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Abstract Recently, multilabel classification has received significant attention
during the past years. A multilabel classification approach called coupled k-nearest
neighbors algorithm for multilabel classification (called here as CK-STC) reported
in the literature exploits coupled label similarities between the labels and provides
improved performance [Liu and Cao in A Coupled k-Nearest Neighbor Algorithm
for Multi-label Classification, pp. 176187, 2015]. A multilabel feature selection is
presented in Li et al. [Multi-label Feature Selection via Information Gain, pp. 346—
355, 2014] and called as FSVIG here. FSVIG uses information gain that shows
better performance when used with ML-NB, ML-kNN, and RandSvm when
compared with existing multilabel feature selection algorithms.This paper investi-
gates the performance of FSVIG when used with CK-STC and compares its per-
formance with other multilabel feature selection algorithms available in MULAN
using standard multilabel datasets. Experimental results show that FSVIG when
used with CK-STC provides better performance in terms of average precision and
one-error.
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1 Introduction

Previously in supervised learning, each example is associated with only one
instance and single label is assigned to this instance. As single label is assigned to
the instance, this classification is known to be single-label classification. In some
situations, where real-world object cannot be handled by single label, this problem
can be solved by using multilabel classification. The purpose of multilabel classi-
fication is to discover the set of labels for unseen instances. In multilabel classifi-
cation, input data instances are related to multiple class labels. For example,
particular news article can be associated with economical article, political article,
and business article.

Multilabel classification is used in several areas such as bioinformatics, text
categorization, tag recommendation, image classification, direct marketing, medical
diagnosis, query categorization, and protein function prediction [3, 4].

2 Related Work

Multilabel classification techniques are grouped into two categories that are prob-
lem transformation and algorithm adaptation method [5].

Problem transformation approach transforms the multilabel problem into a set of
single-label problem. Problem transformation approach is algorithm independent.
Several problem transformation methods such as binary relevance (BR) [6], label
powerset (LP) [5], and classifier chain (CC) [7] are used in multilabel classification.

The algorithm adaptation method extends the available machine learning algo-
rithms so as to handle multilabel data. The several algorithm adaptation approaches
have been proposed that are multilabel k-nearest neighbor (ML-kNN) [8], binary
relevance k-nearest neighbor (BR-kNN) [9], and IBLR [10].

ML-KNN and BR-kNN do not consider label correlation whereas IBLR con-
siders label correlation but not good in terms of hamming loss.

Liu and Cao [1] proposed coupled k-nearest neighbor algorithm for multilabel
classification (CK-STC). CK-STC is based on coupled label similarity [11] which
updates ML-kNN algorithm which can handle label correlation. An advantage of
CK-STC is that it considers label correlations and provides better performance than
that of ML-kNN, IBLR, BSVM, and BR-kNN but it is more complex.

Same as traditional classification, multilabel classification also suffers from curse
of dimensionality which can be handled by feature selection. Feature selection
selects the relevant or more efficient features from original set of features.
Traditional feature selection methods handle multilabel data by transforming
multilabel problem into single-label problem and then apply feature selection.

Lee et al. [12] proposed multivariate mutual information-based feature selection.
Due to transformation of multilabel problem into single-label problem, there is
damage to original label structures and which reduces the performance of classifier.
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So new method called information gain feature selection for multilabel data [2] can
perform feature selection on multilabel data directly.

Multilabel classification tools MEKA [13] and MULAN [14] are available for
handling multilabel data. MEKA is a multilabel extension to WEKA data mining
tool. MULAN provides framework for implementations of many multilabel
learning algorithms. In MULAN feature selection methods, multilabel data is
transformed into single-label data and then traditional single-label dimensionality
reduction technique is applied on these single-label data.

3 Implementation Details

3.1 FSVIG Multilabel Feature Selection Algorithm Details

FSVIG multilabel feature selection algorithm is implemented using information
gain measure. Feature selection method removes the redundant and irrelevant
features from database. Feature selection technique used in this work is reported in
[2]. In this feature, selection filter approach is used. Information gain is used as
information metric for measuring correlation degree between features and labels
that are present in database. Information gain (IG) between features and entire label
set is used to quantify the importance of features. IG is calculated with the help of
label entropy H(L) and feature entropy H(fi). A bigger value of IG represents
greater correlation between feature and labels. But in some situation, information
gain of each label set may not be in same range of measurement. So for comparison,
the normalized processing was performed on information gain (SU). Figure 1
shows pseudo-algorithm for feature selection FSVIG which is as follows.

3.2 CK-STC Multilabel Classification Algorithm Details

CK-STC algorithm for multilabel classification is reported in [1, 15]. In CK-STC
algorithm, coupled label similarity is estimated using intra-coupling similarity
between label value w; and ij and inter-coupling label similarity between label
value w} and wf w.r.t feature value wy. Inter-coupling label similarity is calculated
with the help of co-occurrence frequency (CF) and intra-coupling similarity is
calculated with the help of occurrence frequency (F). For every instance in training
data, k-nearest neighbor is calculated. Coupled label similarity is considered while
calculating prior probabilities and frequency arrays. Estimation of k-nearest
neighbor for unseen instance is done. For each label, statistical information is
calculated with the help of k-nearest neighbors of unseen instances. Unseen
instance labels are evaluated via MAP (Maximum a posterior) rule. MAP rule is
based on Bayes theorem.
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Input:

F { f1,2,f3,......... fn}
L {11,12,13............. Iq}
Output:

Relevant set of features
1.begin

2 Initialize IGS = null
3.for(i=1 tom)
4.IG(fi,L)= H(fi)+H(L)-H(fi,L)

_ 2+IG(fiL)
5.SU(fi,L) = HODAD

6.1GSi=SU(fiL)

7.1GS =1GS UIGSi

8.End for

9.threshold =— Y, IGS;

10.Relevant feature = F

11.for(i=1 to m)Do

12.if IGSi < threshold then

13.Relevant feature = Relevant feature - {fi}
14.end for

15.end

Fig. 1 Pseudo-algorithm for feature selection FSVIG

Figure 2 shows pseudo-algorithm for multilabel classification CK-STC which is
stated as follows:

4 Experimental Setup

Table 1 shows benchmark multilabel datasets information including number of
features, total number of labels, and number of instances. Experiments were per-
formed on Genbase, Medical, and Enron dataset.

Experiments were performed on i5 processor and on Windows 7 operating
system. Implementation of multilabel classification algorithm CK-STC and multi-
label feature selection algorithm FSVIG was done in MS VISUAL STUDIO.NET
and development tool is visual studio 10. In experiments, a proposed (CK-STC with
feature selection) method was compared with existing CML-kNN method.
Euclidean distance was used to calculate k-nearest neighbors. The experiments
were performed on k=15, 7, 9 and then the average is calculated. Tenfold
cross-validation is performed on the above dataset.
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Input:
Unlabeled instance (u; ), multilabel data.
Output:
Label set of unlabeled instance.
1. begin

nd for

8. for j=1to q do
9. Estimate prior probability P(Hj) and P(-Hj)

Maintain frequency array

End for

2. Calculate intra coupling similarity & (wf, ij )=

3. Calculate inter coupling similarity 5" (w7, w lw?) =

F(wf). F(w}/)

F(wl?‘)+F(wjy)+F(w§‘).F(ij)
min(CF(wE¥), CF(wy”))

Estimate k nearest neighbor k(u; ) for unseen instance u;

forj=1toq

Estimate unseen instance label statics

End for

max(F(wy), F(w}/))
4. Calculate coupled label similarity (CLS)  CLS(wi,w]") =

8ia(wix’ VV]y) . ka=1 Sier(WiX, lelwk)
5. for i=1 to m do
6. Estimate k nearest neighbor k(u;) for each u;

Return label set of unlabeled instance u; according to MAP rule

end

Fig. 2 Pseudo-algorithm for multilabel classification CK-STC

Table 1 Dataset Description

Datasets

Number of
instances

Number of
features

Number of
total labels

Label
cardinality

Label
density

Feature
type

Genbase

662

1185

27

3.378

0.064

Categorical

Medical

978

1449

45

1.252

0.046

Categorical

Enron

1702

1001

53

1.245

0.028

Categorical

5 Experimental Results

Performance of multilabel classification is measured in terms of hamming loss,
one-error, and average precision. For each evaluation metric, ““|” indicates “smaller
value has better results” and “1” indicates “bigger value has better results”. Bold
value indicates winner of the classifier. Experiments were carried out in four sets as

follows:

(1) Multilabel classification using CK-STC without feature selection

Table 2 shows results of CK-STC algorithm.
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Table 2 Results of CK-STC

Dataset One-error | Hamming loss | Average precision |
Enron 0.303 0.087 0.597
Genbase 0.008 0.003 0.991
Medical 0.158 0.013 0.874
Average 0.156 0.034 0.821

(2) Multilabel feature selection using FSVIG algorithm
Table 3 indicates results of feature selection FSVIG.

(3) Multilabel classification using MULAN feature selection technique binary
relevance attribute evaluator and its comparison with CK-STC with fea-
ture selection FSVIG

The results of multilabel feature selection algorithm FSVIG and MULAN
attribute selection algorithms such as binary relevance attribute evaluator algorithm
represented in Tables 4, 5 and 6.

Table 4 indicates that CC algorithm with binary relevance attribute evaluator
performs better than other algorithms w.r.t. hamming loss. Table 5 indicates that
CK-STC algorithm with FSVIG feature selection technique performs better than
other algorithms w.r.t. one-error. Table 6 shows that CK-STC algorithm with
FSVIG feature selection technique performs better than other algorithms w.r.t
average precision.

(4) Multilabel classification using MULAN feature selection technique multi-
class attribute evaluator and its comparison with CK-STC with feature
selection FSVIG

The results of multilabel feature selection algorithm FSVIG and MULAN
attribute selection algorithms such as multiclass attribute evaluator algorithm rep-
resented in Tables 7, &, and 9.

Table 7 indicates that CK-STC algorithm with FSVIG feature selection tech-
nique performs better than other algorithms w.r.t. hamming loss. Table 8 indicates
that CK-STC algorithm with FSVIG feature selection technique performs better
than other algorithms w.r.t. one-error. Table 9 indicates that CK-STC algorithm
with FSVIG feature selection technique performs better than other algorithms w.r.t
average precision.

Table 3 Results of feature selection as per FSVIG

Dataset Number of features before feature Number of features after feature
selection selection

Enron 1001 596

Genbase 1185 316

Medical 1449 400
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Tables 6, 7, 8, and 9 indicate that feature selection technique FSVIG with
CK-STC gives better performance in terms of one-error and average precision than
feature selection algorithms reported in MULAN. Multilabel classification with
FSVIG feature selection does not provide best performance in terms of hamming
loss because of weak connection between labels in the datasets. Feature selection
algorithms in MULAN library transform multilabel problem into single-label
problem and on single-label dataset, feature selection methods are applied; so due to
transformation there is damage to original label structures which reduces the per-
formance of classifier.

For evaluating the statistical significance of the results, the Friedman test for
paired data is used. The level of significance of the Friedman test was determined at
o = 0.05.

6 Conclusions

A lazy learning approach CK-STC has been reported in the literature for multilabel
classification using coupled similarity between labels that improves the prediction
performance, but irrelevant features present in database affect the prediction
accuracy of classifier.

A multilabel feature selection FSVIG is incorporated in CK-STC algorithm.
FSVIG uses information gain that shows better performance than existing multil-
abel feature selection algorithms when used with ML-NB, ML-kNN, and RandSvm
classifier. This paper investigates a performance of FSVIG when used with
CK-STC and compares its performance with other multilabel feature selection
algorithms available in MULAN using standard multilabel datasets.

Experimental results show that FSVIG when used with CK-STC provides better
performance in terms of average precision and one-error.
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