent items with minimum support
Step 8: y variable to store the result of minimum support, i.e., y = min support

(ck, ft)
Step 9: get transaction id in variable ! target = get-trans id (y)
Step 10: compare the target values with the hash tables
Step 11: for each transaction id in target increment count of all ck
Step 12: if b1 >=min support; then bit vector v1 = 1; otherwise v1 = 0
Step 13: prune the 1 = 0 itemsets and modify the list
Step 14: fk = items in ck (min support)\\ end for

5.4 Mathematical Model

Let S be the system which do analysis and read documents; such that:

S ¼ S1; S2; S3; S4; S5f g where—S1 represents a query requesting by the user;
S2 represents authentication; S3 represents MapReduce module; S4 denote the sql
injection techniques; S5 gives the graphical presentation.

S1 ¼ U1;U2;U3. . .. . .::Unf g; Where, S1 contains SQL query–If S1 is valid
then proceed, Else discard.

S2 define user is authenticated or not; Where, Ui ¼ UI1;UI2:UI3. . .. . .UInf g
• Ui is the master node which having different storage nodes as clusters.

S3 = Functionality for three MapReduce phases:

• Input: database DI,min sup; Output: Frequent itemsets
• Let DI ¼ DI1;DI2; ::. . .Dinf g; where, DI is Input Database
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Applying algorithms to Find 1 and k-frequent itemsets, Hash-based Algorithm
F1(freq 1-itemset) = scan

P
0DI

; Fk (freq k-itemset) = scan
P

(F1)

FI ¼ FI1; FI2; :. . .FIKf g;Where FI is the final frequent itemsets
S4 ¼ patten 1; pattern 2. . .. . .:pattern nf g

Each pattern checks the behavior of query created by end user’s S1 (query
module). S1 ¼ avgþminþmaxþ roundþ floorþ todate == possible queries

S5 ¼ graphical representation for time comparison graph

6 Experimental Results

The experimental results evaluated with the minimum support (sometimes larger
data sizes). This upgradation comes at no execution cost, as they prove the way that
this implementation, achieves the good performance, compared to other techniques
with reduced time. By examining with this work, it demonstrates that, the execution
of FIUT is slow. It results that, whenever increased the minimum support and
dataset, it gives the balanced output. FIMMA gives an improved performance by
using hash table concept. When the threshold value decreases, other methods
occupy more memory as well as consume more time.

Table 1 shows the time required to extract frequent itemsets. As shown in table
I, first column shows the Size of Dataset. Other columns show the methodologies to
find frequent itemset. Proposed system requires less time compared to existing
systems. It shows the time in seconds. The performance of this system against the
Frequent Itemset Ultrametric Tree (FIUT) method is as shown in Fig. 2. Modified
Apriori algorithm is a good algorithm to give the correct results as compared to
existing systems. Also, this algorithm shows the faster execution even for a large
database. As synthetic dataset is used here, the user can make their own dataset to
run the tests.

Table 1 Time required for
finding the frequent itemset
from dataset

Size of dataset FIUT Modified apriori (FIMMA)

1000 139 113

2000 165 144

3000 218 196

5000 277 234

10,000 317 293
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Figure 2 shows the graphical representation of the methodologies and datasets.
These are the results of two methodologies when the dataset is increased. X-axis
shows the methodologies and y-axis shows the time in seconds. Figures 3 and 4
shows the Hadoop implementation results. Figure 3 shows the FIUT implementa-
tion with required time in ms. In this, it takes 43,780 ms (shown in red color
rectangle) to execute a job. Figure 4 shows the FIMMA implementation. Here it
shows the time required to execute the same job. FIMMA takes 21,090 ms to
execute a job. Hence, it shows that FIUT takes more time than the FIMMA method.
FIMMA gives better performance than the FIUT with reduced time.

Fig. 2 Comparison graph

Fig. 3 Hadoop implementation using FIUT
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7 Conclusion

FIMMA technique is used to defeat the issues which are available in existing
methods like parallel mining and load adjusting algorithms. In this approach,
FIMMA algorithm (Hash-based) is proposed using MapReduce. The Comparison
between existing method and proposed methods shows that there is up to 60%
reduction in time. Hash-based Apriori is most efficient for generating the frequent
itemset than existing methods. Data partitioning and data distribution is done by
using this proposed system. FIMMA stores the previous results in hash tables and
therefore it reduces time. At each result stage, the new input will be compared with
the hash table and if matches with hash table’s stored result then vector bit is set to
1 and named as a frequent item. All the set vector’s list will be combined by the
reducer, modify it and gives the final result. The proposed system works efficiently
on MapReduce stages and gives the final result, rather than using the FIUT algo-
rithm and increases the performance.
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