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Abstract. One of the methods to extract the image characteristics on the feature
space is Kernel Principal Component Analysis. Gaussian is a model to transform
the image to the features spaces by using kernel trick. In this paper, the new
model is proposed to add the image features to be more dominant, so that the
main image features can be raised. Two databases were used to verify the
proposed method, which are the YALE and the CAI-UTM. Three scenarios
have been applied with different training samples. The results demonstrated that
the proposed method can recognize the face image 87.41% for two training sets,
90.83% for three training sets, and 92.38% for four training sets on the YALE
database. On the CAI-UTM database, the proposed method could classify
correctly by 83.75%, 85.57%, and 87.33% for two, three, and four training sets
respectively. The comparison results show that the results of the proposed
approach outperformed to other methods.
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1 Introduction

Image analysis has been developed to solve and aid live problem, one of them is a
biometric field. Many algorithms were created and developed by researchers to obtain
better results i.e. Eigenface and its extension [1–3], Fisherface [4–7], Laplacianfaces
[8–10], Factor analysis, Independent Component Analysis [11], metric multidimen-
sional scaling [12], Isomap [13], Hessian, Laplacian Eigenmaps [14], and other
methods.

Eigenface is the simplest method to extract the features of the image by reducing
the dimensionality of the image. The Eigenface can reduce the dimensionality of the
image up to some data used for the training sets. The Eigenface is obtained from the
projection of the eigenvector and the training sets, whereas the eigenvector is derived
from the covariance matrix of the training sets. Eigenface can reduce the dimension of
the image up to the size of the image dimension minus the amount of data, when the
covariance matrix is based-orthogonal. However, the Eigenface can only map the
feature linearly, since it can only solve linear model in high dimensionality, while
non-linear distribution cannot be solved by the Eigenface. In fact, the used data
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distribution cannot be predicted whether linear or non-linear [8, 15]. Besides, the
produced features of the Eigenface depend on the amount of training sets utilized. If the
number of training sets is more than the image dimensionality, then reduction
dimensionality cannot be applied to obtain the features.

Fisherface has improved the weakness of the Eigenface methods, where the features
can be reduced so that the number of features to become as the amount of classes.
Unlike the Eigenface, Fisherface can distinguish the information, though it is not
based-orthogonal, therefore the Eigenface is not better than the Fisherface. However,
the Fisherface has also the weakness, i.e. inability to separate non-linear distributed
features [4]. The Fisherface will also fail to obtain the features, when the within-scatter
class is a singular matrix.

One of the methods that can solve non-linear data distribution is Isomap. It is one
graph based-method that used to reduce the dimensionality. However, an Isomap
produces a graph with topological instability, though the methods have been improved
by reducing several data points on the graph. Another weakness of an Isomap is
non-convex manifold because it will succeed the process is not complete.

Another non-linear method is Local Linear Embedding (LLE). It is a graphical
method that similar to Isomap method, where Isomap tries to preserve the character-
istics of the local data. The weakness of non-convex of the Isomap can be solved by
preserving of the local data characteristics. However, several researches have reported
that the LLE cannot success to visualize the data points. LLE has delivered the con-
straints of the data points so that they spread to undesired areas [16].

Two graphical based-methods has also weakness, therefore in this research, we
proposed another approach to reduce the image dimensionality. A transformation from
the image to the feature spaces is proposed to project the eigenvector of the Gaussian
kernel matrix. Gaussian kernel found the distance between the points to the others of
the training sets. Gaussian considers standard deviation as inner scale to record the data
distribution deviation, while Gaussian kernel is a way to map image to feature spaces
by Gaussian equation. The principal component is just applied the Gaussian kernel
matrix to obtain the Eigenvalue and Eigenvector. In this case, the average, zero mean,
and covariance matrixes are not necessary to be calculated, because the image samples
have been mapped into feature spaces by Gaussian Kernel. The results of the Eigen-
vector are delivered to calculate the projection matrix as the image features. The image
features will be further process to classify the face image.

2 Proposed Approach

Kernel trick is method to convert from image to feature spaces. On the feature spaces,
there are four models to conduct kernel trick, which are Linear, Gaussian, Polynomial,
and Polyplus [15, 17, 18]. Gaussian model is one of the kernel trick model considered
the distance, mean, and variant of an object. Therefore, Gaussian kernel trick model can
extract the more dominant features than the others, i.e. Linear, Polynomial, and
Polyplus. Suppose the training and the testing sets are represented by X and Y , where X
has m samples and n image dimensionalities, while Y is row matrix with n columns as
described in the Eq. (1).
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X ¼

x1;1 x1;2 x1;3 � � � x1;n
x2;1 x2;2 x2;3 � � � x2;n
x3;1 x3;2 x3;3 � � � x3;n
..
. ..

. ..
. . .

. ..
.

xm;1 xm;2 xm;3 � � � xm;n

0
BBBBB@

1
CCCCCA

ð1Þ

For each testing set is written as follows,

Y ¼ y1;1 y1;2 y1;3 � � � y1;nð Þ ð2Þ

2.1 Gaussian Kernel Matrix

Gaussian is one of models used to map from image to feature spaces [8].
Gaussian-based component analysis on the kernel can be obtained by calculation
Kx X;XTð Þ and Ky Y ; YTð Þ, i.e. Gaussian kernel matrix for the training and testing sets.
To obtain Gaussian kernel matrix Kx X;XTð Þ, the distance between point and others is
calculated as follows,

Ai;1 ¼
Xn

j¼1
X i;j � X i;j
� � ð3Þ

The value of i has range as follows: i 2 1; 2; 3; � � � ; m. If the Eq. (3) is calculated
from i = 1 until i = m, then the Eq. (5) can be also written as follows,

Am;1 ¼

Pn
j¼1 X 1;j � X 1;j

� �
Pn

j¼1 X 2;j � X 2;j
� �

..

.

Pn
j¼1 Xm;j � Xm;j

� �

0
BBBB@

1
CCCCA ð4Þ

Furthermore, Eq. (4) is duplicated to be m columns, so that the matrix dimen-
sionality will be m rows and m columns. The effect of column duplication is the same
values for each column as shown in Eq. (5)

Am;m ¼

Pn
j¼1 X 1;j � X1;j

� � Pn
j¼1 X 1;j � X1;j

� � � � � Pn
j¼1 X 1;j � X 1;j

� �
Pn

j¼1 X 2;j � X2;j
� � Pn

j¼1 X 2;j � X2;j
� � � � � Pn

j¼1 X 2;j � X 2;j
� �

..

. ..
. . .

. ..
.

Pn
j¼1 Xm;j � Xm;j

� � Pn
j¼1 Xm;j � Xm;j

� � � � � Pn
j¼1 Xm;j � Xm;j

� �
|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

Equation 4ð Þ is duplicated to bem columns

0
BBBBBBBBB@

1
CCCCCCCCCA

ð5Þ
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Bm;m ¼

Pn
j¼1 X1;j � X 1;j

� � Pn
j¼1 X1;j � X 1;j

� � � � � Pn
j¼1 X 1;j � X 1;j

� �
Pn

j¼1 X2;j � X 2;j
� � Pn

j¼1 X2;j � X 2;j
� � � � � Pn

j¼1 X 2;j � X 2;j
� �

..

. ..
. . .

. ..
.

Pn
j¼1 Xm;j � Xm;j

� � Pn
j¼1 Xm;j � Xm;j

� � � � � Pn
j¼1 Xm;j � Xm;j

� �
|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

The transpose result of Equation ð5Þ

0
BBBBBBBBB@

1
CCCCCCCCCA

T9>>>>>>>>>=
>>>>>>>>>;

m

ð6Þ

Moreover, the Eq. (5) is transposed, and the transpose result is represented by using
B as represented in Eq. (7).

The distance of the training sets can be computed by using the simple operation as
shown in Eq. (8), while the value of C can be calculated by using the Eq. (9)

Dm;m ¼ Am;m þBm;m � Cm;m
�� �� ð7Þ

C ¼ 2� X � XT ð8Þ

Based on the Eq. (8), the Gaussian kernel matrix can be obtained by using the
Eq. (10), while the variable of r represents the standard deviation. The value of
standard deviation can be defined as positive integer, but usually the values of standard
deviation utilized are 1, 2, or 3.

K X ;XT
� � ¼ exp � Dm;m

2� r2

� �
ð9Þ

2.2 Sharpen of Gaussian-Based Component Analysis

In order to calculate the kernel on the feature space (G), the matrix I is required, where
all of elements are 1. Moreover, the feature space can be processed by the simple
operation as written in the following equation

G ¼ K � I�Kð Þ � K � Ið Þþ I�K� Ið Þþ K � I�Kð Þ ð10Þ

The operation of K� I�Kð Þ is utilized to sharpen the features of the object, so
that the object is easier to be recognized. The addition of the operation in the Eq. (12)
has indicated that the dominant features can be maximally extracted. The result of
Eq. (12) is furthermore applied to gain the eigenvalues and eigenvectors as written in
Eq. (12)

Det G � I � kð Þ ¼ 0 ð11Þ

The variable of I represents the identity matrix which is the matrix with zero
elements except the main diagonal with 1 value. The calculation result of the Eq. (13)
produces the eigenvalues and eigenvectors as shown in Eqs. (13) and (14)
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k ¼

k1;1 0 0 � � � 0
0 k2;2 0 � � � 0
0 0 k3;3 � � � 0

..

. ..
. ..

. . .
. ..

.

0 0 0 � � � km;m

0
BBBBB@

1
CCCCCA

ð12Þ

K ¼

K1;1 K1;2 K1;3 � � � K1;m

K1;2 K2;2 K2;2 � � � K2;m

K1;3 K3;2 K3;3 � � � K3;m

..

. ..
. ..

. . .
. ..

.

K1;m Km;2 Km;3 � � � Km;m

0
BBBBB@

1
CCCCCA

ð13Þ

The eigenvalues as represented in Eq. (13) can be also represented by using row
matrix as shown in Eq. (15).

k ¼ k1;1 k2;2 k3;3 � � � km;mð Þ ð14Þ

These values of k are not decreasingly ordered yet, therefore these values must be

decreasingly ordered. The sorting result is represented by using k̂
� 	

as shown in the

following equation,

k̂1;1 � k̂2;2 � k̂3;3 � k̂4;4 � � � � k̂m;m ð15Þ

The change of column position is also effect of column position of the eigenvectors.
The sorting results of the eigenvectors K̂

� �
are composed based on the index found of

the sorting results of the eigenvalues as written in Eq. (17).

K̂ ¼

K̂1;1 K̂1;2 K̂1;3 � � � K̂1;m

K̂1;2 K̂2;2 K̂2;2 � � � K̂2;m

K̂1;3 K̂3;2 K̂3;3 � � � K̂3;m

..

. ..
. ..

. . .
. ..

.

K̂1;m K̂m;2 K̂m;3 � � � K̂m;m

0
BBBBB@

1
CCCCCA

ð16Þ

2.3 Projection of the Gaussian-Based Component Analysis

To obtain the features using Gaussian kernel, for both the training Px and testing
Gaussian kernel Py can be simply represented.

Px ¼ Kx X ;XT
� �� K̂ ð17Þ
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In this case, Kx X ;XT
� �

is the Gaussian kernel matrix for the training sets, it was

obtained by using Eq. (10), while the matrix values K̂ was also calculated by using
Eq. (17).

Py ¼ Ky Y;YT
� �� K̂ ð18Þ

Ky Y;YT
� �

is the Gaussian kernel matrix for the testing sets. The difference
between Kx X ;XT

� �
and Ky Y;YT

� �
is used as the input. Kx X ;XT

� �
applies training

sets as the input (see Eq. (1)), whereas Ky Y;YT
� �

applies the testing sets as input (see
Eq. (2)).

The calculation result of Eqs. (18) and (19) can be written in the following matrix
as seen in Eq. (20) for Px and in Eq. (21) for Py:

Px ¼

P1;1 P1;2 P1;3 � � � P1;m

P1;2 P2;2 P2;2 � � � P2;m

P1;3 P3;2 P3;3 � � � P3;m

..

. ..
. ..

. . .
. ..

.

P1;m Pm;2 Pm;3 � � � Pm;m|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
m

0
BBBBBBBBB@

1
CCCCCCCCCA

9>>>>>>>>>=
>>>>>>>>>;

m ð19Þ

Py ¼ P̂1;1 P̂1;2 P̂1;3 � � � P̂1;m

� � ð20Þ

2.4 Features Selection and Similarity Measurements

As mentioned in Eqs. (20) and (21), the column dimensionality of them is m. It is
indicated that the number of features produced is m, for both the training and the testing
sets. However, features generated will not be used all for measurement. Therefore the
features produced must be selected to be applied on similarity measurements. The
selection results can be shown in Eqs. (22) and (23).

Px ¼

P1;1 P1;2 � � � P1;t

P2;1 P2;2 � � � P2;t

P3;1 P3;2 � � � P3;t

..

. ..
. . .

. ..
.

Pm;1 Pm;2 � � � Pm;t|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
t training features are used

����������������

P1;tþ 1 � � � P1;m

P2;tþ 1 � � � P2;m

P3;tþ 1 � � � P3;m

..

. . .
. ..

.

Pm;tþ 1 � � � Pm;m|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
m�tð Þ features are not used

0
BBBBBBBBBB@

1
CCCCCCCCCCA

ð21Þ

Modeling of the Gaussian-Based Component Analysis on the Kernel Space 73



Py ¼ P̂1;1 P̂1;2 � � � P̂1;t|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
t testing features are used

������� P̂1;tþ 1 P̂1;tþ 2 � � � P̂1;m|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
m�tð Þfeatures are not used

0
B@

1
CA ð22Þ

The first column represented the more dominant feature than the second, the third,
until the mth columns. It means that the bigger the column index, the feature less
dominant. The feature selection is also intended to reduce the computation time when
the similarity measurements are applied to classify the face images. In order to classify
the face image, the simple method is applied, which is the city block method as shown
in Eq. (23)

Dm;1 ¼ Px � Py

�� �� ð23Þ

3 Experimental and Discussion

In order to evaluate the proposed approach, two face databases have been prepared,
which are the YALE and the CAI-UTM database. The YALE face database is a small
database, which has only fifteen people, where for each people has eleven different
poses [19], sample of face image can be seen in see Fig. 1. Though, it is small face
database, but the images have many illumination, accessories, and expressions varia-
tion. The second face database is the CAI-UTM, where it has a hundred people, and for
each people has ten different poses as shown in Fig. 2 as a sample of image. Therefore,
the second face database has a thousand images.

3.1 The Results on the Yale Database

In this paper, three scenarios are implemented to evaluate the proposed approach,
which are using two, three, and four face images as the training sets. Each scenario will
be conducted five times experiments with different images indexes (five-fold cross

Fig. 1. The yale sample

Fig. 2. CAI-UTM sample
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validation). For each scenario, the features will be selected based on the training sets
applied. For the first scenario, 20 until 29 features are selected, 30 until 39 features for
the second scenario, and 40–49 features for the last scenario.

The results of the first scenario can be seen in Fig. 3. The accuracy of each
experiment and the average accuracy were described in the figure. The investigation
results show that the accuracy depends on the images used as the training sets. The use
of face image training with illumination and expression can produce higher accuracy
than the others. In this case, the second experiment has delivered the highest accuracy.
The use of features also influences the accuracy produced. Based on Fig. 3, the more
features applied, the higher accuracy delivered. It is also shown on the average
accuracy obtained, where the line of accuracy tend increase proportional to number of
features applied. The results of the first scenario, maximum accuracy produced is
87.41%, while the average accuracy is 80.54%.

The similar results are also shown in the second scenario, where the use of the
illumination and expression face images as the training sets has delivered the better
results than the others. On the second scenario has shown the best performance, it is
influenced by the sample images used, which is illumination and expression images has
been applied as the training sets. The worst result has occurred on the fourth experi-
ment, the investigation results show that the use of normal images as training sets will
delivered the lower accuracy than the illumination and expression face images as the
training sets, even the more features applied, the less the accuracy obtained.

Based on Fig. 4, the maximum accuracy is 90.83%, the results show that the third
scenario is better than the second scenario. This can also be seen from the obtained
average accuracy, the third scenario has delivered higher average accuracy than in the
second scenario, which is 87.22%.

Four images as the training sets are applied on the last scenario, the worst result
(more than 84%) is still better than the average accuracy of the first scenario (less than
81%). The average accuracy of the last scenario (more than 88%) is still better than the
maximum accuracy of the first scenario (less than 88%). Similar to the third scenario,
the fourth experiment has delivered the worst result on the last scenario, it is caused by
the sample used has not been representative of the training sets. The result of the last

Fig. 3. The first scenario on the YALE
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scenario can be shown in Fig. (5). The average accuracy also tends to increase in
proportion to number features used. Maximum and average accuracies achieved are
92.38% and 88.91%.

The results were also compared to other approaches for all of scenarios, which are
Eigenface, Fisherface, and Laplacianfaces. The performance results of the first and the
second scenarios show that the proposed approach outperformed to other methods,
while the last scenario shows that Fisherface and Laplacianfaces are better than the
proposed approach for accuracy average, but the proposed approach outperformed to
the others for the maximum accuracy as seen in Fig. 6.

3.2 The Results on the CAI-UTM Database

Different database was also applied to evaluate the performance of the proposed
approach, which is the CAI-UTM. A thousand images are prepared from a hundred
people [20]. The Difference with the previous database, in this face database, the
number of used features is more than previous database. Since the number of captured
sample people is more. For the first scenario, 185 until 199 features are selected, 285

Fig. 4. The second scenario on the YALE

Fig. 5. The third scenario on the YALE
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until 299 features for the second scenario, and 385–399 features for the last scenario.
Each scenario is tested using 5-fold Cross Validation.

The first scenario results can be displayed in Fig. 7. Six different line models were
described in Fig. 7. However, four line models are almost overlapping, because they
produce similar similarity for each feature, include the average accuracy line. As shown
in Fig. 6, the proposed approach delivered the stable accuracy result for each features.

The best performance has occurred on the first experiment, while the worst results
are in the last experiment. By using representative face image samples, the proposed
approach system can recognize face image model. Representative face image samples
are face image with different models, i.e. open smile, close smile or other expressions.
But if the samples used are normal face without expressions, then the proposed
approach sometimes cannot recognize the face with other expressions, such as surprise
or the others. Performance maximum and average of the proposed approach are
83.75% and 77.90%.

The second scenario is evaluated by using three image samples. The obtained
results are shown in Fig. 8. The result shows that the fewer features have represented
the characteristics of an image. The second and fifth experiments have delivered the
highest performance, because they have applied the image with different poses that
represent the other poses, while the other experiments used the images with similar
poses, therefore the produced features do not represent overall image poses on the same
class. The maximum (85.57%) and average (84.01%) performance of the second

Fig. 6. Performance of the proposed approach was compared to other methods

Fig. 7. The first scenario on the CAI-UTM
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experimental results is better than the first experiment results, it indicated that the
accuracy is affected by number of training samples and poses applied.

The results of the last scenario show the similar trend to the first and the second
scenario, i.e. the number of features clearly influenced the performance of the proposed
approach. The final scenario results are also evident that the use of training sets with
diverse samples is able to produce better accuracy than similar poses as described in
Fig. 9. The results of the use of diverse training sets can be seen in the third and fifth
experiments, whereas the similar use of the images as the training sets can be seen in
the first, second and fourth experiments. The experimental results also proved that the
use of the amount of training data affects the resulting accuracy, which are 87.33% for
the maximum and 86.43% for the average.

4 Conclusion

In this paper, the proposed approach has proved that modeling of the Gaussian-based
Component Analysis on the kernel space can extract the image features by reducing the
dimensionality of the training sets. The proposed approach can recognize the face image

Fig. 8. The second scenario on the CAI-UTM

Fig. 9. The last scenario on the CAI-UTM
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with small sample training sets and even it is better than other methods, i.e. Eigenface,
Fisherface, and Laplacianfaces. The proposed approach was also evaluated by using
local face image database, i.e. CAI-UTM database, where the evaluation results show
that the proposed approach is able to recognize facial image more than 87%.
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