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Abstract. Self-organizing Map (SOM) is a very popular algorithm that has
been used as clustering algorithm and data exploration. SOM consists of
complex calculations where the calculation of complexity depending on the
circumstances. Many researchers have managed to improve online SOM pro-
cessing speed using discrete Graphic Processing Units (GPU). In spite of
excellent performance using GPU, there is a situation that causes computer
hardware underutilized when executing online SOM variant on GPU architec-
ture. In details, the situation occurs when number of cores is larger than the
number of neurons on map. Moreover, the complexities of SOM steps also
increase the usage of high memory capacity which leads to high rate memory
transfer. Recently, Heterogeneous System Architecture (HSA), that integrated
Central Processing Unit (CPU) and GPU together on a single chip are rapidly
attractive the design paradigm for recent platform because of their remarkable
parallel processing abilities. Therefore, the main goal of this study is to reduce
computation time of SOM training through adapting HSA platform and com-
bining two SOM training processes. This study attempts to enhance the pro-
cessing of SOM algorithm using multiple stimuli approach. The data used in this
study are benchmark datasets from UCI Machine Learning repository. As a
result, the enhanced parallel SOM algorithm that executed on HSA platform is
able to score a promising speed up for different parameter size compared to
standard parallel SOM on HSA platform.

Keywords: Parallel self-organizing map � GPU computing
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1 Introduction

Self-organizing Map (SOM) is an unsupervised neural network that has been used as
data analysis method. It is being widely used and applied to solve clustering and data
exploration problems in various domain areas [1]. There were many researches have
been found in the literature that used SOM to solve clustering problem [2, 3]. Despite
its excellent performance, there are problems related to slow processing when visu-
alizing large map size [4]. This imposed heavy workload on the processor especially
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when dealing with winner-search and updating weightage of neurons on the map [1].
On the other hand, the datasets dimension also have high influence in SOM
processing [5].

This situation attracts much interest among researchers to improve SOM processing
by parallelizing the algorithm. Among the common ways to parallelize SOM are
network or map partitioning [6, 7] and data or example partitioning [8, 9]. However,
there also efforts to parallelize SOM algorithm through combining both network and
data partitioning [10, 11] with the interest to gain advantages of both parallelism. In the
meantime, most of research works on improving SOM are aimed to achieve efficiency
and scalability in their proposed works. In details, proposed parallel SOM that efficient
should be faster in term of processing than the previous version [12, 13]. Meanwhile,
some research works are attempting to increase the utilization of processing elements in
executing the SOM algorithm [7, 14]. Furthermore, several research works pursue to
lower the power consumption [15], and solve computer cluster problems [16, 17].

On the other hand, two computer architectures mostly used by researchers in
improving SOM algorithm are; Single Instruction Stream Multiple Data Stream
(SIMD) and Multiple Instruction Streams Multiple Data Streams (MIMD). Some of the
SIMD architectures used Graphic Processing Unit (GPU) computing [18, 19], Field
Programmable Gate Array (FPGA) [6, 20], and specialized hardware architecture for
Artificial Neural Network (ANN) [21, 22]. Meanwhile, MIMD architectures are
employed by researchers to parallelize SOM consists of different types of computer
clusters. Among several computer architectures, GPU computing offers an efficient
solution at lower cost compared to others.

GPU or widely known as General Purpose Graphic Processing unit (GPGPU) is a
many core processor consisting hundreds or even thousands of compute cores [23]. It
has been used to speed up applications of scientific computing and simulations. GPU
computing has been proven to have high throughput in processing large data floating
point operations in graphic applications [24]. Since the introduction of GPU pro-
gramming frameworks such as of Compute Unified Device Architecture (CUDA) in
2007 and Open Computing Language (OpenCL) in 2009 [24], the GPUs have become
popular in designing parallel algorithm in the quest for higher speed. In the meantime,
the evolution of hardware technology, has made it possible to design high performance
scientific computing software [25]. Essentially, GPU is an accelerator to Central Pro-
cessing Unit (CPU) that has been mainly used for graphic purposes before applying to
process scientific data. Combination of CPU and GPU that work closely together
creates a paradigm known as Heterogeneous Computing (HC) [26].

On top of that, many researchers have attempted to capitalize HC to execute SOM
algorithm in parallel manner. However Hasan et al. [5] found that when parallelizing
SOM with larger map size and high attribute dimension, it will significantly slow down
the processing even with both CPU and GPU. Many researchers agreed that executing
SOM on GPU shows significantly increase processing speed for large data compared to
executing on CPU only [11, 20, 27]. Moreover, due to the restrictions imposed by past
GPU architectures, most of these frameworks treated the GPU as an accelerator which
can only work under close control of the CPU. Consequently, the communication
protocol between CPU and GPU is a source of high latency which causes bottleneck.
This drawback is enhanced when using distributed memory of HC where the memory
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management has to be manually configured by the programmer to manage data
movement between CPU and GPU which includes data transfer between host code and
device code [28].

A more recent technology hardware design of heterogeneous systems is a single
integrated unify CPUs and GPUs circuit chip which is known as Heterogeneous
System Architecture (HSA) [28]. This technology provides a unified programming
platform which eliminates programmability barrier and reduces CPU and GPU com-
munication latency. The introduction of OpenCL 2.0 that supports HSA specification in
July 2013 is able to improve communication by allowing the GPU to manage their own
resources as well as access some of the CPU’s resources. It also introduces Shared
Virtual Memory (SVM) which allows the host and the device to share a common
virtual address range [29]. This reduces overhead by eliminating deep copies during
host-to-device and device-to-host data transfers. Deep copies involve complete dupli-
cating objects in the memory thus reduce redundancies [28].

In view of the above discussion, this study proposed an enhanced parallel SOM
which executes on HSA compliant processor to solve clustering problem. The data
used are benchmark datasets that were acquired from UCI Machine Learning Repos-
itory [30]. The performance of the algorithm is evaluated in terms of efficiency,
scalability and accuracy. Efficiency and scalability are based on processing time while
accuracy is based on number of class generated.

This paper is organized as follows. Section 2 explains about the proposed work on
parallel SOM using HSA. Section 3 provides explanation on experimental setup while
Sect. 4 discusses the experimental result and discussion. Lastly, Sect. 5 provides
conclusion and future research directions.

2 Proposed Work

The proposed work consists of enhanced parallel SOM architecture and enhanced
parallel SOM algorithm which will be explained in Sects. 2.1 and 2.2 respectively.

2.1 Enhanced Parallel SOM Architecture

Previous studies that highlighted parallel SOM have been successfully executed on
GPU. Almost all the researchers in the literature apply parallelism at calculate distance
and find Best Matching Unit (BMU) steps. There are many of them apply parallelism at
update weight step. Consequent of that, this study proposed to parallelize these three
steps into the new enhanced parallel SOM architecture. Meanwhile, heterogeneous
system compromises a promising solution for reducing latency in communication
between CPU and GPU. In order to gain these advantages, the proposed architecture is
utilizing OpenCL 2.0 platform which specifically SVM feature. The implementation of
this work is based on fined-grained SVM buffers. The fined-grained SVM buffers are
synchronized during the implementation of SVM buffer which could reduce commu-
nication latency between CPU and GPU. The design of the proposed architecture is
extended from the previous work [31] where it is introduced with two parallel kernels
for distance calculation and find BMU as depicted in Fig. 1. The idea of parallel
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kernels is based on the analogy of biological neural networks in which neurons respond
to the stimuli in parallel [32]. However this work is differ from [32] in term of SOM
training types and hardware architecture. The main reason of duplicating the kernels is
to increase utilization of work units in GPU.

The design of parallel kernels is realized by implementing multiple stimuli into the
architecture. The main reason of parallelized the kernels are to increase utilization of
work units in GPU. This work is supported by OpenCL where OpenCL allows a

Fig. 1. Enhanced parallel SOM architecture
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programmer to create more than one queue for execution. The queue will process based
on out-of-order execution [29]. In out-of-order execution mode there is no guarantee
that the enqueued commands will finish in the order they were queued. The first parallel
kernel is Parallel Kernel 1 that consists of Calc_Dist_Kernel_1 and Calc_Dist_Ker-
nel_2. Meanwhile, Parallel Kernel 2 consists of Find_BMU_Kernel_1 and
Find_BMU_Kernel_2. The execution of kernels in each parallel kernel might overlap
each other. This situation will create a chance to increase the utilization of work units in
GPU side.

This study attempts to implement batch learning process through duo stimuli which
leads to reduce training cycle to half. This solution that combines both online training
and batch training will gain the benefits of the two types of training. The enhanced
parallel SOM architecture is predicted to reduce the computation time due to the
reduction of the training cycle to half and maintain the final results as online training.
The enhanced parallel SOM architecture is essentially implement batch learning pro-
cessing for executing two calculate distance kernels and two find BMU kernels. For
instance, the execution of Calc_Dist_Kernel_1 is considered as executing one task and
the execution of Calc_Dist_Kernel_2 also considered as another task. The rest of the
algorithm of the proposed solution is similar to online training SOM algorithm.

2.2 Enhanced Parallel SOM Algorithm

This section will describe the parallel algorithm that applies the enhanced parallel SOM
architecture. The enhanced parallel SOM algorithm includes additional three steps
compared to the original SOM algorithm. For better understanding to the reader, the
enhanced parallel SOM algorithm in this study is labeled with e-FGPSOM. Figure 2
illustrates pseudocode of e-FGPSOM.

In depth of the proposed works, the algorithm begins with initializing SOM
parameters such as learning factor and weights at the host side. The input data is
retrieved and stored into an array. The training process begins with selecting duo
stimuli randomly. Each input will be assigned to a command queue. In order to realize
duo stimuli method, e-FGPSOM requires two sets of parameter of two calculate dis-
tance kernels and two update weight kernels due to the algorithm employs separate
command queue for each kernel execution. Each kernel requires a map array. Both map
arrays should contain similar values of neurons’ weights before the kernels processing
is started. Right after the map has initialized using SOM_map_array_1, the values of
SOM_map_array_1 will be copied into SOM_map_array_2. The SOM map array is
very important because it will be employed within all kernel processing. At the step 2,
the algorithm obtains duo stimuli from the dataset randomly and then at the step 3, the
host broadcast the two inputs to device side, specifically the host assigns to two
calculate distance kernels; Calc_Dist_Kernel_1 and Calc_Dist_Kernel_2, and two find
BMU kernels; Find_BMU_Kernel_1 and Find_BMU_Kernel_2. Once all information
has been broadcasted, the kernels are ready for the execution especially for calculate
distance kernel at step 4. Each kernel at the GPU side is invoked by function
respectively. The functions also provide setting, initializing parameters, and call the
kernels. For example, the calculate distance function is used to call Calculate Distance
kernel and it is done the same way with the other two kernels.
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Essentially, the original flow of SOM algorithm is maintained unless with the
additional two parallel stimuli execution that has applied for execution of two calculate
distance kernels and two find BMU kernels in step 4 and step 5 respectively. The
executions of two calculate distance kernels and two find BMU kernels are based on
out-of-order execution mode. There is no guarantee that the enqueued commands will
finish execution in the order because the execution of kernel is based on when the
clEnqueueNDRangeKernel calls are made within a command-queue.

Calculate Distance Kernel. The calculate distance kernel is used to calculate the
distance between neurons and current input vector. The amount of work units is
employed to parallelize the calculation distance step is mapped by amount of
work-items on GPU where the amount of work-items is equal to the number of neurons
in the SOM map. Specifically, each work-item of the kernel is responsible for finding
the distance between a single neuron and the current input vector. This study applies
Manhattan distance calculation.

Find BMU Kernel. The Find BMU kernel applies two stages reduction method. The
kernel utilizes work items the same amount of neurons on SOM map. The first stage of
reduction method is to find the minimum distance for each local work group. The
values of minimum distances of each work group will be stored into local array. The
second stage is to find the minimum distance for each Compute Unit (CU). The
minimum values of each CU then stored into global array and the host will determine
the winning neurons. After the execution of both Find BMU 1 and Find BMU 2, at the

Fig. 2. Enhanced parallel SOM algorithm
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step 6, the winner among the winners or final BMU from the both kernels will be
selected with the minimum value at the host side. With the selected of the final BMU
means the input vector which has the final BMU will use to update the map meanwhile
the loser input will be eliminated. The final BMU will be broadcasted to device side for
execution of third kernel, the update weight kernel.

Update Weight Kernel. This kernel is the third kernel in the proposed architecture
that updates the weight of neurons based on learning rate and neighborhood function.
The learning rate defines how much a neuron’s vector is altered through an update with
referring to how far the distance of the neuron from the BMU on the map. The BMU
and its close neighbors will be altered the most, while the neurons on the outer edges of
the neighborhood are changed the least. The enhanced version includes array copying
process at host side right after the update weight kernel completed the execution. The
array copying process is to copy the updated map array into another map array which is
not selected as final BMU. The array copying codes are simply assign one array to
another array with the same size through looping. Immediately after executing the three
kernels, the learning factor and neighborhood radius are updated with the new values.
All of the steps included in the loop block will repeat until certain number iterations or
epochs before the SOM map is generated.

3 Experimental Setup

Two experiments have been conducted in this study which is result evaluation and
result validation. These experiments are performed with the interest to evaluate the
proposed work. Initially, this study employs four benchmark datasets from UCI
Machine Learning Repository [30] for results validations. The details of the datasets are
shown in Table 1. These datasets have been selected because information on the
number of classes is known in advance and ease for the validation process. The
information of number of classes is as provided by Fränti [33]. These datasets are
processed by e-FGPSOM where each experiment is performed to validate each dataset.

On the other hand, for evaluations purpose, this study employs Bank Marketing
benchmark dataset from UCI Machine Learning Repository [34]. Initially, data
pre-processing takes place before the experiment is conducted. Data pre-processing is
one of the important steps in data mining to obtain final datasets that can be considered

Table 1. Benchmark datasets for result validations

Benchmark
dataset

Number of training
data

Number of attributes of
pattern

Number of
classes

Iris 150 4 3
Glass 214 9 6
Wine 178 13 3
Yeast 1484 8 10
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as correct and useful for further data mining algorithm [35]. There are four methods in
data pre-processing which are data cleaning, data integration, data transformation and
data reduction [36]. Thus, this study uses method of data reduction by using dis-
cretization technique to convert values of the selected attributes [37]. This study
converts all the values that appear in categorical into numeric values for easy pro-
cessing in SOM.

Firstly, the experiment starts with result validation. The objective of result vali-
dation is to make sure the proposed work is capable to generate correct results by
comparing the results from e-FGPSOM with results from other researchers. Four
dimension sizes have been used: 4, 9, 13 and 8 parameters according to specific
benchmark datasets as shown in Table 2. The algorithm is tested on the same map size,
40 � 40 by using 250 iterations.

On the other note, result evaluation is concerning on evaluation of the proposed
work on different dimension size or number of parameter of dataset. Three dimension
sizes have been used: 3, 5 and 8 parameters. The algorithm is tested on the same map
size, 50 � 50 by using 30 iterations. Result evaluation applies time comparison and
speed up [38] for performance measurements.

Moreover, for analysis purpose, the result of this study is compared to the result of
our previous work [31] referred as FGPSOM. FGPSOM is based on standard parallel
SOM on HSA platform. Both FGPSOM and e-FGPSOM implemented on OpenCL 2.0.
These experiments are conducted on a laptop that equipped with Intel Skylake
i7-6700HQ processor and built in Intel® HD Graphics 530.

4 Experimental Result and Discussion

4.1 Result Validations

Firstly, the experimental result starts with result validation. As mentioned in Sect. 3,
result validation for e-FGPSOM is based on four benchmark datasets which are Iris,
Glass, Wine, and Yeast dataset. Figure 3 illustrates the generated results in map
visualization by e-FGPSOM. This figure shows that Iris dataset and wine dataset
clearly produce three classes. This results can be validated with Fränti [33] that the
proposed work is capable to generate the similar results. Meanwhile, the results of glass

Table 2. Experimental design for enhanced parallel SOM evaluation

Experiment
series

Datasets parameter SOM parameter Performance
measurementNo. of samples No. of

parameter
No. of
iteration

Map
size

Result
validation

Iris, Glass,
Wine, Yeast

4, 9, 13, 8 250 40 � 40 Number of
classes

Result
evaluation

10000, 15000 3, 5, 8 30 50 � 50 Time, s and
speed up
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and yeast datasets are quite subjective to be decided. However, one could be identified
the number of classes via observation that the proposed work also capable to generate
equivalent results [33].

4.2 Results Evaluation

For result evaluation purpose, the proposed algorithm tested on the same dataset size
and map size. However, this study is focusing on experimenting the proposed algo-
rithm on different dimension size of dataset; 3, 5, and 8 parameters. Figure 4
demonstrates the comparison result between FGPSOM and e-FGPSOM. From this
figure, the results of e-FGPSOM perform better than results of FGPSOM for both
datasets. The result of e-FGPSOM shows the improvement compared to FGPSOM
where all the results of e-FGPSOM capable to reduce the processing time. The
experiment exposes that e-FGPSOM successfully improved the processing speed
compared to FGPSOM when experimenting on larger dimension size of dataset.

For the details, according to 10000 dataset, e-FGPSOM achieves 1.24x, 1.13x, and
1.10x of speed up for 3, 5, and 8 parameters respectively. Meanwhile, for 15000 dataset,
e-FGPSOM scores 1.16x, 1.11x, and 1.10x of speed up for 3, 5, and 8 parameters

a) Iris dataset b) Glass dataset

c) Wine dataset d) Yeast dataset

Fig. 3. Result produced by using algorithm of the enhanced parallel SOM architecture
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respectively. The proposed algorithm is capable to score speed up over FGPSOM due to
it applies the proposed architecture which consists of parallel kernels. The execution of
parallel kernels has triggered multiple stimuli processing. The processing of multiple
stimuli capable to increase the utilization of GPU cores compared to FGPSOM. How-
ever, due to complexity of processing larger dataset and larger parameters size, the
speeds up scores are reducing over the increasing the dataset size and parameter size.

5 Conclusion

In this study, we proposed an enhanced parallel SOM that based on heterogeneous
system architecture. The proposed architecture is extended from parallel SOM
researches that consist of three kernels: calculate distance kernel, find BMU kernel, and
update weight kernel. The proposed architecture is included with two calculate distance
kernels and two find BMU kernels. The proposed architecture is designed with the aim
to increase the utilization of processing element on GPU.

The overall results indicate that the enhanced parallel SOM or e-FGPSOM is able
to improve in terms of efficiency and scalability performance. This is due to
e-FGPSOM that optimizes the usage of cores in the GPU. The enhanced parallel SOM
or e-FGPSOM also demonstrates some advantages from various perspectives as below:

Fig. 4. Result produced by using algorithm of the enhanced parallel SOM architecture
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• The proposed work is capable to generate comparable results (number of classes)
compared to other researches by using benchmark datasets. Thus, the proposed
work maintains the accuracy of the result.

• The proposed work more scalable in terms of GPU cores utilization due to its
imposition with multiple stimuli method. The implementation of multiple stimuli
method also improves the proposed work to more efficient.

The proposed work has a limitation where the synchronization point at find BMU
step could burden the processing of the find BMU kernel. Based on the limitation, there
seems to be an opportunity for improvement. In the future, the consumption time of
synchronization point could be reduced through eliminating the access of BMUs values
at the host side. The final BMU values should be identified at kernel processing.
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