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Abstract. The aims of this paper are to develop a linear and nonlinear model in
time series to forecast electricity consumption of the lowest household category
in East Java, Indonesia. The installed capacity in the lowest household customer
category has various power, i.e. 450 VA, 900 VA, 1300 VA, and 2200 VA.
ARIMA models are family of linear model for time series analysis and fore-
casting for both stationary and non-stationary, seasonal and non-seasonal time
series data. A nonlinear time series model is proposed by hybrid ARIMA-ANN,
a Radial Basis Function using orthogonal least squares. The criteria used to
choose the best forecasting model are the Mean Absolute Percentage Error and
the Root Mean Square Error. The ARIMA best model are ARIMA ([1, 2], 1, 0)
(0, 1, 0)12, ARIMA (0, 1, 1) (0, 1, 0)12, ARIMA (0, 1, 1) (0, 1, 0)12, ARIMA (1,
0, 0) (0, 1, 0)12 respectively. The ANN architecture optimum are ANN (2, 12,
1), ANN (1, 12, 1), ANN (1, 12, 1), and ANN (1, 12, 1). The best models are
ARIMA ([1, 2], 1, 0) (0, 1, 0)12, ARIMA (0, 1, 1) (0, 1, 0)12, ANN (1, 12, 1),
and ANN (1, 12, 1) in each category respectively. Hence, the result shows that a
complex model is not always better than a simpler model. Additionally, a better
hybrid ANN model is relied on the choice of a weighted input constant of RBF.

Keywords: ARIMA � Hybrid ARIMA-ANN � Forecasting
Electricity consumption

1 Introduction

In the last decade, machine learning has growth rapidly as tool for making prediction.
Basically, the most algorithms in machine learning are developed from classical sta-
tistical method. In the statistical perspective, machine learning frames data in the
context of a hypothetical function (f) that the machine learning algorithm aims to learn.
Given some input variables (Input) the function answers the question as to what is the
predicted output variable (Output). For categorical data prediction, hundreds algorithm
classifier can be applied in many software [1]. In the future, the feature of machine
learning algorithm will be standardized, simple, specialized, composable, scalable yet
cost effective in order to realize the goal of completely automated machine learning
utilities, which will become an integral part of the modern software application [2].
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One situation in making prediction by machine learning are dealing with the time
series data. The input variables in time series data are observations from the time lag
previously. There are many machine learning models for time series forecasting [3].
There is good paper to survey recent literature in the domain of machine learning
techniques and artificial intelligence used to forecast time series data [4].

This paper aims to develop model for a linear and nonlinear model in time series
machine learning to forecast electricity consumption of the lowest household category
in East Java, Indonesia. ARIMA models are family of linear model for time series
analysis and forecasting for both stationary and non-stationary, seasonal and
non-seasonal time series data. A nonlinear time series model is proposed by hybrid
ARIMA-ANN, a Radial Basis Function Neural Networks architecture within orthog-
onal least squares estimation. Radial Basis Fuction (RBF) neural networks is a class of
feed forward network that use a radial basis function as its activation function [9]. The
orthogonal least squares procedure choses radial basis function centers one by one in a
rational way until an adequate network has been constructed [10].

The installed capacity in the lowest household customer category has various
power, i.e. 450 VA, 900 VA, 1300 VA, and 2200 VA. Some papers previously have
devoted to develop forecasting model for electricity. Two-level seasonal model based
on hybrid ARIMA-ANFIS to forecast half-hourly electricity load in Java-Bali
Indonesia [5]. The results show that two-level seasonal hybrid ARIMA-ANFIS
model with Gaussian membership function produces more accurate forecast values
than individual approach of ARIMA and ANFIS model for predicting half-hourly
electricity load, particularly up to 2 days ahead. Meanwhile, the electricity forecasting
for industrial category in East Java has been forecasted using ARIMA model [6].

2 Data and Method

The data is from PLN (Perusahaan Listrik Negara/National Electricity Company) as
central holding company to serve and maintain supply and distribute electricity across
Indonesia. The data is electricity consumption from the lowest household category (R1)
in East Java and the time period is from January 2010–December 2016. The customer
from the lowest household category is divided by various installed capacity, 450 VA,
900 VA, 1300 VA, and 2200 VA.

The forecasting method of individual series will be used by ARIMA model.
ARIMA models, abbreviation of Autoregressive Integrated Moving Averaged, were
popularized by George Box and Gwilym Jenkins in the early 1970s. ARIMA models
are family of linear model for time series analysis and forecasting for both stationary
and non-stationary, seasonal and non-seasonal time series data. There are four steps in
ARIMA modelling are, model identification, parameter estimation, diagnostic checking
and finally model is used in prediction purposes. There are model classification in the
family of ARIMA [7].

• Model Autoregressive (AR)

A pth-order of autoregressive or AR (p) model can be written in the form,
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_Zt ¼ u1
_Zt�1 þ . . .þup

_Zt�p þ at ð1Þ

• Model Moving Averages (MA)

A qth-order of moving averages or MA (q) model can be written in the form

_Zt ¼ at � h1at�1 � . . .� hqat�q ð2Þ

• Model Autoregressive Moving Average (ARMA)

A pth order of Autoregressive and qth order of Moving Average or ARMA (p, q)
model can be written in the form,

_Zt ¼ u1
_Zt�1 þ . . .þup

_Zt�p þ at � h1at�1 � . . .� hqat�q ð3Þ

• Model Autoregressive Integrated Moving Average (ARIMA)

By taking difference to the original, a pth order Autoregressive of and qth order of
Moving Average, notated by ARIMA (p, d, q), the model will be

/pðBÞð1� BÞd _Zt ¼ h0 þ hqðBÞat ð4Þ

• Model Seasonal Autoregressive Integrated Moving Average (SARIMA)

Seasonal ARIMA usually are notated by ARIMA (p, d, q) (P, D, Q)S. The general
form of Seasonal ARIMA can be written as,

UPðBSÞupðBÞð1� BÞdð1� BSÞD _Zt ¼ hqðBÞHQðBSÞat ð5Þ

Hybrid ARIMA-ANN is hybridisation of ARIMA and radial basis function
(RBF) neural networks. RBF is a class of feed forward network that use a radial basis
function as its activation function and a traditionally used for strict interpolation in
multidimensional space [8], composed by three layers i.e. an input layer, a hidden
layer, and an output layer. The input layer applies an orthogonal least squares proce-
dure to choose the radial basis function centers in the input layer and a weighted input
constant [9]. The hidden layer of RBF is nonlinear, whereas the output layer is linear.
RBF network employs to modelling time series is y tð Þ as the current time series value.
The idea is to use the RBF network [10]

y_ tð Þ ¼ fr x tð Þð Þ ð6Þ

as the one step-ahead predictor for y tð Þ, where the inputs to the RBF network

x tð Þ ¼ y t � 1ð Þ. . .y t � ny
� �� �T ð7Þ
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are past observation of the series. The nonlinearity / �ð Þ within the RBF network is
chosen to be the gaussian function (8) and the RBF network model writes as (9)

/ vð Þ ¼ exp �v2
�
b2

� � ð8Þ

fr xð Þ ¼ k0 þ
Xnr
i¼1

ki/ x� cik kð Þ ð9Þ

The weighted input constant of RBF is proposed by using measure of dispersion, it
applied to build a radial basis function in the hidden layer are semi interquartile range,
inter quartile range, range, and standard deviation [11].

Q ¼ Q3 � Q1=2 ð10Þ

IQR ¼ Q3 � Q1 ð11Þ

Range ¼ Max�Min ð12Þ

s ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiXn
i¼1

xi � �xð Þ2
,

n� 1

vuut ð13Þ

The criteria used to choose the best forecasting model are the Mean Absolute
Percentage Error (MAPE) and the Root Mean Square Error (RMSE) [7].

MAPE ¼
Pn
t¼1

Zt�Ẑtj j
Zt

n
� 100% ð14Þ

RMSE ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
n

Xn
t¼1

Zt � Ẑt
� �2s

ð15Þ

3 Results

The short description regarding the electricity consumption is presented in Table 1. The
table shows that the largest contributor to total consumption is from 900 VA power
capacity as well as the smallest is from 2200 VA category. This is caused by the
customer number of 900 VA is the largest and the customer number of 2200 VA is the
smallest. Only around 9.84% the percentage of customer is from 1300 VA and
2200 VA.

Before starting the modeling procedure, electricity consumption data is divided into
two parts, namely data in-sample and out-sample. The in-sample data is used to
determine the modeling, while the out-sample data is used for model selection. The
in-sample data uses data from January 2010 to December 2015, while the out-sample
data uses data from January 2016 through December 2016.
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Figure 1 shows the time series plot of the electricity consumption for each cate-
gory. Obviously, the pattern of each series is trend and non-stationary. From the Fig. 1,
it is not clear whether there is seasonal pattern or not for each series data. So, the
monthly boxplot in Fig. 2 is presented to help to identify the seasonal pattern. By
observing the line between monthly means of each box plot, each series looks have the
similar pattern.

Clearly that the time series plot shows that the data is non-stationary and have
seasonal pattern. Therefore, it is need to make the data become stationary before
constructing the forecasting model. For this purpose, it will be taken d = 1 for
non-seasonal, D = 1 for seasonal and S = 12 for seasonal. It can be shown that the data
become stationary as shown in Annex 1.

Model Identification. As mentioned previously, the first step in ARIMA modeling is
model identification based on stationary series data. By using Autocorrelation
(ACF) and Partial Autocorrelation (PACF) plot, the tentative models can be proposed,
especially order the ARIMA model. The ACF and PACF of each series data set is
shown in Annex 1 and the tentative best models of each series is presented in Table 2.

Model estimation. Then, based on tentative ARIMA model, the parameter of each
model will be estimated. The coefficient in each model, for both seasonal and
non-seasonal, must satisfy the significant criteria (Annex 2).

Model checking. This involve the residual examination by using Ljung-Box test to
check whether white noise or not and checking the p-value of the coefficient, then the
significant model can be determined. Table 2 shows residual of the candidate best
models already meet the white noise properties.

The best model. The best model would be selected by identifying model with the
minimum MAPE and RMSE. Table 2 also shows the MAPE and RMSE of each best
candidate model. Therefore, it can be identified easily, which model is the best. Table 3
present the best model of each series and its model specification. All the best models
are seasonal models. These results correspond to the initial hypothesis at the identifi-
cation stage that the best model is likely to be seasonal.

Forecasting. Based on the best model, then it will be computed forecasting electricity
consumption of each individual series for 2017 year. Table 4 presented the forecasting
of each series as well as Fig. 3 shows the interval forecasting of each individual series.

The forecasting result in Table 4 corresponds to the short data description as
presented Table 1. The forecasting capacity 900 VA is highest in each month as well as
forecasting of 2200 VA is lowest. In addition, the forecast results also generate an

Table 1. Description of electricity consumption of each category

Capacity Mean SD Minimum Maximum

450 VA 298.346.202 34.628.908 183.345.937 366.022.852
900 VA 349.990.409 75.226.313 184.317.229 474.736.024
1300 VA 101.155.026 12.484.667 61.474.737 120.808.796
2200 VA 67.034.305 8.526.496 41.580.243 79.661.957
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Fig. 1. Individual time series plot

a.Monthly boxplot of 450 VA b.Monthly boxplot of 900 VA

c.Monthly boxplot of 1300 VA d.Monthly boxplot of 2200 VA

Fig. 2. Monthly boxplot individual time series
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increasing trend from the previous years. Then, Fig. 4 presented the time series plot of
forecasting results along with the upper and lower limits to be better understand the
variation from month to month, what’s going down and what month is up. Interest-
ingly, forecasting in February resulted in minimum values.

Table 2. Summary of the tentative model performance

Series The tentative model Residual MAPE RMSE

450 VA ARIMA ([1, 2], 1, 0) (0, 1, 0)12 White noise 1.78 7429122
ARIMA (0, 1, 1) (0, 1, 0)12 White noise 1.83 7586711

White noise 3.38 22262659
900 VA ARIMA (1, 1, 0) (0, 1, 0)12 White noise 2.87 18347725

ARIMA (0, 1, 1) (0, 1, 0)12 White noise 3.24 21346976
ARIMA ([1, 2], 1, 0) (0, 1, 0)12

1300 VA ARIMA (1, 1, 0) (0, 1, 0)12 White noise 11.69 14206993
ARIMA (0, 1, 1) (0, 1, 0)12 White noise 14.42 17186928

2200 VA ARIMA (1, 0, 0) (0, 1, 0)12 White noise 5.21 4240813
ARIMA (1, 0, 1) (0, 1, 0)12 White noise 6.13 4838444

Table 3. The best model if individual series.

Series ARIMA best model Model

450 VA ([1, 2], 1, 0) (0, 1, 0)12 1� u1B� u2B
2ð Þ 1� Bð Þ1 1� B12ð Þ1 _Zt ¼ at

900 VA (0, 1, 1) (0, 1, 0)12 1� Bð Þ1 1� B12ð Þ1 _Zt ¼ 1� h1Bð Þat
1300 VA (1, 1, 0) (0, 1, 0)12 1� Bð Þ1 1� B12ð Þ1 _Zt ¼ 1� h1Bð Þat
2200 VA (1, 0, 0) (0, 1, 0)12 1� u1Bð Þ 1� B12ð Þ1 _Zt ¼ at

Table 4. Forecasting of each individual series

Month 400 VA 900 VA 1300 VA 2200 VA

January 356.437.843 487.224.399 121.158.305 72.574.265
February 325.622.443 446.809.645 110.309.109 65.479.913
March 348.720.894 481.860.192 120.259.136 72.502.790
April 342.423.412 474.746.479 121.042.694 73.766.180
May 357.343.364 497.542.040 128.142.514 78.339.198
June 359.222.035 491.795.524 125.976.680 75.561.174
July 371.806.140 495.713.077 122.120.258 71.297.066
August 353.792.327 484.458.465 125.804.791 73.248.833
September 349.300.011 482.198.764 127.441.154 74.437.918
October 358.477.706 493.836.646 131.192.699 75.684.615
November 348.381.888 479.827.444 129.456.987 74.149.104
December 357.870.168 490.326.505 130.716.836 72.879.403
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Fig. 3. Interval forecasting of each individual series

Hybrid ARIMA-ANN. The standard ARIMA model will be compared to Hybrid
ARIMA-ANN. This model is built by the hybridization of ARIMA and RBF. The input
is determined by the order of autocorrelation or partial autocorrelation of ARIMA
model. The hidden layer is composed by the measure of dispersion constant as the
width, determined by the seasonality pattern, and proceed by the orthogonal least
squares. The measure of dispersion is determined by semi interquartile range (SIR),
interquartile range (IQR), range, and standard deviation. The output layer is linear
process as a univariate forecasting.

The architecture optimum. Based on Table 5, the architecture optimum is built by
the measure of dispersion constant and proceed by the orthogonal least squares method.
The architecture optimum is shown in Annex 2 (Table 6).

Forecasting. Based on the architecture optimum, it will be computed a univariate
forecasting electricity consumption of each individual series in 2017. Table 7 presents
the forecasting of each series as well as Fig. 4 shows the interval forecasting.

Comparation model. Based on the best model in each series, the best models are
ARIMA ([1, 2], 1, 0) (0, 1, 0)12, ARIMA (0, 1, 1) (0, 1, 0)12, ANN (1, 12, 1), and ANN
(1, 12, 1) respectively. It shows that a complex model is not always better than a
simpler model. Hence, a better hybrid ANN model is relied on the choice of a weighted
input constant of RBF. In addition, hybrid model forecasting results have a smaller
variation compared to the ARIMA model. This can be seen in Fig. 4. Time series plot
of forecasting results from month to month shows small changes. In addition, fore-
casting results also show a different pattern with the original data plot. If the time series
of the original data in general shows an upward trend pattern, then the forecasting result
of the hybrid model shows the pattern tends to go down as in forecasting 2200 VA.

Time Series Machine Learning: Implementing ARIMA 133



Fig. 4. Interval forecasting of each individual series

Table 5. The measure of dispersion of radial basis function

Capacity SIR IQR Range St. Deviation

450 VA 22929807.38 45859614.75 124845858 27678858.64
900 VA 53617084 107234168 281078109 64456310.27
1300 VA 9375176.38 18750352.75 56820592 11994479.18
2200 VA 6892877.25 13785754.5 38081714 8544743.80
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4 Conclusion and Further Research

There are four individual series of electricity consumption, 450 VA, 900 VA,
1300 VA and 2200 VA. The time series machine learning to forecast each series is
ARIMA model and the best model is ARIMA ([1, 2], 1, 0) (0, 1, 0)12, ARIMA (0, 1, 1)
(0, 1, 0)12, ARIMA (1, 1, 0) (0, 1, 0)12, and ARIMA (1, 0, 0) (0, 1, 0)12 respectively. It
is also noted that the largest contribution to household electricity is from 900 VA
category. Meanwhile, the hybrid ARIMA-ANN forecasting generates an architecture

Table 6. The tentative hybrid ARIMA-ANN architecture performance

Series The architecture MAPE RMSE Dispersion

450 VA ANN (2, 12, 1) 7.232 28900205.8 SIR
ANN (2, 12, 1) 10.846 47637343.31 IQR
ANN (2, 12, 1) 7.252 30138899.10 Range
ANN (2, 12, 1) 7.321 30605083.83 Standard deviation

900 VA ANN (1, 12, 1) 79.75 500393532.39 SIR
ANN (1, 12, 1) 187.58 1261928434.30 IQR
ANN (1, 12, 1) 4.52 25172771.32 Range
ANN (1, 12, 1) 104.89 671564249.29 Standard deviation

1300 VA ANN (1, 12, 1) 5.13 6916929.11 SIR
ANN (1, 12, 1) 8.73 18485362.53 IQR
ANN (1, 12, 1) 5.99 9735898.68 Range
ANN (1, 12, 1) 6.19 9738836.02 Standard deviation

2200 VA ANN (1, 12, 1) 3.68 3465369.36 SIR
ANN (1, 12, 1) 3.43 3290203.42 IQR
ANN (1, 12, 1) 3.26 3119319.11 Range
ANN (1, 12, 1) 3.55 3376712.69 Standard deviation

Table 7. Forecasting of each individual series

Month 450 VA 900 VA 1300 VA 2200 VA

January 327.264.333 451.794.490 109.590.586 72.538.369
February 322.862.608 456.310.202 109.485.466 72.249.617
March 328.646.077 460.195.002 109.513.222 72.055.395
April 325.904.722 461.057.594 109.506.386 71.922.917
May 330.278.944 460.815.162 109.508.103 71.831.855
June 328.665.855 460.901.946 109.507.674 71.768.973
July 332.091.946 460.872.634 109.507.781 71.725.467
August 331.347.847 460.882.490 109.507.754 71.695.299
September 333.965.777 460.879.290 109.507.761 71.674.361
October 333.826.763 460.880.314 109.507.759 71.659.827
November 335.596.047 460.879.546 109.507.760 71.649.721
December 335.709.623 460.880.186 109.507.760 71.642.705
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and an architecture optimum i.e. ANN (2, 12, 1) using semi interquartile, ANN (1, 12,
1) using range, ANN (1, 12, 1) using semi interquartile, and ANN (1, 12, 1) using range
respectively. The comparation model shows that there is an inconsistent model because
a complex model doesn’t work better in two series of electricity consumption i.e. the
450 VA series and the 900 VA series.

If the electricity consumption of each category is summed up, then it will produce
the total household electricity consumption. This time series data is called hierarchical
time series data. The alternative method can be used for this type of time series data is
hierarchical time series model by applying the top-down, bottom up and optimal
combination approach [12]. These approaches could be considered to be applied to this
data in the next research.

Annex 1. ACF and PACF Plot
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Annex 2. The Architecture Optimum of Hybrid ARIMA-ANN

a. ANN (2,12,1) of 450 VA category    b. ANN (1,12,1) of 900VA category 

c. ANN (1,12,1) of 1300 VA category     d. ANN (1,12,1) of 2200 VA category 
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