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Chapter 2
Virus Assembly and Egress of HSV

Colin Crump

Abstract  The assembly and egress of herpes simplex virus (HSV) is a complicated 
multistage process that involves several different cellular compartments and the 
activity of many viral and cellular proteins. The process begins in the nucleus, with 
capsid assembly followed by genome packaging into the preformed capsids. The 
DNA-filled capsids (nucleocapsids) then exit the nucleus by a process of envelop-
ment at the inner nuclear membrane followed by fusion with the outer nuclear mem-
brane. In the cytoplasm nucleocapsids associate with tegument proteins, which 
form a complicated protein network that links the nucleocapsid to the cytoplasmic 
domains of viral envelope proteins. Nucleocapsids and associated tegument then 
undergo secondary envelopment at intracellular membranes originating from late 
secretory pathway and endosomal compartments. This leads to assembled virions in 
the lumen of large cytoplasmic vesicles, which are then transported to the cell 
periphery to fuse with the plasma membrane and release virus particles from the 
cell. The details of this multifaceted process are described in this chapter.
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2.1  �Capsid Assembly and Genome Packaging

The first stage of forming new HSV particles is the assembly of the icosahedral 
capsid. Like all herpesviruses, the HSV capsid is an approximately 125 nm diameter 
icosahedron with T  =  16 symmetry (Schrag et  al. 1989), composed of 162 cap-
somers connected by 320 triplexes (2 copies of VP23 and 1 copy of VP19C) 
(Newcomb et al. 1993; Okoye et al. 2006). The 162 capsomers include 150 hexons 
(6 copies of VP5), which make up the edges and faces of the icosahedron, and 11 of 
the 12 vertices are pentons (5 copies of VP5). The twelfth vertex is the portal com-
plex, a dodecamer of pUL6 arranged in a ring structure, through which the genome 
is packaged during assembly and released during entry (Newcomb et al. 2001). In 
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addition, 900 copies of the small capsid protein VP26 decorate the outer surface of 
the capsid, with one copy of VP26 on the tip of each VP5  in the 150 hexons. 
Furthermore, five copies of a heterodimer composed of pUL17 and pUL25, termed 
the capsid vertex-specific component (CVSC), associate with each penton. The 
CVSC is thought to be important for both capsid stability and association with the 
tegument (Thurlow et al. 2006; Toropova et al. 2011; Trus et al. 2007). One final 
viral protein component of the capsid is VP24, the protease that processes the scaf-
fold during DNA encapsidation (Sheaffer et al. 2000; Stevenson et al. 1997).

Capsids initially assemble as a procapsid around a scaffold complex composed 
of ~1900 subunits of two related proteins: pUL26.5 that contains the scaffold core 
domain and pUL26 that has the viral protease (VP24) fused to the N-terminus of the 
scaffold core domain via a linker. Approximately 90% of the scaffold is composed 
of pUL26.5 and 10% is pUL26 (Aksyuk et al. 2015). Both pUL26.5 and pUL26 
interact with the major capsid protein VP5 via their identical C-termini. The assem-
bly is thought to initiate with the portal complex associated with scaffold proteins 
(Newcomb et al. 2005), followed by progressive addition of scaffold-bound VP5 
together with preformed triplexes, which produces spherical procapsids containing 
a single portal complex (Newcomb et al. 1996, 2003; Spencer et al. 1998). Viral 
DNA, primarily in concatemeric form after synthesis by rolling-circle replication, is 
packaged into preformed procapsids via the pUL6 portal and requires the action of 
the terminase complex (pUL15-pUL28-pUL33) (Heming et al. 2014). The termi-
nase complex interacts with packaging signals (pac sequences) in the terminal 
repeat region at the free end of newly synthesised viral DNA and drives ATP-
dependent translocation of the viral genome into the procapsid. Once DNA packag-
ing is complete, the terminase complex cleaves the concatemeric viral DNA at the 
next terminal repeat to separate the packaged single genome length of DNA from 
the rest of the concatemer (Tong and Stow 2010). As viral DNA begins to be pack-
aged into the procapsid, the protease domain of pUL26 scaffold protein is activated, 
causing its autocatalytic release from the N-terminus of pUL26 to become VP24, 
the free protease protein. VP24 cleaves both pUL26 and pUL26.5 near their 
C-termini releasing the core scaffold domains, termed VP21 and VP22a, respec-
tively, from their bound VP5. The majority of the cleaved scaffold protein products 
are released from the capsid providing the space for the viral genome, although at 
least some of the VP24 protease domain is retained inside the capsid (McClelland 
et al. 2002; Sheaffer et al. 2000). This whole process leads to large structural changes 
resulting in the rearrangement of the spherical procapsid into the stable icosahedral 
capsid containing the viral genome (often termed C-capsids or nucleocapsids) 
(Heymann et  al. 2003; Roos et  al. 2009). Two other forms of stable icosahedral 
capsids that lack DNA, A-capsids and B-capsids, are also produced during this pro-
cess; A-capsids contain little or no scaffold protein, whereas B-capsids retain an 
inner shell of processed scaffold (Cardone et  al. 2012a). Both A-capsids and 
B-capsids are thought to be dead-end products that result from defective or abortive 
DNA encapsidation, and these DNA-less capsids rarely exit the nucleus.
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2.2  �Nuclear Egress

Upon completion of capsid assembly and genome packaging, the resulting 
nucleocapsids need to escape the confines of the nuclear envelope. The nuclear 
envelope is a formidable barrier, being composed of two phospholipid bilayers – the 
inner nuclear membrane facing the nucleoplasm and the outer nuclear membrane 
facing the cytoplasm. There are numerous pores within the nuclear envelope, where 
the inner nuclear membrane and outer nuclear membrane fuse, which are filled by 
nuclear pore complexes that tightly regulate the transport of cargo between the cyto-
plasm and nucleus. The size exclusion of these pores is typically around 39 nm 
diameter or less (Pante and Kann 2002) and is thus too small to accommodate her-
pesvirus capsids, which are ~125 nm. Instead, transport of nucleocapsids into the 
cytoplasm is achieved by budding of nucleocapsids at the inner nuclear membrane 
to form primary enveloped particles (also termed perinuclear virions) within the 
perinuclear space, followed by fusion of primary enveloped particles with the outer 
nuclear membrane to release nucleocapsids into the cytoplasm. While many details 
of this process are still unclear, much progress has been made recently in under-
standing this unusual mode of intracellular transport.

To gain access to the inner nuclear membrane, the underlying nuclear lamina 
must be penetrated. The nuclear lamina is a dense mesh of intermediate filament-
type proteins (lamins) and associated proteins, which interacts with chromatin and 
aids the structural integrity of the nucleus. Local disruption of the nuclear lamina to 
enable nucleocapsid access to the inner nuclear membrane is facilitated through 
phosphorylation of lamins and associated proteins by viral and cellular kinases, 
including pUS3 and PKC isoforms (Bjerke and Roller 2006; Leach and Roller 
2010).

The budding of nucleocapsids at the inner nuclear membrane is driven by the 
nuclear egress complex (NEC), a heterodimer of pUL31 and a tail-anchored mem-
brane protein pUL34. The NEC recruits PKC isoforms (Park and Baines 2006) and 
is itself a target for phosphorylation by pUS3 (Kato et al. 2005), which facilitates 
the correct localisation of the NEC to the nuclear membrane (Reynolds et al. 2001). 
The other HSV protein kinase, pUL13, can also regulate the localisation of the 
NEC, either by phosphorylation of pUS3 or by a pUS3-independent mechanism 
(Kato et al. 2006).

The recruitment of capsids to the inner nuclear membrane involves the interaction 
of the NEC with pUL25, part of the heterodimeric CVSC present on the vertices of 
capsids. DNA-filled capsids (C-capsids/nucleocapsids) have higher levels of 
occupancy of the CVSC on their vertices than either A- or B-capsids (Newcomb 
et al. 2006; Sheaffer et al. 2001), providing a mechanism by which DNA-filled cap-
sids can be selected for nuclear export (O’Hara et al. 2010; Yang and Baines 2011).

Recent structural studies have begun to uncover the molecular mechanisms by 
which the NEC mediates primary envelopment of herpesvirus capsids. The NEC 
oligomerises on the inner nuclear membrane to form a hexagonal scaffold that coats 
the inner surface of the budding membrane and links the membrane to the 
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nucleocapsid (Bigalke and Heldwein 2017; Zeev-Ben-Mordehai et al. 2015). The 
NEC has an intrinsic activity to deform membranes and cause membrane scission, 
suggesting the NEC alone is sufficient for forming perinuclear enveloped virus par-
ticles (Hagen et al. 2015). However, other viral proteins may be involved in regulat-
ing nuclear egress, including pUL16 (Gao et al. 2017), pUL21 (Le Sage et al. 2013), 
pUL47 (Liu et al. 2014) and pUS3 (Reynolds et al. 2002), as well as the nonstructural 
proteins pUL24 (Lymberopoulos et al. 2011) and ICP22 (Maruzuru et al. 2014). One 
protein with a well-established, although enigmatic, role in nuclear egress is the viral 
kinase pUS3. Deletion of the US3 gene or introduction of an inactivating mutation in 
the kinase domain of pUS3 results in the accumulation of primary enveloped virions 
in the perinuclear space, often observed as bulges protruding into the nucleoplasm 
termed herniations (Reynolds et al. 2002; Ryckman and Roller 2004). This suggests 
a role for pUS3 kinase activity in regulating the fusion of primary enveloped virions 
with the outer nuclear membrane or dissociation of the nucleocapsid from the NEC 
(Newcomb et al. 2017). However, this appears to be a more facilitatory, non-essential 
function because US3 deletion viruses are viable and nucleocapsids are still able to 
gain access to the cytoplasm, undergo secondary envelopment and release infectious 
virions from cells. It is possible that pUL13, or host kinases, can at least partially 
compensate for loss of pUS3 function.

The precise composition of perinuclear virions is unknown, with much 
uncertainty about the presence of various tegument and envelope proteins. Regarding 
tegument proteins, immuno-electron microscopy studies have suggested that both 
pUS3 and VP16 are present in perinuclear virions (Naldinho-Souto et  al. 2006; 
Reynolds et al. 2002), and proteomics analysis of partially purified perinuclear viri-
ons identified pUL49 as a component of these particles (Padula et  al. 2009). 
However, for many of the viral proteins proposed to regulate nuclear egress, it is 
unclear if they become components of primary enveloped particles or indeed 
whether their roles in nucleocapsid transport across the nuclear envelope are direct 
or indirect. Recent cryo-electron microscopy studies of primary enveloped virions 
have also demonstrated limited space between the NEC and nucleocapsid, suggest-
ing few tegument proteins are likely to be incorporated to a significant level during 
nuclear egress and the majority of tegument is acquired in the cytoplasm (Newcomb 
et al. 2017).

Whether there are any viral membrane proteins that are specifically incorporated 
into primary enveloped virions and what functional roles they play in nuclear egress 
is also unclear. Several viral membrane proteins localise to the nuclear envelope in 
infected cells and thus could be incorporated into perinuclear virions, including gB, 
gD, gH and gM (Baines et al. 2007; Farnsworth et al. 2007b; Wills et al. 2009). 
Given the need for perinuclear virions to fuse with the outer nuclear membrane, the 
presence of the viral entry proteins gB, gD and gH could indicate a potential role of 
these proteins in the outer nuclear membrane fusion event. Indeed, some evidence 
suggests gB is involved in HSV-1 nuclear egress, possibly in a redundant manner 
with gH, and that this activity of gB in nuclear egress is regulated by pUS3 
(Farnsworth et  al. 2007b; Wisner et  al. 2009; Wright et  al. 2009). However, gB 
deletion viruses still efficiently assemble and release virions from infected cells, 
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albeit lacking gB, suggesting any role of this glycoprotein in nuclear egress is facili-
tatory rather than essential (Farnsworth et al. 2007b). Furthermore, in pseudorabies 
virus, a related alphaherpesvirus, deletion of gB and gH does not affect nuclear 
egress (Klupp et al. 2008).

Following de-envelopment, nucleocapsids detach from the NEC leaving the 
NEC proteins behind in the outer nuclear membrane in a process that may partially 
rely on pUS3 kinase activity (Newcomb et al. 2017; Reynolds et al. 2002). Once 
released, the nucleocapsid must recruit then tegument and undergo secondary envel-
opment to form an infectious virion.

2.3  �Tegument Assembly

The tegument is a complex proteinaceous layer that connects the nucleocapsid to 
the viral envelope, which in HSV contains up to 24 different viral proteins 
(Table 2.1). As well as performing a structural role within the virion, the tegument 
is also a reservoir for proteins that modulate host cell function, such as the ubiquitin 
ligase ICP0 and the virion host shut-off protein (Vhs/pUL41), which are important 
for antagonising antiviral host responses (Boutell and Everett 2013; Smiley 2004). 
Unlike the icosahedral herpesvirus capsid, the structure of the tegument is rather 
poorly defined; the lack of symmetry within the tegument prevents high-resolution 
single-particle structural analysis by cryo-electron microscopy. Tegument proteins 
are often broadly subdivided into ‘inner’ and ‘outer’ tegument, with inner tegument 
proteins more tightly associated with the nucleocapsid and outer tegument proteins 
weakly associated with the nucleocapsid and/or associated with the inner surface of 
the envelope. These definitions mainly come from biochemical experiments inves-
tigating how labile the association of tegument proteins with nucleocapsids is to 
increasing salt concentration, following disruption of the viral enveloped with deter-
gent. Therefore, such designations do not necessarily provide information of the 
structural organisation of these proteins within virions. Recently, some details of 
tegument organisation have begun to be uncovered by modern techniques in fluores-
cence microscopy analysis of single virus particles (Bohannon et al. 2013; Laine 
et al. 2015).

The tegument protein that is most tightly associated to nucleocapsids is pUL36 
(also termed VP1/2), the C-terminal domain of which has been shown to interact 
with pUL25, part of the heterodimeric CVSC present on nucleocapsid pentons 
(Coller et al. 2007). Single-particle analysis of nucleocapsids obtained from purified 
virions that have been stripped of their envelope and all tegument proteins except 
pUL36 identified extra density protruding from capsid vertices, suggesting that at 
least part of pUL36, most likely its C-terminus, is the one tegument protein that 
does display some icosahedral symmetry (Cardone et al. 2012b). More recently, it 
has been shown that the presence of pUL36 is necessary for the CVSC to form sug-
gesting that pUL36 residues may contribute to the observed CVSC density in 
cryo-EM reconstructions of nucleocapsids or that pUL36 is required to stabilise the 
structure of the pUL17 and pUL25 heterodimer (Fan et al. 2015).
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Table 2.1  HSV structural proteins

Gene
Protein 
name

Amino 
acidsa

Mass 
(kDa)a Description

Capsid UL6 pUL6 676 74.1 Portal protein
UL17 pUL17 703 74.6 CVSC protein
UL18 VP23 318 34.3 Triplex protein
UL19 VP5 1374 149.1 Major capsid protein, hexon and 

penton
UL25 pUL25 580 62.7 CVSC protein
UL26 VP24 247 26.6 Protease (N-terminal domain of 

pUL26)
UL35 VP26 112 12.1 Binds hexon VP5 tip
UL38 VP19C 465 50.3 Triplex protein

Tegument RL1 ICP34.5 248 26.2 Neurovirulence factor
RL2 ICP0 775 78.5 E3 ubiquitin ligase
RS1 ICP4 1298 132.8 Essential gene; viral transcription 

factor
UL7 pUL7 296 33.1
UL11 pUL11 96 10.5 Myristoylated and palmitoylated
UL13 pUL13 518 57.2 Serine/threonine-protein kinase
UL14 pUL14 219 23.9
UL16 pUL16 373 40.4
UL21 pUL21 535 57.6
UL23 TK 376 41.0 Thymidine kinase
UL36 VP1/2 3112 333.6 Essential gene
UL37 pUL37 1123 120.6 Essential gene
UL41 Vhs 489 54.9 Endoribonuclease
UL46 VP11/12 718 78.2
UL47 VP13/14 693 73.8
UL48 VP16 490 54.3 Essential gene; transcriptional 

activator of IE genes
UL49 VP22 301 32.3
UL50 dUTPase 371 39.1 Deoxyuridine 5′-triphosphate 

nucleotidohydrolase
UL51 pUL51 244 25.5 Palmitoylated
UL55 pUL55 186 20.5
US2 pUS2 291 32.5
US3 pUS3 481 52.8 Serine/threonine-protein kinase
US10 pUS10 306 33.5
US11b pUS11 161 17.8

Envelope UL1 gL 224 24.9 Heterodimer with gH; essential for 
entry

UL10 gM 473 51.4 Multiple transmembrane domains; 
forms complex with gN

(continued)
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As well as being tightly associated with nucleocapsids, pUL36 is one of the few 
tegument proteins, along with pUL37 and VP16, that are essential for HSV assem-
bly; loss of functional pUL36 leads to accumulation of non-enveloped nucleocap-
sids in the cytoplasm, suggesting a failure of tegument to associate with nucleocapsids 
in the absence of pUL36 (Desai 2000; Roberts et al. 2009). Furthermore, pUL36 is 
the largest protein in herpesviruses, being >3000 amino acids in HSV, and has been 
shown to interact with the two other essential assembly proteins pUL37 and VP16 
(Mijatov et al. 2007; Svobodova et al. 2012). This has led to the logical suggestion 
that pUL36 could serve as a platform or central organiser for subsequent assembly 
of the rest of the tegument. In addition to pUL36, pUL37 and pUS3 are usually clas-
sified as inner tegument proteins, whereas most of the other tegument proteins are 
generally considered outer tegument proteins. However, the association properties 
of most tegument proteins with nucleocapsids remain undefined, with investigations 
hampered due to low copy numbers within virions as well as a lack of suitable 
detection reagents for many tegument proteins.

The location where the tegument first begins to associate with nucleocapsids 
during virion assembly is unclear, with disagreement in the literature regarding the 
association of tegument proteins with capsids in the nucleus. Given the tight 
association of the inner tegument pUL36 with nucleocapsids and the importance of 
pUL36 for association of pUL37 and VP16 with nucleocapsids and subsequent 

Table 2.1  (continued)

Gene
Protein 
name

Amino 
acidsa

Mass 
(kDa)a Description

UL20 pUL20 222 24.2 Multiple transmembrane domains; 
forms complex with gK

UL22 gH 838 90.4 Heterodimer with gL; essential for 
entry

UL27 gB 904 100.3 Essential for entry
UL43b pUL43 417 42.9 Multiple transmembrane domains
UL44 gC 511 55.0 Heparan sulphate binding
UL45 pUL45 172 18.2
UL49.5b gN 91 9.2 Forms complex with gM
UL53 gK 338 37.6 Multiple transmembrane domains; 

forms complex with pUL20
UL56 pUL56 197 21.2
US4 gG 238 25.2 Chemokine binding protein
US5b gJ 92 9.6
US6 gD 394 43.3 Essential for entry
US7 gI 390 41.4 Forms complex with gE; Fc receptor
US8 gE 550 59.1 Forms complex with gI; Fc receptor
US9 pUS9 90 10.0

aValues from UniProt for HSV-1 strain 17; not including co-translational or post-translational 
modifications
bUnclear if present in virus particle for HSV (Loret et al. 2008)

2  Virus Assembly and Egress of HSV



30

virion assembly, it is reasonable to suggest pUL36 will be one of the first tegument 
proteins to interact with nucleocapsids during virion morphogenesis. However, 
there is evidence both for and against pUL36 associating with capsids in the nucleus 
(Bucks et  al. 2007; Fan et  al. 2015; Henaff et  al. 2013; Radtke et  al. 2010). 
Furthermore, it doesn’t appear that pUL36 has an important role in the nuclear 
egress stage of the assembly pathway because deletion of UL36 does not prevent 
transport of nucleocapsids from the nucleus into the cytoplasm (Desai 2000; Roberts 
et al. 2009). The observations that some tegument proteins are important for effi-
cient nuclear egress, as described above, could suggest association of these tegu-
ment proteins with nucleocapsids before or during primary envelopment, and indeed 
pUS3 has been detected in primary enveloped virions (Henaff et al. 2013; Reynolds 
et al. 2002). However, it is also possible tegument proteins could function in a regu-
latory manner during nuclear egress but not physically associate with nucleocapsids 
at this stage and then become incorporated into assembling virions by interaction 
with nucleocapsid and/or other tegument or envelope proteins in the cytoplasm. An 
example of the complexities in interpreting when tegument proteins become incor-
porated into assembling virions is the major tegument protein VP16. It is well estab-
lished that VP16 is imported into the nucleus for its role during immediate-early 
viral gene expression (Campbell et al. 1984), VP16 has been observed in perinuclear 
virions by immuno-EM studies (Naldinho-Souto et  al. 2006) and VP16 interacts 
with the inner tegument protein pUL36 (Svobodova et al. 2012), suggesting poten-
tial association with capsids in the nucleus. However, VP16-negative capsids can be 
readily observed in the cytoplasm of infected cells, VP16 deletion inhibits virion 
assembly but does not appear to affect nuclear egress, and VP16 interacts with the 
cytoplasmic domain of gH as well as several other ‘outer’ tegument proteins 
(pUL41, pUL46, pUL47 and VP22), suggesting VP16 incorporation into virions 
occurs in the cytoplasm (Elliott et al. 1995; Gross et al. 2003; Mossman et al. 2000; 
Smibert et al. 1994; Svobodova et al. 2012; Vittone et al. 2005). It should also be 
born in mind that the tegument assembly process could be somewhat flexible, 
whereby a few copies of some tegument proteins can associate with nucleocapsids 
in the nucleus and be carried across the nuclear envelope, but then further copies of 
these tegument proteins assemble onto nucleocapsids in the cytoplasm. Alternatively, 
nuclear-localised tegument proteins may transiently associate with nucleocapsid 
prior to or during nuclear egress and then dissociate once the nucleocapsid reaches 
the cytoplasm before reacquisition later during virion assembly. Future develop-
ment of imaging technologies that allow direct observation of the dynamics of 
virion assembly at the single-particle level will hopefully shed light on this topic.

Regardless of whether individual tegument proteins can or do associate with 
nucleocapsids before they exit the nucleus, it is clear that the majority of the tegu-
ment assembles in the cytoplasm. To form the complex tegument layer, a network 
of protein-protein interactions with significant redundancy is thought to occur, 
including tegument-tegument, tegument-capsid and tegument-envelope interactions 
(Lee et al. 2008; Vittone et al. 2005). The inner tegument proteins pUL36, pUL37 
and pUS3 are presumably recruited to nucleocapsids before the outer tegument pro-
teins, many of which may assemble during the secondary envelopment process by 
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virtue of interacting with the cytoplasmic domains of viral envelope proteins. 
Several tegument proteins have been shown to be important for efficient virion 
assembly, and so they may facilitate the formation of the complex tegument layer, 
although as mentioned above only three, pUL36, pUL37 and VP16 appear to be 
essential for virion assembly, suggesting reasonable flexibility within the assembly 
process that can compensate for the loss of one or more ‘non-essential’ 
components.

VP16, pUL47 and pUL49 are the most prevalent proteins in the tegument, with 
copy numbers estimated to be ca. 500–1500 per virion for each of these proteins 
(Clarke et al. 2007; Newcomb et al. 2012). These proteins may be central organisers 
of the tegument structure: VP16 has been shown to interact with pUL41 (Vhs), 
pUL46, pUL47 and pUL49, as well as pUL36 and the cytoplasmic domain of gH 
(Elliott et al. 1995; Gross et al. 2003; Smibert et al. 1994; Svobodova et al. 2012; 
Vittone et  al. 2005); pUL47 also interacts with pUL17 providing another link 
between the tegument and nucleocapsids (Scholtes et al. 2010); pUL49 also inter-
acts with pUL16, ICP0 and the cytoplasmic domains of gD, gE and gM (Farnsworth 
et al. 2007a; Maringer et al. 2012; Starkey et al. 2014).

In addition to the essential pUL36 and pU37, there are six other tegument 
proteins that are conserved throughout the herpesvirus family, and while not 
‘essential’ these tegument proteins are also important for virion assembly. Firstly, 
there is pUL11, pUL16 and pUL21, which have been shown to form a tripartite 
complex that associates with membranes via the lipid anchors present on pUL11 
and through interaction with the cytoplasmic domain of gE (Han et al. 2012). There 
is also evidence that both pUL16 and pUL21 interact with capsids, suggesting the 
pUL11-pUL16-pUL21 complex can directly connect the envelope with the 
nucleocapsid (de Wind et al. 1992; Meckes and Wills 2007). Secondly, there are 
pUL7, pUL14 and pUL51 which may also form a complex. pUL7 and pUL51 have 
recently been shown to form a complex through direct protein-protein interaction, 
and pUL14 has also been shown to interact with pUL51 (Albecka et al. 2017; Oda 
et al. 2016; Roller and Fetters 2015). As yet it is unclear if a tripartite complex of 
pUL7-pUL14-pUL51 forms or if there are independent pUL7-pUL51 and pUL14-
pUL51 complexes. Deletion of each of these three proteins leads to defects in 
cytoplasmic virion assembly, and the stability of pUL7 and pUL51 relies on each 
other (Albecka et al. 2017; Oda et al. 2016). Similar to pUL11, pUL51 is associated 
with membranes via a lipid anchor providing additional links between the tegument 
and envelope. Therefore, it appears there are at least two independent protein 
complexes that can link the envelope to the underlying tegument and the nucleocapsid 
that are conserved throughout the herpesvirus family.

While many interactions between tegument proteins have been identified, it is 
important to note that such an extensive and seemingly redundant network of inter-
actions between these proteins makes it problematic to investigate the precise roles 
of individual components or interactions during virion assembly. It is often difficult 
to know whether identified interactions are direct or indirect and whether they 
occur within the virion structure or during other, non-assembly activities of these 
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multifunctional virus proteins. Elucidating the molecular details of tegument protein 
structures, both in isolation and in complex with each other, will be needed to shed 
further light on these complex assembly events.

2.4  �Secondary Envelopment

The final stage of assembling mature HSV particles is secondary envelopment, 
sometimes referred to as final envelopment, the process by which nucleocapsids 
with a full complement of tegument proteins are encased within a lipid bilayer con-
taining all the viral envelope proteins. This occurs at cytoplasmic membranes result-
ing in HSV particles inside the lumen of cytoplasmic compartments. To orchestrate 
this process, a complex series of interactions must occur between viral capsid, tegu-
ment and envelope proteins, as well as with cellular membranes and host proteins 
involved in regulating membrane modulation and transport.

The cellular compartment from which the final envelope of HSV is derived is 
somewhat unclear. It often stated that the trans-Golgi network (TGN), a major sort-
ing station for membrane proteins of the secretory and endocytic pathways, is the 
site of HSV secondary envelopment. Evidence for this comes from the observation 
of co-localisation of several viral envelope glycoproteins with markers of the TGN 
(Beitia Ortiz de Zarate et al. 2004; Crump et al. 2004; Foster et al. 2004b; McMillan 
and Johnson 2001). Furthermore, it has been shown that appending localisation 
signals from cellular TGN resident proteins onto HSV-1 glycoproteins leads to 
incorporation into virions (Whiteley et al. 1999), and inhibitors that perturb Golgi/
TGN function, such as brefeldin A, block HSV-1 assembly (Cheung et al. 1991; 
Koyama and Uchida 1994), supporting the notion of envelopment of virions by 
TGN membrane. However, there is also evidence for endosomes being the sites of 
HSV-1 secondary envelopment. Electron microscopy studies have clearly shown the 
presence of endocytic tracers within membrane compartments that are wrapping 
cytoplasmic nucleocapsids (Hollinshead et  al. 2012). Furthermore, blocking the 
function of specific Rab GTPases that are associated with endosomal trafficking 
inhibits HSV-1 assembly (Johns et al. 2011; Zenner et al. 2011), and inhibition of 
endocytosis prevents the incorporation of viral glycoproteins into virions (Albecka 
et al. 2016). These data point to endosomal compartments being a major source of 
membrane during HSV secondary envelopment. However, because of the highly 
dynamic and fluid nature of the secretory and endocytic pathways in cells, it can be 
difficult to accurately interpret cellular membrane compartment identity, particu-
larly in infected cells where the cytopathic effects of HSV infection are known to 
perturb membrane traffic and cellular organelle structure (Henaff et  al. 2012). 
Furthermore, the majority of cellular proteins that are defined as markers of particu-
lar organelles frequently undergo rapid transport between various secretory and 
endocytic compartments, and so in the context of HSV infection defining the iden-
tity of a membrane by the presence of such cellular markers can be fraught with 
difficulties. It must also be considered that the secondary envelopment of HSV 
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could involve membranes that originate from more than one cellular compartment, 
including TGN and endosomes. Given the size of HSV particles, several vesicles 
containing viral envelope proteins may need to fuse to provide sufficient membrane 
in order to wrap the large nucleocapsid/tegument complex that makes up the inter-
nal structure of the virus particle.

Despite the uncertainties about secondary envelopment compartment identity, 
there is little doubt that this occurs at cellular membranes that are derived from late 
secretory pathway (e.g. the TGN) and/or endosomal pathway compartments, and 
not at early secretory pathway membranes such as the endoplasmic reticulum (ER) 
or Golgi apparatus. Artificially targeting viral envelope proteins to the ER prevents 
their incorporation into virions (Browne et  al. 1996; Whiteley et  al. 1999), and 
blocking ER-Golgi transport inhibits virus assembly and leads to accumulation of 
viral envelope proteins in the ER (Zenner et al. 2011).

As with the rest of the virion structure, the envelope of HSV is also highly 
complex, containing up to 16 different viral transmembrane proteins (Table 2.1). 
Therefore, all of these different membrane proteins need to be accumulated in the 
appropriate cellular compartment(s) so that they can be incorporated into mature 
virions. Due to the highly dynamic and interconnected nature of the late secretory 
and endocytic pathways, cellular membrane proteins are often localised to discrete 
compartments through an active retrieval mechanism, whereby proteins that leave 
the ‘home’ compartment are recycled back through vesicle transport. Therefore, it 
is of little surprise that many viral membrane proteins have adopted a similar  
mechanism by encoding targeting motifs in their cytoplasmic domains that mimic 
equivalent cellular motifs for packaging into transport vesicles. For example,  
tyrosine-based targeting motifs in glycoprotein B (gB) and glycoprotein E (gE) 
have been shown to direct endocytosis and intracellular targeting of these viral 
envelope proteins (Alconada et al. 1999; Beitia Ortiz de Zarate et al. 2004). However, 
not all HSV envelope proteins possess recognised targeting motifs, including the 
essential entry proteins gD and gH-gL. These envelope proteins appear to rely on 
interaction with other HSV proteins including gM and the gK-pUL20 complex to 
mediate their endocytosis and correct localisation to intracellular assembly  
compartments during infection (Crump et  al. 2004; Lau and Crump 2015;  
Ren et al. 2012).

To help drive efficient virion assembly, several interactions between the tegument 
and envelope are thought to occur in a co-operative and partially redundant manner. 
The redundant nature of these envelope-tegument interactions is demonstrated by 
the observations that single deletion of gB, gD or gE results in little or no attenuation 
of secondary envelopment, whereas the combined deletion of gB and gD or gD and 
gE causes a dramatic inhibition of secondary envelopment leading to the 
accumulation of large aggregates of non-enveloped cytoplasmic capsids (Farnsworth 
et al. 2003; Johnson et al. 2011). Similar observations have been made for gM and 
the lipid-anchored tegument protein pUL11, with only minor defects in assembly 
caused by the loss of either protein individually, whereas deletion of both gM and 
pUL11 causes a profound inhibition of secondary envelopment (Leege et al. 2009). 
These observations support the notion that numerous interactions between envelope 
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proteins and the underlying tegument occur to facilitate  
secondary envelopment, although loss of some of these interactions can be tolerated 
by the virus.

Two envelope proteins that appear to be particularly important for secondary 
envelopment are gK and pUL20. These multifunctional membrane proteins form a 
complex, and their correct subcellular localisation is reliant on each other (Foster 
et al. 2004b). Loss of either gK or pUL20 leads to significant defects in secondary 
envelopment (Foster et al. 2004a; Jayachandra et al. 1997; Melancon et al. 2004). 
The gK-pUL20 complex has been shown to interact with the pUL37 tegument pro-
tein as well as being important for the subcellular localisation of gD and gH-gL 
suggesting important functions of the gK-pUL20 complex during secondary envel-
opment in organising viral envelope proteins and mediating interactions with the 
tegument (Jambunathan et al. 2014; Lau and Crump 2015).

Consistent with the idea of a complex and redundant series of tegument-
glycoprotein interactions helping to drive secondary envelopment, several tegument 
proteins have been reported to interact with the cytoplasmic domains of envelope 
proteins; VP16 with gH (Gross et al. 2003); VP22 with gD, gE and gM (Farnsworth 
et al. 2007a; Maringer et al. 2012); pUL11 with gD and gE (Farnsworth et al. 2007a; 
Han et al. 2011); and pUL37 with gK (Jambunathan et al. 2014). In fact, envelope-
tegument interactions appear to be sufficient to drive secondary envelopment 
because this process can occur in the absence of nucleocapsids, forming the so-
called light particles that contain most, if not all, tegument and envelope proteins 
but lack a nucleocapsid (Rixon et al. 1992; Szilagyi and Cunningham 1991).

The final stage of secondary envelopment is membrane scission to separate the 
virus from the host cell membrane, giving rise to a virion contained within the 
lumen of a vesicle. Similar to many enveloped viruses, HSV utilises the membrane 
scission activity of the cellular endosomal sorting complex required for transport 
(ESCRT) machinery for this final stage of assembly (Crump et al. 2007; Pawliczek 
and Crump 2009). The ESCRT machinery is a series of protein complexes that are 
normally involved in remodelling host membranes with the same topology as virus 
budding, for example, budding of material from the cytoplasm into the lumen of 
multivesicular bodies (Henne et al. 2011). Currently it is unclear how HSV recruits 
and regulates the ESCRT machinery at sites of secondary envelopment. Other 
viruses are known to recruit ESCRT complexes via their matrix proteins (Votteler 
and Sundquist 2013), and so tegument protein(s) appear the most likely candidates 
to directly or indirectly interact with ESCRT proteins. Indeed HSV-1 pUL36 has 
been shown to interact with the ESCRT-I subunit TSG101 (Calistri et  al. 2015). 
However, TSG101 does not appear to be essential for HSV-1 assembly as siRNA 
depletion of this cellular protein does not inhibit virus replication (Pawliczek and 
Crump 2009). Given the complexity and redundancy within viral protein interac-
tions during secondary envelopment, recruitment of the ESCRT machinery could be 
mediated by several viral proteins in a similarly redundant fashion, providing more 
than one mechanism to engage this important cellular machinery.
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2.5  �Virion Transport and Release

The completion of secondary envelopment results in virions being contained within 
large intracellular vesicles. To release viruses to the extracellular environment, these 
virion-containing vesicles need to be transported to the cell periphery and fuse with 
the plasma membrane. Currently there is little understanding of which cellular path-
ways are used during virus release and how they are controlled, although undoubt-
edly many host regulators of secretion are involved.

Given their size and the distances involved, it is likely that most if not all virion-
containing vesicles require transport along microtubules via the activity of plus-
end-directed kinesin motor proteins to travel from sites of secondary envelopment 
to the cell periphery. This will be particularly important upon reactivation of HSV 
from latency due to the long distances between the cell body and axon termini in 
neurons. There is some disagreement in the literature about the nature of virus par-
ticles that are transported along the axons during virus egress. Two extreme models 
are (1) HSV particles that undergo secondary envelopment in the cell body of neu-
rons and are then transported along the axons as mature virions in large transport 
vesicles and (2) nucleocapsids and membrane compartments containing envelope 
proteins that are transported separately along the axons and then secondary envelop-
ment occurs at axon termini (Cunningham et al. 2013; Kratchmarov et al. 2012; 
Taylor and Enquist 2015). There is evidence for both these models, although it is 
also possible that a combination of different types of transport occurs, with fully 
assembled virions in transport vesicles, partially enveloped virions and membrane-
less nucleocapsids all capable of being transported along the axons. Despite these 
uncertainties, there can be little doubt that kinesin motors must be recruited and 
activated to enable efficient virus egress. Kinesin-1, also known as conventional 
kinesin, has been shown to interact with the envelope protein pUS9 and with the 
tegument protein pUS11, giving two potential mechanisms for recruitment and reg-
ulation of this microtubule motor (Diefenbach et al. 2015, 2002). Interestingly pseu-
dorabies virus (PRV) appears to recruit kinesin-3 via the combined activities of 
pUS9 and the gE-gI heterodimer (Kratchmarov et al. 2013). In HSV-1, deletion of 
pUS9 and gE has also been shown to inhibit egress of virions from the cell body into 
the axons in neuronal cells, lending weight to the hypothesis that pUS9 and gE-gI 
promote microtubule-based transport during virus egress, although defects in sec-
ondary envelopment are also observed in the absence of pUS9 and gE (DuRaine 
et al. 2017). Furthermore, the lack of pUS9 does not appear to affect HSV egress in 
epithelial cells, suggesting different mechanisms are required for virion transport to 
the cell periphery in neuronal and non-neuronal cells.

The gE-gI complex is well established as being important for cell-to-cell spread 
of HSV in epithelial cells. Loss of gE-gI function causes a substantial decrease in 
the spread of infection between cells in monolayer cultures, which is thought to be 
due to reduced targeting of virus secretion to cell junctions (Dingwell et al. 1994; 
Dingwell and Johnson 1998; Johnson et al. 2001). The targeting of virus secretion 
to cell junctions is thought to rely on the activity of specific sorting signals in the 
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cytoplasmic domains of both gE and gI (Farnsworth and Johnson 2006; McMillan 
and Johnson 2001). However, whether this is related to kinesin motor activity or 
interactions with some other cellular transport regulators is unclear.

Upon reaching the cell periphery, the large virion-containing vesicles will 
encounter cortical actin, a dense mesh of cytoskeleton underlying the plasma mem-
brane. This could pose a significant barrier to secretion of HSV from infected cells, 
by restricting access of the large virion-containing transport vesicles to the plasma 
membrane. A similar problem is faced by large cellular secretory vesicles, such as 
melanosomes, and is overcome through the action actin motors such as Myosin Va. 
HSV may well utilise a similar mechanism; Myosin Va has been shown to be impor-
tant for efficient HSV-1 secretion from epithelial cells (Roberts and Baines 2010), 
although the details of how this actin-based motor is recruited or regulated by the 
virus is unclear.

The final stage of HSV egress is the fusion of the virion-containing transport 
vesicle with the plasma membrane to release the newly synthesised virus from the 
producing cell. Such vesicle fusion events within cells rely on the action of several 
proteins including Rab GTPases, membrane tethering complexes and SNARE 
fusion proteins. There are many different pathways for secretion of proteins from 
cells that are regulated by different subsets of membrane traffic regulators, and it is 
currently unclear which cellular Rab, tether or SNARE proteins are involved in 
HSV secretion. Some Rab proteins, namely, Rab3A, Rab6A, Rab8A and Rab11A, 
as well as the SNARE protein SNAP-25, have been shown to localise to vesicles 
containing virus particles or viral tegument and glycoproteins (Hogue et al. 2014; 
Miranda-Saksena et al. 2009), although whether they have any functional role in 
HSV egress is unknown.

It is conceivable that secretion of the newly formed viruses is controlled entirely 
by endogenous cellular factors that are normally recruited to the membranes that 
make up the secondary envelopment compartments. However, it seems more likely 
that these processes are co-opted and controlled by the virus. Viral proteins that 
recruit or regulate the transport, docking and fusion of virion-containing vesicles 
would need to be present on the cytoplasm-facing domain of such vesicles. The 
most obvious candidates for recruiting the necessary host cell factors are viral enve-
lope proteins and membrane-associated tegument proteins that could remain on the 
vesicle membrane, in addition to being incorporated into virions. Both pUS9 and 
gE-gI are good candidates to be present on the vesicle membrane as this would posi-
tion their cytoplasmic domains to be available for recruiting and regulating host 
trafficking proteins such as kinesins. The tegument protein pUL51, which is 
membrane-associated due to a lipid anchor modification, has been shown to be 
important for virus cell-to-cell spread and so is also a good candidate for being 
retained on virion-containing exocytic vesicle membranes (Albecka et  al. 2017; 
Roller et al. 2014). However, which specific subset of viral proteins remain on the 
cytoplasmic surface of the vesicle membranes, how they are retained or recruited 
and how they function to control transport, docking and fusion of these large virion-
containing vesicles with the plasma membrane remain to be discovered.
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2.6  �Summary

As described in this chapter, the assembly and egress of herpesviruses is a complex 
multistage process that requires the co-ordinated activities of numerous viral and 
cellular factors. While we know many details about the structure and assembly of 
the capsid and the components of mature virions, there is still much to discover. 
Future research to analyse the process of HSV assembly at the single-particle level 
in real time and to uncover the detailed mechanisms of host factor involvement at 
specific stages of virus morphogenesis will be important to shed new light on this 
fascinating subject.
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