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Preface

Herpesviridae encompasses a large family of double-stranded DNA viruses with 
unique biological features, enabling them to establish latency after primary infec-
tion prior to reactivation later in life. Following the discovery of different human 
herpesvirus subspecies, an abundance of research has accumulated in both basic 
research and clinical medicine that tie their infective process to human disease. The 
significance of herpesvirus infection is increasing not only in clinical fields but also 
in biological aspects.

A vast majority of biological features are still masked in mystery. Additionally, 
strategies for treatment and prevention have not yet been established against most 
human herpesvirus species. To date, nine human herpesvirus species are known, and 
each can cause a variety of diseases during the primary infection and reactivation 
stages.

In this book, experts introduce and review several topics on each human herpes-
viruses. The book divides herpesviridae into three subfamilies: alphaherpesviruses, 
betaherpesviruses, and gammaherpesviruses. Each subfamily is unique in its spe-
cific biological and clinical characteristics. One of the most important features of 
this book is that it covers aspects of basic research and clinical medicines. The most 
current research on herpesviridae is outlined in this book and is sure to attract a wide 
range of readers.

This book would not be possible without all of the authors who contributed their 
time and effort, for which I am grateful. Additionally, the writing of this book would 
not have been feasible without the guidance and expertise of the Herpesvirus Study 
Group in Japan. I would like to thank all the current and former members of the 
group.

Nagoya, Japan Hiroshi Kimura 
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Chapter 1
The Role of HSV Glycoproteins  
in Mediating Cell Entry

Jun Arii and Yasushi Kawaguchi

Abstract The successful entry of herpes simplex virus (HSV) into a cell is a com-
plex process requiring the interaction of several surface viral glycoproteins with 
host cell receptors. These viral glycoproteins are currently thought to work sequen-
tially to trigger fusogenic activity, but the process is complicated by the fact that 
each glycoprotein is known to interact with a range of target cell surface receptor 
molecules. The glycoproteins concerned are gB, gD, and gH/gL, with at least four 
host cell receptor molecules known to bind to gB and gD alone. Redundancy among 
gD receptors is also evident and binding to both the gB and gD receptors simultane-
ously is known to be required for successful membrane fusion. Receptor type and 
tissue distribution are commonly considered to define the extent of viral tropism and 
thus the magnitude of pathogenesis. Viral entry receptors are therefore attractive 
pharmaceutical target molecules for the prevention and/or treatment of viral infec-
tions. However, the large number of HSV glycoprotein receptors makes a compre-
hensive understanding of HSV pathogenesis in vivo difficult. Here we summarize 
our current understanding of the various HSV glycoprotein cell surface receptors, 
define their redundancy and binding specificity, and discuss the significance of these 
interactions for viral pathogenesis.
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1.1  Introduction

In order to replicate, enveloped viruses must be able to fuse with the membrane of 
a living cell and deliver their genetic material into its cytoplasm. The process of 
membrane fusion is initiated by binding of a virus to an appropriate receptor on the 
cell surface and is mediated by a virus-encoded membrane fusion protein (fusogen). 
Herpesviruses are enveloped double-stranded DNA viruses that establish lifelong 
latent infections in their natural hosts (Pellet and Roizman 2013). The Herpesviridae 
family is subdivided into the Alphaherpesvirinae, Betaherpesvirinae, and 
Gammaherpesvirinae subfamilies, based on their molecular and biological proper-
ties (Pellet and Roizman 2013). Herpes simplex virus 1 and -2 (HSV-1 and-2) are 
prototypes of the alphaherpesvirus subfamily and are among the most common 
pathogenic agents in humans, causing a variety of conditions such as mucocutane-
ous disease, keratitis, skin disease, and encephalitis (Roizman et al. 2013). After 
primary infection at a peripheral site, the virus establishes a lifelong latency in sen-
sory neurons from which it periodically reactivates to cause lesions at or near the 
primary infection site (Roizman et  al. 2013). Entry of herpesvirus is a complex 
process in which fusion alone requires at least three conserved proteins, namely, 
glycoprotein B (gB), glycoprotein H (gH), and glycoprotein L (gL). Fusion also 
requires additional non-conserved glycoproteins specific to individual herpesvi-
ruses (Roizman et al. 2013). The envelope glycoprotein, glycoprotein D (gD), is 
specific to alphaherpesviruses and is essential for cell entry in the majority of them 
(Ligas and Johnson 1988).

Since initiation of the viral life cycle depends entirely upon a successful entry 
step, entry receptors are effectively the keys that are able to unlock the cell mem-
branes of target cells and thus determine viral tropism in vivo. Studies on viral entry 
receptors can also reveal the molecular mechanism of their pathogenesis and sug-
gest interventions that may interfere with this process. HSV has a characteristic 
neurotropism but may also cause disease in epithelial tissues (Roizman et al. 2013). 
Curiously, this tropism is not reflected in tissue culture systems; HSV replicates 
well in cell lines derived from neural or epithelial origins but also replicates in oth-
ers including fibroblast and endothelial cell lines. The molecular mechanism under-
lying this in  vitro observation is not well studied but clearly demonstrates the 
importance of in vivo studies in order to fully understand natural HSV pathogenesis. 
Here, we summarize recent papers describing newly identified HSV receptors and 
the roles of the wide range of receptors involved in HSV pathogenesis.

1.2  The Orchestration of Herpesvirus Membrane Fusion

Successful HSV fusion requires a multitude of viral glycoproteins (Turner et  al. 
1998) and cellular receptors to interact in a sequential process (Eisenberg et  al. 
2012) (Fig. 1.1). Firstly, gD must bind to its receptor and undergo a conformational 
change (Krummenacher et al. 2005; Lazear et al. 2008). Secondly, this activated 

J. Arii and Y. Kawaguchi
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form of gD must facilitate conversion of gH/gL into a form that is able to interact 
with gB (Avitabile et al. 2007; Chowdary et al. 2010; Atanasiu et al. 2007, 2016, 
2010). Thirdly, the activated gB must bring the two membranes together to allow 
insertion of fusion loops into the cell membrane (Heldwein et al. 2006; Zeev-Ben- 
Mordehai et al. 2016). This leads to fusion of the two membranes and delivery of the 
capsid into the cell. Although the molecular mechanisms by which gD activates gH/
gL, or gH/gL activates gB, are not known, it is clear that gB is the only HSV glyco-
protein that is capable of becoming a fusogen (Heldwein et  al. 2006; Chowdary 
et al. 2010) (Table 1.1).

1.3  Two HSV Entry Pathways

The process by which enveloped virus enters a cell can be divided into two distinct 
pathways (Fig. 1.1):

 1. The virus enters the cell by direct fusion of the viral envelope and the plasma 
membrane.

gD
gH/gL

gB

gD receptor
gH/gL receptor

gB receptor

Fig. 1.1 Illustration of the 
steps involved during HSV 
entry. Four glycoproteins 
gB, gD, and the gH/gL 
complex on the viral 
envelope are essential for 
entry and fusion. These are 
known to each have a 
specific receptor. Fusion 
between the viral envelope 
and the cell can occur 
either at the plasma 
membrane or at the 
endosomal membrane

Table 1.1 Glycoproteins essential for HSV entry

Glycoprotein Conservation Function Cellular binding partner

gD Alphaherpesvirinae Receptor recognition HVEM, nectins, 3-OS HS
gH/gL Herpesviridae Activator of gB Integrins
gB Herpesviridae Fusogen PILRα, MAG, NMHC-IIs

1 The Role of HSV Glycoproteins in Mediating Cell Entry
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 2. The viral envelope fuses with an endosomal membrane and virions are trans-
ported into endosomes via endocytosis (Nicola 2016).

Endocytosis-mediated entry usually requires a low pH for fusion, whereas this is 
not required for fusion with the plasma membrane. HSV is known to employ mul-
tiple entry pathways, including low pH-dependent and -independent routes, that are 
determined by the cell type involved (Nicola 2016). Vero cells and human neurons 
are thought to allow HSV entry by fusion at the plasma membrane (Lycke et al. 
1988; Wittels and Spear 1991), whereas HSV enters HeLa, CHO cells expressing 
gD receptors, and epithelial cells via endocytosis (Nicola et  al. 2003, 2005). 
Curiously, the same set of viral proteins are required for both routes (Nicola and 
Straus 2004), and other envelope proteins have been shown to be nonessential for 
low-pH entry (Komala Sari et al. 2013). The molecular characteristics that deter-
mine the mode of viral entry mechanism are not known.

1.4  Receptor Recognition of gD

Although it is not conserved among Herpesviridae, gD is essential for HSV entry. 
Successful HSV entry depends upon the binding of gD to one of its many cell sur-
face receptors, which include HVEM (herpesvirus entry mediator), a member of the 
tumor necrosis factor receptor family (Montgomery et al. 1996), nectin-1 or nectin-
 2, cell adhesion molecules belonging to the immunoglobulin (Ig) superfamily 
(Warner et al. 1998; Geraghty et al. 1998), and specific modifications of heparan 
sulfate (3-O-S HS) catalyzed by particular isoforms of 3-O-sulfotransferase (Shukla 
et al. 1999). CHO cells are resistant to HSV infection, but expression of these mol-
ecules on the cell surface makes CHO cells susceptible to HSV infection 
(Montgomery et al. 1996; Geraghty et al. 1998). However, gD receptors bind gD 
independently and do not act as co-receptors. Among these receptors, nectin-1 and 
HVEM are used for entry by all the clinical strains of HSV-1 and HSV-2 tested, 
regardless of their origin (Montgomery et al. 1996). In contrast, nectin-2 is a recep-
tor for some mutant forms of HSV-1 and HSV-2 (Warner et  al. 1998), whereas 
3-O-S HS is only used by HSV-1 (Shukla et al. 1999). Nectin-1 is overexpressed in 
neurons and nectin-1 antibody (but not HVEM antibody) blocks HSV entry into 
neurons (Richart et al. 2003; Simpson et al. 2005). In contrast, HVEM is overex-
pressed in lymphoid cells which are not targets for productive HSV infection 
in vivo. Thus gD-HVEM interactions were initially considered important for modu-
lating the host’s immune response, despite the fact that epithelial cells and fibro-
blasts express both HVEM and nectin-1 (Montgomery et al. 1996).

J. Arii and Y. Kawaguchi
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1.5  The Role of the gH/gL Complex

The gH/gL complex is highly conserved among herpesviruses and is an absolute 
requirement for viral entry, although the precise role of gH/gL in fusion remains 
uncertain. Crystal structures of gH/gL complexes do not resemble any other known 
viral fusogen structures (Chowdary et al. 2010). Formation of a gB-gH-gL complex 
is critical for fusion and inhibited by neutralizing antibody to gH, suggesting that 
the gH/gL complex activates gB through direct binding (Chowdary et al. 2010). In 
addition, gB interacts with gH through its cytoplasmic domains, and mutation in the 
cytoplasmic domain of gH reduces fusion activity suggesting that gH also regulates 
gB fusion activity through direct interaction via its cytoplasmic tail (Silverman and 
Heldwein 2013; Rogalin and Heldwein 2015).

In addition to its role as an activator of gB, gH is known to bind cellular receptors 
such as integrins. Pioneering experiments have shown that gH binds to αvβ3 integ-
rin via its RGD motif (Parry et al. 2005) but that the RGD sequence in gH is not 
required for HSV entry (Galdiero et al. 1997). The role of integrins in the fusion 
step is postulated to be via gH and αvβ3 integrin interaction triggering intracellular 
signals which facilitate capsid transport (Cheshenko et al. 2014).

1.6  gB as a Class III Fusogen

Of the four essential HSV glycoproteins, only gB is considered to be a fusogen 
(Heldwein et al. 2006), indeed gB has been identified specifically as a class III fuso-
gen (Roche et al. 2006; Heldwein et al. 2006; Kadlec et al. 2008). The gB ectodo-
main architecture is similar to the post-fusion structure of vesicular stomatitis virus 
(VSV) G protein and the baculovirus gp64 protein. The sequences of these proteins 
are not conserved, but domains of class III fusogens share much conformational 
similarity (Kadlec et al. 2008; Roche et al. 2006; Heldwein et al. 2006). Curiously, 
there is a fundamental difference between HSV gB and the other two fusogens; 
conformational changes in VSV G and gp64, but not HSV gB, are pH-driven and 
reversible (Kadlec et al. 2008; Roche et al. 2006). Cellular entry of VSV and bacu-
lovirus depends upon endocytosis, where low endosomal pH induces conforma-
tional changes in VSV G and gp64, thus exposing their fusion sequences (Backovic 
and Jardetzky 2009). In the case of HSV entry, for which low pH is not strictly 
necessary, it is still unknown how gB is activated. The most convincing hypothesis 
is that the fusogenic activity of gB is triggered by the gH/gL complex, although 
precise details at the molecular level are unclear.

1 The Role of HSV Glycoproteins in Mediating Cell Entry
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1.7  PILRα Associates with gB and Mediates HSV-1 Entry

In addition to the activation by gH/gL, gB must bind to specific receptors in order 
for HSV to achieve fusion. It is well known that although gB associates with cell- 
surface heparan sulfate (Herold et al. 1994), it is not essential for membrane fusion 
but promotes viral adsorption on the cell surface (Banfield et al. 1995; Laquerre 
et  al. 1998). The soluble form of gB binds to heparan sulfate-deficient cells and 
blocks HSV infection of some cell lines (Bender et al. 2005), indicating that mole-
cules other than heparan sulfate mediate gB-associated HSV infection. The first 
HSV gB receptor to be identified was the paired immunoglobulin-like type 2 recep-
tor (PILR)α (Satoh et al. 2008). PILRα belongs to a group of paired receptors that 
consists of both highly homologous activating and inhibitory receptors that are 
widely involved in the regulation of immune responses. PILRα is mainly expressed 
on myeloid cells such as monocytes, macrophages, and dendritic cells (Satoh et al. 
2008; Fournier et  al. 2000). PILRα-transfected CHO cells become permissive to 
HSV-1 infection in the same way as is observed in those transfected with gD recep-
tors. Endogenous PILRα is also functional, and CD14-positive monocytes, which 
express both PILRα and HVEM, are susceptible to HSV-1 infection. This infection 
is blocked by either anti-PILRα or anti-HVEM antibodies. In contrast, HSV-1 does 
not infect the CD14-negative population, which expresses HVEM but which does 
not express PILRα. These results suggest that HSV entry requires both gD and gB 
receptor interactions and that although CHO cells express both gD and gB recep-
tors, it is at levels that are too low to mediate effective HSV-1 infection.

HSV is thought to enter cells either via fusion of the virion envelope with the 
host cell plasma membrane or via endocytosis, depending on the cell type (Nicola 
2016). HSV uptake into wild-type CHO cells, and in those transduced with the gD 
receptor, is known to be mediated by endocytosis. However, HSV-1 entry into CHO 
cells expressing PILRα occurs by direct fusion at the plasma membrane (Arii et al. 
2009). Thus, expression of PILRα on CHO cells results in an alternative HSV entry 
pathway. Similarly, later reports demonstrate that signals from the gH receptors 
αvβ3, αvβ6, and αvβ8-integrins change the mode of HSV entry from direct fusion 
at the plasma membrane to endocytosis (Gianni et al. 2010, 2013). Thus, cell sur-
face receptors appear to determine which of the two entry routes is utilized.

It is widely accepted that gB, gD, gH, and gL are necessary and sufficient for 
HSV entry (Turner et al. 1998), but the contribution of other glycoproteins is also 
likely to be important. For example, gC is not essential for HSV replication but is 
responsible for adsorption to cell-surface heparan sulfate (Herold et al. 1991). The 
HSV gK/UL20 protein complex is incorporated into virion envelopes and plays a 
significant role in secondary envelopment (Baines et al. 1991; Jayachandra et al. 
1997; Hutchinson and Johnson 1995). These proteins are also known to interact 
with gB and are responsible for the syncytium phenotype (Chouljenko et al. 2009, 
2010). The mutant virus, carrying a 37-amino acid deletion at the gK amino termi-
nus, is unable to enter CHO-PILRα cells but is more efficient at entering CHO cells 
expressing HVEM and nectin-1 than the wild-type virus (Chowdhury et al. 2013). 

J. Arii and Y. Kawaguchi
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Although the precise mechanism is not known, mutant gK/UL20 may be able to 
associate more effectively with the gB-PILRα protein complex and thus regulate 
membrane fusion more efficiently.

The interaction between gB and PILRα has been studied in more detail. PILRα 
has a related activating receptor, PILRβ. Although they are structurally similar, acti-
vating PILRβ does not promote HSV infection. Differential protein sequence analy-
sis indicates that the tryptophan residue at position 139 in the Ig-like V-type domain 
of PILRα is important for the binding interaction with gB and subsequent mem-
brane fusion (Fan and Longnecker 2010). PILRα recognizes a wide variety of 
O-glycosylated mucins and related proteins and regulates a broad range of immune 
responses. The gB sialylated O-glycans at T53 and T480 have been shown to be 
important for binding PILRα and for facilitating viral entry (Wang et al. 2009; Arii 
et  al. 2010b). The crystal structure of PILRα in its complex with a sialylated 
O-linked sugar T antigen (sTn) shows that PILRα undergoes large conformational 
changes in order to simultaneously recognize both the sTn O-glycan and the com-
pact peptide structure constrained by proline residues (Kuroki et al. 2014).

1.8  MAG and NMHC-II Are Alternative gB Receptors

Because PILRα is expressed on restricted lineages, identification of PILRα as a gB 
receptor led to the prediction that other gB receptors must exist. The most promising 
candidates were proteins with structural similarity to PILRα. Sialic acid-binding 
Ig-like lectins (Siglecs) showed relatively high homology with human PILRα. Of 
these, Siglec-4 (also called myelin-associated glycoprotein; MAG) associated with 
HSV-1 gB and promoted HSV-1 infection (Suenaga et al. 2010). However, expres-
sion of MAG is restricted to glial cells. In addition, the recombinant HSV-1 express-
ing mutant gB, which is unable to interact with PILRα, could gain entry and replicate 
in both epithelial and neural cell lines as well as in the wild-type HSV-1 (Arii et al. 
2010b). These results suggest that HSV-1 gB interacts with other types of unrelated 
receptor that are similar to gD, e.g., HVEM and nectin-1.

Another gB receptor, non-muscle myosin heavy chain IIA (NMHC-IIA), was 
identified as a cellular protein that coprecipitates with gB from PILRα-negative 
fibroblasts but not from a PILRα-positive macrophage cell line (Arii et al. 2010a). 
Human promyelocytic HL60 cells express NMHC-IIA at low levels and are rela-
tively resistant to HSV-1 infection, but expression of NMHC-IIA on HL60 cells 
significantly increases susceptibility to HSV-1 infection. Anti-NMHC-IIA serum 
not only inhibited HSV-1 infection in HL60 cells expressing NMHC-IIA but also in 
epithelial cell lines such as Vero, HaCaT, HCE-T, and NCI-H292. It is well known 
that NMHC-IIA mainly functions in the cytoplasm and not on the cell surface 
although, interestingly, cell surface expression of NMHC-IIA was markedly and 
rapidly induced during the initiation of HSV-1 entry. This relocalization of NMHC- 
IIA during HSV infection depends on myosin light chain kinase (MLCK), which 
regulates non-muscle myosin (NM)-II by phosphorylation (Arii et al. 2010a).

1 The Role of HSV Glycoproteins in Mediating Cell Entry
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The observation that PILRα changed the HSV entry route from endocytosis to 
direct fusion at the plasma membrane suggests that the nature or expression levels 
of gB receptors affects HSV entry mode. However, NMHC-IIA antibody blocked 
HSV-1 infection both in Vero cells (that depend on direct fusion at the plasma mem-
brane) and CHO-K1 cells overexpressing nectin-1 (that depend on endocytosis) 
(Arii et al. 2010a). Thus NMHC-IIA contributes to both entry routes but does not 
influence entry route selection.

In vitro most cells express NMHC-IIA, but some cell lines don’t express NMHC- 
IIA at all. In vivo NMHC-IIA is expressed highly in epithelial tissue but not in 
neural tissue, and thus its tissue-specific expression doesn’t completely explain the 
observed HSV tropism. Mammalian cells express three genetically distinct isoforms 
of NMHC-II (designated NMHC-IIA, NMHC-IIB, and NMHC-IIC) (Vicente- 
Manzanares et al. 2009). The three NMHC-II isoforms are highly conserved and 
have both common and unique properties (Vicente-Manzanares et al. 2009). Most 
human tissues express different ratios of the NMHC-II isoforms (Vicente- 
Manzanares et  al. 2009) with NMHC-IIB predominating in neuronal tissue. As 
might be predicted, NMHC-IIB associates with HSV-1 gB and mediates HSV-1 
entry (Arii et al. 2015). Thus NMHC-IIs appear to be present on all cells susceptible 
to HSV-1 infection in vitro and in vivo.

1.9  NMHC-II and Other Pathogens

Accumulating evidence suggests that NMHC-II is also used by other pathogens for 
cell entry. Epstein-Barr virus (EBV) is a ubiquitous gamma herpesvirus that causes 
B-cell lymphomas and nasopharyngeal carcinoma (NPC). Recently a subset of 
spherical nasopharyngeal epithelial cells (NPECs) were reported to be efficiently 
infected by EBV (Xiong et al. 2015). EBV entry into NPECs depends on NMHC- 
IIA and is blocked by antisera to NMHC-IIA. Importantly, the authors also show 
that NMHC-IIA aggregates on the surface of the sphere-like NPECs that are suscep-
tible to EBV infection but not on that of another subset of NPEC that are not sus-
ceptible. NMHC-IIA is also important for the entry of viruses that are not in the 
Herpesviridae family, e.g., severe fever with thrombocytopenia syndrome virus 
(SFTSV), a member of the Bunyaviridae family, and porcine reproductive and 
respiratory syndrome virus (PRRSV), a member of the Arteriviridae family (Gao 
et al. 2016; Sun et al. 2014). Intriguingly, upregulation of cell surface NMHC-IIA, 
as seen during HSV-1 entry, was also observed during SFTFV and PRRS entry.

It is well known that different families of DNA and RNA viruses use the same 
proteins as entry receptors. Cell surface proteins that are suitable for use as entry 
receptors are possibly rare, and thus each virus might use the same molecules 
depending on their individual tropism. Although cell surface expression of NMHC- 
IIA is limited, its stability, avidity to the viral proteins, and broad distribution in vivo 
are possibly advantageous. As described above, NMHC-IIA is expressed on the cell 
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surface before viral infection in the case of EBV entry into NPECs. Herpesvirus 
ancestors might have originally infected these types of cells and then broadened 
their target cell range by increasing the cell surface expression of NMHC-IIA.

1.10  Attempts to Demonstrate the Significance of gD 
Receptors In Vivo Using Knockout Mice

Entry receptor characteristics were originally studied in cultured cells, especially by 
expressing receptors in normally nonpermissive cells. These studies were unable to 
reveal the significance or contribution of each receptor in viral pathogenesis without 
further in vivo experiments. Mice infected with HSV show manifestations of dis-
ease that are similar to those found in humans, i.e., encephalitis, keratitis, or genital 
disease. Since the murine HSV receptors are known to be paralogs of their human 
equivalents, mice are excellent models for the study of HSV entry requirements. To 
reveal the significance of each receptor in vivo, an attractive approach is to knockout 
each receptor in mice and then infect these mice with wild-type HSV. An initial 
study using gD receptor, nectin-1 and HVEM knockout mice with vaginal HSV 
infections, clearly differentiates the roles of these receptors in vivo, highlighting the 
large redundancy between them (Taylor et al. 2007). HSV-2 infection of the vaginal 
epithelium occurred in the absence of either HVEM or nectin-1 but was virtually 
undetectable when both receptors were absent. This observation indicates that either 
HVEM or nectin-1 is necessary for HSV-2 infection of vaginal epithelium (Fig. 1.2, 
Table 1.2). In agreement with this result, human epithelial cells and fibroblasts were 
reported to express both HVEM and nectin-1 (Wang et  al. 2015; Simpson et  al. 
2005). Although the precise mechanism is not known, it has been reported that in 
mice, HSV predominantly uses nectin-1 rather than HVEM, both in vitro (Manoj 
et al. 2004; Simpson et al. 2005) and in vivo (Taylor et al. 2007). Nectin-1 knockout 
reduced efficiency of vaginal epithelium infection and viral spread to the nervous 
system, whereas HVEM knockout did not.

The significance of nectin-1 during HSV-2 infection has been clearly demon-
strated using the cranial model which shows that nectin-1 is indispensable for 
HSV-2 infection of neurons in the brain and for the development of encephalitis 
(Kopp et al. 2009). In this model, however, HVEM also has a role in the infection of 
non-parenchymal cells of the brain, although this infection has no consequences in 
terms of disease progression. These results are in agreement with in vitro studies 
(Richart et al. 2003; Simpson et al. 2005) and in vivo studies in which nectin-1 was 
the predominant gD receptor in neurons (Fig. 1.2, Table 1.2).

The importance of nectin-1 in the murine model is not restricted to its role in 
neurons. Nectin-1, but not HVEM, is also indispensable for HSV-2 corneal infec-
tion (Karaba et al. 2012). Interestingly, both HVEM and nectin-1 are required for 
HSV-1 corneal infection (Karaba et al. 2011) (Fig. 1.2). Although HVEM and nec-
tin- 1 mediate HSV-1 and HSV-2 infection equally well in vitro, these two serotypes 
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(ii) Ocular infection

Nectin-1
(and HVEM for HSV-1)
NMHC-II and PILRa

(i) Cranial infection

Nectin-1
?

(iii) Vaginal infection

Nectin-1 or HVEM
?

Nectin-1
NMHC-IIA

Nectin-1
NMHC-IIB

HVEM
PILRa

Epithelia Neuron Myeloid

a

b

Fig. 1.2 In vivo 
experiments reveal the 
significance of the gB and 
gD receptors. (a) Summary 
of in vivo experiments. (i) 
Nectin-1 is essential for 
cranial infection. Either 
HVEM or PILRα is 
dispensable for HSV 
infection in the brain. (ii) 
In ocular infection, 
nectin-1 is required for 
both HSV-1 and HSV-2 
pathogenesis. HVEM alone 
is required for HSV-1 
pathogenesis. Both PILRα 
and NMHC-II contribute to 
HSV-1 pathogenesis 
through ocular infection. 
(iii) Either nectin-1 or 
HVEM is required for 
infection via the 
intravaginal route. (b) 
Predicted HSV receptor 
usage in various cell types

Table 1.2 HSV receptor requirements in vivo

Glycoprotein Receptor Distribution
Requirement 
in vivo

gD HVEM Ubiquitous except neural cells (highly 
expressed on lymphoid and myeloid cells)

Epithelium

Nectin-1 Ubiquitous (highly expressed on neural cells) CNS, epithelium
Nectin-2 Ubiquitous ?
3-OS Hs Ubiquitous ?

gB PILRα Myeloid cells Peripheral site
MAG Glial cells ?
NMHC- IIA Ubiquitous except neural cells Peripheral site
NMHC- IIB Neural cells ?
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possibly have different receptor requirements in vivo. It is well known that HSV-1 
and HSV-2 infections are transmitted via different routes and involves different 
areas of the body, e.g., viral infections of the eye are usually caused by HSV-1 
(Roizman et  al. 2013). The molecular mechanisms behind these differences in 
pathogenesis are not yet known, but an attractive hypothesis is that the difference 
depends on HVEM. However, there is still a great deal of overlap between the epi-
demiology and clinical manifestations of these two viruses (Roizman et al. 2013).

As described above, either nectin-1 or HVEM is necessary for HSV-1 entry into 
cells in vitro. The fact that HSV-1 requires both nectin-1 and HVEM for infection 
of murine cornea in vivo suggests that two types of cells are important for HSV-1 
corneal infection: one expressing nectin-1 (such as epithelia and/or neurons) and the 
other expressing HVEM. Human peripheral monocytes have been reported to be 
susceptible to HSV-1 infection in both an HVEM and a PILRα-dependent manner 
(Satoh et  al. 2008), but, intriguingly, HSV-2 is unable to use PILRα as an entry 
receptor (Arii et al. 2009). Murine cornea is not well studied, but monocytes might 
be required to provide the correct receptors for productive HSV-1 infection.

1.11  Mutant Viruses Confirm the Importance of Nectin-1 
In Vivo

Studies on knockout mice have provided many insights into the molecular basis of 
HSV infection, but the method has some limitations. The genetic background of 
most knockout mice is C57BL/6, which is known to be resistant to lethal HSV-1 
infection (Lopez 1975). Although the receptor usage of HSV-1 and -2 during murine 
ocular infection is clearly different, it is difficult to know whether their distinct tro-
pism might result in different clinical symptoms in humans. Moreover, if a receptor 
plays a critical role in the regulation of viral infection in vivo, other than viral entry, 
it would be difficult to determine whether an experimental result using knockout 
mice might be due solely to an effect on viral entry or to an effect on some other, as 
yet unknown, function of the receptor. For example, nectins are known to play a role 
in a variety of cell-cell junctions and cell-cell contacts (Mandai et al. 2015), which 
could contribute to viral dissemination efficiency in vivo. Also, HVEM modulates 
activation of lymphocytes by binding to B and T lymphocyte attenuator (BTLA) 
protein or TNF superfamily member 14 (LIGHT) protein (Mandai et  al. 2015). 
Therefore, viral manipulation analyses should be used in animal models to investi-
gate the role of viral entry receptors in vivo, without modifying any host cell func-
tions, and may complement data derived from studies using knockout mice and vice 
versa.

In vitro analysis shows that different amino acids of gD are required for HVEM 
or nectin-1-dependent fusion (Spear et al. 2006). Crystal structures of an ectodomain 
of gD bound to ectodomains of HVEM and nectin-1 confirm that each receptor binds 
a distinct region of gD. The HVEM-binding site is limited to the N-terminal hairpin 
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of gD (residues 1–32), whereas gD binds to nectin-1 using residues from the C- and 
N-terminal extensions (residues 35–38 and residues 219–221) (Carfi et al. 2001; Di 
Giovine et al. 2011; Lu et al. 2014). Mutant viruses can be created that are deficient 
in their recognition of nectin-1, but not of HVEM, and vice versa and are called 
HVEM-1-restricted or nectin-1-restricted mutants. Their genomes have been engi-
neered to express gD R222N/F223I or A3C/Y38C, respectively (Uchida et al. 2009). 
A cell line which expresses both nectin-1 and HVEM was susceptible to the nectin-
1-restricted mutant, but not to the HVEM-restricted mutant, suggesting, again, that 
nectin-1 is the dominant entry receptor. These recombinant viruses offer the benefit 
that they can be tested in animal models without the physiological defects inherent 
in knockout mice. However, these recombinant HSV-1 mutants were constructed 
from the K26GFP strain, which is avirulent in mice, and have not been studied 
in vivo.

Similarly, a D215G/R222N/F223I HSV-2 gD mutant, which is able to use HVEM 
but not nectin-1 as its receptor, couldn’t infect neuronal cells but could infect 
HVEM-positive epithelial cells (Wang et al. 2012). Also, HVEM-restricted HSV-2 
could not infect sensory ganglia in mice after intramuscular inoculation. These 
results suggest that HSV-2 uses both nectin-1 and HVEM, but that nectin-1 is pre-
dominantly used in neurons, in agreement with the knockout mice experiments.

1.12  Significance of gB Receptors In Vivo

The history of the gB receptor is short compared to that of the gD receptor, but the 
role of gB receptors in  vivo has been analyzed. The first reported gB receptor, 
PILRα, is expressed mainly in immune system cells such as macrophages and den-
dritic cells (Fournier et al. 2000; Satoh et al. 2008). There is no doubt that these cells 
restrict HSV pathogenesis (Cheng et al. 2000; Kodukula et al. 1999) and that HSV 
infects myeloid cells and modulates them (Bosnjak et al. 2005; Melchjorsen et al. 
2006). However, the importance of HSV entry into these cells for pathogenesis is 
not fully understood.

Because sialylated O-glycans on gB T53 and T480 are required for binding to 
PILRα, the recombinant HSV-1 carrying gB-T53A/T480A is defective in PILRα- 
dependent viral entry (Arii et al. 2010b). In contrast, the mutations have no effect on 
viral entry, viral attachment to heparan sulfate or viral replication in PILRα-negative 
cells. The gB-T53A/T480A mutations also had no effect on neurovirulence in 
mouse models but reduced viral replication, pathogenesis, and neuroinvasiveness 
following corneal infection (Arii et al. 2010b). These results suggest that PILRα- 
dependent viral entry is not important in the CNS but that it is important in periph-
eral sites (Fig. 1.2, Table 1.2). Because both HVEM- and PILRα-dependent entry is 
required for HSV-1 pathogenesis in the murine cornea, HSV-1 infection of HVEM- 
and PILRα-positive cells, such as monocytes, might facilitate viral pathogenesis in 
the cornea by attenuating the host immune system.
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Despite the similarity between PILRα and MAG, the gB-T53A/T480A mutant 
can enter cells via MAG-dependent entry (Arii et al. 2010b). Thus, the significance 
of MAG, which is restricted to glial cells in vivo, is not yet certain. PILRα and MAG 
knockout mice are available, but it is difficult to evaluate the significance of these 
receptors by using them. PILRα knockout mice are not able to regulate recruitment 
of neutrophils and are thus highly susceptible to lipopolysaccharide (LPS)-induced 
endotoxic shock (Wang et al. 2013). It is therefore important to demonstrate that if 
PILRα knockout mice can resist HSV-1 corneal infection, an activated immune sys-
tem due to the PILRα knockout is not hindering the role of the entry receptor. 
Similarly, MAG knockout induces axon degeneration (Pan et al. 2005), which might 
indirectly affect HSV-1 neuroinvasiveness.

Since NMHC-IIA and -IIB are important for development, knockout of NMHC- 
IIA or NMHC-IIB is lethal (Tullio et al. 1997; Conti et al. 2004). In addition, the 
specific gB residues required for interaction with NMHC-II are not yet known. 
Nevertheless, the importance of NMHC-II in HSV-1 pathogenesis has been investi-
gated using drugs. During HSV-1 entry NMHC-II redistributes to the cell surface 
via phosphorylation of NM-II by MLCK. A specific inhibitor of MLCK, ML-7 is 
able to disturb both NMHC-II relocalization and HSV-1 entry in vitro (Arii et al. 
2010a). In the murine corneal model, treatment of mouse eyes with ML-7 before 
HSV-1 inoculation reduced viral replication, herpes stromal keratitis severity, and 
mortality rate (Arii et al. 2010a). These results indicate that regulation of NMHC-II 
redistribution to the cell surface during initiation of HSV infection is required for 
efficient HSV pathogenesis in vitro and in vivo (Fig. 1.2, Table 1.2). However, these 
experiments were unable to illustrate the role of NMHC-II, if any, in mouse brains. 
Viral manipulation analyses of NMHC-IIs in animal models, which have already 
been performed in the case of HVEM and PILRα, are thus important to further 
understand its role in HSV pathogenesis.

1.13  Concluding Remarks

For some considerable time, only one gD receptor was thought to be required for 
HSV entry. Now, identification of gB receptors and in vivo analyses of HSV recep-
tors clearly reveal the requirements and redundancy of multiple receptors. The pre-
dominant role of nectin-1 appears to be to contribute the characteristic in  vivo 
neurotropism of HSV, while studies on gB receptors reveal the unexpected role of 
immune cells in HSV pathogenesis. However, many aspects of HSV pathogenesis 
still remain to be illuminated. These include the molecular mechanisms behind the 
preference for nectin-1 compared to the other gD receptors in vivo (and even in 
some cell lines in vitro), and the decision between which of the two available modes 
of cellular entry is used (direct fusion at the plasma membrane or endocytosis). The 
most promising answers to these questions may lie in the existence of new classes 
of HSV receptors, or the existence of as yet unknown host factors, that are central 
to the mediation of cell entry.
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Chapter 2
Virus Assembly and Egress of HSV

Colin Crump

Abstract The assembly and egress of herpes simplex virus (HSV) is a complicated 
multistage process that involves several different cellular compartments and the 
activity of many viral and cellular proteins. The process begins in the nucleus, with 
capsid assembly followed by genome packaging into the preformed capsids. The 
DNA-filled capsids (nucleocapsids) then exit the nucleus by a process of envelop-
ment at the inner nuclear membrane followed by fusion with the outer nuclear mem-
brane. In the cytoplasm nucleocapsids associate with tegument proteins, which 
form a complicated protein network that links the nucleocapsid to the cytoplasmic 
domains of viral envelope proteins. Nucleocapsids and associated tegument then 
undergo secondary envelopment at intracellular membranes originating from late 
secretory pathway and endosomal compartments. This leads to assembled virions in 
the lumen of large cytoplasmic vesicles, which are then transported to the cell 
periphery to fuse with the plasma membrane and release virus particles from the 
cell. The details of this multifaceted process are described in this chapter.

Keywords HSV · Herpes simplex virus · Virus assembly · Virus egress

2.1  Capsid Assembly and Genome Packaging

The first stage of forming new HSV particles is the assembly of the icosahedral 
capsid. Like all herpesviruses, the HSV capsid is an approximately 125 nm diameter 
icosahedron with T  =  16 symmetry (Schrag et  al. 1989), composed of 162 cap-
somers connected by 320 triplexes (2 copies of VP23 and 1 copy of VP19C) 
(Newcomb et al. 1993; Okoye et al. 2006). The 162 capsomers include 150 hexons 
(6 copies of VP5), which make up the edges and faces of the icosahedron, and 11 of 
the 12 vertices are pentons (5 copies of VP5). The twelfth vertex is the portal com-
plex, a dodecamer of pUL6 arranged in a ring structure, through which the genome 
is packaged during assembly and released during entry (Newcomb et al. 2001). In 
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addition, 900 copies of the small capsid protein VP26 decorate the outer surface of 
the capsid, with one copy of VP26 on the tip of each VP5  in the 150 hexons. 
Furthermore, five copies of a heterodimer composed of pUL17 and pUL25, termed 
the capsid vertex-specific component (CVSC), associate with each penton. The 
CVSC is thought to be important for both capsid stability and association with the 
tegument (Thurlow et al. 2006; Toropova et al. 2011; Trus et al. 2007). One final 
viral protein component of the capsid is VP24, the protease that processes the scaf-
fold during DNA encapsidation (Sheaffer et al. 2000; Stevenson et al. 1997).

Capsids initially assemble as a procapsid around a scaffold complex composed 
of ~1900 subunits of two related proteins: pUL26.5 that contains the scaffold core 
domain and pUL26 that has the viral protease (VP24) fused to the N-terminus of the 
scaffold core domain via a linker. Approximately 90% of the scaffold is composed 
of pUL26.5 and 10% is pUL26 (Aksyuk et al. 2015). Both pUL26.5 and pUL26 
interact with the major capsid protein VP5 via their identical C-termini. The assem-
bly is thought to initiate with the portal complex associated with scaffold proteins 
(Newcomb et al. 2005), followed by progressive addition of scaffold-bound VP5 
together with preformed triplexes, which produces spherical procapsids containing 
a single portal complex (Newcomb et al. 1996, 2003; Spencer et al. 1998). Viral 
DNA, primarily in concatemeric form after synthesis by rolling-circle replication, is 
packaged into preformed procapsids via the pUL6 portal and requires the action of 
the terminase complex (pUL15-pUL28-pUL33) (Heming et al. 2014). The termi-
nase complex interacts with packaging signals (pac sequences) in the terminal 
repeat region at the free end of newly synthesised viral DNA and drives ATP- 
dependent translocation of the viral genome into the procapsid. Once DNA packag-
ing is complete, the terminase complex cleaves the concatemeric viral DNA at the 
next terminal repeat to separate the packaged single genome length of DNA from 
the rest of the concatemer (Tong and Stow 2010). As viral DNA begins to be pack-
aged into the procapsid, the protease domain of pUL26 scaffold protein is activated, 
causing its autocatalytic release from the N-terminus of pUL26 to become VP24, 
the free protease protein. VP24 cleaves both pUL26 and pUL26.5 near their 
C-termini releasing the core scaffold domains, termed VP21 and VP22a, respec-
tively, from their bound VP5. The majority of the cleaved scaffold protein products 
are released from the capsid providing the space for the viral genome, although at 
least some of the VP24 protease domain is retained inside the capsid (McClelland 
et al. 2002; Sheaffer et al. 2000). This whole process leads to large structural changes 
resulting in the rearrangement of the spherical procapsid into the stable icosahedral 
capsid containing the viral genome (often termed C-capsids or nucleocapsids) 
(Heymann et  al. 2003; Roos et  al. 2009). Two other forms of stable icosahedral 
capsids that lack DNA, A-capsids and B-capsids, are also produced during this pro-
cess; A-capsids contain little or no scaffold protein, whereas B-capsids retain an 
inner shell of processed scaffold (Cardone et  al. 2012a). Both A-capsids and 
B-capsids are thought to be dead-end products that result from defective or abortive 
DNA encapsidation, and these DNA-less capsids rarely exit the nucleus.
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2.2  Nuclear Egress

Upon completion of capsid assembly and genome packaging, the resulting 
nucleocapsids need to escape the confines of the nuclear envelope. The nuclear 
envelope is a formidable barrier, being composed of two phospholipid bilayers – the 
inner nuclear membrane facing the nucleoplasm and the outer nuclear membrane 
facing the cytoplasm. There are numerous pores within the nuclear envelope, where 
the inner nuclear membrane and outer nuclear membrane fuse, which are filled by 
nuclear pore complexes that tightly regulate the transport of cargo between the cyto-
plasm and nucleus. The size exclusion of these pores is typically around 39 nm 
diameter or less (Pante and Kann 2002) and is thus too small to accommodate her-
pesvirus capsids, which are ~125 nm. Instead, transport of nucleocapsids into the 
cytoplasm is achieved by budding of nucleocapsids at the inner nuclear membrane 
to form primary enveloped particles (also termed perinuclear virions) within the 
perinuclear space, followed by fusion of primary enveloped particles with the outer 
nuclear membrane to release nucleocapsids into the cytoplasm. While many details 
of this process are still unclear, much progress has been made recently in under-
standing this unusual mode of intracellular transport.

To gain access to the inner nuclear membrane, the underlying nuclear lamina 
must be penetrated. The nuclear lamina is a dense mesh of intermediate filament- 
type proteins (lamins) and associated proteins, which interacts with chromatin and 
aids the structural integrity of the nucleus. Local disruption of the nuclear lamina to 
enable nucleocapsid access to the inner nuclear membrane is facilitated through 
phosphorylation of lamins and associated proteins by viral and cellular kinases, 
including pUS3 and PKC isoforms (Bjerke and Roller 2006; Leach and Roller 
2010).

The budding of nucleocapsids at the inner nuclear membrane is driven by the 
nuclear egress complex (NEC), a heterodimer of pUL31 and a tail-anchored mem-
brane protein pUL34. The NEC recruits PKC isoforms (Park and Baines 2006) and 
is itself a target for phosphorylation by pUS3 (Kato et al. 2005), which facilitates 
the correct localisation of the NEC to the nuclear membrane (Reynolds et al. 2001). 
The other HSV protein kinase, pUL13, can also regulate the localisation of the 
NEC, either by phosphorylation of pUS3 or by a pUS3-independent mechanism 
(Kato et al. 2006).

The recruitment of capsids to the inner nuclear membrane involves the interaction 
of the NEC with pUL25, part of the heterodimeric CVSC present on the vertices of 
capsids. DNA-filled capsids (C-capsids/nucleocapsids) have higher levels of 
occupancy of the CVSC on their vertices than either A- or B-capsids (Newcomb 
et al. 2006; Sheaffer et al. 2001), providing a mechanism by which DNA-filled cap-
sids can be selected for nuclear export (O’Hara et al. 2010; Yang and Baines 2011).

Recent structural studies have begun to uncover the molecular mechanisms by 
which the NEC mediates primary envelopment of herpesvirus capsids. The NEC 
oligomerises on the inner nuclear membrane to form a hexagonal scaffold that coats 
the inner surface of the budding membrane and links the membrane to the 

2 Virus Assembly and Egress of HSV



26

 nucleocapsid (Bigalke and Heldwein 2017; Zeev-Ben-Mordehai et al. 2015). The 
NEC has an intrinsic activity to deform membranes and cause membrane scission, 
suggesting the NEC alone is sufficient for forming perinuclear enveloped virus par-
ticles (Hagen et al. 2015). However, other viral proteins may be involved in regulat-
ing nuclear egress, including pUL16 (Gao et al. 2017), pUL21 (Le Sage et al. 2013), 
pUL47 (Liu et al. 2014) and pUS3 (Reynolds et al. 2002), as well as the nonstructural 
proteins pUL24 (Lymberopoulos et al. 2011) and ICP22 (Maruzuru et al. 2014). One 
protein with a well-established, although enigmatic, role in nuclear egress is the viral 
kinase pUS3. Deletion of the US3 gene or introduction of an inactivating mutation in 
the kinase domain of pUS3 results in the accumulation of primary enveloped virions 
in the perinuclear space, often observed as bulges protruding into the nucleoplasm 
termed herniations (Reynolds et al. 2002; Ryckman and Roller 2004). This suggests 
a role for pUS3 kinase activity in regulating the fusion of primary enveloped virions 
with the outer nuclear membrane or dissociation of the nucleocapsid from the NEC 
(Newcomb et al. 2017). However, this appears to be a more facilitatory, non-essential 
function because US3 deletion viruses are viable and nucleocapsids are still able to 
gain access to the cytoplasm, undergo secondary envelopment and release infectious 
virions from cells. It is possible that pUL13, or host kinases, can at least partially 
compensate for loss of pUS3 function.

The precise composition of perinuclear virions is unknown, with much 
uncertainty about the presence of various tegument and envelope proteins. Regarding 
tegument proteins, immuno-electron microscopy studies have suggested that both 
pUS3 and VP16 are present in perinuclear virions (Naldinho-Souto et  al. 2006; 
Reynolds et al. 2002), and proteomics analysis of partially purified perinuclear viri-
ons identified pUL49 as a component of these particles (Padula et  al. 2009). 
However, for many of the viral proteins proposed to regulate nuclear egress, it is 
unclear if they become components of primary enveloped particles or indeed 
whether their roles in nucleocapsid transport across the nuclear envelope are direct 
or indirect. Recent cryo-electron microscopy studies of primary enveloped virions 
have also demonstrated limited space between the NEC and nucleocapsid, suggest-
ing few tegument proteins are likely to be incorporated to a significant level during 
nuclear egress and the majority of tegument is acquired in the cytoplasm (Newcomb 
et al. 2017).

Whether there are any viral membrane proteins that are specifically incorporated 
into primary enveloped virions and what functional roles they play in nuclear egress 
is also unclear. Several viral membrane proteins localise to the nuclear envelope in 
infected cells and thus could be incorporated into perinuclear virions, including gB, 
gD, gH and gM (Baines et al. 2007; Farnsworth et al. 2007b; Wills et al. 2009). 
Given the need for perinuclear virions to fuse with the outer nuclear membrane, the 
presence of the viral entry proteins gB, gD and gH could indicate a potential role of 
these proteins in the outer nuclear membrane fusion event. Indeed, some evidence 
suggests gB is involved in HSV-1 nuclear egress, possibly in a redundant manner 
with gH, and that this activity of gB in nuclear egress is regulated by pUS3 
(Farnsworth et  al. 2007b; Wisner et  al. 2009; Wright et  al. 2009). However, gB 
 deletion viruses still efficiently assemble and release virions from infected cells, 
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albeit lacking gB, suggesting any role of this glycoprotein in nuclear egress is facili-
tatory rather than essential (Farnsworth et al. 2007b). Furthermore, in pseudorabies 
virus, a related alphaherpesvirus, deletion of gB and gH does not affect nuclear 
egress (Klupp et al. 2008).

Following de-envelopment, nucleocapsids detach from the NEC leaving the 
NEC proteins behind in the outer nuclear membrane in a process that may partially 
rely on pUS3 kinase activity (Newcomb et al. 2017; Reynolds et al. 2002). Once 
released, the nucleocapsid must recruit then tegument and undergo secondary envel-
opment to form an infectious virion.

2.3  Tegument Assembly

The tegument is a complex proteinaceous layer that connects the nucleocapsid to 
the viral envelope, which in HSV contains up to 24 different viral proteins 
(Table 2.1). As well as performing a structural role within the virion, the tegument 
is also a reservoir for proteins that modulate host cell function, such as the ubiquitin 
ligase ICP0 and the virion host shut-off protein (Vhs/pUL41), which are important 
for antagonising antiviral host responses (Boutell and Everett 2013; Smiley 2004). 
Unlike the icosahedral herpesvirus capsid, the structure of the tegument is rather 
poorly defined; the lack of symmetry within the tegument prevents high-resolution 
single-particle structural analysis by cryo-electron microscopy. Tegument proteins 
are often broadly subdivided into ‘inner’ and ‘outer’ tegument, with inner tegument 
proteins more tightly associated with the nucleocapsid and outer tegument proteins 
weakly associated with the nucleocapsid and/or associated with the inner surface of 
the envelope. These definitions mainly come from biochemical experiments inves-
tigating how labile the association of tegument proteins with nucleocapsids is to 
increasing salt concentration, following disruption of the viral enveloped with deter-
gent. Therefore, such designations do not necessarily provide information of the 
structural organisation of these proteins within virions. Recently, some details of 
tegument organisation have begun to be uncovered by modern techniques in fluores-
cence microscopy analysis of single virus particles (Bohannon et al. 2013; Laine 
et al. 2015).

The tegument protein that is most tightly associated to nucleocapsids is pUL36 
(also termed VP1/2), the C-terminal domain of which has been shown to interact 
with pUL25, part of the heterodimeric CVSC present on nucleocapsid pentons 
(Coller et al. 2007). Single-particle analysis of nucleocapsids obtained from purified 
virions that have been stripped of their envelope and all tegument proteins except 
pUL36 identified extra density protruding from capsid vertices, suggesting that at 
least part of pUL36, most likely its C-terminus, is the one tegument protein that 
does display some icosahedral symmetry (Cardone et al. 2012b). More recently, it 
has been shown that the presence of pUL36 is necessary for the CVSC to form sug-
gesting that pUL36 residues may contribute to the observed CVSC density in 
 cryo- EM reconstructions of nucleocapsids or that pUL36 is required to stabilise the 
structure of the pUL17 and pUL25 heterodimer (Fan et al. 2015).
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Table 2.1 HSV structural proteins

Gene
Protein 
name

Amino 
acidsa

Mass 
(kDa)a Description

Capsid UL6 pUL6 676 74.1 Portal protein
UL17 pUL17 703 74.6 CVSC protein
UL18 VP23 318 34.3 Triplex protein
UL19 VP5 1374 149.1 Major capsid protein, hexon and 

penton
UL25 pUL25 580 62.7 CVSC protein
UL26 VP24 247 26.6 Protease (N-terminal domain of 

pUL26)
UL35 VP26 112 12.1 Binds hexon VP5 tip
UL38 VP19C 465 50.3 Triplex protein

Tegument RL1 ICP34.5 248 26.2 Neurovirulence factor
RL2 ICP0 775 78.5 E3 ubiquitin ligase
RS1 ICP4 1298 132.8 Essential gene; viral transcription 

factor
UL7 pUL7 296 33.1
UL11 pUL11 96 10.5 Myristoylated and palmitoylated
UL13 pUL13 518 57.2 Serine/threonine-protein kinase
UL14 pUL14 219 23.9
UL16 pUL16 373 40.4
UL21 pUL21 535 57.6
UL23 TK 376 41.0 Thymidine kinase
UL36 VP1/2 3112 333.6 Essential gene
UL37 pUL37 1123 120.6 Essential gene
UL41 Vhs 489 54.9 Endoribonuclease
UL46 VP11/12 718 78.2
UL47 VP13/14 693 73.8
UL48 VP16 490 54.3 Essential gene; transcriptional 

activator of IE genes
UL49 VP22 301 32.3
UL50 dUTPase 371 39.1 Deoxyuridine 5′-triphosphate 

nucleotidohydrolase
UL51 pUL51 244 25.5 Palmitoylated
UL55 pUL55 186 20.5
US2 pUS2 291 32.5
US3 pUS3 481 52.8 Serine/threonine-protein kinase
US10 pUS10 306 33.5
US11b pUS11 161 17.8

Envelope UL1 gL 224 24.9 Heterodimer with gH; essential for 
entry

UL10 gM 473 51.4 Multiple transmembrane domains; 
forms complex with gN

(continued)
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As well as being tightly associated with nucleocapsids, pUL36 is one of the few 
tegument proteins, along with pUL37 and VP16, that are essential for HSV assem-
bly; loss of functional pUL36 leads to accumulation of non-enveloped nucleocap-
sids in the cytoplasm, suggesting a failure of tegument to associate with nucleocapsids 
in the absence of pUL36 (Desai 2000; Roberts et al. 2009). Furthermore, pUL36 is 
the largest protein in herpesviruses, being >3000 amino acids in HSV, and has been 
shown to interact with the two other essential assembly proteins pUL37 and VP16 
(Mijatov et al. 2007; Svobodova et al. 2012). This has led to the logical suggestion 
that pUL36 could serve as a platform or central organiser for subsequent assembly 
of the rest of the tegument. In addition to pUL36, pUL37 and pUS3 are usually clas-
sified as inner tegument proteins, whereas most of the other tegument proteins are 
generally considered outer tegument proteins. However, the association properties 
of most tegument proteins with nucleocapsids remain undefined, with investigations 
hampered due to low copy numbers within virions as well as a lack of suitable 
detection reagents for many tegument proteins.

The location where the tegument first begins to associate with nucleocapsids 
during virion assembly is unclear, with disagreement in the literature regarding the 
association of tegument proteins with capsids in the nucleus. Given the tight 
 association of the inner tegument pUL36 with nucleocapsids and the importance of 
pUL36 for association of pUL37 and VP16 with nucleocapsids and subsequent 

Table 2.1 (continued)

Gene
Protein 
name

Amino 
acidsa

Mass 
(kDa)a Description

UL20 pUL20 222 24.2 Multiple transmembrane domains; 
forms complex with gK

UL22 gH 838 90.4 Heterodimer with gL; essential for 
entry

UL27 gB 904 100.3 Essential for entry
UL43b pUL43 417 42.9 Multiple transmembrane domains
UL44 gC 511 55.0 Heparan sulphate binding
UL45 pUL45 172 18.2
UL49.5b gN 91 9.2 Forms complex with gM
UL53 gK 338 37.6 Multiple transmembrane domains; 

forms complex with pUL20
UL56 pUL56 197 21.2
US4 gG 238 25.2 Chemokine binding protein
US5b gJ 92 9.6
US6 gD 394 43.3 Essential for entry
US7 gI 390 41.4 Forms complex with gE; Fc receptor
US8 gE 550 59.1 Forms complex with gI; Fc receptor
US9 pUS9 90 10.0

aValues from UniProt for HSV-1 strain 17; not including co-translational or post-translational 
modifications
bUnclear if present in virus particle for HSV (Loret et al. 2008)
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virion assembly, it is reasonable to suggest pUL36 will be one of the first tegument 
proteins to interact with nucleocapsids during virion morphogenesis. However, 
there is evidence both for and against pUL36 associating with capsids in the nucleus 
(Bucks et  al. 2007; Fan et  al. 2015; Henaff et  al. 2013; Radtke et  al. 2010). 
Furthermore, it doesn’t appear that pUL36 has an important role in the nuclear 
egress stage of the assembly pathway because deletion of UL36 does not prevent 
transport of nucleocapsids from the nucleus into the cytoplasm (Desai 2000; Roberts 
et al. 2009). The observations that some tegument proteins are important for effi-
cient nuclear egress, as described above, could suggest association of these tegu-
ment proteins with nucleocapsids before or during primary envelopment, and indeed 
pUS3 has been detected in primary enveloped virions (Henaff et al. 2013; Reynolds 
et al. 2002). However, it is also possible tegument proteins could function in a regu-
latory manner during nuclear egress but not physically associate with nucleocapsids 
at this stage and then become incorporated into assembling virions by interaction 
with nucleocapsid and/or other tegument or envelope proteins in the cytoplasm. An 
example of the complexities in interpreting when tegument proteins become incor-
porated into assembling virions is the major tegument protein VP16. It is well estab-
lished that VP16 is imported into the nucleus for its role during immediate-early 
viral gene expression (Campbell et al. 1984), VP16 has been observed in perinuclear 
virions by immuno-EM studies (Naldinho-Souto et  al. 2006) and VP16 interacts 
with the inner tegument protein pUL36 (Svobodova et al. 2012), suggesting poten-
tial association with capsids in the nucleus. However, VP16-negative capsids can be 
readily observed in the cytoplasm of infected cells, VP16 deletion inhibits virion 
assembly but does not appear to affect nuclear egress, and VP16 interacts with the 
cytoplasmic domain of gH as well as several other ‘outer’ tegument proteins 
(pUL41, pUL46, pUL47 and VP22), suggesting VP16 incorporation into virions 
occurs in the cytoplasm (Elliott et al. 1995; Gross et al. 2003; Mossman et al. 2000; 
Smibert et al. 1994; Svobodova et al. 2012; Vittone et al. 2005). It should also be 
born in mind that the tegument assembly process could be somewhat flexible, 
whereby a few copies of some tegument proteins can associate with nucleocapsids 
in the nucleus and be carried across the nuclear envelope, but then further copies of 
these tegument proteins assemble onto nucleocapsids in the cytoplasm. Alternatively, 
nuclear-localised tegument proteins may transiently associate with nucleocapsid 
prior to or during nuclear egress and then dissociate once the nucleocapsid reaches 
the cytoplasm before reacquisition later during virion assembly. Future develop-
ment of imaging technologies that allow direct observation of the dynamics of 
virion assembly at the single-particle level will hopefully shed light on this topic.

Regardless of whether individual tegument proteins can or do associate with 
nucleocapsids before they exit the nucleus, it is clear that the majority of the tegu-
ment assembles in the cytoplasm. To form the complex tegument layer, a network 
of protein-protein interactions with significant redundancy is thought to occur, 
including tegument-tegument, tegument-capsid and tegument-envelope interactions 
(Lee et al. 2008; Vittone et al. 2005). The inner tegument proteins pUL36, pUL37 
and pUS3 are presumably recruited to nucleocapsids before the outer tegument pro-
teins, many of which may assemble during the secondary envelopment process by 
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virtue of interacting with the cytoplasmic domains of viral envelope proteins. 
Several tegument proteins have been shown to be important for efficient virion 
assembly, and so they may facilitate the formation of the complex tegument layer, 
although as mentioned above only three, pUL36, pUL37 and VP16 appear to be 
essential for virion assembly, suggesting reasonable flexibility within the assembly 
process that can compensate for the loss of one or more ‘non-essential’ 
components.

VP16, pUL47 and pUL49 are the most prevalent proteins in the tegument, with 
copy numbers estimated to be ca. 500–1500 per virion for each of these proteins 
(Clarke et al. 2007; Newcomb et al. 2012). These proteins may be central organisers 
of the tegument structure: VP16 has been shown to interact with pUL41 (Vhs), 
pUL46, pUL47 and pUL49, as well as pUL36 and the cytoplasmic domain of gH 
(Elliott et al. 1995; Gross et al. 2003; Smibert et al. 1994; Svobodova et al. 2012; 
Vittone et  al. 2005); pUL47 also interacts with pUL17 providing another link 
between the tegument and nucleocapsids (Scholtes et al. 2010); pUL49 also inter-
acts with pUL16, ICP0 and the cytoplasmic domains of gD, gE and gM (Farnsworth 
et al. 2007a; Maringer et al. 2012; Starkey et al. 2014).

In addition to the essential pUL36 and pU37, there are six other tegument 
proteins that are conserved throughout the herpesvirus family, and while not 
‘essential’ these tegument proteins are also important for virion assembly. Firstly, 
there is pUL11, pUL16 and pUL21, which have been shown to form a tripartite 
complex that associates with membranes via the lipid anchors present on pUL11 
and through interaction with the cytoplasmic domain of gE (Han et al. 2012). There 
is also evidence that both pUL16 and pUL21 interact with capsids, suggesting the 
pUL11- pUL16- pUL21 complex can directly connect the envelope with the 
nucleocapsid (de Wind et al. 1992; Meckes and Wills 2007). Secondly, there are 
pUL7, pUL14 and pUL51 which may also form a complex. pUL7 and pUL51 have 
recently been shown to form a complex through direct protein-protein interaction, 
and pUL14 has also been shown to interact with pUL51 (Albecka et al. 2017; Oda 
et al. 2016; Roller and Fetters 2015). As yet it is unclear if a tripartite complex of 
pUL7-pUL14- pUL51 forms or if there are independent pUL7-pUL51 and pUL14-
pUL51 complexes. Deletion of each of these three proteins leads to defects in 
cytoplasmic virion assembly, and the stability of pUL7 and pUL51 relies on each 
other (Albecka et al. 2017; Oda et al. 2016). Similar to pUL11, pUL51 is associated 
with membranes via a lipid anchor providing additional links between the tegument 
and envelope. Therefore, it appears there are at least two independent protein 
complexes that can link the envelope to the underlying tegument and the nucleocapsid 
that are conserved throughout the herpesvirus family.

While many interactions between tegument proteins have been identified, it is 
important to note that such an extensive and seemingly redundant network of inter-
actions between these proteins makes it problematic to investigate the precise roles 
of individual components or interactions during virion assembly. It is often difficult 
to know whether identified interactions are direct or indirect and whether they 
occur within the virion structure or during other, non-assembly activities of these 
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multifunctional virus proteins. Elucidating the molecular details of tegument protein 
structures, both in isolation and in complex with each other, will be needed to shed 
further light on these complex assembly events.

2.4  Secondary Envelopment

The final stage of assembling mature HSV particles is secondary envelopment, 
sometimes referred to as final envelopment, the process by which nucleocapsids 
with a full complement of tegument proteins are encased within a lipid bilayer con-
taining all the viral envelope proteins. This occurs at cytoplasmic membranes result-
ing in HSV particles inside the lumen of cytoplasmic compartments. To orchestrate 
this process, a complex series of interactions must occur between viral capsid, tegu-
ment and envelope proteins, as well as with cellular membranes and host proteins 
involved in regulating membrane modulation and transport.

The cellular compartment from which the final envelope of HSV is derived is 
somewhat unclear. It often stated that the trans-Golgi network (TGN), a major sort-
ing station for membrane proteins of the secretory and endocytic pathways, is the 
site of HSV secondary envelopment. Evidence for this comes from the observation 
of co-localisation of several viral envelope glycoproteins with markers of the TGN 
(Beitia Ortiz de Zarate et al. 2004; Crump et al. 2004; Foster et al. 2004b; McMillan 
and Johnson 2001). Furthermore, it has been shown that appending localisation 
signals from cellular TGN resident proteins onto HSV-1 glycoproteins leads to 
incorporation into virions (Whiteley et al. 1999), and inhibitors that perturb Golgi/
TGN function, such as brefeldin A, block HSV-1 assembly (Cheung et al. 1991; 
Koyama and Uchida 1994), supporting the notion of envelopment of virions by 
TGN membrane. However, there is also evidence for endosomes being the sites of 
HSV-1 secondary envelopment. Electron microscopy studies have clearly shown the 
presence of endocytic tracers within membrane compartments that are wrapping 
cytoplasmic nucleocapsids (Hollinshead et  al. 2012). Furthermore, blocking the 
function of specific Rab GTPases that are associated with endosomal trafficking 
inhibits HSV-1 assembly (Johns et al. 2011; Zenner et al. 2011), and inhibition of 
endocytosis prevents the incorporation of viral glycoproteins into virions (Albecka 
et al. 2016). These data point to endosomal compartments being a major source of 
membrane during HSV secondary envelopment. However, because of the highly 
dynamic and fluid nature of the secretory and endocytic pathways in cells, it can be 
difficult to accurately interpret cellular membrane compartment identity, particu-
larly in infected cells where the cytopathic effects of HSV infection are known to 
perturb membrane traffic and cellular organelle structure (Henaff et  al. 2012). 
Furthermore, the majority of cellular proteins that are defined as markers of particu-
lar organelles frequently undergo rapid transport between various secretory and 
endocytic compartments, and so in the context of HSV infection defining the iden-
tity of a membrane by the presence of such cellular markers can be fraught with 
difficulties. It must also be considered that the secondary envelopment of HSV 
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could involve membranes that originate from more than one cellular compartment, 
including TGN and endosomes. Given the size of HSV particles, several vesicles 
containing viral envelope proteins may need to fuse to provide sufficient membrane 
in order to wrap the large nucleocapsid/tegument complex that makes up the inter-
nal structure of the virus particle.

Despite the uncertainties about secondary envelopment compartment identity, 
there is little doubt that this occurs at cellular membranes that are derived from late 
secretory pathway (e.g. the TGN) and/or endosomal pathway compartments, and 
not at early secretory pathway membranes such as the endoplasmic reticulum (ER) 
or Golgi apparatus. Artificially targeting viral envelope proteins to the ER prevents 
their incorporation into virions (Browne et  al. 1996; Whiteley et  al. 1999), and 
blocking ER-Golgi transport inhibits virus assembly and leads to accumulation of 
viral envelope proteins in the ER (Zenner et al. 2011).

As with the rest of the virion structure, the envelope of HSV is also highly 
complex, containing up to 16 different viral transmembrane proteins (Table 2.1). 
Therefore, all of these different membrane proteins need to be accumulated in the 
appropriate cellular compartment(s) so that they can be incorporated into mature 
virions. Due to the highly dynamic and interconnected nature of the late secretory 
and endocytic pathways, cellular membrane proteins are often localised to discrete 
compartments through an active retrieval mechanism, whereby proteins that leave 
the ‘home’ compartment are recycled back through vesicle transport. Therefore, it 
is of little surprise that many viral membrane proteins have adopted a similar  
mechanism by encoding targeting motifs in their cytoplasmic domains that mimic 
equivalent cellular motifs for packaging into transport vesicles. For example,  
tyrosine-based targeting motifs in glycoprotein B (gB) and glycoprotein E (gE) 
have been shown to direct endocytosis and intracellular targeting of these viral 
envelope proteins (Alconada et al. 1999; Beitia Ortiz de Zarate et al. 2004). However, 
not all HSV envelope proteins possess recognised targeting motifs, including the 
essential entry proteins gD and gH-gL. These envelope proteins appear to rely on 
interaction with other HSV proteins including gM and the gK-pUL20 complex to 
mediate their endocytosis and correct localisation to intracellular assembly  
compartments during infection (Crump et  al. 2004; Lau and Crump 2015;  
Ren et al. 2012).

To help drive efficient virion assembly, several interactions between the tegument 
and envelope are thought to occur in a co-operative and partially redundant manner. 
The redundant nature of these envelope-tegument interactions is demonstrated by 
the observations that single deletion of gB, gD or gE results in little or no attenuation 
of secondary envelopment, whereas the combined deletion of gB and gD or gD and 
gE causes a dramatic inhibition of secondary envelopment leading to the 
accumulation of large aggregates of non-enveloped cytoplasmic capsids (Farnsworth 
et al. 2003; Johnson et al. 2011). Similar observations have been made for gM and 
the lipid-anchored tegument protein pUL11, with only minor defects in assembly 
caused by the loss of either protein individually, whereas deletion of both gM and 
pUL11 causes a profound inhibition of secondary envelopment (Leege et al. 2009). 
These observations support the notion that numerous interactions between envelope 
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proteins and the underlying tegument occur to facilitate  
secondary envelopment, although loss of some of these interactions can be tolerated 
by the virus.

Two envelope proteins that appear to be particularly important for secondary 
envelopment are gK and pUL20. These multifunctional membrane proteins form a 
complex, and their correct subcellular localisation is reliant on each other (Foster 
et al. 2004b). Loss of either gK or pUL20 leads to significant defects in secondary 
envelopment (Foster et al. 2004a; Jayachandra et al. 1997; Melancon et al. 2004). 
The gK-pUL20 complex has been shown to interact with the pUL37 tegument pro-
tein as well as being important for the subcellular localisation of gD and gH-gL 
suggesting important functions of the gK-pUL20 complex during secondary envel-
opment in organising viral envelope proteins and mediating interactions with the 
tegument (Jambunathan et al. 2014; Lau and Crump 2015).

Consistent with the idea of a complex and redundant series of tegument- 
glycoprotein interactions helping to drive secondary envelopment, several tegument 
proteins have been reported to interact with the cytoplasmic domains of envelope 
proteins; VP16 with gH (Gross et al. 2003); VP22 with gD, gE and gM (Farnsworth 
et al. 2007a; Maringer et al. 2012); pUL11 with gD and gE (Farnsworth et al. 2007a; 
Han et al. 2011); and pUL37 with gK (Jambunathan et al. 2014). In fact, envelope- 
tegument interactions appear to be sufficient to drive secondary envelopment 
because this process can occur in the absence of nucleocapsids, forming the so- 
called light particles that contain most, if not all, tegument and envelope proteins 
but lack a nucleocapsid (Rixon et al. 1992; Szilagyi and Cunningham 1991).

The final stage of secondary envelopment is membrane scission to separate the 
virus from the host cell membrane, giving rise to a virion contained within the 
lumen of a vesicle. Similar to many enveloped viruses, HSV utilises the membrane 
scission activity of the cellular endosomal sorting complex required for transport 
(ESCRT) machinery for this final stage of assembly (Crump et al. 2007; Pawliczek 
and Crump 2009). The ESCRT machinery is a series of protein complexes that are 
normally involved in remodelling host membranes with the same topology as virus 
budding, for example, budding of material from the cytoplasm into the lumen of 
multivesicular bodies (Henne et al. 2011). Currently it is unclear how HSV recruits 
and regulates the ESCRT machinery at sites of secondary envelopment. Other 
viruses are known to recruit ESCRT complexes via their matrix proteins (Votteler 
and Sundquist 2013), and so tegument protein(s) appear the most likely candidates 
to directly or indirectly interact with ESCRT proteins. Indeed HSV-1 pUL36 has 
been shown to interact with the ESCRT-I subunit TSG101 (Calistri et  al. 2015). 
However, TSG101 does not appear to be essential for HSV-1 assembly as siRNA 
depletion of this cellular protein does not inhibit virus replication (Pawliczek and 
Crump 2009). Given the complexity and redundancy within viral protein interac-
tions during secondary envelopment, recruitment of the ESCRT machinery could be 
mediated by several viral proteins in a similarly redundant fashion, providing more 
than one mechanism to engage this important cellular machinery.
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2.5  Virion Transport and Release

The completion of secondary envelopment results in virions being contained within 
large intracellular vesicles. To release viruses to the extracellular environment, these 
virion-containing vesicles need to be transported to the cell periphery and fuse with 
the plasma membrane. Currently there is little understanding of which cellular path-
ways are used during virus release and how they are controlled, although undoubt-
edly many host regulators of secretion are involved.

Given their size and the distances involved, it is likely that most if not all virion- 
containing vesicles require transport along microtubules via the activity of plus- 
end- directed kinesin motor proteins to travel from sites of secondary envelopment 
to the cell periphery. This will be particularly important upon reactivation of HSV 
from latency due to the long distances between the cell body and axon termini in 
neurons. There is some disagreement in the literature about the nature of virus par-
ticles that are transported along the axons during virus egress. Two extreme models 
are (1) HSV particles that undergo secondary envelopment in the cell body of neu-
rons and are then transported along the axons as mature virions in large transport 
vesicles and (2) nucleocapsids and membrane compartments containing envelope 
proteins that are transported separately along the axons and then secondary envelop-
ment occurs at axon termini (Cunningham et al. 2013; Kratchmarov et al. 2012; 
Taylor and Enquist 2015). There is evidence for both these models, although it is 
also possible that a combination of different types of transport occurs, with fully 
assembled virions in transport vesicles, partially enveloped virions and membrane- 
less nucleocapsids all capable of being transported along the axons. Despite these 
uncertainties, there can be little doubt that kinesin motors must be recruited and 
activated to enable efficient virus egress. Kinesin-1, also known as conventional 
kinesin, has been shown to interact with the envelope protein pUS9 and with the 
tegument protein pUS11, giving two potential mechanisms for recruitment and reg-
ulation of this microtubule motor (Diefenbach et al. 2015, 2002). Interestingly pseu-
dorabies virus (PRV) appears to recruit kinesin-3 via the combined activities of 
pUS9 and the gE-gI heterodimer (Kratchmarov et al. 2013). In HSV-1, deletion of 
pUS9 and gE has also been shown to inhibit egress of virions from the cell body into 
the axons in neuronal cells, lending weight to the hypothesis that pUS9 and gE-gI 
promote microtubule-based transport during virus egress, although defects in sec-
ondary envelopment are also observed in the absence of pUS9 and gE (DuRaine 
et al. 2017). Furthermore, the lack of pUS9 does not appear to affect HSV egress in 
epithelial cells, suggesting different mechanisms are required for virion transport to 
the cell periphery in neuronal and non-neuronal cells.

The gE-gI complex is well established as being important for cell-to-cell spread 
of HSV in epithelial cells. Loss of gE-gI function causes a substantial decrease in 
the spread of infection between cells in monolayer cultures, which is thought to be 
due to reduced targeting of virus secretion to cell junctions (Dingwell et al. 1994; 
Dingwell and Johnson 1998; Johnson et al. 2001). The targeting of virus secretion 
to cell junctions is thought to rely on the activity of specific sorting signals in the 
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cytoplasmic domains of both gE and gI (Farnsworth and Johnson 2006; McMillan 
and Johnson 2001). However, whether this is related to kinesin motor activity or 
interactions with some other cellular transport regulators is unclear.

Upon reaching the cell periphery, the large virion-containing vesicles will 
encounter cortical actin, a dense mesh of cytoskeleton underlying the plasma mem-
brane. This could pose a significant barrier to secretion of HSV from infected cells, 
by restricting access of the large virion-containing transport vesicles to the plasma 
membrane. A similar problem is faced by large cellular secretory vesicles, such as 
melanosomes, and is overcome through the action actin motors such as Myosin Va. 
HSV may well utilise a similar mechanism; Myosin Va has been shown to be impor-
tant for efficient HSV-1 secretion from epithelial cells (Roberts and Baines 2010), 
although the details of how this actin-based motor is recruited or regulated by the 
virus is unclear.

The final stage of HSV egress is the fusion of the virion-containing transport 
vesicle with the plasma membrane to release the newly synthesised virus from the 
producing cell. Such vesicle fusion events within cells rely on the action of several 
proteins including Rab GTPases, membrane tethering complexes and SNARE 
fusion proteins. There are many different pathways for secretion of proteins from 
cells that are regulated by different subsets of membrane traffic regulators, and it is 
currently unclear which cellular Rab, tether or SNARE proteins are involved in 
HSV secretion. Some Rab proteins, namely, Rab3A, Rab6A, Rab8A and Rab11A, 
as well as the SNARE protein SNAP-25, have been shown to localise to vesicles 
containing virus particles or viral tegument and glycoproteins (Hogue et al. 2014; 
Miranda-Saksena et al. 2009), although whether they have any functional role in 
HSV egress is unknown.

It is conceivable that secretion of the newly formed viruses is controlled entirely 
by endogenous cellular factors that are normally recruited to the membranes that 
make up the secondary envelopment compartments. However, it seems more likely 
that these processes are co-opted and controlled by the virus. Viral proteins that 
recruit or regulate the transport, docking and fusion of virion-containing vesicles 
would need to be present on the cytoplasm-facing domain of such vesicles. The 
most obvious candidates for recruiting the necessary host cell factors are viral enve-
lope proteins and membrane-associated tegument proteins that could remain on the 
vesicle membrane, in addition to being incorporated into virions. Both pUS9 and 
gE-gI are good candidates to be present on the vesicle membrane as this would posi-
tion their cytoplasmic domains to be available for recruiting and regulating host 
trafficking proteins such as kinesins. The tegument protein pUL51, which is 
membrane- associated due to a lipid anchor modification, has been shown to be 
important for virus cell-to-cell spread and so is also a good candidate for being 
retained on virion-containing exocytic vesicle membranes (Albecka et  al. 2017; 
Roller et al. 2014). However, which specific subset of viral proteins remain on the 
cytoplasmic surface of the vesicle membranes, how they are retained or recruited 
and how they function to control transport, docking and fusion of these large virion- 
containing vesicles with the plasma membrane remain to be discovered.
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2.6  Summary

As described in this chapter, the assembly and egress of herpesviruses is a complex 
multistage process that requires the co-ordinated activities of numerous viral and 
cellular factors. While we know many details about the structure and assembly of 
the capsid and the components of mature virions, there is still much to discover. 
Future research to analyse the process of HSV assembly at the single-particle level 
in real time and to uncover the detailed mechanisms of host factor involvement at 
specific stages of virus morphogenesis will be important to shed new light on this 
fascinating subject.

References

Aksyuk AA, Newcomb WW, Cheng N, Winkler DC, Fontana J, Heymann JB, Steven AC 
(2015) Subassemblies and asymmetry in assembly of herpes simplex virus procapsid. MBio 
6(5):e01525–e01515. https://doi.org/10.1128/mBio.01525-15

Albecka A, Laine RF, Janssen AF, Kaminski CF, Crump CM (2016) HSV-1 glycoproteins are 
delivered to virus assembly sites through dynamin-dependent endocytosis. Traffic 17(1):21–
39. https://doi.org/10.1111/tra.12340

Albecka A, Owen DJ, Ivanova L, Brun J, Liman R, Davies L, Ahmed MF, Colaco S, Hollinshead M, 
Graham SC, Crump CM (2017) Dual function of the pUL7-pUL51 tegument protein complex 
in herpes simplex virus 1 infection. J Virol 91(2). https://doi.org/10.1128/JVI.02196-16

Alconada A, Bauer U, Sodeik B, Hoflack B (1999) Intracellular traffic of herpes simplex virus 
glycoprotein gE: characterization of the sorting signals required for its trans-Golgi network 
localization. J Virol 73(1):377–387

Baines JD, Wills E, Jacob RJ, Pennington J, Roizman B (2007) Glycoprotein M of herpes simplex 
virus 1 is incorporated into virions during budding at the inner nuclear membrane. J  Virol 
81(2):800–812. https://doi.org/10.1128/JVI.01756-06

Beitia Ortiz de Zarate I, Kaelin K, Rozenberg F (2004) Effects of mutations in the cytoplasmic 
domain of herpes simplex virus type 1 glycoprotein B on intracellular transport and infectivity. 
J Virol 78(3):1540–1551

Bigalke JM, Heldwein EE (2017) Have NEC coat, will travel: structural basis of membrane 
budding during nuclear Egress in herpesviruses. Adv Virus Res 97:107–141. https://doi.
org/10.1016/bs.aivir.2016.07.002

Bjerke SL, Roller RJ (2006) Roles for herpes simplex virus type 1 UL34 and US3 proteins in 
disrupting the nuclear lamina during herpes simplex virus type 1 egress. Virology 347(2):261–
276. https://doi.org/10.1016/j.virol.2005.11.053

Bohannon KP, Jun Y, Gross SP, Smith GA (2013) Differential protein partitioning within the 
herpesvirus tegument and envelope underlies a complex and variable virion architecture. Proc 
Natl Acad Sci U S A 110(17):E1613–E1620. https://doi.org/10.1073/pnas.1221896110

Boutell C, Everett RD (2013) Regulation of alphaherpesvirus infections by the ICP0 family of 
proteins. J Gen Virol 94(Pt 3):465–481. https://doi.org/10.1099/vir.0.048900-0

Browne H, Bell S, Minson T, Wilson DW (1996) An endoplasmic reticulum-retained herpes 
simplex virus glycoprotein H is absent from secreted virions: evidence for reenvelopment 
during egress. J Virol 70(7):4311–4316

Bucks MA, O’Regan KJ, Murphy MA, Wills JW, Courtney RJ (2007) Herpes simplex virus type 
1 tegument proteins VP1/2 and UL37 are associated with intranuclear capsids. Virology 361 
(2):316–324. S0042-6822(06)00880-4 [pii] https://doi.org/10.1016/j.virol.2006.11.031

2 Virus Assembly and Egress of HSV

https://doi.org/10.1128/mBio.01525-15
https://doi.org/10.1111/tra.12340
https://doi.org/10.1128/JVI.02196-16
https://doi.org/10.1128/JVI.01756-06
https://doi.org/10.1016/bs.aivir.2016.07.002
https://doi.org/10.1016/bs.aivir.2016.07.002
https://doi.org/10.1016/j.virol.2005.11.053
https://doi.org/10.1073/pnas.1221896110
https://doi.org/10.1099/vir.0.048900-0
https://doi.org/10.1016/j.virol.2006.11.031


38

Calistri A, Munegato D, Toffoletto M, Celestino M, Franchin E, Comin A, Sartori E, Salata C, 
Parolin C, Palu G (2015) Functional interaction between the ESCRT-I component TSG101 and 
the HSV-1 tegument ubiquitin specific protease. J Cell Physiol 230(8):1794–1806. https://doi.
org/10.1002/jcp.24890

Campbell ME, Palfreyman JW, Preston CM (1984) Identification of herpes simplex virus DNA 
sequences which encode a trans-acting polypeptide responsible for stimulation of immediate 
early transcription. J Mol Biol 180(1):1–19

Cardone G, Heymann JB, Cheng N, Trus BL, Steven AC (2012a) Procapsid assembly, maturation, 
nuclear exit: dynamic steps in the production of infectious herpesvirions. Adv Exp Med Biol 
726:423–439. https://doi.org/10.1007/978-1-4614-0980-9_19

Cardone G, Newcomb WW, Cheng N, Wingfield PT, Trus BL, Brown JC, Steven AC (2012b) The 
UL36 tegument protein of herpes simplex virus 1 has a composite binding site at the capsid 
vertices. J Virol 86(8):4058–4064. https://doi.org/10.1128/JVI.00012-12

Cheung P, Banfield BW, Tufaro F (1991) Brefeldin A arrests the maturation and egress of herpes 
simplex virus particles during infection. J Virol 65(4):1893–1904

Clarke RW, Monnier N, Li H, Zhou D, Browne H, Klenerman D (2007) Two-color fluorescence 
analysis of individual virions determines the distribution of the copy number of proteins 
in herpes simplex virus particles. Biophys J  93(4):1329–1337. https://doi.org/10.1529/
biophysj.107.106351

Coller KE, Lee JI, Ueda A, Smith GA (2007) The capsid and tegument of the alphaherpesviruses 
are linked by an interaction between the UL25 and VP1/2 proteins. J Virol 81 (21):11790–
11797. JVI.01113-07 [pii] https://doi.org/10.1128/JVI.01113-07

Crump CM, Bruun B, Bell S, Pomeranz LE, Minson T, Browne HM (2004) Alphaherpesvirus 
glycoprotein M causes the relocalization of plasma membrane proteins. J  Gen Virol 85(Pt 
12):3517–3527. https://doi.org/10.1099/vir.0.80361-0

Crump CM, Yates C, Minson T (2007) Herpes simplex virus type 1 cytoplasmic envelopment 
requires functional Vps4. J  Virol 81 (14):7380–7387. JVI.00222-07 [pii] https://doi.
org/10.1128/JVI.00222-07

Cunningham A, Miranda-Saksena M, Diefenbach R, Johnson D (2013) Letter in response to: 
making the case: married versus separate models of alphaherpes virus anterograde transport in 
axons. Rev Med Virol 23(6):414–418. https://doi.org/10.1002/rmv.1760

de Wind N, Wagenaar F, Pol J, Kimman T, Berns A (1992) The pseudorabies virus homology of 
the herpes simplex virus UL21 gene product is a capsid protein which is involved in capsid 
maturation. J Virol 66(12):7096–7103

Desai PJ (2000) A null mutation in the UL36 gene of herpes simplex virus type 1 results in 
accumulation of unenveloped DNA-filled capsids in the cytoplasm of infected cells. J Virol 
74(24):11608–11618

Diefenbach RJ, Miranda-Saksena M, Diefenbach E, Holland DJ, Boadle RA, Armati PJ, 
Cunningham AL (2002) Herpes simplex virus tegument protein US11 interacts with 
conventional kinesin heavy chain. J Virol 76(7):3282–3291

Diefenbach RJ, Davis A, Miranda-Saksena M, Fernandez MA, Kelly BJ, Jones CA, LaVail JH, 
Xue J, Lai J, Cunningham AL (2015) The basic domain of herpes simplex virus 1 pUS9 recruits 
Kinesin-1 to facilitate egress from neurons. J Virol 90(4):2102–2111. https://doi.org/10.1128/
JVI.03041-15

Dingwell KS, Johnson DC (1998) The herpes simplex virus gE-gI complex facilitates cell-to-cell 
spread and binds to components of cell junctions. J Virol 72(11):8933–8942

Dingwell KS, Brunetti CR, Hendricks RL, Tang Q, Tang M, Rainbow AJ, Johnson DC (1994) 
Herpes simplex virus glycoproteins E and I facilitate cell-to-cell spread in  vivo and across 
junctions of cultured cells. J Virol 68(2):834–845

DuRaine G, Wisner TW, Howard P, Williams M, Johnson DC (2017) Herpes simplex virus gE/
gI and US9 promote both envelopment and sorting of virus particles in the cytoplasm of 
neurons, two processes that precede anterograde transport in axons. J Virol 91(11). https://doi.
org/10.1128/JVI.00050-17

C. Crump

https://doi.org/10.1002/jcp.24890
https://doi.org/10.1002/jcp.24890
https://doi.org/10.1007/978-1-4614-0980-9_19
https://doi.org/10.1128/JVI.00012-12
https://doi.org/10.1529/biophysj.107.106351
https://doi.org/10.1529/biophysj.107.106351
https://doi.org/10.1128/JVI.01113-07
https://doi.org/10.1099/vir.0.80361-0
https://doi.org/10.1128/JVI.00222-07
https://doi.org/10.1128/JVI.00222-07
https://doi.org/10.1002/rmv.1760
https://doi.org/10.1128/JVI.03041-15
https://doi.org/10.1128/JVI.03041-15
https://doi.org/10.1128/JVI.00050-17
https://doi.org/10.1128/JVI.00050-17


39

Elliott G, Mouzakitis G, O'Hare P (1995) VP16 interacts via its activation domain with VP22, a 
tegument protein of herpes simplex virus, and is relocated to a novel macromolecular assembly 
in coexpressing cells. J Virol 69(12):7932–7941

Fan WH, Roberts AP, McElwee M, Bhella D, Rixon FJ, Lauder R (2015) The large tegument 
protein pUL36 is essential for formation of the capsid vertex-specific component at the capsid- 
tegument interface of herpes simplex virus 1. J Virol 89(3):1502–1511. https://doi.org/10.1128/
JVI.02887-14

Farnsworth A, Johnson DC (2006) Herpes simplex virus gE/gI must accumulate in the trans-Golgi 
network at early times and then redistribute to cell junctions to promote cell-cell spread. J Virol 
80(7):3167–3179. https://doi.org/10.1128/JVI.80.7.3167-3179.2006

Farnsworth A, Goldsmith K, Johnson DC (2003) Herpes simplex virus glycoproteins gD and 
gE/gI serve essential but redundant functions during acquisition of the virion envelope in the 
cytoplasm. J Virol 77(15):8481–8494

Farnsworth A, Wisner TW, Johnson DC (2007a) Cytoplasmic residues of herpes simplex virus 
glycoprotein gE required for secondary envelopment and binding of tegument proteins VP22 
and UL11 to gE and gD. J Virol 81 (1):319–331. JVI.01842-06 [pii] https://doi.org/10.1128/
JVI.01842-06

Farnsworth A, Wisner TW, Webb M, Roller R, Cohen G, Eisenberg R, Johnson DC (2007b) Herpes 
simplex virus glycoproteins gB and gH function in fusion between the virion envelope and 
the outer nuclear membrane. Proc Natl Acad Sci U S A 104(24):10187–10192. https://doi.
org/10.1073/pnas.0703790104

Foster TP, Melancon JM, Baines JD, Kousoulas KG (2004a) The herpes simplex virus type 1 
UL20 protein modulates membrane fusion events during cytoplasmic virion morphogenesis 
and virus-induced cell fusion. J Virol 78(10):5347–5357

Foster TP, Melancon JM, Olivier TL, Kousoulas KG (2004b) Herpes simplex virus type 1 
glycoprotein K and the UL20 protein are interdependent for intracellular trafficking and 
trans-Golgi network localization. J  Virol 78(23):13262–13277. https://doi.org/10.1128/
JVI.78.23.13262-13277.2004

Gao J, Hay TJM, Banfield BW (2017) The product of the herpes simplex virus 2 UL16 gene is 
critical for the egress of capsids from the nuclei of infected cells. J Virol 91(10). https://doi.
org/10.1128/JVI.00350-17

Gross ST, Harley CA, Wilson DW (2003) The cytoplasmic tail of herpes simplex virus glycoprotein 
H binds to the tegument protein VP16 in vitro and in vivo. Virology 317(1):1–12

Hagen C, Dent KC, Zeev-Ben-Mordehai T, Grange M, Bosse JB, Whittle C, Klupp BG, Siebert 
CA, Vasishtan D, Bauerlein FJ, Cheleski J, Werner S, Guttmann P, Rehbein S, Henzler K, 
Demmerle J, Adler B, Koszinowski U, Schermelleh L, Schneider G, Enquist LW, Plitzko JM, 
Mettenleiter TC, Grunewald K (2015) Structural basis of vesicle formation at the inner nuclear 
membrane. Cell 163(7):1692–1701. https://doi.org/10.1016/j.cell.2015.11.029

Han J, Chadha P, Meckes DG Jr, Baird NL, Wills JW (2011) Interaction and interdependent 
packaging of tegument protein UL11 and glycoprotein e of herpes simplex virus. J  Virol 
85(18):9437–9446. https://doi.org/10.1128/JVI.05207-11

Han J, Chadha P, Starkey JL, Wills JW (2012) Function of glycoprotein E of herpes simplex virus 
requires coordinated assembly of three tegument proteins on its cytoplasmic tail. Proc Natl 
Acad Sci U S A 109(48):19798–19803. https://doi.org/10.1073/pnas.1212900109

Heming JD, Huffman JB, Jones LM, Homa FL (2014) Isolation and characterization of the 
herpes simplex virus 1 terminase complex. J  Virol 88(1):225–236. https://doi.org/10.1128/
JVI.02632-13

Henaff D, Radtke K, Lippe R (2012) Herpesviruses exploit several host compartments for 
envelopment. Traffic 13(11):1443–1449. https://doi.org/10.1111/j.1600-0854.2012.01399.x

Henaff D, Remillard-Labrosse G, Loret S, Lippe R (2013) Analysis of the early steps of herpes 
simplex virus 1 capsid tegumentation. J  Virol 87(9):4895–4906. https://doi.org/10.1128/
JVI.03292-12

2 Virus Assembly and Egress of HSV

https://doi.org/10.1128/JVI.02887-14
https://doi.org/10.1128/JVI.02887-14
https://doi.org/10.1128/JVI.80.7.3167-3179.2006
https://doi.org/10.1128/JVI.01842-06
https://doi.org/10.1128/JVI.01842-06
https://doi.org/10.1073/pnas.0703790104
https://doi.org/10.1073/pnas.0703790104
https://doi.org/10.1128/JVI.78.23.13262-13277.2004
https://doi.org/10.1128/JVI.78.23.13262-13277.2004
https://doi.org/10.1128/JVI.00350-17
https://doi.org/10.1128/JVI.00350-17
https://doi.org/10.1016/j.cell.2015.11.029
https://doi.org/10.1128/JVI.05207-11
https://doi.org/10.1073/pnas.1212900109
https://doi.org/10.1128/JVI.02632-13
https://doi.org/10.1128/JVI.02632-13
https://doi.org/10.1111/j.1600-0854.2012.01399.x
https://doi.org/10.1128/JVI.03292-12
https://doi.org/10.1128/JVI.03292-12


40

Henne WM, Buchkovich NJ, Emr SD (2011) The ESCRT pathway. Dev Cell 21(1):77–91. https://
doi.org/10.1016/j.devcel.2011.05.015

Heymann JB, Cheng N, Newcomb WW, Trus BL, Brown JC, Steven AC (2003) Dynamics of 
herpes simplex virus capsid maturation visualized by time-lapse cryo-electron microscopy. Nat 
Struct Biol 10(5):334–341. https://doi.org/10.1038/nsb922

Hogue IB, Bosse JB, Hu JR, Thiberge SY, Enquist LW (2014) Cellular mechanisms of alpha 
herpesvirus egress: live cell fluorescence microscopy of pseudorabies virus exocytosis. PLoS 
Pathog 10(12):e1004535. https://doi.org/10.1371/journal.ppat.1004535

Hollinshead M, Johns HL, Sayers CL, Gonzalez-Lopez C, Smith GL, Elliott G (2012) Endocytic 
tubules regulated by Rab GTPases 5 and 11 are used for envelopment of herpes simplex virus. 
EMBO J 31(21):4204–4220. https://doi.org/10.1038/emboj.2012.262

Jambunathan N, Chouljenko D, Desai P, Charles AS, Subramanian R, Chouljenko VN, Kousoulas 
KG (2014) Herpes simplex virus 1 protein UL37 interacts with viral glycoprotein gK and 
membrane protein UL20 and functions in cytoplasmic virion envelopment. J Virol 88(11):5927–
5935. https://doi.org/10.1128/JVI.00278-14

Jayachandra S, Baghian A, Kousoulas KG (1997) Herpes simplex virus type 1 glycoprotein K 
is not essential for infectious virus production in actively replicating cells but is required 
for efficient envelopment and translocation of infectious virions from the cytoplasm to the 
extracellular space. J Virol 71(7):5012–5024

Johns HL, Gonzalez-Lopez C, Sayers C, Hollinshead M, Elliott G (2011) A role for human 
Rab6 in Herpes Simplex Virus Morphogenesis. In: 36th international Herpesvirus workshop, 
Gdansk, Poland

Johnson DC, Webb M, Wisner TW, Brunetti C (2001) Herpes simplex virus gE/gI sorts nascent 
virions to epithelial cell junctions, promoting virus spread. J Virol 75(2):821–833. https://doi.
org/10.1128/JVI.75.2.821-833.2001

Johnson DC, Wisner TW, Wright CC (2011) Herpes simplex virus glycoproteins gB and gD 
function in a redundant fashion to promote secondary envelopment. J Virol 85(10):4910–4926. 
https://doi.org/10.1128/JVI.00011-11

Kato A, Yamamoto M, Ohno T, Kodaira H, Nishiyama Y, Kawaguchi Y (2005) Identification of 
proteins phosphorylated directly by the Us3 protein kinase encoded by herpes simplex virus 1. 
J Virol 79(14):9325–9331. https://doi.org/10.1128/JVI.79.14.9325-9331.2005

Kato A, Yamamoto M, Ohno T, Tanaka M, Sata T, Nishiyama Y, Kawaguchi Y (2006) Herpes 
simplex virus 1-encoded protein kinase UL13 phosphorylates viral Us3 protein kinase and 
regulates nuclear localization of viral envelopment factors UL34 and UL31. J Virol 80(3):1476–
1486. https://doi.org/10.1128/JVI.80.3.1476-1486.2006

Klupp B, Altenschmidt J, Granzow H, Fuchs W, Mettenleiter TC (2008) Glycoproteins required 
for entry are not necessary for egress of pseudorabies virus. J Virol 82(13):6299–6309. https://
doi.org/10.1128/JVI.00386-08

Koyama AH, Uchida T (1994) Inhibition by Brefeldin A of the envelopment of nucleocapsids in 
herpes simplex virus type 1-infected Vero cells. Arch Virol 135(3–4):305–317

Kratchmarov R, Taylor MP, Enquist LW (2012) Making the case: married versus separate models 
of alphaherpes virus anterograde transport in axons. Rev Med Virol 22(6):378–391. https://doi.
org/10.1002/rmv.1724

Kratchmarov R, Kramer T, Greco TM, Taylor MP, Ch'ng TH, Cristea IM, Enquist LW (2013) 
Glycoproteins gE and gI are required for efficient KIF1A-dependent anterograde axonal 
transport of alphaherpesvirus particles in neurons. J  Virol 87(17):9431–9440. https://doi.
org/10.1128/JVI.01317-13

Laine RF, Albecka A, van de Linde S, Rees EJ, Crump CM, Kaminski CF (2015) Structural 
analysis of herpes simplex virus by optical super-resolution imaging. Nat Commun 6:5980. 
https://doi.org/10.1038/ncomms6980

Lau SY, Crump CM (2015) HSV-1 gM and the gK/pUL20 complex are important for the localization 
of gD and gH/L to viral assembly sites. Virus 7(3):915–938. https://doi.org/10.3390/v7030915

C. Crump

https://doi.org/10.1016/j.devcel.2011.05.015
https://doi.org/10.1016/j.devcel.2011.05.015
https://doi.org/10.1038/nsb922
https://doi.org/10.1371/journal.ppat.1004535
https://doi.org/10.1038/emboj.2012.262
https://doi.org/10.1128/JVI.00278-14
https://doi.org/10.1128/JVI.75.2.821-833.2001
https://doi.org/10.1128/JVI.75.2.821-833.2001
https://doi.org/10.1128/JVI.00011-11
https://doi.org/10.1128/JVI.79.14.9325-9331.2005
https://doi.org/10.1128/JVI.80.3.1476-1486.2006
https://doi.org/10.1128/JVI.00386-08
https://doi.org/10.1128/JVI.00386-08
https://doi.org/10.1002/rmv.1724
https://doi.org/10.1002/rmv.1724
https://doi.org/10.1128/JVI.01317-13
https://doi.org/10.1128/JVI.01317-13
https://doi.org/10.1038/ncomms6980
https://doi.org/10.3390/v7030915


41

Le Sage V, Jung M, Alter JD, Wills EG, Johnston SM, Kawaguchi Y, Baines JD, Banfield BW 
(2013) The herpes simplex virus 2 UL21 protein is essential for virus propagation. J Virol 
87(10):5904–5915. https://doi.org/10.1128/JVI.03489-12

Leach NR, Roller RJ (2010) Significance of host cell kinases in herpes simplex virus type 1 egress 
and lamin-associated protein disassembly from the nuclear lamina. Virology 406(1):127–137. 
https://doi.org/10.1016/j.virol.2010.07.002

Lee JH, Vittone V, Diefenbach E, Cunningham AL, Diefenbach RJ (2008) Identification of 
structural protein-protein interactions of herpes simplex virus type 1. Virology 378 (2):347–
354. S0042-6822(08)00390-5 [pii] https://doi.org/10.1016/j.virol.2008.05.035

Leege T, Fuchs W, Granzow H, Kopp M, Klupp BG, Mettenleiter TC (2009) Effects of simultaneous 
deletion of pUL11 and glycoprotein M on virion maturation of herpes simplex virus type 1. 
J Virol 83(2):896–907. https://doi.org/10.1128/JVI.01842-08

Liu Z, Kato A, Shindo K, Noda T, Sagara H, Kawaoka Y, Arii J, Kawaguchi Y (2014) Herpes 
simplex virus 1 UL47 interacts with viral nuclear egress factors UL31, UL34, and Us3 and 
regulates viral nuclear egress. J Virol 88(9):4657–4667. https://doi.org/10.1128/JVI.00137-14

Loret S, Guay G, Lippe R (2008) Comprehensive characterization of extracellular herpes simplex 
virus type 1 virions. J Virol 82 (17):8605–8618. JVI.00904-08 [pii] https://doi.org/10.1128/
JVI.00904-08

Lymberopoulos MH, Bourget A, Ben Abdeljelil N, Pearson A (2011) Involvement of the UL24 
protein in herpes simplex virus 1-induced dispersal of B23 and in nuclear egress. Virology 
412(2):341–348. https://doi.org/10.1016/j.virol.2011.01.016

Maringer K, Stylianou J, Elliott G (2012) A network of protein interactions around the herpes 
simplex virus tegument protein VP22. J Virol 86(23):12971–12982. https://doi.org/10.1128/
JVI.01913-12

Maruzuru Y, Shindo K, Liu Z, Oyama M, Kozuka-Hata H, Arii J, Kato A, Kawaguchi Y (2014) 
Role of herpes simplex virus 1 immediate early protein ICP22 in viral nuclear egress. J Virol 
88(13):7445–7454. https://doi.org/10.1128/JVI.01057-14

McClelland DA, Aitken JD, Bhella D, McNab D, Mitchell J, Kelly SM, Price NC, Rixon FJ (2002) 
pH reduction as a trigger for dissociation of herpes simplex virus type 1 scaffolds. J  Virol 
76(15):7407–7417

McMillan TN, Johnson DC (2001) Cytoplasmic domain of herpes simplex virus gE causes 
accumulation in the trans-Golgi network, a site of virus envelopment and sorting of virions 
to cell junctions. J Virol 75(4):1928–1940. https://doi.org/10.1128/JVI.75.4.1928-1940.2001

Melancon JM, Foster TP, Kousoulas KG (2004) Genetic analysis of the herpes simplex virus type 
1 UL20 protein domains involved in cytoplasmic virion envelopment and virus-induced cell 
fusion. J Virol 78(14):7329–7343. https://doi.org/10.1128/JVI.78.14.7329-7343.2004

Mijatov B, Cunningham AL, Diefenbach RJ (2007) Residues F593 and E596 of HSV-1 tegument 
protein pUL36 (VP1/2) mediate binding of tegument protein pUL37. Virology 368(1):26–31. 
https://doi.org/10.1016/j.virol.2007.07.005

Miranda-Saksena M, Boadle RA, Aggarwal A, Tijono B, Rixon FJ, Diefenbach RJ, Cunningham 
AL (2009) Herpes simplex virus utilizes the large secretory vesicle pathway for anterograde 
transport of tegument and envelope proteins and for viral exocytosis from growth cones of 
human fetal axons. J  Virol 83 (7):3187–3199. JVI.01579-08 [pii] https://doi.org/10.1128/
JVI.01579-08

Mossman KL, Sherburne R, Lavery C, Duncan J, Smiley JR (2000) Evidence that herpes simplex 
virus VP16 is required for viral egress downstream of the initial envelopment event. J Virol 
74(14):6287–6299

Naldinho-Souto R, Browne H, Minson T (2006) Herpes simplex virus tegument protein VP16 is 
a component of primary enveloped virions. J Virol 80(5):2582–2584. https://doi.org/10.1128/
JVI.80.5.2582-2584.2006

Newcomb WW, Trus BL, Booy FP, Steven AC, Wall JS, Brown JC (1993) Structure of the herpes 
simplex virus capsid. Molecular composition of the pentons and the triplexes. J  Mol Biol 
232(2):499–511. https://doi.org/10.1006/jmbi.1993.1406

2 Virus Assembly and Egress of HSV

https://doi.org/10.1128/JVI.03489-12
https://doi.org/10.1016/j.virol.2010.07.002
https://doi.org/10.1016/j.virol.2008.05.035
https://doi.org/10.1128/JVI.01842-08
https://doi.org/10.1128/JVI.00137-14
https://doi.org/10.1128/JVI.00904-08
https://doi.org/10.1128/JVI.00904-08
https://doi.org/10.1016/j.virol.2011.01.016
https://doi.org/10.1128/JVI.01913-12
https://doi.org/10.1128/JVI.01913-12
https://doi.org/10.1128/JVI.01057-14
https://doi.org/10.1128/JVI.75.4.1928-1940.2001
https://doi.org/10.1128/JVI.78.14.7329-7343.2004
https://doi.org/10.1016/j.virol.2007.07.005
https://doi.org/10.1128/JVI.01579-08
https://doi.org/10.1128/JVI.01579-08
https://doi.org/10.1128/JVI.80.5.2582-2584.2006
https://doi.org/10.1128/JVI.80.5.2582-2584.2006
https://doi.org/10.1006/jmbi.1993.1406


42

Newcomb WW, Homa FL, Thomsen DR, Booy FP, Trus BL, Steven AC, Spencer JV, Brown JC 
(1996) Assembly of the herpes simplex virus capsid: characterization of intermediates observed 
during cell-free capsid formation. J  Mol Biol 263(3):432–446. https://doi.org/10.1006/
jmbi.1996.0587

Newcomb WW, Juhas RM, Thomsen DR, Homa FL, Burch AD, Weller SK, Brown JC (2001) 
The UL6 gene product forms the portal for entry of DNA into the herpes simplex virus capsid. 
J Virol 75(22):10923–10932. https://doi.org/10.1128/JVI.75.22.10923-10932.2001

Newcomb WW, Thomsen DR, Homa FL, Brown JC (2003) Assembly of the herpes simplex virus 
capsid: identification of soluble scaffold-portal complexes and their role in formation of portal- 
containing capsids. J Virol 77(18):9862–9871

Newcomb WW, Homa FL, Brown JC (2005) Involvement of the portal at an early step in 
herpes simplex virus capsid assembly. J Virol 79(16):10540–10546. https://doi.org/10.1128/
JVI.79.16.10540-10546.2005

Newcomb WW, Homa FL, Brown JC (2006) Herpes simplex virus capsid structure: DNA 
packaging protein UL25 is located on the external surface of the capsid near the vertices. 
J Virol 80(13):6286–6294. https://doi.org/10.1128/JVI.02648-05

Newcomb WW, Jones LM, Dee A, Chaudhry F, Brown JC (2012) Role of a reducing environment in 
disassembly of the herpesvirus tegument. Virology 431(1–2):71–79. https://doi.org/10.1016/j.
virol.2012.05.017

Newcomb WW, Fontana J, Winkler DC, Cheng N, Heymann JB, Steven AC (2017) The primary 
enveloped virion of herpes simplex virus 1: its role in nuclear egress. MBio 8(3). https://doi.
org/10.1128/mBio.00825-17

Oda S, Arii J, Koyanagi N, Kato A, Kawaguchi Y (2016) The interaction between herpes simplex 
virus 1 tegument proteins UL51 and UL14 and its role in Virion morphogenesis. J  Virol 
90(19):8754–8767. https://doi.org/10.1128/JVI.01258-16

O'Hara M, Rixon FJ, Stow ND, Murray J, Murphy M, Preston VG (2010) Mutational analysis of 
the herpes simplex virus type 1 UL25 DNA packaging protein reveals regions that are important 
after the viral DNA has been packaged. J  Virol 84(9):4252–4263. https://doi.org/10.1128/
JVI.02442-09

Okoye ME, Sexton GL, Huang E, McCaffery JM, Desai P (2006) Functional analysis of the triplex 
proteins (VP19C and VP23) of herpes simplex virus type 1. J Virol 80(2):929–940. https://doi.
org/10.1128/JVI.80.2.929-940.2006

Padula ME, Sydnor ML, Wilson DW (2009) Isolation and preliminary characterization of herpes 
simplex virus 1 primary enveloped virions from the perinuclear space. J Virol 83(10):4757–
4765. https://doi.org/10.1128/JVI.01927-08

Pante N, Kann M (2002) Nuclear pore complex is able to transport macromolecules with diameters 
of about 39 nm. Mol Biol Cell 13(2):425–434. https://doi.org/10.1091/mbc.01-06-0308

Park R, Baines JD (2006) Herpes simplex virus type 1 infection induces activation and recruitment 
of protein kinase C to the nuclear membrane and increased phosphorylation of lamin B. J Virol 
80(1):494–504. https://doi.org/10.1128/JVI.80.1.494-504.2006

Pawliczek T, Crump CM (2009) Herpes simplex virus type 1 production requires a functional 
ESCRT-III complex but is independent of TSG101 and ALIX expression. J Virol 83 (21):11254–
11264. JVI.00574-09 [pii] https://doi.org/10.1128/JVI.00574-09

Radtke K, Kieneke D, Wolfstein A, Michael K, Steffen W, Scholz T, Karger A, Sodeik B (2010) 
Plus- and minus-end directed microtubule motors bind simultaneously to herpes simplex virus 
capsids using different inner tegument structures. PLoS Pathog 6(7):e1000991. https://doi.
org/10.1371/journal.ppat.1000991

Ren Y, Bell S, Zenner HL, Lau SY, Crump CM (2012) Glycoprotein M is important for the  
efficient incorporation of glycoprotein H-L into herpes simplex virus type 1 particles. J Gen 
Virol 93(Pt 2):319–329. https://doi.org/10.1099/vir.0.035444-0

Reynolds AE, Ryckman BJ, Baines JD, Zhou Y, Liang L, Roller RJ (2001) U(L)31 and U(L)34 
proteins of herpes simplex virus type 1 form a complex that accumulates at the nuclear rim and 
is required for envelopment of nucleocapsids. J Virol 75(18):8803–8817

C. Crump

https://doi.org/10.1006/jmbi.1996.0587
https://doi.org/10.1006/jmbi.1996.0587
https://doi.org/10.1128/JVI.75.22.10923-10932.2001
https://doi.org/10.1128/JVI.79.16.10540-10546.2005
https://doi.org/10.1128/JVI.79.16.10540-10546.2005
https://doi.org/10.1128/JVI.02648-05
https://doi.org/10.1016/j.virol.2012.05.017
https://doi.org/10.1016/j.virol.2012.05.017
https://doi.org/10.1128/mBio.00825-17
https://doi.org/10.1128/mBio.00825-17
https://doi.org/10.1128/JVI.01258-16
https://doi.org/10.1128/JVI.02442-09
https://doi.org/10.1128/JVI.02442-09
https://doi.org/10.1128/JVI.80.2.929-940.2006
https://doi.org/10.1128/JVI.80.2.929-940.2006
https://doi.org/10.1128/JVI.01927-08
https://doi.org/10.1091/mbc.01-06-0308
https://doi.org/10.1128/JVI.80.1.494-504.2006
https://doi.org/10.1128/JVI.00574-09
https://doi.org/10.1371/journal.ppat.1000991
https://doi.org/10.1371/journal.ppat.1000991
https://doi.org/10.1099/vir.0.035444-0


43

Reynolds AE, Wills EG, Roller RJ, Ryckman BJ, Baines JD (2002) Ultrastructural localization 
of the herpes simplex virus type 1 UL31, UL34, and US3 proteins suggests specific roles in 
primary envelopment and egress of nucleocapsids. J Virol 76(17):8939–8952

Rixon FJ, Addison C, McLauchlan J  (1992) Assembly of enveloped tegument structures (L 
particles) can occur independently of virion maturation in herpes simplex virus type 1-infected 
cells. J Gen Virol 73(Pt 2):277–284. https://doi.org/10.1099/0022-1317-73-2-277

Roberts KL, Baines JD (2010) Myosin Va enhances secretion of herpes simplex virus 1 virions 
and cell surface expression of viral glycoproteins. J  Virol. JVI.00732-10 [pii] https://doi.
org/10.1128/JVI.00732-10

Roberts AP, Abaitua F, O'Hare P, McNab D, Rixon FJ, Pasdeloup D (2009) Differing roles of inner 
tegument proteins pUL36 and pUL37 during entry of herpes simplex virus type 1. J Virol 83 
(1):105–116. JVI.01032-08 [pii] https://doi.org/10.1128/JVI.01032-08

Roller RJ, Fetters R (2015) The herpes simplex virus 1 UL51 protein interacts with the UL7 
protein and plays a role in its recruitment into the virion. J Virol 89(6):3112–3122. https://doi.
org/10.1128/JVI.02799-14

Roller RJ, Haugo AC, Yang K, Baines JD (2014) The herpes simplex virus 1 UL51 gene product 
has cell type-specific functions in cell-to-cell spread. J  Virol 88(8):4058–4068. https://doi.
org/10.1128/JVI.03707-13

Roos WH, Radtke K, Kniesmeijer E, Geertsema H, Sodeik B, Wuite GJ (2009) Scaffold expulsion 
and genome packaging trigger stabilization of herpes simplex virus capsids. Proc Natl Acad Sci 
U S A 106(24):9673–9678. https://doi.org/10.1073/pnas.0901514106

Ryckman BJ, Roller RJ (2004) Herpes simplex virus type 1 primary envelopment: UL34 protein 
modification and the US3-UL34 catalytic relationship. J Virol 78(1):399–412

Scholtes LD, Yang K, Li LX, Baines JD (2010) The capsid protein encoded by U(L)17 of herpes 
simplex virus 1 interacts with tegument protein VP13/14. J Virol 84(15):7642–7650. https://
doi.org/10.1128/JVI.00277-10

Schrag JD, Prasad BV, Rixon FJ, Chiu W (1989) Three-dimensional structure of the HSV1 
nucleocapsid. Cell 56(4):651–660

Sheaffer AK, Newcomb WW, Brown JC, Gao M, Weller SK, Tenney DJ (2000) Evidence for 
controlled incorporation of herpes simplex virus type 1 UL26 protease into capsids. J Virol 
74(15):6838–6848

Sheaffer AK, Newcomb WW, Gao M, Yu D, Weller SK, Brown JC, Tenney DJ (2001) Herpes 
simplex virus DNA cleavage and packaging proteins associate with the procapsid prior to its 
maturation. J Virol 75(2):687–698. https://doi.org/10.1128/JVI.75.2.687-698.2001

Smibert CA, Popova B, Xiao P, Capone JP, Smiley JR (1994) Herpes simplex virus VP16 forms a 
complex with the virion host shutoff protein vhs. J Virol 68(4):2339–2346

Smiley JR (2004) Herpes simplex virus virion host shutoff protein: immune evasion mediated by 
a viral RNase? J Virol 78(3):1063–1068

Spencer JV, Newcomb WW, Thomsen DR, Homa FL, Brown JC (1998) Assembly of the herpes 
simplex virus capsid: preformed triplexes bind to the nascent capsid. J Virol 72(5):3944–3951

Starkey JL, Han J, Chadha P, Marsh JA, Wills JW (2014) Elucidation of the block to herpes 
simplex virus egress in the absence of tegument protein UL16 reveals a novel interaction with 
VP22. J Virol 88(1):110–119. https://doi.org/10.1128/JVI.02555-13

Stevenson AJ, Morrison EE, Chaudhari R, Yang CC, Meredith DM (1997) Processing and 
intracellular localization of the herpes simplex virus type 1 proteinase. J  Gen Virol 78(Pt 
3):671–675. https://doi.org/10.1099/0022-1317-78-3-671

Svobodova S, Bell S, Crump CM (2012) Analysis of the interaction between the essential herpes 
simplex virus 1 tegument proteins VP16 and VP1/2. J Virol 86 (1):473–483. JVI.05981-11 [pii] 
https://doi.org/10.1128/JVI.05981-11

Szilagyi JF, Cunningham C (1991) Identification and characterization of a novel non-infectious 
herpes simplex virus-related particle. J Gen Virol 72(Pt 3):661–668

Taylor MP, Enquist LW (2015) Axonal spread of neuroinvasive viral infections. Trends Microbiol 
23(5):283–288. https://doi.org/10.1016/j.tim.2015.01.002

2 Virus Assembly and Egress of HSV

https://doi.org/10.1099/0022-1317-73-2-277
https://doi.org/10.1128/JVI.00732-10
https://doi.org/10.1128/JVI.00732-10
https://doi.org/10.1128/JVI.01032-08
https://doi.org/10.1128/JVI.02799-14
https://doi.org/10.1128/JVI.02799-14
https://doi.org/10.1128/JVI.03707-13
https://doi.org/10.1128/JVI.03707-13
https://doi.org/10.1073/pnas.0901514106
https://doi.org/10.1128/JVI.00277-10
https://doi.org/10.1128/JVI.00277-10
https://doi.org/10.1128/JVI.75.2.687-698.2001
https://doi.org/10.1128/JVI.02555-13
https://doi.org/10.1099/0022-1317-78-3-671
https://doi.org/10.1128/JVI.05981-11
https://doi.org/10.1016/j.tim.2015.01.002


44

Thurlow JK, Murphy M, Stow ND, Preston VG (2006) Herpes simplex virus type 1 DNA-packaging 
protein UL17 is required for efficient binding of UL25 to capsids. J Virol 80(5):2118–2126. 
https://doi.org/10.1128/JVI.80.5.2118-2126.2006

Tong L, Stow ND (2010) Analysis of herpes simplex virus type 1 DNA packaging signal mutations 
in the context of the viral genome. J Virol 84(1):321–329. https://doi.org/10.1128/JVI.01489-09

Toropova K, Huffman JB, Homa FL, Conway JF (2011) The herpes simplex virus 1 UL17 protein 
is the second constituent of the capsid vertex-specific component required for DNA packaging 
and retention. J Virol 85(15):7513–7522. https://doi.org/10.1128/JVI.00837-11

Trus BL, Newcomb WW, Cheng N, Cardone G, Marekov L, Homa FL, Brown JC, Steven AC (2007) 
Allosteric signaling and a nuclear exit strategy: binding of UL25/UL17 heterodimers to DNA- 
filled HSV-1 capsids. Mol Cell 26(4):479–489. https://doi.org/10.1016/j.molcel.2007.04.010

Vittone V, Diefenbach E, Triffett D, Douglas MW, Cunningham AL, Diefenbach RJ (2005) 
Determination of interactions between tegument proteins of herpes simplex virus type 1. J Virol 
79 (15):9566–9571. 79/15/9566 [pii] https://doi.org/10.1128/JVI.79.15.9566-9571.2005

Votteler J, Sundquist WI (2013) Virus budding and the ESCRT pathway. Cell Host Microbe 
14(3):232–241. https://doi.org/10.1016/j.chom.2013.08.012

Whiteley A, Bruun B, Minson T, Browne H (1999) Effects of targeting herpes simplex virus type 1 
gD to the endoplasmic reticulum and trans-Golgi network. J Virol 73(11):9515–9520

Meckes DG, Jr., Wills JW (2007) Dynamic interactions of the UL16 tegument protein with the 
capsid of herpes simplex virus. J  Virol 81 (23):13028–13036. doi:https://doi.org/10.1128/
JVI.01306-07

Wills E, Mou F, Baines JD (2009) The U(L)31 and U(L)34 gene products of herpes simplex virus 
1 are required for optimal localization of viral glycoproteins D and M to the inner nuclear 
membranes of infected cells. J Virol 83(10):4800–4809. https://doi.org/10.1128/JVI.02431-08

Wisner TW, Wright CC, Kato A, Kawaguchi Y, Mou F, Baines JD, Roller RJ, Johnson DC (2009) 
Herpesvirus gB-induced fusion between the virion envelope and outer nuclear membrane 
during virus egress is regulated by the viral US3 kinase. J Virol 83(7):3115–3126. https://doi.
org/10.1128/JVI.01462-08

Wright CC, Wisner TW, Hannah BP, Eisenberg RJ, Cohen GH, Johnson DC (2009) Fusion 
between perinuclear virions and the outer nuclear membrane requires the fusogenic activity of 
herpes simplex virus gB. J Virol 83(22):11847–11856. https://doi.org/10.1128/JVI.01397-09

Yang K, Baines JD (2011) Selection of HSV capsids for envelopment involves interaction 
between capsid surface components pUL31, pUL17, and pUL25. Proc Natl Acad Sci U S A 
108(34):14276–14281. https://doi.org/10.1073/pnas.1108564108

Zeev-Ben-Mordehai T, Weberruss M, Lorenz M, Cheleski J, Hellberg T, Whittle C, El Omari K, 
Vasishtan D, Dent KC, Harlos K, Franzke K, Hagen C, Klupp BG, Antonin W, Mettenleiter 
TC, Grunewald K (2015) Crystal structure of the herpesvirus nuclear egress complex provides 
insights into inner nuclear membrane remodeling. Cell Rep 13(12):2645–2652. https://doi.
org/10.1016/j.celrep.2015.11.008

Zenner HL, Yoshimura S, Barr FA, Crump CM (2011) Analysis of Rab GTPase-activating 
proteins indicates that Rab1a/b and Rab43 are important for herpes simplex virus 1 secondary 
envelopment. J  Virol 85 (16):8012–8021. JVI.00500-11 [pii] https://doi.org/10.1128/
JVI.00500-11

C. Crump

https://doi.org/10.1128/JVI.80.5.2118-2126.2006
https://doi.org/10.1128/JVI.01489-09
https://doi.org/10.1128/JVI.00837-11
https://doi.org/10.1016/j.molcel.2007.04.010
https://doi.org/10.1128/JVI.79.15.9566-9571.2005
https://doi.org/10.1016/j.chom.2013.08.012
https://doi.org/10.1128/JVI.01306-07
https://doi.org/10.1128/JVI.01306-07
https://doi.org/10.1128/JVI.02431-08
https://doi.org/10.1128/JVI.01462-08
https://doi.org/10.1128/JVI.01462-08
https://doi.org/10.1128/JVI.01397-09
https://doi.org/10.1073/pnas.1108564108
https://doi.org/10.1016/j.celrep.2015.11.008
https://doi.org/10.1016/j.celrep.2015.11.008
https://doi.org/10.1128/JVI.00500-11
https://doi.org/10.1128/JVI.00500-11


45© Springer Nature Singapore Pte Ltd. 2018 
Y. Kawaguchi et al. (eds.), Human Herpesviruses, Advances in Experimental 
Medicine and Biology 1045, https://doi.org/10.1007/978-981-10-7230-7_3

Chapter 3
Us3 Protein Kinase Encoded by HSV: 
The Precise Function and Mechanism 
on Viral Life Cycle

Akihisa Kato and Yasushi Kawaguchi

Abstract All members of the Alphaherpesvirinae subfamily encode a serine/threo-
nine kinase, designated Us3, which is not conserved in the other subfamilies. Us3 is 
a significant virulence factor for herpes simplex virus type 1 (HSV-1), which is one 
of the best-characterized members of the Alphaherpesvirinae family. Accumulating 
evidence indicates that HSV-1 Us3 is a multifunctional protein that plays various 
roles in the viral life cycle by phosphorylating a number of viral and cellular sub-
strates. Therefore, the identification of Us3 substrates is directly connected to 
understanding Us3 functions and mechanisms. To date, more than 23 phosphoryla-
tion events upregulated by HSV-1 Us3 have been reported. However, few of these 
have been shown to be both physiological substrates of Us3 in infected cells and 
directly linked with Us3 functions in infected cells. In this chapter, we summarize 
the 12 physiological substrates of Us3 and the Us3-mediated functions. Furthermore, 
based on the identified phosphorylation sites of Us3 or Us3 homolog physiological 
substrates, we reverified consensus phosphorylation target sequences on the physi-
ological substrates of Us3 and Us3 homologs in vitro and in infected cells. This 
information might aid the further identification of novel Us3 substrates and as yet 
unidentified Us3 functions.
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3.1  Introduction

The reversible phosphorylation of cellular proteins mediated by protein kinases and 
phosphatases is universally utilized by eukaryotes and prokaryotes and is one of the 
most intensively studied posttranslational modifications (Sugiyama and Ishihama 
2016). Protein kinases mainly catalyze the transfer of γ-phosphate from ATP to the 
serine, threonine, and tyrosine residues of target proteins but rarely to the histidine, 
aspartic acid, lysine, and arginine residues (Sugiyama and Ishihama 2016). 
Phosphorylation changes the higher-order structure of proteins resulting in a func-
tional change of the target protein, such as switching on/off of enzymatic activity, 
subcellular localization and molecular recognition ability (Knighton et  al. 1991; 
Johnson et al. 1996; Nolen et al. 2004).

Many viruses have evolved mechanisms to utilize the phosphorylation system 
for the regulation of their own viral proteins and to establish a cellular environment 
for efficient viral replication and virulence (Terry et al. 2012; Arii et al. 2010; Arend 
et al. 2017). Phosphorylation events in cells infected with herpesviruses is of par-
ticular interest because, unlike most other viruses, herpesviruses encode virus- 
specific protein kinase(s) (Kawaguchi and Kato 2003; Jacob et al. 2011). In this 
chapter, we summarize the current understanding of Us3 protein kinases encoded 
by herpes simplex virus type 1, one of the best-characterized members of the 
Alphaherpesvirinae family.

3.2  Overview of HSV-1 Us3 Protein Kinase

In the mid-1980s, it was reported that the protein kinase activity of infected cells 
was markedly elevated by herpes simplex virus type 1 (HSV-1) or pseudorabies 
virus (PRV) infection (Purves et al. 1986; Katan et al. 1985). This activity was des-
ignated as virus-induced protein kinase (ViPK), which was purified from wild-type 
PRV-infected cells (Katan et al. 1985). Based on the unique biochemical property of 
ViPK that functions at a high optimal KCl concentration, it was predicted that her-
pesviruses may encode a viral specific protein kinase (Purves et al. 1986). In 1986, 
substrate specificity analysis using a peptide library showed that RnX(S/T)YY was 
the consensus target sequence of ViPK encoded by HSV-1 and PRV, where n is ≥2; 
X can be Arg, Ala, Val, Pro, or Ser; and Y can be any amino acid except an acidic 
residue (Purves et  al. 1986; Leader 1993; Leader et  al. 1991). Furthermore, a 
sequencing study of the HSV-1 genome revealed that the amino acid sequence of 
the HSV-1 Us3 gene contains motifs shared by host cellular protein kinases 
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(McGeoch and Davison 1986). In the following year, a specific antibody against 
Us3 was generated, and Us3 was identified as a ViPK. In 1988, Us3 was reported to 
be a significant virulence factor for HSV-1 infection in mice (Frame et al. 1987). 
Interestingly, all members of the Alphaherpesvirinae subfamily encode Us3 homo-
logs that are not conserved in the other subfamilies (Deruelle and Favoreel 2011). 
To date, deletion of the Us3 homolog genes from HSV-1, HSV-2, varicella zoster 
virus (VZV), PRV, Marek’s disease virus 1 (MDV-1), or bovine herpesvirus 1 or 5 
(BHV-1 or BHV-5) is known to impair cell-type-dependent viral replication in cell 
cultures (Deruelle and Favoreel 2011). Notably, the protein kinase activity of HSV-1 
Us3 was shown to be critical for viral virulence in mouse peripheral sites (e.g., eyes 
and vagina) and the central nervous system (CNS) of mice following intracranial 
and peripheral infection, respectively (Morimoto et al. 2009; Sagou et al. 2009).

HSV-1 Us3 can protect infected cells from apoptosis (Yu and He 2016; Leopardi 
et al. 1997; Munger and Roizman 2001; Wang et al. 2011; Benetti et al. 2003), pro-
mote the vesicle-mediated nucleocytoplasmic transport of nucleocapsids through 
nuclear membranes (Mou et al. 2007; Ryckman and Roller 2004; Reynolds et al. 
2002; Johnson and Baines 2011), control infected cell morphology or microtubule 
networks (Naghavi et  al. 2013; Munger and Roizman 2001; Kato et  al. 2008), 
escape from host immune systems (Sloan et al. 2003, Sen et al. 2013; Wang et al. 
2013; Rao et al. 2011), promote gene expression by blocking histone deacetylation 
(Walters et  al. 2010; Poon et  al. 2003, 2006), stimulate mRNA translation 
(Chuluunbaatar et al. 2010), regulate the intracellular trafficking of viral and cellu-
lar proteins, and upregulate viral enzymes (Kato et al. 2008, 2009, 2011, 2014c) in 
infected cells (Fig. 3.1). These observations suggest that Us3 is a multifunctional 
protein that plays various roles in the viral life cycle by phosphorylating a number 
of viral substrates. In agreement with this hypothesis, it was reported that HSV-1 
Us3 is a promiscuous protein kinase that might phosphorylate more substrates than 
originally predicted (Mou et  al. 2007). Therefore, the identification of Us3 sub-
strates is directly connected to an understanding of Us3 function and mechanisms. 
In general, identification of the physiological substrate of a viral kinase and its 
phosphorylation sites requires the demonstration that the substrate and its phos-
phorylation sites are specifically and directly phosphorylated by the kinase in vitro 
and that the phosphorylation of the substrate is altered in cells infected with mutant 
viruses lacking the protein kinase activity and/or blocking phosphorylation site(s). 
As shown in Tables 3.1 and 3.2, more than 23 phosphorylation events upregulated 
by HSV-1 Us3 have been reported. Of note, nine of these proteins are physiological 
substrates of Us3 in infected cells and are directly linked with Us3 functions in 
infected cells. These include UL34, UL31, gB, UL47, vdUTPase, Us3 itself, kinesin 
family member 3A (KIF3A), tuberous sclerosis complex 2 (TSC2), and interferon 
regulatory factor 3 (IRF3). In addition, three host proteins, bcl-2-associated agonist 
of cell death (BAD), protein kinase A (PKA), and lamin A/C, were shown to be the 
physiological substrates of Us3 in  vitro and in infected cells although the 
 phosphorylation sites remain unknown. In the next section, we will introduce the 12 
physiological substrates and Us3-mediated functions.
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Fig. 3.1 Summary of the major functions associated with HSV-1 Us3 protein kinase. Abbreviations: 
AKT, protein kinase B; BAD, bcl-2-associated agonist of cell death; BID, BH3-interacting domain 
death agonist; CD1d, major histocompatibility complex class I-like antigen-presenting molecule; 
GSK3β, glycogen synthase kinase 3β; KIF3A, kinesin-like protein; HDAC1/2, histone deacetylase 
1 and 2; IFN-γRα, interferon gamma receptor 1; IRF3, interferon regulatory factor 3; MATR3, 
matrin 3; MHC-I, major histocompatibility complex class I; PDCD4, programmed cell death pro-
tein 4; PKA, protein kinase A; PI3K, phosphatidylinositol 4,5-bisphosphate 3-kinase; RELA, tran-
scription factor p65; TSC2, tuberous sclerosis complex 2
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Table 3.1 Viral proteins phosphorylated or modified by HSV-1 Us3

Protein 
name

Direct 
phosphorylation 
by purified Us3 
in vitro

Phosphorylation 
or modification in 
infected cells

Function regulated 
by phosphorylation

Viral virulence 
upregulated by 
phosphorylation

Us3 Detected Detected Activation of its 
protein kinase 
activity

HSKa

UL34 Detected Detected Promotion of viral 
replication only at 
early infection

Unknown

UL31 Detected Detected Promotion of 
nuclear egress

Unknown

gB Detected Detected Downregulation of 
its cell surface 
expression by 
promoting 
endocytosis

HSKa

UL47 Detected Detected Promotion of 
nuclear localization

HSKa

vdUTPase Detected Detected Maintenance of 
viral genome 
integrity by 
activating dUTPase 
activity

Neurovirulenceb

Us8A Not detected Detected Promotion of viral 
replication in 
trigeminal ganglia

Neuroinvasivenessc

Us9 Detected Unknown Unknown Unknown
ICP22 Detected Detected Unknown Unknown

HSK herpes stromal keratitis
aHSK indicates herpes stromal keratitis in the eyes of mice following ocular infection
bNeurovirulence indicates viral virulence in the CNS of mice following intracranial infection
cNeuroinvasiveness indicates the viral ability to invade from the peripheral site to the CNS of mice 
following ocular infection
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3.3  Protein Phosphorylation or Modification Mediated 
by Us3

3.3.1  Us3 Autophosphorylates at Ser-147

The Us3 autophosphorylation site was first identified by bioinformatic analysis. 
Subsequent in vitro kinase assays and experiments using an antibody that specifi-
cally reacted with phosphorylated Ser-147 on Us3 confirmed that Us3 at Ser-147 
was specifically autophosphorylated by Us3 itself both in vitro and in infected cells 
(Kato et al. 2008; Sagou et al. 2009). Us3 protein phosphorylated at Ser-147 puri-
fied from infected cells displayed higher kinase activity than Us3 not phosphory-
lated at Ser-147 (Sagou et al. 2009). Although only a small fraction (~6%) of total 
Us3 protein is autophosphorylated at Ser-147 in infected cells, autophosphorylation 
was required for the proper localization of Us3 and the ability of Us3 to induce 

Table 3.2 Host proteins phosphorylated or modified by HSV-1 Us3

Protein 
name

Direct phosphorylation 
by purified Us3 in vitro

Phosphorylation of 
modification in infected 
cells Regulated function

KIF3A Detected Detected Suppression of NKT cell 
function by modulating 
intracellular trafficking of CD1d

BAD Detected Detected Blocking apoptosis
PKA Detected Detected Blocking apoptosis
PDCD4 Unknown Detected Blocking apoptosis
BID Detected Unknown Blocking apoptosis
TSC2 Detected Detected Stimulation of mRNA 

translation
GSK3β Unknown Detected Microtubules rearrangement by 

inactivating GSK3β activity
HDAC2 Not detected a Detected Promotion of gene expression
IFN-γRα Unknown Detected Accumulation of IFN-γRα 

dependent gene transcripts
IRF3 Detected Detected Suppression of type I interferon 

signaling
p65/
RelA

Unknown Detected Suppression of IL-8 production

Lamin 
A/C

Detected Detected Promotion of nuclear egress by 
elevating its solubility

Emerin Unknown Detected Unknown
Matrin3 Not detecteda Detected Promotion of its nuclear 

retention
aNot detected indicates that purified Us3 or Us3 homologs did not phosphorylate the protein 
in vitro
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wild-type cytopathic effects in infected cells (Sagou et al. 2009). Furthermore, Us3 
autophosphorylation at Ser-147 promoted the development of herpes stromal kera-
titis (HSK) disease and viral replication in the eyes of mice following ocular infec-
tion (Sagou et  al. 2009). In contrast, autophosphorylation had no effect on viral 
virulence in the CNS of mice following intracranial infection (Sagou et al. 2009). 
These observations suggest that the protein kinase activity of Us3 is tightly regu-
lated by autophosphorylation at Ser-147  in infected cells and that this regulation 
partly has a critical role in viral replication and virulence in vivo.

3.3.2  Us3 Phosphorylates UL31 at Ser-11, Ser-24, Ser-26, 
Ser-27, Ser-40, and/or Ser-43

HSV-1 UL31 is a nuclear matrix-associated phosphoprotein localized within the 
nuclear membrane that interacts with HSV-1 UL34 to form a heterodimeric com-
plex termed the nuclear egress complex (NEC) (Bigalke and Heldwein 2017; 
Johnson and Baines 2011). The NEC is essential for nuclear egress, in which 
nucleocapsids bud through the inner nuclear membrane (INM) (primary envelop-
ment) and the enveloped nucleocapsids then fuse with the outer nuclear membrane 
(ONM) (de-envelopment) (Hagen et al. 2015; Bigalke et al. 2014). UL31 escorts 
nucleocapsids to inner nuclear envelope sites, the sites of primary envelopment 
(Funk et al. 2015). UL31 produced by cells infected with a Us3 null mutant virus 
migrated in a denaturing gel faster than those produced by cells infected with wild- 
type HSV-1, suggesting that Us3 mediates the phosphorylation of UL31 in infected 
cells (Poon and Roizman 2005; Kato et al. 2005). Consistent with this hypothesis, it 
was reported that Us3 phosphorylates UL31 Ser-11, Ser-24, Ser-26, Ser-27, Ser-40, 
and/or Ser-43 both in vitro and in infected cells (Mou et al. 2009). The null mutation 
in Us3 mislocalized both UL34 and UL31 into punctate structures at the nuclear rim 
and produced nuclear membrane invaginations containing multiple primary envel-
oped virions (Reynolds et al. 2001, 2002). Importantly, alanine substitutions at the 
six Us3 phosphorylation sites of UL31 mislocalized both UL34 and UL31 into 
punctate structures at the nuclear rim, and a kinase-dead mutation in Us3 accumu-
lated enveloped virus particles at the interior perimeter of the nucleus (Mou et al. 
2009). Furthermore, a phosphomimetic mutation in the six Ser of UL31 restored the 
wild-type localization of UL31 and UL34  in the absence of Us3 protein kinase 
activity (Mou et al. 2009). These observations suggest that UL31 is the major physi-
ological substrate of Us3 responsible for regulating the localization of both UL31 
and UL34 at the nuclear rim.
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3.3.3  Us3 Phosphorylates UL34 at Thr-195 and Ser-198

HSV-1 UL34 is a type II membrane protein that forms the NEC with UL31 as 
described above (Bigalke and Heldwein 2017; Johnson and Baines 2011). In 1991, 
Purves et al. reported that Us3 mediated the phosphorylation of UL34 at Thr-195 
and/or Ser-198 in infected cells (Purves et al. 1991). In agreement with this report, 
purified Us3 directly and specifically phosphorylated purified UL34 at Thr-195 and 
Ser-198 in vitro (Kato et al. 2005). However, alanine mutations in UL34 at Thr-195 
and Ser-198 had little effect on viral replication and on the localization of UL34 and 
UL31 and viral nuclear egress in infected cells (Ryckman and Roller 2004). Thus, 
although UL34 was the first Us3 substrate identified, the significance of its phos-
phorylation by Us3 remains poorly understood.

3.3.4  Us3 Phosphorylates gB at Thr-887

The Us3 phosphorylation site Thr-887  in the cytoplasmic tail of glycoprotein B 
(gB) was identified using the same procedures used to identify the initial Us3 auto-
phosphorylation site as described above (Kato et al. 2009). Interestingly, the Us3 
phosphorylation site of gB is located near the endocytosis motif. An alanine muta-
tion in this phosphorylation site downregulated the cell surface expression of gB in 
infected cells by promoting the endocytosis of gB, whereas a phosphomimetic 
mutation of gB at Thr-877 restored the wild-type phenotype (Kato et al. 2009; Imai 
et al. 2011). It was reported that the cell surface expression of gB is an important 
target of antibody-dependent cellular cytotoxic and is considered to promote viral 
cell-to-cell spread (Wisner and Johnson 2004; Kohl et al. 1990). From these evi-
dences, we hypothesize that the cell surface expression of gB is strictly regulated for 
efficient viral replication, especially in the presence of the host immune system. In 
agreement with this hypothesis, blocking the Us3 phosphorylation of gB at Thr-887 
significantly reduced the development of HSK disease and viral replication in the 
eyes of mice following ocular infection (Imai et al. 2010). Furthermore, a recombi-
nant virus carrying both a null mutation in gH and a T887A mutation in gB caused 
the aberrant accumulation of primary enveloped virions in membranous vesicle 
structures adjacent to the nuclear membrane in infected cells (Wisner et al. 2009). 
These observations suggest that the Us3 phosphorylation of gB at Thr-887 plays a 
critical role in viral replication and pathogenic manifestations in the peripheral sites 
of mice by regulating the cell surface expression of gB and de-envelopment fusion 
during the nuclear egress of nucleocapsids.
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3.3.5  Us3 Phosphorylates UL47 at Ser-77

Bioinformatic analysis predicted that UL47 has four putative Us3 phosphorylation 
sites (Kato et al. 2011). Interestingly, Us3 regulated the correct nuclear localization 
of UL47 in infected cells, and three of the four putative Us3 phosphorylation sites 
(Ser-77, Ser-88, and Thr-685) in UL47 were located close to the protein nuclear 
localization signal (NLS) (codons 50 to 68) and nuclear export signal (NES) (codons 
658 to 667) (Kato et al. 2011). Mapping analysis by Us3 in an in vitro kinase assay 
showed that the Ser-77 of UL47 is a Us3 phosphorylation site of UL47 and that an 
alanine mutation in this site (S77A) reduced the development of HSK disease and 
viral replication in the eyes of mice following ocular infection as in the case of the 
Us3 phosphorylation of gB and Us3 itself (Kato et al. 2011). Notably, it was reported 
that the phosphorylation of a protein near its NLS is a key and common mechanism 
by which the transport of NLS-containing proteins into the nucleus can be regu-
lated. This suggests that the Us3 phosphorylation of UL47 at Ser-77 regulates the 
nuclear localization of UL47 in infected cells (Kato et al. 2011). In agreement with 
this, a S77A mutation in UL47 impaired the nuclear localization of UL47 in infected 
cells, whereas a phosphomimetic mutation in this site restored wild-type nuclear 
localization. Furthermore, UL47 formed a complex(es) with UL34, UL31, and/or 
Us3 (all critical for viral nuclear egress) and promoted nuclear egress of the nucleo-
capsids (Liu et al. 2014). These observations suggest that the Us3 phosphorylation 
of UL47 at Ser-77 facilitates viral nuclear egress by promoting the nuclear localiza-
tion of UL47 in infected cells.

3.3.6  Us3 Phosphorylates Viral dUTPase (vdUTPase) 
at Ser-187

A large-scale phosphoproteomic analysis of titanium dioxide affinity 
chromatography- enriched phosphopeptides from HSV-1-infected cells using high- 
accuracy mass spectrometry showed that the Ser-187 of HSV-1-encoded dUTPase 
(vdUTPase) is a phosphorylation site (Kato et al. 2014c). Amino acid sequences 
around vdUTPase Ser-187 resemble the consensus sequence of the Us3 phosphory-
lation site. Based on this information, it was shown that Us3 phosphorylates vdUT-
Pase at Ser-187 both in  vitro and in infected cells (Kato et  al. 2014c). This 
phosphorylation upregulates the activity of vdUTPase to hydrolyze dUTP to dUMP 
and pyrophosphate in infected cells (Kato et al. 2014c). Because DNA polymerase 
readily misincorporates dUTP into replicating DNA causing point mutations and 
strand breakage, dUTP hydrolysis by dUTPase is required for accurate DNA repli-
cation (Vertessy and Toth 2009). It has long been assumed that viruses encode a 
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dUTPase to compensate for low cellular dUTPase activity if present in their host 
cells, for example, in resting and differentiated cells such as neurons and macro-
phages where cellular dUTPase activity was reported to be low. In agreement with 
this hypothesis, sufficient dUTPase activity is required for efficient HSV-1 replica-
tion, and the upregulation of vdUTPase activity by Us3 phosphorylation requires 
viral genome integrity by compensating for low cellular dUTPase activity in the 
CNS of mice following intracranial infection (Kato et al. 2014a, 2015). To the best 
of our knowledge, HSV proteins critical for viral virulence in the CNS are, in almost 
all cases, also involved in viral pathogenicity at peripheral sites. Surprisingly, the 
Us3 phosphorylation of vdUTPase at Ser-187 was critical for viral virulence in the 
CNS, but not for pathogenic effects in the eyes and vaginas of mice following ocular 
and vaginal infection, respectively (Kato et al. 2014b). Therefore, vdUTPase is a 
Us3 substrate responsible for HSV-1 virulence in the CNS, and this phosphorylation 
is a specific mechanism involved in HSV-1 virulence in the CNS.

3.3.7  Us3 Phosphorylates KIF3A at Ser-687

Us3 downregulates the cell surface expression of the major histocompatibility com-
plex class I-like antigen-presenting molecule (CD1d) by suppressing its endocytic 
recycling (Rao et  al. 2011; Xiong et  al. 2015). CD1d molecules on antigen- 
presenting cells present antigenic lipids to the T-cell receptor on natural killer 
T-cells, resulting in the rapid production of cytokines and cytotoxic proteins (Getz 
and Reardon 2017). Mature CD1d molecules constantly recycle between the cell 
surface and intracellular endosomal compartment, presumably to survey intracel-
lular lipid antigens (Getz and Reardon 2017). Xiong et al. found that (i) the type II 
kinesin motor protein KIF3A is critical for the cell surface expression of CD1d, (ii) 
Us3 phosphorylates KIF3A at Ser-687 both in vitro and in infected cells, and (iii) 
the Us3-mediated downregulation of CD1d is completely absent in cells transfected 
with a green fluorescent protein-tagged KIF3A S687A mutant (Xiong et al. 2015). 
These observations suggest that the Us3 phosphorylation of KIF3A at Ser-687 
inhibits natural killer T-cell function by modulating the intracellular trafficking of 
CD1d in infected cells.

3.3.8  Us3 Phosphorylates BAD

Us3 suppresses apoptosis induced by sorbitol, proapoptotic cellular proteins or 
replication- incompetent mutant HSV-1 (Leopardi et al. 1997) (Munger and Roizman 
2001; Yu and He 2016). In vitro, Us3 directly phosphorylates human Bcl-2- 
associated agonist of cell death (BAD) (Kato et al. 2005; Cartier et al. 2003), which 
is a proapoptotic member of the Bcl-2 gene family, and the overexpression of Us3 
mediates a posttranslational modification of mouse BAD and blocks its cleavage, 
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which activated apoptosis (Munger and Roizman 2001). The phosphorylation of 
mouse BAD at Ser-112, Ser-136, and Ser-155 (human BAD Ser-75, 99 and 118) by 
cellular protein kinases, such as protein kinase A (PKA) and protein kinase B (Akt) 
and/or p90 ribosomal S6 kinase (RSK), inhibited the apoptotic activity of BAD 
(Niemi and MacKeigan 2013). Amino acid sequences around the three phosphory-
lation sites of BAD are similar to the consensus sequence recognized by Us3. These 
observations suggest that Us3 phosphorylates BAD at Ser-112, Ser-136, and/or Ser- 
155 to inhibit apoptosis. However, Us3 also inhibited apoptosis induced by the over-
expression of mutant mouse BAD in which the Ser-112, Ser-136, and Ser-115 of 
BAD were substituted with alanines (Benetti et al. 2003). In addition, Us3 blocked 
apoptosis induced by the overexpression of BH3-interacting domain death agonist 
(BID), a factor parallel to BAD in the apoptotic pathway, and apoptosis regulator 
BAX, a factor downstream of BAD in the apoptotic pathway (Ogg et  al. 2004). 
Therefore, it is reasonable to conclude that Us3 inhibits both BAD and other 
factor(s) downstream of BAD to block apoptosis.

3.3.9  Us3 Phosphorylates PKA

The phosphorylation target site specificity of HSV-1 Us3 is similar to that of PKA 
or Akt (Benetti and Roizman 2004; Chuluunbaatar et al. 2010), and some antibodies 
that recognize the phosphorylated substrate sequences of PKA react with Us3 phos-
phorylation sites (Kato et al. 2008, 2009, 2011; Xiong et al. 2015). Interestingly, 
Benetti et al. reported that (1) purified Us3 directly phosphorylated peptides con-
taining the PKA regulatory type IIα subunit (PRKAR2A) sequence in vitro, (2) Us3 
mediated a posttranslational modification of PRKAR2A in infected cells, and (3) 
activation of PKA by forskolin blocked apoptosis induced by a replication- 
incompetent mutant HSV-1 or by BAD independent of Us3 in infected cells (Benetti 
and Roizman 2004). These results suggest that a major determinant of the anti- 
apoptotic activity of Us3 is involved in the phosphorylation of PKA substrates by 
either or both enzymes. Furthermore, PKA directly phosphorylated the Us3 phos-
phorylation sites of gB and Us3 itself in vitro although the protein kinase activity of 
Us3 is responsible for their phosphorylation in infected cells (Kato et  al. 2008, 
2009). Therefore, it would be interesting to analyze whether Us3 regulates some of 
the physiological substrates of PKA in infected cells.

3.3.10  Us3 Phosphorylates TSC2 at Ser-939

Viruses, as obligate intracellular parasites, dynamically modulate de novo protein 
synthesis by hijacking the host translational machinery. Mammalian target of 
rapamycin complex 1 (mTORC1) inactivated the translational repressor activity of 
eukaryotic translation initiation factor 4E-binding protein 1 (4E-BP1) by 
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phosphorylating 4E-BP1 at both Thr-37 and Thr-46 (Gingras et al. 1999; Huang and 
Manning 2009). In addition, Akt neutralized the tuberin (TSC2)-mediated negative 
regulation of mTORC1 by phosphorylating TSC2 at Ser-929 and Thr-1462 (Inoki 
et al. 2002; Huang and Manning 2009). HSV-1 infection induced the phosphoryla-
tion and degradation of 4E-BP1 to stimulate cap-dependent translation independent 
of Akt in infected cells (Chuluunbaatar et al. 2010). Interestingly, (1) Us3 phos-
phorylated TSC2 at Ser-929 and Thr-1462 both in vitro and in infected cells, (2) the 
overexpression of a TSC2 mutant carrying S929A and T1462A double mutations 
prevented the degradation of 4E-BP1 in HSV-1-infected cells, and (3) the knock-
down of TSC2 by siRNA rescued the reduction of viral replication caused by the 
Us3 deletion (Chuluunbaatar et al. 2010). These results suggest that Us3 activates 
mTORC1 via the neutralization of TSC2-negative regulators in infected cells. 
However, Us3 suppressed the activation of Akt by blocking the phosphorylation of 
Akt at Ser-473  in infected cells (Benetti and Roizman 2006; Eaton et  al. 2014). 
Therefore, we hypothesized that Us3 inhibits Akt activation and hijacks downstream 
Akt targets such as the Akt/TSC2/mTORC1 signaling axis in infected cells. This 
hypothesis is supported by the observation that Us3 controls the stable formation of 
microtubules in infected cells by upregulating the phosphorylation of glycogen syn-
thase kinase 3β (GSK3β) at Ser-21, which is a phosphorylation site usually medi-
ated by Akt (Naghavi et al. 2013).

3.3.11  Us3 Phosphorylates Lamin A/C at Multiple Sites

As described above, the nucleocapsids of herpesviruses assemble in the nucleo-
plasm and bud through the INM (primary envelopment), and then the enveloped 
nucleocapsids fuse with the ONM (de-envelopment) (Johnson and Baines 2011). To 
access the INM, nucleocapsids must bypass the nuclear lamina, a dense meshwork 
of type V microfilaments categorized as either A-type (lamin A/C) or B-type (lamin 
B1, B2) (Harr et al. 2015). Us3 directly phosphorylates lamin A/C at multiple sites 
both in vitro and in infected cells (Mou et al. 2007). Interestingly, Us3 elevated the 
solubility of lamin A/C from an endogenous pre-existing nuclear lamina in vitro 
(Mou et  al. 2007). These observations suggest that the Us3 phosphorylation of 
lamin A/C contributes to the efficient transport of nucleocapsids to the INM of 
infected cells. Furthermore, in infected cells, Us3 also mediates the phosphorylation 
of emerin (Morris et al. 2007; Leach et al. 2007), a member of the LEM domain 
class of INM proteins that binds to a number of nuclear components including lam-
ins, barrier-to-autointegration factor (BAF), as well as F-actin, and is believed to be 
involved in maintaining nuclear integrity (Harr et al. 2015). Biochemical extraction 
experiments and immunofluorescence assays showed that the association of emerin 
with the INM was significantly reduced during HSV-1 infection (Morris et al. 2007). 
Currently, it is not known whether emerin is a physiological substrate of Us3 or 
whether the phosphorylation of emerin induced by HSV-1 infection is involved in 
its association with the INM. However, the phosphorylation of emerin at Ser-175 
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was reported to inhibit its binding to BAF in a Xenopus egg cell-free system (Hirano 
et al. 2005). Therefore, it would be interesting to identify the Us3 phosphorylation 
sites of lamin A/C or emerin and investigate the effect of phosphorylation on the 
transport efficiency of nucleocapsids to the INM in infected cells.

3.3.12  Us3 Phosphorylates IRF3 at Ser-175

A Us3 null mutant virus was reported to be more sensitive to IFN-α compared with 
wild-type virus, suggesting Us3 mediates resistance to IFN-α treatment (Deruelle 
and Favoreel 2011). Wang et al. reported that (1) the overexpression of Us3 inhib-
ited IFN-β production by Sendai virus (SeV) infection and the overexpression of 
constitutive active IRF3 and that (2) Us3 phosphorylated and interacted with IFR3 
in HSV-1-infected cells (Wang et al. 2013). Furthermore, dimers of activated IRF3 
translocated to the nucleus from the cytoplasm and elevated the transcription of 
interferons α and β, as well as other interferon-induced genes (Wang et al. 2013). As 
expected, the overexpression of Us3 in part canceled SeV-induced dimerization and 
the nuclear translocation of IRF3 (Wang et al. 2013). Furthermore, alanine replace-
ment at the Ser-175 of IRF3 prevented Us3 phosphorylation and the transcriptional 
activity of IRF3 in cells transfected with Us3 (Wang et al. 2013). These observa-
tions suggest that Us3 modulates type-1 interferon signaling through the phosphor-
ylation of IRF3 at Ser-175  in infected cells. Interestingly, Epstein-Barr virus 
encoding BGLF4 protein kinase phosphorylated IRF-3 at Ser-123, Ser-175, and 
Thr-180 and inhibited the transcriptional activity of IRF3 (Wang et al. 2009). There 
is no evidence showing that the Ser-175 of IRF3 is phosphorylated except in herpes-
virus uninfected cells. Therefore, herpesviruses have evolved unique strategies to 
overcome IRF3-mediated antiviral responses.

3.4  Future Perspectives

In this section, we reverified the consensus phosphorylation target sequence of Us3 
using the LOGO algorithm (http://weblogo.threeplusone.com/) based on phosphor-
ylation sites of “the physiological substrates of Us3 and VZV encoding Us3 homo-
logs, ORF66” reported by five other groups (Fig. 3.2a). As shown in Fig. 3.2b, the 
physiological substrate of Us3 or Us3 homologs tends to contain 3.25 basic residues 
on the N-terminal side and 0.92 acidic residues or a tyrosine residue on the 
C-terminal side. Although peptides with a +1 and/or +2 acidic residue have been 
reported to not be optimal phosphorylation targets (Purves et al. 1986; Leader 1993; 
Leader et al. 1991), an acidic residue on the C-terminal side of Us3 target residues 
does not exert a negative influence on the physiological substrates of Us3. This 
information may aid the further identification of novel Us3 substrates and our 
understanding of unidentified Us3 functions in the near future.
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Chapter 4
Oncolytic Virotherapy by HSV

Daisuke Watanabe and Fumi Goshima

Abstract Oncolytic virotherapy is a kind of antitumor therapy using viruses with 
natural or engineered tumor-selective replication to intentionally infect and kill 
tumor cells. An early clinical trial has been performed in the 1950s using wild-type 
and non-engineered in vitro-passaged virus strains and vaccine strains (first genera-
tion oncolytic viruses). Because of the advances in biotechnology and virology, the 
field of virotherapy has rapidly evolved over the past two decades and innovative 
recombinant selectivity-enhanced viruses (second generation oncolytic viruses). 
Nowadays, therapeutic transgene-delivering “armed” oncolytic viruses (third gen-
eration oncolytic viruses) have been engineered using many kinds of viruses. In this 
chapter, the history, mechanisms, rationality, and advantages of oncolytic virother-
apy by herpes simplex virus (HSV) are mentioned. Past and ongoing clinical trials 
by oncolytic HSVs (G207, HSV1716, NV1020, HF10, Talimogene laherparepvec 
(T-VEC, OncoVEXGM-CSF)) are also summarized. Finally, the way of enhancement 
of oncolytic virotherapy by gene modification or combination therapy with radia-
tion, chemotherapy, or immune checkpoint inhibitors are discussed.

Keywords Herpes simplex virus · HSV · Oncolytic virotherapy · G207 · 
HSV1716 · NV1020 · HF10 · Talimogene laherparepvec · T-VEC · 
OncoVEXGM-CSF

4.1  Introduction

Cancer is the second worldwide cause of death, exceeded only by cardiovascular 
diseases (Pérez-Herrero and Fernández-Medarde 2015). For local and nonmeta-
static cancers, surgery is the most effective and valuable treatment but is inefficient 
when the cancer has spread throughout the body. For advanced and metastatic 
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cancers, systemic cytotoxic chemotherapy and/or radiation therapy has been used, 
but in some cancers such as malignant melanoma, these therapies are ineffective. 
Recent advances in understanding of cancer biology and immunology have spurred 
the development of numerous targeted therapies including molecular-targeted thera-
pies or immunotherapies. In particular, a class of immune modulatory drugs target-
ing the immune checkpoint pathways like anti-PD-1 antibody (nivolumab) has 
demonstrated remarkable durable remissions in a part of advanced malignant mela-
noma patients (Tang et  al. 2016). However, these agents cause many systemic 
adverse reactions, such as pneumonitis, colitis, and autoimmune diseases (Dossett 
et al. 2015; Spain et al. 2016). The high prices of these drugs are also problematic.

Besides these agents, another immunotherapy with tumor destruction using 
oncolytic virus (oncolytic virotherapy) has been studied for several decades and 
showed significant progress in recent years. This review focuses on the progress of 
oncolytic virotherapy, especially by using herpes simplex virus (HSV) for malig-
nant internal tumors and brain tumors based on the mechanisms and clinical devel-
opment. We also discuss the attempts for enhancing the effectiveness of oncolytic 
virotherapy by gene modification or combination therapies.

4.2  What Is Oncolytic Virotherapy?

Oncolytic virotherapy is a kind of antitumor therapy using viruses with natural or 
engineered tumor-selective replication to intentionally infect and kill tumor cells. 
The phenomenon that tumor regression following naturally acquired virus infec-
tions has been known over 100 years before. In 1904, a patient with chronic myelog-
enous leukemia had a dramatic decrease in white blood cells during a “flu-like” 
illness (Dock 1904). In 1912, a woman with cervical carcinoma responded to 
repeated rabies vaccinations (DePace 1912). An early clinical trial has been per-
formed in the 1950s using wild-type and non-engineered in vitro-passaged virus 
strains and vaccine strains (first generation oncolytic viruses). For example, a clini-
cal trial was performed using 30 patients with cervical cancer treated with different 
adenovirus serotypes (Huebner et al. 1956). More than 50% of patients showed a 
marked to moderate local tumor response; no systemic responses were reported, but 
the prolongation of survival was not significantly significant.

Because of the advances in biotechnology and virology, the field of virotherapy 
has rapidly evolved over the past two decades and innovative recombinant 
selectivity- enhanced viruses (second generation oncolytic viruses). In 1991, 
Martuza et al. first reported oncolytic virotherapy against mice glioma (malignant 
brain tumor) model using genetically engineered HSV. In that report, intraneoplas-
tic inoculation of a thymidine kinase-negative mutant of herpes simplex virus-1 
(dlsptk) prolonged survival of nude mice with intracranial U87 gliomas (Martuza 
et al. 1991). Nowadays, therapeutic transgene-delivering “armed” oncolytic viruses 
(third generation oncolytic viruses) have been engineered using many kinds of 
viruses. Table 4.1 shows the viruses studying as oncolytic virus today.
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4.3  Mechanisms of Oncolytic Virotherapy

Mainly, there are two kinds of mechanisms for oncolytic viruses to kill cancer cells 
(Sze et al. 2013). The first and direct oncolytic effects are caused by viral infection 
itself and tumor cell lysis. By infection into tumor cells, viruses can produce viral 
proteins that are antigenic. After the lysis of infected cell, new virions are released 
and will infect neighboring cancer cells.

By releasing tumor antigens and triggering an immune response by infection, 
viruses can act as immunomodulators or tumor vaccines. By viral infection, inflam-
mation occurs, and innate and acquired immune cells including cytotoxic T lym-
phocytes, natural killer cells, dendritic cells, and phagocytic cells will eliminate 
cancer cells. In addition, development of memory against tumor antigens will begin 
by these immune responses and will act on distant metastases as well (Fig. 4.1).

4.4  HSV as Oncolytic Virus

Herpes simplex virus type 1 (HSV-1) and type 2 (HSV-2) are important human 
pathogens that cause a variety of skin diseases from recurrent herpes labialis, herpes 
genitalis, and Kaposi’s varicelliform eruption (eczema herpeticum) to life- 
threatening diseases such as herpes encephalitis and neonatal herpes (Nishiyama 
2004). Especially among immunocompromised patients, the virus can be systemi-
cally disseminated and cause fatal infection (Witt et al. 2009). HSV was the first of 
the human herpes viruses to be discovered and has been the most intensively stud-
ied. Since the publication of the complete genomic DNA sequence of HSV-1  in 
1988 (McGeoch et al. 1988), a number of studies have focused on elucidating the 

Table 4.1 Candidates of 
oncolytic virus

DNA viruses Herpes simplex virus 1 Herpesviridae
Human adenovirus 5 Adenoviridae
Vaccinia virus Poxviridae
Myxoma virus

RNA viruses Echovirus(type I) Picornaviridae
Coxsackie virus
Poliovirus
Measles virus Paramyxoviridae
Newcastle disease virus
Mumps virus
Vesicular stomatitis virus Rhabdoviridae
Reovirus Reoviridae
Influenza virus Myxoviridae
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roles of individual HSV genes in viral replication and pathogenicity. These studies 
also identified the HSV gene products involved in the regulation of gene expression, 
interaction with the host cell, and evasion from the host immune system. The result-
ing depth of knowledge of HSV has allowed the development of potential therapeu-
tic agents and vectors for several applications in human diseases.

Fig. 4.1 An oncolytic virus, represented by black hexagons, attacks a cancerous cell (a). As a 
result of a natural tropism for the cell type or a specificity for a tumor-related cell surface antigen 
or receptor, the virus enters the malignant cell more readily than it would enter into a normal cell 
(e), which may not exhibit the same receptivity to infection. Upon infecting the malignant cell, the 
permissive nature of the cell that allows malignant genetic material to propagate also allows 
unchecked replication of the virus (b). An infection of a normal cell (f) is abortive as a result of the 
cell’s ability to recognize and to destroy abnormal genetic material. The infected cell (b) will pro-
duce viral proteins that are antigenic and may alert the immune system, and, if the virus is geneti-
cally armed, the cell may produce cytokines and other signaling chemicals to activate the immune 
system. The infected cancer cell is eventually overwhelmed by the viral infection and lyses, releas-
ing new viral particles locally to infect neighboring malignant cells (c). Lysis releases new viral 
and tumor- related antigens, which may be recognized and attacked by the immune system, repre-
sented here by a lymphocyte (L). Lysis-related viremia may result in infection of distant metasta-
ses (d), transforming a locoregional effect into a systemic effect. Activation of the immune system 
with elevation of systemic cytokine levels and activated leukocytes further enhances the systemic 
effect. Parts of the immune system may also develop memory and learn to recognize tumor anti-
gens, potentially providing a more durable defense against residual and recurrent disease. (Adapted 
from Sze et al. 2013)
So far, many types of viruses, including HSV, adenoviruses, and adeno-associated viruses, have 
been engineered and evaluated for their potential as therapeutic agents in the treatment of malig-
nant neoplasm
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4.4.1  Structure, Natural History, and Gene Function of HSV

HSV is an enveloped, double-stranded linear DNA virus about 100 nm in diameter. 
The viral particle is an icosahedral capsid containing the viral DNA with a genome 
of 152 kb encoding over 74 distinct genes. The capsid is surrounded by an amor-
phous layer known as the tegument, which contains viral structural and regulatory 
proteins, and external envelope containing numerous glycoproteins (Fig.  4.2a). 
Following primary infection from skin or mucosa, HSV enters into nerve endings 
and is then transported to the dorsal root and trigeminal ganglia where the virus 
establishes latent infection. The virus is reactivated by stimuli such as UV irradia-
tion, mental or physical stress, or menstruation and causes symptomatic or asymp-
tomatic recurrent infection (Mori and Nishiyama 2005).

The HSV genome consists of two long structures of unique sequences (desig-
nated long (UL) and short (US)), both of which are flanked by a pair of inverted 
repeat regions (TRL–IRL and IRS–TRS). There is a single copy of the “a” sequence, 
which contains the specific signals for packaging of viral DNA into capsids (Taylor 
et  al. 2002), at each terminus and one at the junction between IRL and IRS 
(Fig. 4.2b).

HSV genes are classified into three groups by the regulation of their expression: 
immediate early (IE), early (E), and late (L). The IE gene products regulate gene 

Envelope glycoprotein

Envelope

Tegument

Capsid

Core

a

b

TRL IRL TRSIRSUL Us aaa

Fig. 4.2 (a) Structure of HSV. HSV is an enveloped, double-stranded linear DNA virus which 
diameter is about 100 nm. The virus particle comprehends an icosahedral capsid, which contains 
the viral DNA with a genome of 152 kb encoding over 74 distinct genes. Around the capsid, there 
is an amorphous layer known as the tegument, containing viral structural and regulatory proteins, 
surrounded by external envelope glycoproteins (b) HSV genome. HSV has genome of 152 kb 
encoding over 74 distinct genes. The HSV genome consists of two long structures of unique 
sequences (designated long (UL) and short (Us)), both of which are flanked by a pair of inverted 
repeat regions (TRL-IRL and IRs-TRs). There is a single copy of the “a” sequence at each terminus 
and one at the junction between IRL and IRs
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transcription and include the US12 gene product, ICP47 which is responsible for 
decreasing MHC class I expression in infected cells via inhibition of the transporter 
associated with antigen presentation (TAP). The E gene products promote viral 
DNA synthesis in either viral DNA replication or in nucleic acid metabolism. Most 
of the L gene products are virion components such as capsid proteins, tegument 
proteins, and envelope glycoproteins (Nishiyama 1996).

HSV genes can also be divided into two groups according to whether or not they 
are essential for viral replication in cultured cells. Approximately half of the genes 
are essential genes that are necessary for viral replication and which encode capsid 
proteins, viral DNA replication proteins, viral DNA cleavage/packaging proteins, 
and some envelope glycoproteins. HSV is unable to replicate with even a single 
dysfunction in an essential gene. The remaining genes have been shown to be dis-
pensable for replication. These accessory genes encode enzymes involved in nucleic 
acid metabolism, regulatory proteins required for efficient viral replication, proteins 
for protecting the virus and infected cells from the host immunity, and genes with 
other undetermined functions. Although the accessory genes are not necessary for 
viral replication in cell culture, the expression of these genes enables the virus to 
replicate effectively in a variety of cell types under different conditions, resulting in 
the replication and survival of HSV in humans (Mori and Nishiyama 2006). The 
functions of HSV gene products, their expression phase, and whether they are 
essential or accessory genes are summarized in Table 4.2.

4.4.2  Rationality of Using HSV for Oncolytic Virotherapy

HSV offers a number of advantages as an oncolytic agent.

 1. Unlike many other viruses that only bind to a single receptor, HSV has four cel-
lar receptors and has broad host range that allows the virus to infect and replicate 
almost all cell lines. As a result, oncolytic viruses derived from HSV can be 
applied therapeutically to many different types of tumors. In addition, in contrast 
to other oncolytic viruses, the property might protect against the rapid develop-
ment of resistance to virotherapy using HSV.

 2. HSV can infect both in replicating and non-replicating cells such as neuronal 
cells. This property enables oncolytic HSV to applying brain tumors such as 
glioblastoma.

 3. HSV has the potential for incorporating a large size of foreign DNA. It is useful 
when making therapeutic transgene-delivering “armed” oncolytic viruses.

 4. Undesired infection or toxicity from the virus replication can be controlled by 
effective anti-herpetic agents such as acyclovir and famciclovir.

 5. Compared to adenoviruses, lytic infection by HSV usually kills target cells much 
more rapidly and effectively. For example, HSV can form visible plaques in 
cultured cells in 2 days, in contrast to 7 to 9 days for an adenovirus. In in vitro 
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Table 4.2 Functions of herpes simplex virus gene products

Gene
Essential(E)/ 
dispensable(D)

Times of 
expression
(IE/E/L) Gene products and functions

Regulation of gene expression

RL2 D IE ICP0: promiscuous transactivator with E3 
ubiquitin ligase domains

UL54 E IE ICP27: regulation of gene expression at 
posttranscriptional level

RS1 E IE ICP4: major regulatory protein
US1 D IE ICP22: regulatory protein that enhances the 

expression of late genes
Nucleic acid metabolism

UL2 D E Uracil DNA glycosidase
UL23 D E Thymidine kinase, selective activation of 

aciclovir and ganciclovir
UL39 D E Ribonucleotide reductase large subunit with 

protein kinase activity
UL40 D E Ribonucleotide reductase small subunit
UL50 D E Deoxyuridine triphosphatase
DNA replication

UL5 E E DNA helicase, a component of DNA primase/
helicase complex

UL8 E E A component of DNA primase/helicase 
complex

UL9 E E Replication origin-binding protein
UL29 E E ICP8: single-strand DNA binding protein
UL30 E E DNA polymerase catalytic subunit
UL42 E E DNA polymerase accessory subunit
UL52 E E DNA primase, a component of DNA primase/

helicase complex
DNA cleavage/packaging

UL6 E L Associated with capsids, a subunit of the portal 
complex

UL15 E L DNA terminase activity
UL25 E L Associated with capsids, seals capsids after 

DNA packaging
UL32 E L Not associated with capsids, required for 

correct localization of capsids
UL33 E L Not associated with capsids, interact with 

UL14
Protein kinase

UL13 D E Protein kinase
US3 D L Protein kinase with antiapoptotic activity
Capsid protein

UL18 E L VP23: forms triplex with VP19c

(continued)
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studies, it has also shown that HSV can kill almost 100% of cultured cancer cells 
at a multiplicity of infection (MOI) of 0.01 (Fu and Zhang 2002).

 6. HSV can infect many kinds of animals. Due to the similarity in the viral pathoge-
nicity in mice, guinea pigs, and monkeys, to that in humans, preclinical studies of 
oncolytic HSV can be performed relatively easily by using these animal models.

Table 4.2 (continued)

Gene
Essential(E)/ 
dispensable(D)

Times of 
expression
(IE/E/L) Gene products and functions

UL19 E L VP5: major capsid protein
UL26 E L VP24 and VP21 are the products of the 

self-cleavage of UL26
UL26.5 E L VP22a: scaffolding protein
UL35 D L VP26
UL38 E L VP19c: a component of the intercapsomeric 

triplex
Tegument protein

UL36 E L ICP1/2: involved in both uncoating and egress
UL41 D L Vhs: virion host shutoff protein, causes the 

degradation of mRNA
UL46 D L VP11/12: interacts with UL48
UL47 D L VP13/14: enhances immediate early gene 

expression
UL48 E L VP16: stimulating immediate early gene 

expression
UL49 E L VP22: intercellular trafficking activity
Envelope glycoprotein

UL1 E L gL: forms a complex with gH, involved in 
entry, egress, and cell-to-cell spread

UL22 E L gH: forms a complex with gH, involved in 
entry, egress, and cell-to-cell spread

UL27 E L gB: required for entry
UL44 D L gC: involved in adsorption, C3b-binding 

activity
UL53 D L gK: involved in egress
US6 E L gD
US7 D L gI: forms a complex with gE, cell-to-cell 

spread
US8 D L gE: Fc receptor activity, forms a complex with 

gI, cell-to-cell spread
Others

RL1 D L γ134.5: requires protein synthesis by binding to 
protein phosphatase 1

RL3 D – LAT: latency associated transcript
US12 D IE ICP47: TAP-binding protein, involved in MHC 

class I downregulation
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 7. The determination of complete open reading frames and identification of disease- 
related viral genes (Marconi et al. 2008; Todo 2008).

 8. The risk of introducing an insertional mutation during HSV oncolytic therapy 
appears minimal because HSVs rarely integrate into cellular DNA. While strong 
immunogenicity and cell toxicity induced by HSV infection are major disadvan-
tages for developing gene delivery vectors using HSV, they are beneficial when 
developing vaccine vectors or anticancer agent by HSV recombination.

4.4.3  Important Genes for Making Effective Oncolytic HSVs

4.4.3.1  Immediate Early Genes

ICP0 (infected cell polypeptide 0) is the RL2 gene product. It belongs to the imme-
diate early proteins (IE) that it required for effective initiation of viral lytic infection 
and reactivation from latent infection of HSV (Bringhurst and Schaffer 2006). ICP0 
is a 775-amino acid really interesting new gene (RING)-finger-containing protein 
that possesses E3 ubiquitin ligase activity, which is required for ICP0 to activate 
HSV-1 gene expression; disrupt nuclear domain (ND) 10 structures; mediate the 
degradation of cellular proteins including cdc34, Sp100, and PML; and evade the 
host cell’s intrinsic and innate antiviral defenses. This protein degradation may cre-
ate a favorable microenvironment for viral replication (Boehmer and Nimonkar 
2003; Lilley et al. 2005). ICP0 also prevents cellular rRNA degradation (Sobol and 
Mossman 2006). It has been reported that ICP0 mutation impairs viral replication in 
normal cells. On the other hand, the ICP0 mutant KM100 virus exhibits an onco-
lytic effect on tumor cells, causing tumor regression and increased survival in exper-
imental breast cancer models in mice (Hummel et al. 2005).

ICP4 is also a regulator of viral transcription that is required for productive infec-
tion. Since viral genes are transcribed by cellular RNA polymerase II (RNA pol II), 
ICP4 must interact with components of the pol II machinery to regulate viral gene 
expression. It has been shown previously that ICP4 interacts with TATA box- binding 
protein (TBP), TFIIB, and the TBP-associated factor 1 (TAF1) in vitro (Zabierowski 
and Deluca 2008).

NV1066, which has only one of two originally present copies of both ICP0 and 
ICP4, has an antitumor effect against breast cancer, pleural cancer, bladder cancer, 
and esophageal cancer (Mullerad et al. 2005; Stiles et al. 2006a; b). Interestingly, 
this virus not only destroys tumor cells but also induces apoptosis in uninfected cells 
via the cellular bystander pathway. This apoptosis hinders viral spread from cell to 
cell. Previous studies showed that pharmaceutically inhibiting apoptosis can improve 
the oncolytic viral proliferation and the antitumor effect (Stanziale et al. 2004).

ICP47 also belongs to IE proteins. It inhibits the transporter associated with anti-
gen presentation (TAP), decreasing MHC class I expression and preventing infected 
cells from presenting viral to CD8+ cells (Hill et  al. 1995). The lack of ICP47 
increases MHC class I expression, which might induce an enhanced antitumor 
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immune response. The bovine herpesvirus 1 (BHV-1) TAP-inhibitor (UL49.5)-
expressing oncolytic virus showed superior efficacy treating bladder and breast can-
cer in murine preclinical models that was dependent upon a CD8+ T-cell response. 
In addition to treating directly injected, subcutaneous tumors, UL49.5-oncolytic 
virotherapy reduced untreated, contralateral subcutaneous tumor size and naturally 
occurring metastasis (Pourchet et al. 2016).

4.4.3.2  Early and Late Genes

Ribonucleotide reductase (RR) catalyzes the reduction of ribonucleotides to deoxy-
ribonucleotides. As a result, it provides sufficient precursors for the de novo synthe-
sis of DNA. Because HSV has its own RR, replication of the virus is independent of 
the host cell cycle. By inactivating the viral RR gene, viral replication is completely 
under the control of host cell dividing conditions. RR-deficient HSV-1 such as hrR3 
was expected to exhibit selective oncolytic effects and increase their potency when 
combined with radiation; however, complementary toxicity was seen between radi-
ation and hrR3, without evidence of viral replication (Spear et al. 2000).

The γ34.5 gene product (ICP34.5) enables the virus to replicate in neurons and 
spread within the brain. When this gene is deleted, HSV-1 cannot complete a lytic 
infection in neurons and thus cannot cause encephalitis (Kanai et  al. 2012). 
Attenuated viruses that are mutated in the γ34.5 may be useful for malignant tumors 
in the central nervous system.

4.5  How to Make Oncolytic HSVs?

There are several established techniques for generating recombinant 
HSV. Traditionally, recombinant HSV mutants have been generated by homologous 
recombination between purified HSV DNA and a recombination plasmid in co- 
transfected cells (Bataille and Epstein 1995). An alternative procedure is the trans-
fection of cells with overlapping cosmids containing appropriate insertions or 
deletions. Expression of genes contained in cosmids leads, through recombination, 
to the construction of full-length viral genome (Kong et al. 1999). In these methods, 
there are several problems such as the inefficiency of recombination and the need to 
screen or select plaques for the correct recombinant. This has hampered the devel-
opment of new recombinant HSV vectors.

Recently, novel recombinant technique using bacterial artificial chromosome 
(BAC) has enabled the cloning of the whole HSV genome as a BAC plasmid and its 
subsequent manipulation in E. coli (Stavropoulos and Strathdee 1998). BAC clon-
ing requires the insertion of mini F plasmid sequences and antibiotic resistance 
genes into the viral genome. The total length of these BAC backbone sequences is 
usually greater than 6  kb. Insertion of BAC sequences into the wild-type HSV 
genome (152 kb) increases the genome length to approximately 158 kb, leaving 
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insufficient space for the insertion of additional sequences. To avoid deleterious 
effects of the BAC sequences, including growth defects and potential transmission 
between bacteria and man, some herpes virus BAC clones have been constructed 
with loxP site-flanked BAC sequences that can be removed by Cre recombinase 
(Tanaka et al. 2003). One potential disadvantage of the BAC system is the potential 
for higher rates of error in DNA replication in bacteria than eukaryotic cells, whether 
or not this will prove to be a problem is not yet known.

4.6  Oncolytic Viruses Derived from HSV-1 that Have 
Reached Clinical Testing

There have been several clinical trials with HSV-1 mutants as oncolytic agents using 
gene deletion described before. These mutants have been applied for the treatment 
of malignant brain tumors or malignant melanoma and other solid tumors (Table 4.3).

4.6.1  G207

G207 has been credited as the first oncolytic virus generated by genetic engineering 
technology. The virus was constructed from HSV-1 by deleting both copies of the 
γ34.5 gene and an insertional mutation in the ICP6 gene (Mineta et al. 1995). First, 
the safety and efficacy of G207 were demonstrated in preclinical animal models 
(Mineta et al. 1995, Sundaresan et al. 2000. Todo et al. 2000). Then G207 was tested 
in the treatment of malignant glioma in a phase I clinical trial. Up to 3 × 109 plaque- 
forming units (pfu) of virus was injected into tumors of 21 patients and revealed that 
the virus was well tolerated (Markert et al. 2009). Because of a lack of convincing 
evidence of clinical efficacy, G207 clinical development has not yet reached the 
phase II stage of testing.

Table 4.3 Studies of oncolytic HSV in clinical trials

Virus Mutation Tumor type Phase

G207 UL39 −, γ134.5 − Glioma I
HSV1716 γ134.5− Melanoma, hepatocellular carcinoma, glioblastoma, 

mesothelioma, neuroblastoma
I/II

NV1020 UL24 −, UL56 − Liver metastasis of colon cancer I
T-VEC UL39 −, γ134.5−, 

US12-, GM-CSF+

Melanoma, head and neck cancer, and pancreatic 
cancer

III

HF10 UL43−, UL49.5−, 
UL55−, UL56−, LAT−

Recurrent breast cancer, melanoma, and pancreatic 
cancer

I/II
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4.6.2  HSV1716

HSV1716 is a spontaneous mutant of a replication selective HSV-1 that bears a dele-
tion of 759 bp in each copy of the γ34.5 gene. Two separate phase I clinical trials have 
evaluated the safety of HSV1716 with high-grade glioma (HGG) and with stage IV 
melanoma (Harrow et al. 2004; MacKie et al. 2001). In the HGG study, HSV1716 
DNA was detected by PCR at the sites of inoculation. In several patients, an immune 
response to the virus was detected. Although it remains unclear whether the immune 
response to the virus contributes to the eradication of cancer cells infected by the 
virus, a significant increase in long-term survival following surgery was also observed. 
In the melanoma trial, immunohistochemical staining of injected nodules revealed 
that virus replication was confined to tumor cells and had no toxicity in patients.

4.6.3  NV1020

NV1020 has deletions of both UL56 genes and one copy of the γ34.5 gene. In pre-
clinical studies, NV1020 was evaluated as oncolytic agents in several solid tumors 
outside the brain (Advani et al. 1999; Cozzi et al. 2001; Ebright et al. 2002). In these 
studies, the virus showed effectiveness in treating several tumors in both mouse and 
rat models. Then NV1020 was evaluated against liver metastases from colorectal 
cancer. Followed by chemotherapy, NV1020 was tested in 12 patients with colorec-
tal cancer hepatic metastases. It was well tolerated when NV1020 was given through 
hepatic arterial infusion. Reported side reactions were mainly transient febrile reac-
tions and transient lymphopenia. Over half of the treated patients showed partial 
responses or stable disease, indicating therapeutic efficacy (Geevarghese et al. 2010; 
Kemeny et al. 2006; Sze et al. 2012).

4.6.4  Talimogene Laherparepvec (T-VEC)

T-VEC, formerly known as OncoVEXGM-CSF, has deletion of the genesγ34.5 and 
US12 which encodes ICP47 and contains the gene encoding human granulocyte 
macrophage colony-stimulating factor (GM-CSF) (Liu et al. 2003). Gene modifica-
tion of this virus was intended to increase the lytic activity of the virus (over dele-
tion of the ICP47 gene) and to potentiate the ability of virotherapy to induce 
antitumor immunity (deletion of ICP47 combined with insertion of GM-CSF). 
Preclinical studies of OncoVEXGM-CSF showed that this virus can effectively reduced 
injected tumors and also induced antitumor immunity that could protect animals 
against tumor rechallenge (Liu et al. 2003). The safety of OncoVEXGM-CSF was eval-
uated in a phase I study in patients with metastatic breast, head/neck and gastroin-
testinal cancers, and malignant melanoma. Overall, intralesional administration of 
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the virus was well tolerated by patients (Hu et  al. 2006). In phase II study, 
OncoVEXGM-CSF was injected in patients with metastatic melanoma (Senzer et al. 
2009). The overall response rate was 26%. Surprisingly, all responding patients 
showed regressions of both injected and noninjected lesions (Fig. 4.3). An increase 
in CD8+ T-cells and a reduction in CD4+FoxP3+ regulatory T-cells were detected 
in biopsy samples of regressing lesions (Kaufman et al. 2010).

Fig. 4.3 Breast cancer 
patient treated with 
T-VEC. The injection was 
made into tumor 1 (arrow). 
Tumor regressions were 
observed both in injected 
and in noninjected lesions, 
consistent with both direct 
oncolytic and immune- 
mediated antitumor effects. 
(Adapted from Hu et al. 
2006)
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A randomized phase III trial was performed in 291 patients with unresected stage 
IIIB to IV melanoma, with 127 patients receiving subcutaneous GM-CSF as the 
control arm (OPTiM; NCT00769704) (Andtbacka et al. 2015). T-VEC was admin-
istered at a concentration of 108 plaque-forming units (pfu)/mL injected into 1 or 
more skin or subcutaneous tumors on days 1 and 15 of each 28-day cycle for up to 
12 months, while GM-CSF was administered at a dose of 125 μg/m2/day subcutane-
ously for 14 consecutive days followed by 14 days of rest, in 28-day treatment cycles 
for up to 12  months. At the primary analysis, 290 deaths had occurred (T-VEC, 
n = 189; GM-CSF, n = 101). T-VEC treatment produced a significant improvement 
in (1) durable response rate (TVEC 16% vs. GM-CSF control arm 2%), (2) objective 
response rate (26% vs. 6%), and (3) complete response rate (11% vs. 1%). The dif-
ference of the median overall survival rate, a secondary end point of this trial, 
between T-VEC and GM-CSF treatment groups was 4.4 months. The most common 
adverse events with T-VEC were fatigue, chills, and pyrexia, but the only grade 3 or 
4 treatment-related adverse event, occurring in over 2% of patients, was cellulitis 
(T-VEC, n  =  6; GM-CSF, n  =  1). There were no fatal treatment-related adverse 
events. Median overall survival (OS) was 23.3 months for the T-VEC arm versus 
18.9 months for the GM-CSF arm (hazard ratio, 0.79; P = 0.051), but the difference 
in OS became significant (P = 0.049) by the time of drug application (Andtbacka 
et al. 2015). This phase III trial was the first to prove that local intralesional injec-
tions with an oncolytic virus can not only suppress the growth of injected tumors, 
and in 2015, the US Food and Drug Administration (FDA) approved T-VEC as a first 
oncolytic HSV for the treatment of advanced inoperable malignant melanoma.

4.6.5  HF10

HSV-1 mutant strain HF10, derived from an in vitro-passaged laboratory strain of 
HSV-1, is an alternative candidate for an oncolytic HSV.  Previous studies have 
shown that HF10 does not cause any neurological symptoms in mice when inocu-
lated into the peripheral tissues and organs due to its inability to invade the central 
nervous system (Nishiyama et  al. 1991). The HF10 genome has a deletion of 
3832  bp to the right of the UL and UL/IRL junction. Sequences from 6025 to 
8319  bp have also been deleted from the TRL, and 6027  bp of DNA has been 
inserted in an inverted orientation. Sequence analysis revealed that HF10 lacks the 
expression of functional UL43, UL49.5, UL55, UL56, and LAT (Ushijima et al. 
2007). Although the detailed mechanisms of the HF10 phenotype are not clear, the 
lack of the UL56 gene and LAT may play an important role. UL56 associates with 
the kinesin motor protein KIF1A, and the absence of UL56 reduces the neuroinva-
siveness of HSV without affecting viral replication in vitro (Koshizuka et al. 2005). 
The LAT promoter region is also known to be associated with neurovirulence (Jones 
et al. 2005). The mechanisms of HF10 in tumor selectivity are also unknown, but 
the differences in the IFN pathway between normal cells and cancer cells may be 
involved (Nawa et al. 2008).
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The loss of HF10 neuroinvasiveness and its high potency of replication in tumor 
cells contribute to the usefulness of HF10 as an oncolytic virotherapy for non-brain 
malignancy. HF10 therapy exhibited striking antitumor efficacy of peritoneally dis-
seminated internal malignancies of immunocompetent mice models (Kimata et al. 
2003; Kohno et  al. 2005; Teshigahara et  al. 2004; Watanabe et  al. 2008). In a 
BALB/c mouse model of disseminated peritoneal colon carcinoma, 100% of intra-
peritoneally HF10-treated mice survived without remarkable side effects (Takakuwa 
et al. 2003). HF10 virotherapy using a mouse melanoma model was also studied. In 
the intraperitoneal melanoma model, all mice survived when given intraperitoneal 
injections of HF10 compared to none of the control mice (Fig. 4.4a, b). In the sub-
cutaneous melanoma model, intratumoral inoculation of HF10 showed not only 
tumor growth inhibition at the injected site but also the induction of systemic anti-
tumor immune responses in mice (Watanabe et al. 2008).

Several clinical trials have been done with HF10 thus (Nakao et al. 2004; Kimata 
et  al. 2006; Fujimoto et  al. 2006). Six patients with recurrent breast cancer who 
were treated with HF10 showed no serious adverse effects, and distinct tumor 
regression was observed in all patients (Kimata et al. 2006). Another clinical trial 
was carried out in three patients with advanced head and neck squamous cell carci-
noma (Fujimoto et al. 2006). Although no significant tumor regression was found 
after injection with HF10 at a low dose, pathological examination revealed exten-
sive tumor cell death and fibrosis, with marked infiltration of CD4+ or CD8+ T-cells. 
Moreover, a number of HSV antigen-positive cells were detected within the tumor 
even at 2 weeks postinjection. These studies suggest that HF10 is safe and effective 
for oncolytic virotherapy. Currently, phase I/II trial of HF10 in patients with solid 
cutaneous tumors, including melanomas, has been completed (NCT01017185) in 
the USA.

Fig. 4.4 Tumor growth reduction by HF10 in a murine intraperitoneal melanoma model. DBA/2 
mice were injected intraperitoneally with 1 × 105 clone M3 cells and then were injected with PBS 
(control) or 1 × 107 pfu of HF10 at days 6,7, and 8. Representative clinical pictures of control (a) 
and HF10-treated (b) mice at day 14
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4.7  Enhancement of Oncolytic Virotherapy by Gene 
Modification

4.7.1  Receptor Retargeted Mutants

HSV has several receptors to enter into host cells. For instance, glycoproteins gC 
and gB binds to heparan sulfate and glycoprotein gD binds to herpesvirus entry 
mediator (HVEM) (Salameh et al. 2012). There have been many attempts to make 
effective infection of oncolytic HSVs into cancer cells with limiting cell specificity 
by altering the receptors of the viruses.

IL-13 is the ligand of the IL-13 receptor 2α, expressed in glioblastoma and high- 
grade astrocytoma (Sengupta et al. 2014). IL-13 insertion mutants into gC or gD has 
been constructed as oncolytic HSVs against these tumors (Zhou et al. 2002; Zhou 
and Roizman 2006).

Another example is HER-2. HER-2 is a member of the EGFR (epidermal growth 
factor receptor) family. This protein is overexpressed in breast and ovarian cancers, 
gastric carcinomas, glioblastomas, and so on (Jackson et al. 2013). R-LM249 was 
created by replacing gD dispensable region with the sequence for the single-chain 
antibody trastuzumab, which targets human epidermal HER-2 (Menotti et al. 2008). 
In preclinical study, a therapeutic effect of R-LM249 against a murine model of 
HER2 glioblastoma has been reproted (Gambini et al. 2012). R-LM249 also showed 
a therapeutic effect against peritoneal and brain metastases of ovarian and breast 
cancers by intraperitoneal injections (Nanni et al. 2013).

4.7.2  Modified (Armed and Targeted) Oncolytic HSV

To enhance antitumor responses of oncolytic HSVs, many studies have been con-
ducted. One strategy of this is to generate insert immunostimulatory genes into 
oncolytic HSVs. Numerous immune-stimulating genes have been inserted into vari-
ous oncolytic HSVs including IL-2, IL-12, IL-15, IL-18, tumor necrosis factor 
alpha, CD80 (B7.1), and GM-CSF like T-VEC (Nakashima and Chiocca 2014). 
These genes have many functions to activate, proliferate, differentiate, and maturate 
innate and acquired immune cells important for antitumor responses such as macro-
phage, dendritic cells, natural killer cells, cytotoxic T-cells, helper T-cells, and B 
cells.

Another way is to generate HSVs expressing therapeutic genes, including those 
that can activate prodrugs. There are many reports of oncolytic HSVs that have been 
modified to code for enzymes that catalyze prodrugs into active substrates, for 
example, HSV1yCD codes for the yeast cytosine deaminase (CD) enzyme that con-
verts the nontoxic 5- uorocytosine into 5-FU (Nakamura et al. 2001).
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4.7.3  Oncolytic HSVs as Amplicon Vector

Amplicon vectors are HSV-1 particles that carry a concatemeric form of a DNA 
plasmid, named the amplicon plasmid, instead of the viral genome. An amplicon 
plasmid has one origin of replication (generally ori-S) and one packaging signal 
(pac or a) from HSV-1, in addition to the transgenic sequences of interest. The vec-
tor has identical structure to wild-type HSV-1, so it has same immunological and 
host-range as wild-type virus.

HF10 has been investigated as a helper virus. An HF10-packaged mouse 
GM-CSF-expressing amplicon (mGM-CSF amplicon) was used to infect subcuta-
neously inoculated murine colorectal tumor cells (CT26 cells), and the antitumor 
effects were compared to tumors treated only with HF10. When mice subcutane-
ously inoculated with CT26 cells were intratumorally injected with HF10 or mGM- 
CSF amplicon, greater tumor regression and prolonged survival was seen in 
mGM-CSF amplicon-treated animals (Kohno et al. 2007). This amplicon system 
might be one of the good tools to used for tailor-made therapy.

4.8  Combination Therapy

4.8.1  Combination with Radiation

There is a report about intratumoral HSV G207 injection to glioma patients prior to 
a single palliative fraction of radiotherapy (Markert et al. 2014). The combination 
therapy showed some synergistic activity. Combination with chemoradiotherapy 
was also considered. Combined chemoradiotherapy with cisplatin and intratumoral 
injection of T-VEC for stage III/IV head and neck cancer patients showed 93% of 
complete response (CR) (Harrington et al. 2010).

4.8.2  Combination with Chemotherapy

Combination therapy with oncolytic HSV and chemotherapy was first evaluated 
with HSV1716 and four standard chemotherapeutic drugs: methotrexate, cisplatin, 
mitomycin C, and doxorubicin (Toyoizumi et al. 1999). Since then, there have been 
many studies reporting the increased efficacy of oncolytic HSV in combination with 
a many kinds of existing and potentially new anticancer drugs including cyclophos-
phamide, docetaxol, etoposide, 5- uorouracil (5-FU), and so on. In our laboratory, 
combination therapy with HF10 and chemotherapy has been studied (Braidwood 
et al. 2013).
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For instance, we have shown enhanced antitumoral activity was shown in murine 
colorectal cancer model by HF10 inoculation following GEM treatment even in the 
distal tumor (Esaki et al. 2013). In murine subcutaneous melanoma model, intratu-
moral HF10 inoculation significantly inhibited tumor growth. When mice were 
treated with HF10 and dacarbazine (DTIC), the combination therapy induced a 
robust systemic antitumor immune response and prolonged survival. IFN-γ secre-
tion from splenocytes of the HF10-DTIC combination therapy group showed more 
IFN-γ secretion than did the other groups (Tanaka et al. unpublished data).

4.8.3  Combination with Immune Checkpoint Inhibitors

Because oncolytic virotherapy has an aspect of cancer immunotherapy, combina-
tion therapy with oncolytic virotherapy and with immune checkpoint inhibitors is 
promising.

A phase Ib study of T-VEC and the anti-CTLA-4 antibody ipilimumab were 
administrated to patients with untreated, advanced cutaneous melanoma. The over-
all response rate by immune-related response criteria was 50% (Puzanov et  al. 
2016). The result was higher than would be expected from ipilimumab alone (10%). 
High regression rates were observed. The phase I study of combination therapy with 
pembrolizumab (NCT02263508) is ongoing. With regard to HF10, a phase II study 
of combination treatment with ipilimumab in patients with unresectable or meta-
static melanoma is ongoing both in USA (NCT02272855) and in Japan.

4.9  Conclusion

In summary, HSV has many advantages for cancer therapy, and significant progress 
has been made in generating more effective oncolytic HSVs. Although much more 
work is required to better understand the efficacy and safety issues of these onco-
lytic HSVs before clinical use, the results from extensive preclinical and clinical 
trials have clearly demonstrated the potential of HSV recombinants for oncolytic 
viruses. Moreover, combination therapy with oncolytic HSVs and conventional che-
motherapy radiotherapy and immune checkpoint inhibitors will expand the poten-
tial of oncolytic virotherapy.
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Chapter 5
Neurological Disorders Associated 
with Human Alphaherpesviruses

Jun-ichi Kawada

Abstract Herpes simplex virus (HSV) encephalitis is the most common cause of 
sporadic fatal encephalitis worldwide, and central nervous system (CNS) involve-
ment is observed in approximately one-third of neonatal HSV infections. In recent 
years, single-gene inborn errors of innate immunity have been shown to be associ-
ated with susceptibility to HSV encephalitis. Temporal lobe abnormalities revealed 
by magnetic resonance imaging—the most sensitive imaging method for HSV 
encephalitis—are considered strong evidence for the disease. Detection of HSV 
DNA in the cerebrospinal fluid by polymerase chain reaction (PCR) is the gold 
standard for the diagnosis of HSV encephalitis and neonatal meningoencephalitis. 
Intravenous acyclovir for 14−21 days is the standard treatment in HSV encephalitis. 
Neurological outcomes in neonates are improved by intravenous high-dose acyclo-
vir for 21 days followed by oral acyclovir suppressive therapy for 6 months.

Varicella-zoster virus (VZV) causes a wide range of CNS manifestations. VZV 
encephalitis typically occurs after primary infection, and reactivation of VZV may 
cause encephalitis. On the other hand, VZV infection of cerebral arteries produces 
vasculopathy, which can manifest as ischemic stroke. Vasculopathy can occur after 
primary infection or reactivation of VZV. PCR detection of VZV DNA in the cere-
brospinal fluid can be used for the diagnosis of encephalitis or vasculopathy. 
Although there are no controlled treatment trials to assess VZV treatments of 
encephalitis or vasculopathy, intravenous acyclovir is a common treatment.
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Although hundreds of viruses are known as causative agents of central nervous sys-
tem (CNS) infection, only a limited subset is responsible for most cases in which a 
specific cause is identified. Among Alphaherpesvirinae, herpes simplex virus (HSV)-
1, HSV-2, and varicella-zoster virus (VZV) are commonly identified viruses causing 
encephalitis. Early recognition is important because acyclovir (ACV) treatment 
reduces morbidity and morbidity. This section summarizes the pathogenesis, clinical 
manifestation, diagnosis, and treatment of CNS infections caused by HSV and VZV.

5.1  HSV Types 1 and 2

5.1.1  Herpes Simplex Encephalitis

5.1.1.1  Epidemiology

HSV encephalitis (HSE) is the most commonly identified cause of sporadic fatal 
encephalitis in the United States and other industrialized nations (Whitley 1990, 
2006; Huppatz et al. 2009; Granerod et al. 2010). HSE accounts for approximately 
10−20% of all cases of viral encephalitis (Levitz 1998). In a nationwide retrospec-
tive study in Sweden, the incidence of confirmed HSE cases was 2.2 per million 
people annually (Hjalmarsson et al. 2007). HSE occurs sporadically throughout the 
year, and the age-specific incidence is bimodal, with peaks in the young and in the 
elderly. HSV-1 causes more than 90% of HSE cases in adults, while HSV-2 infec-
tion typically causes aseptic meningitis. On the other hand, HSV-2 is a common 
cause of acute generalized encephalitis in neonates (Corey et al. 1988).

5.1.1.2  Pathogenesis

The pathogenesis of HSE remains elusive. Histopathologically, replicating HSV 
includes the ballooning of infected cells and the appearance of chromatin within the 
nuclei of cells followed by degeneration of the nuclei. Furthermore, an influx of 
mononuclear cells can be detected in infected tissue. HSE results in acute inflamma-
tion, congestion, and/or hemorrhage most prominently in the temporal lobes, usu-
ally occurring asymmetrically in adults and more diffusely in newborns (Whitley 
2006; Whitley et al. 2007).

Although primary and recurrent HSV infections can lead to HSE, the route of 
access of HSV to the CNS remains controversial. Approximately one-third of HSE 
cases are considered to be a consequence of immediate CNS invasion via the tri-
geminal nerve or olfactory tract following an episode of primary HSV-1 infection of 
the oropharynx (Levitz 1998). Most patients with primary infection are younger 
than 18 years of age. Additionally, HSE can be caused by CNS invasion after an 
episode of recurrent HSV infection, which is believed to represent viral reactivation 
with subsequent spread. Reactivation of latent HSV in situ within the CNS is another 
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hypothetical mechanism for HSE pathogenesis (Whitley 2006). Various animal 
models have been developed to mimic the possible routes of infection. Some mod-
els have demonstrated that intranasal inoculation of HSV produces focal lesions 
localized to the temporal lobe, similar to those observed in human cases of HSE 
(Hudson et al. 1991). Another murine model revealed that inoculation of HSV into 
tooth pulp leads to an encephalitis primarily affecting the temporal cortex and lim-
bic system (Barnett et al. 1994). Both direct virus-mediated and indirect immune- 
mediated mechanisms are thought to play a role in CNS damage, providing one 
explanation for why HSE is not more common among immunocompromised hosts 
despite recurrent mucocutaneous infections (Piret and Boivin 2015).

Immune control of HSV requires components from both innate and adaptive 
immune responses, including type I interferon (IFN), NK cells, and cytotoxic T-cells 
(Egan et al. 2013). Recent studies revealed that single-gene inborn errors of innate 
immunity are associated with susceptibility to specific infections. Toll-like receptors 
(TLRs) play crucial roles in the innate immune response, as TLRs 2, 3, and 9 recog-
nize HSV (Kurt-Jones et al. 2004; Ashkar et al. 2004; Lund et al. 2003). Viral gly-
coproteins on the HSV particles are first sensed by TRL 2 at the cell surface. After 
entry, viral genomic DNA is detected by endosomal TLR 9 and other cytosolic 
double-strand (ds)DNA sensors. Replication of the viral genome leads to accumula-
tion of intermediate dsRNAs, which are then sensed by endosomal TLR 3. TLR 3 is 
widely distributed throughout the CNS, where it may prevent the spread of HSV 
through the generation of IFNs (Kielian 2009). Seminal studies have demonstrated 
that mutations in genes encoding components in the TRL 3-mediated IFN-α/IFN-β 
pathway confer susceptibility to HSE.  Mutations in UNC93B1, TLR3, TRAF3, 
TRIF, TBK1, STAT1, NEMO, and IRF3 genes have been identified in patients with 
HSE (Casrouge et al. 2006; Zhang et al. 2007; Perez de Diego et al. 2010; Sancho-
Shimizu et al. 2011; Herman et al. 2012; Dupuis et al. 2003; Audry et al. 2011; 
Andersen et al. 2015). A common theme among the identified genetic defects is that 
they lead to reduced IFN responses in cell culture after HSV-1 infection or stimula-
tion through the TLR 3 pathway. While most of the identified mutations are inher-
ited by an autosomal dominant mechanism, several cases with autosomal recessive 
mutations have also been identified. These findings may help explain why HSV 
becomes neuroinvasive to cause HSE in a small minority of individuals.

5.1.1.3  Clinical Features

Symptoms and Signs

Focal neurological findings are sometimes seen in the acute phase of HSE, while 
initial symptoms are frequently nonspecific. Furthermore, similar symptoms can 
occur in other viral and bacterial infections of the CNS, with headache and fever 
presenting in ~80 and 90% of cases, respectively (Raschilas et al. 2002). Other com-
mon features include altered levels of consciousness, focal or generalized seizures, 
cranial nerve deficits, hemiparesis, dysphasia, aphasia, and ataxia (Raschilas et al. 
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2002). Although several seizures at the onset of illness are not uncommon, status 
epilepticus is rare. Later in the clinical course, patients may have diminished com-
prehension, paraphasic spontaneous speech, impaired memory, and loss of emo-
tional control (Solomon et al. 2012). In pediatric patients with HSE, nonneurologic 
complications such as fever, fatigue, and vomiting are dominant, and the frequency 
of neurological symptoms at disease onset is lower than in adults (Schleede et al. 
2013). Atypical presentations may occur in immunocompromised patients.

Laboratory Findings

Examination of the cerebrospinal fluid (CSF) shows a lymphocytic pleocytosis of 
10−1000 white blood cells per μL in most patients with HSE (Nahmias et al. 1982). 
However, a normal CSF profile can occur early in the course of the disease; this 
observation has been made in immunocompetent hosts and in a case series of patients 
taking tumor necrosis factor inhibitors (Bradford et al. 2009). Furthermore, one retro-
spective multicenter review of pediatric patients with HSE found that 13% of children 
with HSE had normal CSF profiles (Schleede et al. 2013). HSE is often hemorrhagic, 
and red blood cells and xanthochromia can be detected in the CSF. The presence of 
red cells in the CSF is associated with a worse prognosis (Poissy et al. 2012).

Several studies detected N-methyl-D-aspartate receptor (NMDAR) antibodies in 
the serum and/or CSF in 20−30% patients with HSE (Pruss et al. 2012; Westman 
et al. 2016). Furthermore, NMDAR antibody synthesis was associated with relapse 
of HSE (Armangue et al. 2014). It is possible that the virus-induced destruction of 
neurons initiates a primary autoimmune response against NMDAR. Alternatively, 
CNS inflammation in the course of HSE may lead to immunological activation, 
resulting in a polyspecific B-cell activation (Pruss et al. 2012). While the clinical 
significance of NMDAR antibodies in patients with HSE remains unclear, one study 
suggested the association between NMDAR and impaired neurological recovery 
(Westman et al. 2016).

Imaging Studies and Electroencephalogram

Temporal lobe abnormalities detected by brain imaging are considered strong evi-
dence of HSE. Typical computed tomography (CT) and magnetic resonance imag-
ing (MRI) findings of HSE are shown in Fig.  5.1. Temporal lobe lesions are 
predominantly unilateral and may have a mass effect (Levitz 1998). MRI is signifi-
cantly more sensitive than CT, especially in the early course of the disease 
(Domingues et al. 1998). MRI should be performed on all patients with suspected 
HSE. Approximately, 90% of patients with HSE have MRI abnormalities involving 
the temporal lobe within 48  h, and several studies have shown that MRI with 
diffusion- weighted imaging may be helpful in the early diagnosis of HSE 
(Domingues et al. 1998; McCabe et al. 2003; Heiner and Demaerel 2003). HSE is 
the most commonly identified cause of temporal lobe encephalitis. However, tem-
poral lobe involvement on MRI can be observed in other infectious and 
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noninfectious etiologies including tuberculosis, VZV infection, malignancies, and 
vascular diseases (Chow et al. 2015). Other modalities such as MR spectroscopy, 
single- photon emission CT, or brain fluorodeoxyglucose positron-emission tomog-
raphy can be used, but such tools are not yet sufficiently informative nor widely 
available for routine use in patients with HSE (Solomon et al. 2012).

Electroencephalogram (EEG) recordings may show abnormalities early in the 
course of the disease, demonstrating diffuse slow focal abnormalities in the tempo-
ral regions or periodic lateralizing epileptiform discharges (PLEDs). EEG abnor-
malities involving temporal lobes are seen in approximately 75% of patients with 
HSE (Domingues et al. 1997). Although many EEG findings in patients with HSE 
are nonspecific, such technology can be helpful in distinguishing whether abnormal 
behavior is due to a primary psychiatric disease or encephalitis. Additionally, the 
EEG is useful to identify nonconvulsive or subtle motor seizures, which may occur 
in patients with HSE (Solomon et al. 2012).

5.1.1.4  Diagnosis

Previously, diagnosis of HSE was dependent on brain biopsy, with identification of 
HSV in tissues by cell culture or immunohistochemical staining. Although brain 
biopsy has high sensitivity and specificity, it requires an invasive procedure, and the 

Fig. 5.1 CT and MRI 
findings in an adult patient 
with HSE. CT and MRI 
were taken during the 
acute stage of the illness. 
CT image of the brain 
shows low density area in 
the right temporal lobe (a). 
MRI with diffusion- 
weighted imaging (b), 
FLAIR (c), and T2 (d) 
show abnormal signals in 
the right temporal lobe
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results may not be available for several days. However, several studies have shown 
that detection of HSV DNA in the CSF by polymerase chain reaction (PCR) has 
overall sensitivity and specificity of >95% for diagnosis of HSE compared to brain 
biopsy (Aurelius et al. 1991; Lakeman and Whitley 1995). Therefore, detection of 
HSV DNA in the CSF by PCR has become the gold standard for the diagnosis of 
HSE. PCR results show positivity early in the course of the illness and remain posi-
tive during the first week of therapy. However, false-negative results have been 
reported, most notably in CSF samples obtained within 72  h of illness onset. 
Therefore, caution should be used in stopping ACV therapy in patients with strongly 
suspected HSE on the sole basis of a single negative CSF PCR test obtained within 
72 h of symptom onset, unless a suitable alternative diagnosis has been established 
(De Tiege et al. 2003; Elbers et  al. 2007). Furthermore, there is no standardized 
assay of HSV PCR, and assay sensitivity may vary among laboratories. PCR assays 
with high sensitivity such as nested or real-time PCR should be applied for diagno-
sis of HSE because the CSF may contain small amounts of HSV DNA in some 
patients (Kawada et al. 2004b; Schloss et al. 2009). Real-time PCR is suitable for 
monitoring HSV load in CSF during ACV treatment. However, the HSV viral load 
is not associated with disease outcome (Poissy et al. 2012).

5.1.1.5  Treatment

ACV is a nucleoside analogue with strong antiviral activity against HSV and 
VZV. Because HSE is the most commonly identified cause of viral encephalitis and 
can be treated with ACV, it has become general practice to initiate ACV treatment 
once the CSF and/or imaging findings suggest viral encephalitis, without waiting 
for confirmation of HSV by PCR. In immunocompetent patients, presumptive ACV 
treatment might be safely discontinued if a negative HSV PCR result is obtained 
after 72 h following onset of neurological symptoms, with unaltered consciousness, 
normal MRI, and a CSF white cell count of less than 5 cells/mm2 (Solomon et al. 
2012). On the other hand, pediatric studies have shown that the use of presumptive 
ACV treatment for all patients with encephalopathy, without regard to the likely 
diagnosis, can be harmful (Kneen et al. 2010; Gaensbauer et al. 2014). Although 
ACV is generally considered to be a safe drug, serious side effects have been 
reported including renal impairment, hepatitis, and bone marrow failure.

Intravenous ACV (10 mg/kg three times a day) was shown to reduce mortality 
and morbidity of HSE in randomized trials in the1980s (Skoldenberg et al. 1984; 
Whitley et al. 1986). However, outcome is often poor, especially in patients with 
advanced age, reduced coma score, or delays of more than 48 h between hospital 
admission and initiation of treatment (Raschilas et  al. 2002). The duration of 
 treatment in the original trials of ACV for HSE was 10 days; however, occasional 
cases of HSE relapse with ACV-sensitive HSV were reported subsequently 
(VanLandingham et al. 1988; Dennett et al. 1996). Ongoing immune-mediated and 
inflammatory reactions to the infection can be the major pathogenic process of 
relapse, while there is evidence for continuing viral replication in some cases 
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(Yamada et al. 2003). Therefore, 14−21 days of intravenous ACV has become the 
standard treatment in confirmed HSE cases, although subsequent relapse can occur. 
Some studies advocate reevaluating HSV PCR in the CSF at 14−21 days and con-
tinuing treatment until a negative result is obtained (Solomon et al. 2012).

Oral ACV therapy is not recommended for the treatment of HSE because such 
delivery does not achieve adequate levels in the CSF.  However, valaciclovir (its 
valine ester) has good bioavailability and is converted to ACV after absorption. One 
study evaluating the pharmacokinetics of orally administered valaciclovir in patients 
with HSE found that patients achieved and maintained therapeutic concentrations of 
valaciclovir in the CSF (Pouplin et al. 2011). Valaciclovir may have a role in ongo-
ing treatments, particularly in patients with detectable HSV in the CSF after 2−3 
weeks, as low-level viral replication in the CSF may contribute to relapse or pro-
gressive neurological morbidity. However, one clinical trial revealed that an addi-
tional 3-month course of oral valaciclovir therapy after standard treatment with 
intravenous ACV did not improve the outcome as measured by neuropsychological 
testing (Gnann et al. 2015).

Retrospective studies have suggested some benefits connected with the addition 
of corticosteroids to ACV treatment. Since the advent of ACV, corticosteroids have 
often been used, especially in patients with marked cerebral edema, brain shift, or 
increased intracranial pressure (Kamei et al. 2005; Ramos-Estebanez et al. 2014). 
The role of corticosteroids remains controversial because they could facilitate viral 
replication, in theory. On the other hand, in addition to exhibiting direct HSV- 
mediated cytolysis, HSE is also characterized by acute and persistent intrathecal 
inflammatory responses and possibly by autoimmune phenomena (Pruss et al. 2012; 
Armangue et al. 2014). Corticosteroid administration under a specialist’s supervi-
sion may have a role in treating patients with HSE; however, further studies to 
define the role of immune responses and explore the therapeutic potential of adjunc-
tive therapy with anti-inflammatory and immunomodulating agents are necessary 
(Martinez-Torres et al. 2008).

5.1.2  Neonatal HSV Meningoencephalitis

5.1.2.1  Epidemiology

Neonatal infection with HSV occurs in ~3−10 per 100,000 live births in the United 
States and other countries (Corey and Wald 2009; Jones et al. 2014). Most cases of 
neonatal herpes result from maternal infection and transmission, usually during pas-
sage through the contaminated infected birth canal of a mother with asymptomatic 
genital herpes. The risk for infection is higher in infants born to mothers with pri-
mary genital infection (30−50%) than those with recurrent genital infection (<3%) 
(Corey and Wald 2009).

Neonatal HSV infection is classified into three main categories: localized skin, 
eye, and mouth (SEM); CNS disease (also called meningoencephalitis); and dis-
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seminated disease. Meningoencephalitis accounts for approximately one-third of 
neonatal cases with HSV, while CNS involvement may be observed in SEM or dis-
seminated disease (Kimberlin 2007). While HSV-2 has historically been the pre-
dominant serotype causing genital herpes and neonatal herpes, HSV-1 is increasingly 
being identified as causing more cases of genital herpes and neonatal herpes in the 
United States and some European countries (Pinninti and Kimberlin 2014).

5.1.2.2  Pathogenesis

Neonatal HSV meningoencephalitis may occur as a result of localized retrograde 
spread from the nasopharynx and olfactory nerves to the brain or through hematog-
enous spread. Compared to adults, neonates are particularly susceptible to poor neu-
rological outcomes of meningoencephalitis from HSV. While explanations for this 
increased susceptibility to HSV infection in newborns remain elusive, differences in 
skin barrier function or aspects of HSV immunity compared with adults may con-
tribute to their increased susceptibility (Kawada et al. 2004a; Kollmann et al. 2012; 
Gantt and Muller 2013).

5.1.2.3  Clinical Features

Infants with neonatal HSV meningoencephalitis typically present at 5−11 days of 
life with clinical findings suggestive of bacterial meningitis, including irritability, 
lethargy, poor feeding, poor tone, and seizures. Approximately 60−70% of these 
patients have skin lesions at some point during the course of the illness, with most 
such disease manifestations occurring within the first month of life (Pinninti and 
Kimberlin 2014).

5.1.2.4  Diagnosis

Pleocytosis is usually present in affected neonates, and detection of HSV DNA in 
the CSF by PCR is the most sensitive laboratory test for confirming the diagnosis 
(Kimura et al. 1991; Kimberlin et al. 1996). However, false-negative results have 
also been reported in CSF specimens obtained early in the course of illness and in 
samples obtained several days into ACV therapy (Kimberlin et al. 1996). HSV DNA 
is detected in the CSF of ~25% of affected neonates with apparent localization to 
the SEM and in more than 50% of neonates with disseminated HSV disease. 
Furthermore, patients with meningoencephalitis exhibit higher HSV DNA loads 
than other groups (Kimura et al. 2002), and HSV DNA loads are higher in neonates 
with meningoencephalitis than in older patients with HSE (Ando et  al. 1993; 
Kawada et al. 2004b). These differences may be due to the permissiveness of imma-
ture brain cells for replication or to an immature immune response.
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In neonates with HSV meningoencephalitis, brain imaging with MRI is recom-
mended to determine the location and extent of brain involvement. One retrospec-
tive review of neonatal HSV meningoencephalitis showed that neurodevelopmental 
sequelae correlated with MRI abnormalities (Bajaj et al. 2014). The MRI findings 
can be variable, and diffusion-weighted imaging can reveal changes not visible on 
conventional MRI (Dhawan et al. 2006). Several days to a week into the illness, 
MRI studies may show parenchymal brain edema or abnormal attenuation, hemor-
rhage, or destructive lesions. In addition to the classic temporal lobe lesions, imag-
ing abnormalities may be multifocal or limited to the brainstem or cerebellum 
(Vossough et al. 2008). Variable MRI findings of neonatal HSV meningoencephali-
tis are shown in Fig. 5.2.

Fig. 5.2 Characteristic distribution of brain lesions in neonatal HSV meningoencephalitis
The right frontal watershed lesion and right thalamic lesion (upper panels: a~c)
Diffusion-weighted images taken 3 days after disease onset (a). FLAIR images exhibit the right 
thalamic lesion (b) and the right frontal area 3 months after disease onset (c)
The bilateral inferior frontal lesions and left perirolandic cortical lesion (lower panels: d~f)
Diffusion-weighted imaging taken 5 days after disease onset (d, e) and on T2-weighted MRI taken 
at 3 months old (f)
Courtesy of Hiroyuki Kidokoro, MD, PhD, Nagoya University Hospital

5 Neurological Disorders Associated with Human Alphaherpesviruses



94

5.1.2.5  Treatment

Parenteral ACV is recommended for all categories of neonatal HSV infection. With 
the advent of antiviral therapy, 1-year mortality rates for neonates with HSV menin-
goencephalitis declined from 50% to 4% (Whitley et  al. 1980; Kimberlin et  al. 
2001). However, many survivors suffer substantial neurologic sequelae. The current 
recommendation of ACV therapy for neonatal HSV meningoencephalitis is 20 mg/
kg three times a day, given intravenously for a minimum of 21 days. The benefits of 
this dose compared with a lower dose of ACV (10 mg/kg three times a day) were 
established in an open-label study in which neonates with meningoencephalitis or 
disseminated HSV were treated with ACV (20 mg/kg three times a day) for 21 days 
(Whitley et al. 1991; Kimberlin et al. 2001). As HSV DNA detection in the CSF at 
or after completion of ACV therapy is associated with poor outcomes, HSV PCR 
should be repeated in the CSF of all neonates with HSV meningoencephalitis to 
confirm a negative PCR result (Kimberlin et al. 1996).

Following parenteral ACV treatment, oral ACV suppressive therapy for 6 months 
improves neurodevelopmental outcomes in infants with HSV meningoencephalitis 
and prevents skin recurrences in infants with various disease categories of neonatal 
HSV infection (Kimberlin et al. 2011). Thus, infants surviving neonatal HSV infec-
tion are recommended to receive oral ACV suppression at 300 mg/m2/dose, adminis-
tered three times daily for 6  months. However, the effectiveness of long-term 
suppression with oral ACV in reducing the risk of CNS recurrence after neonatal 
HSV meningoencephalitis is unknown. Furthermore, CNS recurrences during or 
after oral suppression have been reported (Fonseca-Aten et al. 2005; Kato et al. 2015).

5.2  Varicella-Zoster Virus

Primary infection with varicella-zoster virus (VZV) causes varicella (chickenpox), 
after which the virus becomes latent in the cranial nerve and dorsal root ganglia. 
Reactivation of the latent virus produces shingles (herpes zoster), mainly in elderly 
or immunosuppressed patients. VZV causes a wide range of CNS manifestations 
including encephalitis, meningitis, Ramsay Hunt syndrome, cerebellitis, myelitis, 
and vasculopathy. The CNS manifestation caused by VZV can occur as a result of 
both primary and reactivated disease. In rare cases, CNS diseases caused by reacti-
vation of the VZV vaccine virus can occur. Compared to the wild-type VZV- 
associated CNS diseases that most often cause encephalitis in children, the VZV 
vaccine strain is more often associated with meningitis (Pahud et al. 2011).
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5.2.1  VZV Encephalitis

In studies involving all age groups, VZV has been reported to be the second most 
infectious cause of encephalitis after HSV; however, the incidence among children 
has declined considerably with routine vaccination (Granerod et al. 2010; Britton 
et al. 2016). In cases with primary infection (varicella), VZV encephalitis usually 
follows the rash at 2−8 days. However, it occasionally occurs before the rash or 
even in patients with no rash. Reactivation of VZV may also cause encephalitis, 
especially in elderly or immunocompromised patients. The onset is typically insidi-
ous, and there may be no rash.

The histopathologic findings in brain tissue from fatal cases of VZV encephalitis 
can include vasculitis of large and small vessels, demyelination, axonal damage, 
and neuronal degeneration; however, histological abnormalities are often minimal 
(Barnes and Whitley 1986; Amlie-Lefond et al. 1995). It is possible that inflamma-
tory or immune-mediated pathogenesis might be the primary cause of encephalitis. 
VZV may spread to the CNS centripetally (toward the spinal cord or brain) or cen-
trifugally (toward the vessels of the brain) by hematological or transaxonal trans-
port. It has been suggested that VZV encephalitis might be primarily a vasculopathic 
disease and that symptoms of brain involvement may be derived not directly from 
the viral effect but, secondarily, from the productive virus infection within large and 
small cerebral arteries.

The most frequent acute symptoms in patients with VZV encephalitis are fever 
and altered mental status. Compared to HSE, focal neurological signs and seizures 
are less frequently observed (Pollak et al. 2012). Encephalitic symptoms resolve 
rapidly in some patients. In most patients with VZV encephalitis, mild lymphocytic 
pleocytosis is found in the CSF, and PCR detection of VZV DNA is useful for diag-
nosis, especially in patients without rash. High VZV DNA loads in the CSF are 
correlated with the severity of CNS disease, and quantitative PCR might be useful 
in monitoring the viral response during antiviral therapy (Aberle et  al. 2005). 
However, VZV DNA can be detected in the CSF from varicella-zoster or herpes 
zoster cases without neurological symptoms (Persson et al. 2009).

Although there is no clinical trial of ACV treatment for VZV encephalitis, intra-
venous ACV is commonly used in accordance with the treatment of severe varicella 
(Kneen et al. 2012). Compared to patients with HSE, those with VZV encephalitis 
might need higher doses of ACV because VZV is less sensitive to ACV than HSV.
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5.2.2  VZV Vasculopathy

VZV infection of cerebral arteries produces vasculopathy, manifesting in ischemic 
or hemorrhagic stroke. Vasculopathy can occur after primary infection or reactiva-
tion of VZV. Varicella is an important risk factor for childhood ischemic stroke, and 
it is estimated that ~1 in 15,000 cases of varicella are associated with subsequent 
stroke; most occur within 12  months of infection (Askalan et  al. 2001). Several 
studies reported an increased risk of stroke after a zoster attack. A nationwide retro-
spective cohort study in Taiwan determined that the adjusted hazard ratios for risk 
of stroke after zoster and zoster ophthalmicus during the 1-year follow-up period 
were 1.31 and 4.28, respectively (Kang et  al. 2009). VZV vasculopathy is more 
common in immunocompromised individuals, such as patients with HIV infection 
(Berkefeld et al. 2000).

The likely mechanism by which VZV causes stroke is by direct infection of cere-
bral arteries, resulting in pathological changes including thrombosis, necrosis, dis-
section, and aneurysm formation (Kleinschmidt-DeMasters and Gilden 2001). 
Several pathological and virological analyses in autopsy studies have revealed VZV 
DNA or antigen within the walls of cerebral arteries (Eidelberg et al. 1986; Gilden 
et al. 1996). Additionally, transient protein S deficiency caused by autoantibodies 
against phospholipids and coagulation proteins during or after varicella showed 
association with stroke events (Manco-Johnson et al. 1996).

One or several large or small cerebral arteries may be affected by VZV vascu-
lopathy, and clinical presentations vary widely including headache, mental status 
changes, ataxia, visual loss, and hemiplegia (Grahn and Studahl 2015). Some 
patients may present with symptoms consistent with encephalitis followed by a 
focal deficit. A positive PCR finding for VZV DNA in the CSF is diagnostic, 
whereas a negative PCR result does not exclude the diagnosis of VZV vasculopathy 
because VZV DNA can be detected only during the first 2 weeks of the disease 
(Nagel et al. 2008). On the other hand, anti-VZV IgG antibody in the CSF is detect-
able during the second week after infection and is a more sensitive indicator of VZV 
vasculopathy than detection of VZV DNA (Nagel et al. 2008). To confirm the intra-
thecal synthesis of VZV IgG, the serum/CSF ratio of antibody should be 
calculated.

Although there are no controlled treatment trials to assess the treatment of VZV 
vasculopathy, intravenous ACV (10−15 mg/kg three times daily) is a commonly 
used treatment based on expert opinion or a descriptive case series (Nagel et  al. 
2008). As histologic specimens often demonstrate an inflammatory response in 
infected cerebral arteries, adding corticosteroids to ACV might be beneficial. 
However, prospective studies are necessary to determine the optimal dose, duration 
of ACV treatment, and benefit of concurrent steroid therapy in a controlled setting.
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Chapter 6
Antiviral Drugs Against Alphaherpesvirus

Kimiyasu Shiraki

Abstract The discovery of acyclovir and penciclovir has led to the development of a 
successful systemic therapy for treating herpes simplex virus infection and varicella- 
zoster virus infection, and the orally available prodrugs, valacyclovir and famciclovir, 
have improved antiviral treatment compliance. Acyclovir and penciclovir are phos-
phorylated by viral thymidine kinase and are incorporated into the DNA chain by viral 
DNA polymerase, resulting in chain termination. Helicase-primase plays an initial 
step in DNA synthesis to separate the double strand into two single strands (replica-
tion fork) and is a new target of antiviral therapy. The helicase- primase inhibitors 
(HPIs) pritelivir and amenamevir have novel mechanisms of action, drug resistance 
properties, pharmacokinetic characteristics, and clinical efficacy for treating genital 
herpes. The clinical study of amenamevir in herpes zoster has been completed, and 
amenamevir has been submitted for approval for treating herpes zoster in Japan. The 
clinical use of HPIs will be the beginning of a new era of anti-herpes therapy.

Keywords Acyclovir · Prodrug · Valacyclovir · Famciclovir · Antivirals · 
Helicase-primase · Amenamevir · Chain termination · Resistance

6.1  Introduction

Dr. Elion, a Nobel laureate, has pioneered an anti-herpetic drug, acyclovir (ACV), 
capable for systemic administration in herpes simplex virus (HSV) and varicella- 
zoster (VZV) infection with a wide safety margin and a very high therapeutic index 
(Elion 1989; Elion et al. 1977), leading to the development and situation of current 
anti-herpes medicine treatment. Various anti-influenza virus drugs have been devel-
oped such as neuraminidase inhibitors (Von Itzstein et al. 1993), RNA polymerase 
inhibitor (favipiravir) (Furuta et  al. 2002), a proton pump inhibitor (amantadine) 
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(Jackson et  al. 1963), and cap-dependent endonuclease inhibitor (S-033188) 
(Koszalka et al. 2017). By contrast, for the last 40 years, antiherpetic drugs have 
been limited to inhibitors of viral DNA synthesis because ACV and penciclovir 
(PCV) and prodrugs, valacyclovir and famciclovir, are satisfactory for the treatment 
and prevention of apparent HSV and VZV diseases. In addition to current antiher-
petic therapy inhibiting DNA synthesis through DNA polymerase (DNApol), it has 
taken time to develop new antiherpetic drugs with different mechanism of action, 
and novel helicase-primase (HP) inhibitors (HPIs) of HSV and VZV have been 
developed and will expand new anti-herpes drug therapy.

DNA synthesis inhibitors affecting DNApol are categorized into five groups by 
their mechanism of action as shown in Fig. 6.1. The first group inhibits DNA polym-
erization by blocking the incorporation of normal deoxyribonucleoside triphos-
phates (dNTPs), but the inhibitor itself is not incorporated into DNA. Foscarnet, 
vidarabine, and sorivudine belong to this group.

The second group functions through chain termination by inhibiting chain elon-
gation that stops at the incorporated site due to the lack of the 3′OH group in the 
deoxyribose part for the binding to the next base. ACV is phosphorylated by viral 
thymidine kinase (TK), and its triphosphate form is incorporated into the DNA 
chain. Next, the chain can no longer incorporate dNTPs, resulting in the inhibition 
of DNA synthesis because ACV lacking 3′OH cannot form the phosphodiester 
bonding with the 5′OH- of the next dNTP. Valacyclovir is a prodrug of ACV with 
improved oral absorption and compliance.

In the third group, the incorporation of the agents into the DNA chain does not 
stop at the incorporated site but terminates several bases ahead of the newly incor-
porated DNA chain. PCV, its prodrug famciclovir, and ganciclovir (GCV) possess 
3′OH- groups for the phosphodiester bonding with the 5′OH- of normal dNTPs and 
stop after chain elongation of several bases possibly due to the unstable structure.

Brivudin, idoxuridine, and ribavirin are incorporated into the RNA or DNA 
strand, respectively, and the complementary strand synthesis to this incorporated 
strand generates many mismatches, resulting in the production of nonfunctional 
proteins leading to replication-incompetent virus production (lethal mutagenesis).

Recent advancement in antiherpetic drugs has resulted in the development of 
novel viral HPIs, and clinical studies on genital herpes using two HPIs, ASP2151 
(amenamevir) and BAY 57-1293 (pritelivir), have been successfully conducted 
(Tyring et al. 2012; Wald et al. 2014, 2016). HPIs inhibit the initial stage of DNA 
replication before DNApol functions and have no effect on viral DNApol activity. 
Although the modes of DNA synthesis inhibition are different and specific to each 
antiviral agent, they exhibit similar efficacy by inhibiting viral DNA synthesis 
in vitro and in vivo. One of helicase-primase inhibitors, amenamevir, has recently 
completed its clinical trial on herpes zoster using once-daily dose and been approved 
and used for the treatment of herpes zoster in Japan. Thus, the clinical application 
of HPIs suggests the possibility that they may assume an important position similar 
to ACV in HSV and VZV therapy.

K. Shiraki



105

Acyclovir

2. DNA polymerase (DPase) inhibitors without incorporation

3. Chain terminators at the incorporation site

Vidarabine

1. Native nucleosides

O
HO

OH

NH

N

N

O

N

OH

Inosine

O
HO

OH

NH

N

N

O

NH2N

Deoxyguanosine

O
HO

OH

N

NN

N

NH2

O
HO

OH

N

N

NH2

O

Deoxycytidine Deoxyadenosine

O
HO

OH

N

NH

O

O

Deoxythymidine

P
OH

OH
OH

O
O

HO
O

HO

OH

N

NN

N

NH2

HO
O

HO

OH

HO

NH

O

O

Br

N

Foscarnet Sorivudine

Favipiravir-ribose

O
HO

NH

N

N

O

NH2N O
HO

OH

N

H
N

O

F
H2N

O

OH

O
HO

N3

N

NH

O

O
O

NH

N

N

O

NH2N
O

O
H2N

Valacyclovir Zidovudine

4. Chain terminators after incorporation and elongation of several bases

5. Incorporation into viral DNA with replication-incompetent virus production 

Brivudin Idoxuridine

HO

OH

NH

N

N

O

NH2N

O

N

N

N

NH2N

O

O

O
O

HO

OH

NH

N

N

O

NH2N N

N

NH2

O
O

HO

OH
P

HO
O

CidofovirGanciclovirFamciclovirPenciclovir

O
HO

OH

N

NH

O

O

OH

Br

O
HO

OH

N

NH

O

O

I

O
HO

OH OH

H2N
N

N

N

O

Ribavirin

Fig. 6.1 Antiviral compounds acting on viral DNA polymerase and their categories. (1) Native 
nucleosides are inosine, deoxyadenosine, deoxyguanosine, deoxycytidine, and deoxythymidine. 
(2) DNA polymerase (DNApol) inhibitors without incorporation are foscarnet, vidarabine, and 
sorivudine. (3) Chain terminators at the incorporation site are acyclovir and valacyclovir; an anti-
human immunodeficiency virus drug, zidovudine; and an anti-influenza drug, favipiravir. (4) 
Chain terminators after incorporation and elongation of several bases are penciclovir, famciclovir, 
ganciclovir, and cidofovir. (5) Drugs that incorporate into viral DNA with replication-incompetent 
virus production are brivudin, idoxuridine, and ribavirin
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6.2  Deoxyribonucleotide (dNTP) Synthesis in HSV- 
and VZV-Infected Cells

Purine is synthesized from amino acid to inosine monophosphate (IMP) and then to 
adenosine monophosphate (AMP) and guanosine monophosphate (GMP), and cyto-
sine and uridine monophosphates are synthesized from amino acids as shown in 
Fig.  6.2. Ribonucleotide monophosphates (rNMPs) synthesized de novo are the 
ribose form (RNA type), and subsequently their triphosphate forms are the sub-
strates for RNA.  On the other hand, as the substrates for DNA, ribose forms of 
ribonucleotide diphosphate (rNDP) should be converted to the deoxyribose forms of 
dNDPs by ribonucleotide reductase (RR). The diphosphate form of dNTPs, except 
for that of uridine, is processed to the triphosphate form (dNTP) as the substrates of 
DNA. Uridine is not a substrate of DNA, and its diphosphate form, dUDP, becomes 
the monophosphate form dUMP. dUMP is a substrate for thymidylate synthase (TS) 
and is converted into thymidine monophosphate (dTMP) successively to thymidine 
triphosphate (dTTP) for DNA. TS is a key enzyme for TMP synthesis in a de novo 
pathway and requires folic acid as the coenzyme for C1 unit (methyl residue) trans-
fer to produce TMP. Therefore, TS is a target anticancer drug of the chemotherapy 
agent 5-fluorouracil (5-FU); an immunosuppressant, methotrexate; and the anti- 
VZV agent sorivudine monophosphate. Thus, blocking the TS pathway results in a 
severe outcome of cancer cells or immunoregulatory cells depending on the impor-
tance of this pathway for DNA synthesis. TK is a key enzyme in the salvage path-
way, which recycles nucleosides, to supply TMP, independent of the pathway from 
dUMP to TMP through TS. DNA polymerase (DNApol) is the final step for DNA 
synthesis using synthesized dNTPs through RR, TS, and TK.

Thus, RR, TS, and TK are important enzymes for dNTP synthesis and their sup-
ply to herpes virus DNA synthesis. HSV encodes RR and TK, while VZV encodes 
RR, TS, and TK. HSV and VZV can replicate in cells that do not synthesize DNA 
at the time of infection, but these cells synthesize proteins through mRNA synthe-
sis. Thus, most of the cells synthesize RNA without DNA synthesis; therefore, 
rNTPs are abundant in the cells. HSV and VZV infection induce viral RR in these 
cells, and rNDPs are converted to dNDPs by viral RR.  In addition to viral TK, 
dNMPs, including TMP, are supplied for viral DNA synthesis via the salvage path-
way; thus, cells infected with HSV and VZV are supported for viral DNA synthesis 
by supplying dNMPs in infected cells through viral RR from rNDP and TK from 
thymidine. VZV encodes TS in addition to RR and TK, thus supporting viral DNA 
synthesis. Thus, viral RR, TK, and TS play important roles for the replication of 
HSV and VZV in infected cells. Cytomegalovirus (CMV) encodes UL97 that phos-
phorylates ganciclovir instead of TK (Littler et al. 1992; Sullivan et al. 1992), but 
RR (large subunit) lacks many catalytic residues (Patrone et al. 2003). Thus, CMV 
has a different dNTP supply pathway for DNA synthesis with HSV and VZV.

On the other hand, host cells possess RR, TK, and TS for their replication, and 
they are dependent on the cell cycle or cellular activity. Cellular TK phosphorylates 
thymidine, while cellular TK does not phosphorylate ACV and PCV; therefore, 
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Biosynthesis of Nucleotides

Fig. 6.2 Biosynthesis of nucleotides. Purine and pyrimidine are synthesized de novo from amino 
acids as ribose form nucleotides and inosine monophosphate (IMP) that are modified by IMP 
dehydrogenase to adenosine monophosphate (rAMP) and guanosine monophosphate (rGMP). 
Next, nucleotide monophosphate (rNMP) is phosphorylated to triphosphate forms (rNTP), and 
these become the substrate for RNA. The ribose form of nucleotide diphosphate (rNDP) is con-
verted to the 2′-deoxyribose form (dNDP) by cellular or viral ribonucleotide reductase (RR) as 
shown in the lower box. When viral RR is induced by HSV and VZV infection, dNDPs are synthe-
sized in the early phase of infection and are supplied for viral DNA synthesis to facilitate and 
activate viral DNA synthesis even in cells that do not actively synthesize cellular DNA. Thymidine 
is an important substrate of DNA and is supplied in two ways—from uridine monophosphate 
(UMP) to thymidine monophosphate (TMP) by thymidylate synthase (TS) (de novo pathway) and 
from the systemic circulation by thymidine kinase (TK) (salvage pathway). The important role of 
TS in thymidine biosynthesis can be easily understood by blocking this pathway with the antican-
cer drug 5- fluorouracil (5-FU) and immunosuppressant methotrexate. Sorivudine (BVaraU) is an 
anti-VZV agent, and its monophosphate form inhibits TS. Because sorivudine itself is phosphory-
lated and its monophosphate blocks TMP formation by the inhibition of TS activity, sorivudine 
shows potent anti-VZV action at the low concentration by the reduction of the competing TMP 
supply on viral DNA polymerase (DNApol). Acyclovir (ACV) and penciclovir (PCV) are phos-
phorylated by viral TK and are further phosphorylated to the triphosphate form by cellular 
enzymes. ACV-TP and PCV-TP are incorporated into viral DNA by viral DNApol, resulting in 
chain termination. Concerning the anti-CMV drug ganciclovir, it is phosphorylated by CMV-UL97 
and incorporated into viral DNA by CMV-UL54 DNA polymerase
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these antivirals have little effect on non-infected cells. Thus, cellular enzymes are 
present, but viral infection induces viral enzymes for viral replication only in 
infected cells. Therefore, uninfected cells do not have viral TK, and ACV or PCV is 
not phosphorylated for the inhibition of DNA synthesis. This specificity of ACV 
phosphorylation by viral TK only in infected cells is evaluated as a drug with a wide 
safety margin and a very high therapeutic index.

6.3  Pathway of Acyclovir (ACV) (Valaciclovir), Penciclovir 
(PCV) (Famciclovir), and Ganciclovir (Valganciclovir)

Viral RR and TS supply dNDPs from the ribonucleotides of RNA metabolism and 
facilitate viral DNA synthesis in the early phase of infection as shown in Fig. 6.2. 
Thus, HSV and VZV can promote viral DNA synthesis and complete replication 
even in infected cells that are not synthesizing DNA, such as neurons and keratino-
cytes. Viral TK phosphorylates ACV and PCV, which are further phosphorylated to 
ACV triphosphate (TP) and PCV-TP, respectively. ACV-TP and PCV-TP compete 
with dGTP for incorporation into viral DNA through viral DNApol. ACV-TP lack-
ing 3′OH- is incorporated into the DNA chain and terminates the elongation at the 
incorporated site because the 5′-3′ phosphodiester bond cannot be formed between 
the 3′-end of the sugar part of ACV and 5′-OH- of the next dNTP that should be 
incorporated. By contrast, PCV possessing the 3′OH-sugar moiety is incorporated 
into the DNA chain, and subsequently, dNTP is incorporated into the elongated 
DNA chain. However, this chain elongation terminates after the addition of several 
dNTPs into DNA chain (Vere Hodge and Cheng 1993). Thus, ACV and PCV are 
phosphorylated by viral TK and terminate chain elongation in a different way.

ACV and PCV are phosphorylated to ACV-TP and PCV-TP, and both terminate 
viral DNA synthesis. dGTP competes ACV-TP or PCV-TP on viral DNApol, and an 
increased amount of dGTP reduces the antiviral action of ACV-TP or PCV-TP by 
suppressing the incorporation of ACV-TP or PCV-TP. Regarding the dNTP supply 
and antiviral activity of ACV and PCV, dGTP is supplied from rGDP by viral RR, 
and the supplied dGTP reduces the molar ratio of ACV-TP or PCV-TP versus dGTP 
as the substrate of viral DNApol. In the early phase of infection, the supply of dGTP 
through RR is limited compared with the amount of ACV-TP or PCV-TP, and the 
ratio of ACV-TP or PCV-TP per dGTP is large enough to show strong inhibition of 
viral DNA synthesis. However, when viral DNA synthesis becomes active by the 
abundant supply of dGTP through viral RR in the late phase, active viral DNA syn-
thesis phase, of infected cells, ACV-TP, or PCV-TP per dGTP is reduced, and thus 
the antiviral activity of ACV or PCV was attenuated by a sufficient supply of dGTP 
competing with ACV-TP or PCV-TP (Shiraki et  al. 1992; Yajima et  al. 2017). 
Antiviral activity of ACV and PCV is influenced by the amount of competing dGTP 
in the infected cells, while antiviral activities of foscarnet and HPIs are not influ-
enced by viral DNA synthesis (Yajima et al. 2017).
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6.4  ACV-/PCV-Resistant Mutants

Most of the ACV- or PCV-resistant viruses are TK-deficient mutants, and mutants 
with altered TK and DNApol mutants are not common. When TK function is lost by 
mutation or decreased activity to phosphorylate ACV, they are called TK deficient 
or TK altered, and these viruses are called as ACV-resistant viruses (TK deficient or 
TK altered, respectively). The TK gene is nonessential for viral replication, and 
TK-deficient mutants can replicate in even with the loss of its enzymatic activity. 
This is a specific feature of drug-resistant virus related only to ACV and PCV. Altered 
TK mutants have altered substrate specificity to ACV with preservation of TK activ-
ity but fail to phosphorylate ACV, resulting in preserving the growth capability in 
the presence of ACV.

Viral DNApol is the essential gene product for replication, and DNApol function 
cannot be lost in viral replication. Therefore, DNApol mutants resistant to ACV 
have the amino acid change in the conserved domains that preserve the DNApol 
function but do not incorporate ACV-TP with the change in the substrate specificity 
of DNApol. These mutations do not occur randomly, but specific amino acid altera-
tions occur in the conserved domains as shown in Fig. 6.3. Amino acid alterations 
are clustered, and each antiviral agent has its own specific locations in the DNApol. 
Interestingly, N779S of VZV confers ACV resistance but renders hypersensitivity to 
vidarabine and foscarnet, and G805C and V855M of ACV-resistant VZV confer 
vidarabine and foscarnet resistance but render hypersensitivity to aphidicolin. 
Alterations in the recognition sites of viral DNApol to ACV-TP influence those to 
vidarabine and foscarnet and the aphidicolin-acyclic ribose structure of ACV. The 
recognition sites of mutant DNApol to ACV are divided into the foscarnet-arabinose 
(vidarabine) moiety group and acyclic ribose structure of the ACV groups (Fig. 6.3). 
Mutations of DNApol at the foscarnet-arabinose (vidarabine) recognition site are 
more sensitive to aphidicolin, and mutations at the aphidicolin-acyclic ribose struc-
ture are resistant to vidarabine and foscarnet. ACV-resistant mutants with foscarnet- 
arabinose (vidarabine) hypersensitivity are more resistant to ACV than those with 
foscarnet-arabinose (vidarabine) resistance.

ACV-resistant mutants are mostly TK mutants; moreover, all ACV resistance are 
not associated with foscarnet resistance of the DNApol mutants. These observations 
indicate that foscarnet treatment is effective in most ACV-resistant mutant 
infections.

6.5  Subclinical Generation of ACV-Resistant Mutants 
During ACV Treatment

Susceptibility to ACV of viral isolates from patients treated with ACV is not influ-
enced by ACV treatment, and ACV-resistant mutants do not appear during episodic 
therapy or suppressive therapy for genital herpes with long-term antiviral therapy in 
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immunocompetent patients (Daikoku et al. 2016; Englund et al. 1990; Honda et al. 
2001; Okuda et al. 2004; Reyes et al. 2003; Stranska et al. 2005). ACV treatment of 
infected cells increased the frequency of guanosine homopolymeric (G-string)-
string mutation in the TK gene of HSV and VZV (Daikoku et al. 2016; Ida et al. 
1999; Sasadeusz et al. 1997), while PCV treatment induced TK mutation quite rarer 
in VZV-infected cells than ACV treatment (Ida et al. 1999). This contrasting action 
between ACV and PCV is due to the mode of chain termination and the proofread-
ing activity of herpesvirus DNApol. Herpesvirus DNApol has alkaline deoxyribo-
nuclease (DNase) activity, which functions as the proofreading activity of DNApol. 

Fig. 6.3 Viral DNA polymerase mutations of ACV-resistant mutants in the HSV-1 and VZV DNA 
polymerase gene (Kamiyama et al. 2001) Filled boxes show the conserved regions I–VII of the 
HSV-1 DNA polymerase gene. The reported mutation sites of HSV and VZV DNA polymerase 
mutants are summarized, and these sites are substrate recognition sites for ACV, foscarnet, vidara-
bine, and aphidicolin
The lower table shows the susceptibility of VZV V855M, G805C, and N779S mutants to ACV, 
foscarnet/phosphonoacetic acid, vidarabine, and aphidicolin. These three mutants indicate the rec-
ognition sites of antiviral drugs between the foscarnet-arabinose moiety of the vidarabine group 
and aphidicolin group

 indicates ACV and foscarnet/phosphonoacetic acid-resistant mutants

 indicates ACV-resistant but foscarnet/phosphonoacetic acid-hypersensitive mutants

 indicates foscarnet/phosphonoacetic acid-resistant mutants
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RNA-dependent RNA polymerase or Taq DNA polymerase does not demonstrate 
proofreading activity. The presence of proofreading activity results in higher fidelity 
(1 in 106) of DNA polymerase than the lower fidelity (1 in 104) of RNA polymerase 
of RNA viruses or Taq DNA polymerase (Drake 1993). Thus, RNA viruses generate 
mutations more frequently than herpesviruses, and the proofreading activity is 
important in maintaining the fidelity of the genome during herpesvirus replication. 
Incorporation of ACV and proofreading activity induce mutation in the G-string 
parts as follows. When ACV is incorporated into the DNA chain at the terminus, the 
misincorporated ACV is removed by proofreading DNase and replaced with 
dGTP. These frequent correction cycles of the incorporation and removal of ACV 
are repeated at the G-string parts, and these G-string parts become the hot spots of 
mutation by the misincorporation of ACV, resulting in the deletion, addition, or 
substitution of nucleotides in the G-string parts of the TK gene. This type of muta-
tion may occur in the whole genome, but some in the essential genes become fatal 
to the virus by the loss of function. The TK gene is nonessential and a target of ACV 
resistance, and the TK mutants are selected in the presence of ACV and are visual-
ized. Although subclinical, this process was detected in the clinical isolates from 
patients with genital herpes treated with ACV.  ACV treatment induces G-string 
mutations in the virus population in the genital lesions, and these mutants become 
latent, reactivate, and appear in the genital lesions in the patients (Daikoku et al. 
2016). There is no problem as current ACV therapy, but such a change is subclini-
cally occurring.

While PCV is incorporated into DNA but allows to the elongation of several 
bases, proofreading does not occur, and, subsequently, the G-string parts are not the 
hot spots of mutation, resulting in a quite lower mutation rate than that of ACV. Thus, 
mutants isolated in PCV treatment are rare.

6.6  Sorivudine

Sorivudine is phosphorylated to the diphosphate form by TK of HSV-1 and VZV, 
and the inhibition of TS activity by sorivudine monophosphate caused VZV to be 
quite susceptible to sorivudine. The TMP supply from UMP is blocked through 
inhibiting TS, and this increases the ratio of antiviral sorivudine monophosphate per 
TMP in VZV-infected cells (Cohen and Seidel 1993; De Clercq 2005; Kawai et al. 
1993; Machida et al. 1982; Yokota et al. 1989). The IC50 of sorivudine is extremely 
low at 0.0035 μM, and sorivudine showed potent anti-VZV activity and better effi-
cacy than acyclovir. Sorivudine 40 mg/day showed significantly more efficacy than 
ACV 4 g/day in the treatment of herpes zoster in HIV-infected adults (Bodsworth 
et al. 1997). Sorivudine was licensed for herpes zoster in Japan in 1993.

Bromovinyluracil of the sorivudine metabolite irreversibly binds and inhibits 
dihydropyrimidine dehydrogenase activity, and this enzyme is important as the 
degrading enzyme of 5-fluorouracil (5FU), an anticancer drug. When sorivudine 
was used in patients with cancer treated with 5-FU, the 5-FU concentration in the 
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blood was increased by interfering with the 5-FU catabolism by inhibition of the 
5-FU-degrading enzyme by bromovinyluracil. The increased 5-FU caused severe 
hematopoietic toxicity of 5-FU in the reduction of leukocytes and platelets causing 
15 patient deaths with 5-FU and sorivudine treatment. If not combined with 5-FU, 
sorivudine is an excellent anti-VZV drug.

6.7  Brivudin

(E)-5-(2-Bromovinyl)-2′-deoxyuridine (BVDU/brivudin) is phosphorylated by 
viral TK, inhibits viral DNA synthesis, and shows strong activity toward VZV at 
lower concentrations than ACV (De Clercq 2004; De Clercq et al. 1982). A double- 
blind survey study was conducted on 608 herpes zoster patients treated with 
1 × 125 mg oral brivudin (n = 309) or 5 × 800 mg ACV (n = 299), both for 7 days, 
during two prospective, randomized clinical herpes zoster trials. The survey was 
aimed to evaluate the outcome of the two treatment regimens in postherpetic neural-
gia (PHN). The incidence of PHN, defined as zoster-associated pain occurring or 
persisting after rash healing, was significantly lower in brivudin recipients (32.7%) 
than in ACV recipients (43.5%, P = 0.006) (Wassilew et al. 2003). Brivudin is used 
for the treatment of herpes zoster in adult patients and may reduce the incidence of 
PHN. The use of brivudin with 5-FU requires caution, because like sorivudine, it 
can enhance the hematopoietic toxicity of 5-FU.

6.8  DNA Polymerase Inhibitors

The viral DNA polymerase inhibitors foscarnet and rarely vidarabine in intravenous 
preparations are used for drug-resistant HSV and VZV infection. Current treatment 
with ACV or PCV is satisfactory in HSV and VZV infection because immunocom-
promised patients, especially those with human immunodeficiency virus infection, 
are well controlled, and immunocompromised patients who need prolonged antivi-
ral treatment are limited. Foscarnet and vidarabine do not require phosphorylation 
for their antiviral action and are used for TK-deficient HSV and VZV. Vidarabine 
inhibits viral DNA synthesis at concentrations below those required to inhibit host 
cell DNA synthesis (Shipman Jr et al. 1976) and may have multiple sites of action 
within an infected cell (Kamiyama et al. 2001; Suzuki et al. 2006). It is phosphory-
lated to its active triphosphate form by cellular kinases (Schwartz et al. 1984). Thus, 
vidarabine can inhibit TK-deficient mutants of HSV and VZV that are resistant to 
ACV, and the active site of vidarabine on DNApol is different from that of ACV but 
similar to that of foscarnet (Kamiyama et al. 2001; Larder and Darby 1986; Miwa 
et al. 2005; Shiraki et al. 1990). Vidarabine is less efficient with more adverse events 
than ACV (Whitley et  al. 1986). Therefore, the clinical use of vidarabine is 
limited.
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Foscarnet is a pyrophosphate analog that is released from dNTPs on DNApol; 
thus, foscarnet directly acts on DNApol (Kern et al. 1981; Ostrander and Cheng 
1980). The inhibitory action of foscarnet depends on the ratio of the numbers of 
DNApol and foscarnet molecules; therefore, foscarnet is not influenced by the sup-
ply of deoxyribonucleotides, such as ACV or PCV (Yajima et al. 2017). Foscarnet 
is available as an intravenous preparation and requires attention regarding the elec-
trolyte balance in the blood and renal function after its administration. Foscarnet is 
used for ACV- or ganciclovir-resistant virus.

The mutation sites of HSV and VZV DNApol are shown in Fig. 6.3. There are 
two recognition groups of ACV-resistant HSV and VZV in their DNApols: the 
foscarnet- arabinose moiety of the vidarabine group versus the aphidicolin group as 
described in the section of ACV-/PCV-resistant mutants. ACV-resistant mutants 
with foscarnet-vidarabine resistance (VZV G805C, V855M) are more sensitive to 
aphidicolin than the wild-type parent virus, and those with foscarnet-vidarabine 
hypersensitivity are more resistant to aphidicolin. ACV-resistant mutants with 
foscarnet- arabinose (vidarabine) hypersensitivity (VZV N779S) are more resistant 
to ACV than those with foscarnet-arabinose (vidarabine) resistance (Kamiyama 
et al. 2001).

Cidofovir has a phosphorylated form and does not require initial phosphoryla-
tion by TK or CMV-UL97 (Cundy 1999; Safrin et al. 1997). Cidofovir is an inject-
able antiviral medication used for the treatment of CMV retinitis in individuals with 
AIDS. Cidofovir-diphosphate inhibits viral DNApol of herpesviruses, orthopoxvi-
ruses, adenoviruses, polyomaviruses, and papillomaviruses (Beadle et al. 2002). A 
prodrug form of cidofovir, brincidofovir (CMX001), is orally available, and clinical 
studies are under way including Ebolavirus infection (Dunning et al. 2016).

6.9  Helicase-Primase in DNA Synthesis

Double-stranded DNA needs to become separated into two single strands (replica-
tion fork) before DNA synthesis, and their complementary strands are synthesized 
from each DNA strand to make two new double-stranded DNA molecules in the 
process of DNA replication (Fig.  6.4). Helicase-primase is responsible for both 
unwinding viral DNA at the replication fork, separating double-stranded DNA into 
two single strands, and synthesizing RNA primers (Okazaki fragment) in the lag-
ging strand for DNA synthesis. DNApol starts complementary DNA synthesis from 
these two strands. This HP enzyme complex consists of three proteins—a helicase, 
a primase, and cofactor subunits—which are well conserved among Herpesviridae 
viruses and are called UL5 (helicase, VZVORF55), UL52 (primase, VZVORF6), 
and UL8 (cofactor, VZVORF52), respectively. UL5 unwinds duplex DNA ahead of 
the fork and separates the double strand into two single strands. UL52 lays down 
RNA primers that the two-subunit DNA polymerase (UL30/UL42) extends. The 
helicase-primase complex possesses multi-enzymatic activities, including DNA- 
dependent ATPase and helicase localized in the helicase subunit and primase in the 
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primase subunit; all of these enzymatic activities are needed for the helicase- primase 
complex to function in viral DNA replication. HP is quite different from topoisom-
erases to wind or relax double-stranded DNA. Therefore, HP is an important enzyme 
for DNA synthesis and a conserved enzyme from E. coli to Homo sapiens, and HSV, 
VZV, and CMV have their own HP as an essential gene product in their replication.

6.10  Helicase-Primase Inhibitor (HPI)

HPI inhibits the single-stranded, DNA-dependent ATPase, helicase, and primase 
activities by binding to the helicase-primase complex (Biswas et  al. 2014;  
Chono et al. 2010, 2012; James et al. 2015). There are three classes of herpesvirus 
HPIs – thiazole urea, BAY 57-1293 (pritelivir) (Kleymann et al. 2002), 2-amino- 
thiazolylphenyl derivatives, BILS 179 BS (Crute et al. 2002; Spector et al. 1998), 
and oxadiazolylphenyl type ASP2151 (amenamevir) (Fig. 6.5) (Chono et al. 2010). 
Interestingly, the former two classes of HPIs, BAY 57-1293 and BILS 179 BS, 
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Fig. 6.4 Mechanism of DNA synthesis and viral helicase-primase (HP) complex (modified from 
Boehmer and Lehman 1997). Figure shows the role of the helicase-primase complex (UL5, UL8, 
UL52 of HSV and ORF55, ORF6, ORF52 of VZV), DNA polymerase complex (UL42, UL30 of 
HSVDNA polymerase), and ICP8 single-stranded DNA-binding protein of HSV. HSV UL5 and 
VZVORF55 (helicase) unwind double-stranded DNA and separate double strands into two single 
strands, making the replication fork. HSV UL52 and VZVORF55 (primase) synthesize RNA prim-
ers (Okazaki fragments) for DNA synthesis. DNA polymerase and its accessory protein (UL42) 
bind to each single strand and synthesize complementary DNA to each strand. The single- stranded 
DNA-binding protein, ICP8, binds to single-stranded template DNA.  The arrows indicate the 
direction of movement of the DNA replication proteins (Shiraki 2017)
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inhibit HSV-1 and HSV-2 but not VZV, and amenamevir possesses antiviral activity 
not only against HSV-1 and HSV-2 but also against VZV. HPIs require low concen-
trations to inhibit viral growth of HSV-1 and HSV-2 at the effective concentrations 
for 50% plaque reduction (EC50s) of 0.014 to 0.060 μM and 0.023 to 0.046 μM, 
respectively, and the anti-VZV activity of amenamevir (0.038–0.10 μM) is more 
potent against all strains tested than against ACV (1.3-5.9 μM) (Chono et al. 2010).

These HPIs are virus specific with low cytotoxicity in vitro, are orally available 
and effective against HSV infection, and are well tolerated in mice. As the target 
molecules are different from ACV, PCV, foscarnet, and vidarabine, their mechanism 
of action and antiviral and pharmacokinetic profiles are unique to HPIs. Foscarnet 
inhibits viral DNA polymerase activity through direct binding to the pyrophosphate 
binding site (James and Prichard 2014). Both HPIs and foscarnet directly inhibit 
viral enzymes. On the other hand, ACV is phosphorylated by HSV TK and cellular 
kinase, which convert it to the active form, ACV-TP, and then incorporate it into the 
elongating viral DNA strand, resulting in chain termination (James and Prichard 
2014). Because ACV-TP competes with dGTP to inhibit viral DNA synthesis, the 
ratio of ACV-TP to dGTP directly affects the effectiveness of ACV in virus replica-
tion. Thus, it is reasonable that amenamevir and foscarnet, which directly inhibit the 
viral enzyme, suppressed viral replication more effectively than ACV after viral 
DNA synthesis becomes active (Yajima et al. 2017). ACV-TP competes with dGTP 
on viral DNApol in infected cells, and anti-HSV activity is attenuated when dGTP 
supply becomes abundant after infection. The EC50s of ACV to HSV-1 was approxi-
mately 1.5 μM up 5 h after infection and increased after 7.5 h to 12.4 μM at 12.5 h 
after infection as shown in Fig. 6.6a. In contrast, HPIs target the enzyme and not the 
nucleoside analog, and anti-HSV activity of amenamevir is not influenced regard-
less of the time course after infection. Thus, the susceptibility to ACV increased to 
8 to 11 times that of initial EC50 at 12 h after infection when active DNA synthesis 
is progressing by the supply of dGTP, while the susceptibility of HSV-1 to foscarnet 
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Fig. 6.5 Structure and antiviral activity of helicase-primase inhibitors. The structures of three 
helicase-primase inhibitors (HPI) and their spectrum of antiviral activity are shown in the figure 
and table, respectively. Three HPIs of amenamevir—oxadiazolylphenyl type (ASP2151) (Chono 
et al. 2010); BILS 179 BS, 2-amino-thiazolylphenyl derivatives (Crute et al. 2002; Spector et al. 
1998); and pritelivir, thiazole urea (BAY 57-1293) (Kleymann et al. 2002)—were developed and 
exhibited lower EC50 concentrations than those of acyclovir, and amenamevir and pritelivir have 
been evaluated for their clinical efficacy. Interestingly, amenamevir possesses anti-VZV activity 
and is based on the anti-VZV activity. A clinical study on amenamevir for herpes zoster has been 
completed and submitted for approval of the licensure of herpes zoster in Japan
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Fig. 6.6 Synergism of amenamevir (ASP2151) with ACV against the VZV Kawaguchi strain 
analyzed by isobologram (Chono et al. 2013). (a) Time course of the susceptibility (EC50) changes 
in infected cells to ACV, ASP2151, and foscarnet (PFA) every 2.5 h after infection (Yajima et al. 
2017). The increase in EC50 values is expressed as the ratio of those at 0 h. The susceptibility of 
HSV-1 to ACV increased more than 7.5 h after infection, but ASP2151 and PFA were not influ-
enced. The effects of the increase of dGTP for viral DNA synthesis in the late phase of infected 
cells reduced the antiviral activity of ACV, but ASP2151 and PFA were not affected by viral  
DNA synthesis and its related cellular factors. (b) The solid straight line (gray) indicates the  
theoretical additive antiviral activity in combination with ASP2151 and ACV (Chono et al. 2013). 

K. Shiraki



117

Fig. 6.6 (continued) Each point (EC50) is shown as the mean ± standard error from four indepen-
dent experiments. Significant synergism was observed by the combination of ASP2151 and ACV 
(P  =  0.0005), and a low concentration of ASP2151 showed strong synergism with ACV (c) 
Metabolic pathway in the stage of viral DNA synthesis when ribonucleotides are efficiently con-
verted to deoxyribonucleotides by viral RR for viral DNA synthesis (Shiraki 2017). dGTP is mas-
sively supplied for DNA synthesis at about 60,000 and 90,000 dGTPs per one DNA molecule of 
VZV and HSV, respectively, and this supply of dGTP reduces the incorporation of ACV-TP into 
viral DNA with the competition of ACV-TP with the massive supply of dGTP, resulting in attenua-
tion of the inhibition of viral DNA synthesis by ACV. This results in the increased EC50 value of 
ACV as shown in Fig. (a). PFA and ASP2151 directly act on DNApol and HP, respectively, and 
inhibit viral DNA synthesis without any influence by the supply of dGTP. Amenamevir efficiently 
inhibits viral growth in the early and late phases of infection, in contrast to ACV, as indicated in Fig. (c)

and amenamevir was not influenced by the replication cycle. The antiviral activity 
that is not affected by the replication cycle is a great advantage of HPIs over current 
anti-herpetic drugs and allows the once-daily dose for human use.

6.11  HPI-Resistant Viruses

HPI-resistant virus and ACV-resistant virus in the wild-type virus stock were com-
pared in HSV-1 and HSV-2. The ACV-resistant virus was found in one in 103 to 104 
plaque-forming units (PFU) (Chono et al. 2012), and this value was consistent with 
that in the other reports (Coen et al. 1982; Daikoku et al. 2016; Parris and Harrington 
1982). HPI-resistant virus was found in one in 106 to 107 PFU (Chono et al. 2012); 
thus, the HPI-resistant virus is rare. Any mutation to lose function in the TK gene 
leads to the ACV-resistant virus; by contrast, HPI mutants should preserve the func-
tion of HP in the restricted amino acid change in UL5 or UL52 (Chono et al. 2010, 
2012). Thus, HPI-resistant mutants are quite rarer than ACV-resistant mutants.

The HPI-resistant viruses have been isolated, and their mutation sites have been 
analyzed. HP is an essential gene product, and these mutations maintain their basic 
function for replication but avoid the interaction of HPIs by changing the structures 
of helicase and primase. Sequencing analyses revealed several single-base-pair sub-
stitutions resulting in amino acid changes in the helicase and primase of amenamevir- 
resistant HSV mutants (Chono et al. 2010). Amino acid alterations in the helicase 
subunit were commonly clustered near helicase motif IV in the UL5 helicase gene 
of both HSV-1 and HSV-2 among HPIs, while the primase subunit substitution asso-
ciated with reduced susceptibility was found only in amenamevir-resistant HSV-1 
mutants. Interestingly, we found that R367H with S364G substitution in the UL52 
primase gene (double mutation) enhanced the resistance to amenamevir compared 
with S364G substitution alone (single mutation). HPI-resistant HSV mutants show 
susceptibility to ACV and attenuated growth capability in vitro and pathogenicity 
than the parent virus in HSV-infected mice (Chono et al. 2012). Mutations in either 
helicase or primase of HP complex against amenamevir might confer defects in 
viral replication and pathogenicity.
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Synergism of amenamevir was observed with ACV, PCV, and vidarabine in 
HSV-2 and VZV. Synergism of amenamevir with ACV was observed at all concen-
trations in vitro by isobologram analysis, and amenamevir achieved synergism at 
its low concentrations in HSV-1, HSV-2, and VZV (Fig. 6.6b) (Chono et al. 2013). 
The combination of amenamevir and valacyclovir in oral administration showed 
significant synergistic activity in HSV-infected mice. This synergistic activity of 
amenamevir and ACV or PCV indicates the maximization of anti-herpetic therapy, 
possible reduction in increased toxicity by increasing the dose of ACV or PCV, and 
possible reduction in the generation of resistant virus in the prolonged treatment of 
chronic infection in immunocompromised patients. Combination therapy may be a 
useful approach to treat herpes infections suspected to be caused by nucleoside 
analog drug-resistant virus variants and represents more effective therapeutic 
options than monotherapy, particularly for severe disease conditions, such as herpes 
encephalitis or patients with immunosuppression.

The pharmacokinetic profile of HPIs suggests the oral 1-day dose can attain the 
concentration exhibiting antiherpetic activity for the entire day, and this excellent 
property exceeds that of valacyclovir and famciclovir in maintaining the antiviral 
level, when they are used in the suppressive therapy of genital herpes. This long- 
lasting antiviral status indicates that reactivation from the ganglia would be com-
pletely inhibited with subsequent viral shedding, leading to the sexual transmission 
of HSV. Thus, HPIs might stop genital lesions and viral shedding in healthy persons 
with genital herpes and subsequent sexual transmission of HSV; additionally, HPIs 
would have favorable characteristics as antiherpetic drugs in suppressive therapy.

Due to promising preclinical profiles on antiviral activity, safety, tolerability, and 
pharmacokinetics, HPIs, pritelivir and amenamevir, were selected as development 
candidates, and their clinical efficacies have been evaluated in two phase-2 clinical 
studies for patients with genital herpes (Tyring et al. 2012; Wald et al. 2014, 2016). 
The clinical study of pritelivir on the viral shedding of genital herpes comparing 
daily oral doses of 100 mg of pritelivir with 500 mg of valacyclovir showed better 
efficacy on genital lesions and viral shedding than valacyclovir. Genital lesions 
were present on 1.9% of days in the pritelivir group vs 3.9% in the valacyclovir 
group (RR, 0.40; 95% CI, 0.17-0.96; P = 0.04). The frequency of shedding episodes 
did not differ by group, with 1.3 per person-month for pritelivir and 1.6 per person- 
month for valacyclovir (RR, 0.80; 95% CI, 0.52 to 1.22; P  = 0.29) (Wald et  al. 
2016). HSV shedding among placebo recipients was detected on 16.6% of days; 
shedding among pritelivir recipients was detected on 18.2% of days among those 
receiving 5 mg daily, 9.3% of days among those receiving 25 mg daily, 2.1% of days 
among those receiving 75 mg daily, and 5.3% of days among those receiving 400 mg 
weekly. The percentage of days with genital lesions was also significantly reduced, 
from 9.0% in the placebo group to 1.2% in both the group receiving 75 mg of prite-
livir daily (relative risk, 0.13; 95% CI, 0.02 to 0.70) and group receiving 400 mg 
weekly (relative risk, 0.13; 95% CI, 0.03 to 0.52). Pritelivir reduced the rates of 
genital HSV shedding and days with lesions in a dose-dependent manner in otherwise 
healthy persons with genital herpes (Wald et al. 2014). One dose of valacyclovir 
does not maintain antiviral activity for the entire day but suppresses apparent 
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reactivation with some breakthrough. By contrast, the excellent pharmacokinetic 
profile of HPIs with administration once a day can maintain the anti-HSV activity 
for the entire day, suggesting that HPIs would inhibit HSV reactivation, even viral 
shedding, in patients with genital herpes, as well as the transmission of HSV com-
pletely from a healthy person with genital herpes.

The clinical study of amenamevir on herpes zoster compares once-daily oral 
doses of amenamevir with three doses valacyclovir. Amenamevir has been approved 
as the first HPI drug in clinical use and successfully used for the treatment of herpes 
zoster in Japan.

6.12  Conclusion

This chapter has introduced the current anti-herpetic drugs and newly developed 
HPIs. HPI works at a low concentration in vitro, and the resistant virus is rarer than 
acyclovir and synergistic with ACV. HPIs have shown efficacy in genital herpes in 
a once-daily dose. The investigation of amenamevir has been completed a clinical 
study on herpes zoster, and the drug has been used for the treatment of herpes zoster 
in Japan. Thus, HPIs will be the next-generation drugs for HSV and VZV. Moreover, 
various anti-herpes virus drugs are under development (Disease NIOaaI Herpes 
Drugs in Development n.d.)
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Chapter 7
Vaccine Development for Varicella-Zoster 
Virus

Tomohiko Sadaoka and Yasuko Mori

Abstract Varicella-zoster virus (VZV) is the first and only human herpesvirus for 
which a licensed live attenuated vaccine, vOka, has been developed. vOka has 
highly safe and effective profiles; however, worldwide herd immunity against VZV 
has not yet been established and it is far from eradication. Despite the successful 
reduction in the burden of VZV-related illness by the introduction of the vaccine, 
some concerns about vOka critically prevent worldwide acceptance and establish-
ment of herd immunity, and difficulties in addressing these criticisms often relate to 
its ill-defined mechanism of attenuation. Advances in scientific technologies have 
been applied in the VZV research field and have contributed toward uncovering the 
mechanism of vOka attenuation as well as VZV biology at the molecular level. A 
subunit vaccine targeting single VZV glycoprotein, rationally designed based on the 
virological and immunological research, has great potential to improve the strategy 
for eradication of VZV infection in combination with vOka.

Keywords Varicella-zoster virus · Live attenuated vaccine · Next-generation 
sequencing · In vitro latency system · VZV-specific cellular immunity · Herpes 
zoster subunit vaccine

7.1  Introduction

Varicella-zoster virus (VZV) is a ubiquitous alphaherpesvirus and highly communi-
cable pathogen spreading by airborne transmission only among humans. VZV is a 
multiple cell-tropic virus mainly targeting T lymphocytes, epithelial cells, and neu-
rons. Primary infection with VZV causes varicella (chickenpox), characterized by 
systemic vesicular rash accompanied by T-cell-associated viremia. During primary 
infection, VZV gains access to and establishes lifelong latency in ganglionic 
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neurons along the entire human neuraxis. Months to years later, when VZV-specific 
cellular immunity but not humoral immunity wanes, VZV can reactivate to cause 
herpes zoster (shingles), characterized by painful unilateral and dermatomal rash 
(Arvin and Gilden 2013).

In general, varicella is a self-limiting disease but can sometimes be followed by 
serious complications, including bacterial sepsis, pneumonia, hepatitis, encephali-
tis, and hemorrhage, and occasionally results in death. These serious complications 
and death are more prominent in infants, adults, and severely immunocompromised 
individuals (Arvin and Gilden 2013; Gershon et al. 2015). Congenital VZV infec-
tion is caused by maternal varicella suffered during the first 20 weeks of pregnancy 
and results in 2% severe embryopathy (Pastuszak et al. 1994).

The lifetime risk of herpes zoster (HZ) is estimated around 30% in infected indi-
viduals. Postherpetic neuralgia (PHN), the most common complication of HZ, is 
clinically defined as a pain persisting for at least 3 months after resolution of HZ 
rash, and risk of PHN increases with age. VZV meningitis, meningoencephalitis, 
meningoradiculitis, cerebellitis, myelopathy, and vasculopathy may develop after 
HZ but with lesser frequency than PHN. VZV reactivation causes serious ocular 
disorders including stromal keratitis, acute retinal necrosis, and progressive outer 
retinal necrosis. Neurological diseases other than PHN and ocular disorders can also 
happen without rash as seen in zoster sine herpete, a chronic radicular pain without 
rash caused by VZV reactivation (Arvin and Gilden 2013). Intensive studies by 
Gilden (1937–2016) and colleagues have identified that VZV vasculopathy and 
giant cell arthritis are strongly associated with productive VZV infection in cerebral 
and temporal arteries, respectively (Nagel et al. 2011, 2015), and most recently, the 
presence of VZV antigen in granulomatous arteritis of the aorta is also reported 
(Gilden et al. 2016).

VZV is the only human herpesvirus for which a live attenuated vaccine is 
licensed in several countries. Originally developed in Japan in 1974 (Takahashi 
et al. 1974) and known as strain vOka, the vaccine has been safely and effectively 
used to prevent both varicella and zoster including their complications. However, 
VZV-related diseases still occur all over the world. In some developing countries, 
VZV infection is less concern, if compared to other more serious infectious dis-
eases, but the growing number of immunocompromised individuals in the world 
requires establishment of worldwide herd immunity against VZV. Even in devel-
oped countries where a routine varicella vaccination has been performed, there has 
been far from eradication of VZV infection, the common final object of infectious 
disease research. To achieve these, several distinct research strategies have been 
actively pursued in VZV research field.

In this chapter, we first summarize vOka biology to make clear what we do and 
do not know about vOka and then focus on recent (1) advances in VZV research 
uncovering vOka attenuation mechanism toward improving attenuated live VZV 
vaccine more safely and effectively, (2) findings regarding VZV-specific T-cell 
immunity, and (3) the significant improvement of HZ subunit vaccine.
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7.2  Live Attenuated VZV Vaccine, vOka

7.2.1  Development of vOka

In 1974, Takahashi (1928–2013) and colleagues developed a live attenuated VZV 
vaccine (Takahashi et al. 1974). His enthusiasm and effort toward developing VZV 
vaccine and it’s insightful history are well reviewed by Ozaki and Asano (the latter 
is one of the co-developers of vOka) which summarizes current clinical aspects of 
vOka as “varicella vaccine” in Japan (Ozaki and Asano 2016).

A clinical VZV isolate was derived from the vesicular fluid of a 3-year-old boy 
with typical varicella and named Oka after his family name. The Oka isolate was 
first expanded in human embryonic lung (HEL) cells at 37 °C, resulting in parental 
Oka strain (pOka) widely used as VZV wild-type strain. The pOka was serially 
cultured 11 times in HEL cells at 34 °C and 12 times in guinea pig embryonic fibro-
blasts (GPEF) at 37 °C by the concept of classic and empirical viral growth attenu-
ation technique, semi-permissive culture. The resulting virus was further cultured 
three times in human diploid cells, WI-38, at 37 °C. Either virus before (six pas-
sages in GPEF) or after culturing in WI-38 cells was subcutaneously administrated 
to healthy children with no history of varicella and was proved to be safe with no 
clinical reactions and effective with compatible seroconversion rate and antibody 
titer against VZV. Importantly, after confirming its safety and efficacy in healthy 
children, the attenuated virus after a sixth passage in GPEF was subcutaneously 
vaccinated to 23 high-risk children of severe varicella with no history of varicella in 
a hospital to prevent varicella dissemination from a 3-year-old boy with nephrosis 
developing typical varicella symptom. Underlying diseases among 23 children 
included nephritis, nephrosis, enteritis, hepatitis, purulent meningitis, arthritis, 
asthma, myelitis, hemangioma, purpura, and ventricular septal defect, and 12 chil-
dren received steroid therapy. After vaccination, no varicella dissemination was 
observed in the hospital except for two children with mild vesicular rash (Takahashi 
et al. 1974).

Based on the safety and efficacy profiles of the Oka attenuated virus on high-risk 
children as well as healthy children from the initial work (Takahashi et al. 1974) and 
several following clinical works mainly conducted in high-risk children (Hattori 
et al. 1976; Ozaki et al. 1978; Katsushima et al. 1982; Kamiya et al. 1984), the Oka 
strain was recognized “to have the most desirable attribute of low virulence while 
inducing an adequate antibody response and protection against diseases” by WHO 
(World Health Organization) (WHO experts committee on biological standardiza-
tion 1994) and has been used in more than 80 countries to date. At present, a virus 
after a third passage in WI-38 cells is the Oka vaccine seed stock for vaccine Oka 
(vOka) preparations from three different providers: OkaVax from Biken for pre-
venting both varicella and herpes zoster, VariVax and ZostaVax from Merck for 
varicella and herpes zoster, respectively, and VarilRix from GSK for varicella.

7 Vaccine Development for Varicella-Zoster Virus
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7.2.2  Clinical Aspects of vOka

A single dose of varicella vaccine was 80–85% effective in preventing disease of 
any severity and more than 95% effective in preventing severe varicella. The vac-
cination program reduced disease incidence by 57–90%, hospitalizations by 
75–88%, deaths by 74%, and direct inpatient and outpatient medical expenditures 
by 74% as summarized in (Marin et al. 2008). A higher dose of vOka administration 
[1,000–3,000 plaque-forming units (PFU) for varicella vs. 19,400–60,000 PFU for 
HZ in general (but in Japan, 42,000–67,000 PFU) for both varicella and HZ] is 
approved for use in adults 50 years of age or older and is recommended for adults 
60 years of age or older based on the data from the shingles prevention study. In this 
study, one subcutaneous administration reduced the burden of illness due to HZ by 
61.1%, reduced the incidence of HZ by 51.3%, and reduced the incidence of PHN 
by 66.5% (Oxman et al. 2005).

Despite a dramatic decline in varicella disease by one-dose vaccination, continu-
ing outbreaks of varicella had been reported among elementary school-aged popula-
tion with high coverage rate. Therefore, in 2006, a two-dose varicella vaccine 
schedule was recommended by the Centers for Disease Control and Prevention 
(CDC) (Marin et al. 2007). Varicella within 42 days postvaccination, also known as 
breakthrough varicella, can occur up to 34.2% by one-dose vaccination (Takayama 
et al. 1997). Breakthrough varicella is normally milder than natural varicella, but 
some serious complications similar to those occurring in unvaccinated individuals 
have been reported even in healthy vaccines, albeit at less than 25% frequency 
(Chaves et  al. 2008b), and occasionally resulted fatal in immunocompromised 
patients (Yoshikawa et al. 2016). The US two-dose vaccination program reduced 
odds of developing varicella by 95% and appears to have significantly reduced the 
number, size, and duration of outbreaks (Shapiro et al. 2011; Leung et al. 2015). 
However, the two-dose vaccination schedule has not yet been incorporated into the 
routine vaccination strategies for several countries.

The risk of HZ substantially decreased among vaccinated children aged 
<10 years, and its widespread use was postulated to reduce overall burden of HZ, 
while the incidence of HZ among 10–19-year-olds increased during the same period 
(Civen et al. 2009). The varicella vaccine is generally safe and well tolerated; how-
ever, both in healthy and immunocompromised individuals, vOka can establish 
latency as well as wild-type VZV and reactivate and cause HZ that is often indistin-
guishable from that caused by wild-type VZV (Chaves et al. 2008a; Galea et al. 
2008; Goulleret et al. 2010; Weinmann et al. 2013). HZ associated with vOka is 
most common at the site of vaccine inoculation (Hardy et  al. 1991), but vOka- 
related HZ only in the trigeminal nerve area in healthy 2-year-old girl without previ-
ous varicella history was reported in 2016, and this finding suggests that monitoring 
vOka-related HZ incidence rate is expected to elucidate many aspects of varicella 
vaccine safety (Iwasaki et al. 2016).

In 1965, Hope-Simpson hypothesized that both endogenous and exogenous 
exposure of VZV may be a boost to one’s immunity and significantly delays the 
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onset of HZ (Hope-Simpson 1965). Consistent with his hypothesis, exposure to 
varicella boosted immunity to HZ, and then mass varicella vaccination was postu-
lated to reduce endemic HZ by reducing exposure to varicella (Brisson et al. 2002). 
The population-based long-term analysis using medical record (1945–1960 and 
1980–2007 in Olmsted County, Minnesota, USA) revealed that the incidence of HZ 
has indeed increased >4-fold over the last six decades, but there is no change in the 
rate of increase before and after the introduction of varicella vaccination, and this 
increase is unlikely to be due to any predictable reasons including the introduction 
of varicella vaccination, antiviral therapies, or change in the prevalence of immuno-
compromised individuals (Kawai et al. 2016).

In general, vOka vaccination has proven to be safe and well tolerated among 
healthy individuals and even in some immunocompromised populations to prevent 
varicella and HZ. However, some concerns, as described above, cause the delay of 
licensure in some European countries and give the excuse to anti-vaccine movement, 
resulting in failure to establish herd immunity against VZV. At the same time, the 
molecular mechanism of vOka attenuation remains poorly understood and contrib-
uted to concern over the vaccine. Improving our understanding of attenuation could 
lead to worldwide acceptance of vOka. The mechanism(s) of attenuation is ill-
defined, mainly due to the lack of a robust animal model which recapitulates whole 
viral life cycle in human. In any animal model established, the wild-type VZV infec-
tion does not sufficiently recapitulate any disease in humans, and hence neither the 
vOka virulence nor the effect of vOka vaccination can be adequately confirmed.

7.2.3  Molecular Genetics of vOka Before the Next-Generation 
Sequencing Era

In 2000, partial sequencing of vOka and pOka by Gomi et al. identified that multiple 
single nucleotide polymorphisms (SNPs) accumulated in ORF62 gene region of 
vOka, which is a duplicated gene (ORF62/ORF71) and encodes the immediate- early 
major transactivator protein, IE62. Interestingly, other transregulating coding genes, 
ORF4, ORF10, ORF61, and ORF63, as well as ORF14 (glycoprotein C), did not 
contain any SNP differences from pOka. Strikingly, not all SNPs within ORF62 gene 
accumulated on single vOka genome, suggesting vOka vaccine comprised heteroge-
neous (mixed) populations (Gomi et al. 2000). Subsequently, the comparison of the 
whole-genome sequences between vOka and pOka was completed by the same group. 
In the vOka genome, 42 SNPs were identified in 21 ORFs, in the tandem repeat 
regions, R1, R3, and R4, and in the OriS. Of 42 SNPs, 6 were in noncoding region, 16 
were synonymous changes (no change to amino acid sequence), and 20 caused non-
synonymous changes (change in the amino acid residue). Nearly 30% of SNPs (12/42) 
accumulated in ORF62, and 4 were synonymous and 8 were non-synonymous. And 
again not all genome contained the vOka-specific SNPs at all positions indicated that 
vOka vaccine is a mixture of genetically distinct haplotypes (Gomi et al. 2002).
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ORF0, initially referred as ORFS/L, was discovered in 2000 and encodes a cyto-
plasmic protein expressing during lytic infection in vitro and in vivo. In vOka, a 
SNP (TGA to CGA) was observed in ORF0, and this eliminates a stop codon after 
a residue 129 in the wild-type VZV including pOka and extends vOka ORF0 protein 
by 92 amino acids (Kemble et  al. 2000). In 2012, whole-genome sequencing of 
VZV strain Ellen was completed and identified the same SNP in ORF0 with vOka. 
The Ellen is known to have become highly attenuated after at least 90 passages in 
cultured cells. Additionally, the Ellen also shared two SNPs in ORF62 with vOka in 
the absence of other common SNPs. These findings sharing only three SNPs 
between two unrelated attenuated VZV strains suggested that these three SNPs are 
the determinants of vOka attenuation (Peters et al. 2012), and this claim seems to 
meet the rising concept that VZV attenuation requires a set of SNPs within two or 
three ORFs. However, this concept has only arisen from the negative results that 
SNPs in ORF62 had no responsibility for vOka attenuation (Zerboni et al. 2005a) 
and SNP in ORF0 alone had also no responsibility for vOka attenuation (Koshizuka 
et al. 2010) as described in Sect. 7.2.4. Thus far this concept is not yet supported by 
any molecular based genetic approaches to creating the recombinant virus 
which contains all vOka type SNPs within ORF0 and ORF62 in the pOka virus or 
contains all pOka type SNPs within ORF0 and ORF62 in the vOka virus.

The administration of live attenuated vOka following rash formation either by 
varicella or zoster provided unique opportunity to determine the candidate geno-
types for remaining vOka virulence in  vivo. The discrepancy has been reported 
among the following studies: one has reported that single rash vesicle contains sin-
gle genotype but different vesicles in the same individual contain different genotype 
(Quinlivan et al. 2004), while others have found that the individual vesicles contain 
multiple genotypes (Loparev et al. 2007; Thiele et al. 2011); however, these studies 
provided the evidence that rashes are not caused by a single vOka haplotype. 
Comparison of the allele frequencies between rash-causing vOka and original vOka 
revealed that the wild-type alleles at four loci within vOka, which may survive dur-
ing the Oka attenuation process through semi-permissive culture, were significantly 
more prevalent among rash-causing vOka viruses than original vOka viruses includ-
ing nucleotide position at 560 in ORF0, 105,169 between ORF61 and ORF62, and 
105,356 and 107,797 in ORF62. In other words, the vOka viruses harboring these 
four wild-type SNPs have been selected for and caused rashes, but these findings 
were not proven experimentally.

7.2.4  Molecular Approaches Uncovering vOka Attenuation 
Mechanism

VZV has no animal model which can recapitulate the whole viral life cycle observed 
in the natural host, human. Several attempts had been made, and the most successful 
animal model to analyzing VZV pathogenesis is the SCID-hu mouse model, in 
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which human fetal tissues were xenografted in mice with severely combined immu-
nodeficiency (SCID) and innate responses that modulate infectious process can be 
assessed independently of adaptive immunity, which is lacked in SCID mice. VZV- 
SCID- hu mouse model was first developed to analyze cell tropisms of VZV for 
human T lymphocytes and epidermal cells in SCID mice implanted with human 
fetal thymus/liver or fetal skin, respectively (Moffat et al. 1995). Since then, several 
impressive works regarding molecular mechanisms for VZV pathogenesis in vivo 
have been published to date as summarized by Zerboni et al. (2014).

Prior to uncovering the heterogenetic character of vOka, attenuation of vOka 
as well as strain Ellen in human skin was first confirmed using SCID-hu mice 
implanted with human fetal skin compared to the wild-type VZV (Moffat et al. 
1998), while SCID-hu mice implanted with human fetal thymus/liver infected 
with vOka or the wild-type VZV resulted in slower replication of vOka than the 
wild-type VZV in T lymphocytes, but viral titers were comparable at by day 14 
(Moffat et al. 1995). The SCID-hu mice implanted with human fetal dorsal root 
ganglia (DRG) have been also used to analyze VZV neurotropism during lytic 
infection. In this DRG, VZV acquires quiescent state after productive infection 
stage, but never reactivates, indicating that the true latency is not established in 
the model. During productive infection in the DRG, vOka exhibited the same pat-
tern with pOka regarding short-time replication before acquiring quiescent state, 
indicating that vOka is not attenuated for neurotropism (Zerboni et  al. 2005b), 
despite the existence of that acute lytic phase in neurons before establishment of 
latency has not been proved in human.

The attenuation in human skin and the lack of attenuation in human T-cell and 
neuron of vOka have been shown in SCID-hu mice, but the genetic basis of vOka 
attenuation has not yet been defined in SCID-hu mice. However, by creating chime-
ric viruses containing several combinations of pOka and vOka genome segment 
using the cosmid-based mutagenesis, SNP(s) laid between ORF30 and ORF55, not 
in ORF62/71, has been proven to contribute vOka attenuation in human skin- 
xenografted SCID-hu mice. The vOka cosmids were derived from a single haplo-
type of vOka mixture and contain only one of eight non-synonymous SNP in ORF62 
(Zerboni et al. 2005a). Subsequently, it has proved that the SNP in ORF0 is not by 
itself sufficient for the attenuation of vOka by showing that the replacement of 
ORF0 SNP in pOka to vOka type did not alter the plaque size in cultured cell and 
vice versa using the BAC mutagenesis system (Koshizuka et al. 2010). These results 
in combination with the observations regarding the common SNPs between unre-
lated vOka and Ellen described in the Sect. 7.2.3 have gradually evoked the concept 
that vOka attenuation requires a set of SNPs within two or three ORFs, especially 
ORF0 and ORF62 combination. However, the vOka derived from the cosmid 
showed reduced growth in human skin-xenografted SCID-hu mice even though it 
contains only one vOka-type SNP within ORF62 (Zerboni et  al. 2005a), and 
ORF0  in the vOka cosmid turned out to have the wild-type gene sequence later 
(Peters et al. 2012), again indicating that molecular mechanism of vOka attenuation 
should be confirmed by experimental data.
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7.3  Molecular Genetics of vOka by Deep Sequencing 
Technology

Recent advances in sequencing technologies enable scientist to not only whole 
genomes but also to perform “deep” whole-genome sequencing, a process that 
allows the measuring of allele frequencies at every nucleotide positions from het-
erogeneous populations, reflecting the population diversity within a single sample. 
Deep sequencing of VariVax Merck vaccine batches has identified more than 100 
new variant sites, and the allele frequencies of most, but not all, of these new SNPs 
were typically less than 10% (Victoria et al. 2010; Depledge et al. 2014).

Comparative analyses of vOka batches from VarilRix (GSK) and VariVax and 
ZostaVax (both from Merck) as well as the working seed stock from BIKEN identi-
fied 137 SNPs that were conserved in all tested batches as “core SNPs” for vOka. 
Of the 137 core SNPs, 53 were found in supposedly noncoding regions, 127 resulted 
in synonymous changes, and 57 encoded non-synonymous changes. In ORF62 
gene, 28 SNPs accumulated and accounted for 20.4% of total SNPs. No other single 
ORF contained more than 4.38% of total core SNPs. In all three preparations, one 
is fixed (106,262, R958G in ORF62) and five are near fixation (>90%) [560, *130R 
in ORF0; 105,544, V1197A; 105,705, A1143; 107,252, S628G; and 108,111, P341 
(all in ORF62)] among the core SNPs. Of these six core SNPs, four was shared with 
strain Ellen [560, *130R in ORF0; 106,262, R958G; 107,252, S628G; and 108,111, 
P341 (all in ORF62)] (Depledge et al. 2016). Another live attenuated varicella vac-
cine SuduVax was originally developed using the same methodology as vOka but 
based on the strain MAV/06, a wild-type VZV isolated in South Korea (Kim et al. 
2011). SuduVax shares all six core SNPs with three vOka preparations, and their 
allele frequencies are above 99% in SuduVax, while the allele frequencies at other 
SNPs in SuduVax vary from those in vOka at several degrees (Jeon et al. 2016). 
Overall, these results increase the likelihood that some combination of these six 
SNPs in ORF0 and ORF62 are critically important for vOka attenuation. However, 
this still needs to be supported by experimental data for conclusive statement.

Deep sequencing analysis in combination with targeted enrichment methodol-
ogy enabled direct sequencing of low amount of viral DNA with the information of 
allele frequencies at every nucleotide position without changing population diver-
sity by avoiding any bias like culturing virus post-isolation, PCR amplification, or 
cloning steps (Depledge et al. 2011, 2014). By using the combined technologies, the 
allele frequencies of vOka from the rash vesicles in multiple individuals during 
vOka-associated varicella were compared with those of original vaccine, and it 
became evident that no one vOka haplotype is responsible for varicella pathogene-
sis and every vesicle contains different vOka haplotypes, confirming previous find-
ings (Quinlivan et al. 2004; Loparev et al. 2007; Thiele et al. 2011). The population 
diversity, indicated by the allele frequencies, of the rash-forming vOka viruses was 
less than those of the vOka in vaccine, and the wild-type allele was significantly 
most favored at 12 loci among the rash-forming vOka viruses: 9 causing non- 
synonymous changes in 5 proteins (560, *130R in ORF0; 19,063, E199R in ORF13; 
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58,595, I593V in ORF31; 97,479, V495A in ORF55; 97,748, A585T in ORF55; 
105,356, I1260VA I ORF62; 106,001, K1045E in ORF62; 107,599, V512A in 
ORF62; and 107,797, L446P in ORF62), 2 were between intergenic regions 
(102,002, c to t between ORF60 and ORF61; 105,169, a to g between ORF61 and 
ORF62), and 1 was located within ORF63 promoter region (109,237 a to g). This 
finding suggested that the selection of the rash-forming vOka viruses has occurred 
after vaccination and before establishment of latency, and these wild-type SNPs 
contribute to the skin rash formation, the indicative of less attenuated vOka haplo-
types in skin tropism (Depledge et al. 2014).

Using the same combined methodology, the comparison of the population diver-
sity between the varicella-causing vOka viruses soon after vaccination and the 
HZ-causing vOka viruses after certain period of latency was also performed 
(Depledge et al. 2014). Different from the comparison of the population diversity of 
the varicella-causing vOka viruses to the original vOka vaccine, there was no sig-
nificant change between the varicella-causing vOka viruses and the HZ-causing 
vOka viruses. Thus, those vOka variants that persist after vaccination and cause 
varicella appeared equally able to establish latency and reactivate to cause HZ. In 
other words, the skin tropism of VZV cannot be segregated from the neurotropism, 
providing important data to the current approaches to advance vOka vaccine not to 
establish latency or reactivate from latency.

7.4  vOka Attenuation in In Vitro VZV Latency System

In 1965, Hope-Simpson hypothesized that HZ is a spontaneous manifestation of 
varicella infection based on several careful examinations by numerous researchers 
in the 1800s and 1900s and wrote “Following the primary infection (chickenpox), 
virus becomes latent in sensory ganglia, where it can be reactivated from time to 
time (herpes zoster)” (Hope-Simpson 1965). The site of VZV latency in human 
sensory ganglia was first proven by Gilden et al. in 1983 and further extended to the 
ganglia along the entire human neuraxis in 1990 (Gilden et al. 1983; Mahalingam 
et al. 1990). There have been only two consensuses about the mechanism of VZV 
latency and reactivation at molecular level. One is that the VZV latent genome in 
human trigeminal ganglia persists with fused termini likely in a circular (episomal) 
configuration (Clarke et al. 1995). The other is that VZV can gain access to neuron/
ganglia by two possible routes during varicella; one is by retrograde axonal trans-
port from the cutaneous lesions and the other is by hematogenous transfer from 
VZV-infected T-cells during viremia.

An inability to reactivate VZV in any reported model in vitro and in vivo casts 
doubt on several observations about VZV latency obtained from existing animal mod-
els and human cadaveric ganglia harboring VZV genome, especially regarding viral 
proteins or even viral transcripts during latency (Azarkh et al. 2010; Cohen 2010; 
Zerboni et al. 2012; Ouwendijk et al. 2012a, b). In latently infected human ganglia 
in vivo, (1) viral genome is maintained with fused termini, (2) viral transcription is 
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severely restricted, and (3) the virus can reactivate. An in vitro model of VZV latency 
that satisfies all the three criteria was until very recently unavailable and thus pre-
vented detailed studies that could potentially reveal the mechanism of VZV latency 
and reactivation (Gilden et al. 2015).

In 2015, Markus and colleagues reported two in vitro models of latency and reac-
tivation of VZV using human embryonic stem cell (hESC)-derived neurons. In the 
first model, acyclovir (ACV) was essential to establish quiescent state which is not 
absolutely required in human. In the second model, human neurons derived from 
hESC were infected with cell-free recombinant pOka expressing GFP-fused ORF66 
protein by selective retrograde axonal transport on a microfluidic device. ACV was 
not required for establishing latency in the second model. During latency, transcripts 
of immediate-early gene ORF63 and late gene ORF31 were readily detected in paral-
lel with viral DNA by qPCR. By inhibition of PI3K signaling (LY294002) in combi-
nation with temperature shift from 37 °C to 34 °C, viral DNA and RNA increased 
and GFP expression became visible in a few cells (Markus et al. 2015). 

Concurrently, Sadaoka and colleagues have developed an in vitro latency system 
using hESC-derived neurons which fulfill all the criteria (Sadaoka et al. 2016). In 
the system, human neurons were differentiated from neural stem cells derived from 
hESC on a microfluidic device and selectively infected from axon termini with 
pOka in a cell-free manner, resulting in the establishment of latency following con-
trolled reactivation. Viral genome was maintained without detection of any tested 
viral transcripts including immediate-early genes ORF61, ORF62, and ORF63; 
early gene ORF16; and spliced late gene ORF42/45 by RT-qPCR up to 70 days 
postinfection. At 14 days postinfection, viral DNA configuration was circular, and 
reactivation could be induced by adding anti-NGF antibody following apparent 
viral DNA replication and mRNA expression. Distinct from the model by Markus 
and colleagues, reactivated virus could be passaged onto different cell type, the 
representative of full reactivation. Despite no detection of tested viral mRNAs dur-
ing latency by RT-qPCR which is sensitive enough to detect less than ten copies per 
reaction, RNAseq analysis detected widespread transcriptions albeit low abundance 
and whether these transcripts are still functional or just a noise will need to be 
addressed by more advanced technologies like single cell-based transcriptional pro-
filing. Among several compounds tested for reactivation, only anti-NGF antibody, 
but not the inhibitor of PI3K (LY294002), could reactivate the virus in vitro, and 
these were partially confirmed in human trigeminal ganglia removed within 24 hours 
after death by showing the ability of anti-NGF antibody and inability of LY294002 in 
induction of VZV DNA replication (Cohrs et al. 2016).

Using the in vitro latency system, latency and reactivation of vOka were com-
pared to those of pOka (Sadaoka et al. 2016). In the system, vOka could establish 
latency at a similar rate to pOka. By treatment of anti-NGF antibody, vOka could 
reactivate from latency, but reactivation rate of vOka was significantly lesser than 
that of pOka, indicating that vOka is not attenuated for establishment of latency but 
is attenuated for reactivation. Deep sequencing analysis in combination with the 
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targeted enrichment methodology has shown that the population diversity of vOka 
was maintained during latency, but its heterogeneity was apparently lost after reac-
tivation, consistent with the findings in vivo that the population diversity of zoster- 
causing vOka is lesser than that of vOka vaccine (Depledge et al. 2014). However, 
no wild-type SNP which was suggested to be included in rash-forming vOka 
(Depledge et  al. 2014) became dominant at any loci after reactivation of vOka 
in vitro except 100114 in ORF58 (K53N), which was not included in rash-forming 
vOka and was also dominant in latency population in vitro. The key for uncovering 
the attenuation mechanism of vOka by molecular genetic approach should be the 
understanding of the population diversity of pOka. For heterogeneity of vOka, 
molecular genetic approach has been mainly employed in vOka based on the pOka 
sequence information by traditional Sanger sequence technique containing no SNP 
information (Gomi et  al. 2002). The analysis of the allele frequencies of pOka 
revealed that pOka also consisted of a heterogeneous population but to a much 
lesser extent than vOka. For instance, two alleles at single nucleotide in one ORF 
are equally detected in pOka population by deep sequencing analysis (Sadaoka 
et al. 2016), but one allele had not been reported in the pOka sequence information 
(Gomi et  al. 2002), and this unreported allele was completely missing from any 
vOka preparations, indicating that the nucleotide which was thought to be identical 
between pOka and vOka has possibility to be strikingly different and to contribute 
in vOka attenuation.

7.5  VZV-Specific Cellular Immunity in Older Individuals 
and vOka Vaccination for HZ Prevention

The biggest risk factor for HZ is the progressive age-related decline in cell- mediated 
immunity to VZV, but not humoral immunity. The strong correlation of HZ inci-
dence with aging has been linked to a decrease in the frequency of VZV-specific 
T-cells (Levin et al. 2003), while antibody response against VZV is extremely stable 
with half-lives of approximately 50 years (Amanna et  al. 2007). In recipients of 
hematopoietic cell transplantation, reconstitution of CD4 T-cell immunity against 
VZV reduced the risk of HZ; on the other hand, VZV antibody is not sufficient to 
prevent its reactivation (Hata et al. 2002). Therefore, the objective of vaccination 
against HZ is to increase the frequency of VZV-specific long-lived memory T-cells 
poised to produce IFN-gamma, which is the most well-characterized factor in con-
trolling HZ (Levin et al. 2008).

In general, several sequential events take place after vaccination or natural infec-
tion to generate antigen-specific T-cells. Initially, these T-cells exponentially expand 
and differentiate into effector cells. While most of these effector cells undergo apop-
tosis and are short-lived, a small subset survives this contraction phase to constitute 
memory T-cell precursor that finally differentiates into long-lived memory T-cells. 
Declining T-cell responsiveness to stimulation with age has been implied to relate 
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to in particular reduced ability to proliferate due to telomeric erosion and expression 
of p16. In addition to initial expansion following contraction (T-cell frequency) and 
final differentiation (T-cell functionality), T-cell receptor (TCR) diversity is a defin-
ing hallmark of the antigen-reactive T-cell repertoire. With age, the diversity con-
tracts two- to fivefold, but still the repertoire remains highly diverse. The 
administration of higher-dose vOka in elderly as HZ vaccine resulted in 63.9% pre-
vention of HZ for 60–69-year-old ages but only 37.6% for 70  years and older 
(Oxman et al. 2005). This age-dependent decline of protective effect against HZ 
might be explained by the decrease of VZV-specific T-cells even after vOka vacci-
nation. However, the stage at which generation of VZV-specific T-cells is critically 
impaired has not yet been identified.

To build predictive models of T-cell responses against vOka vaccination in older 
populations, 39 individuals between the age of 50 and 79 years including 9 mono-
zygotic twin pairs were immunized with vOka (Qi et al. 2016b). The majority of 
activated VZV-specific T-cells measured by IFN-gamma-specific ELISPOT assay 
was of the CD4 T-cell subset, and their peak of frequencies was approximately ten-
fold higher between day 8 and 14 after vaccination and then declined to an average 
threefold higher by day 28 than before vaccination, while frequencies of global 
CD4 and CD8 populations did not change over the course of the vaccine response. 
By including identical twin pairs in the cohort, a genetic influence on vOka vaccine- 
induced responses could be also analyzed. While B-cell responses were more influ-
enced by nonheritable factors which were evidenced on the observation that no 
difference on induction of VZV-specific antibodies between twins, twin pairs were 
more similar than unrelated individuals in the generation of memory T-cells. When 
effector cell differentiation and contraction were assessed separately, either phase of 
T-cell response was not significantly more similar between twins than between 
unrelated individuals. The expansion of VZV-specific T-cells was relatively inde-
pendent of age. Conversely, the accelerated VZV-specific T-cell loss after the peak 
response was mainly a function of age, resulting in diminished generation of long- 
lived memory T-cells in older individuals. Transcriptome analysis in activated CD4 
T-cells at the time of peak response to vOka vaccination identified the correlation 
between the contraction phase of the T-cell response and gene modulations related 
to cell cycle regulation and DNA repair. These pathways might be the target to 
reduce T-cell attrition and to improve the survival of expanded T effector cell popu-
lations and thereby increase the effectiveness of vOka vaccine, especially in older 
populations.

In another cohort study including three identical twin pairs and three unrelated 
individuals older than 50  years, the TCR diversity of VZV-specific CD4 T-cells 
before and after vOka vaccination was examined (Qi et al. 2016a). There were large 
differences in the repertoire richness of VZV-specific CD4 T-cells among individu-
als, even in identical twins. A genetic influence was seen for the sharing of individ-
ual TCR sequences from antigen-reactive cells but not for repertoire richness or the 
selection of dominant clones. By vOka vaccination, the repertoire in individuals was 
diversified by preferentially expanding infrequent T-cell clones unevenly, including 
recruiting new specificities from the naïve repertoire instead of further promoting 
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the selection of dominant TCR sequencing. Viral replication might be required for 
sufficient clonal expansion of the low-frequency VZV-specific T-cells for protection 
against HZ; however, vOka seemed not to replicate efficiently after vaccination. 
Neither viral sequences in peripheral blood nor an inflammatory response in the 
days subsequent to vaccination was found in the study. The current vOka vaccina-
tion strategy with a single administration for HZ prevention has been built on the 
premise of refreshing a recall response and has not been optimized for rebuilding the 
memory compartment and for selecting for dominance of new T-cell clones, which 
may relate to incomplete protection against HZ. These suggest the importance of 
establishment of the rational vaccination strategy to generate VZV- specific memory 
T-cells in clonal sizes necessary for immune protection against HZ.

7.6  Herpes Zoster Subunit Vaccine Targeting Glycoprotein E

In 2015, a result from a phase 3 clinical trial for a subunit vaccine containing VZV 
glycoprotein E (gE) and the AS01B adjuvant system (called HZ/su, GlaxoSmithKline 
Biologicals) was reported. This phase 3 trial has been conducted in 18 countries, 
involved 15,411 participants, and evaluated the safety and efficacy of HZ/su in older 
adults (≥50 years of age) (ZOE-50) (Lal et al. 2015).

VZV gE is the most abundant glycoprotein both in virions and infected cells and 
is a major target of the VZV-specific CD4 T-cell response (Arvin et al. 1986; Brunell 
et al. 1987; Grose 1990; Harper et al. 1990). The AS01B adjuvant system contains 
3-O-desacyl-4′-monophosphoryl lipid A (MPL) and the saponin QS21 and pro-
motes both strong CD4 T-cell and humoral immune responses to recombinant pro-
teins by activating Toll-like receptor 4 and by increasing antigen uptake and retention 
by dendritic cells (Vandepapelière et  al. 2008; Kester et  al. 2009; Leroux-Roels 
et al. 2010; Coffman et al. 2010). In mice immunized with a recombinant gE protein 
purified from CHO-K1 cells with the same adjuvant system, this protein was highly 
immunogenic and induced abundant anti-gE neutralizing antibodies, but it could not 
induce any VZV-specific T-cell immune response by restimulation ex vivo. However, 
when mice were immunized with a DNA encoding the recombinant gE, the protein 
could proliferate T-cells after restimulation ex vivo (Jacquet et al. 2002), suggesting 
that the recombinant gE has a potential to induce efficient VZV gE-specific T-cell 
immunity only in the presence of gE-specific memory T-cell population by VZV 
natural infection or vOka vaccination during childhood. Consistent with this, the 
recombinant gE with AS01B induced gE- and VZV-specific CD4 T-cell responses as 
well as antibody responses in a VZV-primed mouse model. In any animal except 
human, VZV cannot efficiently replicate. In this priming model, however, mice 
could be primed by administration of vOka subcutaneously in the scruff of the neck 
with induction of VZV-specific cell-mediated immune response. Among tested 
combinations of the recombinant gE with several adjuvants, AS01B elicited higher 
frequencies of CD4 T-cells producing IFN-gamma and IL-2 and was superior to 
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vOka in any immunological aspects including induction of anti-gE antibody 
(Dendouga et al. 2012).

During phase 1 and 2 clinical trials, the safety and immunogenicity of HZ/su was 
evaluated in comparison with vOka. Few grade 3 unsolicited adverse events and no 
severe adverse event were reported only in HZ/su-vaccinated older adults with just 
two cases of chills and one case of insomnia, but these symptoms lasted 1 day and 
resolved without treatment. Fatigue, myalgia, headache, and injection site pain were 
the most common solicited reactions for HZ/su group and occurred more frequently 
than for the vOka group. Overall HZ/su was well tolerated among all participants 
including younger adult group (18–30 years) and older adult group (50–70 years). 
Two doses of HZ/su induce significantly stronger gE- and VZV-specific CD4 T-cell 
and antibody responses than two doses of vOka, resulting in superior immunogenic-
ity of HZ/su to vOka (Leroux-Roels et al. 2012).

In the phase 3 trial ZOE-50, HZ was confirmed in six participants in the HZ/su- 
vaccinated group (7698 participants) and in 210 participants in the placebo group 
(7713 participants), resulting in 97.2% of vaccine efficacy against HZ during a 
mean follow-up period of 3.2  years. In the vaccine group, solicited reports of 
injection- site and systemic reactions within 7 days of vaccination were more fre-
quent. Solicited or unsolicited grade 3 symptoms were reported in 17.0% of vaccine 
recipients and 3.2% of placebo recipients (Lal et al. 2015).

Concurrently with ZOE-50, a second phase 3 clinical trial named ZOE-70 has 
been conducted at the same site to examine the safety and efficacy of HZ/su in 
adults 70 years of age or older (13,900 participants), the most important group given 
their higher risk of HZ. A mean follow-up period of ZOE-70 was 3.7 years. In the 
study, the efficacy against PHN was also assessed. Both assessments included 
pooled participants 70 years of age or older from ZOE-50 (2696 participants), and 
total participants were 16,596. Vaccine efficacy against HZ was 91.3% and against 
PHN was 88.8%. In ZOE-70 alone, there was no difference in vaccine efficacy 
against HZ between participants 70–79 years of age (90.0%) and 80 years of age or 
older (89.1%). Solicited reports of injection-site and systemic reactions within 
7 days of vaccination were more frequent in HZ/su group (79.0%) than placebo 
group (29.5%), while the overall incidence of serious adverse events, potential 
immune-mediated diseases, and deaths was similar between two groups 
(Cunningham et al. 2016).

The longest follow-up study of safety and immunogenicity was from the phase 2 
clinical trial conducted in Czech Republic, Germany, Sweden, and the Netherlands 
including 129 participants with two-dose administrations (60–84 years of age). Six 
years after vaccination, no vaccine-related serious adverse events were reported, 
and the gE-specific cell-mediated immune response was on average 3.8 times higher 
than prevaccination values with 25% decrease from the value at 3 years, while the 
anti-gE antibody concentration was 7.3 times higher than prevaccination values 
with 20% decrease from the 3 years value, indicating that HZ/su may have potential 
to provide long-term protection against HZ in older adults (Chlibek et al. 2016).

Overall, HZ/su dramatically reduced the risk of HZ and PHN among adults 
50 years of age or older including 80 years of age or older without substantial safety 
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concerns and has potential for long-term immunity to prevent HZ with an accept-
able safety profile among older adults. At present, an immunological threshold has 
not been established for the protection against HZ, and further long-term clinical 
efficacy studies with a measurement of the frequencies of VZV-specific CD4 T-cells 
are essential.

7.7  Summary

With the development of live attenuated vOka as a highly safe and effective vari-
cella vaccine, we have successfully reduced varicella diseases; however, we are still 
a long way from the eradication of VZV, and even herd immunity against VZV has 
not yet been established. Furthermore, the incidence of HZ has been increasing for 
reasons unknown. Of course, we have to take into consideration that the vOka has 
been administrated as HZ vaccine only for these 10 years and has not been widely 
used. Most of the concerns about administration of “live” vOka stem from its ill- 
defined mechanism for attenuation. Recently developed HZ/su might be particu-
larly useful, once licensed, for worldwide distribution because it seems to be 
effective to prevent HZ and PHN and non-replicating subunit vaccine possibly 
available in immunocompromised individuals who cannot receive live vOka. 
Although HZ/su seems to be effective for preventing HZ, it requires preexistence of 
VZV-specific T-cell immunity to function as HZ vaccine and seems not be able to 
induce primary cellular immunity against VZV by itself, which can be established 
by vOka. Recent advances in research technology have gradually revealed the atten-
uation mechanism as well as the virulence of vOka at molecular level. These results 
will be helpful to improve live attenuated vOka as widely acceptable vaccine by 
enhancing its immunogenicity and reducing its virulence, especially to develop vac-
cines that do not establish (or at least reactivate) from latency in the near future.
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Chapter 8
Glycoproteins of HHV-6A and HHV-6B

Huamin Tang and Yasuko Mori

Abstract Recently, human herpesvirus 6A and 6B (HHV-6A and HHV-6B) were 
classified into distinct species. Although these two viruses share many similarities, 
cell tropism is one of their striking differences, which is partially because of the 
difference in their entry machinery. Many glycoproteins of HHV-6A/B have been 
identified and analyzed in detail, especially in their functions during entry process 
into host cells. Some of these glycoproteins were unique to HHV-6A/B. The cellular 
factors associated with these viral glycoproteins (or glycoprotein complex) were 
also identified in recent years. Detailed interaction analyses were also conducted, 
which could partially prove the difference of entry machinery in these two viruses. 
Although there are still issues that should be addressed, all the knowledges that have 
been earned in recent years could not only help us to understand these viruses’ entry 
mechanism well but also would contribute to the development of the therapy and/or 
prophylaxis methods for HHV-6A/B-associated diseases.

Keywords HHV-6 · Glycoprotein · Tropism · Entry · CD46 · CD134

8.1  Introduction of HHV-6

8.1.1  General Characteristics of HHV-6

HHV-6, initially named as human B-lymphotropic virus (HBLV), was isolated from 
the peripheral blood mononuclear cells in patients with lymphoproliferative disor-
ders by Salahuddin et al. in 1986 (Salahuddin et al. 1986). Latter studies showed 
that the virus has much more wide range of host cells and infects T-cell efficiently 
(Lusso et  al. 1988, 1987). Based on the analysis of its biological and genetic 
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properties, the virus had been officially classified as a member of Herpesviridae 
family, Betaherpesvirinae subfamily (Wyatt et  al. 1990; Aubin et  al. 1991; 
Campadelli-Fiume et al. 1993). In this subfamily, HHV-6, together with human her-
pesvirus 7 (HHV-7), belongs to beta-2 group, and the human cytomegalovirus 
(HCMV) was the prototype virus of beta-1 group (Roizmann et al. 1992).

After identification of HHV-6 first strain, GS strain, numerous other HHV-6 
strains have been isolated (Schmiedel et al. 2016; Torrisi et al. 1999; Foa-Tomasi 
et al. 1992). Strikingly different from the strains of HCMV, recombination between 
HHV-6 strains rarely occurs (Kasolo et al. 1997). Viral genome sequence analysis 
shows these virus strains could be divided into two groups, initially named as variant 
A and B, now reclassified as HHV-6A and HHV-6B species (Ablashi et al. 2013). 
The prototype virus for HHV-6A is U1102 virus isolated from Uganda and character-
ized in the UK (Downing et al. 1987), and the prototype ones for group B are Z29 in 
the USA (isolated from AIDS patient in Zambia) (Lopez et al. 1988) and HST in 
Japan (isolated from the patient with exanthem subitum) (Yamanishi et al. 1988). The 
major species prevalent in the USA, Europe, and Japan is HHV-6B (Okuno et al. 
1989; Saxinger et al. 1988). Interestingly, a study in South Africa (Zambia) showed 
similar prevalence of these two viruses (Kasolo et al. 1997). The reason for the vari-
ance of geographical distribution of these two viruses still needs to be addressed.

Most HHV-6 primary infection occurs within 2 years of childhood. HHV-6B is the 
causative agent for exanthem subitum during its primary infection (Okuno et  al. 
1989; Yamanishi et al. 1988). Lots of studies show the association of HHV-6 with 
other diseases like chronic fatigue syndrome (Chapenko et al. 2006), multiple sclero-
sis (Leibovitch and Jacobson 2014), drug rash with eosinophilia, systemic symptoms 
(Gentile et al. 2010), etc.; however, the cause relationship between HHV-6 infection 
and these diseases still needed to be elucidated. Strikingly different from other human 
herpesviruses, integration of HHV-6 full genome into host genome has been reported 
(Arbuckle et al. 2010); the mobilization and reactivation of HHV-6 virus from inte-
gration have also been reported (Prusty et al. 2013; Kaufer and Flamand 2014).

8.1.2  Virion Structure

HHV-6 shares the similar structure with other herpesviruses, consisting of four ele-
ments (an electron-opaque core containing linear viral DNA, an icosahedral capsid 
encapsulating the core, a proteinaceous layer surrounding the capsid, and a lipid 
bilayer envelop from host cells with viral proteins embedded in or associated it). 
The diameter of mature HHV-6 virion is about 160–220 nm, and the viral genome 
is about 160 kbps. Overall identity of viral genome sequence between HHV-6A and 
HHV-6B is about 90% with some low identical regions like U86-U100 (about 72%). 
The numbers of predictable viral open reading frames (ORF) in HHV-6A and 
HHV-6B genomes are different, 133 ORFs for HHV-6A (U1102 strain) and 119 for 
HHV-6B (Z29 strain or HST strain) (Isegawa et  al. 1999; Gompels et  al. 1995; 
Dominguez et al. 1999).

H. Tang and Y. Mori



147

8.1.3  Life Cycle of HHV-6

Just like other human herpesviruses, HHV-6 infection starts with the attachment of 
virus particles to target cells. Specific virus-cell interaction begins with the binding 
of the HHV-6 ligand to its cellular receptor. Subsequently, HHV-6 envelope fuses 
with cellular membrane after endocytosis of the virion into cytoplasm, which is 
confirmed by the experiment of treatment of the target cells with chloroquine, a 
drug that disrupts the endocytic pathway, almost completely inhibited the viral 
infectivity (Cirone et  al. 1992). Then, the capsid is released and transported to 
nuclear pore through cytoskeletal network (including dynein and dynactin compo-
nents) (Dohner et  al. 2002). Viral DNA is released into the nucleus, leaving the 
capsid outside. During lytic infection, once HHV-6 DNA enters the nucleus, the 
virus DNA is circularized and progeny viral DNA is synthesized by the method of 
“rolling circle.” In productively infected cell, viral genes could be divided into 
immediate-early, early, and late genes based on their expression kinetics, while dur-
ing its latent infection, only a set of virus genes are expressed (Schiewe et al. 1994; 
Mirandola et al. 1998; Kondo et al. 2002).

8.2  Viral Glycoproteins Contribute to Virus Entry

8.2.1  General Characteristics About Virus Entry

Viruses are obligate parasites of host cells, depending on the host machinery for 
their own replication. Thus, entry into host cells is an obligatory step for virus prop-
agation. Enveloped virus entry process could be divided into several steps: attach-
ment to cell surface, cellular receptor binding, fusion of the envelope with plasma 
membrane, and un-coating of viral genome. The envelope glycoprotein(s) play a 
key role during these steps.

Attachment of virus to the cell surface was considered as the first step for virus 
entry, which may lead to the accumulation of virus particles on the cell surface and 
therefore promote the specific binding of viral ligand to cellular receptor. There are 
glycosaminoglycan chains on cell surface proteoglycans which could be initial 
docking sites for pathogens. Among the glycosaminoglycan chains, heparan sulfate 
is particularly important, at least for viruses. Many herpesviruses have been reported 
to use the heparan sulfate for virus attachment, and viral glycoproteins binding to 
these molecules have also been reported, e.g., gB and gC in HSV-1 and HSV-2 
(Williams and Straus 1997; Trybala et al. 2000; Tal-Singer et al. 1995; Herold et al. 
1991) and gB in HHV-7 (Skrincosky et  al. 2000; Secchiero et  al. 1997). As to 
 HHV- 6, infection of the cells is only inhibited by heparin or heparan sulfate at high 
concentrations; thus, it is still unknown whether there is functional interaction of 
viral glycoprotein with heparan sulfate during HHV-6 entry (Conti et al. 2000).
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Viral ligands are different from virus to virus and so are the viral receptors. 
Ligand-receptor interaction is the key step for virus entry, which also initiates the 
membrane fusion in enveloped viruses. How viral proteins participate in these steps 
is different among viruses (several typical models are listed below).

Model 1: in the case of many flaviviruses, e.g., dengue virus, the very similar 
membrane protein, envelope glycoprotein (E), participates in both receptor-binding 
and membrane fusion steps of the virus entry. Receptor binding of these flaviviruses 
to the host cells elicits the endocytosis of the incoming viruses into target cells. 
Fusion of viral envelope with the host membrane is initiated by low pH-induced 
conformational change of the E protein, followed by release of the genomic RNA 
into the cytoplasm (Stiasny et al. 2011; Harrison 2008).

Model 2: as to the viruses like influenza virus or human immunodeficiency virus 
(HIV), one precursor viral protein associated with receptor binding and membrane 
fusion is processed into two associated subunits. Hemagglutinin 1 and 2 (H1 and 
H2) for influenza virus and gp120/gp41 for virus (HIV), function both as receptor- 
binding and fusion protein. HIV-1 membrane fusion is triggered by receptor and 
co-receptor binding. HIV 160 kDa protein precursor is posttranslationally cleaved 
into envelope proteins gp120 (for receptor binding) and gp41 (for membrane 
fusion). gp120 and gp41 remain associated until gp120 binds to CD4 receptor on 
CD4+ T lymphocytes. The structural rearrangement in gp120 after its receptor bind-
ing enables further interaction of gp120 with cellular co-receptors (CCR5 and 
CXCR4) and leads to gp120 dissociation from gp41. The dissociation of gp120 
from gp41 causes a conformational change of gp41, which leads the exposure of the 
fusion peptide in gp41 and subsequently the membrane fusion (Liu et  al. 2008; 
Land and Braakman 2001; Hallenberger et al. 1992; Furuta et al. 1998; Doms and 
Moore 2000; Chan et al. 1997). Similar events occur during influenza virus entry. 
HA glycoprotein is cleaved into HA1 (for receptor binding) and HA2 (for mem-
brane fusion) during virus maturation process. Binding of HA1 to the virus receptor 
(sialic acid on cellular glycoproteins, different from most other viruses using pro-
teins as their cellular receptors) initiates the internalization of the virus and subse-
quently exposure of fusion peptide in HA2 (Steinhauer 1999; Skehel and Wiley 
2000; Ivanovic et al. 2013).

Model 3: slightly different from the viruses in model 2, the viruses belonging to 
this category are engulfed, and then viral ligands are processed in endocytic vesi-
cles, which initiate the receptor binding to their receptor. Ebola virus is the repre-
sentative for these viruses. GP of Ebola virus is expressed as a single-chain precursor 
and posttranslationally processed into the disulfide-linked fragments, GP1 and GP2. 
After attachment and internalization of the virus, the receptor-binding domain 
(RBD) at the apex of GP1 is exposed by the cleavage of a glycan cap and a mucin- 
like domain (MLD) from it. The RBD of GP1 interacts with the endosomal receptor 
for Ebola virus, Niemann-Pick C1 (NPC1), and then the fusion loop in GP2 is sub-
sequently exposed and initiates the viral-cellular membrane fusion (Saeed et  al. 
2010; Moller-Tank and Maury 2015; Cote et al. 2011; Chandran et al. 2005; Brecher 
et al. 2012).
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Model 4: as to herpesviruses, receptor binding and membrane fusion are consid-
ered to be carried out by different viral proteins. Entry of HSV is mostly investigated 
among herpesvirus family. Binding of gD to HSV cellular receptor initiates the spe-
cific cell-virus interaction, and gH, gL, and gB are responsible for the virus fusion 
(Spear 2004; Atanasiu et al. 2007; Akhtar et al. 2008; Akhtar and Shukla 2009).

8.2.2  Cell Tropism of HHV-6

Although the original name for HHV-6 is human B-lymphotropic virus, B cells 
could only be infected by HHV-6 when they are immortalized by EBV. Latter stud-
ies showed that HHV-6 is a T-lymphotropic and neurotropic virus (Lusso et al. 1988; 
De Bolle et al. 2005). By now, no continuous cell line could be recommended for 
virus isolation. The primary isolation of HHV-6 from a human specimen usually 
requires co-cultivation with primary high susceptible cells consisting peripheral 
blood mononuclear cells (PBMs) or umbilical cord blood mononuclear cells 
(CBMCs). Routine culture of HHV-6 in laboratories has been adapted to use CD4+ 
T-cell lines. However, the usage of T-cell lines for HHV-6 propagation is different. 
HSB-2 and JJhan cells are for HHV-6A and MT4 and Molt3 for HHV-6B. The infec-
tion ability of these two viruses on particular T-cell lines is one of determinants for 
their classification into the two species, HHV-6A and HHV-6B (Ablashi et al. 1991).

Both HHV-6A and HHV-6B have high detection rate in central nerve system and 
could infect astrocytes and microglial and neuron cells (Chan et al. 2001; Cuomo 
et al. 2001). The association of these viruses with central nerve diseases has also 
been reported, like progressive multifocal leukoencephalopathy (Mock et al. 1999; 
Daibata et al. 2001), multiple sclerosis (Noseworthy et al. 2000; Challoner et al. 
1995), etc. Besides T lymphocytes and nerve system cells, HHV-6 could also infect 
a broad range of cells, although the infectability may be different between HHV-6A 
and HHV-6B (Roush et al. 2001; Ozaki et al. 2001; Lusso et al. 1993; Luppi et al. 
1995, 1999; Kakimoto et al. 2002; Ishikawa et al. 2002; He et al. 1996; Harma et al. 
2003; Fox et  al. 1990; Donati et  al. 2003; Chen et  al. 1994; Chan et  al. 2001; 
Cermelli et al. 1996; Caruso et al. 2002).

In an ex vivo experiment, both HHV-6A and HHV-6B could productively infect 
human tonsil tissue fragments in the absence of exogenous stimulation. These two 
viruses could efficiently infect CD4+T lymphocytes expressing a non-naive pheno-
type; however, only HHV-6A efficiently infected CD8+ T-cells (Grivel et al. 2003). 
One reason for this cell tropism difference may come from the different cellular 
receptor usage of these two viruses. As to HHV-6A, its cellular receptor is a ubiqui-
tous molecule, CD46, which is compatible with a broad cell tropism. However, 
productive HHV-6A infection is limited to a relatively small range of cell, which 
suggests there should be some other restriction factors acting beyond entry step of 
viral life cycle (Santoro et al. 1999). As to HHV-6B, CD134 has been identified as 
an entry receptor for this virus. However, CD134 is mainly expressed on activated 
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T-cells, which is not compatible with the target cell range of HHV-6B and implies 
unidentified cell receptor exits (Tang et al. 2013).

Laboratory culture of the viruses could affect the viral genomic composition, 
which may also influence cellular tropism of the virus. As reported in HHV-6B Z29 
strain, expansion of repetitive sequences from the origin of lytic replication, termi-
nal direct repeat (Dominguez et  al. 1999; Gompels and Macaulay 1995; Stamey 
et al. 1995), has been observed, which is less dramatic as that in HCMV but may 
affect the virus tropism.

HHV-6 is a human-restricted virus. There are still no animal models effectively 
supporting HHV-6 infection, though much progress has been made. Intravenous 
injections of HHV-6 into marmosets resulted in different symptoms for HHV-6A 
and HHV-6B, with the neurological symptoms developed in the case of HHV-6A 
but not HHV-6B. However, intranasal infection resulted in completely asymptom-
atic and elicited limited, if any, antibody responses even in the case of HHV-6A 
(Leibovitch et al. 2013). In a study, human CD46 transgenic mouse model was used 
for HHV-6 infection, and viral protein production and syncytia development could 
only be confirmed in the case of HHV-6A, which may be consistent with different 
receptor usage for these two viruses (Reynaud et al. 2014). Humanized Rag2−/−
γc−/− mouse (RAG-hu) model was also used for HHV-6 investigation, and HHV-6A 
DNA was detected only sporadically in plasma and blood cells, which is probably 
due to inefficient replication and establishment of latent infection of the virus in 
these mice (Tanner et al. 2013).

8.2.3  HHV-6 Entry Envelope Glycoproteins

Herpesviruses are enveloped, and their lipid bilayers are derived from preexisting 
host membrane, in the case of HHV-6 from trans-Golgi network (TNG) or post- 
TNG vacuoles, during virus budding. At the very location, viral glycoproteins are 
accumulated and finally incorporated into final virus envelope (Mori et al. 2008). At 
least, eight glycoproteins (gH, gL, gM, gN, gB, gO, gQ1, gQ2) have been reported 
to be expressed on HHV-6 envelope. The former five proteins are conserved in 
Herpesviridae family. gO is conserved in beta-herpesvirus subfamily, and gQ are 
only expressed in HHV-6 and HHV-7(Sadaoka et al. 2006; Mori et al. 2004).

8.2.3.1  HHV-6 gH/gL/gQ1/gQ2 Complex

Discovery of gQ Proteins and Its Complex

Although its name was designated later, gQ gene product was first described by 
Pfeiffer et al. in 1993. They generated several neutralizing antibodies for HHV-6 
infection and found some of these antibodies recognized a peptide coded from a 
624-bp genomic fragment from an HHV-6 strain GS genomic library constructed in 
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the λgtll expression system. The antigen recognized by these antibodies was a com-
ponent of gp82-gp105 complex (Pfeiffer et al. 1993). Later, the same group identi-
fied a 2.5K cDNA encoding a potential protein of 650 amino acids containing the 
very peptide they had identified in λgtll expression system. The originated mRNA 
for the cDNA was highly spliced, consisting of 12 exons (Pfeiffer et al. 1995). Later, 
a more abundant mRNA coded from this region in HHV-6 genome was identified by 
Mori group. They designate the gene product as gQ (abbreviation for glycoprotein 
Q) (Mori et al. 2003a). And this form of gQ forms a complex with gH and gL, which 
interacts with CD46, HHV-6A cellular receptor (Mori et al. 2003b).

Much more interestingly, in a northern blot analysis of the transcripts from gQ 
coding region in HHV-6A genome, Mori group identified a small transcript from 
this region, and a glycoprotein was coded from this transcript, which was also incor-
porated into the gH/gL/gQ complex. They designated the protein as gQ2 and the 
previous one as gQ1; the gH/gL/gQ complex comes to be a tetracomplex, gH/gL/
gQ1/gQ2 complex. Although the gQ1 and gQ2 were first identified in HHV-6A- 
infected cells, the homologous proteins were identified in HHV-6B-infected cells, 
which were confirmed by corresponding antibodies for these proteins (Kawabata 
et al. 2011).

Functional Analysis of gH/gL/gQ1/gQ2 Complex

gQ1 and gH gene products were identified by the neutralization antibodies for these 
proteins, which indicates their role during HHV-6 entry. However, the detailed func-
tion of gH- and gQ-containing complex had not been elucidated before HHV-6 entry 
receptor, CD46, was identified. CD46 is one of the cell surface antigen downregu-
lated during HHV-6 infection. Immunoprecipitation and pull-down experiments 
showed that CD46 interacts with gH-containing complex (Santoro et  al. 1999, 
2003). The gH-containing complex was finally defined as gH/gL/gQ1/gQ2 complex 
by Mori group (Akkapaiboon et al. 2004; Mori et al. 2003a, b). And the most impor-
tant function of gH/gL/gQ1/gQ2 complex was eventually defined as the viral ligand 
for HHV-6 cellular receptor, CD46, during the virus entry into host cells.

Although CD46 was first reported as the entry receptor for both HHV-6A and 
HHV-6B, latter evidences showed an alternative receptor exists for HHV-6B. CD46 
is a ubiquitous immunoregulatory receptor, expressed on all nucleated cells (Riley- 
Vargas et al. 2004; Liszewski et al. 2005), which is more compatible with relatively 
wider cell tropism of HHV-6A. HHV-6A induces the cell fusion when CHO (Chinese 
hamster ovary) cell expresses CD46 even in the absence of viral protein synthesis 
(FFWO), but this is not the case of HHV-6B (HST strain) (Pedersen et al. 2006; Mori 
et al. 2002). A monoclonal antibody for CD46 could block HHV-6A infection but 
not HHV-6B infection (unpublished data). Furthermore, in a co- immunoprecipitation 
assay, gH antibody could coprecipitate CD46 from HHV-6A- infected cells but not 
from HHV-6B-infected cells (Oyaizu et al. 2012). HHV-6B-specific receptor was 
finally identified as CD134, a member of TNFR superfamily. Interaction of CD134 
with HHV-6B gH/gL/gQ1/gQ2 complex, but not HHV-6A homologous complex, 
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was confirmed. Ectopic expression of CD134 in some HHV-6B-resistent cell lines 
converts these cells to be susceptible to HHV-6B infection (Tang et al. 2013). Thus, 
HHV-6A and HHV-6B take the usage of different cellular receptors for their host cell 
entry, which may partially explain their different cell tropism.

Detailed analysis of the interaction of HHV-6 cellular receptor and ligand has 
also been conducted. In physiological conditions, CD46 functions as a cofactor for 
serine protease factor I to inactivate C3b and C4b, components of convertases in 
complement pathway, which protects host cells from damage by complement fac-
tors (Riley-Vargas et al. 2004). However, recent studies show that CD46 is like a 
pathogen magnet and functions as the entry receptor for both viruses (measles virus 
(Kemper and Atkinson 2009), all species of B adenoviruses except 3 and 7(Gaggar 
et  al. 2003), in addition to HHV-6A) and bacteria (Streptococcus pyogenes 
(Rezcallah et al. 2005), Neisseria gonorrhoeae (Kallstrom et al. 2001), and Neisseria 
meningitides (Kallstrom et al. 1997)). Different usage of CD46 domains for these 
pathogens’ entry has also been analyzed. Extracellular region of CD46 contains 
four short consensus repeats (SCR) fold into a compact beta-barrel domain sur-
rounded by flexible loops (Seya et al. 1990). For HHV-6A, at least SCR2 and SCR3 
of CD46 are required (Mori et al. 2002; Greenstone et al. 2002). In the analysis 
using CD46 deletions, Mori group found that SCR4 was also required for HHV-6A 
infection and FFWO induced by HHV-6A (Mori et al. 2002). For measle virus entry, 
only SCR1 and SCR2 are required (Greenstone et al. 2002). Four different isoforms 
of CD46 derived from alternative splice has also been reported. Hansen et  al. 
reported that although different expression patterns on T-cell lines have little influ-
ence on the sensitivity of these cells to HHV-6A infection, T-cell lines with the 
equal frequency of CD46 isoforms could be sensitive for a particular HHV-6B 
strain, PL1 infection (Hansen et al. 2017).

Relatively detailed functional analysis of HHV-6A gH/gL/gQ1/gQ2 complex 
shows that all four components of the complex were required for the complex matu-
ration (transport of the complex from ER to Golgi) and its binding to its cellular 
receptor, CD46 (Tang et al. 2011). Partially exchange of the complex components 
with HHV-6B homologous proteins showed that HHV-6A gQ1 and gQ2 play the 
key role for the complex binding to CD46 (Jasirwan et al. 2014). Furthermore, anal-
ysis of an HHV-6A-specific neutralizing antibody for gQ1 showed that a short 
amino sequence in HHV-6A gQ1 (494-4987a.a) is important for HHV-6A gH/gL/
gQ1/gQ2 complex function (Maeki et al. 2013).

Discovery of HHV-6B-specific receptor explained several different characters 
between HHV-6A and HHV-6B during their infection. CD46 had been initially con-
sidered as the receptor for both HHV-6A and HHV-6B. However, HHV-6B has rela-
tively narrow host cell range compared with HHV-6A; furthermore, some anti-CD46 
antibodies and soluble CD46 could block HHV-6A infection, but not HHV-6B 
infection. In the unique infection phenomenon of HHV-6, CD46 antibody or soluble 
CD46 could inhibit FFWO in the case of HHV-6A, but not HHV-6B (Mori et al. 
2002). All these observations about HHV-6 led to the identification of HHV-6B- 
specific receptor, CD134. Compared with broad expression of CD46, CD134 is 
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primarily expressed on the activated T-cell surface (Weinberg et al. 1996), which 
may be corresponding to HHV-6B relatively narrow host cell range and may explain 
the different T-cell sensitive to HHV-6A and HHV-6B infection.

Different from the requirement of all four components of HHV-6A gH/gL/gQ1/
gQ2 complex for CD46 binding, HHV-6B gQ1 and gQ2 are required and sufficient 
for CD134 binding (Tang et al. 2014). Furthermore, an amino acid residue in HHV-6 
gQ1 (E127), important for receptor binding, was identified by homologous-part- 
exchange analysis of HHV-6A and HHV-6B gQ1s (Tang and Mori 2015).

CD134, a type I transmembrane protein, is a co-stimulator for T-cell activation 
(Higgins et al. 1999). Ectodomain of CD134 contains four cysteine-rich domains 
(CRD) and a stalk domain (Marsters et al. 1992), in which CRD2 are required for 
HHV-6B complex binding. Furthermore, two amino acid residues (K79 and W86) 
in CRD2 were confirmed to play a key role for its interaction with HHV-6B com-
plex, and the positive charge of K79 may correspond to the negative charge of E127 
of HHV-6B gQ1 and contribute the conformational access for the interaction. More 
interestingly, when their homologous residues in murine CD134 (mCD134) were 
humanized (mCD134 D75K/Q82W), the mutant interacts with HHV-6B complex. 
As there is no suitable animal model for HHV-6B study, these findings may contrib-
ute to HHV-6 animal model development (Tang and Mori 2015; Tang et al. 2014).

8.2.3.2  HHV-6 gH/gL/gO Complex

gO glycoprotein is conserved in beta herpesviruses (Mori et al. 2004; Sadaoka et al. 
2006). It forms a trimeric complex with gH and gL and incorporated into virion. 
Different forms of HHV-6 gO (120-130KDa gO gO-130K; 75-80KDa gO gO-80K) 
were expressed in HHV-6-infected cells. Only the gO-80K was incorporated into 
HHV-6 virion (Mori et al. 2004). Latter study showed that the C-terminal of gO- 
130K is cut off during its maturation process, although whether the cleavage is 
important for gO maturation and function is still unknown (Tang et  al. 2015). 
Deletion of HCMV or MCMV gO results in severe growth deficit (Wille et al. 2010; 
Scrivano et al. 2010; Jiang et al. 2008); by contrast, gO-deficient HHV-6A virus 
shows no obvious growth defect during the infection of the virus in T-cells (Tang 
et al. 2015). Much detailed functional analysis of HCMV and MCMV gO has been 
reported. HCMV gH/gL/gO trimer is considered to be involved with the infection of 
HCMV into fibroblasts, and the gH/gL/pUL128L pentamer is required for the infec-
tion of endothelial, epithelial, and myeloid cells (Ryckman et al. 2006; Vanarsdall 
and Johnson 2012; Vanarsdall et al. 2011). Recently, HCMV gH/gL/gO was reported 
to be also required for infection of endothelial/epithelial cells (Zhou et al. 2015), 
and its receptor was confirmed to be platelet-derived growth factor-α (PDGFRα) 
(Kabanova et al. 2016), initially recognized as HCMV gB receptor (Soroceanu et al. 
2008). The detailed gO function during HHV-6 infection is less known. HHV-6 gH/
gL/gO does not bind to CD46 and may associate with an unknown cellular factor 
and contribute to HHV-6 infection in other type cells than T-cells.
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8.2.3.3  HHV-6 gB

gB is a conserved glycoprotein in herpesvirus family. HHV-6 gB was identified by 
comparison of HHV-6 genome with other herpesvirus genomes, and it is coded 
from U39 region of HHV-6 genome (Foa-Tomasi et al. 1992). HHV-6 gB is a type I 
transmembrane protein with the length of 830 amino acids (about 112KDa). During 
its maturation process, gB is proteolytically cleaved into two subunits of 64 and 
58KDa by host furin protease, which are covalently linked via a disulfide bond 
(Ellinger et al. 1993; Chou and Marousek 1992). Sequence divergence of HHV-6A 
and HHV-6B viruses has been reported. Virus-specific monoclonal antibodies for 
HHV-6A or HHV-6B have been raised for the differentiation of clinical isolates of 
these two viruses. Even in HHV-6B isolates, two subgroups, gB-B1 and gB-B2, 
exist based on the phylogenetic analysis (Campadelli-Fiume et  al. 1993; Achour 
et al. 2008). Cytoplasmic tail domain (CTD) of gB in other herpesviruses has been 
demonstrated to be important for regulation of gB function, like enhancing, reduc-
ing, or even abolishing cell fusion (Foster et al. 2001; Beitia Ortiz de Zarate et al. 
2007; Garcia et al. 2013). Deletion of the sequence coding for HHV-6A gB’s CTD 
from HHV-6A genome results in the abolishment of the reconstitution of infectious 
virus from the mutant virus genome. More detailed study showed that gB without 
CTD diffusely distributed in cytoplasm compared that of wild-type HHV-6 gB 
accumulated in TGN, which indicated that gB CTD is required for efficient intracel-
lular transport of gB (Mahmoud et  al. 2016). Fusion of virus envelope with cell 
membrane is a key step for virus entry. gB, together with gH/gL, has been consid-
ered to be the core fusion machinery for herpesvirus entry. Tanaka Y et al. reported 
that HHV-6A gB and the gH/gL/gQ1/gQ2 complex are the minimum components 
required for the fusion induced by HHV-6A; furthermore, those proteins should be 
expressed in cis for the fusion (Tanaka et al. 2013).

8.2.3.4  HHV-6 gM/gN Complex

gM and gN are conserved in herpesvirus family. They form a complex and express 
on herpesvirus virion. It has been suggested that gM/gN complex has different func-
tion among the members of herpesvirus family. For most well-studied alphaherpes-
viruses, e.g., HSV and pseudorabies virus, gM is a nonessential gene for virus 
propagation (Dijkstra et al. 1996; Baines and Roizman 1991), although deletion of 
gM results in attenuation of these viruses’ growth (MacLean et al. 1991; Browne 
et al. 2004; Baines and Roizman 1991). However, in the case of HCMV and HHV-6, 
gM is essential for the production of infectious virus (Kawabata et al. 2012; Hobom 
et al. 2000). gM/gN complex could facilitate the fusion step during virus entry into 
host cells (Koyano et al. 2003; Klupp et al. 2000; Kim et al. 2013; Crump et al. 2004) 
and also function during virus maturation and egress process (Lau and Crump 2015; 
Chouljenko et al. 2012). HHV-6 gM is coded from U72 and expressed as a type III 
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transmembrane glycoprotein. Cytoplasmic tail of HHV-6 gM contains the motifs 
required for its intracellular trafficking, including YXXΦ conserved in all herpesvi-
rus family (Owen and Evans 1998) and an acidic cluster probably required for TGN 
targeting (Voorhees et al. 1995). Efficiently intracellular traffic of gM also required 
the presence of gN, which is coded from HHV-6 U46 (Kawabata et  al. 2012). 
Interestingly, HHV-6 gM/gN complex interacts with VAMP3 (vesicle- associated 
membrane protein 3), a v-SNARE (soluble N-ethylmaleimide-sensitive factor attach-
ment protein receptor) protein that resides in recycling endosomes and endosome-
derived transport vesicles. Interestingly, VAMP3 is also incorporated into HHV-6 
virions. As v-SNARE could interact with target membranes (t-SNAREs) to form 
trans-SNARE complexes, it is still needed to be elucidated whether VAMP3 contrib-
utes to the membrane fusion step during HHV-6 infection (Kawabata et al. 2014).

8.3  Other HHV-6 Glycoproteins

Besides the viral glycoproteins described above, there are still some other glycopro-
teins (or predicted to be glycoproteins) expressed in HHV-6-infected cells. Whether 
they are all incorporated into HHV-6 virion, their full functions still need 
investigation.

8.3.1  U20

U20 is a conserved glycoprotein expressed in the beta-human herpesviruses of 
HHV-6 and HHV-7, but not in HCMV. During virus infection, host immune system 
would be activated and commit antiviral action. Activation of TNFR1 pathway is 
one of such antiviral activities. Expression of U20 is sufficient to inhibit proinflam-
matory and apoptotic TNFR1 signaling pathways, which may contribute to the 
immune evasion of the virus (Kofod-Olsen et al. 2012).

8.3.2  U21

U21 is a type I transmembrane protein conserved only in HHV-6 and HHV-7. 
Although U21s in HHV-6 and HHV-7 share only 30% identity, they function simi-
larly to bind to and divert MHC I molecules to endolysomal compartment for deg-
radation, which contribute to escape of these viruses from immune detection (May 
et al. 2010; Glosson and Hudson 2007).
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8.3.3  U23

U23 gene is also the unique gene for Roseoloviruses. It is expressed at late stage 
during HHV-6 infection and is a nonessential for virus propagation. During HHV-6 
infection, U23 is accumulation within TGN, but not incorporated into HHV-6 viri-
ons. Detailed functional analysis for HHV-6 U23 is still needed (Hayashi et al. 2014).

8.4  Host Glycoproteins in HHV-6 Virions

It has been reported that cellular glycoprotein could be incorporated into mature 
virions (Stegen et al. 2013; Shaw et al. 2008; Bechtel et al. 2005). CD63, a member 
of the tetraspanin family, was reported to be incorporated into HHV-6 virions. As 
CD63 is associated with intracellular vesicle transport, it may contribute to HHV-6 
maturation and/or egress by multivesicular body (MVB) pathway (Mori et al. 2008). 
MHC class I molecule was also found in HHV-6 virions. It is still needed to be elu-
cidated that whether shedding of these molecules from infected cells contributes to 
the immune evasion of these HHV-6-infected cells (Ota et al. 2014).

8.5  Summary and Future Perspectives

Herpesvirus infection is a very sophisticated process in target cells. Analysis of 
virus cellular tropism and identification of cellular receptors for HHV-6 infection 
has contributed much to our understanding of several steps of this process. Detailed 
analysis of receptor-ligand interaction may help us to develop HHV-6-specific ther-
apy and prophylaxis methods, which are not available now.

To date, most studies of HHV-6 glycoproteins have being focusing on the entry 
steps of the virus. Nevertheless, functions of homologous HHV-6 glycoproteins in 
other herpesviruses have also been confirmed in virus egress and maturation pro-
cess, as herpesvirus virions undergo envelopment, de-envelopment, and 
 re- envelopment process during its nuclear and extracellular egress. Much excellent 
works would be needed for such analysis in HHV-6. Even as to the virus entry step, 
much more detailed subdivision (e.g., membrane closing, hemifusion, and complete 
fusion steps of viral-cellular membrane fusion) has been conducted in the case of 
other virus entries, such as HSV. What is the case of HHV-6 still needs to be found 
out. Structural function analysis has also being carried out for other viral glycopro-
tein studies (Zhang et al. 2011; Chandramouli et al. 2015), but not in HHV-6. Much 
more efforts are needed for such investigation.
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Chapter 9
Betaherpesvirus Virion Assembly 
and Egress

William L. Close, Ashley N. Anderson, and Philip E. Pellett

Abstract Virions are the vehicle for cell-to-cell and host-to-host transmission of 
viruses. Virions need to be assembled reliably and efficiently, be released from 
infected cells, survive in the extracellular environment during transmission, recog-
nize and then trigger entry of appropriate target cells, and disassemble in an orderly 
manner during initiation of a new infection. The betaherpesvirus subfamily includes 
four human herpesviruses (human cytomegalovirus and human herpesviruses 6A, 
6B, and 7), as well as viruses that are the basis of important animal models of infec-
tion and immunity. Similar to other herpesviruses, betaherpesvirus virions consist 
of four main parts (in order from the inside): the genome, capsid, tegument, and 
envelope. Betaherpesvirus genomes are dsDNA and range in length from ~145 to 
240 kb. Virion capsids (or nucleocapsids) are geometrically well-defined vessels 
that contain one copy of the dsDNA viral genome. The tegument is a collection of 
several thousand protein and RNA molecules packed into the space between the 
envelope and the capsid for delivery and immediate activity upon cellular entry at 
the initiation of an infection. Betaherpesvirus envelopes consist of lipid bilayers 
studded with virus-encoded glycoproteins; they protect the virion during transmis-
sion and mediate virion entry during initiation of new infections. Here, we summa-
rize the mechanisms of betaherpesvirus virion assembly, including how infection 
modifies, reprograms, hijacks, and otherwise manipulates cellular processes and 
pathways to produce virion components, assemble the parts into infectious virions, 
and then transport the nascent virions to the extracellular environment for 
transmission.
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9.1  Introduction

Virions are the vehicle for cell-to-cell and host-to-host transmission of viruses. In 
this chapter, we discuss the processes of virion assembly employed by members of 
the betaherpesvirus subfamily (the Betaherpesvirinae). Most of the information 
comes from studies of human cytomegalovirus (HCMV, Human betaherpesvirus 5) 
and, to a lesser extent, mouse cytomegalovirus (MCMV, Murid betaherpesvirus 1), 
human herpesvirus 6A (HHV-6A, Human betaherpesvirus 6A), and human herpes-
virus 6B (HHV-6B, Human betaherpesvirus 6B). Because many features of virion 
structure and assembly are shared among all herpesviruses, our chapter is comple-
mentary to and has some overlaps with the chapter concerning herpes simplex virus 
(an alphaherpesvirus) virion and assembly by Crump et al. included in this book.

9.2  Overview of Herpesvirus Virion Structure and Assembly

Virions generally share several important properties that can be considered as design 
specifications. These include the ability to (1) be assembled reliably and efficiently, 
(2) be released from infected cells, (3) survive in the extracellular environment dur-
ing transmission, (4) recognize and then trigger entry into appropriate target cells, 
and (5) disassemble in an orderly manner during initiation of a new infection. 
Before delving into the intricacies of their assembly, it will be helpful to briefly 
consider the major features of the composition and structure of herpesvirus 
virions.

Herpesvirus virions consist of four main parts (in order from the inside): the 
genome, capsid, tegument, and envelope (Fig.  9.1). Herpesvirus genomes are 
double- stranded DNA and range in length from ~125 kb for varicella-zoster virus 
(Human alphaherpesvirus 3) to 295 kb for koi herpesvirus (Cyprinid herpesvirus 
3). Among the betaherpesviruses, roseolovirus genomes range from 145 kb (HHV- 
7) to 162–170 kb (HHV-6A and HHV-6B). Cytomegalovirus genomes range from 
220 kb (MCMV) to 236 kb (HCMV). Virus genomes are replicated in host nuclei.

Mature capsids (or nucleocapsids) are geometrically well-defined vessels of 
T = 16 symmetry (Fig. 9.2). They contain one copy of the dsDNA viral genome, 
1732 capsid protein molecules, and small anionic molecules that neutralize negative 
charges associated with phosphate residues along the genome backbone. The inte-
rior of a virion is only slightly larger than the cylindrical volume of the genome it 

W. L. Close et al.



169

contains. Capsids are assembled and packed with the virus genome in nuclei, after 
which they are transported to the cytoplasm.

The tegument is the collection of molecules packed into the space between the 
envelope and the capsid. It is a set of presynthesized tools organized for delivery and 
immediate activity upon cellular entry at the initiation of infection. It includes ~20 
different proteins, each present from tens to over 1000 molecules per virion, for a 
total of perhaps 3000 protein molecules per tegument. In addition, several microR-
NAs and mRNAs are incorporated into HCMV virions. While some tegument pro-
teins associate with capsids in nuclei, the bulk of the tegument is assembled in the 
cytoplasm. Although typically represented as disordered collections of diverse 
materials, teguments have several forms of order. Tegument proteins can have spe-
cific interactions with and form complexes with other tegument proteins with the 
portions of virion glycoproteins that project into the tegument and with capsid pro-
teins. These interactions are likely to be important for virion assembly and stability. 
In addition to activities at the initiation of infection and structural roles, tegument 
components (RNA and proteins) play diverse roles throughout infection.

Fig. 9.2 Three- 
dimensional 
reconstructions of 
cryoelectron microscopy 
images of HCMV nuclear 
capsids. (a) View along an 
icosahedral fivefold 
symmetry axis. (b) View 
along an icosahedral 
twofold symmetry axis. 
(From Dai et al. (2013) and 
Yu et al. (2011) with 
permission)

Fig. 9.1 Components of herpesvirus virions. The components are illustrated in the schematic 
diagram in the left panel and in the thin-section transmission electron micrograph in the right 
panel. We thank Dr. Hong Yi of the Robert P. Apkarian Integrated Microscopy Core of Emory 
University for help with the electron microscopy
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The envelope is a lipid bilayer that is studded with virus-encoded glycoproteins 
and some cellular proteins of uncertain significance. Virion envelopment occurs in 
the cytoplasm at specialized membranes of organelles associated with exocytic 
transport. The envelope is essential because it carries the glycoproteins and other 
signaling molecules needed to protect virions during extracellular phases of trans-
mission and to initiate new infections (Ryckman et al. 2006; Spear and Longnecker 
2003). Each of the several glycoprotein species is present at tens to hundreds of 
copies per virion, for a total of more than 2000 glycoprotein molecules per virion.

In sum, individual, mature, infectious herpesvirus virions are complex, but 
ordered structures that include well over 5000 protein molecules, one genome, bio-
active RNAs, lipids, and various other small molecules.

In addition to infectious virions, other particles are produced in infected cells. 
Capsids lacking a viral genome can undergo tegumentation and envelopment during 
nucleocapsid maturation, resulting in the production of noninfectious, enveloped 
particles (NIEPs). Additionally, capsid-free enveloped structures filled with tegu-
ment proteins are called dense bodies; their relative abundance varies depending on 
the virus strain and multiplicity of infection (Mocarski et al. 2013; Benyesh-Melnick 
et al. 1966).

Efficient production of structures with the complexity of virions has many paral-
lels in the manufacture of goods such as automobiles. Detailed plans are required. 
The factory needs to be constructed before the first car can be assembled. Diverse 
raw materials are needed, some of which may need to be imported; others may 
already be locally available. Special formulations might need to be concocted from 
the raw materials. Subassemblies can be built at satellite facilities and then trans-
ported to site of final assembly. Regulatory processes are required to control the 
flow of materials, subassemblies, final assembly, and shipment of finished goods. 
Quality control must be exercised at every step. Security systems are needed to 
protect the facilities and processes from external and internal threats. Construction 
and operation of the assembly plant has dramatic effects on the local environment, 
effects that can linger long after the plant has ceased production. A plethora of gov-
ernmental and other oversight agencies have responsibilities for regulating the rela-
tionship between the factory and the surrounding environment and society, 
sometimes with the authority to shut down and even dismantle the plant. With such 
an intricate system, disruptions at any step have downstream consequences that can 
result in decreased quality, reduced output, or complete elimination of production.

HCMV replication and virion assembly occur in infected cells in which the virus 
has modified, reprogrammed, hijacked, or otherwise manipulated many cellular 
processes and pathways. By organizing materials along a complex and customized 
pathway for virion assembly that is not present prior to infection, virion components 
are able to be manufactured and assembled. Some of the modified pathways are 
directly involved in virion assembly, such as ribosome biogenesis, transcriptional 
regulation, phospholipid and sterol biosynthesis, and intracellular vesicular trans-
port (Tirosh et  al. 2015). Modifications of host intrinsic, innate, and adaptive 
immune responses (Mocarski et al. 2013) contribute to virion assembly by prolong-
ing the life of infected cells.
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A societally important objective of studies regarding virion assembly is the 
development of novel antiviral compounds that disrupt individual steps in the virion 
manufacturing process. This is important because all currently licensed antivirals 
against betaherpesviruses target virus genome replication. For human immunodefi-
ciency virus (HIV), antivirals have been developed that target virtually every identi-
fied step in virion production. The value of targeting multiple steps in virus 
replication pathways has been demonstrated by the enhanced clinical efficacy from 
treatment of HIV infections with cocktails of drugs that target separate critical con-
trol points during HIV replication. We anticipate that methods will continue to 
improve for synthesizing candidate antivirals, predicting structures of potential 
inhibitors, and preclinical and clinical evaluation of candidates. Thus, it is important 
to continue to identify steps in the process of viral replication that might serve as 
targets of antiviral intervention.

9.3  Nuclear Events: Capsid Assembly and Genome 
Encapsidation

While many of the viral proteins required for betaherpesvirus virion assembly are 
conserved across the herpesviruses, some are unique to betaherpesviruses. In the 
descriptions of betaherpesvirus assembly that follow, HCMV protein nomenclature 
will be used because HCMV is the most studied of the betaherpesviruses. Specifics 
pertaining to roseoloviruses will also be provided.

9.3.1  Capsid Types

Three different capsid types are produced that correspond to different stages of 
capsid assembly and maturation: A, B, and C capsids. In electron micrographs, A 
capsids appear to be empty. B capsids contain scaffold proteins but not the virus 
genome. C capsids contain DNA and are thought to be the mature form. All three 
capsid forms are present in the nuclei of infected cells, but C capsids typically out-
number A and B capsids in the cytoplasm. A and B capsids are thought to be either 
intermediates formed during nucleocapsid assembly or abortive forms that fail to 
undergo DNA encapsidation (DeRussy and Tandon 2015; Tandon et al. 2015). B 
capsids that are successfully filled with viral DNA transition into C capsids and may 
further mature into virions (Mocarski et al. 2013; Benyesh-Melnick et al. 1966). 
Across the betaherpesviruses, there is variation in capsid and virion diameters 
(Table 9.1) (Britt 2007; Klussmann et al. 1997; Maeki and Mori 2012; Krug and 
Pellett 2014). This may be due to differences in virus genome lengths and/or com-
position of their teguments (Klussmann et al. 1997; Britt 2007; Maeki and Mori 
2012; Mocarski et al. 2013; Guo et al. 2010).
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9.3.2  Capsid Components and Assembly

After viral DNA replication, late genes necessary for capsid assembly are tran-
scribed, translated, and then shuttled to the nucleus (Fig. 9.3) (Mocarski et al. 2013). 
During capsid assembly, a protein scaffold, consisting of the HCMV assembly pro-
tease (PR-pUL80a, Table 9.2) (Pellett and Roizman 2013) and assembly protein 
precursor, (pAP-pUL80.5, Table 9.2) forms. The protease and assembly protein pre-
cursor are encoded by the same gene and share the same carboxyl terminus, which 
contains domains necessary for interaction with the major capsid protein (MCP- 
pUL86, Table  9.2). These proteins also have conserved amino terminal domains 
important for self-assembly into a scaffold, around which the capsid proteins 
assemble (Britt 2007; Mocarski et al. 2013).

Capsid proteins are the building blocks of capsids with the major capsid pro-
tein (MCP, Table 9.2) as the major component. During assembly, MCP forms both 
pentameric and hexameric capsomeres, the major subunits of capsids (Fig.  9.4) 
(Zhou et al. 1994). Capsomeres are cylindrical and have a pore that runs along their 
length, which is ~160  Å. Capsomeres self-assemble onto the scaffold to form a 
capsid with T = 16 icosahedral symmetry. In this arrangement, 150 hexons form the 
triangular faces of the capsid and 11 pentons make up the vertices of those triangles 
(Fig. 9.2) (Dai et al. 2013; Yu et al. 2011). Given that there are 6 molecules of MCP 
in each of the 150 hexons and 5 molecules of MCP in each of the 11 pentons, there 
are a total of 950 molecules of MCP per capsid. The twelfth pentonal position is 
occupied by a complex formed by 12 copies of the portal protein (pUL104 or PORT, 
Table 9.2), which provides the channel necessary for packaging the viral genome 
into the capsid during assembly and for its release into the nucleus at the initiation 
of infection. During DNA encapsidation, the portal complex interacts with the 
 terminase  complex, which consists of ATPase (pUL89 or TER 1, Table 9.2) and 
DNA recognition (pUL56 or TER 2, Table 9.2) subunits (Britt 2007; Chen et al. 
1999; Dai et al. 2013; Mocarski et al. 2013).

The small capsid protein (SCP-pUL48.5, Table 9.2) is the second most abundant 
protein in the HCMV capsid with 900 molecules per capsid. SCP is only found 
associated with the hexons, decorating their tips. In the absence of SCP, nascent 

Table 9.1 Comparison of betaherpesvirus capsid and virion diameters and genome lengths

Virus Capsid diameter (Å) Virion diameter (Å)
Genome length (kbp)a

Wild virus Passaged virus

HCMV ~1300 ~2000 ~236 ~230
HHV-6A ~800 ~2000 Unknown ~159
HHV-6B ~800 ~2000 ~170 ~159–162
HHV-7 ~900–950 ~1700 Unknown ~145

aGenome lengths vary for some viruses, and can change during passage in cultured cells. The table 
was adapted from Krug and Pellett (2014) using information from Britt (2007), Klussmann et al. 
(1997), and Maeki and Mori (2012)
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Fig. 9.3 Pathway of betaherpesvirus virion assembly. The diagram illustrates capsid formation 
and genome packaging in the nucleus, capsid egress from the nucleus to the cytoplasm via primary 
envelopment and de-envelopment (major path; left branch), and via a disrupted nuclear membrane 
(less common path; right branch). In the cytoplasm, envelope glycoproteins are translated on 
ER-associated ribosomes, with mature glycoproteins being delivered to VEEVs directly, or via 
CREs, either directly or after retrieval from the cell surface. Tegument proteins associate with 
capsids, each other, and with cytoplasmic domains of virion glycoproteins before envelopment at 
VEEVs. Infectious mature virions are transported inside VEEVs to the plasma membrane for 
release into the extracellular space. Abbreviations: AE apical recycling endosome, CRE common 
recycling endosome, E ESCRT machinery or a functional analog, EE early endosome, ER endo-
plasmic reticulum, GA Golgi apparatus, LE late endosome, LYS lysosome, MVB multivesicular 
body, VEEV virion envelopment and egress vesicle. Adapted from Pellett and Roizman (2013)
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Table 9.2 Betaherpesvirus genes conserved across the Herpesviridae

Function (gene name) HCMV
HHV-6A, HHV-6B, 
and HHV-7 HSV

Gene regulation

Multifunctional regulator of expression (MRE) UL69 U42 UL54
Nucleotide metabolism

Ribonucleotide reductase, large subunit (RR1) UL45 U28 UL39
Uracil-DNA glycosylase (UNG) UL114 U81 UL2
Deoxyuridine triphosphatase (dUTPASE) UL72 U45 UL50
DNA replication

Helicase/primase complex
  ATPase subunit (HP1) UL105 U77 UL5
  RNA pol subunit (HP2) UL70 U43 UL52
  subunit C (HP3) UL102 U74 UL8
DNA polymerase (POL) UL54 U38 UL30
ssDNA-binding protein (SSB) UL57 U41 UL29
DNA polymerase processivity subunit (PPS) UL44 U27 UL42
Nonstructural; roles in virion maturation

Alkaline exonuclease (NUC) UL98 U70 UL12
Capsid transport nuclear protein (CTNP) UL52 U36 UL32
Terminase-binding protein (TERbp) UL51 U35 UL33
Terminase (TER)
  TER ATPase subunit (TER1) UL89 U66 UL15
  TER DNA recognition subunit (TER2) UL56 U40 UL28
Assembly protease (PR) UL80a U53 UL26
Assembly protein precursor (pAP) UL80.5 U53a UL26.5
Capsid nuclear egress complex
  Nuclear egress membrane protein (NEMP) UL50 U34 UL34
  Nuclear egress lamina protein (NELP) UL53 U37 UL31
Capsid

Major capsid protein (pentons and hexons; MCP) UL86 U57 UL19
Portal protein (PORT) UL104 U76 UL6
Portal capping protein (PCP) UL77 U50 UL25
Capsid triplex
  Monomer (TRI1) UL46 U29 UL38
  Dimer (TRI2) UL85 U56 UL18
  Small capsid protein (SCP) at hexon tips UL48.5 U32 UL35
Tegument

Encapsidation and egress protein (EEP) UL103 U75 UL7
Myristoylated/palmitoylated cytoplasmic egress 
tegument protein (CETP)

UL99 U71 UL11

Virion protein kinase (VPK) UL97 U69 UL13
Encapsidation chaperone protein (ECP) UL95 U67 UL14
CETP-binding protein (CETPbp) UL94 U65 UL16

(continued)
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Table 9.2 (continued)

Function (gene name) HCMV
HHV-6A, HHV-6B, 
and HHV-7 HSV

Capsid transport tegument protein (CTTP) UL93 U64 UL17
Cytoplasmic egress facilitator 2 (CEF2) UL87 U58 UL21
Cell-to-cell fusion inhibitor UL76 U49 UL24
Large tegument protein (LTP) UL48 U31 UL36
LTP-binding protein (LTPbp) UL47 U30 UL37
Cytoplasmic egress facilitator 1 (CEF1) UL71 U44 UL51
Envelope

 Glycoprotein B (gB) UL55 U39 UL27
 Glycoprotein H (gH) UL75 U48 UL22
 Glycoprotein L (gL) UL115 U82 UL1
 Glycoprotein M (gM) UL100 U72 UL10
 Glycoprotein N (gN) UL73 U46 UL49.5

Table adapted from information in Pellett and Roizman (2013) and Nicholas (1996). Proteins 
named according to Mocarski (2007)

Fig. 9.4 Three- 
dimensional 
reconstructions from 
cryoelectron microscopy 
images of herpes simplex 
virus type 1 pentons and 
hexons. (a) Top and side 
views of penton. (b) Top 
and side views of hexon. 
Images are representative 
of the analogous structures 
of HCMV. (From Zhou 
et al. (1994) with 
permission)
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capsids are devoid of viral DNA and the capsid-associated tegument protein pUL32 
(pp150; “pp” denotes phosphoprotein). In contrast, SCP is dispensable for HSV-1 
viral growth, demonstrating virus-specific structural and functional roles for this 
protein (Britt 2007; Dai et al. 2013; Mocarski et al. 2013). Between the hexons and 
pentons reside small triplexes consisting of a dimer of the minor capsid protein 
(MnCP-pUL85, Table  9.2) and a monomer of the minor capsid-binding protein 
(MnCP-bp-pUL46, Table  9.2). These triplexes are important for stabilizing the 
nucleocapsid. The portal capping protein (PCP-UL77, Table  9.2) and the capsid 
transport tegument protein (CTTP-pUL93) form the capsid vertex-capping (CVC) 
complex, also known as the capsid vertex-specific component (CVSC), which deco-
rates pentons. The terminase-binding protein (TERbp-pUL51, Table 9.2) and the 
capsid transport nuclear protein (CTNP-pUL52, Table 9.2) associate with this com-
plex as well. The role(s) of this complex and the associated proteins have not been 
determined, although they are thought to be involved with nucleocapsid stability by 
helping the capsid to withstand internal pressure from the DNA during encapsida-
tion. They are also thought to be involved in the release of viral DNA into the 
nucleus during initiation of infection (Britt 2007; Mocarski et al. 2013; Tandon et al. 
2015; DeRussy and Tandon 2015; Bigalke and Heldwein 2016). In addition, the 
CVC and its associated proteins have been shown to be important for cleavage of 
concatemeric viral DNA into unit length genomes (Borst et al. 2008, 2013, 2016).

9.3.3  Encapsidation of Virus Genomes

Single copies of the virus genome are packed into newly formed capsids. The major 
events during genome encapsidation are assembly and then degradation of the scaf-
fold, packaging of the virus genome into the rigidly constrained space inside the 
capsid, cleavage of the genome precisely at its termini, and closure (or corking) at 
the portal of the highly pressurized capsid (Fig. 9.3). The virus accomplishes the 
process of DNA encapsidation rapidly, within fractions of a second. As the protease 
disassembles the scaffold, a virus genome is threaded into the capsid, short terminus 
first, through the channel formed by the portal complex. The ATPase subunit of the 
terminase is the motor for translocating viral DNA into capsids (Tandon et al. 2015; 
DeRussy and Tandon 2015). For HCMV, the DNA recognition subunit of the termi-
nase recognizes the intact packaging and cleavage sequence that is formed when 
pac-1 and pac-2 sequences at the genomic termini are juxtaposed in covalently 
circularized or concatemeric genomes. Precise cleavage by the terminase results in 
packaging one complete virus genome per capsid. Other viral proteins implicated in 
this process are pUL56 and pUL89. pUL56 binds to AT-rich sequences within the 
pac sequences and has nuclease activity. pUL89 also has DNA cleavage activity; in 
addition to the terminase, it may be responsible for cleavage of the virus genome 
during encapsidation (Britt 2007; Mocarski et al. 2013).

Once the capsid is assembled, it becomes partially tegumented in the nucleus 
(Fig. 9.3). Tegument protein pp150 (pUL32) interacts with the outside of the capsid 

W. L. Close et al.



177

in a manner that adds stability to the capsid, helping it to withstand the high internal 
pressure associated with the tightly packed genome (Mocarski et al. 2013).

9.3.4  Nuclear Egress

Before capsids can enter the cytoplasm, they must pass through the nuclear enve-
lope, which consists of the inner nuclear membrane (INM), the perinuclear space 
that is contiguous with the endoplasmic reticulum (ER), and the outer nuclear mem-
brane (ONM) (Fig. 9.3). In uninfected cells, the distance across the nuclear enve-
lope, from inner membrane to outer membrane, is typically ~50  nm. Nuclear 
envelope integrity is maintained by the linker of nucleoskeleton and cytoskeleton 
(LINC) complex, a multiprotein complex that directly connects the nuclear skeleton 
to the cytoskeleton. The complex includes Sad1p, UNC-84 (SUN) and Klarsicht, 
ANC-1, Syne homology (KASH) domain proteins. Interprotein interactions via 
SUN and KASH domains are important for nuclear membrane stability and for 
maintaining proper spacing between the inner and outer nuclear membranes 
(Mocarski et al. 2013; Bigalke and Heldwein 2016; Alwine 2012).

The nuclear envelope is further stabilized by the nuclear lamina, a proteinaceous 
network that lines the inner nuclear membrane. Lamin proteins A/C and B associate 
with each other to form intermediate filaments that provide structural support to the 
cell. Lamin B also interacts with integral membrane proteins such as the lamin B 
receptor, which helps to tether the nuclear lamina to the inner nuclear membrane 
(Mocarski et al. 2013; Bigalke and Heldwein 2016; Alwine 2012).

To get past the nuclear lamina, herpesviruses employ conserved proteins that 
make up the nuclear egress complex (NEC, pUL50-nuclear egress membrane pro-
tein (NEMP), pUL53- nuclear egress lamina protein (NELP), Table 9.2). In HCMV- 
infected cells, these proteins localize on the interior of the nucleus on the side that 
faces the cytoplasmic virion assembly complex (cVAC, described in the next sec-
tion). The NEC competes with lamin proteins A/C and B for binding to each other, 
disrupting the lamina’s fibrillary network. In addition, the NEC disrupts the binding 
of lamins to the nuclear envelope protein emerin, which links the nuclear lamina to 
the inner nuclear membrane (Milbradt et al. 2010; Camozzi et al. 2008; Bigalke and 
Heldwein 2016). pUL50 also interacts with  the HCMV-encoded nuclear rim- 
associated cytomegaloviral protein (RASCAL) that is thought to be important for 
NEC-dependent degradation of the nuclear lamina. Additionally, the NEC recruits 
other viral and cellular proteins such as the viral protein kinase (pUL97) and cellu-
lar protein kinase C (PKC), both of which phosphorylate nuclear lamins, leading to 
destabilization and reorganization of the nuclear lamina. pUL97 has also been 
implicated in the phosphorylation of p32, a nuclear lamina component that interacts 
with the lamin B receptor, further contributing to nuclear lamina destabilization. 
These changes in the nuclear lamina facilitate egress of the capsids by allowing 
capsids to bud from the nucleus into the perinuclear space during primary envelop-
ment (Fig. 9.3) (Milbradt et al. 2010; Alwine 2012; Walzer et al. 2015; Camozzi 
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et al. 2008). In HSV-1, the NEC forms a hexagonal lattice along the INM leading to 
formation of invaginations in the membrane and budding of capsids into the peri-
nuclear space (Bigalke and Heldwein 2015). X-ray crystallography showed that the 
HCMV NEC also forms hexameric rings, suggesting conservation of this invagina-
tion and budding activity across the herpesviruses. After enveloped capsids enter the 
perinuclear space, their membranes fuse with the ONM, and the capsids are released 
into the cytoplasm (Fig. 9.3) (Bigalke and Heldwein 2016; Mocarski et al. 2013).

9.4  Post-nuclear Assembly: Tegumentation, Envelopment, 
and Egress

9.4.1  Overview

As described above, capsids are formed and filled in the nucleus, acquire a primary 
envelope at the inner nuclear membrane, bud into the lumen of the nuclear mem-
brane, and then are de-enveloped as they enter the cytoplasm. In this section, we 
explore the post-nuclear aspects of virion assembly and egress, which include tegu-
mentation, secondary envelopment, and transport of mature virions to the plasma 
membrane for release. For at least HCMV and MCMV, these steps of virion assem-
bly take place in the cVAC (Fig. 9.5), a specialized cellular compartment whose 
biogenesis is triggered by viral proteins and miRNAs. Although it is not strictly 
necessary, formation of the cVAC appears to facilitate efficient production of 
nascent particles (Das et al. 2014; Alwine 2012).

Through consideration of interactions between viral and host factors, and the 
resulting modification of host cell functions, we outline a map of the complex and 
often interwoven processes critical for virion maturation. Progressively finer map-
ping of these processes during HCMV replication will enable identification of criti-
cal control points which can then be exploited for the development of novel antiviral 
treatments.

9.4.2  HCMV cVAC

The cVAC is a complex, juxtanuclear, cytoplasmic structure about the size of a 
nucleus but without a clearly defined border (Fig. 9.5) (Das and Pellett 2011; Das 
et al. 2007; Tandon et al. 2015; Alwine 2012). Infected cells harbor a single cVAC, 
even cells with multiple nuclei (syncytia).

Within the cVAC, developing virions acquire most of their tegument, become 
enveloped, and are then transported to the cell surface for release (Alwine 2012; 
Tandon and Mocarski 2012). It is not enough that the virion structural components 
are made in sufficient quantities; they must also be distributed to the correct loca-
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tions in the appropriate temporal sequence. Multiple levels and forms of cellular 
rearrangement are needed to efficiently produce virions. The complex orchestration 
and interactions between host and viral factors underscore the complexity of activi-
ties in the cVAC.

The cVAC is constructed by remodeling the nucleus and major cytoplasmic com-
ponents of the host secretory apparatus during the first 2–4 days after infection (Das 
et al. 2007; Das and Pellett 2011; Buchkovich et al. 2010). Structurally, the cVAC is 
arranged as a set of nested cylinders or rings, centered on a microtubule-organizing 
center (Fig. 9.5). The outer cylinder consists of networks of tubular vesicles derived 
from the Golgi apparatus and the trans-Golgi network (TGN); the inner cylinder 
harbors vesicles derived from early/recycling endosomal vesicles. Components of 
the late endocytic compartment are also present, often with their highest abundance 
just outside the Golgi ring (Das and Pellett 2011). The nucleus (or nuclei in some 
cells) is bent into a reniform configuration around one side of the cVAC, the nuclear 

Fig. 9.5 The HCMV cVAC. Three-dimensional, confocal microscopic reconstructions of single, 
human, lung fibroblasts stained with antibodies against markers of the Golgi apparatus (GM130), 
early and recycling endosomes (EE/RE; EEA1), and a marker for DNA (DAPI). (a) An uninfected 
cell displaying normal morphology. The tubular Golgi apparatus is located adjacent to the nucleus 
and the early/recycling endosomes are present in a widely distributed “starry night” pattern. (b and 
c) Infected cells displaying typical cVAC structures. Five days after infection with HCMV strain 
AD169, the Golgi apparatus is remodeled into a cylindrical, manifold, tubular structure. The cell 
shown has two nuclei, the likely result of post-mitotic arrest prior to segregation of the daughter 
cells or syncytium formation. Grid spacing in b and c is 3.31 μm. (Adapted from Das and Pellett 
2011)
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membrane adjacent to the cVAC becomes more porous, and the distance between 
the inner and outer nuclear membranes increases, at least in part due to a reduction 
in the abundance of SUN-domain proteins, which are involved in tethering the inner 
and outer nuclear membranes (Buchkovich et al. 2010).

cVAC formation is dependent on viral genome replication, indicating that viral 
late genes are involved, in addition to expression of several HCMV miRNAs (Hook 
et al. 2014). Consistent with this, inhibition of the expression or stability of HCMV 
tegument proteins pUL48, pUL94, or pUL103 (all expressed from late genes) 
adversely affects cVAC biogenesis. Disruption of the cVAC greatly reduces the 
yield of infectious virions, making its biogenesis and operation rational targets for 
development of novel antivirals (Das et al. 2014).

9.4.3  Tegument Proteins and Tegumentation

Tegument proteins are important for many processes throughout infection, includ-
ing disassembly of virions, transcriptional regulation, modulation of cellular 
responses, and virion maturation (Mocarski et al. 2013; Smith et al. 2014). Many, if 
not most tegument proteins, perform multiple, distinct functions. At least 38 differ-
ent proteins (including some of cellular origin) are present in various quantities in 
HCMV teguments (Guo et al. 2010; Varnum et al. 2004; Smith et al. 2014). Although 
it lacks a well-defined structure, there are clear elements of structural order through-
out the tegument (Smith et al. 2014).

Tegument protein pUL83 (pp65) is the most abundant protein in HCMV virions 
and dense bodies. While not required for replication, pp65 is important for the ini-
tiation of infection by enhancing activation of the major immediate-early promoter 
and is important for recruiting proteins into the virion during assembly. pUL48 
(LTP, Table 9.2) is the largest and second most abundant HCMV tegument protein. 
It is essential for replication and is involved in the release of viral DNA from the 
capsid. pUL32 (pp150) is the third most abundant tegument protein. It is essential 
for viral replication and plays a role in stabilizing DNA-containing capsids during 
virion maturation (Yu et al. 2017; Mocarski et al. 2013; Smith et al. 2014). pUL103 
is a low-abundance tegument protein that plays important roles late in HCMV infec-
tion, including cVAC biogenesis, cell-to-cell spread, and virion maturation (Das 
et al. 2014; Varnum et al. 2004). pUL103 may have roles early in the HCMV repli-
cation cycle due to its presence in nuclei and interactions with several proteins of 
the innate immune system (Ortiz et al. 2016). HHV-6A U14 (homolog of HCMV 
pUL25) is important for virion maturation, interacts with the tumor suppressor pro-
tein p53, and arrests the cell cycle during infection (Mori et al. 2015a, b; Takemoto 
et al. 2005).

The precise order of addition of tegument proteins to maturing virions is 
unknown, but some information is available (Mettenleiter et al. 2013). Tegumentation 
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Fig. 9.6 Protein-protein interactions with in the tegument. The schematics represent a mature 
enveloped virion and the types of protein-protein interactions proven or predicted to occur during 
tegumentation

begins in the nucleus with the inner tegument, an organized netlike layer that 
encloses the capsid shell, consisting mostly of pUL32 and pUL48. Inner tegument 
proteins tightly associate with the capsid in a manner that is resistant to treatment 
with various detergents. The majority of the tegument, the outer layer, is added in 
the cVAC (Guo et al. 2010).

Acquisition of the outer tegument occurs through several mechanisms (Figs. 9.3 
and 9.6). Some tegument proteins aggregate in the cytoplasmic milieu and form 
complexes prior to incorporation in nascent virions. Others accumulate on mem-
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branes destined for secondary envelopment by binding the cytosolic domains of 
embedded virion glycoproteins (Guo et al. 2010; Smith et al. 2014; Mettenleiter 
2006; Mori et  al. 2008). The marriage of partially tegumented capsids and 
membrane- associated tegument proteins is consummated during secondary envel-
opment, which occurs throughout the cVAC (Schauflinger et al. 2013).

9.4.4  Secondary Envelopment in Host-Derived Compartments

Due to the dramatic restructuring of infected cells and the resultant shifts in organ-
elle identity (Das and Pellett 2011), the precise identity of the organelle where sec-
ondary envelopment occurs remains uncertain (Jean Beltran et al. 2016). Following 
the cVAC model, nascent particles are enveloped shortly after microtubule- mediated 
translocation through the Golgi-derived ring of the cVAC and upon entrance into the 
region of the cVAC that is predominantly occupied by vesicles that bear markers of 
early and recycling endosomes  (Das et  al. 2007; Das and Pellett 2011; Alwine 
2012). Although the arrangements of the organelle-derived structures differ, the 
nature of the vesicles is similar to what has been seen for other herpesviruses 
(Schauflinger et  al. 2013; Das and Pellett 2011; Turcotte et  al. 2005; Lee et  al. 
2006). The cellular pathways usurped by maturing particles for envelopment and 
egress appear to be those involved in the vesicle-mediated recycling of materials 
important for normal cell homeostasis.

Immunofluorescence imaging and immunoelectron microscopy revealed that 
membranes targeted for HCMV envelopment based on glycoprotein accumulation 
colocalize with typical Golgi-derived markers (TGN46, mannosidase II, Rab3, syn-
taxin 5) and endosomal markers (CD63, EEA1, Rab11) but not lysosomal mark-
ers (LAMP1) in human foreskin fibroblasts (HFFs) (Homman-Loudiyi et al. 2003; 
Cepeda et al. 2010; Das et al. 2007; Das and Pellett 2011; Sanchez et al. 2000a, b; 
Fish et al. 1996; Cruz et al. 2017). Supporting the role of recycling endosomes in 
herpesvirus replication, HSV-1- and HCMV-infected cells labeled with horseradish 
peroxidase, a fluid phase marker of uptake and release through the endocytic recy-
cling compartment, accumulated horseradish peroxidase in the interstitial space 
between the vesicle membrane and the membrane of enveloped virions (Tooze et al. 
1993; Hollinshead et al. 2012).

The transferrin receptor normally recycles back to the plasma membrane follow-
ing signal-induced internalization. In HCMV-infected cells, it is sequestered in a 
perinuclear zone that  coincides with markers of the cVAC (Cepeda et  al. 2010). 
Formation of this secretory trap can be partially recapitulated by HCMV microR-
NAs that downregulate recycling activity by targeting host genes involved in traf-
ficking along vesicle-mediated recycling pathways (Hook et al. 2014), a pattern also 
seen for Epstein-Barr virus (EBV, Human gammaherpesvirus 4) and Kaposi’s 
sarcoma- associated herpesvirus (KSHV, Human gammaherpesvirus 8) (Gottwein 
et al. 2011; Skalsky et al. 2012). Characterization of the HCMV transcriptome late 
in infection revealed effects that extend well beyond that predicted from HCMV 

W. L. Close et al.



183

miRNAs alone, with >100 host vesicular trafficking genes being differentially mod-
ulated (Hertel and Mocarski 2004; Grey and Nelson 2008; Hook et al. 2014). This 
activity has multiple effects, including interfering with innate immune signaling by 
sequestering cytokines such as IL-6 or TNF-α in the secretory trap and enabling 
perinuclear accumulation of virion components, thus contributing to cVAC forma-
tion (Hertel and Mocarski 2004; Hook et al. 2014; Lucin et al. 2015).

The immediate-early HCMV protein, pUL37x1 (vMIA), contributes to altered 
host morphology and cVAC development by potentiating actin remodeling. 
pUL37x1 is a multifunctional protein responsible for releasing Ca2+ stores from the 
endoplasmic reticulum before traveling to mitochondria where it inhibits apoptosis 
(Sharon-Friling et  al. 2006; Sharon-Friling and Shenk 2014; Williamson et  al. 
2011). The Ca2+ efflux activates PKCα which remodels actin along with RhoB 
(Goulidaki et al. 2015), leading to altered cytoskeletal morphology and membrane 
arrangement. In addition, the calcium efflux triggers accumulation of large cyto-
plasmic vesicles approximately 0.5–5 μm in diameter through a process that requires 
synthesis and elongation of fatty acids (Poncet et  al. 2006; Sharon-Friling et  al. 
2006; Sharon-Friling and Shenk 2014). When pUL37x1 is not expressed, the cVAC 
is disrupted, and there is a buildup of nonenveloped particles in the perinuclear 
region (Sharon-Friling and Shenk 2014).

9.4.5  The Intersection of Tegumentation and Envelopment

The capsid-associated tegument layer provides a scaffold-like interface for 
membrane- associated tegument proteins and glycoproteins to adhere to during 
envelopment. Alterations in tegument composition can lead to defective 
envelopment.

As an example, products of the HCMV UL35 open reading frame (ORF) have 
been implicated as having a role in tegument recruitment (Schierling et al. 2005). At 
early time points, both ppUL35A and ppUL35 localize to the nucleus where they 
interact with ppUL82 and activate the major IE promoter. At late time points, how-
ever, the longer form, ppUL35, helps shuttle ppUL82 and pUL83 (pp65) out of the 
nucleus as it translocates to the cytoplasm for incorporation into the tegument (Liu 
and Biegalke 2002; Schierling et  al. 2004; Varnum et  al. 2004; Schierling et  al. 
2005). If the UL35 ORF is deleted, nonenveloped capsids accumulate in the cyto-
plasmic space and infectious output is reduced tenfold, most likely due to improper 
tegument structure and inability to bind lipid-recruiting molecules (Schierling et al. 
2005).

HCMV pUL103 is required for cVAC biogenesis and efficient release of nascent 
virions (Ahlqvist and Mocarski 2011; Das et al. 2014; Yu et al. 2003). Using the 
pUL103-Stop-F/S deletion mutant or pUL103-FKBP destabilization mutant, 
decreased pUL103 expression correlated with altered trafficking of the viral protein 
pUL99 (pp28) in addition to cellular golgin-97, GM130, and CD63. These changes 
were also accompanied by decreased plaque size (Das et  al. 2014; Ahlqvist and 
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Mocarski 2011). In addition, electron micrographs of cells infected under condi-
tions of pUL103 destabilization reveal increased numbers of virions stalled during 
envelopment or with abnormal structures accumulating in the perinuclear 
region (Fig. 9.7) (Das et al. 2014). Because pUL103 has several interacting partners 
during infection (Ortiz et  al. 2016), it is uncertain which process leads to the 
observed phenotypes, but it appears to be linked to the two C-terminal  ALIX- binding 
motifs. ALIX-binding motifs are also important in the maturation of other envel-
oped viruses including during primary envelopment of EBV (Bardens et al. 2011; 
Zhai et  al. 2011; Lee et  al. 2012). Alternatively, the defective phenotypes may 
be caused by the inability of pUL103 to interact with pUL71 (Fischer 2012; Ortiz 
et al. 2016).

HCMV-infected patients mount a B-cell response against tegument protein 
pUL71, suggesting it may be exposed on virions or it is released from infected cells 
(Beghetto et al. 2008; Varnum et al. 2004). In cells infected with pUL71-deficient 
virus, viral proteins are aberrantly localized in the cVAC, and large LAMP1/CD63- 
positive multivesicular bodies form near the cVAC in infected cells (Schauflinger 
et al. 2011; Womack and Shenk 2010). Ultrastructural analysis of the pUL71 null 

Fig. 9.7 Ultrastructure of capsids undergoing secondary envelopment in the cytoplasm. HFFs 
were infected at a multiplicity of infection of 0.3 with HCMV UL103-FKBP, a recombinant ver-
sion of HCMV strain AD169 in which a protein destabilization domain is fused to the C-terminus 
of UL103 (Das et al. 2014). Under the conditions of infection, pUL103 was destabilized, resulting 
in a defect in completion of envelopment, several examples of which are visible in panel a, with 
close-ups of three virions at different stages during envelopment in panels b, c, and d, respectively. 
The scale bar in panel a represents 0.5 μm. We thank Dr. Hong Yi of the Robert P.  Apkarian 
Integrated Microscopy Core of Emory University for help with the electron microscopy

W. L. Close et al.



185

mutants, TBstop71 and BADinUL71STOP, showed the accumulation of HCMV 
particles unable to complete envelopment on the cytoplasmic side of multivesicular 
bodies (Womack and Shenk 2010; Schauflinger et  al. 2011). During TBstop71 
infection, 27% of particles were enveloped and 70% were budding compared to 
87% and 13%, respectively, during wild-type infection (Meissner et al. 2012). This 
behavior was recapitulated by expressing pUL71 with a mutated basic leucine zip-
per (bZIP)-like domain, suggesting that oligomerization is necessary for pUL71 to 
function properly (Meissner et  al. 2012; To et  al. 2011). Positional homologs of 
pUL71 are involved in envelopment and are conserved among other herpesviruses 
including pUL51  in HSV-1 (Nozawa et  al. 2005), pUL51  in pseudorabies virus 
(PRV, Suid alphaherpesvirus 1) (Klupp et al. 2005), and GP71 in guinea pig CMV 
(GPCMV) (Schleiss et al. 2008). The observed phenotypes of pUL71 suggest that it 
is involved in membrane scission events during envelopment.

Despite being a  low-abundance virion protein (Varnum et al. 2004), the outer 
tegument protein, pUL99, is important for envelopment as well (Silva et al. 2003). 
After myristoylation of the amino terminus of pUL99, it attaches to target mem-
branes before localizing to the cVAC and forming multimers late in infection (Seo 
and Britt 2006; Sanchez et al. 2000a, b; Seo and Britt 2008). When the first 50 resi-
dues at the amino terminus of pUL99 are absent, it is aberrantly trafficked, nonen-
veloped particles accumulate in the cytoplasm, and infectious yield is hindered (Seo 
and Britt 2007; Jones and Lee 2004). Irregular trafficking of mutated pUL99 does 
not affect levels of other tegument proteins incorporated into mature virions, sug-
gesting that it is part of the outermost layer of tegument proteins (Seo and Britt 
2007). The amino terminal domain of pUL99 is necessary and sufficient for recon-
stituting infectious output as seen by accumulation of pUL99 in mature virions and 
proper envelopment (Jones and Lee 2004). The second amino residue, a glycine, is 
the site of myristoylation (Sanchez et al. 2000b), amino acids 26–43 are responsible 
for multimerization in the cVAC (Seo and Britt 2008), and amino acids 37–39 
enable interaction with the cysteine residue at position 250 of the viral protein 
pUL94 (Phillips et al. 2012; Phillips and Bresnahan 2011). The ability of pUL99 to 
be incorporated into maturing virions is dependent on its interaction with pUL94 
which serves as a scaffold on the outside of the tegument (Phillips and Bresnahan 
2011; Phillips et al. 2012). Without pUL94, secondary envelopment and cVAC for-
mation is hindered (Phillips and Bresnahan 2012). In HSV-1, KSHV, MCMV, and 
mouse herpesvirus 68 (MHV-68, Murid gammaherpesvirus 4), homologs of pUL99 
and pUL94 play analogous roles, but in contrast to their counterparts in HCMV, 
they are not essential for virus replication in cultured cells (Chadha et  al. 2012; 
Baines and Roizman 1992; Maninger et al. 2011; Wu et al. 2015; Guo et al. 2009).

Genes within the HCMV UL/b’ region influence maturation through cell type- 
specific mechanisms. Within this region, the UL133–UL138 (UL133/8) locus is 
nonessential for growth in fibroblasts but is required for replication in other cell 
types (Murphy et al. 2003). Proteins produced by HCMV UL135 and UL136 are 
transcribed as part of UL133/8 polycistronic mRNAs (Grainger et al. 2010), localize 
to Golgi membrane structures (Liao et al. 2014; Umashankar et al. 2011), and are 
required for latency and virion maturation (Bughio et al. 2013; Umashankar et al. 
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2011; Grainger et al. 2010; Bughio et al. 2015; Umashankar et al. 2014; Caviness 
et al. 2014, 2016). Mutation of ORFs UL135 and UL136 resulted in dispersal of 
cVAC markers and abnormal particle formation when human lung microvascular 
endothelial cells (HMVECs), but not fibroblasts, were infected with a TB40/E- 
UL133–UL138NULL virus (Umashankar et  al. 2011; Bughio et  al. 2013, 2015; 
Umashankar et al. 2014). When HMVECs were infected with a TB40/E-UL135STOP 
mutant defective in UL135 expression, only 27% of virions had normal morphol-
ogy, with the remainder being noninfectious enveloped particles or aberrantly 
enveloped particles (Bughio et al. 2015). UL135 mutation also resulted in smaller 
dense bodies, which was linked to a two- to threefold decrease in pUL83 and pUL32 
expression. Furthermore, dense bodies were excluded from multivesicular bodies 
where they normally aggregate with progeny virus in endothelial cells (Bughio et al. 
2013, 2015). In fibroblasts, the only phenotype of infection with TB40/E-UL135STOP 
was a slight increase in NIEPs relative to wild type (Umashankar et al. 2014). Using 
similar methodology as the UL135 studies, a TB40/E-UL136GalK mutant with a dis-
rupted UL136 ORF produced aberrantly enveloped virions 65% of the time and 
dense bodies that were 2.5 times larger on average despite having comparable levels 
of tegument proteins compared to wild type (Bughio et al. 2015). Of the several 
different-sized proteins encoded by UL136 splice variants, the 26 kDa and 33 kDa 
products were the most important for facilitating normal cVAC biogenesis and par-
ticle formation (Caviness et al. 2014, 2016). Although specific mechanisms have yet 
to be determined, HCMV pUL135 appears to direct maturation and envelopment 
through interactions with other tegument proteins, while UL136 ORF isoforms are 
needed for interactions with target membranes. The endothelial-dependent pheno-
types exhibited by UL133/8 locus mutations are an important example of how 
HCMV manipulates activities in divergent cell populations to its advantage.

Apart from being structural proteins that interact with capsids, each other, and 
envelope-associated glycoproteins, it is evident that tegument proteins play numer-
ous other important roles during tegumentation and secondary envelopment.

9.4.6  Secondary Envelopment and Modulation of Host Cell 
Specificity by Virion Glycoprotein Composition

The variability in cellular tropism of nascent virions produced in cells of different 
types suggests cell type differences in events leading up to envelopment. As for 
other herpesviruses, including GPCMV and rhesus CMV (RhCMV, Macacine beta-
herpesvirus 3), HCMV glycoprotein composition plays a role in establishing sites 
of envelopment (Coleman et al. 2015; Britt and Mach 1996; Ryckman et al. 2008; 
Hutt-Fletcher 2015; Albecka et al. 2016; Maresova et al. 2005; Bowman et al. 2011). 
The most abundant HCMV glycoproteins are gM (pUL100), gN (pUL73), gB 
(pUL55), gH (pUL75), gL (pUL115), gO (pUL74), and pUL128–131 (Varnum 
et al. 2004). Most of the over 60 other predicted HCMV glycoproteins have not 
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been detected in virions, suggesting nonstructural roles (Chee et al. 1990; Cha et al. 
1996; Britt and Mach 1996).

The gM/gN complex is the most abundant glycoprotein complex in mature 
HCMV virion envelopes; if either is deleted, the virus is unable to replicate (Hobom 
et al. 2000). Similar to its EBV homologs (Lake and Hutt-Fletcher 2000; Lake et al. 
1998), HCMV gM and gN must form a complex (gM/gN) when present in the ER 
before they can be trafficked to cytoplasmic vesicles and colocalize with other 
markers of the cVAC (Mach et al. 2000, 2005). Translocation of HCMV gM to the 
cVAC occurs when the cytoplasmic region of gM interacts with cellular FIP4, FIP4 
binds Rab11, and then Rab11 recruits further effector proteins until gM is trans-
ported in complex with gN (Krzyzaniak et al. 2009). gM and gN also contain other 
C-terminal endocytic trafficking motifs, including an acidic cluster used for binding 
cellular transport proteins, such as PACS-1, and a YXXΦ tyrosine motif (Crump 
et al. 2003; Krzyzaniak et al. 2007; Mach et al. 2007). The highly conserved nature 
of the C-terminal acidic clusters in herpesvirus glycoproteins suggests a common 
mechanism for direct transport to the site of virion envelopment at TGN-derived 
membranes (Chiu et al. 2012; May et al. 2008; Heineman and Hall 2002; Olson and 
Grose 1997; Alconada et al. 1996). YXXΦ motifs are also conserved across all sub-
families of the Herpesviridae and allow various envelope proteins to be retrieved 
from the plasma membrane through interactions with the AP-2 complex, leading to 
clathrin-mediated, dynamin-dependent, endocytosis and accumulation in endo-
somes or the TGN (Ohno et al. 1996; Songyang et al. 1993; Radsak et al. 1996; 
Albecka et al. 2016; Archer et al. 2017).

During HSV-1 infection, cell-to-cell transmission is dependent on interaction 
between HSV-1 pUL51 and gE (HCMV pUL71 and US8) (Albecka et  al. 2017; 
Roller et al. 2014) before both are transported to the site of envelopment through use 
of terminal YXXΦ tyrosine motifs in pUL51 (Alconada et al. 1999; Roller et al. 
2014; Nozawa et al. 2005; Nozawa et al. 2003; Tirabassi and Enquist 1998, 1999). 
When the motif is mutated in pUL51, neither pUL51 nor gE is incorporated into 
nascent virions, and spread is hindered in Hep-2 human epithelial cells, but not Vero 
monkey epithelial cells, suggesting cell type-dependent mechanisms for spread 
(Roller et  al. 2014). Additionally, HSV-1 pUL20 helps to chaperone gK and gE 
from the ER to Golgi; in its absence, neither glycoprotein is incorporated into viri-
ons, resulting in accumulation of nonenveloped particles and inability to form syn-
cytia (Foster et al. 2004; Chouljenko et al. 2016).

Inclusion of both the acidic cluster and YXXΦ motifs in most envelope proteins 
ensures proper localization to the assembly compartment. Neither trafficking pat-
tern is essential for virus production, but both augment infectious output as seen for 
HCMV gB, gM/gN, and gpUL132 (Kropff et al. 2010; Spaderna et al. 2005; Crump 
et al. 2003; Radsak et al. 1996; Jarvis et al. 2002, 2003); varicella-zoster virus (VZV, 
Human herpesvirus 3) gE, gH, and gB (Maresova et al. 2005); HSV-1 gB, pUL51, 
and gE (Beitia Ortiz de Zarate et al. 2007; Albecka et al. 2016; Roller et al. 2014); 
or PRV gB (Favoreel et al. 2002).

Incorporation of gH/gL complexes into the envelope of nascent virions is another 
example of a maturation event that defines HCMV cell tropism (Schultz et al. 2015; 
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Vanarsdall et  al. 2011; Wang and Shenk 2005; Kinzler et  al. 2002). HCMV and 
GPCMV virions require the gH/gL/gO complex for entering fibroblasts by fusion at 
the plasma membrane and need the gH/gL/UL128–131 pentameric complex for 
entry into epithelial and endothelial cells by pH-dependent endocytosis (Coleman 
et al. 2015, 2016; Ryckman et al. 2006, 2008). This dichotomy is exemplified by 
several laboratory strains which are fibroblast-restricted because serial passaging 
led to loss of functional UL128–UL131 and a compensatory increase in gH/gL/gO 
abundance (Dunn et al. 2003; Wille et al. 2010; Dolan et al. 2004). The ratio between 
gH/gL/gO and gH/gL/pUL128–131 complexes is determined within the ER prior to 
transport to Golgi or post-Golgi membranes for use in envelopment (Ryckman et al. 
2008; Theiler and Compton 2002; Kinzler et al. 2002; Zhou et al. 2013). After gH 
and gL interact and stabilize each other in the ER (Molesworth et al. 2000), a single 
gH/gL complex can either form a disulfide bond with gO or a noncovalent bond 
with pUL128–131, but not both (Adler et al. 2006; Ryckman et al. 2008). During 
formation of the pentameric complex, pUL128, pUL130, and pUL131 are each 
capable of binding to gH/gL and help recruit the remaining components of the pen-
tameric complex (Ryckman et  al. 2008). To a lesser degree, the glycoprotein 
pUL116 also appears to compete for gH binding in the ER, but its role is still 
unknown (Calo et al. 2016). Only after the gH/gL/gO or gH/gL/pUL128–131 com-
plexes are formed do they migrate to the Golgi where their glycosylation matures 
and they become ready for incorporation into virions (Ryckman et al. 2008; Theiler 
and Compton 2002; Jean Beltran and Cristea 2014).

Glycoprotein complex formation and incorporation in HCMV-infected cells is 
driven by several viral proteins including pUS16, pUS17, pUL148, and gO (Li et al. 
2015; Jiang et al. 2008; Gurczynski et al. 2014; Luganini et al. 2017). As an exam-
ple, when the immune modulatory transmembrane protein US17 was deleted, gH 
was mislocalized, and there was a threefold decrease in the level of gH found in 
virions (Gurczynski et al. 2014).

The glycoprotein pUL148 contains an RXR motif that retains it in the ER where 
it appears to bind and sequester gH/gL/pUL130 or gH/gL/pUL131, thus reducing 
the formation and trafficking of completed gH/gL/pUL128–131 complexes to the 
cVAC. This leads to an enrichment of gH/gL/gO in virions (Li et al. 2015). Using 
the TB40/E deletion strain TB_Δ148, high-multiplicity infections produced similar 
levels of virus in fibroblasts but yielded 100x more infectious output in human reti-
nal pigment epithelial cells (Li et al. 2015). The deletion also caused substantially 
fewer gH/gL/gO complexes to form (Li et al. 2015). Insertion of pUL148 into the 
laboratory strain ADr131 which previously lacked it decreased the epithelial cell 
tropism fourfold (Li et al. 2015). A related tropism effect was seen when comparing 
B cell derived to epithelial cell-derived EBV, suggesting that mechanisms for select-
ing envelope glycoprotein complexes may be a conserved feature of herpesviruses 
(Molesworth et al. 2000).

Consistent with this, positional homologs of HCMV gO have approximately 
40% amino acid similarity on average and are maintained in HHV-6A (U47), 
HHV-6B (KA8L), HHV-7 (U47), and MCMV (M74) (Huber and Compton 1998; 
Mori et al. 2003). Binding properties of HCMV gO vary in efficiency and are strain 
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dependent (Zhou et al. 2013). Aligned amino acid sequences of HCMV gO from 40 
clinical and 6 laboratory strains grouped into 8 diverse clades (Rasmussen et  al. 
2002; Zhou et  al. 2013). gO isoforms from HCMV strains Towne, TR, Merlin, 
TB40/E, and AD169 were all able to form disulfide bonds with gH/gL of strain TR 
in fibroblasts. Virions produced in the presence of Merlin gO incorporated signifi-
cantly more gH/gL/pUL128–131 than gH/gL/gO, in contrast to the other strains, for 
which the ratios were reversed (Zhou et al. 2013). Infecting fibroblasts with strains 
that do not express gO led to accumulation of nonenveloped cytoplasmic particles 
and mature virions with increased levels of gH/gL/pUL128–131, but 50% less gH/
gL (Wille et al. 2010; Jiang et al. 2008). Interestingly, when human umbilical vein 
endothelial cells (HUVECs) were infected with a pUL131 deletion mutant, a related 
phenotype was observed, but virions had higher levels of gH/gL/gO. This empha-
sizes the cell-specific pathways and competitive nature of glycoprotein complex 
selection in virion maturation.

As illustrated here, herpesvirus glycoproteins serve crucial roles as bridges 
between the lipid membrane and the tegument. Importantly, by modulating glyco-
protein expression and complex formation during infection, HCMV is able to pro-
duce virions optimized for growth in diverse cell types, thereby broadening its 
pathogenic range while enhancing its evolutionary survival.

9.4.7  Fatty Acid Metabolism as a Driver of Envelopment

As part of the process that leads to cVAC formation, envelopment, and egress, 
HCMV induces significant alterations in the metabolic profile of host cells (Vastag 
et al. 2011). As opposed to HSV-1 infection which upregulates pyrimidine nucleo-
tide synthesis, HCMV induces a metabolic shift that favors synthesis of saturated 
long-chain fatty acids and increases membrane curvature at sites of envelopment 
(Munger et al. 2008; Spencer et al. 2011; Koyuncu et al. 2013; Vastag et al. 2011). 
As seen with other enveloped viruses, increased curvature promotes envelopment 
through concentration of membrane-bound viral proteins and decreased net energy 
cost during membrane budding (Chlanda et  al. 2015; Roller et  al. 2010; Schnee 
et al. 2006; McMahon and Gallop 2005).

The first committed step of fatty acid synthesis is catalyzed by acetyl-CoA car-
boxylase, which generates malonyl-CoA from by-products of glycolysis and the 
tricarboxylic acid (TCA)  cycle (Wakil et  al. 1983; Tong 2005). Malonyl-CoA is 
then used as a substrate by cellular acyl-CoA synthetases and elongases to create 
long-chain fatty acids (14–21 C chains) and very long-chain fatty acids (>21 C 
chains) (Wakil et al. 1983; Tong 2005).

Following HCMV infection, uptake of cellular glucose required for glycolysis 
increases as a downstream result of activation of the antiviral protein viperin (Chin 
and Cresswell 2001; Seo and Cresswell 2013; Landini 1984). Likewise, expression 
of cellular acetyl-CoA carboxylase also increases as a result of infection. By raising 
intracellular glucose and acetyl-CoA carboxylase levels, host malonyl-CoA produc-
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tion capacity increases and drives downstream fatty acid synthesis. If this process is 
blocked, such as by inhibition of acetyl-CoA carboxylase using siRNA or the inhib-
itor TOFA, virion output is decreased by 10- to 100-fold (Spencer et  al. 2011; 
Munger et al. 2008).

An extensive siRNA screen identified 172 cellular enzymes associated with fatty 
acid metabolism and adipogenesis as having a role in HCMV replication (Koyuncu 
et  al. 2013). From the screen, several acyl-CoA synthetases (ACSM2A, 3–5; 
ACSBG1–2, ACSL1, 3–6; and SLC27A1–6) plus the ELOVL1-7 family of elon-
gases were found to be important for HCMV biogenesis (Koyuncu et  al. 2013). 
Pharmacological inhibition of either set of enzymes reduced infectious output, with 
elongase inhibitors delaying expression of viral genes and causing a reduction in 
overall abundance of the tegument protein pUL99 (Koyuncu et al. 2013). In addi-
tion to acyl-CoA synthetases and elongases, class III phosphatidylinositol 3-kinase 
(Vps34) was also identified in the screen as being required for growth; without it, 
nonenveloped virions accumulate in the cytoplasm (Sharon-Friling and Shenk 
2014; Koyuncu et al. 2013).

During HCMV infection, Vps34, low-density lipoprotein-related receptor 
1 (LRP1), and acetyl-CoA carboxylase cooperatively form large cytoplasmic vesi-
cles that are presumed to be sites of virion envelopment and act downstream of the 
viral protein pUL37x1  in the process of envelopment (Sharon-Friling and Shenk 
2014). Through carbon labeling and mass spectrometry, increased acyl-CoA syn-
thetase, elongase, and Vps34 expression were associated with upregulation of the 
abundance of saturated very long-chain fatty acids in the viral envelope; this was 
due to C18 fatty acid elongation, not de novo synthesis (Koyuncu et al. 2013). The 
lack of de novo synthesis suggested that HCMV uses preexisting stores of fatty 
acids, later found to be lipid droplets, to generate very long-chain fatty acids for 
virion envelopes (Koyuncu et al. 2013).

In opposition to the adipogenic metabolic profile of infected cells, LRP1 levels 
are also upregulated at the plasma membrane as part of an antiviral response 
(Gudleski-O’Regan et  al. 2012). The receptor causes depletion of cellular- and 
virion-associated cholesterol because of the amplified fatty acid synthesis during 
infection. Inhibition of LRP1 by siRNA or antibody binding was sufficient to 
increase cholesterol concentration leading to a corresponding increase in the infec-
tivity of nascent virions (Gudleski-O’Regan et al. 2012).

The ability to maintain elevated lipogenesis during HCMV infection is depen-
dent on cleavage of the cellular sterol regulatory element-binding protein 
1 (SREBP1) by its activation protein (SCAP) (Yu et al. 2012). The interaction of 
SREBP1 and SCAP is normally inhibited by increased sterol formation, but HCMV 
overrides this failsafe through expression of pUL38 (Yu et al. 2012; Purdy et al. 
2015). pUL38 removes a repressor of mTOR activity which is sufficient for main-
taining cleavage and activation of SREBP1, thereby inducing the elongase ELOVL7 
needed for synthesis of the very long-chain fatty acids required for HCMV virion 
envelopment (Purdy et al. 2015; Lewis et al. 2011; Laplante and Sabatini 2009).
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HCMV thus employs multiple virus-driven mechanisms to ensure an adequate 
supply of lipids with structures that are optimal for efficient production of infections 
virions.

9.4.8  Completion of Envelopment by Membrane Scission

Topologically, membrane budding events can be classified into two categories based 
on their direction:

Inward-bound buds extend from the extracellular environment through the 
plasma membrane to ultimately deliver membrane-bound vesicles to the interior of 
the cell (endocytosis). Cytoplasmic dynamin-dependent machinery employs a 
cinch-like mechanism to scission such vesicles in a manner that preserves the integ-
rity of the plasma membrane and of the budded vesicle.

Outward-bound buds extend from the cytoplasmic space through the plasma 
membrane toward the outside of the cell, which is topologically similar to budding 
from the cytoplasm into the interior of a multivesicular body vesicle. Scission of 
such outward-bound buds is mediated by endosomal sorting complex required for 
transport (ESCRT)-dependent mechanisms (Raiborg and Stenmark 2009; Hurley 
and Hanson 2010), which operate from within the cytoplasmic space using a ratchet- 
like mechanism.

ESCRT machinery is comprised of five main cytoplasmic complexes, ESCRT-0, 
ESCRT-I, ESCRT-II,ESCRT- III, and Vps4-Vta1. It assists in both budding and scis-
sion of cellular vesicles through recognition of ubiquitin signals (Shields et al. 2009; 
Hurley 2008; Hurley and Ren 2009; Raiborg and Stenmark 2009). There is some 
conflicting evidence, but ESCRT-0, ESCRT-I, and ESCRT-II appear to act in paral-
lel, not sequentially, to facilitate budding (Hurley and Ren 2009; Hurley 2008; 
Shields et al. 2009; Raiborg and Stenmark 2009). ESCRT-III and Vps4-Vta1 then 
act downstream of the other complexes to control scission and release events, 
respectively (Raiborg and Stenmark 2009; Hurley and Hanson 2010).

Following cVAC formation during HCMV infection, components of the ESCRT 
machinery are intermingled with Golgi and endosomal markers near sites of 
 envelopment (Das and Pellett 2011; Tandon et al. 2009). During infection of retinal 
pigment epithelial cells with a GFP-labeled variant of AD169, siRNA silencing of 
Tsg101, a component of ESCRT-I, and ALIX, which helps recruit ESCRT-III, did 
not reduce virion output (Fraile-Ramos et al. 2007). In contrast, siRNA silencing of 
Vps4A/B resulted in increased infectious output suggesting that ESCRT recruit-
ment was nonessential and potentially inhibitory to virion maturation (Fraile-Ramos 
et al. 2007). In a separate study, HFFs were infected with the HCMV strain Towne 
followed by transfection with dominant negative (DN) forms of Vps4, Tsg101, and 
CHMP1 (a component of ESCRT-III) (Tandon et al. 2009). CHMP1DN and Vps4DN 
reduced infectious output in contrast to the previous study, highlighting the need for 
further study (Tandon et al. 2009).
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Combined with other observations, these studies suggest that HCMV utilizes 
ESCRT machinery for membrane budding and scission, but functional redundan-
cies may allow it to bypass some requirements for recruitment of upstream ESCRT 
complexes (Bughio et al. 2015; Fraile-Ramos et al. 2007; Schauflinger et al. 2011; 
Tandon et al. 2009). For example, HCMV pUL103 contains ALIX-binding domains, 
so through interactions with other tegument proteins, including membrane- 
associated pUL71 and ALIX, pUL103 may be able to recruit ESCRT-III to mem-
branes for envelopment without involving ESCRT-0, ESCRT-I, or ESCRT-II (Das 
et al. 2014; Schauflinger et al. 2011; Fischer 2012; Ortiz et al. 2016; Womack and 
Shenk 2010). Another possible explanation for the discordant results is that ESCRT 
complexes are multiprotein formations so experiments that target single proteins 
may be confounded when complementary paths are available.

As further evidenced by electron microscopy, HCMV virions accumulate in 
intracellular vesicles we define as virion envelopment and egress vesicles (VEEVs). 
VEEVs resemble multivesicular bodies, suggesting use of either ESCRT-associated 
pathways or an analogous pathway mediated by viral gene products to complete 
vesicle formation (Bughio et al. 2015; Schauflinger et al. 2011; Hurley and Hanson 
2010; Raiborg and Stenmark 2009).

HSV-1 and HHV-6 virion envelopment are both dependent on CD63-positive 
MVB formation (Mori et al. 2008). HSV-1 utilizes a Vps4-dependent mechanism 
(Kharkwal et al. 2016; Calistri et al. 2007; Crump et al. 2007; Mori et al. 2008), but 
like HCMV, it is not dependent on either Tsg101 or ALIX (Pawliczek and Crump 
2009). It is also possible that the observed defects following targeting of ESCRT 
machinery may be related to events required for entry into new cells, as seen during 
KSHV infection (Kumar and Chandran 2016; Kumar et al. 2016; Veettil et al. 2016), 
or membrane remodeling as seen with EBV (Lee et al. 2012).

9.4.9  Virion Egress Completes HCMV Replication

Following successful envelopment, fully matured virions must be exported out of 
host cells. For HCMV and other herpesviruses, the mechanism of viral egress is 
poorly understood.

The various pathways involved in vesicle-mediated transport depend on unique 
lipid and protein signatures. The concentration of particular fatty acids in a given 
region of a membrane defines its physiology and restricts the array of interacting 
proteins (van Spriel et al. 2015; Brown 2000; Resh 2004a, b).

To identify potential pathways of HCMV envelopment, liquid chromatography- 
mass spectrometry was used to analyze the lipidome of HCMV-infected fibroblasts 
by measuring the relative abundance of 146 unique glycerophospholipid species 
with chain lengths of 30–42 carbons (Liu et al. 2011). Except for a fourfold enrich-
ment of phosphatidic acid during infection, the cellular glycerophospholipid profile 
did not deviate greatly from mock-infected cells (Liu et  al. 2011). However, the 
glycerophospholipid composition of virions was markedly different compared to 
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HCMV- or mock-infected cells and was dominated by phosphatidylcholine and 
phosphatidylethanolamine species (Liu et al. 2011). When compared to known sub-
cellular compartments, the lipid composition of virion envelopes most closely 
matched profiles seen in neuronal synaptic vesicle membranes, suggesting HCMV 
particles follow a related secretory vesicle pathway that operates in non-neuronal 
cells (Liu et al. 2011).

Secretion via secretory vesicles is dependent on a highly conserved trafficking 
pipeline used in cells from diverse lineages, including mast cells in the immune 
system and β cells in the pancreas (Mizuno et al. 2007; Higashio et al. 2016; Kimura 
and Niki 2011; Yi et al. 2002; Fukuda 2013). Usage of such a widely available path-
way would likely contribute to the broad host cell tropism of HCMV. Starting at the 
TGN, the secretory vesicle pathway is regulated by several factors that act in 
sequence. These include Rab GTPases, cytoskeletal motors, and SNAP/SNARE 
complexes that associate with cargo-bearing vesicles and relay them toward the 
plasma membrane where fusion occurs by a Ca2+-dependent mechanism (Sudhof 
2013; Sheng et al. 1996; Schiavo et al. 1997; Rizo and Rosenmund 2008; Sudhof 
1995; McMahon and Sudhof 1995).

Several proteins involved in secretory vesicle transport have been implicated in 
exocytosis of HCMV and other herpesviruses. Various Rab GTPases control spe-
cific intracellular vesicle transport pathways (Stenmark 2009; Grosshans et  al. 
2006). For secretory vesicle exocytosis, Rab3 and Rab27 work cooperatively to 
regulate transport and docking of vesicles at the plasma membrane prior to fusion 
(Tsuboi and Fukuda 2006; Handley et al. 2007; Fukuda 2013). As shown by immu-
noelectron microscopy, maturing HCMV and HSV-1 virions associate with Rab3- 
containing membranes (Homman-Loudiyi et  al. 2003; Miranda-Saksena et  al. 
2009). In addition, infectious output was dramatically reduced in Rab27A-deficient 
cells when infected with HCMV and HSV-1 (Bello-Morales et  al. 2012; Fraile- 
Ramos et al. 2010).

Once docked at the plasma membrane, secretory vesicles require SNAP/SNARE 
complexes to mediate membrane fusion. Syntaxin 3 (STX3) is one of several 
SNARE proteins capable of initiating secretory vesicle-plasma membrane fusion 
events (Mazelova et al. 2009). During HCMV infection, STX3 expression is highly 
upregulated and localizes to the cVAC. When knocked down using shRNA, produc-
tion of infectious virions was reduced fourfold (Cepeda and Fraile-Ramos 2011). In 
neurons, SNAP25 is the major SNAP protein involved in SNAP/SNARE-mediated 
secretory vesicle exocytosis (McMahon and Sudhof 1995; Schiavo et al. 1997), but 
in other cell types, including fibroblasts, SNAP23, a homolog of SNAP25, is more 
widely used for exocytic events. Although SNAP23 abundance was unaffected by 
HCMV infection, shRNA knockdown of SNAP23 decreased infectious output 
1000-fold (Liu et al. 2011).

While several lines of evidence are consistent with HCMV using a secretory 
vesicle-like pathway for final exocytosis of progeny virions, inhibition of key secre-
tory pathway regulators does not completely eliminate HCMV egress. This suggests 
that either the virus can exploit alternative pathways for virion egress, or the secre-
tory vesicle pathway may only be important for some aspect of virion replication 
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distinct from egress. For example, although data supports the importance of secre-
tory vesicle-like pathways during HSV-1 and PRV infection of neurons, infectious 
particles associate with and are released via a Rab6A-/Rab8A-/Rab11A-dependent 
recycling pathway as opposed to the Rab3A-/Rab27A-staining secretory vesicle 
pathway (Hogue et al. 2014, 2016; Miranda-Saksena et al. 2009; Johns et al. 2014).

The complexity of studying cellular trafficking events has complicated experi-
ments analyzing herpesvirus egress. While a subject of much debate, it is clear that 
several herpesviruses employ similarly themed secretory pathways for escaping 
host cells, even across subfamilies.

9.5  Final Words

Herpesvirus replication relies heavily on remodeling host environments to enable 
efficient envelopment and egress of nascent particles. While similar high-order 
requirements are shared among the different subfamilies of the Herpesviridae, 
details of virion replication differ based on the repertoire of cells infected by each 
virus. Differences include development of a well-defined assembly compartment 
for HCMV, novel functions of some virion structural proteins, distinct composition 
of virion envelopes, and the mechanisms used for membrane scission and virion 
egress.

To enable virion assembly, herpesviruses hijack and modify host metabolic and 
trafficking pathways. For HCMV, this leads to formation of a secretory trap at the 
center of the cVAC and an eventual accumulation of the building blocks required to 
construct a nascent virion. Following construction of the capsid, packaging of the 
genome, export of the capsid to the cytoplasm, addition of the tegument, envelop-
ment in host-derived membranes, and export along host secretory pathways, fully 
matured viral particles are finally released.

Modification of cellular trafficking pathways and mechanisms is a product of 
transcriptional regulation, a complex network of viral protein interactions, and 
modifications to the metabolic profile of host cells. Key proteins have been identi-
fied as having a role in virion maturation, but definitive mechanistic conclusions 
remain elusive due to functional redundancies and downstream cascades of 
 interactions. While many questions remain unanswered, with persistent effort and 
the advent of new and improved experimental approaches, we will be able to probe 
deeper into the mechanistic depths of virion replication, expanding our knowledge 
one particle at a time.
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Chapter 10
Chromosomal Integration by Human 
Herpesviruses 6A and 6B

Louis Flamand

Abstract Upon infection and depending on the infected cell type, human herpesvi-
rus 6A (HHV-6A) and 6B (HHV-6B) can replicate or enter a state of latency. 
HHV-6A and HHV-6B can integrate their genomes into host chromosomes as one 
way to establish latency. Viral integration takes place near the subtelomeric/telo-
meric junction of chromosomes. When HHV-6 infection and integration occur in 
gametes, the virus can be genetically transmitted. Inherited chromosomally inte-
grated HHV-6 (iciHHV-6)-positive individuals carry one integrated HHV-6 copy 
per somatic cell. The prevalence of iciHHV-6+ individuals varies between 0.6% and 
2%, depending on the geographical region sampled. In this chapter, the mechanisms 
leading to viral integration and reactivation from latency, as well as some of the 
biological and medical consequences associated with iciHHV-6, were discussed.

Keywords Chromosomal integration · Telomeres · HHV-6 · iciHHV-6 · 
Chromosomes · Telomeric motifs

10.1  HHV-6 Life Cycle

Like all herpesviruses, the HHV-6A and HHV-6B life cycle has two phases. The 
first phase is a lytic phase where HHV-6 infects a permissive cell with coordinated 
expression of most genes (>80), DNA replication, viral assembly, and release of 
progeny virions. The second phase is characterized by the infection of a cell but 
instead of initiating the lytic cycle, HHV-6 enters a state of latency. What drives 
HHV-6 into latency is not really known. Latency is a reversible process that 
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comprises the maintenance of viral DNA (without replication) in the nucleus, with 
limited gene expression. During latency of α and γ herpesviruses such as herpes 
simplex viruses, Epstein-Barr virus, HHV-8, and possibly varicella-zoster virus, 
viral DNA is maintained as circular episomes (up to hundred copies/cell), tethered 
or not, to host chromosomes. Experiments conducted more than 25 years ago sug-
gest that HHV-6 can establish latency in monocytes/macrophages (Kondo et  al. 
1991). During latent infection of macrophages, HHV-6 expresses latency- associated 
transcripts that contain open reading frames (ORFs) encoding immediate early pro-
teins IE1 and IE2 and both transcripts are expressed in a small proportion of latently 
infected cells (Kondo et  al. 2002). The state of the viral genome during latency 
(linear, episomal, or integrated) was not investigated. In fact, the presence of HHV-6 
episomes during latency (in vivo or in vitro) was never documented.

10.2  HHV-6 Integration as a Mean to Achieve Latency

Shortly after HHV-6A isolation by Salahuddin in 1986 (Salahuddin et al. 1986), 
Jarrett et al. reported the detection of high levels of HHV-6A DNA in 2 out of 117 
non-Hodgkin lymphoma patients (Jarrett et al. 1988). Subsequently, Torelli et al. 
identified the first two patients with Hodgkin disease (HD) harboring an unexpected 
high number of HHV-6 DNA sequences, both in pathologic lymph nodes and in 
normal peripheral blood mononuclear cells (PBMCs) (Torelli et  al. 1991). Two 
years later, Luppi et al. reported the presence of chromosomally integrated HHV-6 
(ciHHV-6), in PBMC of two patients with lymphoproliferative disorders and one 
with multiple sclerosis (Luppi et al. 1993). In 1998, Daibata et al. were the first to 
demonstrate vertical transmission of HHV-6 DNA over three generations, by show-
ing identical HHV-6 integration sites in a patient with acute lymphoblastic leuke-
mia, his son and his granddaughter, who were otherwise healthy (Daibata et  al. 
1998a). One year later, the same group described a woman with Burkitt’s lym-
phoma and HHV-6 integration of 22q13 (Daibata et al. 1998b), whose asymptom-
atic husband had HHV-6 integration of 1q44. They demonstrated that the daughter 
had HHV-6 integration in both 1q44 and at 22q13 loci. Thus, the authors concluded 
that the viral genomes were inherited from both parents, and they proposed viral 
integration as a mode for HHV-6 to achieve latency (Daibata et al. 1999). Hereditary 
transmission of integrated HHV-6 is referred to as inherited chromosomally inte-
grated HHV-6 (iciHHV-6). Unlike community-acquired HHV-6, iciHHV-6+ indi-
viduals carry one integrated copy of HHV-6/somatic cell (Fig. 10.1). Furthermore, 
iciHHV-6+ individuals will transmit ciHHV-6 to 50% of their descendants. A study 
from the UK reported the identification of five additional HHV-6 integration sites in 
nine individuals (Nacheva et al. 2008). As reviewed by Morissette and Flamand, 
several integration sites have been identified, both in patients and in healthy sub-
jects, with a higher prevalence of iciHHV-6B (60–80%) compared to iciHHV-6A 
(20–40%) (Morissette and Flamand 2010). Although integration can occur in sev-
eral distinct chromosomes, the virus targets the ends of chromosomes near the 
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subtelomeric/telomeric junction. Interestingly, a recent report by Engdahl et al. pro-
vided evidence that HHV-6B induces hypomethylation in chromosome 17p13.3 
during acute infection (Engdahl et al. 2017). The telomere region at 17p13.3 has 
repeatedly been described as a chromosomal integration site for both HHV-6A and 
HHV-6B (Arbuckle et al. 2010; Morris et al. 1999; Nacheva et al. 2008; Torelli et al. 
1995) suggesting that hypomethylation in this region may be predispose to viral 
integration. Up to 25% of iciHHV-6A/B subjects analyzed contain integration in 
chromosome 17p (Tweedy et al. 2016, Flamand unpublished observation). The over-
all conserved in vivo germline integration site structure at chromosome 17p sup-
ports a common ancestral integration event (Tweedy et al. 2016).

HHV-6 integration is likely one way through which HHV-6 achieves latency. 
Most likely, this is not the only way. To be efficient, a latent virus must be able to 
reactivate and generate progeny virions when conditions are adequate. Several stud-
ies indicate that integrated HHV-6 can either be transcriptionally silent, can sponta-
neously express viral transcripts/proteins, or can be induced to express viral genes 
(Clark et al. 2006; Strenger et al. 2014; Daibata et al. 1998b). Using recently devel-
oped tissue culture systems to study HHV-6 integration in  vitro, Gravel et  al. 
reported that viral gene expression is quite variable between individual clones con-
taining ciHHV-6 (Gravel et al. 2017b). The differences in viral gene expression are 

Fig. 10.1 Hereditary 
transmission of 
chromosomally integrated 
HHV-6. HHV-6 infection 
of gametes (ovum or sperm 
cell) can lead to the 
integration of HHV-6 DNA 
into a cellular 
chromosome. Upon 
conception with such 
gametes, an individual 
carrying one integrated 
copy of HHV-6 DNA/
somatic cell is born. Such 
individuals are referred to 
as inherited chromosomally 
integrated HHV-6+ 
(iciHHV-6+) subjects. Such 
individual (man or woman) 
will transmit its condition 
(the presence of integrated 
HHV-6) to 50% of its 
descendants

10 Chromosomal Integration by Human Herpesviruses 6A and 6B



212

probably affected by the chromosome targeted for integration, epigenetics, and the 
degree of chromatin condensation. In vitro reactivation and production from 
ciHHV-6 has been a challenging task. The conditions used are therefore not optimal 
to promote viral excision and initiation of the lytic cycle. The cellular environment 
is a key factor in determining whether reactivation will occur. Integration of 
HHV-6  in semi- or nonpermissive cells occurs relatively frequent (Gravel et  al. 
2017b). Interestingly, in highly permissive cells such as T-cells, where lytic infec-
tion is predominant, viral integration also occurs (Arbuckle et al. 2010; Engdahl 
et  al. 2017), with a small proportion of surviving cells. Surviving T-cells with 
ciHHV-6 is a more relevant and suitable model to study reactivation from ciHHV-6. 
Perhaps the most compelling evidence suggesting viral reactivation from ciHHV-6 
is from in vivo data. Evidence of in vivo reactivation of ciHHV-6 first came from 
Gravel et al., who provided data consistent with transplacentally acquired HHV-6, 
originating from the transmission of reactivated iciHHV-6 from the mother (Gravel 
et al. 2013a). A second report was by Endo et al.; this goes a step further to convinc-
ingly demonstrate iciHHV-6A reactivation and isolation of infectious HHV-6A 
from a young Japanese boy afflicted with X-SCID, who inherited ciHHV-6A from 
his father (Endo et al. 2014). HHV-6A infection is rare in Japan, reducing the pos-
sibility of community-acquired infection. HHV-6A infection was confirmed by 
RT-PCR, DNA viral load and HHV-6 antigen detection, using immunohistochemis-
try performed on bone marrow biopsies. Antiviral treatments proved effective in 
reducing HHV-6A viral burden for ongoing active infection. Researchers success-
fully isolated infectious HHV-6A at different time points with viral sequence analy-
ses confirming that the isolated HHV-6A was identical to the DNA sequence of 
iciHHV-6A, from the child and his father, but different from other HHV-6A and 
HHV-6B isolates. These results clearly suggest that integration is one way through 
which HHV-6 can achieve latency.

10.2.1  Mechanisms of Chromosomal Integration

The genomes of HHV-6A and HHV-6B consist of a single unique segment (U) 
(~145 kbp) flanked by identical direct repeats (DR) (~9 kbp) (Martin et al. 1991; 
Dominguez et  al. 1999; Gompels and Macaulay 1995; Isegawa et  al. 1999) 
(Fig.  10.2a). The directly repeated regions (DRs) are flanked by pac1 and pac2 
sequences that play a role in the cleavage and the packaging of the viral genome 
(Deng and Dewhurst 1998; Thomson et al. 1994). Adjacent to the pac2 sequence are 
telomeric repeats (TMR) that are identical to the human telomere sequences 
(TTAGGG). The number of TMR repeats ranges from 15 to 180 copies in clinical 
isolates (Achour et  al. 2009; Gompels and Macaulay 1995; Kishi et  al. 1988; 
Thomson et al. 1994). In proximity to pac1 is a second telomere array, consisting of 
imperfect TMR (impTMR) (Thomson et al. 1994; Gompels and Macaulay 1995).

Cellular chromosome ends have a 3′ single-stranded G-rich (TTAGGG) over-
hang, which is 30–500 nucleotides in length (Chai et al. 2005; Makarov et al. 1997; 
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Fig. 10.2 Mechanisms explaining HHV-6 integration into host chromosomes. (a) The schematic 
representation of the HHV-6 genome (not to scale). DRL direct repeat left, DRR direct repeat right, 
TMR telomeric motifs, impTMR imperfect telomeric motifs, pac1 and pac2 packaging sequence, 
U unique region. (b) Stalled replication fork at subtemolere/telomere junction with subsequent 
DNA break. (c–f) Chromosomal integration mediated through the break-induced replication repair. 
With the help of Rad51, the resected cellular DNA invades HHV-6 DNA at TMR. (g) Recombination 
event between the viral DRs generating a complete viral episome with a single DR. (h) 
Chromosomal integration mediated by single-strand annealing processes. The linear viral genome 
is recognized as broken DNA and is resected at its 5′ ends, generating a TMR from DRR that is 
complimentary to the resected cellular DNA.  With the participation of RPA and Rad52, both 
strands are annealed with the pac2 sequence getting clipped off during the process
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McElligott and Wellinger 1997). To avoid being recognized as damaged DNA, the 
3′ protruding end folds back and invades the duplex telomeric DNA to generate a 
T-loop structure (Griffith et al. 1999; Nikitina and Woodcock 2004; Raices et al. 
2008). A total of six proteins (TRF1, TRF2, TPP1, RAP1, POT1, TIN2), referred to 
as the shelterin complex, bind and assist with the T-loop formation, stabilize chro-
mosomal ends, and prevent DNA-damage responses (de Lange 2009). Due to the 
combination of their repetitive G-rich sequence and extensive heterochromatiniza-
tion, telomeres represent a challenge for the replication machinery. The structural 
elements and secondary structures of telomeres, such as G-quadruplexes, R-loops, 
and T-loops, are potential obstacles to the replication fork passage (Lipps and 
Rhodes 2009; Paeschke et  al. 2005). In effect, studies do suggest that telomeric 
DNA has an inherent ability to pause or stall replication forks (Anand et al. 2012; 
Verdun and Karlseder 2006).

Two models explaining HHV-6 integration are presented. The first one is based 
on the DNA repair mechanism, referred to as break-induced replication (BIR); and 
the second one is known as single-strand annealing (SSA). BIR is a homologous 
recombination (HR) pathway, which facilitates the repair of DNA breaks that have 
only one end. It contributes to the repair of broken replication forks and allows the 
expansion of telomere, in a situation where telomerase is absent. BIR has been seen 
in various organisms including viruses, bacteria, and eukaryotes [reviewed in 
(Malkova and Ira 2013)]. Stalled replication forks at telomeres can be resolved in 
several ways; one of such is through the cleavage of DNA by endonucleases 
(Fig. 10.2b). Double-stranded breaks that occur or are detected during the S and G2 
phases preferentially activate ATM using MRE11-Rad50-NBS1 (MRN) complex. 
The 5′ extremity will be resected by MRN complex, C-terminal-binding protein 
interacting protein (CtIP), exonuclease 1 (EXO1), Bloom syndrome protein (BLM), 
DNA2 nuclease/helicase, and several chromatin remodeling factors (Mimitou and 
Symington 2009). Such activity will generate a 3′ protruding strand containing 
TTAGGG repeats that will get wrapped by Rad51 (Fig. 10.2c–d), after which the 
complex will search for homology pairing and promote strand invasion. When a 
HHV6 genome is in proximity, strand invasion can occur in the TMR regions of 
both DRs (Fig. 10.2e–f). In line with this, recent data from Wallaschek et al. pro-
vided conclusive evidence that the TMR regions of HHV-6 were required for effi-
cient viral integration (Wallaschek et al. 2016b). When invasion occurs at TMR of 
DRR, the entire genome will end up being copied (except for the pac2 sequence of 
DRR) and fused to the telomere. On the other hand, when invasion occurs in the 
TMR of DRL, only the DRL (minus the pac2 sequence of DRL) will be copied. At 
present, screening for iciHHV-6 is mostly done using primers/probe located within 
the unique region of HHV-6. With such assays, the truncated form consisting of 
only DRL cannot be detected. Nonetheless, individuals carrying a single DR in the 
absence of the remaining viral genome do exist (Bell et  al. 2015a; Gulve et  al. 
2017). These data provide evidence that invasion of DRL TMR, by the 3′ protruding 
telomeric ssDNA, might occur. Alternatively, deletion of the entire HHV-6 genome 
via the formation of T-loops might also explain the presence of a single DR in the 
absence of the rest of the viral genome (Huang et al. 2014; Prusty et al. 2013). At 
present, inadequate information is available to determine whether strand invasion at 
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both TMR occurs with equal frequency. Individuals carrying more than one copy of 
the HHV-6 genome also exist. Aside those who inherit a viral copy from both 
 parents (Daibata et al. 1999), individuals with HHV-6A and HHV-6B concatemers 
(with three or four juxtaposed viral genomes) have been identified [(Bell et al. 2014, 
2015b; Gulve et al. 2017; Ohye et al. 2014); Flamand, unpublished observation].

The SSA model also necessitates a break in the cellular DNA, in the subtelo-
mere/telomere region. Additionally, unless HHV-6 can counteract the DNA-damage 
response, the presence of unprotected linear dsDNA viral genomes is likely to be 
recognized as broken DNA needing repair. The viral DNA will be resected by the 
MRN complex as described above and generate single-stranded (ss) viral extremi-
ties (Fig. 10.2 h). On the DRR side, adjacent to the terminal pac2 sequence, the viral 
extremity consist of (CCCTAA) replications that are complementary to the 3′ cel-
lular ssDNA (TTAGGG)n generated following the cleavage of the stalled replication 
fork. With the participation of RPA and Rad52, the two pieces of DNA (viral 
genome and chromosome) are united, and in the process, the pac2 sequence gets 
clipped off. In contrast to the model involving invasion of the viral DNA at TMR by 
the 3′ protruding cellular DNA, the SSA model favors integration of HHV-6 using 
DRR.

To be viable, the chromosome containing the integrated HHV-6 must restore its 
telomeric cap. Upon integration and cell divisions, the viral pac1 sequence is lost 
due to incomplete replication of DNA ends. Once the viral impTMR constitutes the 
chromosome end, it can serve as a template for telomere lengthening either by the 
telomerase or alternative processes (Ohye et al. 2014). Of potential importance, the 
data reported by Huang et al. also indicate that the telomere on the distal end of the 
integrated virus is frequently the shortest (Huang et al. 2014).

10.2.2  Reactivation from a Chromosomally Integrated State

Ultimately, the virus needs to reactivate and propagate itself. All herpesviruses use 
the viral episome as a template to replicate their DNA. The generation of a func-
tional episome can occur via a second homologous recombination event between 
the telomeric sequences at the chromosome termini and the viral TMR present near 
the subtelomeric region (Fig. 10.2 g–h). In this light, Huang et al. reported the pres-
ence of extrachromosomal circular HHV-6 molecules, some made up of the entire 
HHV-6 genome with a single DR region flanked with pac1 and pac2 sequences; this 
indicates that once integrated, the virus can excise itself and reconstitute a full 
length viral episome (Huang et  al. 2014). Reconstitution of the viral episome is 
likely not enough to initiate a productive infection and likely requires the expression 
of a trans-activating viral proteins, such as the immediate early 2 protein that will 
favor the expression of many viral genes (Gravel et al. 2003).

It is unlikely that homologous recombination occurs without the participation of 
cellular or viral factors. This poses the question, which cellular components could 
possibly contribute to this integration? Proteins involved in HR such as BLM, 
BRCA2, and Rad51 are most likely involved. Shelterin complex proteins are also 
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possibly involved. Arbuckle et al. hypothesized that telomeric repeat binding factor 
2 (TRF2), known to bind the EBV sequences TTAGGGTTA (Deng et al. 2002), 
might also do the same with the TMR of HHV-6 and facilitate viral integration 
(Arbuckle and Medveczky 2011). A recent work from Gravel et al. indicates that 
HHV-6 integration occurs in cells independently of telomerase activity and p53 
expression (Gravel et al. 2017b). Biochemical data suggests that the U94 protein 
could facilitate integration (Morissette and Flamand 2010; Kaufer and Flamand 
2014; Trempe et al. 2015). However, despite some growth defects, a HHV-6A U94 
deletion mutant proved as efficient as WT HHV-6A at integrating host chromo-
somes, indicating that U94 is dispensable for HHV-6A integration (Wallaschek 
et al. 2016a). The quest for cellular and viral candidate proteins involved in integra-
tion is ongoing. Also, the cell type (such as fibroblast, endothelial cell, lymphocyte, 
neuron, etc.) is likely to influence the frequency of viral integration and reactivation. 
Infection in non-dividing cells such as neurons or macrophages is not expected to 
result in viral integration considering that events needed for integration, HR, occur 
during the S phase of the cycle. Thus, actively replicating cells are most likely to 
integrate HHV-6. Similarly, viral excision in quiescent cells is less likely to occur. 
Considering the need for large pools of nucleotides to ensure viral DNA replication 
and amino acids for protein synthesis, efficient reactivation likely occurs in prolif-
erating cells that are naturally permissive to HHV-6 growth, such as T 
lymphocytes.

10.3  Detection of HHV-6 Active Infection in the Context 
of iciHHV-6 Infection

Based on several studies, including 2 with ≥20,000 subjects, the estimated preva-
lence of iciHHV-6 is determined to vary between 0.6% and 2%, depending of the 
geographical region sampled (Gravel et  al. 2013b, 2015, 2017a; Hubacek et  al. 
2009; Jarrett 2015; Bell et al. 2014). The most frequent encountered issue associ-
ated with iciHHV-6+ individuals is the wrongful diagnosis of active HHV-6 infec-
tion. Depending on the type of tissue examined, the HHV-6 DNA copy number can 
vary greatly. For example, iciHHV-6+ individuals can have high levels of HHV-6 
DNA in plasma (>3.5 log10 copies/ml) or in cerebrospinal fluid (4.0 log10 copies/
ml), which may be misinterpreted as subjects with active HHV-6 infection and pre-
scribed antivirals (Pellett et al. 2012; Ward et al. 2006). A study demonstrated that 
qualitative or quantitative HHV-6 PCR of plasma is not sufficient to distinguish 
active viral replication from the chromosomally integrated form of HHV-6 (Caserta 
et al. 2010). When plasma, serum, or cerebrospinal fluid contains unexpectedly high 
HHV-6 levels, the most practical way to rule out that a patient is iciHHV-6+ is by 
quantitative PCR or droplet digital PCR (ddPCR) using whole blood or isolated 
PBMCs (Pellett et al. 2012; Sedlak et al. 2014). Individuals with iciHHV-6 have 
significantly higher viral DNA loads in PBMCs and whole blood (>5.5 log10 
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copies/ml) than non-iciHHV-6 individuals, even those immunocompetent individu-
als with primary HHV-6 infection or those immunosuppressed subjects, with HHV-6 
reactivations (Pellett et al. 2012). It has been recommended by Ljungman et al. for 
the European Conference on Infections in Leukemia (ECIL) that iciHHV-6 should 
be excluded before the diagnosis of HHV-6 active disease can be made, irrespective 
of the immune status of the patients (Ljungman et al. 2008). Furthermore, it has 
been stated that iciHHV-6 may only mislead the laboratory diagnosis of HHV-6 
active disease, inducing the administration of an undesirable and inappropriate anti-
viral treatment, especially in transplant patients, where iciHHV-6 may solely reflect 
either the rate of donor/recipient engraftment or the donor/recipient origin of the 
phenomenon (Ljungman et al. 2008).

Until recently, the molecular detection of iciHHV-6 was mostly done by qPCR 
(Ward et al. 2006). A new procedure providing absolute, more precise, and generally 
unequivocal results are obtained using droplet digital PCR (ddPCR). ddPCR parti-
tions the reaction sample into thousands of droplets with each droplet behaving as a 
mini reaction vessel in which the PCR reaction occurs. After PCR, each droplet is 
read as positive or negative for the DNA template, allowing absolute quantification of 
DNA copies without the use of a standard curve (Hindson et al. 2011, 2013). Using 
primer pairs that detect HHV-6 and a reference cellular gene (such as RPP30), the 
ratio of HHV-6/cell can be easily calculated. Sedlak et al. developed a ddPCR for the 
detection of iciHHV-6 and further adapted this technology to study HHV-6B reactiva-
tion in the content of iciHHV-6A+ transplant patients (Sedlak et al. 2014, 2016). An 
example of ddPCR results from iciHHV-6− and iciHHV-6+ subjects is presented in 
Fig. 10.3. As presented, most asymptomatic iciHHV-6− subjects will have very little 
or no HHV-6 DNA in their PBMCs (Fig. 10.3a). Thus, only the reference cellular 
gene is detected. In contrast, ddPCR performed on DNA from iciHHV- 6+ subject 
yields amplicons for both HHV-6 and RPP30, with a ratio of HHV-6 per cell (RPP30/2) 
of approximately one or more (Fig. 10.3b–c). A word of caution is, however, required 
when ddPCR is performed on limited amounts of starting material. A study from 
Sedlak et al. implies that, specimens with low genomic DNA content (such as biopsy) 
may yield inaccurate ratios that will make distinguishing iciHHV-6 from active infec-
tion difficult. In cases such as these, it is advisable to obtain additional tissue or cel-
lular samples, to determine the likelihood of iciHHV-6 (Sedlak et al. 2014).

Using plasma/serum as starting material can make it is very difficult to identify 
bona fide active HHV-6 reactivation/infection, considering the high HHV-6 DNA 
content in iciHHV-6+ individuals. This is even more problematic in iciHHV-6B+ 
individuals, knowing that most reactivation/infection events involve HHV-6B. One 
option would be to include a DNAse step prior to the DNA isolation. Such approach 
would eliminate all non-encapsidated DNA and eliminate naked DNA originating 
from spontaneous or induced (due to sheer stress) cellular lysis (Djikeng et  al. 
2008). However, from a conservative clinical point of view, it is worth considering 
antiviral therapy even in patients with iciHHV-6 when they show signs and/or 
symptoms consistent with viral infection and other known pathogens that have been 
extensively searched and ruled out, although iciHHV-6 may confound the diagnosis 
of active HHV-6 infection (Potenza et al. 2011). A decision algorithm was recently 
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Fig. 10.3 ddPCR analysis of iciHHV-6− and iciHHV-6+ individuals. DNA isolated from PBMCs 
of iciHHV-6− (a), iciHHV-6A+ (b), and iciHHV-6B+ (c) individuals was analyzed by ddPCR using 
primers and probes specific for HHV-6 and RPP30 (single copy cellular gene). Bottom left = drop-
lets negative for HHV-6 and RPP30 DNA. Top left = droplets positive for HHV-6 DNA and nega-
tive for cellular DNA. Bottom right = droplets negative for HHV-6 DNA and positive for cellular 
DNA. Top right = droplets positive for HHV-6 and RPP30 DNA
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published to help with the decision-making process (Agut et al. 2015). Detection of 
multiple HHV-6 RNA (including RNA coding for structural proteins) by RT-qPCR, 
HHV-6 proteins by immunohistochemistry, or viral isolation likely represent the 
best options to document active HHV-6B infection.

10.4  Impacts of ciHHV-6 on Cell Biology

The absence of knowledge on the biological consequences of having or transmitting 
iciHHV-6 is of medical concern [for reviews consult (Pellett et al. 2012; Morissette 
and Flamand 2010; Kaufer and Flamand 2014)]. Does integration lead to proto- 
oncogene activation or gene alteration that can lead to diseases such as cancer? 
Does HHV-6 integration within the telomeric region affects chromosome stability 
and predispose to certain pathologies through accelerated telomere shortening (such 
as by decreasing the cellular renewal potential and increasing the susceptibility to 
normally aging diseases)? Does expression of viral proteins trigger immune 
responses that cause inflammation and tissue destruction? These are some of the 
fundamental questions awaiting answers.

Compilation of several small independent studies was made. Pellet et al. reported 
that iciHHV-6 is 2.3X more frequent (p < 0.001) in diseased (various diseases) indi-
viduals compared to healthy ones, suggesting that iciHHV-6 may represent a risk 
factor in disease development (Pellett et al. 2012). Much of what is known about the 
causes of chronic disorders comes from large epidemiological studies (Doll 2001; 
Willett and Colditz 1998). At present, two large-scale studies (≥20,000 subjects) 
were conducted to determine the prevalence of diseases in iciHHV-6+ individuals. 
Using DNA samples from the CARTaGENE study (Awadalla et al. 2013) and the 
Generation Scotland: Scottish Family Health Study (Smith et al. 2013), researchers 
were able to find a relationship between iciHHV-6 and the development of angina 
pectoris (Gravel et al. 2015; Jarrett 2015).

Angina is a cardiovascular disease (CVD) caused by the narrowing of the lumen 
of arteries, resulting in reduced oxygen delivery to the heart [reviewed in (Libby 
2013)]. Atherosclerosis is the most common cause of stenosis of the heart’s arteries 
and, therefore, angina. The starting point for plaque formation is endothelial dys-
function or activation. At present, the most important contributors of endothelial 
dysfunction are hemodynamic disturbances, hypercholesterolemia, and inflamma-
tion. However, infections, whether they are of bacterial or viral origin (including 
CMV), also play important roles in atherosclerosis development (Chatzidimitriou 
et al. 2012). One hypothesis is that endothelial cells (ECs) from subjects express, at 
some point in time, viral proteins and/or produce virions that can lead to immune 
activation (of monocytes, lymphocytes, and/or platelets) and cell damage, initiating 
and fueling the development of atherosclerotic lesions and eventually leading to 
angina [reviewed in (Libby et al. 2013)]. In support, a recent study indicates reacti-
vation of iciHHV-6 in subjects with myocardial dysfunctions. Virus particles were 
identified in degenerating myocytes and interstitial cells and antiviral treatment 
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abolished viral mRNA and ameliorated cardiac symptoms (Kuhl et al. 2015). The 
authors hypothesize that the damage of ECs caused by HHV-6 reactivation in ici-
HHV- 6 patients might give explanation to the complaints of angina as a sequela of 
myocyte and vascular endothelial dysfunction, as previously reported for Parvovirus 
B19 (Schmidt-Lucke et al. 2010).

In case control studies, a potential role for iciHHV-6 in the development of breast 
cancer, Hodgkin lymphomas, and acute lymphoblastic leukemia was ruled out (Bell 
et al. 2014; Gravel et al. 2013b, 2017a).

iciHHV-6 may play a pathophysiological role in transplant patients. Several case 
reports have described transplant recipients receiving hematopoietic stem cells, 
including cord blood from iciHHV-6+ donors (Clark et al. 2006; Kamble et al. 2007; 
Yamada et al. 2017). The long-term follow-up on these patients is limited to a few 
months or years, but no apparent problems were noted. Considering that the telo-
mere of the chromosome carrying the integrated HHV-6 is often the shortest (Huang 
et  al. 2014) and that telomere length is proportional to the lifespan of a cell, it 
remains undetermined whether cells derived from iciHHV-6+ individuals have the 
same long-term proliferative capacity of cells from iciHHV-6− subjects. In the 
recipients, the HHV-6 DNA levels increases concomitantly with engraftment and 
should not be mistaken with bona fide HHV-6B reactivation, which typically occurs 
between days 20 and 40 of posttransplant in 30–50% of allogeneic peripheral blood 
mobilized stem cells and up to 90% of cord blood transplant recipients (Dulery et al. 
2012; Imbert-Marcille et al. 2000; Zerr 2006; Zerr et al. 2011, 2012; Aoki et al. 
2015; de Pagter et al. 2008, 2013; Quintela et al. 2016).

Experience on the transplantation of solid organs from iciHHV-6+ subjects are 
more limited. Considering that all transplant recipients over the age of three are 
immune to HHV-6 and knowing that once integrated, HHV-6 can express some of 
its genes, the possibility that a transplanted organ from an iciHHV-6+ donor triggers 
an immunological attack from the recipient’s immune system, even in the absence 
of detectable viral replication, is present. In the absence of HHV-6 replication, the 
diagnostic is likely to be idiopathic organ rejection. Considering this, the iciHHV-6 
status of the donors should be determined prior to organ transplant, and recipients 
should be carefully monitored for signs of active HHV-6 infection (viral loads) and/
or signs of immune (induced by HHV-6 antigens) organ rejection (Das and Munoz 
2017; Flamand 2014).

10.5  Conclusion

Much has been learned since the initial report of ciHHV-6 25  years ago. These 
knowledge include the structures of the integrated genome, the prevalence of ici-
HHV- 6 in different regions of the world, the ability to discriminate between bona 
fide active infection “false” DNA loads in iciHHV-6+ subjects, the development of 
in vitro culture models to study integration, as well as documented cases of patho-
genic events originating from the reactivation of integrated HHV-6, to name a few. 
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Considering an iciHHV-6 prevalence of 0.6–2%, a large number of samples are 
needed to link iciHHV-6 to certain disease. The fact that integration can occur in 
distinct chromosomes further complicates the analyses. Since the chromosome tar-
geted for integration may influence the outcome, future studies should consider 
which chromosomes carry the integrated virus. A lot remains unlearned, on the 
biological consequences linked with chromosomal integration. Also, the fact that 
integration takes place within the telomeric regions, several questions pertaining to 
the long-lasting proliferative potential of cells carrying ciHHV-6 are raised.
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Chapter 11
Structural Aspects of Betaherpesvirus- 
Encoded Proteins

Mitsuhiro Nishimura and Yasuko Mori

Abstract Betaherpesvirus possesses a large genome DNA with a lot of open reading 
frames, indicating abundance in the variety of viral protein factors. Because the com-
plicated pathogenicity of herpesvirus reflects the combined functions of these factors, 
analyses of individual proteins are the fundamental steps to comprehensively under-
stand about the viral life cycle and the pathogenicity. In this chapter, structural aspects 
of the betaherpesvirus-encoded proteins are introduced. Betaherpesvirus-encoded 
proteins of which structural information is available were summarized and subcatego-
rized into capsid proteins, tegument proteins, nuclear egress complex proteins, enve-
lope glycoproteins, enzymes, and immune- modulating factors. Structure of capsid 
proteins are analyzed in capsid by electron cryomicroscopy at quasi-atomic resolu-
tion. Structural information of teguments is limited, but a recent crystallographic 
analysis of an essential tegument protein of human herpesvirus 6B is introduced. As 
for the envelope glycoproteins, crystallographic analysis of glycoprotein gB has been 
done, revealing the fine-tuned structure and the distribution of its antigenic domains. 
gH/gL structure of betaherpesvirus is not available yet, but the overall shape and the 
spatial arrangement of the accessory proteins are analyzed by electron microscopy. 
Nuclear egress complex was analyzed from the structural perspective in 2015, with 
the structural analysis of cytomegalovirus UL50/UL53. The category “enzymes” 
includes the viral protease, DNA polymerase and terminase for which crystallographic 
analyses have been done. The immune- modulating factors are viral ligands or recep-
tors for immune regulating factors of host immune cells, and their communications 
with host immune molecules are demonstrated in the aspect of molecular structure.
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11.1  Introduction

Betaherpesvirus subfamily includes human cytomegalovirus (HCMV) of cytomega-
lovirus genus and human herpesvirus 6-A and human herpesvirus 6-B (HHV-6A and 
HHV-6B) and human herpesvirus 7 (HHV-7) of roseolovirus genus. They have a large 
genome DNA with a lot of open reading frames (ORF) which encode betaherpesvirus- 
specific, genus-specific, and individually specific viral proteins in addition to herpes-
virus-common proteins. Since the life cycle and pathogenicity of these viruses are 
established as a result of the concerted functions and behaviors of their viral factors, 
understanding of each viral protein is a fundamental procedure to research these 
viruses. Structural analysis of viral protein is an effective approach, because structure 
and function of a protein is highly correlated. At the present time, there is huge and 
growing data about protein structures, however, low sequence homology of the viral 
proteins with these known proteins limits the availability of the information.

In this chapter, the structural researches of betaherpesvirus-encoded proteins are 
introduced. Although structural analyses of viral proteins of alphaherpesvirus and 
gammaherpesviruses precede those of betaherpesvirus in many cases, there are a 
growing number of publications about the structural analysis of betaherpesvirus- 
encoded proteins during recent years. For example, the crystal structure of 
herpesvirus- common fusogen, namely, glycoprotein B (gB), has been determined 
for an alphaherpesvirus human simplex virus 1 (HSV-1) in 2006 (Heldwein et al. 
2006) for the first time, followed by for a gammaherpesvirus Epstein-Barr virus 
(EBV) in 2009 (Backovic et al. 2009), while for betaherpesvirus HCMV gB, the 
structure has been revealed partially in 2014 (Spindler et al. 2014) and finally deter-
mined in 2015 (Burke and Heldwein 2015; Chandramouli et al. 2015). Almost all 
structural analyses are focusing on the HCMV or animal cytomegalovirus proteins, 
except for a recent structural study about the roseolovirus tegument protein HHV-6B 
U14 (Wang et al. 2016), although the structural information is useful to understand 
the corresponding factors of other betaherpesvirus members. Structural analysis for 
the herpesvirus-common factors reveals how betaherpesvirus fine-tuned the com-
mon machinery for their specific functions.

Table 11.1 summarized the availability of structural information of 
betaherpesvirus- encoded proteins introduced in this chapter. The viral proteins are 
arbitrarily categorized into capsid proteins, tegument proteins, nuclear egress com-
plex (NEC) proteins, envelope glycoproteins, enzymes, and immune-modulating 
factors. Overview of each structure, key functional features, and the relationship 
with its homologs of other herpesvirus are described in the following sections.

11.2  Capsid Proteins

Capsid is a highly ordered icosahedral protein shell that tightly packs the viral 
genome DNA. Three-dimensional structure of the HCMV capsid has been analyzed 
at 35  Å resolution by electron cryomicroscopy in 1998 (Butcher et  al. 1998), 
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Table 11.1 Summarized structural information for betaherpesvirus-encoded proteins

Subcategory/
common name Cytomegalovirus Roseolovirus Notes

Accession IDs of 
representative data

Capsid proteins
  Major capsid 

protein (MCP)
UL86 U57 Hexon, 

Penton
EMDB-5695 (capsid)

  Minor capsid 
protein (mCP)

UL85 U56 Triplex EMDB-5695 (capsid)

  Minor capsid- 
binding protein 
(mCBP)

UL46 U29 Triplex EMDB-5695 (capsid)

  Smallest capsid 
protein (SCP)

UL48/49 U32 EMDB-5696 (virion)

Tegument proteins
  pp150 (HCMV), 

p100 (HHV-6A)
UL32 U11 N-terminal 

region
EMDB-5696 (virion)

UL25, UL35 U14 N-terminal 
domain

5B1Q

NEC proteins
  Nuclear egress 

membrane protein
UL50, M50 U34 5D5N, 5DOB, 5A3G 

(M50)
  Nuclear egress 

lamina protein
UL53 U37 5D5N, 5DOB

Envelope glycoproteins
  gB UL55 U39 Ectodomain 5C6T, 5CXF, 4OSU 

(Dom-II)
5FZ2 (HSV-1, 
pre-fusion)

  gH/gL gH: UL75, gL: 
UL115

gH: U48, gL: 
U82

Ectodomain 3M1C (HSV-1), 
3PHF (EBV)

  gH/gL/gO UL74 U47 5T1D (EBV gH/gL/
gp42)

  gH/gL/UL128/
UL130/UL131A

UL128, UL130, 
UL131A

– –

  gH/gL/gQ1/gQ2 – U100 –
Enzymes
  Protease UL80 U53 N-terminal 

region
1NJU, 1BIL, 1BIM, 
1JQ6, 2WPO, 1WPO, 
1CMV, 1LAY

  Polymerase, 
processivity factor

UL44 U27 N-terminal 
region

1T6L, 1YYP

  Terminase, 
nuclease domain

UL89 U66 C-terminal 
domain

3N4P

Immune-modulating factors
  Chemokine 

receptor homolog
US28 – Complex with 

CX3CL1
4XT1

  IE1 UL122 – Core domain 4WID

(continued)

11 Structural Aspects of Betaherpesvirus-Encoded Proteins



230

followed by analyses with improved resolution of HCMV capsid (Chen et al. 1999) 
and simian cytomegalovirus capsid (Trus et  al. 1999). Owing to the technical 
advance in electron cryomicroscopy, structures of the HCMV capsid and murine 
cytomegalovirus capsid has been determined at the resolution of 6 Å and 9.1 Å, 
respectively (Dai et  al. 2013; Hui et  al. 2013), enabling the visualization of the 
mainchain traces of capsid proteins. For comparison among herpesvirus subfami-
lies, quasi-atomic structures of Kaposi’s sarcoma-associated herpesvirus (KSHV) 
capsid (Dai et al. 2015) and HSV-1 capsid (Huet et al. 2016) are also available.

In HCMV, the capsid consists of major capsid protein (MCP) UL86, minor cap-
sid protein (mCP) UL85, minor capsid protein-binding protein (mCBP) UL46, and 
smallest capsid protein (SCP) UL48/49 (Table  11.1). The capsid contains three 
structural units, namely, hexon, penton, and triplex. One capsid contains 150 hex-
ons, 12 pentons, and 320 triplexes, and they form the icosahedral architecture 
(Fig. 11.1a). Hexon and penton are self-assembled forms of hexameric and pentam-
eric MCPs (Fig. 11.1a and b). Triplex is a heterotrimeric complex which is com-
prised of two mCPs and one mCBP (Fig. 11.1b). SCPs are additionally attached at 
the outer tips of the hexons and show the horn-like appearance (Fig. 11.1c). Overall 
appearance of the capsid and each structural unit are basically similar to their coun-
terparts of HSV-1 capsid and KSHV capsid. The MCP has three domains, that is, 
upper domain, middle domain, and lower/floor domains (Fig.  11.1d). As for the 
upper domain, a crystal structure of HSV-1 MCP upper domain (MCPud) has been 
determined (Bowman et al. 2003). The HSV-1 MCPud could be fitted in the observed 
densities of HCMV MCP and murine cytomegalovirus (MCMV) MCP (Dai et al. 
2013; Hui et al. 2013). The lower/floor domains of MCP have a structural similarity 
with bacteriophage HK97 gp5 (Gan et al. 2006). The HK97 gp5 structure was well 
fitted to the MCMV MCP density, demonstrating the structural similarity (Hui et al. 
2013). The MCP and mCP are well conserved between HCMV and HSV-1, while 
mCBP and SCP are different. The mCBP of HSV-1 is VP19c (UL38), and UL46 is two 
thirds in size (VP19c, 50 kDa; UL46, 33 kDa), and their sequences are not similar. 

Table 11.1 (continued)

Subcategory/
common name Cytomegalovirus Roseolovirus Notes

Accession IDs of 
representative data

  IL-10 mimic UL111A – Complex with 
IL-10R1

1LQS

UL141 – Complex with 
TRAIL-R2

4I9X, 4JM0

  Immunoevasin US2, m04 – Complex with 
HLA-A2

1IM3, 4PN6 (m04), 
2MIZ (m04)

UL16 – Complex with 
MICBpf

2WY3

  MHC class I 
homolog

UL18
m144, m152, 
m153, m157

– Complex with 
LIR-1

3D2U, 1PQZ (m144), 
4G59 (m152), 2O5N 
(m153), 2NYK 
(m157),
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Nevertheless, the triplex has similar appearance in each capsid. SCPs of HSV-1 and 
HCMV have limited sequence homology, although they share molecular character-
istics, that is, the small molecule size (approx. 8.6 kDa) and the enriched positively 
charged residues. Although both SCPs are located on the hexons with similar 
appearances in HCMV capsid and HSV-1 capsid, their spatial arrangement are 
slightly different. The inner volume of capsid, in which the genome DNA is packed, 
is enlarged in HCMV capsid at a ratio of 1.17 to that of HSV-1 capsid (Butcher et al. 
1998). This enlarged space is suitable but not enough to pack the larger genome size 
of cytomegalovirus, implying differences in the DNA packing mechanisms.

There are limited information about the capsid proteins of roseoloviruses. 
Electron cryomicroscopy of HHV-6A capsid revealed that its appearance is similar 
to those of HCMV with hexons, pentons, and triplexes [introduced in (Krueger and 
Ablashi 2006)], although the details have not been discussed. The MCP, mCP, 
mCBP, and SCP of HHV-6A are U57, U56, U29, and U32, respectively (Table 11.1). 
The amino acid sequence identity of MCP, mCP, mCBP, and SCP between HHV-6A 
and HCMV are 44.6, 42.9, 31.3, and 34.3%, respectively. The relatively high 
sequence homology is consistent with the observed structural similarity, although 
the conclusion has to wait for a detailed analysis of the roseolovirus capsid.

11.3  Tegument Proteins

Tegument proteins are the constituents of tegument which fills the space between 
the capsid and envelope of the herpesvirus virion. Tegument proteins are required 
during the virion maturation steps to promote the transport and envelopment of the 
capsid. In HCMV and HHV-6A, approximately 20 proteins are annotated as 

Fig. 11.1 Capsid proteins and tegument protein UL32. (a) HCMV capsid structure colored by 
radial distance from the center. Representatives of hexons, pentons, and triplex are indicated. (b) 
A close-up view of a hexon (MCPs) and a triplex (two mCPs and one mCBP). (c) The MCP struc-
ture in the hexon. Crystal structures of HSV-1 MCPud (PDB ID: 1NO7) and HK97 gp5 (PDB ID: 
2FT1) were fitted around the upper and lower/floor domain in the map, respectively. (d) SCP and 
UL32-N-terminal domain (UL32-NTD). The density map from HCMV virions contains additional 
densities around the hexons, corresponding to SCP and UL32-NTD. The original data used for 
these illustrations are as follows: (a), (b), (d) EMDB-5695; (c) EMDB-5696. All illustrations in 
this chapter were prepared by using UCSF Chimera (Pettersen et al. 2004)
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tegument proteins. Some tegument proteins interact with the capsid and other ones 
interact with envelope proteins, thereby support the virion architecture. Some tegu-
ment proteins are suggested to have other functions other than being the constituent 
of the virion. When virus enters its target cell and export the capsid, tegument pro-
teins are also spread into the cytosol. The imported or newly synthesized tegument 
proteins interact with viral or host factors and control host cell behaviors. Despite 
their potential roles, less is known about the protein characteristics, and most tegu-
ment proteins have low sequence homology with known proteins.

11.3.1  HCMV UL32

In the electron cryomicroscopy of the HCMV virion and purified capsid, a tegument 
protein tightly associating with the capsid was identified. The existence of the tegu-
ment density connecting a triplex and a hexon has been observed in the early studies 
(Chen et al. 1999; Trus et al. 1999). In the HCMV virion analysis at 8.3 Å resolu-
tion, the density was assigned as the N-terminal half of UL32 protein, known as 
pp150 (Dai et al. 2013) (Fig. 11.1c). The observed helix bundle-like density is con-
sistent with the secondary structure prediction of the UL32 N-terminal region, and 
it was subdivided into upper helix bundle and lower helix bundle with a shared 
central helix. SCPs on the hexon tips mediate the interaction of UL32 with the 
capsid.

In HHV-6A, the HCMV UL32 is corresponding to U11. U11 is a tegument pro-
tein, known as a dominant antigen of HHV-6A called p100. It is an essential tegu-
ment for HHV-6A (Mahmoud et al. 2016), and interaction with another essential 
tegument protein U14 has been reported (Mahmoud et al. 2016; Wang et al. 2016). 
Interestingly, roseolovirus U11 and cytomegalovirus UL32 share only the N-terminal 
region, which corresponds to the capsid bound density described above, and their 
C-terminal regions are different. Therefore, HHV-6A capsid is likely bound by U11 
via its N-terminal domain, however, the connected C-terminal region likely have 
different structure and function from those of the HCMV UL32 C-terminal region.

11.3.2  HHV-6B U14

Recently, a structural analysis on a tegument protein U14 of HHV-6B has been 
done. U14 is an essential tegument protein because a deletion or alanine substitu-
tions of three successive key residues Leu-Glu-Val causes deficiency in virion matu-
ration (Mori et al. 2015b). U14 has been reported to interact with a tumor suppressor 
p53 and changes its localization from nucleus to cytosol or progeny virions 
(Takemoto et al. 2005). U14 also interacts with E3 ubiquitin ligase EDD, leading to 
cell cycle arrest (Mori et al. 2015a). HHV-6B U14 consists of 654 amino acids, and 
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the N-terminal domain (residue 1-456; U14-NTD) was analyzed by X-ray crystal-
lography at the resolution of 1.85 Å (Wang et al. 2016). U14-NTD has an elongated 
helix-rich fold with a protruding β-hairpin, and it forms a homodimer (Fig. 11.2a). 
The U14-NTD fold was subdivided into four subdomains (SDs), and the helix bun-
dles of SD2 and SD3 show structural similarity with other four helix bundle pro-
teins, although the overall protein structure is not similar to other known proteins. 
The dimer interface is broad and a lot of hydrogen bonds and electrostatic interac-
tions are observed. U14-NTD has a biased electrostatic potential on the dimer sur-
face; one side is broadly covered by negatively charged residues, and the back side 
has an alternating negative-positive-negative pattern. The key residues of which 
deletion causes a functional defect of U14 reside on the β-hairpin of U14-NTD. The 
hydrophobic sidechains of the Leu and Val residues point toward the solvent side, 
and their role in the interaction with the tegument protein U11 was demonstrated 
(Wang et al. 2016).

HCMV has two homologous tegument proteins of HHV-6B U14, namely, UL35 
and UL25. Since they have sequence similarity to U14-NTD, it is expected that they 
have a protein fold similar to HHV-6B U14-NTD. In addition to the shared struc-
tural core, HHV-6B U14 and HCMV UL35 have C-terminal extensions, while 
HCMV UL25 has an N-terminal extension. In all cases, such extended regions have 
low percentage of hydrophobic residues, and therefore they are predicted to be 
intrinsically unfolded. It is unclear whether HCMV UL35 and UL25 form a dimer 
like HHV-6B U14-NTD because most of residues involved in the hydrogen bonds 
at the dimer interface are not conserved in HCMV UL35 and UL25. Since the 
potential functional sites suggested from the U14-NTD structural analysis are 
depending on the dimer formation, HCMV UL35 and UL25 would have different 

Fig. 11.2 Tegument protein and nuclear egress complex (NEC) proteins. (a) The crystal structure 
of HHV-6B U14N-terminal domain (U14-NTD). U14-NTD appeared as a dimer in the crystal. The 
four subdomains (SDs) are colored separately. SD1 is hidden behind SD2. The identified U11 
binding site on a β-hairpin was indicated. (b) The crystal structure of HCMV NEC proteins UL50/
UL53. The zinc binding site is indicated. (c) A hexameric ring structure of HCMV NEC proteins 
observed in the crystal lattice. A sixfold symmetry axis was shown by the symbol. The original 
data used for these illustrations are as follows: (a) 5B1Q (Wang et al. 2016); (b) and (c) 5D5N 
(Walzer et al. 2015)
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functional sites on the protein surface. It is noteworthy that the residues involved in 
interaction with U11 on HHV-6B U14-NTD are not conserved in HCMV UL25 
and UL35.

11.4  Nuclear Egress Complex (NEC) Proteins

When a newly assembled capsid passes through the nuclear membrane, two con-
served nuclear egress complex (NEC) proteins play a major role in the transport. In 
HCMV, an inner nuclear membrane (INM) protein UL50 and an associating protein 
UL53 form a heterodimeric NEC on the INM. Numerous copies of UL50/UL53 
complex are assembled into a lattice-like network which packs the capsid. The 
N-terminal part of UL50 homolog of murine CMV, that is, M50, has been analyzed 
by NMR (Leigh et al. 2015). Following that, the crystal structures of HCMV UL50/
UL53 were reported by two research groups at the almost same time (Walzer et al. 
2015; Lye et  al. 2015), as well as its homolog of HSV-1 UL31/UL34 complex 
(Bigalke and Heldwein 2015; Zeev-Ben-Mordehai et  al. 2015). Both UL50 and 
UL53 include an α/β two-layered Bergerat fold, combined with different structural 
elements (Fig. 11.2b). UL53 has a zinc binding site (Cys3His) and an N-terminal 
hook-like extension which is encompassed by α-helices of UL50. The Cys and His 
residues are critical for the function and conserved across herpesviruses. In the crys-
tal lattice of P6 space group, the UL50/UL53 complexes form a ring-like hexamer 
(Walzer et  al. 2015) (Fig.  11.2c). A similar hexameric ring structure was also 
observed in the HSV-1 UL31/UL34 crystallographic analysis (Bigalke and Heldwein 
2015), and it is consistent with the small angle X-ray scattering (SAXS)-derived ab 
initio model of UL31/UL34 and electron cryotomography/micrography analysis of 
HSV-1 NEC (Hagen et  al. 2015; Bigalke et  al. 2014; Zeev-Ben-Mordehai et  al. 
2015). In roseolovirus, UL50 and UL53 of HCMV correspond to U34 and U37 of 
HHV-6A, respectively. Although the HCMV UL50 and UL53 have significantly 
longer C-terminal regions compared to HHV-6A U34 and U37, the amino acid iden-
tities at the N-terminal regions are 34% (UL50 and U34) and 43% (UL53 and U37), 
respectively.

11.5  Envelope Glycoproteins

A herpesvirus virion has a host-derived envelope studded with a lot of viral glyco-
proteins. Most important and structurally studied glycoproteins are gB and gH/gL, 
which are conserved among all herpesviruses. gB and gH/gL play critical roles in a 
series of events upon the viral entry into the target cell cytoplasm. Because of their 
outermost locations on the virion and the critical functions in infection, the gB and 
gH/gL are also important as the major target of host immunity.
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11.5.1  Fusion Protein gB

gB is a class III fusion protein common for herpesvirus to catalyze the fusion event 
between target cell membrane and the viral membrane. The first gB structure has 
been determined for an alphaherpesvirus HSV-1, revealing the homotrimeric struc-
ture (Heldwein et al. 2006). Following that, the gB structure of a gammaherpesvirus 
EBV has been analyzed, and the structural similarity of gB between the two viral 
subfamilies was demonstrated (Backovic et al. 2009). In 2015, the crystal structures 
of HCMV gB have been published from two research groups at the almost same 
time (Burke and Heldwein 2015; Chandramouli et al. 2015). HCMV gB consists of 
907 amino acids in full length, and the structural analyses were done for the ectodo-
main of approximately 700 amino acids, removing the membrane proximal region, 
the transmembrane domain, and the cytoplasmic domain at the C-terminus. The 
HCMV gB ectodomain has an trimeric fold with five domains same as those of 
HSV-1 gB and EBV gB (Fig. 11.3a and b). The respective domains are similar in 
fold, with a few local variations. Compared to gB structures of HSV-1 and EBV, the 
HCMV gB has difference in the arrangements of D-IV and D-II relative to D-III/
D-V and to D-I/D-III, respectively. The charge distribution at the membrane distal 
end called “crown” on D-IV is covered by negatively charged electrostatic potential, 
in contrast to the positively charged electrostatic potential observed in HSV-1 gB 
and EBV gB. Another feature of HCMV gB is its numerous N-linked glycosylation 
sites, and the structural mapping of the glycosylation sites indicated that the gB 
surface is extensively shielded by the glycans, especially around D-II. The glycan 
layer is considered to protect gB from the host immune surveillance. Mapping anal-
ysis of antigenic domains (AD)-1 to AD-5, which are defined as the epitope clusters 
of antibodies, clearly showed that the AD-1 on DVI is poorly protected by glycans, 
and it is consistent with the high immunogenicity of AD-1. Among the numerous 
neutralizing antibodies against HCMV gB, two neutralizing antibodies were ana-
lyzed their binding mode in crystal structures. gB complexed with 1G2 Fab domain 
revealed its interaction mode at the AD-5 on D-I (Chandramouli et al. 2015). The 
other neutralizing antibody SM5-1 recognizes the AD-4 on D-II, and the complex 
structure of the SM5-1 Fab domain and a recombinant protein of gB domain II (gB 
Dom-II) has been determined (Spindler et al. 2014). There are no structural analysis 
of the roseolovirus gB, although the sequence similarity at the ectodomain (amino 
acid identity, 43%, HHV-6A U1102 gB) indicates that roseolovirus gB also has 
similar structural features same as HCMV gB.

All of the gB crystal structures of HSV-1, EBV, and HCMV represent the post- 
fusion form of gB; thus there is limited information for the pre-fusion form of 
gB. Pre-fusion forms of gB is simulated by using the pre-fusion structure of vesicu-
lar stomatitis virus G protein (VSV-G) (Roche et  al. 2007), which is a class III 
fusion protein same as gB. Although VSV-G and gB have low sequence homology, 
their shared domain constructs and their arrangements rationalizes such model- 
based analyses. However, a recent electron cryotomographic analysis of HSV-1 gB 
enriched on cell-derived vehicles has visualized a putative pre-fusion (or intermediate) 
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form of gB in addition of the post-fusion form (Zeev-Ben-Mordehai et al. 2016). 
The pre-fusion form of gB is largely different from that of VSV-G, in which the 
fusion peptides in the D-I is sequestered near the membrane proximal side. The 
HSV-1 gB model has fusion peptides protruding toward the membrane distal side 
(Fig. 11.3c), suggesting sharp contrast between herpesvirus gB and VSV-G.

11.5.2  HCMV gH/gL/gO and gH/gL/UL128/UL130/UL131A

The heterodimeric complex of gH/gL is also conserved among herpesvirus and 
serves as a regulator of gB. Normally, gB does not spontaneously exert its fusion 
activity, but the activation by gH/gL is required [reviewed in (Heldwein 2016)]. The 
gH/gL activation is coupled with the receptor binding via other viral factors. In 
HSV-1 and HSV-2, another glycoprotein gD recognizes the host receptors, namely, 
herpesvirus entry mediator (HVEM) and nectin, and then activates gH/gL. In EBV 
gH/gL can directly interact with integrin on epithelial cells, but an additional 

Fig. 11.3 Envelope glycoproteins. (a) and (b) The crystal structure of HCMV gB in post-fusion 
conformation was shown as a monomer (a) or trimer (b). The five domains were colored sepa-
rately. Approximate locations of three antigenic domains (AD-1, AD-3, and AD-5) are indicated in 
(b). (c) HSV-1 gB pre-fusion structure visualized by electron cryotomography. The color codes are 
the same as (a) and (b). (d) Crystal structure of HSV-2 gH/gL. The four domains were colored 
separately and the locations of “heel” and “toe” were shown. (e) and (f) The relative locations of 
gO (e) and UL128/UL130/UL131A (d) against gH/gL were illustrated. (g) EBV gH/gL/gp42 com-
plex determined by X-ray crystallography. The original data used for these illustrations are as 
follows: (a), (b) 5XCF (Burke and Heldwein 2015); (c) 5FZ2 (Zeev-Ben-Mordehai et al. 2016); 
(d), (e), (f) 3M1C (Chowdary et al. 2010); (g) 5T1D (Sathiyamoorthy et al. 2016). The image in 
(e) was illustrated by reference to the original literature (Ciferri et al. 2015a)
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accessory protein of gH/gL, namely, gp42, is required to infect the B cells via 
human leukocyte antigen (HLA). Similarly to the EBV gH/gL/gp42 complex, gH/
gL of cytomegalovirus and roseolovirus are combined with other glycoproteins. In 
HCMV, UL128, UL130, and UL131A or gO are combined with gH/gL and then 
forms a pentameric gH/gL/UL128/UL130/UL131A complex or a trimeric gH/gL/
gO complex. On the other hand, HHV-6A and HHV-6B have gQ1/gQ2 and gO to 
form a tetrameric gH/gL/gQ1/gQ2 complex and a trimeric gH/gL/gO complex, 
respectively (Mori et al. 2004; Akkapaiboon et al. 2004; see also the chapter written 
by Tang and Mori in this book). These additional factors are directly related to the 
cell tropisms of these viruses. HCMV gH/gL/gO is used for infection to fibroblast, 
whereas the gH/gL/UL128/UL130/UL131A drastically promotes infection to epi-
thelial/endothelial cells. Although the role of gH/gL/gO in HHV-6A and HHV-6B is 
unclear, the tetrameric complex gH/gL/gQ1/gQ2 has been revealed to play a critical 
role for infection to their target cells. Interestingly, HHV-6A gH/gL/gQ1/gQ2 rec-
ognizes the ubiquitously expressed protein CD46 (Santoro et  al. 1999), while 
HHV-6B gH/gL/gQ1/gQ2 recognizes CD134 (also known as OX40) which is spe-
cifically expressed on the activated T-cells (Tang et al. 2013).

The crystal structures of gH/gL have been determined for HSV-2 (Chowdary 
et al. 2010), and EBV (Matsuura et al. 2010), but not yet for betaherpesvirus. HSV-2 
gH consists of 838 amino acids and a type I membrane protein, and the ectodomain 
48-803 was used for the analysis, removing N-terminal signal sequence and the 
C-terminal transmembrane domain and cytosolic domain. The gH contains four 
domains, namely, H1A, H1B, H2, and H3 (Fig. 11.3d). gL is tightly integrated in- 
between the H1A and H1B domains near the N-terminal region of gH. The overall 
shape of HSV-2 gH/gL resembles a “boot” with a gentle bend between H1B and H2 
domains (“heel”). The crystal structure of EBV gH has a comparable structure with 
the HSV-2 gH, including four domains. D-I, D-II, D-III, and D-IV of EBV gH cor-
responds to H1A, H1B, H2, and H3 of HSV-2 gH, respectively. Similarly to the 
HSV-2 gL, EBV gL resides between D-I and D-II. One critical difference is the 
overall appearance; EBV gH/gL does not have the boot-like shape because the angle 
between D-II and D-III is flat.

Although the structural information of gH/gL of betaherpesvirus is limited, neg-
ative stain electron microscopy analyses revealed the overall shape of HCMV gH/
gL, revealing a boot-like shape with a central bend like the HSV-2 gH/gL (Ciferri 
et al. 2015a). The overall shapes of an artificial dimer of HCMV gH/gL with the Fab 
domain of a neutralizing antibody MSL-109, the gH/gL/gO complex, and the gH/
gL/UL128/UL130/UL131A complex were also visualized. The averaged electron 
microscopic images of gH/gL/gO and gH/gL/UL128/UL130/UL131A show clear 
density for gO or ULs at the membrane-distal end of the gH/gL complex, extending 
the longitudinal axis of gH/gL (Fig. 11.3e and f). The artificial gH/gL dimer was 
formed at the membrane-distal end of the gH/gL via Cys144 of gL, and the same 
Cys144 is the key residue which forms disulfide bond with gO-Cys351 or UL128- 
Cys162. The shared binding site on gL explained for the mutual exclusion between 
gO and UL128/UL130/UL131A. This extending mode of gH/gL/gO and gH/gL/
UL128/UL130/UL131A is sharp contrast to the EBV gH/gL/gp42 of which gp42 
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confers affinity to the HLA. The complex structure of gH/gL/gp42 was analyzed by 
electron microscopy and crystallography (Sathiyamoorthy et  al. 2014, 2016). In 
contrast to the HCMV gH/gL/gO and gH/gL/ UL128/UL130/UL131A, EBV gp42 
binds to gH/gL at the side position against the longitudinal axis, and the interaction 
is exclusively with gH, not with gL (Fig. 11.3g). Thus, gH/gL of betaherpesvirus 
and that of gammaherpesvirus extend their machinery by different ways. Antibodies 
against HCMV UL128/UL130/UL131A strongly inhibit the infection to epithelial/
endothelial cells, and their binding sites were mapped on the three-dimensional 
density obtained by negative stain electron microscopy (Ciferri et al. 2015b).

11.6  Enzymes

11.6.1  Protease

All members of herpesvirus possess a serine protease to process the assembly pro-
tein precursor required for the capsid assembly. In HCMV, UL80 encodes 
708-amino-acid polypeptide, and the N-terminal region 1–256 corresponds to the 
protease, which is self-cleaved at the position 256–257. The crystal structure of 
HCMV protease has been determined in 1996 and published by four research groups 
at the same time (Chen et al. 1996; Qiu et al. 1996; Shieh et al. 1996; Tong et al. 
1996). The protease has orthogonally stacked three- and four-stranded β-sheets sur-
rounded by seven (or eight) a-helices (Fig. 11.4a), different from other serine prote-
ases such as chymotrypsin and subtilisin. The catalytic site of HCMV protease does 
not have the classical Ser-His-Asp catalytic triad, but a unique Ser-His-His catalytic 
triad. The key residues Ser132, His63, and His157 are conserved across all of the 
herpesvirus members. The protease forms a dimer and the interaction between 
monomers have indirect allosteric effect to the conformation of the catalytic sites, 
thus critical for the activity (Batra et al. 2001). Complex structures of HCMV pro-
tease and peptide mimic inhibitors have been also determined, giving a template for 
structure-based drug design (Khayat et al. 2003; Tong et al. 1998). HHV-6A U53 
corresponds to the HCMV UL80, and the protease domain has 39% sequence iden-
tity, with the conserved catalytic triad, Ser116, His46, and His135.

11.6.2  DNA Polymerase HCMV UL44

The DNA polymerase of HCMV consists of two factors which are encoded by 
UL54 (catalytic subunit) and UL44 (processivity factor). The processivity factor is 
loosely associated with the template DNA and works as a “sliding clamp,” enabling 
the catalytic subunit to slide on the template. The known sliding clamp includes the 
proliferating cell nuclear antigen (PCNA) of eukaryotic DNA polymerase δ and ε 
and HSV-1 UL42. The crystal structure of UL44 N-terminal region (1–290), 
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removing the unstructured C-terminal tail, has been determined (Appleton et  al. 
2004). The UL44 fold is comprised of two similar subdomains from 10–128 to 
143–270 with a twofold pseudosymmetry in a monomer (Fig. 11.4b). The overall 
fold is similar to those of HSV-1 UL42 and PCNA, whereas their oligomeric states 
are different. UL44 forms a C-clamp-shaped homodimer, while UL42 and PCNA 
exist as a monomer and trimer, respectively. It has been demonstrated that the 
dimeric form of UL44 is important for the DNA-binding activity. A crystal structure 
of UL44 complexed with the C-terminal peptide of the catalytic subunit UL54 has 
been also reported (Appleton et al. 2006), showing the linkage between the proces-
sivity factor and the catalytic subunit. The peptide binding site is similar to the 
HSV-1 U30 binding site of HSV-1 UL42, and the complex formation induces a 
wider opening of the C-clamp. The space corresponding to the interior of the “C” 
letter is expected to be the binding site of DNA (Komazin-Meredith et al. 2008). 
HCMV UL44 corresponds to HHV-6A U27, and the amino acid identity between 
UL44 and U27 at the 1–290 region is 41.3%. Residues involved in the dimer inter-
face are conserved in betaherpesviruses.

11.6.3  Terminase

Herpesvirus replicates the genome DNA by the means of the “rolling circle replica-
tion.” The concatemeric DNA is cleaved to the unit length by viral terminase and 
then translocated into viral procapsids. The terminase of HCMV is composed of 
UL89 (HHV-6A U66) and UL56 (HHV-6A U40). UL56 recognizes linearized 
DNA, while UL89 cleaves the DNA. UL89 consists of 674 amino acids and has two 
domains, that is, the N-terminal ATPase domain and the C-terminal nuclease domain. 

Fig. 11.4 Enzymes. (a) The crystal structure of HCMV protease (N-terminal region of UL80). 
The protease forms a dimer. The unique Ser-His-His catalytic triad composed of Ser132, His63, 
and His157 was shown. (b) The crystal structure of HCMV polymerase processivity factor (UL44). 
The UL44 forms a C-shaped dimer. The interior of the “C” letter is the DNA binding site and the 
back side contain the catalytic subunit (UL54) binding site. (c) The crystal structure of HCMV 
terminase nuclease domain, corresponding to the C-terminal domain of UL89 (UL89-C). The 
essential Mn2+ ions at the catalytic site are shown. The original data used for these illustrations are 
as follows: (a) 1NJU (Khayat et al. 2003); (b) 1T6L (Appleton et al. 2004); (c) 3N4Q (Nadal et al. 
2010)
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The crystal structure of HCMV UL89 C-terminal nuclease domain (419–674, 
UL89-C) has been determined (Nadal et al. 2010). UL89-C has an eight stranded 
parallel-antiparallel mixed β-sheet at the center, sandwiched by α helices (Fig. 11.4c). 
The protein fold belongs to the RNase H-like superfamily of nuclease and polynu-
cleotidyl transferase, which includes the human immunodeficiency virus (HIV) 
integrase. The active site has a negative charge electrostatic potential and contains 
two metal binding sites. The two Mn2+ ions bound at the catalytic site are critical for 
the catalytic activity. As expected from the fact that the UL89-C has a substantial 
similarity to the HIV integrase, a HIV integrase inhibitor raltegravir can inhibit the 
UL89-C nuclease activity, while another integrase inhibitor elvitegravir has no 
effect.

11.7  Immune-Modulating Factors

11.7.1  Chemokine Receptor US28

Chemokines are the ligands of G-protein coupled receptors (GPCRs) and trigger a 
variety of cell responses, leading to immune cell migration. HCMV encodes US28, 
a class A GPCR homolog. US28 receives a variety of human chemokines and inter-
nalized them, thereby serve as a scavenger of inflammatory chemokines. Recently, 
crystal structures of US28 liganded with the chemokine domain of a chemokine 
CX3CL1 (fractalkine) have been reported (Burg et al. 2015). US28 has a helix bun-
dle composed of seven transmembrane helices, with an extra C-terminal α helix at 
the intracellular side (Fig.  11.5a). The CX3CL1 binds to the cleft formed at the 
extracellular regions of US28, deeply inserting the N-terminal region. Structural 
analysis suggested that US28 takes an active conformation in complex with the 
CX3CL1. However, US28 lacks a key residue to stabilize the inactive conformation 
and has intrinsic structural features to lock the active conformation; therefore US28 
is considered to be constitutively active independent of the ligand.

11.7.2  Immediate Early Protein IE1

Cytomegaloviruses antagonize the function of promyelocytic leukemia protein 
(PML) and nuclear bodies (NB) by an immediate early protein IE1, and interferes 
their promotion of intrinsic immunity. HCMV IE1 is encoded at UL122, and con-
sists of 491 amino acids. Structural analysis of IE1 has been done for the core region 
at the region 20–382 (IE1core) because the N-terminal and C-terminal regions are 
predicted to be intrinsically disordered (Scherer et  al. 2014; Klingl et  al. 2015). 
IE1core protein derived from rhesus cytomegalovirus was crystalized and the struc-
ture was determined. The IE1core consists of 11 α helices and adopts an elongated 
fold with three subdomains, likened to a femur (Fig. 11.5b). Although the overall 
structure is unique, structural analysis revealed that the coiled-coil part of the 
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IE1core resembles a TRIM (tripartite motif) family members, TRIM25, and that is 
also predicted in the PML (PML is also known as TRIM19). IE1core crystal struc-
ture forms a homodimer with extensive interactions, and it was implied that IE1 
interact with PML (TRIM19) by forming an intermolecular coiled-coil interaction. 
HHV-6A has a positional homolog U90; however, there is no notable sequence 
homology.

11.7.3  Cytokine Mimic cmvIL-10

HCMV encodes a homolog of the pleotropic human cytokine IL-10 (hIL-10) to 
negatively regulate the host immunity. The hIL-10 act on immune cells to block the 
production of proinflammatory cytokines. HCMV U111A encodes cytomegalovirus 

Fig. 11.5 Immune-modulating factors. (a) The crystal structure of HCMV US28/CX3CL1 com-
plex. The nanobody included in the crystal structure is not shown for clarity. The intracellular 
domain has an active-form conformation. (b) The crystal structure of rhesus cytomegalovirus IE1 
core domain (IE1core). The IE1core has elongated helix coils and forms a dimer. The three subdo-
mains are colored separately. (c) The crystal structure of HCMV IL-10 homolog (cmvIL-10) with 
the receptor IL-10R1. As same as the human IL-10, cmvIL-10 form an intertwisted dimer, although 
the domain angle is opened. (d) The crystal structure of HCMV UL141/TRAIL-R2 complex. The 
UL141 has a V-type Ig fold with a C-terminal extension, forming a dimer. Two TRAIL-R2 mole-
cules are bound on the dimer. (e) The crystal structure of HCMV US2 as a complex with the target 
molecule HLA-A2/β2m/viral peptide. The binding site of US2 is different from the other HLA-A2 
interacting molecules indicated by arrows. (f) The crystal structure of HCMV UL18. UL18 forms 
a complex with β2m and a peptide just like as MHC class I molecules. The structure was deter-
mined as a complex with the ligand LIR-1. (g) The crystal structure of HCMV UL16 as a complex 
with the plat form domain of MICB (MICBpf). UL16 has a V-type Ig fold with an N-terminal 
extension named “plug.” The UL16 binding site on the MICB is overlapping with the binding site 
of the host receptor NKG2D. The original data used for these illustrations are as follows: (a) 4XT1 
(Burg et  al. 2015); (b) 4WID (Scherer et  al. 2014); (c) 1LQS (Jones et  al. 2002); (d) 4I9X 
(Nemcovicova et al. 2013); (e) 1IM3 (Gewurz et al. 2001); (f) 3D2U (Yang and Bjorkman 2008); 
(g) 2WY3 (Muller et al. 2010)
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IL-10 (cmvIL-10) and thereby exploits the immune-suppressive system. The 
cmvIL-10 has relatively low sequence identity, 27%, with hIL-10, nevertheless 
cmvIL-10 can bind to the cell receptor IL-10R1 and IL-10R2 with high affinity 
comparable to hIL-10. A crystal structure of the complex of cmvIL-10 and soluble 
IL-10R1 (sIL-10R1) has been determined at 2.7 Å resolution (Jones et al. 2002). 
cmvIL-10 forms an intertwined homodimer (Fig. 11.5c). The dimer has two sym-
metrical domains which consist of five helices, three come from the N-terminal 
region of one monomer, and two from the C-terminal region of the other monomer. 
The dimeric fold is similar to that of hIL-10; however, the inter-domain angle is 
wider in cmvIL-10 (130°), compared to hIL-10 (90°). The interaction mode to sIL- 
10R1 is almost same as that of hIL-10, and the interaction hot spot is conserved. 
Although roseolovirus does not have the corresponding factor to cmvIL-10, the 
gammaherpesvirus EBV has an IL-10 homolog, ebvIL-10. Unlike cmvIL-10, 
evbIL-10 has extremely high sequence identity, 83%, with hIL-10; however, the 
affinity to IL-10 receptors is ~1000-fold less.

11.7.4  UL141

HCMV infection leads to a host response of tumor necrosis factor receptor (TNFR) 
superfamily to induce apoptosis. HCMV blocks such signaling pathway by an 
encoded factor UL141 which interacts with TRAIL (TNF-related apoptosis induc-
ing ligand) death receptor of T-cell. UL141 can bind to TRAIL-R1 and R2 and then 
inhibit their surface expression. A complex structure of UL141 and TRAIL-R2 and 
an unliganded UL141 structure have been solved by crystallography (Nemcovicova 
et  al. 2013; Nemcovicova and Zajonc 2014). UL141 has an N-terminal V-type 
Ig-like fold, comparable to the HCMV UL16 described below (Sect. 11.7.7), with 
additional C-terminal β-sheet domain (Fig. 11.5d). The UL141 exhibited a dimeric 
form in the crystal, and each monomer binds one TRAIL-R2 molecule. In contrast 
to the trimeric architecture of TRAIL and TRAIL-R2 complex structure, the  UL141/
TRAIL-R2 exhibited a dimeric architecture, resulting in a large change in the rela-
tive arrangement of TRAIL-R2 molecules.

11.7.5  Immunoevasin US2

HCMV US2 encodes a 199-amino-acid protein, which works as an immunoevasin. 
US2 captures newly synthesized major histocompatibility complex (MHC) class I 
molecules, specifically HLA-A and HLA-B locus products, promotes degradation 
by translocating them to the cellular proteasome, and thereby US2 prevents antigen 
presentation. Crystal structure of US2 endoplasmic reticulum (ER)-luminal domain 
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(15–140) has been determined as a complex with a MHC class I molecule HLA-A2 
and a viral peptide (Gewurz et al. 2001). US2 has a fold with two-layered β-sheets, 
which is an Ig-like fold similar to the H subtype of Ig superfamily (Fig.11.5e). 
The US2 use one side of its β-sheet surface to bind to the HLA-A2. The US2 binding 
site on the HLA-A2 includes a HLA locus divergent site, rationalizing the target 
specificity of US2. The location of the US2 binding site is different from those of 
other MHC class I ligands, such as the B7 T-cell receptor, CD8αα, KIR natural 
killer cell receptor (Kir2DL1), and lectin-like natural killer receptor Ly49A. From 
the sequence homology among US2 and the other US6 and US11 gene families, 
similar Ig-like folds are predicted for US3, US11, US9, US8, US7, US10, and US6 
proteins of HCMV.

Murine cytomegalovirus encodes m04 which also interact with the newly syn-
thesized MHC class I molecule; however, it does not bring MHC class I molecule to 
proteasome or lysosome, but escorts it to the cell surface. The crystal structure and 
solution structure of murine cytomegalovirus m04 have been determined (Sgourakis 
et al. 2014; Berry et al. 2014), revealing the Ig-like fold similar to US2.

11.7.6  MHC Class I Homolog UL18

HCMV encodes MHC class I-like molecules UL18 and UL142 to regulate host 
immunity. Among them, structural analysis of UL18 has been published. UL18 is a 
viral homolog of MHC class I molecule with ~25% sequence identity. UL18 is 
expressed as a highly glycosylated transmembrane protein of 348 amino acids and 
forms a complex with the class I MHC light chain, β2-microglobulin (β2m), like the 
host MHC class I. UL18 binds to an inhibitory receptor, leukocyte immunoglobulin- 
like receptor (LIR-1), on NK cells or T-cells with higher affinity than the host MHC 
class I molecules do. The sequence similarity enabled to build a complex model 
with LIR-1 based on the LIR-1/HLA-1 complex structure to predict the interaction 
mode (Wagner et  al. 2007), and the actual crystal structure of UL18/LIR-1 with 
β2m has been determined at 2.2 Å resolution (Yang and Bjorkman 2008). The UL18 
structure exhibited the α1α2 platform domain and the α3 Ig-domain, which are 
remarkably similar to those of MHC class I molecule HLA-A2. The bound LIR-1 
structure is almost same, although the domain angle of LIR-1 between domain 1 
and domain 2 is slightly opened. Increased interaction was observed at one of the 
interaction sites, consistent with the higher affinity than MHC class I. The interac-
tion mode also explained for the different affinity with LIR-1 and LIR-2 in struc-
tural aspect. As it is a MHC class I homolog, UL18 is targeted by other MHC-I 
receptors including the HCMV US2 described above. However, the glycosylation 
sites on UL18 indicated that their binding sites are extensively covered by glycans; 
thereby UL18 can escape from their recognition.
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Murine cytomegalovirus also has MHC class I homologs, and the crystal struc-
tures of m144 (Natarajan et al. 2006), m157 (Adams et al. 2007) (complex with the 
Ly49 natural killer cell receptor), m153 (Mans et al. 2007), and m152 (Wang et al. 
2012) (complex with the retinoic acid early inducible-1, RAE1) have been 
published.

11.7.7  UL16

HCMV downregulates MHC class I expression to prevent antigen presentation to 
T-cells, but it would facilitate the natural killer (NK) cell surveillance, because NK 
cells sense the MHC class I molecules on cells. A major activating receptor of NK 
cells and cytotoxic T-cells against stressed cells is the natural killer group 2, mem-
ber D (NKG2D). To avoid the activation of NKG2D, HCMV expresses UL16 to 
inactivate a portion of the NKG2D ligands, namely, MIC (MHC class I chain related 
molecule) and ULBP (UL16-binding protein) families. UL16 is a 50 kDa type I 
transmembrane protein, and specifically recognizes MICB, ULBP1, and ULBP2. 
The molecular mechanism has been revealed by structural analysis. UL16 was co- 
crystallized with the α1α2 platform domain of MICB (MICBpf) which is responsi-
ble to the interaction, and the complex structure has been determined at 1.8  Å 
resolution (Muller et al. 2010). UL16 has a modified version of variable (V-type) 
Ig-like fold with an additional N-terminal “plug.” UL16 binds to MICBpf via its 
non-glycosylated hydrophobic surface on its β-sheet, and the interface contains a lot 
of polar and nonpolar interactions, in agreement with the high affinity. Although the 
structure of UL16 is not similar to NKG2D, the interaction site is overlapping with 
the NKG2D binding site on the MICB, predicted from the known MICA/NKG2D 
complex.

11.8  Summary

Structural analysis of viral proteins unveiled their structural properties such as pro-
tein fold, oligomeric states, functional sites, and interaction modes with their target 
molecules. The structures are useful to predict the molecular functions of the viral 
proteins as well as to interpret the accumulated knowledge from virological assays. 
The structural analyses of betaherpesvirus-encoded proteins are greatly advanced in 
recent years; however, there still remain a lot of viral factors to be analyzed, espe-
cially the complexes of gH/gL and its accessory factors which determine the cell 
tropism of the viruses. In addition to the advance in the current X-ray crystallogra-
phy, the novel approach using X-ray free-electron laser (XFEL) and the surprising 
improvement in the electron cryomicroscopy/cryotomography reaching atomic 
resolution will facilitate the structural analysis of betaherpesvirus-encoded 
proteins.

M. Nishimura and Y. Mori
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Chapter 12
Betaherpesvirus Complications 
and Management During Hematopoietic 
Stem Cell Transplantation

Tetsushi Yoshikawa

Abstract Two of the four betaherpesviruses, Cytomegalovirus (CMV) and human 
herpesvirus 6B (HHV-6B), play an important role in opportunistic infections in 
hematopoietic stem cell transplant (HSCT) recipients. These viruses are ubiquitous 
in humans and can latently infect mononuclear lymphocytes, complicating the diag-
nosis of the diseases they cause. Although the detection of viral DNA in a patient’s 
peripheral blood by real-time PCR is widely used for monitoring viral infection, it 
is insufficient for the diagnosis of virus-associated disease. Theoretically, end-organ 
disease should be confirmed by detecting either viral antigen or significant amounts 
of viral DNA in a tissue sample obtained from the involved organ; however, this is 
often difficult to perform in clinical practice. The frequency of CMV-associated 
diseases has decreased gradually as a result of the introduction of preemptive or 
prophylactic treatments; however, CMV and HHV-6B infections remain a major 
problem in HSCT recipients. Measurement of viral DNA load in peripheral blood 
or plasma using real-time PCR is commonly used for monitoring these infections. 
Additionally, recent data suggest that an assessment of host immune response, par-
ticularly cytotoxic T-cell response, may be a reliable tool for predicting these viral 
infections. The antiviral drugs ganciclovir and foscarnet are used as first-line treat-
ments; however, it is well known that these drugs have side effects, such as bone 
marrow suppression and nephrotoxicity. Further research is required to develop 
less-toxic antiviral drugs.
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12.1  Introduction

Viral reactivation in an immunocompromised host is an important clinical charac-
teristic of human herpesviruses. In particular, four betaherpesviruses are associated 
with opportunistic infections in immunocompromised patients. Immunosuppression 
in hematopoietic stem cell transplant (HSCT) recipients is typically greater than in 
solid organ transplant recipients. This is due to the administration of chemotherapy 
and radiation therapy as a conditioning regimen in addition to standard immunosup-
pressive therapies in HSCT patients. Accordingly, HSCT recipients are considered 
to be at high risk for betaherpesvirus infection. Recipients who receive cord blood 
mononuclear cell transplants and allogeneic bone marrow transplants are at particu-
larly high risk for these viral infections. Human leukocyte antigen (HLA) matching 
is also associated with an increased risk of herpesvirus infections after 
HSCT. Therefore, these high-risk recipients should be monitored carefully for these 
viral infections (Ljungman et al. 2006, 2011).

Host immune responses, particularly a CMV-specific T-cell response, are consid-
ered to play an important role in controlling CMV infection after HSCT (Li et al. 
1994; Gimenez et al. 2014b; Avetisyan et al. 2007; Aubert et al. 2001). In addition 
to monitoring viral DNA load or the presence of virus-specific antigen in peripheral 
blood or plasma, several interferon-γ releasing assays have proven useful for the 
identification of CMV infection in HSCT recipients (Abate et al. 2012; Lee et al. 
2017; Nesher et al. 2016).

Four human betaherpesviruses have been discovered to date: Cytomegalovirus 
(CMV), human herpesvirus (HHV)-6A, HHV-6B, and HHV-7. All betaherpesvi-
ruses have similar genome sequences, biological characteristics, and clinical mani-
festations. Three betaherpesviruses – CMV, HHV-6B (Yoshikawa et al. 1989), and 
HHV-7 (Yoshikawa et al. 1993) – are ubiquitous in humans, and most children con-
tract primary viral infections during infancy and early childhood. Therefore, most 
adult HSCT recipients are considered to be seropositive for these three viruses. 
However, in developed countries, almost half of adult recipients may be seronega-
tive for CMV. These seroepidemiological data suggest that CMV may occur as a 
primary infection in adult HSCT patients, whereas HHV-6B and HHV-7 generally 
occur as a reactivation or reinfection. HHV-6A infection is rare in Japan, Europe, 
and the United States, so infection with this betaherpesvirus is not a significant 
problem after HSCT in those regions.

Primary HHV-6B and HHV-7 infections can cause exanthema subitum in infants 
and young children. This is a benign, self-limiting, febrile illness (Asano et  al. 
1994). Although various complications such as febrile seizure (Suga et al. 2000; 
Epstein et al. 2012), encephalitis (Suga et al. 1993), hepatitis (Asano et al. 1990), 
rhabdomyolysis (Fujino et  al. 2012), and hemophagocytic syndrome (Portolani 
et  al. 1997) have been demonstrated, incidence of severe complication is low. 
Primary CMV infection in children is generally asymptomatic but in adults can 
cause an infectious mononucleosis-like illness. Congenital CMV infection may lead 
to neurological damage, hearing impairment, retinitis, and hepatitis. In contrast to 
healthy individuals, CMV infection in HSCT patients results in a range of clinical 
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manifestations, potentially including fatality. Therefore, management of CMV 
infection is an important issue for improving prognosis of HSCT recipients 
(Ljungman et  al. 2008). Similar clinical manifestations have been observed in 
HHV-6B and HHV-7 infections.

12.2  Clinical Manifestations of CMV Infection

CMV infection is associated with multi-organ diseases in HSCT recipients during 
the posttransplant period. In contrast to HHV-6B and HHV-7, some of adult indi-
viduals are seronegative to CMV.  It has been demonstrated that the CMV- 
seronegative recipients who received graft from seropositive donor had high 
mortality rate (Nichols et  al. 2002). Recent studies have demonstrated that pre- 
transplant CMV serostatus remains the most important determinant of CMV infec-
tion after HSCT (Ljungman et al. 2014).

12.2.1  Pneumonia

Pneumonia is the most significant clinical manifestation of CMV infection in HSCT 
recipients (Konoplev et al. 2001). As no specific clinical symptoms of pneumonia 
are observed in these patients, virological examination as described below is 
required for diagnosis of CMV pneumonia. Specifically, detection of viral DNA or 
antigen in a lung biopsy or bronchoalveolar lavage sample is required to confirm 
CMV pneumonia. PCR-based detection of CMV DNA from bronchoalveolar lavage 
samples is highly sensitive, with a negative result having a high negative predictive 
value (Cathomas et al. 1993). Therefore this examination is useful for contradiction 
of CMV pneumonia.

Mortality of CMV pneumonia has been reported to be high but has decreased 
after the establishment of prophylactic and preemptive treatments for CMV infec-
tion. Recent analysis of data from 442 HSCT recipients between 1986 and 2011 
(before and after the introduction of preemptive antiviral treatment) demonstrated 
that the administration of preemptive antiviral treatments lowered the incidence of 
CMV pneumonia in HSCT patients to a greater degree than the administration of 
immunoglobulin (Erard et al. 2015).

12.2.2  Gastrointestinal Disease

CMV gastroenteritis occurs in approximately 2% of HSCT recipients within 1 to 2 
years after transplant (van Burik et al. 2001). As in CMV pneumonia, neither spe-
cific symptoms nor macroscopic findings are observable in CMV gastroenteritis, 
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making it difficult to differentiate between CMV gastrointestinal disease and gas-
troenteritis caused by other etiologies, including graft versus host disease (GVHD) 
(Bhutani et al. 2015; He et al. 2008). Detection of viral antigen or DNA in periph-
eral blood is insufficient for diagnosis of CMV-induced gastroenteritis; it is neces-
sary to confirm active viral infection in a tissue sample from the ulcerative regions 
using immunohistochemical analysis or in situ hybridization. Alternatively, real- 
time PCR analysis may be used to compare copy numbers of CMV DNA between 
tissue obtained from the ulcerative region and control tissue. PCR detection of 
CMV DNA in stool samples is not recommended due to the low sensitivity of this 
method (Sun et al. 2015).

12.2.3  Retinitis

CMV retinitis generally occurs later in the post-HSCT period than other CMV- 
associated diseases, and an incidence of the disease has increased gradually (Eid 
et  al. 2008; Song et  al. 2008). Common symptoms of the disease are decreased 
visual acuity and blurred vision, which are not specific to CMV retinitis. The retini-
tis occurs bilaterally in approximately 60% of the patients (Crippa et  al. 2001). 
Early diagnosis and treatment are essential for preventing visual loss. Lymphopenia 
is a risk factor for developing CMV retinitis (Jeon et al. 2012). A recent study ana-
lyzing pediatric HSCT recipients demonstrated that CMV retinitis occurred as a 
late-onset disease (median 199 days after HSCT) in comparison to other types of 
CMV diseases, suggesting that this complication may be induced by immune recon-
stitution (Hiwarkar et al. 2014). Quantitation of CMV DNA in aqueous humor by 
real-time PCR can be used to diagnose CMV retinitis.

12.2.4  Others

CMV infection may be associated with other clinical manifestations such as hepati-
tis, encephalitis, nephritis, and myocarditis. In order to confirm a correlation 
between those manifestations and CMV infection, detection of viral antigen and/or 
DNA in an affected tissue sample by immunohistochemical analysis and in situ 
hybridization analysis is necessary. This analysis should rule out the possibility of 
other etiological agents. Recent studies have demonstrated that CMV infection may 
prevent relapse of myeloid malignancies after HSCT in adult transplant recipients 
(Takenaka et al. 2015; Green et al. 2013; Elmaagacli et al. 2011). Although a similar 
protective effect against relapse of underlying diseases by CMV infection was 
observed in pediatric acute leukemia patients, CMV reactivation was also associ-
ated with non-relapse mortality caused by opportunistic infection after GVHD 
(Inagaki et al. 2016). Therefore, overall patient mortality was not always improved. 
A better understanding of the mechanisms by which CMV infection may inhibit 
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disease relapse, combined with the development of better intervention protocols to 
prevent CMV infection, should contribute to a decrease in both relapse and non- 
relapse patient mortality.

After the introduction of CMV prophylactic and preemptive treatments, the inci-
dence of CMV diseases has gradually declined. However, CMV disease occurring 
relatively late post-HSCT has become a major problem (Einsele et al. 2000; Wolf 
et al. 2003; Boeckh et al. 2003).

12.3  Clinical Manifestations of HHV-6B Infection

As described above, HHV-6 is divided into two different species: HHV-6A and 
HHV-6B. There is evidence that the neurovirulence of HHV-6A is stronger than 
HHV-6B (Donati et al. 2005), and a fatal case of HHV-6A encephalitis has been 
reported in HSCT recipients (de Labarthe et al. 2005). Because seroprevalence of 
HHV-6A is considered to be low in developed countries, morbidity and mortality 
associated with HHV-6A infection are likely to be correspondingly low in these 
countries.

An association between HHV-6 infection and pneumonitis has been examined 
extensively in HSCT recipients, because this virus has a high degree of similarity to 
CMV. Subsequently, many clinical manifestations, including interstitial pneumoni-
tis, have been proposed as HHV-6-associated manifestations in HSCT recipients 
(Carrigan and Knox 1994; Drobyski et al. 1993, Kadakia et al. 1996; Belford et al. 
2004; Asano et al. 1991; Yoshikawa et al. 1991, 2002b). One of the strongest cor-
relations between HHV-6B infection and clinical manifestations is posttransplant 
acute limbic encephalitis (PALE).

12.3.1  Encephalitis

HHV-6B is well known to exhibit neurovirulence. The most significant complica-
tions at the time of primary HHV-6B infection (exanthema subitum) are central 
nervous system manifestations such as febrile seizure (Suga et al. 2000) and enceph-
alitis (Suga et al. 1993; Kawamura et al. 2013). Additionally, it has been demon-
strated that HHV-6B can infect glial cells or neuronal cells and cause cell damage 
either directly or indirectly (Yoshikawa et al. 2002a). HHV-6B encephalitis gener-
ally occurs between 2 and 4 weeks after transplant. The most striking characteristics 
of HHV-6B encephalitis are the clinical features of the disease, which demonstrate 
acute limbic encephalitis (Visser et al. 2005; Seeley et al. 2007; Zerr et al. 2011). 
Thus, HHV-6B is considered to be the pathogen most closely associated with PALE 
(Ogata et  al. 2010, 2013b; Seeley et  al. 2007). The incidence of posttransplant 
HHV-6 encephalitis has been estimated at about 1–3% in HSCT recipients. Cord 
blood transplant recipients are at high risk for this complication (Roback 2002). The 
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majority of HHV-6B infection-associated PALE cases appear in adult HSCT recipi-
ents; however, the reason for this is unclear. One child case with posttransplant 
HHV-6 encephalitis demonstrated posterior reversible encephalopathy syndrome 
(Kawamura et al. 2012). It has been suggested that HHV-6 can spread to the limbic 
area via the olfactory glove route (Harberts et al. 2011).

The characteristic symptoms are delirium and memory loss in combination with 
convulsion, which are different from the symptoms observed in HHV-6 encephalitis 
patients at the time of primary viral infection. Additionally, the patient’s cerebrospi-
nal fluid demonstrates generally mild pleocytosis and elevation of protein and con-
tains measurably higher amounts of HHV-6 DNA than an HHV-6 encephalitis 
patient at the time of primary viral infection (Kawamura et al. 2011). These findings 
suggest that pathogenesis of HHV-6B encephalitis may be different in a patient with 
a primary infection and a patient with viral reactivation after HSCT. As suggested, 
a direct invasion of HHV-6B into brain tissue may play an important role in the 
pathogenesis of posttransplant HHV-6B encephalitis, supporting the idea that 
administration of antiviral drugs is an important component of post-HSCT treat-
ment. Neuroimaging analysis, in particular brain MRI, can be useful in the diagno-
sis of PALE. HHV-6 encephalitis typically shows an MRI signature of hyperintense 
lesions on T2-weighted, fluid-attenuated inversion recovery imaging and diffusion- 
weighted imaging of bilateral medial temporal lobes, primarily affecting the hip-
pocampus and amygdala (Seeley et al. 2007). The high morbidity and mortality of 
this complication are significant problems from a clinical standpoint.

12.3.2  GVHD and GVHD-Like Skin Rash

As described above, HHV-6 infection frequently occurs 2–4 weeks after transplant, 
which correspond to the timing of engraftment and acute GVHD. Therefore, several 
investigators have demonstrated an association between HHV-6 infection and acute 
GVHD (Wang et al. 2008; Jeulin et al. 2013; Brands-Nijenhuis et al. 2011; Aoki 
et al. 2015; Wilborn et al. 1994) and acute GVHD-like skin rash (Asano et al. 1991; 
Yoshikawa et al. 1991, 2001, 2002b). Pathological analysis also supports the cor-
relation between HHV-6 and acute GVHD (Appleton et al. 1995). It has been dem-
onstrated that HHV-6 infection induces proinflammatory cytokines in HSCT 
recipients, which may play an important role in the pathogenesis of acute GVHD 
(Fujita et al. 2008).

12.3.3  Others

It has been demonstrated that HHV-6 infection increases the risk of other opportu-
nistic infections, including CMV and fungal infections (Aoki et al. 2015), and non- 
relapse mortality (Zerr et al. 2012). An association between HHV-6 infection and an 
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increase in patient mortality has also been demonstrated in solid organ transplant 
recipients. Because HHV-6 is a lymphotropic virus, it has been suggested that viral 
infection can interfere with host immunity. HHV-6 infection may suppress the host 
immune response in HSCT recipient, which could result in an increase in the fre-
quency of opportunistic infections.

12.4  Clinical Manifestations of HHV-7 Infection

Because HHV-7 has many similarities to HHV-6 and CMV, the possible role of 
HHV-7 infection in HSCT recipients has been examined by several groups. However, 
precise clinical manifestations of HHV-7 infection after transplant remain unclear. 
HHV-7 has been demonstrated as one of the exacerbating factors of CMV disease 
(Chapenko et al. 2000), and several cases of HHV-7 encephalitis have been reported 
in HSCT recipients (Yoshikawa et al. 2003; Ward et al. 2002). Like HHV-6, HHV-7 
is a ubiquitous virus in humans that is excreted in the saliva of most seropositive 
adults. HHV-7 DNA has been detected by PCR in almost half of seropositive healthy 
adults, which makes it difficult to assess active HHV-7 infection in HSCT recipients 
based on PCR analysis (Boutolleau et al. 2003).

12.5  Diagnosis

12.5.1  Viral Isolation and Serological Assays

Betaherpesviruses can latently infect various cell types, including mononuclear 
cells. This makes it necessary to distinguish between active and latent viral infec-
tion. Although viral isolation from a clinical specimen and serological assay are 
reliable indicators of active viral infection for CMV, HHV-6B, and HHV-7, the slow 
growth of these viruses in  vitro is a major obstacle to their rapid diagnosis. 
Additionally, cord blood mononuclear cells are preferable for HHV-6B isolation, 
which can be problematic to perform in hospital laboratory. The shell vial assay that 
detects early antigen fluorescent foci after rapid culture of CMV is not sensitive 
enough for monitoring peripheral blood; however, this assay is useful for the diag-
nosis of CMV pneumonitis by detection of CMV from bronchoalveolar lavage fluid 
(Cathomas et al. 1993; Crawford et al. 1988).

Similar to viral isolation, a serological assay is not appropriate for rapid diagno-
sis, and cross-reaction between HHV-6B and HHV-7 antibodies interferes with the 
correct diagnosis. Additionally, an impaired host immune response due to immuno-
suppressive treatments may prevent a robust antibody response in HSCT recipients. 
Pre-transplant donor and recipient serostatus of CMV and HHV-6 is important for 
the evaluation of risk of viral infection after transplant (Broers et al. 2000).
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12.5.2  Antigenemia Assay

Antigenemia assays have been used for diagnosis of CMV and HHV-6B infection. 
To diagnose CMV, a monoclonal antibody against the CMV tegument protein 
(pp65) is generally used. Although detection of viral antigens in peripheral blood is 
a good indication of active viral infection for these two viruses, assay sensitivity 
may be insufficient, and counting for antigen-positive cells is cumbersome in com-
parison to molecular diagnostic methods. In contrast to the CMV assay, the HHV-6 
antigenemia assay has not been widely used but is considered to be reliable mainly 
in solid organ transplant recipients (Lautenschlager et al. 2002).

12.5.3  Molecular Diagnostic Assays

Real-time polymerase chain reaction (PCR) is the most sensitive method for detect-
ing CMV and HHV-6 and is the most widely used method. As described above, 
these viruses can latently infect peripheral blood mononuclear cells (Kondo et al. 
1991; Suga et al. 1998). Therefore, quantitative analysis of viral DNA in peripheral 
blood samples is necessary to distinguish between active and latent viral infection. 
Multiplex real-time PCR targeting CMV, HHV-6, and Epstein-Barr virus – an addi-
tional significant pathogen for opportunistic infections – is very useful for monitor-
ing viral infections simultaneously (Wada et  al. 2007). In addition to peripheral 
blood or serum samples, bronchoalveolar lavage and cerebrospinal fluid can be ana-
lyzed using this method, making it a reliable method for the diagnosis of pneumonia 
and encephalitis. Thus, real-time PCR is an important tool for informing preemptive 
treatment. A major problem of this method has been the determination and stan-
dardization of a threshold level for discrimination of active viral infection from 
latency (Gimenez et al. 2014a, b; Lilleri et al. 2007; Griffiths et al. 2016; Emery 
et al. 2000; Boeckh et al. 2004). Various types of molecular diagnostic methods, 
sampling schedules, clinical specimens, and cutoff copy numbers are used in sev-
eral different transplant units in Spain (Solano et al. 2015). In CMV infection, it is 
recommended that a calibration of copy numbers determined by in-house real-time 
PCR should be performed according to the World Health Organization International 
Standard (Fryer et al. 2016). Recent data demonstrates that a cutoff level of 500 
international units of CMV DNA per mL of bronchoalveolar lavage fluid is reliable 
for differentiation between CMV pneumonia and pulmonary shedding without 
CMV pneumonia (Boeckh et al. 2017).

Similar to CMV, HHV-6 real-time PCR has been widely used for monitoring 
active HHV-6 infection in HSCT recipients. Species-specific (HHV-6A and 
HHV-6B) real-time PCR is recommended. Because HHV-6 can latently infect 
mononuclear lymphocytes, if peripheral blood is used as the clinical specimen, the 
kinetics of viral load should be monitored to evaluate active viral infection. It may 
be difficult to determine a cutoff level for HHV-6 DNA to discriminate active viral 
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infection from latency, because differences in assay systems and tested samples 
may influence cutoff levels. An international collaborative study is now underway 
to determine international units for HHV-6 DNA load.

A potential diagnostic pitfall of real-time PCR is chromosomally integrated 
HHV-6 (ciHHV-6). A ciHHV-6 subject has at least one copy of HHV-6 DNA in 
every cell. This can result in the persistent detection of unusually high copy num-
bers of viral DNA in peripheral blood and plasma, potentially leading to the misdi-
agnosis of active HHV-6 infection and unnecessary antiviral drug administration 
(Clark and Ward 2008).

Monitoring of viral mRNA is another strategy for diagnosis of active viral infec-
tion. Although viral DNAs are persistently detected in latently infected cells such as 
peripheral blood mononuclear cells, viral mRNAs are generally expressed only dur-
ing active viral replication. Several real-time RT-PCR assays for the detection of 
either CMV (Hebart et al. 2011; Gerna et al. 2003) or HHV-6 mRNAs have been 
developed and demonstrated to be reliable for the diagnosis of active viral infection 
(Pradeau et al. 2006; Ihira et al. 2012).

12.5.4  The Importance of Pathological Analysis

Both the evidence for active viral infection and confirmation of end-organ disease 
caused by CMV infection are required for the diagnosis of (what we termed) CMV 
disease. Identification of viral antigen or inclusion bodies in tissue samples obtained 
from the involved organ on the basis of pathological analysis is the gold standard for 
diagnosis of end-organ disease due to CMV infection. However, biopsy is not 
always a feasible option for HSCT recipients.

12.5.5  Caution for Chromosomally Integrated HHV-6

Primary HHV-6B infection typically occurs in infancy and causes exanthema subi-
tum, a common febrile exanthematous disease. Although horizontal transmission, in 
particular from parent to child, of HHV-6 is considered to be the main route of viral 
infection, it has been demonstrated that HHV-6 was genetically transmitted from 
parent to child as an inherited chromosomally integrated human herpesvirus 6 (ici-
HHV-6) (Kaufer and Flamand 2014). As seen in individuals latently infected with 
HHV-6B after primary viral infection, it has been suggested that viral reactivation 
from integrated HHV-6 genome also occurs in immunocompromised patients (Endo 
et  al. 2014; Sedlak et  al. 2016) and pregnant women (Hall et  al. 2010). Certain 
chemical compounds appear to be able to induce viral reactivation from ciHHV-6 
cells in vitro.

12 Betaherpesvirus Complications and Management During Hematopoietic Stem Cell…



260

ciHHV-6 individuals demonstrate extremely high copy numbers of viral DNA, 
generally over 5.5 log10 copies/mL of whole blood. Transient elevation of HHV-6B 
DNA load in serum occurs upon reactivation of a primary HHV-6B infection. These 
high viral loads can lead to the misdiagnosis of an active HHV-6 infection, resulting 
in the unnecessary administration of antiviral drugs (Clark and Ward 2008; Hubacek 
et al. 2009). The kinetics of HHV-6 DNA loads after transplant are different between 
a ciHHV-6 donor and ciHHV-6 recipient (Jeulin et al. 2009; Miura et al. 2015). If 
the donor is ciHHV-6, asymptomatic elevation of HHV-6 DNA corresponding to the 
timing of donor engraftment is observed. These elevated viral levels will not respond 
to antiviral treatments. Therefore, if a physician observes extremely high copy num-
bers of HHV-6 DNA in clinical specimens from HSCT recipients, measurement of 
HHV-6 DNA load in hair follicle or buccal swab samples should be carried out to 
exclude ciHHV-6.

12.6  Treatment

12.6.1  General Considerations for Prevention of Viral 
Infection

CMV serostatus of both donor and recipient is important for evaluating the risk of 
CMV diseases after HSCT. Blood products obtained from seronegative individuals 
should be used for CMV-seronegative recipients for the prevention of primary CMV 
infections via blood products (Nichols et  al. 2003). Where available, a CMV- 
seronegative donor is advised; however because the selection of donor is affected by 
various other factors such as HLA-matching, it may be difficult to identify a CMV- 
seronegative donor. Although the serostatus of HHV-6 and HHV-7 should be tested 
in both the recipient and donor, most individuals older than 1 year are considered to 
be seropositive for these two viruses.

Although donor CMV serostatus requirements for CMV-seropositive recipients 
have been less well characterized, a recent large case analysis using the European 
Group for Blood and Marrow Transplantation database demonstrated that seroposi-
tive recipients who had seropositive, unrelated donors had improved overall sur-
vival compared with seropositive recipients who had seronegative donors. This 
effect was observed in recipients receiving myeloablative conditioning (Ljungman 
et al. 2014), supporting the idea that a CMV-seropositive donor should be selected 
for CMV-seropositive recipients who received myeloablative conditioning.

Serological screening and DNA amplification assays for HHV-6 and HHV-7 are 
not generally carried out in the preparation of blood products.
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12.6.2  Prophylaxis and Preemptive Treatment for CMV 
Infection

There are two different antiviral drug strategies used for the prevention of CMV 
infection in HSCT patients: prophylactic administration of antiviral drugs to all 
patients or preemptive administration based on the early detection of infection by 
pp65 antigenemia assay or real-time PCR.

The six antiviral drugs acyclovir, valacyclovir, ganciclovir, valganciclovir, fos-
carnet, and cidofovir are currently available for prophylactic treatment of CMV 
infection. Although acyclovir and valacyclovir are considered to have minimal side 
effects, the other drugs are associated with toxicities including bone marrow sup-
pression and nephrotoxicity.

The efficacy of preemptive treatment depends on the ability to reliably detect 
CMV during early infection using a pp65 antigenemia or real-time PCR assay. 
Assays with high sensitivity may result in the unnecessary administration of antivi-
ral drugs, increasing the cost of treatment and toxicity risks, whereas assays with 
low sensitivity may result in inappropriate delays in treatment. Therefore, a guide-
line for the detection of CMV infection has been established. It is recommended 
that patients be monitored for antigenemia or DNAemia once a week from days 10 
to 100 post-HSCT. The most widely used criteria for cutoff is 1000 copies/ml of 
CMV DNA or a fivefold increase over baseline levels as the threshold level for start-
ing preemptive treatments. Ganciclovir is the most commonly used antiviral for 
preemptive treatment, followed by foscarnet and cidofovir. Ganciclovir should be 
administered for 2 weeks or until the viral load declines to below the detection limit. 
Because ganciclovir can cause neutropenia and thrombocytopenia, foscarnet may 
be preferable for recipients with severe myelosuppression. Nephrotoxicity may 
become a limitation for the use of foscarnet. In order to reduce the side effects of 
ganciclovir, the use of half doses has been examined in HSCT recipients with low 
levels of CMV infection (Ju et al. 2016). If no significant decrease in CMV DNA 
load or antigenemia was observed after 2 weeks of antiviral drug administration, the 
emergence of antiviral drug resistance should be considered. Foscarnet or cidofovir 
can be used for preemptive treatment instead of ganciclovir; however cidofovir is 
also associated with bone marrow suppression and nephrotoxicity.
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12.6.3  Prophylaxis and Preemptive Treatment of HHV-6 
Infection

The complications of posttransplant HHV-6 encephalitis patients are significant, 
making preemptive treatment protocols for this virus especially desirable. Although 
peripheral blood and plasma have been used as clinical specimens in real-time PCR 
assays, no appropriate protocol has been delineated for identifying preemptive treat-
ment for HHV-6 infection in HSCT recipients (Ogata et  al. 2008). Prophylactic 
treatments using ganciclovir and foscarnet have been studied (Takenaka et al. 2015; 
Ogata et al. 2013a; Tokimasa et al. 2002); however, no significant efficacy of these 
prophylactic treatments has been demonstrated to date. An appropriate duration and 
dose of antiviral drugs are now under investigation.

12.6.4  Treatment

The standard treatment of CMV diseases after HSCT consists of ganciclovir at 
induction doses for 2–3 weeks and maintenance doses until signs and symptoms 
have disappeared. When cytopenia is present, foscarnet can be used. Additional 
intravenous immunoglobulin administration has been suggested in patients with 
CMV pneumonia (Boeckh 2011); however, no treatment effect of additional immu-
noglobulin administration has been demonstrated in patients with other types of 
complications caused by CMV infection. As described above, if no significant 
decrease in CMV DNA load or antigenemia is observed after 2 weeks of antiviral 
drug administration, the emergence of antiviral drug resistance should be consid-
ered. To combat drug resistance, different types of antiviral drugs for CMV infec-
tion are needed. Furthermore, drug toxicity is a major limitation of most of the 
antiviral drugs currently in use for CMV infection. Thus, there is much interest in 
developing new anti-CMV drugs with low toxicity. Clinical trials of several new 
antiviral drugs such as maribavir, letermovir, and brincidofovir are now underway 
(Boeckh et al. 2015).

Ganciclovir, foscarnet, and cidofovir have been shown to have an antiviral effect 
on HHV-6 based on in vitro analysis. No randomized control study has been con-
ducted to evaluate the clinical effect of these drugs; however, a limited number of 
case reports support the idea that they have antiviral effects in HSCT patients with 
HHV-6 encephalitis (Tokimasa et al. 2002; Denes et al. 2004). These patients expe-
rienced an improvement of clinical symptoms and a decrease in HHV-6 DNA load 
in cerebrospinal fluid (Hirabayashi et  al. 2013). Meanwhile, an emergence of 
ganciclovir- resistant HHV-6 has been reported (Imataki and Uemura 2015).
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12.6.5  Vaccine

As described above, recipients from donors who are CMV seropositive are at high 
risk for CMV reactivation. Host immunity induced by CMV vaccine may suppress 
viral reactivation. CMVPepVax is a chimeric peptide vaccine containing a cytotoxic 
T-cell epitope from CMV pp65 combined with a tetanus T-helper epitope and a Toll- 
like receptor 9 agonist as an adjuvant. Phase 1b clinical trials of this vaccine have 
shown no significant impact on the occurrence of adverse events, including GVHD, 
between the vaccine group and control (Nakamura et al. 2016)3. No vaccine has 
been developed for preventing HHV-6 and HHV-7 infections.

12.7  Conclusion

Although advancements in diagnostic methods and antiviral treatments have 
improved the prognosis of patients with betaherpesviruses infections, these viral 
infections remain a significant problem in HSCT recipients. In addition to the 
already established clinical manifestations such as CMV pneumonia and HHV-6 
encephalitis, unidentified clinical manifestations caused by betaherpesviruses may 
be discovered in a future clinical study. Furthermore, development of new diagnos-
tic methods with high sensitivity and specificity and new treatment strategies includ-
ing new antiviral drugs are necessary for improved outcomes in HSCT patients.
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Chapter 13
Vaccine Development for Cytomegalovirus

Naoki Inoue, Mao Abe, Ryo Kobayashi, and Souichi Yamada

Abstract The development of a cytomegalovirus (CMV) vaccine has become a top 
priority due to its potential cost-effectiveness and associated public health benefits. 
However, there are a number of challenges facing vaccine development including the 
following: (1) CMV has many mechanisms for evading immune responses, and natural 
immunity is not perfect, (2) the immune correlates for protection are unclear, (3) a nar-
row range of CMV hosts limits the value of animal models, and (4) the placenta is a 
specialized organ formed transiently and its immunological status changes with time. 
In spite of these limitations, several types of CMV vaccine candidate, including live-
attenuated, DISC, subunit, DNA, vectored, and peptide vaccines, have been developed 
or are currently under development. The recognition of the pentameric complex as the 
major neutralization target and identification of various strategies to block viral immune 
response evasion mechanisms have opened new avenues to CMV vaccine develop-
ment. Here, we discuss the immune correlates for protection, the characteristics of the 
various vaccine candidates and their clinical trials, and the relevant animal models.

Keywords Immune correlates · Congenital infection · Attenuated vaccines · 
Vectored vaccines · Epitope-based vaccines · gB · Pentameric complex · 
Neutralizing antibodies · Animal model

13.1  Background

Human CMV (HCMV) is a ubiquitous virus that does not usually cause any  
diseases in healthy individuals. Like other herpesviruses, it establishes latency or 
persistency throughout life after primary infection and is reactivated under  
immunologically suppressed conditions, such as transplantation and HIV infection, 
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and can cause severe, sometimes fatal, diseases in solid organ transplant (SOT) and 
hematopoietic stem cell transplant (HSCT) recipients, as described in Chap. 12. 
HCMV is also the major cause of congenital CMV (cCMV) infection that occurs in 
0.2–2% of all births and is associated with significant clinical consequences, not 
only at birth but also later as neurologic sequelae, including sensorineural hearing 
loss (SNHL) and developmental delays (Kenneson and Cannon 2007). Our retro-
spective studies demonstrated that 12–15% of cases with severe SNHL and 25% of 
cases with developmental delay of unknown cause were associated with cCMV 
infection; half of the sequelae were of late onset (Ogawa et al. 2007; Koyano et al. 
2009). Although anti-HCMV drugs can be used for the treatment of HCMV dis-
eases in transplant recipients and are potentially applicable for the treatment of 
cCMV diseases, their use is limited due to potential side effects and the develop-
ment of viral resistance. Therefore, the development for a CMV vaccine has become 
a top priority as it is expected to be highly cost-effective and provide significant 
public health benefits, as reported by the Institute of Medicine (Stratton et al. 2000). 
The National Vaccine Advisory Committee of the USA also advocated the need for 
CMV vaccine development (Arvin et al. 2004).

13.2  Endpoints for Vaccine Development

There are a number of critical challenges to be overcome in the development of 
CMV vaccines. First, there are frequent reinfection and reactivation, indicating that 
immunity induced by natural infection is not perfect to protect against subsequent 
infection. Second, in spite of many studies, the immune correlates for protection 
remain unclear. Finally, endpoints for vaccine development may differ between the 
transmission of maternally infected CMV to the fetus and reactivation in the context 
of immunosuppression. In this chapter, our major focus is on vaccine development 
for cCMV infection.

13.2.1  Immune Correlates for Protection of cCMV Infection

Several studies on immunocompromised patients have identified CMV infections 
with multiple strains (Coaquette et al. 2004; Puchhammer-Stockl and Gorzer 2006; 
Ishibashi et al. 2007). cCMV infection often occurs via maternal CMV reinfection 
of pregnant women, although mixed infection in cCMV-infected newborns is sel-
dom detected (Ross et al. 2010; Ikuta et al. 2013). CMV transmission to the fetus 
occurs in 1–2% of seropositive pregnant women, although 40% of seronegative 
pregnant women who are exposed to CMV transmit the virus to the fetus (Fowler 
et al. 1992, 2003; Adler et al. 1995). These observations indicate that preexisting 
immunity provides partial protection against CMV transmission to the placenta and 
fetus, although preexisting immunity is not perfect even in healthy individuals. 
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Importantly, the clinical outcomes for neonates born to mothers with preexisting 
immunity are milder than those born to seronegative mothers (Fowler et  al. 
1992). However, there are arguments against the inverse correlation between the 
preexisting maternal immunity and clinical outcomes of cCMV infection (Britt 
2017). Immune factors for protection of cCMV infection, including innate immu-
nity, neutralizing antibodies (NAbs), and CMV-specific CD4+ T-cell responses, are 
discussed below.

13.2.1.1  Innate Immunity

Innate immunity, based on the functions of NK cells, macrophages, pattern recogni-
tion receptors, and cytokines, is considered to play a crucial role in protection 
against cCMV infection and diseases. CMV employs several methods by which to 
evade these host innate immune responses.

The first steps in cCMV infection and amplification take place in the decidua 
where both maternal and fetal cells are in close contact. During the first trimester of 
pregnancy, a subset of NK cells, decidual NK (dNK) cells, form the majority of 
maternal immune cells in the placenta. Although dNK cells have little cytotoxic 
ability and have pregnancy-specific functions, including the capacity to produce 
angiogenic molecules to control trophoblast invasion, once they are exposed to 
CMV-infected autologous decidual fibroblasts, they undergo major functional and 
phenotypic changes, becoming cytotoxic effectors and co-localizing with infected 
cells (Siewiera et al. 2013). Therefore, dNK cells may limit the spread of viral infec-
tion to fetal tissues. Understanding the mechanisms underlying the regulation of 
dNK cytotoxic ability may help clarify the key factors involved in the immunopa-
thology of CMV infection and lead to the design of more robust strategies to block 
viral immune escape.

Fcγ receptors induce a wide range of immune responses, including antibody- 
dependent cellular cytotoxicity (ADCC) in virus-infected cells by NK cells and 
cytokine secretion. HCMV encodes glycoproteins gp34 (RL11) and gp68 (UL119–
118), which bind to Fcγ receptors to block the IgG-mediated activation of Fcγ 
receptors and may limit the efficacy of antibody-mediated protection (Corrales- 
Aguilar et al. 2014).

The presence of viral antigens in macrophages have been demonstrated in term 
cCMV-infected placentas (McDonagh et al. 2006) and in decidual organ cultures 
(Weisblum et al. 2011). As macrophages may transmit CMV to trophoblasts, the 
protection of macrophages from CMV infection would be required to block 
maternal- fetal transmission.

A TLR2 polymorphism is associated with increased risk of CMV diseases in 
liver transplant recipients due to differences in the induction of gB-mediated  
signaling (Kang et al. 2012). CMV-mediated TLR2 signaling in syncytiotrophoblast 
cultures stimulates TNFα expression and apoptosis (Chaudhuri et al. 2009). On the 
other hand, miR-UL112-113p, a HCMV encoding microRNA, downregulates 
TLR2 during the late stages of infection in cell cultures (Landais et al. 2015), 
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suggesting that miRNA-mediated TLR2 downregulation works to prevent gB-
mediated innate signaling. Although some studies have reported an association 
between genetic polymorphisms in TLRs and CMV infection and related diseases, 
the mechanisms underlying those findings remain unclear (Arav-Boger et al. 2012; 
Nahum et  al. 2012; Taniguchi et  al. 2013). Some studies observed that HCMV 
induced a distinct pattern of cytokine production, which could affect the outcome of 
cCMV infection (Scott et al. 2012; Weisblum et al. 2015).

HCMV encodes cmvIL-10, an ortholog of cellular interleukin-10 (cIL-10), 
which functions similarly to cIL-10 in the downregulation of proinflammatory cyto-
kine production and inhibition of antigen-presenting cell functions (Raftery et al. 
2004; Chang et al. 2004). Rhesus macaques infected with a rhesus CMV (RhCMV) 
variant lacking its cmvIL-10, rhcmvIL-10, exhibited increased inflammatory 
responses and greater humoral and cellular immune responses than did animals 
infected with the parental virus (Chang and Barry 2010). Macaques immunized 
with an inactive form of rhcmvIL-10 developed antibodies that neutralized rhc-
mvIL- 10, but not cIL-10, and exhibited reduced viremia and viral shedding in 
bodily fluids after RhCMV challenge, indicating that neutralization of viral immu-
nomodulation may afford a new strategy for vaccine development (Eberhardt et al. 
2013). Similarly, guinea pig CMV (GPCMV) lacking immune evasion genes 
showed an attenuated phenotypes in vivo and worked as a live vaccine in guinea 
pigs (see Sect. 13.4.1). To block the evasion of CMV from the immune response 
mediated by NKG2D, studies using a murine CMV (MCMV) model demonstrated 
that a recombinant virus encoding the NKG2D ligand RAE-1γ could provide a 
powerful approach toward the development of a safe attenuated and immunogenic 
vaccine (Slavuljica et al. 2010). As an alternative approach, expression of NKG2D 
ligand ULBP2 by a recombinant HCMV activated both innate and adaptive immu-
nity in a humanized mouse model (Tomić et al. 2016).

13.2.1.2  Neutralizing Antibodies

The importance of humoral immunity has been exemplified by the findings that the 
adaptive transfer of GPCMV-specific antibodies provided protection in guinea pig 
models (Chatterjee et al. 2001; Auerbach et al. 2014) and the plasma titers of CMV- 
specific neutralizing IgG with high avidity are inversely correlated with virus trans-
mission rates and with histopathological findings of CMV products in the placenta 
(Boppana and Britt 1995; Pereira et al. 2003). However, a randomized Phase 2b trial 
of hyperimmune globulin (HIG) for the prevention of cCMV infection did not 
demonstrate the expected statistical difference in results (Revello et al. 2014). Two 
large-scale Phase 3 trials for the evaluation of HIG use in the prevention of cCMV 
infection are currently underway. One is a NIH-funded trial (NCT01376778) to be 
completed in 2018 that plans to enroll 800 pregnant women with primary CMV 
infection and analyze the primary outcomes, defined as fetal loss, fetal CMV infec-
tion, neonatal death, or neonatal cCMV infection. The other is a trial sponsored by 
Biotest AG aimed as clarifying whether their HIG product, Cytotect, can be used as 
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the standard treatment for cCMV infection (EudraCT 2007–004692-19). Its interim 
analysis, conducted on 7000 of the expected 30,000 enrollments, indicated the 
efficacy of Cytotect (News release 2017.1).

Until recently NAbs against HCMV were measured in human fibroblasts and 
were considered to appear at a low titer late after primary infection. Based on the 
conserved nature and the kinetics of antibody development, gB and gH had been 
believed to be the major antigens for NAbs. However, after identification of an 
approximately 13 kb additional segment in a low-passaged Toledo strain (Cha et al. 
1996), the requirement of each of the gene products in the UL128–131A locus for 
endothelial and epithelial cell tropisms and formation of a pentameric complex 
(Pentamer) of gH, gL, UL128, UL130, and UL131A were demonstrated (Hahn 
et  al. 2004; Wang and Shenk 2005a, b). Importantly, human sera obtained from 
seropositive individuals and CMV-HIGs have, on average, 48-fold higher neutral-
izing activities against epithelial cell entry than against fibroblast entry, while sera 
from individuals vaccinated with gB/MF59 or with Towne, which lacks Pentamer, 
had low NAb titers against epithelial cell entry, indicating the presence of epithelial 
cell entry-specific antibodies (Cui et al. 2008). Serial depletion of HIGs with CMV 
antigens demonstrated that the major NAb response is directed at Pentamer, with 
only a minor role played by anti-gB antibodies (Fouts et al. 2012). Human mono-
clonal antibodies prepared from seropositive donors, which neutralize HCMV 
infection in epithelial, endothelial, and myeloid cells, target gB, gM/gN, gH, and 
mainly conformational epitopes of Pentamer (Macagno et al. 2010). Immunization 
of animals with virions of AD169 strain expressing the restored Pentamer or with 
purified Pentamer induced high NAb titers for the viral infection of endothelial and 
epithelial cells but not for fibroblasts (Gerna et al. 2008; Fu et al. 2012; Freed et al. 
2013; Kabanova et al. 2014). Recent studies have analyzed the precise binding sites 
of NAbs against Pentamer to clarify the structural characteristics of Pentamer 
(Ciferri et al. 2015a, b; Loughney et al. 2015; Chiuppesi et al. 2017; Ha et al. 2017; 
Chandramouli et al. 2017).

Importantly, monoclonal NAbs against Pentamer, but not against gH, blocked the 
infection of human placental cytotrophoblasts (Chiuppesi et al. 2015), and develop-
ment of antibodies against most of neutralizing epitopes of Pentamer was delayed 
in transmitting mothers, indicating that Pentamer is the major target of antibody- 
mediated maternal immunity (Lilleri et al. 2012, 2013).

Previously, we established a HCMV reporter cell line derived from U373MG, a 
glioma cell line, and demonstrated its use for the screening of novel anti-CMV 
compounds (Fukui et al. 2008; Majima et al. 2017). To conduct a high-throughput 
assay to measure NAbs against Pentamer, we have recently established a similar 
reporter cell line derived from the epithelial cell line ARPE-19, which expresses 
luciferase upon HCMV infection. Indeed, AD169rev, the UL131 gene of which was 
fixed, but not the parental AD169, induced luciferase production in the cell line. The 
cell line can be replaced with a conventional immunostaining assay as NAb titers in 
human sera measured by the reporter assay showed a good correlation with the 
conventional assay (Fig. 13.1).
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CMV-specific, high-avidity NAbs from maternal circulation are transcytosed 
into the fetal bloodstream, contributing to suppression of viral replication in the 
placenta in seropositive women; however, paradoxically, the non-neutralizing CMV 
antibodies may enhance CMV transmission to the fetus, as neonatal Fc receptors on 
syncytiotrophoblasts may facilitate the transcytosis of CMV (Maidji et  al. 2006; 
Nozawa et al. 2009). Antibodies may also have functions other than protection from 
infection, as HIG was observed to reduce placental thickness in women with a 
cCMV-infected fetus (La Torre et al. 2006).

13.2.1.3  Cellular Immunity

As most CMV infections occur asymptomatically, it has been difficult to character-
ize the early phases of cellular immune responses in human individuals. In contrast, 
several clinical studies have demonstrated that the adaptive transfer of T-cell clones 
restores viral immunity in HSCT recipients (Riddell et al. 1992; Walter et al. 1995; 
Peggs et al. 2003).
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Fig. 13.1 A410F cells, ARPE-19-based CMV reporter cells, were plated in 96-well plates and 
infected with 80 infectious units (IUs) of AD160rev that had been incubated with diluted sera from 
20 seropositive and 6 seronegative volunteers for 30 min. At 48 h after infection, the infected cells 
were reacted with monoclonal antibodies against IE1/IE2 followed by HRP-conjugated anti- 
mouse IgG, and the reacted cells were visualized with DAB, and a number of the stained foci were 
counted (immunostaining). The serum dilution giving 50% of the mean number of foci obtained 
with seronegative sera was defined as the NAb titer. In parallel, luciferase activities in the infected 
cells at 48  hrs after infection were measured (reporter assay). To obtain neutralizing antibody 
(NAb) titers, the relative light units (RLUs) in the cells infected with 20 IUs of AD169rev were 
used as a cutoff value. Measurements were done in triplicated wells. (a) RLUs obtained by the 
reporter assay of the cells infected after reaction with 40-fold diluted sera vs. NAb titers obtained 
by immunostaining assay. (b) NAb titers obtained by the reporter assay vs. those obtained by 
immunostaining assay
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Although HCMV-specific T-cell immunity to pp65(UL83) and IE-1(UL123) 
have been well analyzed, Elkington et al. (2003) found CD8+ T-cell responses to a 
broad range of antigens by the use of bioinformatics and ex vivo functional T-cell 
assays. Thereafter, Sylwester et al. (2005) conducted a comprehensive study show-
ing that 70% of HCMV ORFs were immunogenic for CD4+ and/or CD8+ T-cells 
and that the total HCMV-specific T-cell responses in seropositive subjects were 
enormous, comprising ~10% of both the CD4+ and CD8+ memory compartments 
in the blood. The total HCMV-specific CD4+ T-cell response could be represented 
by the six most immunogenic ORFs, including pp65, pp150(UL32), and gB, and the 
total CD8+ response by the 15 ORFs, including pp65, IE1, and IE2. Still further 
studies are required to define the roles of CD4+ and CD8+ cells against individual 
antigens in the protection against CMV infection and reactivation. For example, a 
high frequency of IE-1- but not pp65-specific CD8 T-cells is correlated with protec-
tion from CMV disease in SOT recipients (Bunde et  al. 2005). There were also 
functional differences observed between CTLs recognizing individual epitopes 
within the IE1 and pp65 antigens in healthy donors and HSCT recipients (Lacey 
et al. 2006).

Cellular immune responses in the context of cCMV infection are still only poorly 
understood. HCMV-specific CD4+ T-cell responses, IgM, IgG avidity, and viral 
DNAemia levels were compared between 74 pregnant and 29 nonpregnant women 
as well as between 19 transmitter and 21 non-transmitter mothers with primary 
infection during the first or second trimester (Revello et al. 2006). The study found 
that (1) pregnancy had little effect on HCMV-specific cell-mediated immune 
responses; (2) HCMV-specific CD4+ T-cells were detected by cytokine flow cytom-
etry in the absence of lymphoproliferative responses (LPR) to CMV, irrespective of 
pregnancy; and (3) LPR to HCMV was significantly lowered or delayed in transmit-
ter mothers. Impairment of LPR is consistent with the findings of previous studies 
regarding the long-lasting suppression of lymphocyte blastogenic responses after 
primary infection. Another study from the same group analyzed CD4+ and CD8+ 
T-cell proliferation in different sets of women during the first year after primary 
infection, confirming a significant delay in the development of the CD4+ T-cell LPR 
in the transmitter mothers (Lilleri et al. 2007). Non-transmitter mothers showed a 
significantly higher frequency of HCMV-specific CD4+ T-cells with a IL-7R-
positive phenotype than transmitter mothers, both 1 month and 6–12 months after 
infection, while no difference was observed for HCMV-specific CD8+ T-cells, sug-
gesting that the early appearance of CD4+ T-cells with a long-term memory pheno-
type is associated with a lower risk of viral transmission to the fetus (Mele et al. 
2017). Another recent study demonstrated that memory T-cells with proliferative 
capacity, mainly CD4+ T-cells, specific for pp65 was significantly lower in trans-
mitter than nontransmitter mothers, while no differences were observed in the 
response to IE-1 or IE-2 between the two groups (Fornara et al. 2017). These find-
ings suggest the need for strategies to enhance the maternal CD4+ T-cells with a 
long-term memory phenotype specific for particular viral antigens.
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13.2.2  Target Populations and Practical Endpoints

A multidisciplinary meeting held at the FDA in 2012 discussed the pros and cons of 
potential vaccination strategies targeting adult women, adolescent girls, and/or 
young children with the aim of reducing cCMV (Krause et al. 2013). The following 
aspects of the target populations were compared: vaccine coverage (acceptability), 
purpose of vaccination, duration of protective effect, effects on sexual transmission, 
and differences in vaccine effect between seronegative and seropositive subjects. 
Universal vaccination of young children may have an advantage in the rapid reduc-
tion of cCMV rates if prevention of infection or shedding can be achieved, while the 
vaccination of adolescents or adult women could reduce cCMV disease providing 
immunity prior to pregnancy. The meeting participants agreed that the primary end-
point for clinical trials of CMV vaccines in women should be protection against 
cCMV infection as it is an essential precursor of cCMV disease and both more 
practical and acceptable. Prevention of CMV infection in pregnant women was con-
sidered a less useful endpoint as such prevention may be less readily achieved than 
the attenuation of transplacental transmission.

To evaluate cCMV infection as an endpoint in large-scale trials on vaccine effi-
cacy, it is critical to screen cCMV-infected newborns efficiently using cost- effective, 
time-saving procedures. To this end, assays based on filter papers containing dried 
body fluids obtained from newborns are useful. As dried blood spots are already 
collected from all newborns in most countries, it is easy to establish an infrastruc-
ture for the collection and analysis of the specimens. However, dried blood spots 
contain very limited amounts of viral DNA. In contrast, both saliva and urine speci-
mens contain huge amounts of viral DNA. We have routinely used our specifically 
developed high-throughput screening method based on the collection of urine using 
a filter paper inserted into the diapers followed by real-time PCR assay using a filter 
disc cut from the filter paper as a template (Nozawa et al. 2007; Koyano et al. 2011).

13.2.3  Cost-Effectiveness

Using a decision tree, Dempsey et al. (2012) compared the costs, potential clinical 
impacts, and cost-effectiveness between “no vaccination” and “vaccination” strate-
gies. The model simulated vaccination for a hypothetical 100,000 11-year-old girls 
who had never been previously pregnant nor vaccinated against CMV. Under base- 
case conditions, the vaccination strategy would be both less costly ($32.3 million 
less) and provide greater clinical benefits (resulting in 8 fewer deaths and 5 fewer 
cases of vision loss, 52 of hearing loss, and 18 of mental retardation) than the no 
vaccination strategy. The model was most sensitive to variations in vaccine efficacy, 
with an efficacy of at least 61% required for vaccination to be beneficial. As most 
vaccines introduced in the US have efficacies of >80%, surpassing the 61% thresh-
old appears to be feasible. One of the limitations of the study was the assumption of 
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100% vaccine coverage across the population. Although this assumption is overly 
optimistic, the high level of CMV vaccine acceptance by parents (Petty et al. 2010) 
is encouraging.

13.3  Vaccines Developed and Under Development

Although many candidate vaccines have been evaluated, several factors, including 
incomplete understanding of the immune correlates for protection, viral immune 
evasion and latency, the lack of an animal model that allows HCMV infection and 
exhibits HCMV diseases, have made the progress of vaccine development slow. 
Here, we summarize various CMV vaccine candidates that progressed at least to a 
Phase 1 trial. Table 13.1 lists the clinical trials of CMV vaccines (please note that 
the Phase 1 trials of some vaccines that progressed to a Phase 2 trial are omitted 
from the table).

13.3.1  Live-Attenuated Vaccines

Live-attenuated Towne strain, which lacks several genes and does not establish 
latency, has been administrated safely and found to induce both humoral and cellu-
lar responses. However, the Towne vaccine failed to protect seronegative SOT recip-
ients from infection, although it reduced the incidences of severe CMV diseases. In 
healthy subjects, the Towne vaccine was protective, but protection was dependent 
on the challenge dose; in other words, it failed to protect against primary infection 
with low-passage virulent Toledo strain in cases in which immunity was established 
by natural infection (reviewed in Adler 2008). To clarify whether the replacement of 
a particular segment of the Towne genome with that of the Toledo genome increases 
its immunogenicity without reducing its safety, four Towne-Toledo chimeric strains 
were established. In Phase 1 trials, these chimera vaccines were well tolerated in 
both seropositive (Heineman et  al. 2006) and seronegative men (NCT01195571) 
(Adler et al. 2016). Among the four chimeras, chimera 2 and 4 induced seroconver-
sion and CD8+ T-cell response more frequently than the other two. The major limi-
tation of Towne and its chimera vaccines is their lack of Pentamer expression, which 
may fail to induce strong NAbs, although it is not clear whether this is sufficient 
reason to exclude these well-characterized vaccine strains.

13.3.2  DISC Vaccine

To increase the safety of live-attenuated vaccines, disabled infectious single cycle 
(DISC), or replication-defective, vaccine strains have been developed for herpes 
simplex viruses (Dropulic and Cohen 2012). Recently, MSD developed DISC 
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vaccine strain V160 as a CMV vaccine and demonstrated its immunogenicity in 
multiple animal models (US Patent 9546355; Wang et al. 2016). First, the frame-
shift mutation in UL131 of AD169 was fixed to recover epithelial/endothelial cell 
tropism (Wang et al. 2011). The UL122/123 gene encoding IE1/IE2 and the UL51 
gene encoding one of packaging proteins were subsequently modified to express 
their encoding proteins fused with the destabilizing domain of the FK506-binding 
protein (FKBP12), respectively, to generate the V160 strain. In the presence of 
Shield-1, a synthetic compound, the FKBP12-fused proteins are stable, whereas 
they are proteolytically degraded in its absence. Thus, VP160 viral stock can be 
prepared in the presence of Shield-1, but once VP160 is administrated in vivo, it 
loses its growth capability. Administration of VP160 induced durable NAbs as well 
as CD4+ and CD8+ T-cells specific to several CMV antigens in nonhuman pri-
mates. A Phase 1 trial (NCT01986010) to evaluate the safety, immunogenicity of 
various doses, formulations, and routes of administration of V160 in approximately 
190 healthy adults demonstrated that V160 had acceptable safety profile and elicited 
NAbs and cell-mediated immune responses comparable to natural infection (Adler 
et al. 2017).

13.3.3  gB Protein-Based Vaccines

Since gB is essential for infection and had been believed to be the major target of 
NAbs, gB protein derived from Towne was expressed in CHO cells and evaluated as 
a vaccine antigen in several trials in the 1990s. gB with MF59, a squalene in water 
emulsion, provided a greater enhancement of immunogenicity than did combination 
with an alum adjuvant, and NAb titers induced by gB/MF59 reached the level 
observed in seropositive individuals (Pass et  al. 1999). A Phase 2 trial 
(NCT00125502), which involved 464 seronegative young mothers and observed 
natural infection after vaccination with gB/MF59, demonstrated 50% efficacy of 
protection in comparison with natural infection (Pass et al. 2009), and rapid waning 
of antibody titers was observed. The same vaccine was evaluated in a trial 
(NCT00133497) that enrolled 409 seronegative girls between 12 and 17 years of 
age and observed seroconversion and viral shedding (Bernstein et al. 2016). The 
trial demonstrated that the vaccine was safe and immunogenic, although the vaccine 
efficacy was only 43% and did not reach conventional levels of significance, which 
is consistent with the results of the trial on adult women.

The gB/MF59 vaccine was also evaluated in a trial (NCT00299260) involving 
kidney or liver SOT recipients (Griffiths et al. 2011). In the vaccinated seronegative 
recipients who received organs from seropositive donors, both the duration of vire-
mia and the total number of days of antiviral treatment were significantly reduced. 
In patients with viremia, the median peak viral load of vaccinated patients was one 
tenth of that of patients administered the placebo. The antibody titers against gB 
were inversely correlated with the duration of viremia. There was no difference 
between the vaccine and placebo recipients in terms of CMV-responsive CD4+ 
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T-cell frequency. These findings suggest that humoral immunity has a significant 
role in protection, which is in contrast with the present dogma regarding the major 
role of T-cell responses to CMV diseases in transplant recipients.

GSK1492903A, a recombinant gB protein derived from AD169 strain, adjuvanted 
with AS01E, a proprietary adjuvant system containing MPL and QS21, was devel-
oped by GlaxoSmithKline. A Phase 1 trial involving 40 seronegative adult males 
(NCT00435396) revealed no serious adverse effects (gsk-clinicalstudyregister.
com/study/108890), while a follow-up study (NCT01357915) demonstrated the 
long-term persistence of vaccine-induced immunity (gsk-clinicalstudyregister.com/
study/115429).

13.3.4  VLP-Based Vaccines

VBI Vaccines Inc. developed enveloped virus-like particles (eVLPs) produced in 
mammalian cells for vaccine production. Mice were immunized with eVLPs con-
taining the full-length gB derived from Towne strain or those containing the extra-
cellular domain of gB fused with the transmembrane and cytoplasmic domains of 
vesicular stomatitis virus (VSV)-G protein (gB-G), and gB-specific antibodies and 
T-cell responses were compared (Kirchmeier et al. 2014). gB-G eVLP induced a 
tenfold higher level of NAbs than did gB eVLP despite comparable levels of anti-
body binding titers against gB. Importantly, antibodies induced by gB-G show neu-
tralizing activity against epithelial cell infection. As cells transiently transfected 
with gB-G, but not with gB, formed syncytia, it is plausible that gB-G takes a prefu-
sion conformation, which makes the gB-G more immunogenic. Interim analysis of 
a Phase 1 trial (NCT0286798), for which 128 seronegative adults were enrolled to 
compare the safety and immunogenicity of three different doses of the unadjuvanted 
and alum-adjuvanted eVLP/gB-G (VBI-1501), indicated that the vaccine was well 
tolerated at all doses, with no safety signals, 100% seroconversion in subjects who 
received the highest dose, and development of NAbs in some patients after two 
doses (News release 2017.7).

Redbiotec AG also developed eVLPs based on a baculovirus expression system 
and presented their results showing the incorporation of various combinations of 
glycoproteins at a number of international conferences (e.g., the 38th International 
Herpesvirus Workshop). The technology was purchased by Pfizer in 2015.

13.3.5  Peptide-Based Vaccines

HLA-restricted CTL peptide-based vaccines are feasible for HSCT recipients, as 
potential responders to the vaccine can be selected in advance based on their HLA 
type. Peptide vaccines composed of covalently linked CTL and helper T epitopes 
are expected to show the most efficacy. To this end, the HLA A*0201-restricted 

13 Vaccine Development for Cytomegalovirus

http://gsk-clinicalstudyregister.com/study/108890
http://gsk-clinicalstudyregister.com/study/108890
https://clinicaltrials.gov/ct2/show/NCT01357915
http://gsk-clinicalstudyregister.com/study/115429
http://gsk-clinicalstudyregister.com/study/115429


284

pp65 CTL epitopes linked with the synthetic pan-DR epitope peptide (PADRE) or 
with a tetanus Th epitope were developed as epitope-based peptide vaccines. To 
evaluate such vaccines, a Phase 1 trial (NCT00722839) was undertaken involving 
healthy seropositive adults vaccinated with escalating doses of the PADRE- or teta-
nus- pp65 peptides with and without the CpG DNA adjuvant PF03512676 (La Rosa 
et al. 2012). The peptide vaccines without the adjuvant were safe and well tolerated. 
Although addition of the adjuvant exacerbated the mild to moderate cutaneous reac-
tion at the injection site and systemic flu-like symptoms, there were no serious 
adverse events. Increases in vaccine-elicited T-cells specific to the pp65 peptide was 
observed in 30% of the subjects treated with the unadjuvanted vaccine and in all 
subjects treated with the adjuvanted vaccine. Based on the results, a randomized 
Phase 1b trial (NCT01588015) was undertaken involving 36 eligible seropositive 
patients with hematologic malignancies who progressed to allogenic HSCT and 
were randomly assigned to the observation arm and the arm for vaccination with 
the tetanus-pp65 peptide vaccine adjuvanted with PF03512676, designated as 
CMVPepVax (Nakamura et  al. 2016). Favorable outcomes, including higher 
relapse-free survival, a twofold increase in pp65-specific CD8 T-cells, and less 
CMV reactivation and antiviral treatment, were obtained in the vaccinated arm. As 
the results demonstrated both the safety and immunogenicity of the vaccine, a Phase 
2 trial is now ongoing (NCT02396134).

13.3.6  DNA-Based Vaccines

DNA therapeutic vaccine ASP0113 (also known as TransVax and VCL-CB01), 
which was developed by Vical and is licensed to Astellas, consists of two plasmids 
encoding pp65 and gB formulated with a poloxamer CRL1005 and benzalkonium 
chloride delivery system. A Phase 1 trial demonstrated its safety profile and induc-
tion of antigen-specific T-cell responses and NAbs in seronegative subjects. The 
subsequent Phase 2 trial involving enrolled 94 seropositive HSCT recipients and 14 
paired donors (NCT00285259) demonstrated that there was no difference in the 
incidence of common adverse events between the vaccine and placebo groups and 
that the vaccine significantly reduced the occurrence of viremia and improved the 
time-to-event for viremia episodes, although there was a lack of any significant 
reduction in antiviral treatment (Kharfan-Dabaja et al. 2012). A randomized Phase 
2 trial to evaluate the safety and efficacy of ASP0113 in 150 seronegative transplant 
patients receiving kidneys from seropositive donors did not meet its primary end-
point, which was the protection from viremia with >1000 copies/ml, and there were 
no differences in the secondary endpoints, CMV-associated disease, and require-
ment of antiviral therapy (News release 2016.9). In addition, in a global Phase 3 trial 
that enrolled 514 seropositive HSCT recipients (NCT0187765), ASP0113 did not 
meet its primary composite endpoint of overall mortality and CMV end-organ dis-
ease through the first year post-transplantation, nor secondary endpoints of time to 
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first protocol-defined CMV viremia and time to first use of adjudicated CMV-
specific antiviral therapy (News release 2018.1).

In a Phase 1 trial, seronegative subjects were vaccinated with VCL-CT02, a tri-
valent CMV DNA vaccine consisting of pp65-, IE1-, gB-expressing plasmids, as a 
priming step followed by boosting via the administration of the Towne vaccine 
(Jacobson et  al. 2009). The median time to first CMV-specific memory T-cell 
responses after Towne vaccine administration was 14 days for the DNA vaccine- 
primed subjects and 28 days for the subjects without priming. In addition, a greater 
number of subjects primed with the DNA vaccine developed gB-specific T-cell 
responses.

Vical is currently developing a prophylactic vaccine, CyMVectin, for prevention 
of cCMV that consists of gB- and pp65-expressing plasmids with the cationic lipid 
adjuvant Vaxfectin.

13.3.7  Vectored Vaccines

Several CMV vaccines based on viral expression vectors have been developed. 
Attenuated canary pox (ALVAC) is one such vaccine candidate vector that can 
accept multiple large expression cassettes of foreign DNA and elicit protective 
immune response in non-avian species. ALVAC does not produce progeny in mam-
malian cells or non-avian species and causes no diseases in healthy individuals or 
immunosuppressed patients. Although gB-expressing ALVAC (vCP139) did not 
significantly enhance or induce NAbs among seropositive or seronegative subjects, 
the administration of Towne strain to the subjects led to the development of signifi-
cantly high levels of gB-specific antibodies, indicating that ALVAC-gB can prime 
the immune system to produce a strong neutralizing response (Adler et al. 1999). 
The administration of four doses of pp65-expressing ALVAC (vCP260) induced 
pp65-specific CTLs in seronegative adults, and there were no significant safety 
issues (Berencsi et al. 2001).

Like ALVAC, the modified vaccinia Ankara (MVA) virus grows in cell cultures 
only abortively, with the exception of chick embryo fibroblasts. Although replica-
tion occurs, little or no packaging of the infectious virus takes place in primate and 
other mammalian cells. MVA was administrated as a vaccine against smallpox in 
>100 thousand individuals, and clinical trials of MVA-based HIV vaccines demon-
strated a good safety profile for MVA. The NAb titers developed in mice immunized 
with gB-expressing MVA were equivalent to those found after natural infection 
(Wang et al. 2004). Rhesus macaques immunized with MVA expressing RhCMV 
gB or pp65 demonstrated immunogenicity and protective efficacy (Yue et al. 2007, 
2008; Abel et  al. 2011). NAbs induced by MVA expressing RhCMV Pentamer 
inhibited viral entry to both rhesus epithelial/endothelial cells and fibroblasts and 
reduced plasma viral loads after viral challenge (Wussow et  al. 2013). Mice or  
rhesus macaques immunized with MVA expressing HCMV Pentamer also induced 
durable and efficacious NAbs to prevent the HCMV infection of macrophages 
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localized in the placenta (Wussow et al. 2014). A Phase 1 trial of MVA Triplex, 
MVA expressing HCMV pp65, IE1 exon 4, and IE2 exon 5, involving 24 healthy 
adults, demonstrated that the vaccine was well tolerated, and no serious adverse 
events were attributed to vaccination (NCT01941056) (La Rosa et al. 2017). The 
robust, functional, and durable Triplex-driven expansions of CMV-specific T-cells 
were detected. A multicenter Phase 2 trial of Triplex in seropositive allogeneic 
HSCT recipients (NCT02506933) is currently ongoing.

A propagation-defective, single-cycle RNA replicon vector system derived from 
an attenuated strain of Venezuelan equine encephalitis virus, an alphavirus, was 
used to produce virus-like replicon particles (VRPs) expressing gB or a pp65/IE1 
fusion protein. These VRPs induced strong NAb and T-cell responses in mice and 
rabbits with no adverse effects (Reap et al. 2007). To evaluate AVX601 comprised 
of VRPs expressing gB and those expressing pp65/IE1, a Phase 1 trial 
(NCT00439803) involving 40 seronegative adults was undertaken, and three param-
eters regarding administration, doses, vaccine vs. placebo, and injection procedures 
were compared (Bernstein et al. 2009). The vaccine was well tolerated, with mild to 
moderate local and minimal systemic reactogenicities observed. Recipients of the 
vaccine developed CTL and NAbs to all CMV antigens in the vaccine. After acqui-
sition of this alphavirus-based technology by Novartis in 2008, the company pro-
duced VRPs expressing gH and gL (Loomis et al. 2013) and, subsequently, those 
expressing Pentamer (Wen et al. 2014). These VRPs induced higher NAb titers than 
did gB-expressing VRPs in mice.

Vaccines based on nonreplicating lymphocytic choriomeningitis virus (rLCMV) 
vectors have been developed recently. Immunization of mice with gB-expressing 
rLCMV elicited a comparable gB-binding antibody response and a superior neutral-
izing response to that elicited by adjuvanted subunit gB. Immunization with pp65- 
expressing rLCMV elicited robust T-cell responses. A vaccine that combined both 
vectors, designated as HB-101 Vaxwave, provided comparable immunogenicity to 
that of the individual monovalent formulations (Schleiss et al. 2017). A Phase 1 trial 
to obtain data on dose escalation (NCT02798692) is currently ongoing. Interim data 
indicated that 93% of the subjects in the lowest dose group and 100% of the subjects 
in the medium and high dose groups developed detectable NAbs specific to CMV 
after three doses and that all three dose groups of the vaccine induced robust  
and statistically significant cellular immune responses when compared to placebo 
(News release 2017.5; presentation at CMV 2017 Conference).

13.3.8  Other Vaccine

Dense bodies are complex, noninfectious particles produced in HCMV-infected 
cells and contain >20 viral proteins. These dense bodies induce NAbs that prevent 
the infection of fibroblasts and epithelial cells and cell-mediated immune responses 
to multiple viral proteins (Pepperl et al. 2000; Cayatte et al. 2013). Combined with 
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the culturing of cells on microcarriers, the addition of the viral terminase inhibitors 
and purification of dense bodies by tangential flow filtration allowed scalable pro-
duction without any reduction in purity or safety (Schneider-Ohrum et al. 2016).

13.4  Animal Models for Preclinical Trials

13.4.1  Guinea Pig CMV (GPCMV) Models

GPCMV, but not MCMV, causes infection in utero, which makes GPCMV animal 
models useful for the demonstration of “proof-of-concept” toward the development 
of cCMV vaccine strategies. Humans and guinea pigs, but no other rodents, display 
similar placental structures, i.e., a hemomonochorial maternofetal barrier (Kaufmann 
and Davidoff 1977). Guinea pigs also show some similarities in placental develop-
ment, and its relatively long (~10  weeks) gestation period can be classified into 
trimester- like divisions as in humans. In addition to stillbirths and intrauterine 
growth restrictions, hearing impairment can also be demonstrated using a guinea 
pig model of congenital infection. We demonstrated GPCMV transmission from 
mother to fetus via the placenta and hematogenous viral spread to the perilymph and 
ganglion in the inner ear of the fetus (Katano et al. 2007). In addition to studies on 
pathogenesis, the presence of GPCMV homologs of HCMV Pentamer components 
and their involvement in the infection of macrophages and efficient dissemination in 
animals make the GPCMV model useful for studies of Pentamer-based vaccine 
strategies (Nozawa et al. 2008; Yamada et al. 2009, 2014; Auerbach et al. 2014).

GPCMV lacking three potential MHC-I homologs, gp147, gp148, and gp149, 
was highly attenuated in animals (Crumpler et al. 2009). The virus produced ele-
vated IFN-γ levels and higher antibody titers than did the wild-type, although the 
deletion of the three genes had no impact on MHC-I downregulation. As a live vac-
cine, the virus exhibited comparable protection against pup mortality in the con-
genital infection model. Similarly, GPCMV strains lacking a chemokine MIP 
homolog and a viral protein kinase R inhibitor, respectively, were also attenuated, 
and vaccination with these strains resulted in reduced maternal viral loads, pup 
mortality, and congenital infection rates (Leviton et al. 2013; Schleiss et al. 2015). 
These studies imply that removal of the immune evasion genes from live vaccine 
strains may improve the efficacy of vaccines in protecting against cCMV diseases 
and provide more safety features.

A DNA vaccine expressing GPCMV gB, but not that expressing pp65, protected 
against virus transmission (Schleiss et al. 2003). A DNA vaccine based on GPCMV 
BAC, the growth of which was disabled by knocking out its UL48 homolog gene, 
reduced viral loads and both dam and pup mortality (Schleiss et al. 2006). Various 
adjuvant systems have also been examined for gB protein-based vaccination using 
guinea pig models (Schleiss et  al. 2004, 2014). To understand the mechanisms  
for gB vaccine protection, we analyzed the spread of the challenge viruses in the  
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placentas and fetuses of guinea pig dams immunized with recombinant adenoviruses 
expressing GPCMV gB and β-galactosidase (Hashimoto et al. 2013). Focal local-
ization of viral antigens in the spongiotrophoblast layer suggests cell-to-cell viral 
spread in the placenta. Even in the presence of high gB antibody titers with high- 
avidity indices in fetuses, CMV spread to most organs in a small proportion of lit-
termates. Our results suggest that gB antibodies protected against infection mainly 
at the interface of the placenta rather than from the placenta to the fetus.

The guinea pig model has also been used to examine some vectored vaccines. 
Alphavirus- and MVA-vectored pp65 induced humoral and cellular immunity and 
improved pregnancy outcomes (Schleiss et al. 2007; Gillis et al. 2014). Increased 
pup survival, pup weights, and gestation time were also demonstrated by immuniza-
tion with rLCMVs expressing either gB or pp65, although the increases were only 
statistically significant in gB-immunized animals (Cardin et  al. 2016). Using the 
same vector system, combined vaccination with gB and pp65 conferred additive 
protection (Schleiss et al. 2017), which is inconsistent with the results reported from 
the same group for the combination of pp65-expressing MVA with gB-expressing 
MVA, which reduced antibody response against gB (Swanson et al. 2015).

13.4.2  Rhesus CMV Models

Nonhuman primates are considered as excellent models that recapitulate HCMV 
infection and immunity; however, there are some limitations, including problems 
with handling, cost, and the unavailability of inbred and knockout (KO) animals. 
Among nonhuman primates, macaques have been widely used in various studies. 
Several CMV isolates were obtained from rhesus and cynomolgus macaques, and 
their whole genome sequences were determined (Hansen et al. 2003; Marsh et al. 
2011; Russell et al. 2016). Studies on cross-species infection between rhesus and 
cynomolgus macaques demonstrated multiple layers of cross-species restriction 
between the closely related hosts, including cell tropism and the evasion of apopto-
sis as critical determinants (Burwitz et al. 2016). Genomic and proteomic analyses 
of RhCMV strains and the genetic restoration or deletion of particular genes sets 
using BAC clones demonstrated that Pentamer homologs, the genes in UL/b’ region, 
and the genes for immune evasion are required for efficient in vivo CMV replication 
and dissemination (Lilja and Shenk 2008; Malouli et al. 2012; Assaf et al. 2014).

As described in Sect. 13.3, the vaccination of rhesus macaques with MVA- or 
DNA-based vaccines expressing RhCMV gB, pp65, IE1, or Pentamer or with 
 inactivated whole virions induced humoral and cellular immunity, and the viral 
challenge of vaccinated animals showed a reduction in viremia and viral shedding 
after viral challenge (Yue et al. 2006, 2007, 2008; Abel et al. 2011; Wussow et al. 
2013).

Fetal inoculation of rhesus macaques with RhCMV results in neuropathologic 
outcomes similar to those associated with cCMV diseases in humans (reviewed in 
Barry et al. 2006). Recently, the first vertical transmission model was established by 
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using RhCMV-free rhesus macaque dams treated by intravenous inoculation of 
RhCMV during the early second trimester of pregnancy, with or without CD4 + T-cell 
depletion (Bialas et al. 2015). Vertical transmission of RhCMV was observed in all 
T-cell-depleted as well as in two of three immunocompetent dams. Higher plasma 
and amniotic fluid viral loads were observed in the depleted dams. Further, fetal loss 
or CMV-associated sequelae in infants were observed in all CD4 + T-cell-depleted 
dams, while the immunocompetent dams carried fetuses to term, indicating that 
maternal CD4 + T-cell immunity is important for controlling maternal viremia and 
inducing protective immune response against fetal CMV diseases. This model was 
also used for the analysis of the characteristics of the early maternal RhCMV- 
specific humoral immune response (Fan et al. 2017) and for the demonstration of 
protection of cCMV infection by the adaptive transfer of RhCMV-specific antibod-
ies (Nelson et al. 2017). Although this rhesus macaque cCMV transmission model 
is a useful precursor to clinical trials, particularly for the confirmation of vaccine 
efficacy, the high cost, limited availability of the RhCMV-free animals and artificial 
nature of CD4+ T-cell depletion mean that guinea pig models are still required for 
the early phase of “proof-of-concept” studies.

13.5  Perspective

Some CMV vaccine candidates demonstrate encouraging results; however, there are 
still no vaccines for cCMV that have progressed to Phase 3 trials. In spite of the 
serious need for CMV vaccines, knowledge about CMV infection and diseases is 
still limited in most societies, and routine surveillance for cCMV has not yet estab-
lished anywhere, resulting in poor infrastructure and little support from society for 
large-scale clinical studies. Financial constraints in governmental agencies and pri-
vate companies have discouraged the development of innovative vaccines and clini-
cal studies of developed vaccines in large-scale trials. We need to break this vicious 
circle and fill the gap between the scientific efforts and the public conceptions to 
reach to our final goal, that is, the implementation of practical CMV vaccines.

References

Abel K, Martinez J, Yue Y et al (2011) Vaccine-induced control of viral shedding following rhesus 
cytomegalovirus challenge in rhesus macaques. J Virol 85:2878–2890

Adler SP (2008) Human CMV vaccine trials: what if CMV caused a rash? J Clin Virol 41:231–236
Adler SP, Starr SE, Plotkin SA et al (1995) Immunity induced by primary human cytomegalovirus- 

infection protects against secondary infection among women of childbearing age. J Infect Dis 
171:26–32

Adler SP, Plotkin SA, Gonczol E et  al (1999) A canarypox vector expressing cytomegalovirus 
(CMV) glycoprotein B primes for antibody responses to a live attenuated CMV vaccine 
(Towne). J Infect Dis 180:843–846

13 Vaccine Development for Cytomegalovirus



290

Adler SP, Manganello AM, Lee R et al (2016) A phase 1 study of 4 live, recombinant human cyto-
megalovirus Towne/Toledo chimera vaccines in cytomegalovirus-seronegative men. J  Infect 
Dis 214:1341–1348

Adler S, Lewis N, Conlon A et al (2017) Phase 1 clinical trial of a replication-defective human 
cytomegalovirus (CMV) vaccine. ID Week 2017 presentation

Arav-Boger R, Wojcik GL, Duggal P et al (2012) Polymorphisms in toll-like receptor genes influ-
ence antibody responses to cytomegalovirus glycoprotein B vaccine. BMC Res Notes 5:140

Arvin AM, Fast P, Myers M et al (2004) Vaccine development to prevent cytomegalovirus disease: 
report from the National Vaccine Advisory Committee. Clin Infect Dis 39:233–239

Assaf BT, Mansfield KG, Strelow L et al (2014) Limited dissemination and shedding of the UL128 
complex-intact, UL/b’-defective rhesus cytomegalovirus strain 180.92. J Virol 88:9310–9320

Auerbach MR, Yan D, Vij R et al (2014) A neutralizing anti-gH/gL monoclonal antibody is protec-
tive in the guinea pig model of congenital CMV infection. PLoS Pathog 10:e1004060

Barry PA, Lockridge KM, Salamat S et al (2006) Nonhuman primate models of intrauterine cyto-
megalovirus infection. ILAR J 47:49–64

Berencsi K, Gyulai Z, Gönczöl E et  al (2001) A canarypox vector-expressing cytomegalovirus 
(CMV) phosphoprotein 65 induces long-lasting cytotoxic T cell responses in human CMV- 
seronegative subjects. J Infect Dis 183:1171–1179

Bernstein DI, Reap EA, Katen K et al (2009) Randomized, double-blind, phase 1 trial of an alpha-
virus replicon vaccine for cytomegalovirus in CMV seronegative adult volunteers. Vaccine 
28:484–493

Bernstein DI, Munoz FM, Callahan ST et al (2016) Safety and efficacy of a cytomegalovirus gly-
coprotein B (gB) vaccine in adolescent girls: a randomized clinical trial. Vaccine 34:313–319

Bialas KM, Tanaka T, Tran D et al (2015) Maternal CD4+ T cells protect against severe congenital 
cytomegalovirus disease in a novel nonhuman primate model of placental cytomegalovirus 
transmission. Proc Natl Acad Sci U S A 112:13645–13650

Boppana SB, Britt WJ (1995) Antiviral antibody responses and intrauterine transmission after 
primary maternal cytomegalovirus infection. J Infect Dis 171:1115–1121

Britt WJ (2017) Congenital human cytomegalovirus infection and the enigma of maternal immu-
nity. J Virol 91:e02392-16

Bunde T, Kirchner A, Hoffmeister B et al (2005) Protection from cytomegalovirus after transplan-
tation is correlated with immediate early 1-specific CD8 T cells. J Exp Med 201:1031–1036

Burwitz BJ, Malouli D, Bimber BN et al (2016) Cross-species rhesus cytomegalovirus infection of 
cynomolgus macaques. PLoS Pathog 12:e1006014

Cardin RD, Bravo FJ, Pullum DA et al (2016) Replication-defective lymphocytic choriomeningitis 
virus vectors expressing guinea pig cytomegalovirus gB and pp65 homologs are protective 
against congenital guinea pig cytomegalovirus infection. Vaccine 34:1993–1999

Cayatte C, Schneider-Ohrum K, Wang Z et  al (2013) Cytomegalovirus vaccine strain Towne- 
derived dense bodies induce broad cellular immune responses and neutralizing antibodies that 
prevent infection of fibroblasts and epithelial cells. J Virol 87:11107–11120

Cha TA, Tom E, Kemble GW et al (1996) Human cytomegalovirus clinical isolates carry at least 
19 genes not found in laboratory strains. J Virol 70:78–83

Chandramouli S, Malito E, Nguyen T et al (2017) Structural basis for potent antibody-mediated 
neutralization of human cytomegalovirus. Sci Immunol 2:eaan1457

Chang WLW, Barry PA (2010) Attenuation of innate immunity by cytomegalovirus IL-10 
establishes a long-term deficit of adaptive antiviral immunity. Proc Natl Acad Sci U S A 
107:22647–22652

Chang WL, Baumgarth N, Yu D, Barry PA (2004) Human cytomegalovirus-encoded interleu-
kin- 10 homolog inhibits maturation of dendritic cells and alters their functionality. J  Virol 
78:8720–8731

Chatterjee A, Harrison CJ, Britt WJ, Bewtra C (2001) Modification of maternal and congenital 
cytomegalovirus infection by anti-glycoprotein b antibody transfer in guinea pigs. J Infect Dis 
183:1547–1553

N. Inoue et al.



291

Chaudhuri S, Lowen B, Chan G et al (2009) Human cytomegalovirus interacts with toll-like recep-
tor 2 and CD14 on syncytiotrophoblasts to stimulate expression of TNFα mRNA and apoptosis. 
Placenta 30:994–1001

Chiuppesi F, Wussow F, Johnson E et  al (2015) Vaccine-derived neutralizing antibodies to the 
human cytomegalovirus gH/gL pentamer potently block primary cytotrophoblast infection. 
J Virol 89:11884–11898

Chiuppesi F, Kaltcheva T, Meng Z et al (2017) Identification of a continuous neutralizing epitope 
within UL128 of human cytomegalovirus. J Virol 91:e01857–e01816

Ciferri C, Chandramouli S, Donnarumma D et al (2015a) Structural and biochemical studies of 
HCMV gH/gL/gO and Pentamer reveal mutually exclusive cell entry complexes. Proc Natl 
Acad Sci U S A 112:1767–1772

Ciferri C, Chandramouli S, Leitner A et al (2015b) Antigenic characterization of the HCMV gH/
gL/gO and Pentamer cell entry complexes reveals binding sites for potently neutralizing human 
antibodies. PLoS Pathog 11:e1005230

Coaquette A, Bourgeois A, Dirand C et al (2004) Mixed cytomegalovirus glycoprotein B geno-
types in immunocompromised patients. Clin Infect Dis 39:155–161

Corrales-Aguilar E, Trilling M, Hunold K et al (2014) Human cytomegalovirus Fcγ binding pro-
teins gp34 and gp68 antagonize Fcγ receptors I, II and III. PLoS Pathog 10:e1004131

Crumpler MM, Choi KY, McVoy MA, Schleiss MR (2009) A live guinea pig cytomegalovirus 
vaccine deleted of three putative immune evasion genes is highly attenuated but remains 
immunogenic in a vaccine/challenge model of congenital cytomegalovirus infection. Vaccine 
27:4209–4218

Cui X, Meza BP, Adler SP, McVoy MA (2008) Cytomegalovirus vaccines fail to induce epithelial 
entry neutralizing antibodies comparable to natural infection. Vaccine 26:5760–5766

Dempsey AF, Pangborn HM, Prosser LA (2012) Cost-effectiveness of routine vaccination of ado-
lescent females against cytomegalovirus. Vaccine 30:4060–4066

Dropulic LK, Cohen JI (2012) The challenge of developing a herpes simplex virus 2 vaccine. 
Expert Rev Vaccines 11:1429–1440

Eberhardt MK, Deshpande A, Chang WLW et al (2013) Vaccination against a virus-encoded cyto-
kine significantly restricts viral challenge. J Virol 87:11323–11331

Elkington R, Walker S, Crough T et al (2003) Ex vivo profiling of CD8+-T-cell responses to human 
cytomegalovirus reveals broad and multispecific reactivities in healthy virus carriers. J Virol 
77:5226–5240

Fan Q, Nelson CS, Bialas KM et al (2017) Plasmablast response to primary rhesus cytomegalo-
virus infection in a monkey model of congenital CMV transmission. Clin Vaccine Immunol 
24:e00510-16

Fornara C, Cassaniti I, Zavattoni M et al (2017) Human cytomegalovirus-specific memory CD4+ 
T-Cell response and its correlation with virus transmission to the fetus in pregnant women with 
primary infection. Clin Infect Dis 65:1659–1665

Fouts AE, Chan P, Stephan J-PP et al (2012) Antibodies against the gH/gL/UL128/UL130/UL131 
complex comprise the majority of the anti-cytomegalovirus (anti-CMV) neutralizing antibody 
response in CMV hyperimmune globulin. J Virol 86:7444–7447

Fowler KB, Stagno S, Pass RF et al (1992) The outcome of congenital cytomegalovirus infection 
in relation to maternal antibody status. N Engl J Med 326:663–667

Fowler KB, Stagno S, Pass RF (2003) Maternal immunity and prevention of congenital cytomega-
lovirus infection. J Am Med Assoc 289:1008–1011

Freed DC, Tang Q, Tang A et al (2013) Pentameric complex of viral glycoprotein H is the primary 
target for potent neutralization by a human cytomegalovirus vaccine. Proc Natl Acad Sci U S 
A 110:E4997–E5005

Fu TM, Wang D, Freed DC et al (2012) Restoration of viral epithelial tropism improves immuno-
genicity in rabbits and rhesus macaques for a whole virion vaccine of human cytomegalovirus. 
Vaccine 30:7469–7474

13 Vaccine Development for Cytomegalovirus



292

Fukui Y, Shindoh K, Yamamoto Y et al (2008) Establishment of a cell-based assay for screening of 
compounds inhibiting very early events in the cytomegalovirus replication cycle and character-
ization of a compound identified using the assay. Antimicrob Agents Chemother 52:2420–2427

Gerna G, Sarasini A, Patrone M et al (2008) Human cytomegalovirus serum neutralizing antibod-
ies block virus infection of endothelial/epithelial cells, but not fibroblasts, early during primary 
infection. J Gen Virol 89:853–865

Gillis PA, Hernandez-Alvarado N, Gnanandarajah JS et al (2014) Development of a novel, guinea 
pig-specific IFN-gamma ELISPOT assay and characterization of guinea pig cytomegalovirus 
GP83-specific cellular immune responses following immunization with a modified vaccinia 
virus Ankara (MVA)-vectored GP83 vaccine. Vaccine 32:3963–3970

Griffiths PD, Stanton A, McCarrell E et al (2011) Cytomegalovirus glycoprotein-B vaccine with 
MF59 adjuvant in transplant recipients: a phase 2 randomised placebo-controlled trial. Lancet 
377:1256–1263

Ha S, Li F, Troutman MC et al (2017) Neutralization of diverse human cytomegalovirus strains 
conferred by antibodies targets viral gH/gL/pUL128-131 pentameric complex. J  Virol 
91:e02033–e02016

Hahn G, Revello MG, Patrone M et  al (2004) Human cytomegalovirus UL131-128 genes are 
indispensable for virus growth in endothelial cells and virus transfer to leukocytes. J  Virol 
78:10023–10033

Hansen SG, Strelow LI, Franchi DC et  al (2003) Complete sequence and genomic analysis of 
rhesus cytomegalovirus. J Virol 77:6620–6636

Hashimoto K, Yamada S, Katano H et  al (2013) Effects of immunization of pregnant guinea 
pigs with guinea pig cytomegalovirus glycoprotein B on viral spread in the placenta. Vaccine 
31:3199–3205

Heineman TC, Schleiss M, Bernstein DI et al (2006) A phase 1 study of 4 live, recombinant human 
cytomegalovirus Towne/Toledo chimeric vaccines. J Infect Dis 193:1350–1360

Ikuta K, Minematsu T, Inoue N et al (2013) Cytomegalovirus (CMV) glycoprotein H-based sero-
logical analysis in Japanese healthy pregnant women, and in neonates with congenital CMV 
infection and their mothers. J Clin Virol 58:474–478

Ishibashi K, Tokumoto T, Tanabe K et al (2007) Association of the outcome of renal transplanta-
tion with antibody response to cytomegalovirus strain-specific glycoprotein H epitopes. Clin 
Infect Dis 45:60–67

Jacobson MA, Adler SP, Sinclair E et al (2009) A CMV DNA vaccine primes for memory immune 
responses to live-attenuated CMV (Towne strain). Vaccine 27:1540–1548

Kabanova A, Perez L, Lilleri D et al (2014) Antibody-driven design of a human cytomegalovirus 
gHgLpUL128L subunit vaccine that selectively elicits potent neutralizing antibodies. Proc Natl 
Acad Sci U S A 111:17965–17970

Kang SH, Abdel-Massih RC, Brown RA et al (2012) Homozygosity for the toll-like receptor 2 
R753Q single-nucleotide polymorphism is a risk factor for cytomegalovirus disease after liver 
transplantation. J Infect Dis 205:639–646

Katano H, Sato Y, Tsutsui Y et al (2007) Pathogenesis of cytomegalovirus-associated labyrinthitis 
in a guinea pig model. Microbes Infect 9:183–191

Kaufmann P, Davidoff M (1977) The guinea-pig placenta. Adv Anat Embryol Cell Biol 53:5–91
Kenneson A, Cannon MJ (2007) Review and meta-analysis of the epidemiology of congenital 

cytomegalovirus (CMV) infection. Rev Med Virol 17:253–276
Kharfan-Dabaja MA, Boeckh M, Wilck MB et  al (2012) A novel therapeutic cytomegalovirus 

DNA vaccine in allogeneic haemopoietic stem-cell transplantation: a randomised, double- 
blind, placebo-controlled, phase 2 trial. Lancet Infect Dis 12:290–299

Kirchmeier M, Fluckiger AC, Soare C et  al (2014) Enveloped virus-like particle expression of 
human cytomegalovirus glycoprotein B antigen induces antibodies with potent and broad neu-
tralizing activity. Clin Vaccine Immunol 21:174–180

Koyano S, Inoue N, Nagamori T et al (2009) Dried umbilical cords in the retrospective diagnosis 
of congenital cytomegalovirus infection as a cause of developmental delays. Clin Infect Dis 
48:e93–e95

N. Inoue et al.



293

Koyano S, Inoue N, Oka A et al (2011) Screening for congenital cytomegalovirus infection using 
newborn urine samples collected on filter paper: feasibility and outcomes from a multicentre 
study. BMJ Open 1:e000118

Krause PR, Bialek SR, Boppana SB et al (2013) Priorities for CMV vaccine development. Vaccine 
32:4–10

La Rosa C, Longmate J, Lacey SF et al (2012) Clinical evaluation of safety and immunogenicity 
of PADRE-cytomegalovirus (CMV) and tetanus-CMV fusion peptide vaccines with or without 
PF03512676 adjuvant. J Infect Dis 205:1294–1302

La Rosa C, Longmate J, Martinez J et al (2017) MVA vaccine encoding CMV antigens safely 
induces durable expansion of CMV-specific T cells in healthy adults. Blood 129:114–125

La Torre R, Nigro G, Mazzocco M et al (2006) Placental enlargement in women with primary 
maternal cytomegalovirus infection is associated with fetal and neonatal disease. Clin Infect 
Dis 43:994–1000

Lacey SF, La Rosa C, Zhou W et al (2006) Functional comparison of T cells recognizing cyto-
megalovirus pp65 and intermediate-early antigen polypeptides in hematopoietic stem-cell 
transplant and solid organ transplant recipients. J Infect Dis 194:1410–1421

Landais I, Pelton C, Streblow D et  al (2015) Human cytomegalovirus miR-UL112-3p targets 
TLR2 and modulates the TLR2/IRAK1/NFκB signaling pathway. PLoS Pathog 11:e1004881

Leviton MP, Lacayo JC, Choi KY et al (2013) An attenuated cytomegalovirus vaccine with a dele-
tion of a viral chemokine gene is protective against congenital CMV transmission in a guinea 
pig model. Clin Dev Immunol 2013:906948

Lilja AE, Shenk T (2008) Efficient replication of rhesus cytomegalovirus variants in multiple rhe-
sus and human cell types. Proc Natl Acad Sci U S A 105:19950–19955

Lilleri D, Fornara C, Furione M et al (2007) Development of human cytomegalovirus-specific T 
cell immunity during primary infection of pregnant women and its correlation with virus trans-
mission to the fetus. J Infect Dis 195:1062–1070

Lilleri D, Kabanova A, Lanzavecchia A, Gerna G (2012) Antibodies against neutralization epit-
opes of human cytomegalovirus gH/gL/pUL128-130-131 complex and virus spreading may 
correlate with virus control in vivo. J Clin Immunol 32:1324–1331

Lilleri D, Kabanova A, Revello MG et al (2013) Fetal human cytomegalovirus transmission cor-
relates with delayed maternal antibodies to gH/gL/pUL128-130-131 complex during primary 
infection. PLoS One 8:e0059863

Loomis RJ, Lilja AE, Monroe J  et  al (2013) Vectored co-delivery of human cytomegalovirus 
gH and gL proteins elicits potent complement-independent neutralizing antibodies. Vaccine 
31:919–926

Loughney JW, Rustandi RR, Wang D et al (2015) Soluble human cytomegalovirus gH/gL/pUL128-
 131 pentameric complex, but not gH/gL, inhibits viral entry to epithelial cells and presents 
dominant native neutralizing epitopes. J Biol Chem 290:15985–15995

Macagno A, Bernasconi NL, Vanzetta F et al (2010) Isolation of human monoclonal antibodies that 
potently neutralize human cytomegalovirus infection by targeting different epitopes on the gH/
gL/UL128-131A complex. J Virol 84:1005–1013

Maidji E, McDonagh S, Genbacev O et al (2006) Maternal antibodies enhance or prevent cytomeg-
alovirus infection in the placenta by neonatal Fc receptor-mediated transcytosis. Am J Pathol 
168:1210–1226

Majima R, Shindoh K, Yamaguchi T, Inoue N (2017) Characterization of a thienylcarboxamide 
derivative that inhibits the transactivation functions of cytomegalovirus IE2 and varicella zoster 
virus IE62. Antivir Res 140:142–150

Malouli D, Nakayasu ES, Viswanathan K et al (2012) Reevaluation of the coding potential and pro-
teomic analysis of the BAC-derived rhesus cytomegalovirus strain 68-1. J Virol 86:8959–8973

Marsh AK, Willer DO, Ambagala APN et al (2011) Genomic sequencing and characterization of 
cynomolgus macaque cytomegalovirus. J Virol 85:12995–13009

Mele F, Fornara C, Jarrossay D et al (2017) Phenotype and specificity of T cells in primary human 
cytomegalovirus infection during pregnancy: IL-7Rpos long-term memory phenotype is asso-
ciated with protection from vertical transmission. PLoS One 12:e0187731

13 Vaccine Development for Cytomegalovirus



294

McDonagh S, Maidji E, Chang HT, Pereira L (2006) Patterns of human cytomegalovirus infection 
in term placentas: a preliminary analysis. J Clin Virol 35:210–215

Mori T, Kanda Y, Takenaka K et al (2017) Safety of ASP0113, a cytomegalovirus DNA vaccine, 
in recipients undergoing allogeneic hematopoietic cell transplantation: an open-label phase 2 
trial. Int J Hematol 105:206–212

Nahum A, Dadi H, Bates A, Roifman CM (2012) The biological significance of TLR3 vari-
ant, L412F, in conferring susceptibility to cutaneous candidiasis, CMV and autoimmunity. 
Autoimmun Rev 11:341–347

Nakamura R, Rosa C, La LJ et al (2016) Viraemia, immunogenicity, and survival outcomes of 
cytomegalovirus chimeric epitope vaccine supplemented with PF03512676 (CMVPepVax) in 
allogeneic haemopoietic stem-cell transplantation: randomised phase 1b trial. Lancet Haematol 
3:e87–e98

NCT01974206 News release (2016) HP of Vical (www.vical.com/investors/news-releases/News-
Release-Details/2016/Vical-and-Astellas-Announce-Topline-Results-from-a-Phase-2-Study-
of-Investigational-Cytomegalovirus-CMV-Vaccine-ASP0113-in-Kidney-Transplant-Patients/
default.aspx)

NCT01877655 News release (2017) HP of Vical (www.vical.com/investors/news-releases/News-
Release-Details/2017/Vical-Announces-Completion-of-the-Phase-3-ASP0113-CMV-Vaccine-
Trial/default.aspx)

NCT02798692 News release (2017) HP of Hooki (www.29c5yd3ksizu1pn67922fy74.wpengine.
netdna-cdn.com/wp-content/uploads/2017/05/Hookipa-press-release-HB-101-Data-at-CMV-
Conference-4-May-2017.pdf)

NCT02826798 News release (2017) HP of VBI vacinnes (www.vbivaccines.com/wire/
cmv-phase-i-clinical-study-update-may-2017/)

Nelson CS, Cruz DV, Tran D et al (2017) Preexisting antibodies can protect against congenital 
cytomegalovirus infection in monkeys. JCI Insight 2:94002

Nozawa N, Koyano S, Yamamoto Y et al (2007) Real-time PCR assay using specimens on filter 
disks as a template for detection of cytomegalovirus in urine. J Clin Microbiol 45:1305–1307

Nozawa N, Yamamoto Y, Fukui Y et al (2008) Identification of a 1.6 kb genome locus of guinea pig 
cytomegalovirus required for efficient viral growth in animals but not in cell culture. Virology 
379:45–54

Nozawa N, Fang-Hoover J, Tabata T et al (2009) Cytomegalovirus-specific, high-avidity IgG with 
neutralizing activity in maternal circulation enriched in the fetal bloodstream. J  Clin Virol 
46:S58–S63

Ogawa H, Suzutani T, Baba Y et al (2007) Etiology of severe sensorineural hearing loss in chil-
dren: independent impact of congenital cytomegalovirus infection and mutations. J Infect Dis 
195:782–788

Pass RF, Duliegè AM, Boppana S et al (1999) A subunit cytomegalovirus vaccine based on recom-
binant envelope glycoprotein B and a new adjuvant. J Infect Dis 180:970–975

Pass RF, Zhang C, Evans A et al (2009) Vaccine prevention of maternal cytomegalovirus infection. 
N Engl J Med 360:1191–1199

Peggs KS, Verfuerth S, Pizzey A et al (2003) Adoptive cellular therapy for early cytomegalovi-
rus infection after allogeneic stem-cell transplantation with virus-specific T-cell lines. Lancet 
362:1375–1377

Pepperl S, Münster J, Mach M et  al (2000) Dense bodies of human cytomegalovirus induce 
both humoral and cellular immune responses in the absence of viral gene expression. J Virol 
74:6132–6146

Pereira L, Maidji E, McDonagh S et  al (2003) Human cytomegalovirus transmission from the 
uterus to the placenta correlates with the presence of pathogenic bacteria and maternal immu-
nity. J Virol 77:13301–13314

Petty TJ, Todd Callahan S, Chen Q et al (2010) Assessment of parental acceptance of a potential 
cytomegalovirus vaccine for adolescent females. Vaccine 28:5686–5690

Puchhammer-Stockl E, Gorzer I (2006) Cytomegalovirus and Epstein-Barr virus subtypes--the 
search for clinical significance. J ClinVirol 36:239–248

N. Inoue et al.

http://www.vical.com/investors/news-releases/News-Release-Details/2016/Vical-and-Astellas-Announce-Topline-Results-from-a-Phase-2-Study-of-Investigational-Cytomegalovirus-CMV-Vaccine-ASP0113-in-Kidney-Transplant-Patients/default.aspx
http://www.vical.com/investors/news-releases/News-Release-Details/2016/Vical-and-Astellas-Announce-Topline-Results-from-a-Phase-2-Study-of-Investigational-Cytomegalovirus-CMV-Vaccine-ASP0113-in-Kidney-Transplant-Patients/default.aspx
http://www.vical.com/investors/news-releases/News-Release-Details/2016/Vical-and-Astellas-Announce-Topline-Results-from-a-Phase-2-Study-of-Investigational-Cytomegalovirus-CMV-Vaccine-ASP0113-in-Kidney-Transplant-Patients/default.aspx
http://www.vical.com/investors/news-releases/News-Release-Details/2016/Vical-and-Astellas-Announce-Topline-Results-from-a-Phase-2-Study-of-Investigational-Cytomegalovirus-CMV-Vaccine-ASP0113-in-Kidney-Transplant-Patients/default.aspx
http://www.vical.com/investors/news-releases/News-Release-Details/2017/Vical-Announces-Completion-of-the-Phase-3-ASP0113-CMV-Vaccine-Trial/default.aspx
http://www.vical.com/investors/news-releases/News-Release-Details/2017/Vical-Announces-Completion-of-the-Phase-3-ASP0113-CMV-Vaccine-Trial/default.aspx
http://www.vical.com/investors/news-releases/News-Release-Details/2017/Vical-Announces-Completion-of-the-Phase-3-ASP0113-CMV-Vaccine-Trial/default.aspx
http://www.29c5yd3ksizu1pn67922fy74.wpengine.netdna-cdn.com/wp-content/uploads/2017/05/Hookipa-press-release-HB-101-Data-at-CMV-Conference-4-May-2017.pdf
http://www.29c5yd3ksizu1pn67922fy74.wpengine.netdna-cdn.com/wp-content/uploads/2017/05/Hookipa-press-release-HB-101-Data-at-CMV-Conference-4-May-2017.pdf
http://www.29c5yd3ksizu1pn67922fy74.wpengine.netdna-cdn.com/wp-content/uploads/2017/05/Hookipa-press-release-HB-101-Data-at-CMV-Conference-4-May-2017.pdf
http://www.vbivaccines.com/wire/cmv-phase-i-clinical-study-update-may-2017/
http://www.vbivaccines.com/wire/cmv-phase-i-clinical-study-update-may-2017/


295

Raftery MJ, Wieland D, Gronewald S et al (2004) Shaping phenotype, function, and survival of 
dendritic cells by cytomegalovirus-encoded IL-10. J Immunol 173:3383–3391

Reap EA, Morris J, Dryga SA et al (2007) Development and preclinical evaluation of an alphavirus 
replicon particle vaccine for cytomegalovirus. Vaccine 25:7441–7449

Revello MG, Lilleri D, Zavattoni M et al (2006) Lymphoproliferative response in primary human 
cytomegalovirus (HCMV) infection is delayed in HCMV transmitter mothers. J  Infect Dis 
193:269–276

Revello MG, Lazzarotto T, Guerra B et al (2014) A randomized trial of hyperimmune globulin to 
prevent congenital cytomegalovirus. N Engl J Med 370:1316–1326

Riddell SR, Watanabe KS, Goodrich JM et al (1992) Restoration of viral immunity in immunode-
ficient humans by the adoptive transfer of T cell clones. Science 257:238–241

Ross SA, Arora N, Novak Z et  al (2010) Cytomegalovirus reinfections in healthy seroimmune 
women. J Infect Dis 201:386–389

Russell JNH, Marsh AK, Willer DO et al (2016) A novel strain of cynomolgus macaque cytomega-
lovirus: implications for host-virus co-evolution. BMC Genomics 17:1–17

Schleiss MR, Bourne N, Bernstein DI (2003) Preconception vaccination with a glycoprotein B 
(gB) DNA vaccine protects against cytomegalovirus (CMV) transmission in the guinea pig 
model of congenital CMV infection. J Infect Dis 188:1868–1874

Schleiss MR, Bourne N, Stroup G et  al (2004) Protection against congenital cytomegalovirus 
infection and disease in guinea pigs, conferred by a purified recombinant glycoprotein B vac-
cine. J Infect Dis 189:1374–1381

Schleiss MR, Stroup G, Pogorzelski K, McGregor A (2006) Protection against congenital cyto-
megalovirus (CMV) disease, conferred by a replication-disabled, bacterial artificial chromo-
some (BAC)-based DNA vaccine. Vaccine 24:6175–6186

Schleiss MR, Lacayo JC, Belkaid Y et al (2007) Preconceptual administration of an alphavirus 
replicon UL83 (pp65 homolog) vaccine induces humoral and cellular immunity and improves 
pregnancy outcome in the guinea pig model of congenital cytomegalovirus infection. J Infect 
Dis 195:789–798

Schleiss MR, Choi KY, Anderson J et al (2014) Glycoprotein B (gB) vaccines adjuvanted with 
AS01 or AS02 protect female guinea pigs against cytomegalovirus (CMV) viremia and off-
spring mortality in a CMV-challenge model. Vaccine 32:2756–2762

Schleiss MR, Bierle CJ, Swanson EC et al (2015) Vaccination with a live attenuated cytomega-
lovirus devoid of a protein kinase R inhibitory gene results in reduced maternal viremia and 
improved pregnancy outcome in a guinea pig congenital infection model. J Virol 89:9727–9738

Schleiss MR, Berka U, Watson E et al (2017) Additive protection against congenital cytomegalo-
virus conferred by combined glycoprotein B/pp65 vaccination using a lymphocytic choriomen-
ingitis virus vector. ClinVaccine Immunol 24:e00300–e00316

Schneider-Ohrum K, Cayatte C, Liu Y et al (2016) Production of cytomegalovirus dense bodies 
by scalable bioprocess methods maintains immunogenicity and improves neutralizing antibody 
titers. J Virol 90:10133–10144

Scott GM, Chow SS, Craig ME et al (2012) Cytomegalovirus infection during pregnancy with 
maternofetal transmission induces a proinflammatory cytokine bias in placenta and amniotic 
fluid. J Infect Dis 205:1305–1310

Siewiera J, El Costa H, Tabiasco J et al (2013) Human cytomegalovirus infection elicits new decid-
ual natural killer cell effector functions. PLoS Pathog 9:e1003257

Slavuljica I, Busche A, Babić M et al (2010) Recombinant mouse cytomegalovirus expressing a 
ligand for the NKG2D receptor is attenuated and has improved vaccine properties. J Clin Invest 
120:4532–4545

Stratton KR, Durch JS, Lawrence RS (2000) Vaccines for the 21st century. National Academy 
Press, Washington, DC

Swanson EC, Gillis P, Hernandez-Alvarado N et al (2015) Comparison of monovalent glycoprotein 
B with bivalent gB/pp65 (GP83) vaccine for congenital cytomegalovirus infection in a guinea 
pig model: Inclusion of GP83 reduces gB antibody response but both vaccine approaches pro-
vide equivalent protection against p. Vaccine 33:4013–4018

13 Vaccine Development for Cytomegalovirus



296

Sylwester A, Mitchell B, Edgar J et al (2005) Broadly targeted human cytomegalovirus-specific 
CD4+ and CD8+ T cells dominate the memory compartments of exposed subjects. J Exp Med 
202:673–685

Taniguchi R, Koyano S, Suzutani T et  al (2013) Polymorphisms in TLR-2 are associated with 
congenital cytomegalovirus (CMV) infection but not with congenital CMV disease. Int J Infect 
Dis 17:e1092–e1097

Tomić A, Varanasi PR, Golemac M et al (2016) Activation of innate and adaptive immunity by 
a recombinant human cytomegalovirus strain expressing an NKG2D ligand. PLoS Pathog 
12:e1006015

Walter EA, Greenberg PD, Gilbert MJ et al (1995) Reconstitution of cellular immunity against 
cytomegalovirus in recipients of allogeneic bone marrow by transfer of T-cell clones from the 
donor. N Engl J Med 333:1038–1044

Wang D, Shenk T (2005a) Human cytomegalovirus virion protein complex required for epithelial 
and endothelial cell tropism. Proc Natl Acad Sci U S A 102:18153–18158

Wang D, Shenk T (2005b) Human cytomegalovirus UL131 open reading frame is required for 
epithelial cell tropism. J Virol 79:10330–10338

Wang Z, La Rosa C, Maas R et al (2004) Recombinant modified vaccinia virus Ankara expressing 
a soluble form of glycoprotein B causes durable immunity and neutralizing antibodies against 
multiple strains of human cytomegalovirus. J Virol 78:3965–3976

Wang D, Li F, Freed DC et al (2011) Quantitative analysis of neutralizing antibody response to 
human cytomegalovirus in natural infection. Vaccine 29:9075–9080

Wang D, Freed DC, He X et al (2016) A replication-defective human cytomegalovirus vaccine for 
prevention of congenital infection. Sci Transl Med 8:362ra145

Weisblum Y, Panet A, Zakay-Rones Z et al (2011) Modeling of human cytomegalovirus maternal- 
fetal transmission in a novel decidual organ culture. J Virol 85:13204–13213

Weisblum Y, Panet A, Zakay-Rones Z et  al (2015) Human cytomegalovirus induces a distinct 
innate immune response in the maternal-fetal interface. Virology 485:289–296

Wen Y, Monroe J, Linton C et al (2014) Human cytomegalovirus gH/gL/UL128/UL130/UL131A 
complex elicits potently neutralizing antibodies in mice. Vaccine 32:3796–3804

Wussow F, Yue Y, Martinez J et al (2013) A vaccine based on the rhesus cytomegalovirus UL128 
complex induces broadly neutralizing antibodies in rhesus macaques. J Virol 87:1322–1332

Wussow F, Chiuppesi F, Martinez J et al (2014) Human cytomegalovirus vaccine based on the 
envelope gH/gL pentamer complex. PLoS Pathog 10:e1004524

Yamada S, Nozawa N, Katano H et al (2009) Characterization of the guinea pig cytomegalovirus 
genome locus that encodes homologs of human cytomegalovirus major immediate-early genes, 
UL128, and UL130. Virology 391:99–106

Yamada S, Fukuchi S, Hashimoto K et al (2014) Guinea pig cytomegalovirus GP129/131/133, 
homologues of human cytomegalovirus UL128/130/131A, are necessary for infection of 
monocytes and macrophages. J Gen Virol 95:1376–1382

Yue Y, Kaur A, Zhou SS, Barry PA (2006) Characterization and immunological analysis of the 
rhesus cytomegalovirus homologue (Rh112) of the human cytomegalovirus UL83 lower matrix 
phosphoprotein (pp65). J Gen Virol 87:777–787

Yue Y, Kaur A, Eberhardt MK et al (2007) Immunogenicity and protective efficacy of DNA vac-
cines expressing rhesus cytomegalovirus glycoprotein B, phosphoprotein 65-2, and viral inter-
leukin- 10 in rhesus macaques. J Virol 81:1095–1109

Yue Y, Wang Z, Abel K et  al (2008) Evaluation of recombinant modified vaccinia Ankara 
virus-based rhesus cytomegalovirus vaccines in rhesus macaques. Med Microbiol Immunol 
197:117–123

N. Inoue et al.



Part III
Gammaherpesviruses



299© Springer Nature Singapore Pte Ltd. 2018 
Y. Kawaguchi et al. (eds.), Human Herpesviruses, Advances in Experimental 
Medicine and Biology 1045, https://doi.org/10.1007/978-981-10-7230-7_14

Chapter 14
KSHV Genome Replication 
and Maintenance in Latency

Keiji Ueda

Abstract Kaposi’s sarcoma-associated herpesvirus (KSHV), also called human 
herpesvirus-8 (HHV-8), is the eighth human herpesvirus found by Yuan Chang and 
Patrick Moore, 1992. It is a Rhadinovirus belonging to the gamma herpesvirus sub-
family. As known for many gamma herpesviruses, KSHV is also well-correlated to 
several cancer formations such as Kaposi’s sarcoma, primary effusion lymphoma 
(PEL), and multicentric Castleman’s disease. Different from the other herpesvirus 
subfamily, gamma herpesviruses establish latency as a default infection strategy 
when they infect to the target cells, as KSHV is present as the latent form in the 
related cancers. In the latency, the virus expresses a limited number of the genes 
such as latency-associated nuclear antigen (LANA), v-cyclin (v-CYC, ORF72), 
v-FLIP (K13), kaposin (K12), and 25 microRNAs (K-miRNAs). The virus replicates 
according to cellular replication machinery with a viral replication origin (ori-P) 
and LANA. Then, the replicated genome is segregated equally to daughter cells by 
appearance to maintain the virus genome copy number per cell. The virus makes the 
most use of cellular machinery to achieve this end. In this chapter, I would like to 
review KSHV replication and gene expression in the latency and discuss.

Keywords Kaposi’s sarcoma-associated herpesvirus (KSHV) or human herpesvi-
rus- 8 (HHV-8) · Latency · ori-P · LANA (ORF73) · v-cyclin (v-CYC, ORF72) · 
v-FLIP (K13) · Kaposin (K12) · Kaposi’s sarcoma (KS) · Primary effusion lym-
phoma (PEL) · Multicentric Castleman’s disease (MCD)
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14.1  Introduction

Kaposi’s sarcoma-associated herpesvirus (KSHV) is a human gamma herpesvirus 
found from Kaposi’s sarcoma in 1992 by Moore and Chang (Chang et al. 1994). 
This is the second γ-herpesvirus to infect human. As known well for many gamma 
herpesviruses, the virus is well-associated with several cancers such as Kaposi’s 
sarcoma (KS), primary effusion lymphoma (PEL), and multicentric Castleman’s 
disease (MCD) and is the most important etiologic factor for these malignancies 
(Boshoff and Weiss 1998, 2001; Boshoff and Chang 2001).

KSHV is disseminated worldwide and incidental to high human immunodefi-
ciency virus (HIV)-disseminated area such as south Saharan Africa, where KSHV 
infection is a kind of endemic disease. In the developed country, KSHV incidence 
is limited to a few percent, and high incidence is restricted to homosexual men, 
though classical KS in which KSHV is a real etiologic agent is seen in some district 
such as Sicily (Boshoff and Weiss 2001).

Infection pathway of KSHV is thought to be by salivary shedding as a major root 
as seen for the other herpesvirus infection. Some study has shown that the antibody- 
positive patient against KSHV increased as the age up to adolescent (Hengge et al. 
2002; Plancoulaine et al. 2000; Andreoni et al. 2002). In case of homosexual men, 
KSHV could be sexually transmitted through secretion of sex organs (Martin et al. 
1998). Generally, the virus infects epithelial cells and amplifies slightly at the infec-
tion site in situ and then goes to infect major target cells. In case of KSHV, the major 
target cells appear to be B lymphocytes (Ambroziak et al. 1995; Duus et al. 2004) 
but also endothelial cells, and KSHV establishes latency as a default infection 
course (Grundhoff and Ganem 2004). It is not known that primary infection of 
KSHV causes acute viral infection/disease, though there is some report on that 
(Karass et al. 2017).

KSHV and EBV are well-related to some lymphoma: primary effusion lym-
phoma for KSHV and Burkitt lymphoma for EBV. These malignancies maintain the 
viral episome, which can replicate their genome according to cell cycle, and the 
replicated genomes are apparently segregated and the copy number is maintained at 
the same number as the cell genome is replicated, segregated, and maintained accu-
rately. That is, there should be a highly sophisticated tactics for the accuracy.

In this chapter, we summarize and discuss especially viral replication and gene 
expression strategy of KSHV latency.

14.2  γ-herpesvirus Subfamily and Its Related Diseases

KSHV belongs to γ2-herpesvirus subfamily of Herpesviridae that is known for 
establishment of the latency state after infection (Verma and Robertson 2003). 
α-Herpesvirus such as herpes simplex virus-1 (HSV-1) or human herpesvirus-1 
(HHV-1), herpes simplex virus-2 (HSV-2) or human herpesvirus-2 (HHV-2), and 
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varicella-zoster virus (VZV) or human herpesvirus-3 (HHV-3) establish their 
latency especially in neuronal cells of infected bodies, and β-herpesviruses such as 
human cytomegalovirus (HCMV) or human herpesvirus-5 (HHV-5), human herpes-
virus- 6 (HHV-6), and human herpesvirus-7 (HHV-7) seem to establish in peripheral 
blood mononuclear cells except B lymphocytes (Pellett 2013). These herpesviruses 
do not appear to establish latency in  vitro infection system using cultured cells 
(Virgin et al. 2009).

On the other hand, γ-herpesvirus such as Epstein-Barr virus (EBV) or human 
herpesvirus-4 (HHV-4) and Kaposi’s sarcoma-associated herpesvirus (KSHV as 
noted already) or human herpesvirus-8 (HHV-8) usually establish latency as a 
default process both in in vivo and in vitro. Ordinary target cells of EBV and KSHV 
are B lymphocytes, although EBV infects the other peripheral blood mononuclear 
cells such as NK cells and gastric epithelial cells (Longnecker et  al. 2013) and 
KSHV infects blood/lymph vessel endothelial cells (Damania and Cesarman 2013), 
though some reported that KSHV could also infect the mononuclear cells such as 
monocytes, macrophage, and dendritic cells (see Table 14.1).

14.3  Establishment of KSHV Latency

After primary amplification of the virus at the infection site, the daughter viruses are 
disseminated around the body and reach the cells to establish latency especially in 
B lymphocytes and blood/lymph vessel endothelial cells (Damania and Cesarman 
2013). Importantly, in KSHV-related diseases such as Kaposi’s sarcoma (KS), pri-
mary effusion lymphoma (PEL), and multicentric Castleman’s disease (MCD), 
KSHV is in the latency (Cesarman et al. 1995; Soulier et al. 1995).

14.4  KSHV Genome and Genes

The genome of KSHV in the infectious particles is a linearized double-stranded 
DNA whose size is about 170 kb including terminal repeats at the genome ends 
(Fig. 14.1). The linearized DNA genome is circularized to be an episome after entry 
into the cells (Fig. 14.1) (Veettil et al. 2014), the mechanism of which has not been 
well understood. The episome is maintained in the nucleus, and such form must be 
important to express viral genes (Knipe et al. 2013).

There are 80 genes or more encoded in the genome, and all the genes are 
expressed during lytic replication (Dourmishev et  al. 2003). In the case of large 
DNA viruses, genes are determined based on open reading frames, and thus, in a 
strict sense, it is unknown how many genes were encoded in the genome, and the 
gene density appears extremely high compared with those of the cellular genome. 
Therefore, the viral gene expression regulation must be very elaborate. Herpesviruses 
usually express their genes in a cascade in the lytic replication phase, in which 

14 KSHV Genome Replication and Maintenance in Latency



Ta
bl

e 
14

.1
 

C
la

ss
ifi

ca
tio

n 
of

 h
um

an
 h

er
pe

sv
ir

us
es

Su
bf

am
ily

G
en

us
M

em
be

rs
A

bb
re

vi
at

io
n

Pr
im

ar
y 

la
te

nc
y 

si
te

s
Pr

im
ar

y 
in

fe
ct

io
n

R
ec

ur
re

nc
e 

or
 la

te
nc

y 
as

so
ci

at
ed

 
di

se
as

es

A
lp

ha
he

rp
es

vi
ri

na
e

Si
m

pl
ex

vi
ru

s
H

er
pe

s 
si

m
pl

ex
 1

 v
ir

us
 

(h
um

an
 h

er
pe

sv
ir

us
-1

)
H

SV
-1

 
(H

H
V

-1
)

Se
ns

or
y 

ga
ng

lia
St

om
at

iti
s,

 c
or

ne
al

 
he

rp
es

, h
er

pe
tic

 
en

ce
ph

al
iti

s

C
ol

d 
so

re
s

A
lp

ha
he

rp
es

vi
ri

na
e

Si
m

pl
ex

vi
ru

s
H

er
pe

s 
si

m
pl

ex
 1

 v
ir

us
 

(h
um

an
 h

er
pe

sv
ir

us
-2

)
H

SV
-2

 
(H

H
V

-2
)

Se
ns

or
y 

ga
ng

lia
G

en
ita

l u
lc

er
s

G
en

ita
l u

lc
er

s

A
lp

ha
he

rp
es

vi
ri

na
e

Va
ri

ce
ll

ov
ir

us
V

ar
ic

el
la

-z
os

te
r 

vi
ru

s 
(h

um
an

 h
er

pe
sv

ir
us

-3
)

V
Z

V
 

(H
H

V
-3

)
Se

ns
or

y 
ga

ng
lia

C
hi

ck
en

 p
ox

Sh
in

gl
es

B
et

ah
er

pe
sv

ir
in

ae
C

yt
om

eg
al

ov
ir

us
C

yt
om

eg
al

ov
ir

us
 

(h
um

an
 h

er
pe

sv
ir

us
-5

)
C

M
V

 
(H

H
V

-5
)

Se
cr

et
or

y 
gl

an
ds

, 
ly

m
ph

or
et

ic
ul

ar
 

ce
lls

, k
id

ne
ys

, e
tc

.

In
fe

ct
io

us
 

m
on

on
uc

le
os

is
, 

co
ng

en
ita

l C
M

V
 

(C
N

Sa  i
nv

ol
ve

m
en

t, 
he

ar
in

g 
lo

ss
, f

at
al

 
pn

eu
m

on
iti

s,
 e

tc
.)

D
is

se
m

in
at

ed
 d

is
ea

se
s 

in
 

im
m

un
oc

om
pr

om
is

ed
 h

os
ts

 
(C

M
V

 r
et

in
iti

s,
 p

ne
um

on
ia

, 
es

op
ha

gi
tis

, e
tc

.)

B
et

ah
er

pe
sv

ir
in

ae
R

os
eo

lo
vi

ru
s

H
um

an
 h

er
pe

sv
ir

us
-6

H
H

V
-6

Se
cr

et
or

y 
gl

an
ds

, 
ly

m
ph

or
et

ic
ul

ar
 

ce
lls

, k
id

ne
ys

, e
tc

.

E
xa

nt
hu

m
 s

ub
itu

m
M

ul
tip

le
 s

cl
er

os
is

?
E

nc
ep

ha
lit

is
?

B
et

ah
er

pe
sv

ir
in

ae
R

os
eo

lo
vi

ru
s

H
um

an
 h

er
pe

sv
ir

us
-7

H
H

V
-7

Se
cr

et
or

y 
gl

an
ds

, 
ly

m
ph

or
et

ic
ul

ar
 

ce
lls

, k
id

ne
ys

, e
tc

.

E
xa

nt
hu

m
 s

ub
itu

m
U

nk
no

w
n

G
am

m
ah

er
pe

sv
ir

in
ae

Ly
m

ph
oc

ry
pt

ov
ir

us
E

ps
te

in
-B

ar
r 

vi
ru

s 
(h

um
an

 h
er

pe
sv

ir
us

-4
)

E
B

V
 

(H
H

V
-4

)
B

 ly
m

ph
oc

yt
es

In
fe

ct
io

us
 

m
on

on
uc

le
os

is
B

ur
ki

tt 
ly

m
ph

om
a,

 H
od

gk
in

’s
 

ly
m

ph
om

a,
 g

as
tr

ic
 c

ar
ci

no
m

a,
 

ch
ro

ni
c 

ly
m

ph
op

ro
lif

er
at

iv
e 

di
se

as
e

G
am

m
ah

er
pe

sv
ir

in
ae

R
ha

di
no

vi
ru

s
K

ap
os

i’s
 s

ar
co

m
a-

 
as

so
ci

at
ed

 v
ir

us
 

(h
um

an
 h

er
pe

sv
ir

us
-8

)

K
SH

V
 

(H
H

V
-8

)
B

 ly
m

ph
oc

yt
es

, 
en

do
th

el
ia

l c
el

ls
K

IC
Sb ?

K
ap

os
i’s

 s
ar

co
m

a,
 p

ri
m

ar
y 

ef
fu

si
on

 ly
m

ph
om

a,
 m

ul
tip

le
 

C
as

tle
m

an
’s

 d
is

ea
se

a C
N

S 
ce

nt
ra

l n
er

vo
us

 s
ys

te
m

b K
IC

S 
K

SH
V

 in
fla

m
m

at
or

y 
cy

to
ki

ne
 s

yn
dr

om
e



303

immediate early (IE) gene expression leads to early (E) gene expression followed 
by late (L) gene expression (Renne et al. 1996; Sun et al. 1999; Jenner et al. 2001). 
IE genes encode regulatory genes such as transcription factors.

Viruses usually express their genes just leading to lytic replication to produce 
daughter viruses after successful infection. In case of KSHV, probably this scenario 
progresses up to some steps and then quits somehow without reaching daughter 
virus production. Such abortive infection course seems to be a default process for 
KSHV (Krishnan et al. 2004), and thus KSHV infection usually goes to establish-
ment of latency.

14.5  KSHV Latency

Latent infection means that virus does not produce any daughter virion and just 
expresses a limited number of genes required for maintenance of the latency. 
Otherwise, there is no viral gene expression. In case of KSHV, it seems that the 
virus establishes latency in B lymphocytes and endothelial cells in the infected body 
(Grundhoff and Ganem 2004; Krishnan et  al. 2004) where latent genes such as 
latency-associated nuclear antigen (LANA), v-cyclin (v-CYC, ORF72), viral FLICE 
inhibitory protein (v-FLIP), and kaposin (K12), 12 microRNA (K-miRNA), and viral 

Terminal repeats: TR, 801bp a unit

unique region: ~140 kb
TR:801x40~50

Fig. 14.1 KSHV transmission and genome. KSHV is mainly transmitted through saliva with 
exception of sexual transmission in homosexual men. The KSHV genome is a double-stranded 
linear DNA in the particles, and after infected into target cells, the genome is circularized at the end 
of the genome, which is called episomes and present in the infected nucleus
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interferon regulatory factor 3 (v-IRF3) are expressed (Burysek and Pitha 2001; 
Dittmer et  al. 1998). Among them, LANA, v-cyclin, v-FLIP, kaposin, and 12 
K-miRNA are clustered in one gene locus, though K-miRNA and kaposin (K12) are 
transcribed as independent genes (Dittmer et al. 1998; Sarid et al. 1999).

Thus, in the KSHV latency, two limited regions of the KSHV genome are tran-
scriptionally active different from EBV, in which latent genes are transcribed 
genome-wide (Fig. 14.2) (Longnecker et  al. 2013). This difference has not been 
understood well, but the epigenetic status is completely different, and KSHV gene 
expression is more tightly regulated (Zhang et al. 2014).

14.6  LANA, the Main Regulator of KSHV Latency

LANA is encoded by ORF73 and consists of 1021–1162 amino acids that are 
divided into the N-terminal region, the central region, and the C-terminal region 
(Wei et al. 2016). The N-terminal region contains a dominant nuclear localization 
signal and a histone H2A/H2B-binding region that interacts with host chromo-
somes. The C-terminal region has a DNA-binding domain interacting with LANA- 
binding sites (LBS) in the terminal repeat (TR) sequence of the genome and a 
dimerization domain which could be important for LANA to dimerize and bind with 
the LBS.
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Fig. 14.2 KSHV transcription program in latency. KSHV genes (ORFs) are schematically shown. 
Red letters and regions show actively expressing genes in latency. There are two loci transcribed 
actively in latency, a locus around LANA and vIRF3. The transcription occurs in situ not genome 
wide. The green and the pink regions show an immediate early gene (ORF50, RTA) and lytic rep-
lication origins, respectively
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On the other hand, the central region of LANA consisted of very peculiar amino 
acid sequences that are an aspartate/glutamate-rich region (DDEE) and a glutamine- 
rich region which could be divided into QQQEP(L), QQQR(Q)EP, QQQDE/QQDE, 
and LEEQEQ regions. DDEE, QQQEP(L), QQQR(Q)EP, and LEEQEQ are rela-
tively maintained among clones. Some functional motifs such as an Elongin 
BC-interacting domain (BC-box) and a SUMO-interacting domain (SIM) at the 
front of the DDEE region are also reported and it is not clear how important the 
other motifs (P-rich, DE, and Q-rich) are.

Most of LANA-interacting proteins have been reported to bind with N- or 
C-terminal region which means that the region should be important for function of 
LANA. Since the peculiar central region is maintained through the long virus evo-
lution, the central region might have some important functions for the virus, 
though there is some variance of repetitious unit among KSHV clones (Fig. 14.3) 
(Gao et al. 1999).

LANA is a multifunctional protein and has a pivotal role to maintain latency by 
controlling transcription, replication, and maintenance of the genome. Especially, 
LANA binds with terminal repeats (TR) through the C-terminal DNA-binding 
region and with host chromosomes through the N-terminal histone-binding region. 
This activity is crucially important for KSHV genome replication followed by seg-
regation and maintenance in latency (Ballestas et al. 1999; Cotter and Robertson 
1999). In the KSHV latency, KSHV genome replication is totally dependent on 
cellular DNA replication cycle and utilizes cellular replication machinery. LANA 
binds with LBS and recruits cellular replication machinery such as origin recogni-
tion complex (ORC) consisting of ORC1, ORC2, ORC3, ORC4, ORC5, and ORC6 
on the TR to initiate viral DNA replication (Stedman et al. 2004; Verma et al. 2006). 
This process is followed by CDC6 and Cdt1 and then MCM2-7 complex recruit-
ment to complete pre-replication complex formation. The recruitment of preRC is 
carried out by interaction of LANA and ORC proteins through the C-terminal region 
of LANA. Thus, the multistep cellular DNA replication process and strictly con-
trolled DNA replication licensing system assuring one replication cycle per cell 
cycle is made the most use by LANA (Sun et al. 2014).

KSHV DNA replication in latency is initiated from a viral replication origin 
called ori-P present in TR, though some other multiple replication origins were 
reported recently (ref). The viral ori-P consists of two LBS and 32 bp GC-rich seg-
ment (32GC) LBS, where LANA should recruit cellular replication components as 
mentioned above (Hu and Renne 2005; Ohsaki and Ueda 2012). The detail of the 
viral DNA replication initiation, however, has not been clarified yet, and thus impor-
tance of 32GC is unclear. Thus, there is no report on the real bubbling formation at 
the viral replication initiation and replication timing during S phase. The latter 
could be the middle or the late S phase, since TR is probably the state of heterochro-
matin or heterochromatin-like structure (Sakakibara et al. 2004), which is a rigid 
DNA conformation and reported to replicate at late S phase (Dimitrova and Gilbert 
1999; Klochkov et al. 2009; Schwaiger et al. 2010).

LANA binds with LBS through its C-terminal DNA-binding region as a dimer as 
mentioned above. LBS is necessary for the viral replication but not sufficient so that 

14 KSHV Genome Replication and Maintenance in Latency



306

Fig. 14.3 Variation of LANA amino acids sequence. Eleven LANA amino acids sequences are 
lined up to compare
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Fig. 14.3 (continued)
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Fig. 14.3 (continued)
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Fig. 14.3 (continued)
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Fig. 14.3 (continued)
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32GC is also required. The full activity of the viral replication needs full length of 
LANA and at least the N-terminal chromosome-binding region and the C-terminal 
DNA-binding region including the leucine zipper region. It was reported that LANA 
without the central region could support the viral replication in the latency (Hu and 
Renne 2005; Hu et al. 2002). Efficient replication, however, seems to require the full 
length of LANA. In this term, it is interesting that place of cellular DNA replication 
takes place at the nuclear matrix and cellular pre-replication complex factors are 
recruited at the place, since LANA without the central region mainly accumulates 
in chromatin fraction but not in nuclear matrix with less efficient replication, while 
full length of LANA is localized mainly at nuclear matrix with full efficiency 
(Ohsaki et al. 2009; Ohsaki and Ueda 2012). Therefore, the central region of LANA 
might have a functional role for localizing at nuclear matrix, which has remained to 
be solved in detail.

LANA should also have an important role for the viral DNA segregation after the 
viral DNA replication according to cell cycle. LANA binds with LBS of the KSHV 
genome through its C-terminal DNA-binding region. LANA shows a dot-like struc-
ture in the KSHV-infected nucleus, where the KSHV episome is present (Ballestas 
and Kaye 2001). The KSHV genome copy number appears to be maintained at the 
same copy number in each KSHV-infected PEL cell line (Ueda et al. 2006; Verma 
et al. 2007; Ballestas and Kaye 2011). To maintain the same genome copy number 
as cellular chromosomes are maintained at the same number, there must be a strict 
mechanism such as a spindle checkpoint. If KSHV genome segregation is governed 
by cellular spindle checkpoint, there should be viral factors and genome functional 
units controlled by such. Some report showed that LANA is localized around cen-
tromeres of condensed chromosomes with interaction with a cellular spindle check-
point factor such as Bub1 (Xiao et  al. 2010). This fact is very attractive, since 
replicated KSHV genome should be governed by cellular spindle-assembly check-
point machinery and correct segregation should be assured to maintain the same 
viral genome copy number.

From the other observation, however, LANA localization on the condensed chro-
mosomes is very varied and is scattered on the condensed chromosomes and at the 
chromosome body, around telomere region rather than at the centromere region 
(Rahayu et al. 2016). Thus, it is unlikely that LANA itself is regulated by the cel-
lular spindle checkpoint. Probably, LANA connects a KSHV genome and a chro-
mosome, and the KSHV genome replicates in situ according to the cellular 
replication cycle. The replicated KSHV genome positions at the similar region of 
the chromosome as the chromosome is condensed in the G2-M phase (Fig. 14.4).

LANA is involved in cellular gene expression. LANA upregulates a dozen of 
cellular genes such as CDKN1A, CDK4, HDAC1, MCL1, BAP1, TNFRSF10B, 
CDKN2A, JUN, and so on (Wei et al. 2016). In reverse, LANA suppresses several 
TGFβ-II receptor (TβRII), TNF, etc., modestly (Di Bartolo et al. 2008).

As for viral gene expression, LANA is supposed to be a negative regulator, i.e., 
LANA inhibits RTA (replication and transcription activator, a key lytic replication 
inducer) expression by associating recombination signal sequence-binding protein 
Jκ (RBP-Jκ) (Lan et al. 2004). LANA can interact with heterochromatin protein 1 
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(HP1) on LANA-binding sites of the KSHV terminal repeat region to recruit 
Suv39h1, which is a histone methyltransferase, which recognizes HP1 binding with 
di-/trimethylated histone H3K9 and could propagate heterochromatin on the viral 
genome (Sakakibara et al. 2004). As a result, the KSHV genome is generally tran-
scriptionally silent over the genome and a limited region is active for the gene 
expression. This point is totally different from EBV, and EBV transcription in the 
latency is genome-wide as mentioned before (Fig. 14.2).

14.7  v-CYC, a Cyclin D Homolog to Facilitate Cell Cycle

Among the limited genes expressed in KSHV latency, v-CYC is transcribed as the 
same gene as LANA (Fig. 14.5). This is a cyclin D (CYC-D) homolog (Li et al. 
1997) (Fig. 14.6) and could be a viral oncogene. The cellular CYC-D makes a com-
plex with cyclin-dependent kinases such as CDK-4 and CDK-6 and promotes phos-
phorylation of Rb via CDC25A to leave a P1-E2F complex to facilitate expression 
of S-phase genes such as cyclin-A (CYC-A), cyclin-E (CYC-E), and so on (Direkze 
and Laman 2004).

Sole v-CYC overexpression is a kind of toxic to the cells, which means that sole 
v-CYC does not function as an oncogene and the other gene product should need to 
weaken the toxic effect (Verschuren et al. 2002; Koopal et al. 2007). In this term, 
LANA supports function of v-CYC by binding with GSK3ß, which makes an inhib-
itory phosphorylation on CDK4/6 (Fujimuro et al. 2003).

LANA

KSHV genome

outer kinetochore
(Bub1,CENP-F)

Pericentromere
centric heterochromatin

(HP1α)

centromere
Inner kinetochore cohesin

(SMC1, SMC3)

telomere/
peritelomere

(TRF1, TRF2)

metaphase anaphase

Fig. 14.4 Mechanism of KSHV genome segregation. LANA mediates the segregation of repli-
cated KSHV genomes according to cell cycle. (Retrieved from ref. Rahayu et al. 2016)
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14.8  v-FLIP, a Homolog of FLICE/CASPASE-8 Inhibitory 
Protein

v-FLIP is a homolog of FLIP (Fig. 14.7) and also a latently expressed gene encoded 
in the same locus of LANA, and the ORF is K13 (Thome et al. 1997). Classically, 
this gene was thought to be translated through IRES, but recently it has been shown 
to be transcribed as a unique alternatively spliced gene (Grundhoff and Ganem 
2001; Low et al. 2001). Although there is a specific antibody against v-FLIP and it 

K14  ORF74LANAv-Cycv-FLIP

ori-Lyt B

KapC

KapB

KapA

12345678910 1112

pA
118, 758

1.3kb

118, 799

123, 751/60

113, 436

123, 594

127, 813 127, 880/86

123, 776

127, 477

122, 060 123, 775123, 595122, 859

ORF69

Fig. 14.5 KSHV transcription program in latency. Gene organization of actively transcribed loci 
is shown. Red color means actively expressed genes of KSHV latency. Triangles are KSHV 
miRNA

Fig. 14.6 Homology between c-CYC and cellular cyclin D2. Overall, there is about 30% 
homology
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has been proved that the open reading frame of v-FLIP assuredly encodes v-FLIP 
by transfection study, there has not been a proof showing the expression in KSHV- 
infected PEL cells/cell lines and/or Kaposi’s sarcoma cells.

Many reports showed that v-FLIP interacted with IKKγ and activated IKKα/
IKKβ/IKKγ complex, which results in NFκB activation (Matta et  al. 2007a, b) 
(Fig. 14.8). The activation of NFκB is generally known to be important for cell death 
control, inflammation, oncogenesis, and so on (Cieniewicz et  al. 2016). Thus, 
v-FLIP itself has an oncogenic activity (Ballon et al. 2011). Furthermore, v-FLIP 
inhibits oncogenic stress-induced autophagy (Lee et al. 2009) and helps oncogenic 
activity of v-CYC (Leidal et al. 2012; Liang 2012), which makes an oncogenic stress.

NFκB activation by v-FLIP has another aspect for KSHV latency control. KSHV 
lytic replication is induced by expression of replication and transcription activator 
(RTA), which is an immediate early gene of the KSHV lytic genes and a homolog 
of BRLF (Rta) of Epstein-Barr virus (EBV) genes. RTA can activate various kinds 
of viral and/or cellular genes through the specific DNA-binding and the non-DNA- 
binding mechanism. In KSHV latency, RTA activation is suppressed basically by 
NFκB activation (Brown et al. 2003). Thus, v-FLIP-induced NFκB activation con-
trols KSHV reactivation from the latency not to be induced (Fig. 14.8).

14.9  Kaposin

kaposin is encoded next to the LANA-v-CYC-v-FLIP locus and translated into not 
only K12 ORF (kaposin-A) but also into two other frames, kaposin-B (KAP- B) and 
-C (KAP-C). This locus is reported to generate a transcript called T0.7 which means 
0.7 kb mRNA (Sadler et  al. 1999), and transcripts covering this region contains 
GC-rich direct repeat regions (DR1 and DR2), which are components of lytic repli-
cation origins. The predominant transcript in PEL cell lines includes the 5′-most 

Fig. 14.7 Homology between v-FLIP and c-FLIP. There is about 30% homology
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CUG codons and consisted of largely DR1 and DR2 and does not include K12 
ORF. The ORF is corresponding to KAP-B (frame 2) and generates 48kd protein in 
PEL cell lines (Sadler et al. 1999) (Fig. 14.5). The size is much bigger than the pre-
dicted size about 18kd, since the coding amino acids are 178aa long and probably it 
is modified extensively posttranslationally (McCormick and Ganem 2006).

In the functional aspects, the KAP-B activates the p38/MK2 pathway and stabi-
lizes cytokine mRNAs such as GM-CSF and IL-6 (McCormick and Ganem 2005). 
These features affect maintenance of KSHV latency and oncogenic phenotype of 
PEL; there has not been a report about knocking down of kaposin.

14.10  KSHV MicroRNAs (K-miRNAs)

Twelve pre-miRNAs are encoded in KHSV and processed into 25 mature miRNAs 
during KSHV latency (Marshall et al. 2007). The genes are located between kaposin 
and v-FLIP (Fig. 14.5) (Gottwein 2012). The details of transcription mechanism 
have not been elucidated yet. Many of them functions as maintenance of KSHV 
latency and are supposed to contribute KSHV-related pathogenesis (Boss et  al. 
2009; Lei et al. 2010a, b; Feldman et al. 2014).

IKKγ

IKKα IKKβ

vFLIP

p50 p65

IκBα

s s

p50 p65

IκBα

s s

proteasome

p50 p65p50 c-Rel

p50p50

gene RTA

survival, inflammation, oncogenesis

NFκB NFκB

Fig. 14.8 v-FLIP interacts with IKKγ and acts on IKKγ-IKKα-IKKβ function. Canonical path-
way of NFkB signal transduction is activated by v-FLIP, and thereafter NFkB responsible genes 
are activated. As for KSHV latency, the active NFkB suppresses KSHV reactivation
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14.11  Conclusions

There is no good system to observe how KSHV is involved in the related pathogen-
esis such as Kaposi’s sarcoma (KS), primary effusion lymphoma (PEL), and multi-
centric Castleman’s disease (MCD). Even though it has been reported that KSHV 
can infect primary endothelial cells, which is an origin of KS, and the other cell 
lines such as HEK293, Vero, and NIH3T3 cells and even more primary human B 
lymphocytes, we never observe KSHV transforming activity.

Although oncogenic activity of v-CYC and v-FLIP has been reported, the experi-
mental system was usually a single gene function analysis. As for oncogenesis by 
KSHV, lytic genes such as v-GPCR, K1, K2 (v-IL6), K15, and ORF16 (v-BCL2) 
should be functional, and we do not know why KSHV does not represent its onco-
genic activity even in  vitro. Thus, it is important to understand how KSHV is 
involved in the related oncogenesis. For this purpose, it is a critical issue to find an 
experimental system with which we can study KSHV causing malignancies.
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Chapter 15
Signal Transduction Pathways Associated 
with KSHV-Related Tumors

Tadashi Watanabe, Atsuko Sugimoto, Kohei Hosokawa, 
and Masahiro Fujimuro

Abstract Signal transduction pathways play a key role in the regulation of cell 
growth, cell differentiation, cell survival, apoptosis, and immune responses. 
Bacterial and viral pathogens utilize the cell signal pathways by encoding their own 
proteins or noncoding RNAs to serve their survival and replication in infected cells. 
Kaposi’s sarcoma-associated herpesvirus (KSHV), also known as human herpesvi-
rus 8 (HHV-8), is classified as a rhadinovirus in the γ-herpesvirus subfamily and 
was the eighth human herpesvirus to be discovered from Kaposi’s sarcoma speci-
mens. KSHV is closely associated with an endothelial cell malignancy, Kaposi’s 
sarcoma, and B-cell malignancies, primary effusion lymphoma, and multicentric 
Castleman’s disease. Recent studies have revealed that KSHV manipulates the cel-
lular signaling pathways to achieve persistent infection, viral replication, cell prolif-
eration, anti-apoptosis, and evasion of immune surveillance in infected cells. This 
chapter summarizes recent developments in our understanding of the molecular 
mechanisms used by KSHV to interact with the cell signaling machinery.

Keywords Akt · Apoptosis · Cell cycle · IFN · IRF · KSHV · MAPK · NF-κB · 
Notch · p53 · Signal transduction pathway · Viral microRNA · Viral noncoding 
RNA · Wnt/β-catenin

15.1  Introduction

It is well known that viruses can resort to hijacking the cellular machinery for sur-
vival and replication. Recently, it has become clear that Kaposi’s sarcoma- associated 
herpesvirus (KSHV), either directly or indirectly, targets the signal transduction 
pathways that are fundamental to many cellular processes such as proliferation, 
apoptosis, development, and the immune response.
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KSHV was isolated from a Kaposi’s sarcoma (KS) lesion of a patient with 
acquired immunodeficiency syndrome (AIDS) (Chang et al. 1994). KSHV is asso-
ciated with KS and is also linked to AIDS-related lymphoproliferative disorders, 
such as primary effusion lymphoma (PEL) and plasmablastic variant multicentric 
Castleman’s disease (Moore et al. 1996b; Russo et al. 1996). The neoplastic poten-
tial of KSHV has been well established, especially within the context of immuno-
suppressed patients who are undergoing organ transplant or those who are coinfected 
with human immunodeficiency virus. KSHV establishes a lifelong infection in its 
host and exists in either a latent or a lytic state. During latent infection, the KSHV 
genome circularizes to form an episome in the nucleus, leading to the expression of 
several latency-associated genes (including vFLIP/ORF71, vCyclin/ORF72, 
LANA/ORF73, Kaposin/K12, vIL6/K2, viral microRNAs (miRNAs), vIRFs, and 
so on) that affect cell proliferation and apoptosis through manipulation of the cel-
lular signaling, and contribute to KSHV-associated malignancies (Damania and 
Cesarman 2013). The latency-associated nuclear antigen (LANA) is also required 
for the maintenance of KSHV episomal DNA during latency and is expressed in all 
KSHV-associated malignancies from alternatively spliced transcripts that also 
encode vFLIP and vCyclin (Dittmer et al. 1998). LANA tethers the viral episomal 
genome to host chromosomes (Barbera et al. 2006) to ensure viral DNA replication 
and effective segregation in dividing cells (Hu et al. 2002; Grundhoff and Ganem 
2003). KSHV miRNAs, encoded by the KSHV genome, are highly expressed dur-
ing latency and in KS tumors and are strongly associated with the viral life cycle 
and development of tumors by directly (or indirectly) targeting gene expression and 
signaling pathways (Cai et al. 2005; Pfeffer et al. 2005). Upon reactivation, lytic- 
related genes are tightly regulated in a temporal and sequential manner, which can 
be divided into three transcriptional stages: immediate early, early, and late. The 
alternation of KSHV between lytic replication and latency depends on the immedi-
ate early gene RTA/ORF50, which triggers transcriptional activation of early genes 
including transcriptional activators for late genes and replication factors involved in 
viral DNA replication (Deng et al. 2007). Transcripts of early genes initiate DNA 
replication from the OliLyt site of the KSHV genome and transcription of late genes 
encoding structural and functional proteins for producing viral particles (Damania 
and Cesarman 2013; Deng et al. 2007).

The KSHV genome contains several pirated genes that are homologous with cel-
lular genes such as viral cyclin D2 (vCyclin), viral FLICE inhibitory protein 
(vFLIP), viral G protein-coupled receptor (vGPCR), viral interferon regulatory fac-
tors (vIRF1/K9, vIRF2/K11, vIRF3/K10.5–10.6, vIRF4/K10), viral Bcl-2 (vBcl-2/
ORF16), and viral interleukin-6 (vIL6) (Moore and Chang 1998; Choi et al. 2001), 
which directly (or indirectly) act on the cellular signaling pathways and contribute 
to KSHV-induced pathogenesis. These viral molecules mimic the cellular mole-
cules for cell proliferation, anti-apoptosis, and immune surveillance. Furthermore, 
other KSHV-encoded proteins manipulate signal transduction pathways of the cell 
in various ways for establishment and maintenance of infection and abolishment of 
cellular defense mechanisms, including apoptosis and the interferon (IFN) response. 
In particular, latency-expressing KSHV proteins are able to stimulate cell 
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 proliferation and improve host cell survival during viral latency, which correlates 
with proliferation of the infected B-cell populations and the development of B-cell 
malignancies. In order to hijack the host cell to function in the best interest of the 
virus, KSHV is able to manipulate proliferation and anti-apoptotic signaling path-
ways by targeting its regulatory molecules. In this chapter, we describe the strate-
gies used by KSHV at distinct stages of the viral life cycle to control signal 
transduction pathways and promote oncogenesis and viral persistence.

15.2  KSHV vIRFs and IFN-Related Signal Pathways

IFN-α and IFN-β, classified as the type-I IFNs, are the key cytokines activating 
antiviral responses via expression of various host genes, which suppress viral repli-
cation and induce apoptosis of the infected cells (Taniguchi and Takaoka 2002). The 
interferon regulatory factor (IRF) family proteins are the essential transcription fac-
tors for the expression of type-I IFNs and interferon-stimulated genes (ISGs) 
(Fig. 15.1). Two of the major pathways responsible for the activation of IRFs are 
TLR (Toll-like receptor) and RLR (RIG-I-like receptor) signaling pathways. Some 
TLRs and RLRs are the innate sensor molecules for pathogens including viral DNA 
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or RNA. These activation cascades result in phosphorylation of IRFs. Phosphorylated 
IRF3 and IRF7 form hetero- or homodimers. Another major pathway is the IFN 
signaling pathway via type-I IFN receptors. Type-I IFN receptor complexes associ-
ate with JAK1/Tyk2, recruiting and phosphorylating STAT1 and STAT2. Activated 
STAT1 and STAT2 form a heterodimer; additionally, the heterodimer forms a com-
plex with IRF9. The complex containing the STATs and IRF9 is termed the ISGF3 
complex. Consequently, IRF dimers or the ISGF3 complex translocates to the 
nucleus, directly binding to ISRE (interferon-stimulated response element), upregu-
lating the transcription of type-I IFN or ISGs harboring an ISRE.

KSHV encodes four homologous genes of cellular IRFs, known as viral IRFs 
(vIRF1, vIRF2, vIRF3, and vIRF4), at the K9–K11 locus of its genome. While 
vIRF1, vIRF2, and vIRF4 are classified as lytic genes, vIRF3 (also called LANA-2) 
is expressed in the nucleus of latent state PEL cells (Jacobs and Damania 2011). 
vIRFs share comparatively high sequence homology with the DNA-binding domain 
of cellular IRFs. However, several tryptophan (W) residues critical for DNA bind-
ing are not conserved in vIRFs (Tamura et al. 2008). Therefore, it is predicted that 
some vIRFs are defective or attenuated in their DNA-binding abilities.

vIRF3 has been shown to have a dominant-negative effect on IRF-3- and IRF-7- 
mediated transcription of the IFN-α promoter (Lubyova and Pitha 2000). 
Additionally, vIRF3 specifically interacts with IRF7 and inhibits the DNA-binding 
activity of IRF7. This inhibition results in suppression of IFN-α production and 
IFN-mediated immunity (Joo et al. 2007). vIRF3 also interacts with IRF5 and inhib-
its IRF5 binding to ISRE. Thus, vIRF3 counteracts IRF5-mediated signaling path-
ways, p53-independent apoptosis, and p21-mediated cell cycle arrest (Wies et al. 
2009). To account for these results and the DNA-binding disability of vIRFs, vIRF3 
plays a role as a decoy molecule to inhibit the formation of functional dimers of 
cellular IRFs. The IFN-induced protein kinase PKR is a sensor molecule of intracel-
lular double-stranded RNA (dsRNA; e.g., viral infection). After sensing, autophos-
phorylated PKR enhances elF-2a phosphorylation causing shutoff of the protein 
synthesis and activates a caspase cascade leading to apoptosis. vIRF3 antagonizes 
the PKR-mediated abrogation of protein synthesis and suppresses PKR-induced 
activation of caspase-3 (Esteban et al. 2003). vIRF3 associates with the c-Myc sup-
pressor MM-1α and enhances c-Myc-dependent cyclin-dependent kinase (Cdk) 4 
transcription. This association inhibits interaction between MM-1α and c-Myc. In 
addition, vIRF3 is recruited to the Cdk4 promoter, and histone acetylation of the 
promoter is enhanced. These findings suggest that vIRF3 not only cancels out 
MM-1α-mediated c-Myc suppression but also supports direct c-Myc-mediated tran-
scriptional activation (Lubyova et al. 2007). vIRF3 interacts with and inhibits p53 
phosphorylation and counteracts p53 oligomerization and DNA binding. 
Furthermore, vIRF3 induces p53 polyubiquitination and proteasomal degradation. 
Thus, vIRF-3 downregulates p53-mediated transcription (Baresova et al. 2014).

vIRF1 inhibits type-I and type-II signal transduction pathways, without distur-
bance of cellular IRF DNA-binding activities (Zimring et al. 1998; Gao et al. 1997). 
vIRF1 forms a dimer with IRF1 or IRF3 and inactivates transcriptional activity by 
inhibiting the histone acetyltransferase (HAT) activity of the CBP/p300 coactivator 
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complex (Burysek et  al. 1999; Li et  al. 2000; Lin et  al. 2001). vIRF1 targets 
apoptosis- related pathways. vIRF1 associates with pro-apoptotic protein Bim (Choi 
and Nicholas 2010) and Bid (Choi et al. 2012), which belong to the Bcl2 family of 
proteins. Bim, Bid, and other BH3 domain-only subfamily proteins activated by 
various apoptotic stimuli act as initiators of mitochondrial apoptosis. vIRF1 has a 
specific domain structure resembling the BH3-B domain of Bid, which interacts 
with the BH3 domain of Bid and contributes to an auto-inhibitory function. Thus, 
the interaction between vIRF1 and Bim/Bid suppresses mitochondrial apoptosis.

vIRF2 suppresses IRF1- and IRF3-dependent activation of the IFN-β promoter 
(Fuld et al. 2006). vIRF2 forms a complex with IRF3 and caspase-3 and induces 
caspase-3-dependent IRF3 degradation. This suggests that the degradation of IRF3 
by caspase-3 partially contributes to the attenuation of the IRF3-mediated antiviral 
response (Areste et al. 2009). Furthermore, vIRF2 attenuates type-I IFNs, inducing 
signaling. vIRF2 inhibits IFN-α-induced transactivation of ISRE and ISGF3 com-
plex binding to ISRE (Mutocheluh et al. 2011). Similar to vIRF3, vIRF2 interacts 
with PKR and inhibits autophosphorylation. This inhibition results in blocking the 
phosphorylation of H2A and eIF-2α, which are the substrates of PKR (Buryýšek 
and Pitha 2001). vIRF2 has the potency to function as a transcription factor. ChIP- 
seq revealed vIRF2-binding site mapping in the human genome. vIRF2 interacts 
with and modulates some specific promoters of PIK3C3, HMGCR, and HMGCL, 
genes related to autophagosome formation or tumor progression and metastasis (Hu 
et al. 2015).

Although little is known about the function of vIRF4 in IFN signaling, the effects 
of vIRF4 on cell proliferation have been revealed. vIRF4 inhibits the association of 
β-catenin/CBP cofactor at the cyclin D1 promoter, resulting in cell cycle progres-
sion and enhancement of viral replication (Lee et al. 2015). For B-cell development 
and functions, cellular IRF4-mediated c-Myc gene expression is essential. vIRF4 
markedly suppresses the expression of cellular IRF4 and c-Myc and competes with 
cellular IRF4 for the promoter region of the c-Myc gene (Lee et al. 2014). Of the 
three other vIRFs, only vIRF4 interacts with CBF1/Suppressor of Hairless/Lag-1 
and CSL (also known as RBP-Jκ), which functions as a DNA adaptor in Notch sig-
naling pathway. vIRF4 suppresses CSL/CBF1-mediated transcriptional activation, 
competing with Notch for CSL/CBF1 binding and signaling (Heinzelmann et al. 
2010).

RTA, an essential transcriptional activator for lytic infection of KSHV, functions 
as an E3 ubiquitin ligase. RTA induces ubiquitination and degradation of IRF7 (Yu 
et  al. 2005). Furthermore, RTA assists the proteasomal degradation of IRF3 and 
IRF7 by another E3 ubiquitin ligase, RAUL (Yu and Hayward 2010). Thus, RTA 
negatively regulates IFN signaling. K-bZIP/K8, encoded by KSHV early gene and 
classified in the basic-region leucine zipper (bZIP) family of transcription factors, 
directly binds to the IFN-β promoter and upregulates basal transcriptional activities 
at a low level. K-bZIP precludes maximal IFN-β gene transcription by inhibition of 
IRF3 recruitment to the IFN-β promoter (Lefort et al. 2007). ORF45, an immediate- 
early gene encoding a viral tegument protein, associates with IRF7 and blocks the 
phosphorylation and nuclear translocation of IRF7 (Zhu et  al. 2002). JAK1 and 
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JAK2 activated by type-II IFN receptors bind to IFNγ, which phosphorylates 
STAT1. Activated STAT1 forms a homodimer, translocates to the nucleus, directly 
binds to GAS (interferon-γ-activated site), and enhances gene transcription. K3 and 
K5, viral ubiquitin E3 ligases, downregulate the type-II IFN receptor by protea-
somal degradation (Li et al. 2007).

15.3  Viral miRNAs and Signaling Pathways

miRNA, a type of small noncoding RNA (approximately 22 nucleotide (nt)), is com-
mitted to a broad variety of biological functions via its ability to regulate gene 
expression (Bartel 2004). Mature miRNA and its protein complex, RNA-induced 
silencing complex (RISC), binds to the 3′-UTR of target mRNA and downregulates 
gene expression by inducing the degradation of the mRNA or inhibition of the gene 
transcription. The precursors of miRNA, pri-miRNA, are the large transcripts (~hun-
dreds to thousands nt) directly transcribed from the coding region of the genome. 
The pri-miRNA forms a hairpin loop structure via its self-complementary sequence. 
Pri-miRNA is cleaved by endonuclease Drosha into short stem-loop RNA (approxi-
mately 70 nt), named pre-miRNA. Pre-miRNA exported from the nucleus by expor-
tin associates with another endonuclease, Dicer, in the cytoplasm. Dicer converts 
pre-miRNA into a mature miRNA duplex consisting of dsRNA, by eliminating the 
loop structure of pre-miRNA.  The RISC incorporates one strand of the miRNA 
duplex into its complex and specifically associates with the 3′-UTR of the mRNA.

It has been shown that the regulatory system of miRNA is not only conserved 
among eukaryotes but also viruses including KSHV (Strahan et al. 2016). Although 
KSHV expresses limited latent proteins during its latency, it is likely that KSHV 
expresses 18 to 25 mature miRNAs (Cai et al. 2005; Samols et al. 2005; Lin et al. 
2010). These mature miRNAs are derived from 12 pre-miRNA molecules, which 
are encoded and clustered on the kaposin K12 locus and its upstream in KSHV 
genome. These viral miRNAs participate in several cellular events by modulating 
the expression of cellular and viral factors, in order to survive in an infected cell 
during de novo, latent, and lytic infection.

KSHV miR-K1 (also known as miR-K12-1) specifically inhibits the expression 
of tumor suppressor p21, resulting in dysregulation of the cell cycle arrest (Gottwein 
and Cullen 2010). miR-K1 also downregulates the expression of IκBα and enhances 
NFκB pathway activities (Lei et al. 2010). Therefore, miR-K1 promotes cell prolif-
eration in the latency state and inhibits the advancement of lytic replication. miR- 
K3 (miR-K12-3) decreases the expression of nuclear factor I/B, which is a CCAAT 
box-binding transcription factor. Suppression of nuclear factor I/B inactivates the 
transcription of RTA, thereby supporting miR-K3  in the maintenance of KSHV 
latency (Lu et  al. 2010a). miR-K4-5p (miR-K12-4-5p) was identified to target 
Rb-like protein 2 (Rbl2), a transcriptional repressor of DNA methyltransferases 
(DNMT-3a and DNMT-3b). Rbl2 reduction by miR-K4-5p increases DNMT 
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expression, contributing to maintaining the latency of the KSHV genome epigeneti-
cally (Lu et  al. 2010b). miR-K3 and miR-K7 (miR-K12-7) associate with the 
3′-UTR of C/EBPβ, a bZIP transcription factor (Qin et al. 2010). C/EBPβ is known 
to regulate the transcriptional activation of IL-6 and IL-10. Consequently, miR-K3 
and miR-K7 activate the macrophage cytokine response by enhancing the secretion 
of these cytokines. miR-K5 (miR-K12-5) and several other viral miRNAs (miR-K9, 
miR-K10a, and miR-K10b) suppress the expression of Bcl-2-associated transcrip-
tion factor 1 (BCLAF1), a transcriptional repressor associated with Bcl-2 family 
proteins (Ziegelbauer et al. 2009). The downregulation of BCLAF1 attenuates the 
susceptibility to apoptosis. MHC class I polypeptide-related sequence B (MICB), a 
stress-induced ligand triggering NK cell activation, is not only a direct target of 
KSHV miR-K7 but also a target of other viral miRNAs encoded in the herpesvirus 
family (e.g., HCMV and EBV). KSHV miR-K7 contributes to the evasion of host 
immune systems by the suppression of MICB expression (Nachmani et al. 2009). 
miR-K10a (miR-K12-10a) robustly downregulates the TNF-like weak inducer of 
apoptosis (TWEAK) receptor (Abend et al. 2010). The miR-K10a-mediated sup-
pression of the TWEAK receptor evades TWEAK-induced caspase activation and 
pro-inflammatory cytokine expression. The seed sequences of miR-K11 (miR-
K12- 11) correspond to the host miRNA miR-155. miR-K11 inhibits the expression 
of the transcription regulator BACH1, transcription factor FOS, and another known 
targets of miR-155 (Skalsky et al. 2007; Gottwein et al. 2007).

Profiling of the gene expression in a KSHV miRNA cluster-expressing cell line 
showed that the expression levels of 81 genes were altered by KSHV miRNAs 
(Samols et al. 2007). One of the genes, thrombospondin 1 (THBS1), is a target of 
multiple KSHV miRNAs, particularly, miR-K1, miR-K3-3p (miR-K12-3-3p), miR- 
K6- 3p (miR-K12-6-3p), and miR-K11. THBS1 suppresses tumor growth by inhibi-
tion of angiogenesis and activation of TGF-β. Decrease in THBS1 by viral miRNA 
results in reduced TGF-β signaling. On the other hand, proteomics screening has 
revealed that multiple host genes are suppressed at the protein level, not at the 
mRNA level (Gallaher et al. 2013). It is confirmed that several host genes identified 
by the screening (e.g., GRB2, EGF signal mediator; ROCK2, Rho-associated pro-
tein kinase; STAT3, signal transducer; and HMGCS1, HMG-CoA synthase) are 
transcriptionally suppressed.

KSHV miRNAs may contribute to oncogenesis by influencing the differentiation 
status of infected cells. Tumor cells in KS are poorly differentiated endothelial cells, 
expressing markers of both lymphatic endothelial cells (LECs) and blood vessel 
endothelial cells (BECs). KSHV miRNA silences the cellular transcription factor 
MAF (musculoaponeurotic fibrosarcoma oncogene homolog), which is committed 
to suppression of BEC-specific genes. Downregulation of MAF by KSHV miRNAs 
induces the partial differentiation of LECs to BECs (Hansen et al. 2010).

Genome-wide mapping of KSHV transcripts including the 3′-UTR was inten-
sively performed (Arias et al. 2014; McClure et al. 2013; Bai et al. 2014; Zhu et al. 
2014; Strahan et al. 2016). These 3′-UTRs of KSHV transcripts affect the KSHV 
protein expression during the latent and lytic states (McClure et  al. 2013). In 
 addition, screening for novel viral targets of KSHV miRNA indicated 28 potential 
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targets of KSHV miRNAs, of which 11 were bicistronic or polycistronic transcripts 
(Bai et al. 2014). These bicistronic or polycistronic transcripts, identified at several 
loci of KSHV including ORF30–33 and ORF71–73, have long 3′-UTRs due to 
5′-distal ORFs. miR-K3 decreases the expression of ORF31–33 transcripts by bind-
ing at two sites in the ORF33 coding region. miR-K10a-3p, miR-K10b-3p, and its 
variants decrease the rate of ORF71–73 transcripts through distinct binding sites in 
both 5′-distal ORFs and intergenic regions.

miR-K9-3p (miR-K9*; miR-K12-9-3p) and miR-K7-5p (miR-K12-7-5p) 
directly target the 3′-UTR of the mRNA encoding RTA, the master transcription 
factor inducing viral reactivation from latency (Bellare and Ganem 2009; Lin et al. 
2011). On the other hand, miR-K5 (miR-K12-5) indirectly targets RTA (Lu et al. 
2010b). miR-K5 and miR-K6-3p (miR-K12-6-3p) suppress the expression of 
ORF56/57 mRNAs (Lin and Ganem 2011). vIL-6 is downregulated by miR-
K10a- 3p (Haecker et al. 2012).

15.4  Viral Long Noncoding RNAs and Signaling Pathways

KSHV encodes noncoding 1.1-kb RNA, which is a polyadenylated nuclear (PAN) 
RNA (Conrad 2016; Campbell et al. 2014b). PAN RNA was identified and charac-
terized just after the discovery of KSHV (Sun et al. 1996; Zhong et al. 1996; Zhong 
and Ganem 1997). PAN RNA is highly expressed during the lytic phase and local-
ized in the nucleoplasm and nuclear speckles. This discovery of PAN RNA was 
prior to the explosion of recent researches on long noncoding RNA (lncRNA). The 
major explored functions of lncRNAs involve epigenetic modulation. lncRNAs 
interact with chromatin-associated proteins to regulate their functions (Wang and 
Chang 2011). Recently, it has been demonstrated that PAN RNA is essential for 
KSHV replication, by using knockdown (Borah et al. 2011; Campbell et al. 2014a) 
or knockout (Rossetto and Pari 2012) approaches. Moreover, the biological func-
tions and the mechanisms of PAN RNA as lncRNA have been unveiled.

Although LANA associates with KSHV episomes in latency, LANA rapidly dis-
associates from episomes in the lytic state. PAN RNA, abundantly transcribed in 
reactivation, supports LANA-episome disassociation through an interaction with 
LANA. Thus, PAN RNA plays a role as a molecular decoy for sequestering LANA 
from viral episomes (Campbell et al. 2014a). PAN RNA also functions as a decoy 
for IRF4, an IFN-related transcription factor. The interaction between PAN RNA 
and IRF4 interferes with the ability of IRF4/PU.1 to activate the IL-4 promoter 
(Rossetto and Pari 2011). Therefore, PAN RNA modulates immune responses.

One of the major roles of lncRNA in epigenetic gene regulation is the scaffolds. 
lncRNA has the potential of binding to complementary DNA sequences and pro-
teins. It is known that some of the lncRNAs recruit transcriptional regulators to 
specific regions of the chromosome to modulate the gene expression. PAN RNA 
binds to Ezh2 and Suz12, components of the polycomb repression complex 2 
(PRC2). PRC2 influences histone modification (methylation) patterns and the sub-
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sequent repression of gene expression. Expression of PAN RNA dysregulates the 
transcription of the genes related to the cell cycle, immune response, and inflamma-
tion. In addition, PAN RNA enhances cell proliferation and reduces inflammatory 
cytokine production (Rossetto et al. 2013). Gene repression, caused by PAN RNA- 
mediated recruitment of PRC2 to the host genome, may contribute to KSHV onco-
genesis. On the other hand, PAN RNA mediates gene activation in the KSHV 
genome. PAN RNA recruits histone demethylases JMJD3 and UTX to the RTA 
promoter in the KSHV genome. This association by PAN RNA results in a decrease 
of the repressive H3K27me3 mark at the RTA promoter and an increase in viral 
production (Rossetto and Pari 2012). Accordingly, PAN RNA functions as a scaf-
fold molecule for chromatin modifications of the host and viral genome.

15.5  Akt Signaling and KSHV

It is well known that many viruses activate Akt (also known as protein kinase B) 
signaling, allowing the survival of infected cells and the protection of infected cells 
from apoptosis. When insulin or growth factors bind their receptor, phosphati-
dylinositol 3-kinase (PI3K) is activated. PI3K generates phosphatidylinositol 
3,4,5-trisphosphate (PIP3) from phosphatidylinositol 4,5-bisphosphate (PIP2) by 
phosphorylation (Fig. 15.2). Membrane phospholipid PIP3 recruits phosphoinositide- 
dependent kinase-1 (PDK1) and Akt to the plasma membrane and accelerates Akt 
phosphorylation at Ser308 by PDK1. In addition to PDK1, rictor-containing mTOR 
complex 2 (mTORC2) phosphorylates Ser473 of Akt. The phosphorylation of Akt 
at either Ser308 or Ser473 activates Akt, and Akt promotes the phosphorylation of 
downstream substrates. Akt inhibits Bad, GSK-3β, NF-κΒ, caspase-9, FOXO1, and 
FOXO4 by Akt-mediated phosphorylation, leading to enhanced cell survival and 
anti-apoptosis, while Akt activates and phosphorylates raptor-containing mTOR 
complex 1 (mTORC1), leading to enhance mRNA translation and cell proliferation. 
KSHV infection has been known to activate Akt signaling in infected cells via viral 
proteins including K1, vGPCR and vIL-6 (Bhatt and Damania 2012).

KSHV gene K1 encodes a transmembrane glycoprotein (Lagunoff and Ganem 
1997) and possesses transformation activity (Lee et al. 1998b; Prakash et al. 2002). 
The cytoplasmic tail of K1 contains an immunoreceptor tyrosine-based activation 
motif (ITAM), which is essential for the modulation of intracellular signaling path-
ways. In Akt signaling, K1 expression leads to increased tyrosine phosphorylation 
of p85, the subunit of PI3K, and results in the activation of signaling downstream of 
PI3K (Lee et al. 1998a). Furthermore, K1 facilitates Akt signal activation by activa-
tion of Akt and inhibition of the phosphatase PTEN, which dephosphorylates PIP3 
required for the association between PDK1 and Akt. Activated Akt by K1 phos-
phorylates FOXO1 and inhibits FOXO1-mediated transcription. FOXO family pro-
teins play an important role in arresting the cell cycle and inducing apoptosis. To 
protect the infected cells from apoptosis, K1 promotes cell proliferation and anti- 
apoptosis via activation of Akt signaling (Tomlinson and Damania 2004).
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vGPCR, a seven-pass transmembrane receptor, has homology with multiple 
GPCRs, of which the highest homology is with the human chemokine receptor 
CXCR2 (IL-8 receptor) (Cesarman et al. 1996). The KSHV vGPCR is a constitu-
tively active (agonist-independent) receptor, which stimulates cell proliferation and 
transformation (Arvanitakis et al. 1997; Bais et al. 1998). vGPCR stimulates the 
PI3K/Akt pathway through G protein activation in various cell models. However, 
the target pathways for activated Akt by vGPCR are dependent on the cell type. In 
PEL cells, vGPCR-induced activation of PI3K/Akt mediates AP-1 and CREB acti-
vation, but not NF-κB activation (Cannon and Cesarman 2004). In Human umbilical 
vein endothelial cells (HUVECs), vGPCR enhances the kinase activity of Akt and 
promotes translocation of Akt to the plasma membrane. The dominant-negative Akt 
inhibits vGPCR-mediated NF-κB activation and protection from apoptosis 
(Montaner et  al. 2001). In a KSHV-negative KS cell line, the PI3K/Akt cascade 
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activated by vGPCR phosphorylates GSK-3β and leads to NF-AT activation (Pati 
et  al. 2003). Consequently, these cellular signaling events induced by vGPCR 
enhance the expression of pro-inflammatory cytokines, growth factors, and adhe-
sion molecules (Couty et  al. 2001; Montaner et  al. 2001; Schwarz and Murphy 
2001; Pati et al. 2003). As secondary effects of vGPCR, vGPCR-induced secreted 
factors facilitate Akt-related signaling for proliferation and survival in a paracrine 
manner. Cytokines secreted by vGPCR-positive tumor cells activate multiple path-
ways including Akt signaling in neighboring cells. Particularly, activations of the 
PI3K/Akt and NF-κB pathway converge at mTORC1-dependent upregulation of 
VEGF (Jham et al. 2011).

Viral IL-6 (vIL-6) is a homolog of the human IL-6 (hIL-6) cytokine and shares 
24.8% amino acid homology with hIL-6 (Moore et  al. 1996a). Though vIL-6 is 
expressed at lower levels during the latent phase, vIL-6 is highly upregulated by the 
occurrence of reactivation from the latent phase (Cannon et al. 1999; Staskus et al. 
1999; Parravicini et al. 2000; Chandriani et al. 2010). Since vIL-6 mimics the func-
tions of hIL-6, vIL-6 activates cytokine signaling pathways, such as JAK/STAT and 
MAPK pathways (Moore et al. 1996a; Osborne et al. 1999). vIL-6 binds directly to 
the IL-6 receptor subunit gp130 and transduces the downstream signal pathways 
(Chen and Nicholas 2006). The activation of gp130 and its downstream PI3K/Akt 
signaling by vIL-6 leads to the expression of LECs markers, such as VEGFR, podo-
planin, and PROX1. As a result, the activations of gp130 and PI3K/Akt signaling 
pathways influence the differentiation status of KSHV-infected endothelial cells 
(Carroll et al. 2004; Morris et al. 2008; Hong et al. 2004; Wang et al. 2004; Morris 
et al. 2012). Thus, PI3K/Akt activation via gp130 is necessary for the establishment 
and maintenance of latency.

15.6  MAPK Signaling and KSHV Infection

Mitogen-activated protein kinase (MAPK) signaling pathways are critical for each 
cell survival stage to control cell proliferation, cell growth, cell migration, cell dif-
ferentiation, and cell death (Dhillon et al. 2007; Pearson et al. 2001). MAPKs are 
phosphorylated and activated by MAPK kinases (MKKs), which in turn are acti-
vated by MAPK kinase kinases (MKKKs) (Fig. 15.3). MAPK pathways are classi-
fied into three major groups: extracellular signal-regulated protein kinases (ERK), 
p38 mitogen-activated protein kinase (p38MAPK), and c-Jun N-terminal kinases 
(JNK, also called stress-activated protein kinase/SAPK). In cases of ERK signaling, 
binding of the tyrosine kinase receptors and their ligands, such as EGF and HGF, 
induces the phosphorylation and activation of c-Raf through the Grb2-SOS-Ras 
pathway. Activated c-Raf kinase phosphorylates MEK, and subsequently, MEK 
meditates ERK phosphorylation, resulting in ERK activation. KSHV is known to 
hijack MAPK pathways for their life cycle regulation.

During KSHV primary infection, MAPK pathways contribute to establishing 
KSHV latent infection. To enter target cells, KSHV envelope glycoprotein B (gB) 
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(also referred as ORF8) and gpK8.1A, which bind to heparan sulfate molecules that 
exist on the cell surface (Akula et al. 2001a, b; Wang et al. 2001). In addition, gB 
also docks with the cellular receptor integrin α3β1. The interaction between gB and 
integrin α3β1 activates focal adhesion kinase (FAK) (Akula et al. 2002). After infec-
tion, KSHV immediately activates the focal adhesion component PI3K. Subsequent 
to PI3K-mediated PKC activation, the ERK pathway is upregulated. This activation 
cascade is important for the establishment of viral infection (Naranatt et al. 2003). 
Furthermore, the protein kinase c-Raf, an upstream transducer of ERK, also 
enhances KSHV infection in a post-cell attachment step (Akula et al. 2004). KSHV 
virion-mediated ERK activation enhances the expression of viral genes, such as 
RTA, K-bZIP/K8, and vIRF2. The activation of ERK enhances the activity of 
MAPK-regulated transcription factors, such as c-Jun, STAT1α, c-Myc, and c-Fos. 
gpK8.1A is critical for activation of the MEK/ERK pathway (Sharma-Walia et al. 
2005). In addition to the ERK pathway, KSHV activates JNK and p38MAPK 
 pathways during primary infection (Xie et  al. 2005). Moreover, JNK, ERK, and 
p38MAPK pathways are also essential for KSHV infection. Inhibition of ERK, 
JNK, and p38MAPK reduces KSHV infectivity at the very early stage of infection, 
partly due to decreasing the expression of RTA, which is essential for the establish-
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ment of infection. MAPK signaling pathways modulate the RTA promoter during 
primary infection. In addition, these MAPK factors affect the production of infec-
tious virions and lytic replication (Pan et al. 2006). Similarly, MEK/ERK, JNK, and 
p38MAPK pathways were required for 12-O-tetradecanoyl-phorbol-13-acetate 
(TPA)-induced reactivation from the latent phase, since these pathways activate 
AP-1 and regulate RTA promoter activity (Cohen et al. 2006; Xie et al. 2008; Ford 
et al. 2006). Therefore, clinically approved drugs such as celecoxib, which inhibit 
MAPK signaling pathways, are potentially therapeutic for KSHV-associated can-
cers to inhibit lytic activation (Chen et al. 2015). During the late stage of lytic rep-
lication, KSHV lytic protein ORF45 activates ERK and ribosomal S6 kinase (RSK), 
which is a major substrate of ERK (Kuang et al. 2008; Kuang et al. 2009). This 
ORF45-mediated activation is essential for optimal lytic gene expression and virion 
production (Fu et al. 2015).

15.7  NF-κB Signaling

NF-κB signaling has emerged as a mediator of altered gene programming and as an 
initiator of the immediate early steps of immune activation and anti-apoptosis. 
Although certain viruses inhibit NF-κB signaling to disrupt host immunity (Hiscott 
et al. 2006), KSHV activates NF-κB pathways to promote host cell proliferation, 
survival, and angiogenesis (Brinkmann and Schulz 2006). Additionally, constitutive 
activation of NF-κB signaling is thought to be essential for the latent infection of 
KSHV and survival in PEL cells (Keller et al. 2000; Guasparri et al. 2004). In nor-
mal resting cells, the canonical NF-κB signaling pathway is suppressed by IκBα 
protein (Fig. 15.4 left). NF-κB signaling is further regulated by the IKK complex, 
consisting of IKKα, β, and a scaffold subunit (IKKγ/NEMO). A molecular chaper-
one, Hsp90, binds the IKK complex and promotes the kinase activity of the IKK 
complex. A stimulus, such as TNF-α or IL-1β, induces activation of the IKK com-
plex via TRAF6 (or TRAF2), which acts as an E3 ubiquitin ligase. TRAF6 modifies 
NEMO protein by K63-linked polyubiquitination. K63-linked polyubiquitinated 
NEMO can then activate the IKK complex. The activated IKK complex phosphory-
lates IκBα, and this phosphorylation can be a trigger for K48-linked polyubiquitina-
tion, leading to proteasomal degradation. This action releases the active NF-κB 
heterodimer containing p50 and p65/RelA. There is another upregulatory system 
for the IKK complex. TGF-β-activated kinase 1 (TAK1) also phosphorylates and 
activates IKK. TAK1 forms a complex with TAK1-binding protein 1 (TAB1) and 
TAB2 (or TAB3). TAB2/3 stimulates TAK1 kinase activity and binds to K63-linked 
polyubiquitinated NEMO (also TRAF6) through the Zn-finger domain of TAB2/3. 
Moreover, TNF-α stimuli also induce the K63-linked polyubiquitination of recep-
tor-interacting protein (RIP). Polyubiquitinated RIP recruits NEMO to the IKK 
complex and also TAB2/3 together with TAK1 to the TNF receptor, resulting in 
NF-κB activation.
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KSHV-encoded vFLIP, K15, vGPCR, K1, K7, and viral miRNA induce NF-κB 
transcriptional activation by manipulation of its upstream signaling. These viral 
molecules activate NF-κB signaling through IκBα destabilization. vFLIP is a viral 
homolog of cellular FLIP and is expressed in latently infected KS spindle cells and 
PEL cells. The vFLIP protein inhibits apoptosis by activating NF-κB signaling. 
vFLIP activates the IKK complex by interaction with NEMO of the IKK complex 
(Chaudhary et al. 1999; Chugh et al. 2005), Hsp90 (Field et al. 2003; Nayar et al. 
2013), TRAF2/3 (Guasparri et al. 2006), and RIP (Chaudhary et al. 1999; Liu et al. 
2002). These interactions with vFLIP lead to IKK complex activation, causing the 
activation of NF-κB (p50 and p65/RelA). In addition to viral protein, KSHV miRNA 
decreases the level of IκBα protein in a ubiquitin-independent manner (Lei et al. 
2010; Moody et al. 2013). KSHV miR-K1 reduces IκBα expression by targeting the 
3′-UTR of its transcript (Lei et al. 2010). Thus, KSHV miRNA upregulates NF-κB 
activity and inhibits viral lytic replication in PEL cells. KSHV K15, which shows 
structural and functional similarities to the EBV LMP1, contains 12 predicted trans-
membrane domains and a cytoplasmic C-terminal domain, which can activate 
NF-κB, phospholipase C (PLC), and MAPK (JNK, p38MAPK, and ERK) signaling 
pathways. The K15 cytoplasmic domain contains a SH3-binding motif, two SH2- 
binding motifs, and a TRAF-binding site; K15 directly interacts with Src, Lck, Hck, 
TRAF-1, -2, -3, IKKα/β, and NF-κB-inducing kinase (NIK) which leads to the acti-
vation of NF-κB (Brinkmann et al. 2003, 2007 Havemeier et al. 2014; Pietrek et al. 
2010). vGPCR, a viral homolog of the hIL-8 receptor, promotes cell proliferation 
and induces NF-κB activation, resulting in expression of IL-1, IL-6, IL-8, TNF-α, 
and FGF (Schwarz and Murphy 2001; Pati et al. 2001). vGPCR interacts with TAK1 
and recruits TAK1 to the plasma membrane. Furthermore, vGPCR induces TAK1 
phosphorylation and K63-linked polyubiquitination, which is related to TAK1 acti-
vation and subsequent NF-κB activation (Bottero et al. 2011). K1 has transforming 
activity. B lymphocytes from K1-expressing transgenic mice were reported to show 
constitutive NF-κB activation (Prakash et al. 2002), while K1 was reported to sup-
press vFLIP-mediated NF-κB activation (Konrad et al. 2009). The small membrane 
(or mitochondrial membrane) protein K7 inhibits caspase-3-induced apoptosis and 
interacts with ubiquitin/PLIC1. The interaction between K7 and ubiquitin induces 
activation of NF-κB signaling through IκB degradation (Feng et al. 2004).

15.8  Notch Signaling

The Notch receptor and Notch ligands are single-pass transmembrane proteins that 
play roles in cell fate decisions, proliferation, and differentiation (Fig. 15.4 right). 
When a Notch ligand, such as Jagged or Delta, binds the Notch receptor, a γ-secretase 
complex, such as presenilin, cleaves the intramembrane region of the Notch recep-
tor, Notch-1, Notch-2, Notch-3, and Notch-4, resulting in the release of intracellular 
Notch (ICN). ICN, which functions as a transcriptional activator, enters the nucleus 
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and binds the DNA-binding protein CSL (also known as CBF1 or RBP-Jκ) (Hayward 
et al. 2006). In the absence of signaling, DNA-bound CSL is bound to the corepres-
sor complex composed of HDAC, SMRT, and SKIP.  Upon Notch signaling, the 
corepressor complex is displaced by ICN and the coactivator complex composed of 
HAT and p300, upregulating target genes containing CSL-binding sites. EBNA2 is 
well known to be CSL-binding protein which is essential for EBV immortalization 
of B cells. EBNA2 was targeted to the promoters of EBNA2- responsive EBV genes 
through an interaction with CSL. Both EBNA2 and ICN bound to the transcrip-
tional repression domain of CSL.  Binding of the CSL corepressor complex and 
either the EBNA2 coactivator complex or the ICN coactivator complex is competi-
tive such that there is a conversion from transcriptional repression of the CSL-bound 
promoter to transcriptional activation in the presence of ICN or EBNA2 (Hayward 
et al. 2006). In addition to ICN and EBNA2, KSHV RTA interacts with CSL and 
activates target gene expression in cooperation with coactivators (Liang and Ganem 
2003). Moreover, the promoter DNA of vIL-6 and vGPCR contains the CSL-
binding sites, indicating that activation of Notch signaling is involved in lytic gene 
expression including that of vIL-6 and vGPCR (Liang and Ganem 2003, 2004). On 
the other hand, it was reported that a single CSL-binding site within the LANA 
promoter plays a role in establishing latency during primary KSHV infection (Lu 
et al. 2011). Regarding cross talk between NF-κB and Notch, the transcription fac-
tor NF-κB forms a complex with CSL and inhibits the binding of CSL and the CSL-
target DNA sequence, which indicates that NF-κB contributes to KSHV latency and 
negatively regulates RTA by antagonizing CSL (Izumiya et al. 2009).

Additionally, KSHV has another way to activate Notch signaling. KSHV- 
encoded proteins manipulate upstream regulators of cell signaling and exploit the 
ubiquitin system to alter the stabilization of target proteins. Furthermore, KSHV 
proteins can directly bind a component of E3 ubiquitin ligase to inhibit the E3 activ-
ity for polyubiquitination, leading to stabilization of target substrates. The SCFFbw7 
complex, SCF-type E3, is composed of Fbw7 as an F-box protein, which recognizes 
and binds the intracellular regions of Notch-1, Notch-3, and Notch-4 (Matsumoto 
et al. 2011; Nakayama and Nakayama 2006). The F-box protein Fbw7, also known 
as Sel-10 in Caenorhabditis elegans, is thus a critical component of SCFFbw7, while 
it is a negative regulator of Notch signaling. KSHV LANA binds Fbw7/Sel-10, a 
component of SCFFbw7, to inhibit polyubiquitination of intracellular Notch-1 (ICN- 
1), which leads to the stabilization of ICN-1. The carboxyl-terminus of LANA binds 
Fbw7/Sel-10, whereas it competes with ICN-1 for interaction with Fbw7/Sel-10, 
resulting in inhibition of ICN-1 polyubiquitination and degradation (Lan et  al. 
2007). Thus, stabilization of ICN-1 by LANA is also related to the proliferation of 
KSHV-infected cells. It is known that LANA represses the RTA promoter to inhibit 
RTA expression to establish and maintain KSHV latency (Lan et al. 2004). A num-
ber of KSHV lytic gene promoters, including the RTA promoter, contain CSL- 
binding sites. The carboxyl-terminal of LANA also interacts with CSL, and this 
binding is involved in one of the LANA-mediated RTA repression mechanisms (Jin 
et al. 2012).
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15.9  Wnt/β-Catenin Signaling

Wnt signaling is involved in several critical developmental processes and in tumori-
genesis. The Wnt/β-catenin pathway regulates the availability of nuclear β-catenin 
protein (Fig. 15.5). In the absence of Wnt signaling, β-catenin is held in a complex 
with Axin, APC, GSK-3β, and CKI. The Axin-APC complex functions as a plat-
form for the association of GSK-3β and β-catenin proteins. CKI provides priming 
activity for GSK-3β-mediated phosphorylation of β-catenin. Phosphorylated 
β-catenin is conjugated to K48-linked polyubiquitin chains and then degraded by 
the 26S proteasome. The Wnt signaling cascade is triggered when the Wnt ligand of 
a secreted glycoprotein binds to the transmembrane Frizzled receptor and to the 
Lrp5/6 coreceptor, which leads to recruitment of Axin to LRP5/6 and also recruit-
ment of Dvl and FRAT to the Axin-APC-GSK-3β complex. These events result in 
dissociation of the Axin-APC-GSK-3β complex and the subsequent stabilization of 
β-catenin, which translocates to the nucleus and forms a complex with the transcrip-
tion factor LEF1 (or TCF4/1), stimulating the expression of c-Myc, c-Jun, and 
cyclin D1. This pathway is deregulated in many human tumors including colorectal 
cancer, which has mutations in the APC tumor suppressor gene and the β-catenin 
gene (Su et  al. 1993; Morin et  al. 1997). Most mutations of APC found in the 
β-catenin-/Axin-binding domain will result in the expression of a truncated APC 
protein, which fail to form the complex with β-catenin and Axin. In the case of the 
β-catenin gene in colorectal cancer cells, mutations usually occur at Ser33, Ser37, 
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Thr41, and Ser45 of the β-catenin protein sequence, which results in the expression 
of constitutively stable β-catenin.

KSHV dysregulates Wnt signaling by LANA (Fujimuro et al. 2003; Fujimuro 
and Hayward 2003; Fujimuro et al. 2005; Hayward et al. 2006). The β-catenin pro-
tein is very abundant in latently KSHV-infected PEL cells and KS tumor cells. The 
mechanism of β-catenin dysregulation is linked to the interaction of LANA and 
GSK-3β. LANA associates with GSK-3β, leading to the nuclear translocation of 
GSK-3β. Although GSK-3β is localized primarily in the cytoplasm, a small propor-
tion of GSK-3β is known to enter the nucleus during S phase, and LANA increases 
the number of cells in S phase. Because LANA binds to nuclear GSK-3β, LANA 
induces depletion of cytoplasmic GSK-3β. In the absence of cytoplasmic GSK-3β, 
β-catenin accumulates in the cytoplasm and enters the nucleus to stimulate tran-
scriptional activation of downstream target genes. LANA-mediated β-catenin stabi-
lization is dependent on LANA binding to GSK-3β through its C-terminal GSK-3β 
interaction domain (GID), an analogue of the Axin GID (Webster et al. 2000), and 
its N-terminal region (Fujimuro et  al. 2003; Fujimuro and Hayward 2003). The 
LANA N-terminal region is phosphorylated by GSK-3β in a manner that is depen-
dent on the activity of priming kinases such as p38MAPK and CKI, and phosphory-
lation regulates the interaction between GSK-3β and LANA (Fujimuro et al. 2005). 
Thus, LANA interacts with GSK-3β and relocalizes GSK-3β in a manner that leads 
to the stabilization of not only β-catenin but also other GSK-3β substrates such as 
C/EBPβ (Liu et  al. 2007a) and c-Myc (Bubman et  al. 2007; Liu et  al. 2007b). 
Additionally, Liu et al. have demonstrated the mechanism of LANA-mediated inac-
tivation of nuclear GSK-3β. LANA binds GSK-3β, along with ERK1 and RSK, 
which participates in the phosphorylation of GSK-3β at Ser9, resulting in inactiva-
tion of GSK-3β (Liu et al. 2007a). Destabilization of c-Myc is controlled by the 
GSK-3β-mediated phosphorylation of c-Myc at Thr58. This phosphorylation is the 
trigger for the polyubiquitination and degradation of c-Myc. Inactivation of nuclear 
GSK-3β by LANA can increase the stability and activity of c-Myc and further con-
tribute to LANA-mediated growth dysregulation (Liu et al. 2007b). Furthermore, 
abnormally stable c-Myc protein has been observed, and LANA is responsible for 
this stability in PEL cells (Bubman et al. 2007).

15.10  Kaposins and Signaling Pathways

The KSHV K12 locus, the locus encoding kaposins, was initially identified, and the 
expression of its transcripts was observed in the latent state of PEL cells (Zhong 
et al. 1996). The mRNA of the K12 locus translated to several viral proteins named 
kaposins. While translation of Kaposin A initiates at AUG in the ORF K12, transla-
tion of other kaposins, typified by Kaposin B and Kaposin C, initiates at CUG 
codons, located upstream of ORF K12. Therefore, Kaposin B and C are encoded by 
the amino acid repeats derived from two sets of GC-rich direct repeats (DRs; DR1 
and DR2) in the KSHV genome (Sadler et al. 1999). Similar to several other latent 
genes, the expression of kaposins is upregulated during lytic infection.
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Kaposin B induces pro-inflammatory cytokine secretion by stabilization of the 
mRNAs containing AU-rich elements (AREs) in 3′-UTRs via MK2 (MAPK- 
associated protein kinase) activation (McCormick and Ganem 2005). The p38MAPK 
phosphorylates and activates MK2, which in turn inhibits degradation of ARE- 
containing cytokine mRNAs through MK2-mediated phosphorylation. Kaposin B 
protein binds and activates MK2 and p38MAPK, and activated MK2 suppresses 
ARE-dependent mRNA degradation. DR2 and DR1 repeats of Kaposin B are essen-
tial for this mRNA stabilization (McCormick and Ganem 2006). In addition, 
Kaposin B contributes to the dispersion of processing bodies, cytoplasmic foci 
occurring in ARE-mRNA decay, via activation the Rho-GTPase signaling pathway 
(Corcoran et al. 2015). Kaposin B also enhances the expression of PROX1, the criti-
cal transcription factor for lymphatic endothelial differentiation, by stabilization of 
PROX1 mRNA (Yoo et al. 2010).

Kaposin A induces tumorigenic transformation (Muralidhar et  al. 1998). The 
direct interaction between Kaposin A and cytohesin-1, a GEF for ARF GTPase and 
a regulator of integrin-mediated cell adhesion, results in GTP binding of ARF1. The 
transforming phenotype of Kaposin A is reversed by exchange of the defective form 
of cytohesin-1. This suggests that Kaposin A-induced transformation is mediated by 
cytohesin-1 (Kliche et al. 2001).

15.11  Apoptosis Signaling

Apoptosis is a tightly controlled process that plays an important role in homeostasis 
and antiviral control. A remarkable feature of apoptosis is the activation of caspases, 
which belong to the cysteine protease family (Hengartner 2000). Caspase activation 
induces the cleavage of cellular proteins and degradation of the cytoskeleton and 
nuclear DNA (Lavrik et al. 2005). Apoptosis is induced by the activation of effector 
caspases, such as caspase-3, caspase-6, and caspase-7, which have been previously 
activated via either an intrinsic pathway, in which mitochondrial activation (or dam-
age) and caspase-9 are involved, or an extrinsic pathway, in which death signaling 
and caspase-8 are involved (Fig. 15.6 left). In the extrinsic pathway, when death 
ligands bind death receptors, death receptors recruit pro-caspase-8, pro-caspase-2, 
or pro-caspase-10 and adaptor proteins such as TNF receptor-associated death 
domain (TRADD) and Fas-associated death domain (FADD), resulting in the for-
mation of a ligand-receptor-adaptor protein complex known as the death-inducing 
signaling complex (DISC). The caspase-8, caspase-2, or caspase-10 activated in 
DISC cleaves and activates the executioner caspase (caspase-3 and caspase-7), 
inducing apoptosis. The intrinsic pathway is initiated within the cell by internal 
stimuli, such as genetic damage, severe oxidative stress, and hypoxia. These stimuli 
induce cytochrome c release from mitochondria into the cytoplasm (Danial and 
Korsmeyer 2004). Released cytochrome c binds to Apaf-1, and subsequently the 
complex of cytochrome c and Apaf-1 are oligomerized, resulting in the formation of 
the apoptosome, which cleaves and activates pro-caspase-9. In addition, cytochrome 
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c release is strictly regulated by Bcl-2 family proteins. The Bcl-2 family is com-
prised of pro-apoptotic Bcl-2 proteins (Bax, Bak, Bad, Bid, Bik, Bim, Noxa, and 
Puma) and anti-apoptotic Bcl-2 proteins (Bcl-2, Bcl-xL, Bcl-W, Bfl-1, and Mcl-1) 
(Reed 1997). Anti-apoptotic Bcl-2 proteins suppress apoptosis by inhibiting both 
the pro-apoptotic Bcl-2 proteins and the release of cytochrome c from mitochon-
dria, whereas pro-apoptotic Bcl-2 proteins induce a change in mitochondrial mem-
brane potential, resulting in the release of cytochrome c (Adams and Cory 1998). In 
addition to anti-apoptotic Bcl-2 proteins, the IAP (inhibitor of apoptosis protein) 
family also suppresses apoptosis. IAP contains a BIR domain, which binds to cas-
pase- 3, caspase-7, and caspase-9 and inhibits these caspases.

Viral FADD-like interferon-converting enzyme inhibitor protein (vFILP), origi-
nally identified as an inhibitor of death receptor-induced apoptosis, is a homolog of 
cellular FLIP (cFLIP) (Irmler et al. 1997; Thome et al. 1997). vFLIP possesses two 
death effector domains (DED), which can interact with FADD and TRADD. vFLIP 
binds to FADD and TRADD through its two tandem DEDs within the DISC, and 
this interaction inhibits the recruitment and activation of pro-caspase-8, resulting in 
apoptosis suppression (Krueger et  al. 2001). However, recent studies show that 
vFLIP contributes to activation of NF-κB signaling ((Chaudhary et al. 1999; Chugh 
et al. 2005) (Field et al. 2003; Nayar et al. 2013), TRAF2/3 (Guasparri et al. 2006),.

KSHV encodes anti-apoptotic protein vBcl-2, the viral homolog of cellular anti- 
apoptotic protein, Bcl-2. The Bcl-2 family proteins contain multiple Bcl-2 homol-
ogy (BH) domains, and there are four types of BH domain: BH1, BH2, BH3, and 
BH4. The anti-apoptotic Bcl-2 proteins tend to contain BH1 and BH2, while the 
pro-apoptotic Bcl-2 proteins tend to contain BH3. The overall sequence homology 
between cellular Bcl-2 protein and vBcl-2 protein is low (15–20%); however, the 
BH1 and BH2 domain of vBcl-2 are highly conserved. The BH1 domain of vBcl-2 
contains the NWGR (Asn-Trp-Gly-Arg) sequence, which is believed to be essential 
for the anti-apoptotic function of Bcl-2 and the formation of heterodimers with 
other Bcl-2 family members. vBcl-2 conserves the BH3 domain at a lower level 
than cellular Bcl-2 (Cheng et al. 1997; Huang et al. 2002). The BH3-binding cleft 
of vBcl-2 binds with high affinity to BH3 domains of the pro-apoptotic Bcl-2 pro-
teins (Loh et al. 2005). vBcl-2 forms a stable complex with Aven, which binds to 
Apaf-1 and inhibits self-association of Apaf-1. Furthermore, vBcl-2 inhibits the 
anti-apoptotic function of Aven (Chau et al. 2000). However, unlike cellular Bcl-2, 
vBcl-2 is not a substrate for vCyclin-CDK6 phosphorylation (Ojala et al. 2000). 
Expression of vCyclin and CDK6 induces apoptosis by Bcl-2 phosphorylation, 
leading to the inactivation of Bcl-2. The vCyclin-CDK6 complex phosphorylates 
the unstructured loop of Bcl-2, and this phosphorylation induces Bcl-2 inactivation. 
Since vBcl-2 lacks this loop, anti-apoptotic activity of vBcl-2 can be retained even 
in the presence of vCyclin-CDK6.

K7, a small (mainly mitochondrial) membrane protein, contains a BRI (baculo-
virus IAP repeat) domain and a BH2 domain and functions as an anti-apoptotic 
factor (Feng et  al. 2002). K7 targets multiple cellular factors, such as calcium- 
modulating cyclophilin ligand (CAML), Bcl-2, and caspase-3. These target mole-
cules play a role in the regulation of apoptosis. Interaction between K7 and CAML 
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increases the intracellular Ca2+ concentration by activating CAML and enhancing 
ER Ca2+ release, resulting in enhanced cytoprotection against mitochondrial dam-
age and apoptosis. K7 also binds to Bcl-2 and caspase-3 via the K7-BH2 domain 
and K7-BRI domain, respectively (Wang et al. 2002). In particular, the BH2-like 
domain of K7 inhibits caspase-3 activity through interaction with the caspase-3 BRI 
domain. K7 bridges Bcl-2 and activated caspase-3, which results in the inhibition of 
caspase activity. K7 protein is structurally and functionally similar to the human 
survivin spliced variant. Survivin is known as an IAP family protein and contains a 
BRI domain as well as K7. Both proteins contain similar functional domains, and 
these proteins protect against apoptosis (Mahotka et al. 1999; Krieg et al. 2002).

15.12  Cell Cycle Regulation

Cell cycle progression is regulated by Cdk/cyclin complexes. The cyclin D/Cdk4/6 
complex phosphorylates pRb at mid-G1 stage, and cyclin E/Cdk2 further phosphor-
ylates pRb at late-G1 (Fig.  15.6 right). Such sequential phosphorylation of pRb 
leads to release of E2F protein into the cell nucleus to act as a transcriptional factor 
for S-phase progression. Cyclin/Cdk complexes interact with Cdk inhibitors, 
namely, those of the INK4 family (p15INK4b, p16INK4a, p18INK4c, and p19INK4d) and the 
Cip/Kip family (p21Cip1, p27Kip1, and p57Kip2). KSHV mimics and uses these regula-
tory factors. KSHV vCyclin, a human cyclin D2 homolog, interacts with and acti-
vates Cdk4 and Cdk6 to achieve phosphorylation of pRb and cellular cyclin D, 
leading to G1–S phase progression (Chang et al. 1996; Godden-Kent et al. 1997). 
Unlike the cellular cyclins, the vCyclin/Cdk complex is resistant to the Cdk inhibi-
tors p16INK4a, p21Cip1, and p27Kip1 (Swanton et al. 1997), and therefore this complex 
is believed to be a constitutively active kinase. KSHV vCyclin D/Cdk6 complex can 
interact with p27Kip1 and phosphorylate p27Kip1 at Thr187, which leads to protea-
somal degradation (Ellis et al. 1999; Mann et al. 1999; Jarviluoma et al. 2004). This 
regulation of p27Kip1 is normally performed by the cellular cyclin E/Cdk2. The SCF 
E3 ubiquitin ligase, which contains Skp2 as the F-box protein, can recognize 
Thr187-phosphorylated p27Kip1 and mediates its modification by polyubiquitina-
tion, leading to p27Kip1 degradation. Interestingly, the vCyclin/Cdk6 complex has a 
very broad range of substrates; in addition to pRb and p27Kip, Orc1, Cdc6, and Bcl-2 
are also substrates of vCyclin/Cdk6 (Laman et al. 2001; Ojala et al. 2000). In addi-
tion to vCyclin, LANA also leads cell cycle progression from G1 to S phase through 
interaction with the tumor suppressor pRb (Radkov et al. 2000), which suggests a 
role for LANA in promoting host cell proliferation via pRb inactivation and E2F 
release. Regarding interactions between LANA and tumor suppressor gene prod-
ucts, LANA directly binds p53, resulting in abolishment of p53-mediated apoptosis 
(Friborg et al. 1999). LANA also functions as a potential component within the E3 
ubiquitin ligases, which mediates the polyubiquitination of tumor suppressor gene 
products VHL and p53, resulting in their degradation (Cai et al. 2006). It is known 
that KSHV encodes vIRFs, which besides LANA, are involved in p53 
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polyubiquitination for proteasomal degradation. KSHV encodes vIRF4 that binds 
Mdm2, leading to the proteasomal degradation of p53 in KSHV- infected cells (Lee 
et al. 2009). vIRF4 interacts with MDM2, leading to the inhibition of MDM2 auto-
ubiquitination, thereby increasing MDM2 stability. In addition, vIRF4 interacts 
with herpesvirus-associated ubiquitin-specific protease (HAUSP), regulating the 
stability of p53 and MDM2. The small peptide of vIRF4, responsible for binding to 
the HAUSP catalytic domain, robustly blocks the de-ubiquitination activity of 
HAUSP and induces p53-mediated apoptosis and cell cycle arrest (Lee et al. 2011). 
vIRF1 interacts with p53 and suppresses p53 acetylation and p53- mediated tran-
scriptional activation (Nakamura et al. 2001; Seo et al. 2001). Consequently, inhibi-
tion of p53-mediated apoptosis by vIRF1 leads to dysregulation of cell proliferation. 
Moreover, KSHV-encoded vIRF1 also contributes to destabilization of p53 through 
manipulating ATM kinase, which is activated by DNA damage (Shin et al. 2006). 
The ATM phosphorylates Ser15 of p53, and this phosphorylation inhibits the inter-
action with MDM2, resulting in p53 stabilization. However, vIRF1 suppresses 
Ser15 phosphorylation of p53 by ATM, resulting in an increase of p53 ubiquitina-
tion and degradation by the proteasome. Thus, multiple KSHV proteins are involved 
in the degradation or inactivation of tumor suppressor gene products; these func-
tions strongly contribute to the oncogenic transformation of host cells.

15.13  Concluding Remarks

Cell signal transduction plays a principal role in controlling gene expression, cell 
proliferation, apoptosis regulation, and immune responses. As described above, 
KSHV hijacks the appropriate cell signaling pathways for establishment of infec-
tion, persistent infection, prolonging survival, control of cell proliferation, anti- 
apoptosis, and evasion of immune surveillance in infected cells. KSHV manipulates 
the appropriate cell signaling pathways in order to downregulate gene expression 
that exerts an antagonistic effect on virus infection and to upregulate gene expres-
sion that creates a favorable environment for KSHV or KSHV-infected cells.

To further elucidate KSHV pathogenesis, it should be determined how KSHV 
exploits and dysregulates cell signaling pathways. A better understanding of the 
interaction between KSHV infection and the cell signaling pathways involved could 
provide new insights into the viral evasion of host immunity and the process of 
carcinogenesis triggered by KSHV and may provide a theoretical basis for the 
development of novel therapeutic interventions against KSHV-related cancers. In 
fact, recent studies have shown that many inhibitors for certain signaling pathways 
suppress proliferation of PEL cells and induce apoptosis in KSHV-infected tumor 
cells and PEL cells. Agents that selectively disturb KSHV infection-dependent acti-
vated signaling pathways could be promising therapeutic agents for KSHV- 
associated malignancies in the future. The effectiveness of these agents, in turn, 
highlights the importance of understanding virus manipulation of cell signal 
transduction.
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Chapter 16
Pathological Features of Kaposi’s 
Sarcoma-Associated Herpesvirus Infection

Harutaka Katano

Abstract Kaposi’s sarcoma-associated herpesvirus (KSHV, human herpesvirus 8, 
or HHV-8) was firstly discovered in Kaposi’s sarcoma tissue derived from patients 
with acquired immune deficiency syndrome. KSHV infection is associated with 
malignancies and certain inflammatory conditions. In addition to Kaposi’s sarcoma, 
KSHV has been detected in primary effusion lymphoma, KSHV-associated lym-
phoma, and some cases of multicentric Castleman disease (MCD). Recently, KSHV 
inflammatory cytokine syndrome (KICS) was also defined as a KSHV-associated 
disease. In KSHV-associated malignancies, such as Kaposi’s sarcoma and lym-
phoma, KSHV latently infects almost all tumor cells, and lytic proteins are rarely 
expressed. A high titer of KSHV is detected in the sera of patients with MCD and 
KICS, and the expression of lytic proteins such as ORF50, vIL-6, and vMIP-I and 
vMIP-II is frequently observed in the lesions of patients with these diseases. 
Immunohistochemistry of LANA-1 is an important diagnostic tool for KSHV infec-
tion. However, much of the pathogenesis of KSHV remains to be elucidated, espe-
cially regarding oncogenesis. Some viral proteins have been shown to have 
transforming activity in mammalian cells; however, these proteins are not expressed 
in latently KSHV-infected cells. KSHV encodes homologs of cellular proteins in its 
genome such as cyclin D, G-protein coupled protein, interleukin-6, and macrophage 
inflammatory protein-1 and -2. Molecular mimicry by these viral proteins may con-
tribute to the establishment of microenvironments suitable for tumor growth. In this 
review, the virus pathogenesis is discussed based on pathological and experimental 
findings and clinical aspects.

Keywords Kaposi’s sarcoma-associated herpesvirus (KSHV) · HHV-8 · Latency- 
associated nuclear antigen (LANA-1) · Primary effusion lymphoma (PEL) · 
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16.1  Introduction

More than 20 years have passed from the discovery of Kaposi’s sarcoma-associated 
herpesvirus (KSHV, human herpesvirus 8, or HHV-8) in acquired immune defi-
ciency syndrome (AIDS)-associated Kaposi’s sarcoma (KS) (Dittmer and Damania 
2016; Goncalves et al. 2017; Gramolelli and Schulz 2015). KSHV was the eighth 
human herpesvirus to be discovered and is considered a human oncovirus along 
with Epstein–Barr virus (EBV) (Chang et al. 1994; Ganem 2005). Both EBV and 
KSHV are gamma herpesvirus with an affinity to human lymphocytes. KSHV 
infection is associated with relatively rare diseases such as KS, primary effusion 
lymphoma (PEL) and some cases of multicentric Castleman disease (MCD). Unlike 
other human herpesviruses, KSHV infection is not common among the general 
population in most parts of the world, with the exception of African countries and 
some other regions. Although some important questions remain, recent progress in 
molecular biology has revealed the unique pathogenesis and virological features of 
KSHV compared with other herpesviruses. In this article, the unique pathogenesis 
of KSHV is reviewed from all aspects of pathology.

16.2  Virus Pathogenesis

16.2.1  Electron Microscopic Features of KSHV

Like other human herpesviruses, KSHV infects healthy humans latently. Latency is 
also predominant in KS and lymphoma. Even in KS and lymphoma lesions, it is 
difficult to detect viral particles by electron microscopy because KSHV does not 
usually replicate at these sites. However, virus particles of KSHV can be observed 
in PEL cell lines stimulated chemically with 12-O-tetradecanoylphorbol-13-acetate. 
The morphological features and size of KSHV particles are similar to those of other 
human herpesviruses (Ohtsuki et al. 1999; Orenstein et al. 1997; Renne et al. 1996; 
Said et al. 1996, 1997). A virus particle consists of a capsid, tegument, and enve-
lope. The size of a whole virus particle including the envelope is 150–200 nm. In the 
nucleus, virus particles do not possess an envelope, and only capsids of 100 nm in 
diameter are observed. The capsid contains a viral DNA core and RNA and is cov-
ered with tegument and envelope. The envelope is flexible in form and the tegument 
protein localizes between the capsid and the envelope.

16.2.2  Virus Gene Expression

KSHV encodes around 80 genes in its genome (Russo et al. 1996). Gene expression 
of KSHV is classified into latent and lytic expression, and lytic transcripts are also 
categorized into immediate early, early, and late, like other herpesviruses. During 
latent infection of KSHV, the virus expresses limited viral transcripts encoded 
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within the latency-associated gene cluster. This cluster contains open reading frame 
(ORF) 73 (latency-associated nuclear antigen 1, LANA-1, LNA, or LNA-1), viral 
cyclin (ORF72), viral FLICE-inhibitory protein (K13, v-FLIP), Kaposin (K12), and 
viral-encoded microRNAs. Among them, LANA-1 is the most important protein 
that is expressed in KSHV-infected cells exclusively. On immunostaining, LANA-1 
appears in a dot-like pattern in the nucleus of KSHV-infected cells. Other latent 
proteins of KSHV are not easily detected in infected cells by immunohistochemis-
try. Other than the latency-associated gene cluster, some transcripts in the viral 
interferon regulatory factor (IRF)-encoding region have been suggested to be 
expressed during the latent phase. The LANA-2 (vIRF3 or K10.5) gene was identi-
fied in PEL cells as another latency-associated nuclear antigen encoded by KSHV 
(Rivas et al. 2001). Curiously, LANA-2 expression is observed only in PEL cells but 
not in KS cells. Almost all other genes encoded by KSHV are categorized into lytic 
transcripts. The most abundant lytic transcript of KSHV may be the T1.1 gene, an 
untranslatable transcript encoded by the region between ORFK7 and ORF16 (Zhong 
and Ganem 1997). Its function is unknown, but this gene is expressed highly and 
detected easily in the early phase of KSHV infection. Replication and transcription 
activator (RTA or ORF50) is an immediate early protein of KSHV that plays an 
important role in KSHV replication (Sun et al. 1999). RTA is a transactivator that 
activates many other viral transcripts. KSHV encodes 12 pre-miRNAs in the K12 
region and produces at least 17 mature miRNAs during the latent phase of KSHV 
infection in KSHV-infected cells and clinical samples (Cai et  al. 2005; Samols 
et al. 2005).

16.2.3  Pathogenesis and Oncogenesis

In healthy persons, KSHV infects circulating B cells (Harrington Jr. et al. 1996). 
However, the number of KSHV-infected B cells has not been accurately determined. 
KSHV has not been detected by PCR in KSHV-infected immunocompetent per-
sons, suggesting that the number of KSHV-infected cells in the blood is low. The 
copy number of KSHV in the blood increases in immunocompromised hosts, such 
as patients with AIDS. Increased numbers of KSHV-infected B cells interact with 
endothelial cells, and efficient infection of KSHV into endothelial cells by cell-to- 
cell transmission has been reported in vitro (Gao et al. 2003; Myoung and Ganem 
2011; Sakurada et  al. 2001). Although lytic proteins are expressed immediately 
after transmission of KSHV, their expression reduces after transmission, but 
LANA-1 expression is stable after transmission (Dupin et al. 1999; Katano et al. 
1999b; Kellam et al. 1999). Some KSHV-encoded proteins including K1, vIRF1, 
and vGPCR have been shown to exert transformation activity on mammalian cells, 
but these proteins are not usually expressed in KSHV-infected cells (Bais et  al. 
1998; Gao et al. 1997; Lee et al. 1998; Montaner et al. 2003). LANA-1 is a multi-
functional protein, and one of its major roles is to maintain latency in KSHV- 
infected cells by tethering KSHV DNA to the host chromosomes (Ballestas et al. 
1999). LANA-1 binds directly to the KSHV genome and recruits it to the host 
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chromosome. During host cell division, KSHV DNA replicates using the DNA rep-
licative machinery of the host (Sakakibara et  al. 2004), and the resulting KSHV 
DNA is inherited to daughter cells. LANA-1 also binds to p53 and inhibits 
p53-dependent apoptosis in KSHV-infected cells (Friborg Jr. et al. 1999; Katano 
et al. 2001). LANA-1 stabilizes beta-catenin by binding to the negative regulator 
GSK-3beta, promoting cell-cycle induction by nuclear accumulation of GSK-3beta 
(Fujimuro et al. 2003).

KSHV encodes several homologs of human genes, including those encoding 
cytokines, cell cycle-associated protein, and apoptosis-associated proteins includ-
ing IL-6, MIP1, MIP2, BCL2, IRF, cyclin D1, and FLIP (Russo et al. 1996). Some 
of these mimic the function of human proteins (molecular mimics), and some inhibit 
the mimic proteins functionally. However, since a large number of these homologs 
are lytic proteins, KSHV-infected cells do not usually express these proteins, with 
only small populations of KSHV-infected cells expressing these proteins. However, 
among them, viral interleukin-6 (vIL-6 or K2) is expressed relatively frequently 
compared with other lytic proteins and is involved in the pathogenesis of KSHV- 
associated diseases (Moore et al. 1996). vIL-6 has 62% similarity to human IL-6 in 
its amino acid sequence. vIL-6 can bind to p80, a subunit of human IL-6 receptor, 
and induces downstream Stat3 signaling (Molden et al. 1997). vIL-6 also induces 
expression of vascular endothelial growth factor, resulting in angiogenesis and the 
growth of KSHV-infected cells (Aoki et al. 1999, 2003). vIL-6 also contributes to 
evasion from the host immune system by blocking hIL-6R and suppressing p21 
expression (Chatterjee et al. 2002).

To date, no transforming genes of note have been reported in KSHV, but recent 
reports suggest that virus-encoded microRNAs (miRNAs) play important roles in 
the pathogenesis of KSHV. KSHV encodes at least 12 pre-miRNAs in its genome, 
generating 24 mature miRNAs in KSHV-infected cells (Cai et al. 2005). These miR-
NAs have been shown to modulate host gene expression, resulting in dynamic bio-
logical changes in KSHV-infected cells. KSHV-encoded miRNA is highly expressed 
in KSHV-infected cells compared with host miRNA.  Surprisingly, in KSHV- 
infected PEL cell lines, TY-1 and BCBL-1, almost half of the total miRNA origi-
nated from KSHV (Hoshina et al. 2016). KSHV-encoded miRNAs are contained in 
exosomes, small vesicles exported out of cells. miRNAs may be delivered from 
KSHV-infected cells and lesions via exosomes to exert distal effects. Generally, 
miRNA binds to host mRNA and modulates expression of target proteins. Each 
viral miRNA has various functions biologically. BCL2-associated factor BCLAF1 
is a target of KSHV-encoded miR-K5, resulting in the inhibition of apoptosis (Lei 
et al. 2010). miR-K1 targets IkB-alpha, which plays an inhibitory role in NF-kB 
signaling (Lei et al. 2010). Expression of miR-K1 rescues NF-kappaB activity and 
inhibit viral lytic replication, maintaining KSHV latent infection in the host cells 
(Lei et al. 2010; Ziegelbauer et al. 2009). Although there are several reports describ-
ing the functions of KSHV-encoded miRNAs, much remains to be determined 
regarding the functions of miRNAs encoded by KSHV.
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16.3  Epidemiology and Transmission

Unlike other human herpesviruses, KSHV infection is not common among the gen-
eral population in many countries. ELISA using lysates of KSHV viral particles or 
recombinant viral proteins as antigens has been used as a tool for KSHV serology, 
as well as immunofluorescence assays using KSHV-infected cells. Serological stud-
ies have demonstrated that the seroprevalence of KSHV among the general popula-
tion differs significantly among regions and countries. KSHV seropositivity in the 
general population is low (less than 10%) in northern European, American, and 
Asian countries, 10–30% in the Mediterranean region and Xinjiang region in China, 
and more than 50% in sub-Saharan African countries (Chatlynne et al. 1998; Davis 
et al. 1997; He et al. 2007; Katano et al. 2000a; Kedes et al. 1997; Mayama et al. 
1998; Rabkin et al. 1998). In western countries and Japan, KSHV infection is more 
common (8–25%) in men who have sex with men (MSM) than in the general popu-
lation (Casper et  al. 2006; Engels et  al. 2007; Grulich et  al. 2005; Katano et  al. 
2013).

Since the saliva contains a high copy number of KSHV in KSHV-infected indi-
viduals (Pauk et al. 2000), saliva is thought to be an important route of KSHV trans-
mission. KSHV may be transmitted from mother to child through saliva horizontally 
in endemic regions such as Africa. Homosexual behavior may also be associated 
with KSHV transmission between MSM in non-endemic regions. Organ transplan-
tation is another important route of KSHV transmission (Regamey et al. 1998). It is 
possible that blood transfusion also presents a risk for KSHV transmission (Hladik 
et al. 2006, 2012).

16.4  KSHV-Related Diseases

KS, PEL, KSHV-associated MCD, KSHV-associated diffuse large B cell lym-
phoma, and KSHV inflammatory cytokine syndrome (KICS) are now widely 
accepted as KSHV-related diseases by many researchers (Goncalves et al. 2017). In 
addition, there are some reports describing the primary infection of KSHV (Andreoni 
et al. 2002; Wang et al. 2001). Shortly after the discovery of KSHV, it was reported 
that the KSHV genome could be detected in patients with various diseases such as 
multiple myeloma, primary pulmonary hypertension, Bowen disease, squamous 
cell carcinoma, Paget disease, and actinic keratosis. However, the association 
between KSHV infection and these diseases has become controversial, with many 
researchers disputing this link.
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16.4.1  Primary KSHV Infection

Primary infection with KSHV has been demonstrated by several reports. A febrile 
maculopapular skin rash was associated with primary KSHV infection, detected 
through the saliva, in a mass study of immunocompetent children in Egypt (Andreoni 
et al. 2002; Wang et al. 2001). This infection has been associated with a rash, fever, 
arthralgia, and lymphadenopathy in immunocompetent persons. In immunocom-
promised patients, such as peripheral blood stem cell/bone marrow transplantation 
patients, hepatitis, splenomegaly, and bone marrow failure were reported as ill-
nesses associated with acute infection with KSHV (Luppi et al. 2000).

16.4.2  Kaposi’s Sarcoma (KS)

KS is the most frequent KSHV-associated disease. There are four clinical subtypes: 
classic, AIDS-associated, iatrogenic, and endemic (Antman and Chang 2000). 
AIDS-associated KS is the most common subtype. Curiously, AIDS-associated KS 
occurs only in HIV-positive MSM. Although the detailed mechanisms are unknown, 
higher KSHV seroprevalence among MSM than the general population may be 
associated with the high incidence of KS in MSM (Casper et al. 2006; Katano 
et al. 2013).

KS appears more commonly in the skin, oral cavity, and gastrointestinal tract and 
occasionally in the lymph node and organs such as the lungs and liver (Antman and 
Chang 2000). The prognosis for pulmonary KS is poor and sometimes fatal. Skin 
lesions are most common in KS cases. Cases of cutaneous KS are classified into 
patchy, plaque, and nodular stages clinically. The patchy stage of KS appears as one 
or a few small red flat lesions in the skin of the four extremities and the trunk. The 
plaque stage of KS shows as fused patchy lesions and sometimes elevated patchy 
lesions. The nodular stage of KS is more aggressive than the plaque stage and 
appears as multiple nodular lesions. Multiple KS lesions in the extremities are often 
complicated with lymphedema. Histologically, proliferation of spindle cells around 
the vessel is observed in the patchy stage (Fig. 16.1). Spindle cells form slit-like 
vascular spaces around the vessel containing extravasated red blood cells. Blood 
vessels in the patchy stage are dilated and abnormal in shape. In the plaque stage, 
spindle cell proliferation is prominent and fusion of patchy lesions occurs. Massive 
nodular proliferation of spindle cells is observed in the nodular stage. Nodules of 
spindle cells compress the surrounding tissue causing lymphedema. Mitosis is 
sometimes observed and macrophages with hyaline-globules are found.

Immunohistochemically, LANA-1 is detected exclusively in KS spindle cells 
regardless of the clinical KS subtype and stage (Dupin et al. 1999; Katano et al. 
1999b), indicating that LANA-1 immunohistochemistry is the gold standard for KS 
diagnosis in histopathology. LANA-1 immunohistochemistry demonstrates a dot- 
like staining pattern in the nucleus of KS spindle cells. LANA-1 signals are also 
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found in vascular endothelial cells in KS lesions. Other KSHV-encoded proteins 
including lytic (RTA, ORF59, K8.1) and latent (vFLIP, v-cyclin D, LANA-2) pro-
teins are difficult to detect or rarely expressed in the pathological samples of KS by 
immunohistochemistry. Podoplanin (D2–40), a lymphatic marker, is also detected 
in KS cells; however, this is not specific to KS cells (Weninger et al. 1999).

PCR detection of the KSHV genome is another useful tool for KS diagnosis. KS 
cells contain 1–2 copies of the KSHV genome per cell (Asahi-Ozaki et al. 2006). 
Short fragments of the KSHV genome can be detected even in formalin-fixed 
paraffin- embedded KS tissue by PCR and real-time PCR (Asahi-Ozaki et al. 2006). 
The KSHV genome is occasionally detected in the sera of KS patients, but not 
always. The copy number of the KSHV genome in the serum of patients with KS is 
much lower than that in patients with KSHV-associated MCD. Serum antibody to 
KSHV is usually positive in patients with KS. However, since all KSHV-infected 
individuals have serum antibody to KSHV, a positive serum antibody result does not 
always reflect the presence of KS. LANA-1, ORF59, K8.1, and ORF65 have been 
reported to be major immunogens of KSHV in patients with KS (Katano et  al. 
2000b).

Fig. 16.1 Histology of Kaposi’s sarcoma (a and b). Nodular stage of Kaposi’s sarcoma. HE stain-
ing demonstrates the proliferation of spindle tumor cells with vascular slits (a). LANA-1 immuno-
histochemistry shows positive signals in the nucleus (b). (c and d) Patchy stage of Kaposi’s 
sarcoma. Spindle cells are found around the vessel (c). Some spindle cells around the vessel are 
positive for LANA-1 by immunohistochemistry (d)
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For the treatment of AIDS-associated KS, anti-retroviral therapy is effective not 
only on HIV but also on KS. Regression of KS is sometimes observed by adminis-
tration of anti-retroviral therapy in the absence of specific treatment for 
KS. Combination therapy comprising anti-retroviral therapy and chemotherapy of 
pegylated liposomal doxorubicin is required for aggressive KS cases (Martin- 
Carbonero et al. 2008). Anti-herpesvirus drugs such as ganciclovir and acyclovir are 
not effective against KS and there is currently no vaccine available against 
KSHV.  However, animal experiments suggest that vaccination with K8.1 and 
another KSHV-encoded protein may induce some neutralizing antibodies to KSHV 
in vivo (Sakamoto et al. 2010).

It is obvious that latent infection of KSHV is predominant in KS lesions. KSHV 
infects endothelial cells more efficiently through cell-to-cell contact from KSHV- 
infected B cells to KSHV-uninfected endothelial cells than through cell-free trans-
mission (Myoung and Ganem 2011; Sakurada et al. 2001). KSHV infection induces 
alterations in gene expression in endothelial cells, resulting in different expression 
patterns of cellular proteins and spindle forms in endothelial cells (Hong et al. 2004; 
Wang et al. 2004). LANA-1 plays a central role in the pathogenesis of KS. LANA-1 
expression contributes to the transformation and maintenance of KSHV in KS cells. 
The expression of lytic proteins encoded by KSHV is limited in KS cells. Viral IL-6 
is expressed in a small portion of KS cells, and this vIL-6 interacts with hIL-6 
receptor. Cellular immunity is important for herpesvirus infection and KSHV dis-
plays mechanisms of immune evasion. KSHV-encoded K3 and K5 are homologs of 
human MARCH8 that downregulates MHC class I expression in KSHV-infected 
cells (Ishido et al. 2000). Expression of the anti-apoptotic KSHV ORF-K13/v-FLIP 
also contributes to the tumorigenesis of KS (Thome et al. 1997).

16.4.3  Primary Effusion Lymphoma (PEL)

PEL is defined as KSHV-positive effusion lymphoma developing in body cavity 
effusion such as the pleural, abdominal, and pericardial effusion (Nador et al. 1996; 
Said and Cesarman 2008). PEL occurs in immunosuppressed patients, especially 
HIV-infected MSM (Cesarman et  al. 1995; Nador et  al. 1996), and accounts for 
approximately 4% of all cases of AIDS-associated lymphoma (Ota et al. 2014). 
PEL cells grow in the pleural, abdominal, or pericardial effusion as lymphomatous 
effusions. Some cases of PEL are complicated by a contiguous tumor mass.  
Such KSHV-positive solid lymphomas were classified as “extracavitary 
PEL”.  Extracavitary PEL cases without PEL lesions are also included into this 
category.

PEL cells exhibit plasmablastic or large immunoblastic, sometimes anaplastic, 
large cell morphology (Fig. 16.2). The nuclei of these cells frequently show a spoke- 
wheel structure with prominent nucleoli. The cytoplasm is abundant and deeply 
basophilic, and a nuclear halo is sometimes observed in the cytoplasm. These mor-
phological features are similar to plasma cells or plasmablasts. However, PEL cells 
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are much larger than normal plasma cells, and their nuclei are atypical and more 
irregular in shape. Binucleated or multinucleated cells, like the Reed–Sternberg 
cells in Hodgkin lymphoma, are frequently observed. Mitotic cells are also fre-
quently detected. Immunohistochemically, PEL cells express a unique immunophe-
notype. Almost all cases are positive for CD45, CD38, and CD138. Many cases of 
PEL are positive for CD30, but not all. PEL cells are usually negative for B cell 
markers, CD19 and CD20, but immunoglobulin gene rearrangement is detected  
in all cases, indicating their B cell origin. PEL cells are invariably positive for 
KSHV- encoded LANA-1; therefore LANA-1 is the most important marker for PEL 
 diagnosis. EBV is detected in >80% of PEL cases. In such cases, EBV and KSHV 
coinfect PEL cells. PEL cells are positive for EBV-encoded small RNA (EBER), but 
negative for other EBV-encoded latent proteins such as latent membrane proteins 
(LMPs) and EBV-encoded nuclear antigens (EBNAs), suggesting the latency I pat-
tern of EBV infection (Horenstein et al. 1997).

Fig. 16.2 Primary effusion lymphoma (PEL) (a) Giemsa staining of PEL. Lymphoblastic cells are 
observed. (b) Giemsa staining of another case of PEL. Lymphoma cells have large nuclei with 
abundant cytoplasm. (c) LANA-1 immunofluorescence staining of PEL cells. Positive signals 
show a dot-like staining pattern in the nucleus. (d) Immunofluorescence assay for vIL-6. vIL-6 is 
detected in the cytoplasm of some lymphoma cells
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Many PEL cell lines have been established including both EBV-positive and 
EBV-negative cells. To date, 10 KSHV-positive/EBV-negative cell lines have been 
established from PEL cells (Osawa et al. 2016). Among these, the KSHV-positive/
EBV-negative cell line, TY-1, was established from a case of KSHV-positive/EBV- 
positive PEL (Katano et al. 1999a). This suggests that KSHV is solely responsible 
for the pathogenesis of PEL. PEL cell lines are the most studied model of KSHV- 
infected diseases because (1) all PEL cells are infected with KSHV and express 
KSHV-encoded latent proteins, (2) KSHV is easily activated by chemical induction, 
and (3) there is no KS cell line that is infected with KSHV continuously. The pre-
dominant phase of KSHV infection is latent in PEL cells. PEL cells express not only 
LANA-1 but also other KSHV-encoded latent proteins such as LANA-2, ORF71, 
and ORF72. However, it is not easy to detect latent proteins, other than LANA-1, in 
PEL cells. By contrast, vIL-6, an early protein encoded by KSHV, is relatively easy 
to detect in PEL cells. Other lytic proteins, such as RTA, ORF59, and K8.1, are 
rarely expressed in PEL cells.

vIL-6 plays an important role in the pathogenesis of PEL. vIL-6 binds to the IL-6 
receptor, gp130, without gp80, another subunit of IL-6 receptor, indicating that 
vIL-6 induces IL-6 signals in various cells (Chatterjee et al. 2002). The binding to 
gp130 activates downstream IL-6 signaling and induces secretion of human IL-6, 
implying an autocrine mechanism between vIL-6 and hIL-6. vIL-6 also induces 
vascular endothelial growth factor expression in PEL cells, which is associated with 
indirect proliferation of PEL cells (Aoki et al. 1999). In an animal model of effusion 
and a solid type of KSHV-associated lymphoma, several adhesion molecules, 
including LFA1 and 3, were downregulated in PEL but not in KSHV-associated 
solid lymphoma (Yanagisawa et al. 2006).

16.4.4  KSHV-Associated Diffuse Large B Cell Lymphoma,  
Not Otherwise Specified

“KSHV-associated diffuse large B cell lymphoma, not otherwise specified (KSHV- 
DLBCL, NOS)” is a new category of lymphoma in the revised 4th edition of the 
WHO classification (Swerdlow et  al. 2016). This category is thought to contain 
cases of formerly large B cell lymphoma arising in KSHV-associated MCD, and 
KSHV-associated plasmablastic lymphoma (Isaacson et al. 2008; Said and Cesarman 
2008). This type of lymphoma is characterized by monoclonal proliferation of 
KSHV-infected lymphoid cells resembling plasmablasts (Fig. 16.3). In cases with 
MCD in the lymph node, lymphoma cells express IgM (Dupin et  al. 2000; 
Oksenhendler et  al. 2002). Small confluent sheets of LANA-1+ plasmablasts are 
seen in the interfollicular zone of KSHV-associated MCD. This type of lymphoma 
occurs in the lymph node or spleen with generalized lymphadenitis and/or massive 
splenomegaly. The expression pattern of viral proteins is similar to that of PEL, and 
the expression of vIL-6 is frequently observed in lymphoma cells. EBV is not 
detected in this type of lymphoma. 
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Fig. 16.3 Extracavitary PEL and KSHV-associated diffuse large B cell lymphoma, not otherwise 
specified. (a–d) A case of extracavitary PEL occurring in the colon of a patient with AIDS. Large 
lymphoblastic cells are detected by HE staining (a). These lymphoma cells are positive for EBER 
(b) and LANA-1 (c) on immunohistochemistry. vIL-6 is expressed in the cytoplasm of some lym-
phoma cells (d). (e and f) A case of KSHV-associated diffuse large B cell lymphoma, not otherwise 
specified. HE staining shows that lymphoma cells infiltrate the germinal center of MCD (e). These 
lymphoma cells are positive for LANA-1 on immunohistochemistry (f)
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16.4.5  Multicentric Castleman Disease (MCD)

MCD is characterized by generalized lymphadenopathy with polyclonal hypergam-
maglobulinemia and a high level of IL-6  in the serum (Frizzera et  al. 1983). 
Histologically, follicular hyperplasia and hyaline vascular change in the follicle and 
interfollicular zone are observed (Fig. 16.4). The proliferation of plasma cells is 
predominant in the interfollicular area. KSHV is detected in a proportion of MCD 
cases (Soulier et  al. 1995); it is frequently detected in cases of AIDS-associated 
MCD, but rarely in non-HIV-infected individuals (Suda et al. 2001). KSHV-encoded 
proteins such as LANA-1 are detected in large blastic B cells around the germinal 
center (Dupin et  al. 1999; Katano et  al. 2000b; Parravicini et  al. 2000). These 
KSHV-positive cells are found in the mantle zone of the germinal center and the 
interfollicular area. Importantly, these KSHV-positive cells express not only 
LANA-1 but also many KSHV-encoded lytic proteins such as vIL-6, RTA, ORF59, 
ORF65, and K8.1 (Katano et al. 2000a). A high titer of KSHV is usually detected in 
the serum of KSHV-associated MCD, and the copy number of serum KSHV 

Fig. 16.4 KSHV-associated MCD (a) HE staining reveals the hyalinized germinal center with 
proliferation of plasma cells. (b) LANA-1 immunohistochemistry. LANA-1 is detected in some B 
cells in the mantle zone of the germinal center. (c and d) Immunohistochemistry for KSHV- 
encoded lytic proteins. vIL-6 (c) and RTA (d) are detected in a small population of lymphocytes in 
the mantle zone of the germinal center
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corresponds to the clinical course in these patients (Oksenhendler et  al. 2000). 
These data suggest that KSHV lytic infection occurs in KSHV-associated MCD. 
vIL-6 is thought to play an important role in the pathogenesis of KSHV-associated 
MCD, and a high level of vIL-6 is detected in the serum of MCD patients (Aoki 
et al. 2001). vIL-6 induces the expression of human IL-6 in vitro, and both vIL-6 
and hIL-6 induce the proliferation of plasma cells via an autocrine mechanism.

16.4.6  KSHV Inflammatory Cytokine Syndrome (KICS)

KICS was a new category of disease distinct from cases of KSHV-associated MCD, 
which was proposed in 2012 (Polizzotto et al. 2012; Uldrick et al. 2010). Almost all 
KICS cases have been reported in HIV-positive patients with KS and/or 
PEL. Multiple severe symptoms such as gastrointestinal disturbance, edema, respi-
ratory disturbance, and effusions are observed (Table 16.1). Blood tests reveal high 
C-reactive protein, high vIL-6 and hIL-6, high IL-10, anemia, hypoalbuminemia, 
and thrombocytopenia. Importantly, a high viral load of KSHV is detected in the 
serum of KICS patients. These data suggest that KICS is strongly associated with 
KSHV replication following a severe inflammatory response. The clinical manifes-
tations of KICS resemble those of KSHV-associated MCD; however, cases compli-
cated by MCD are excluded from the category of KICS. In KICS, lymphadenopathy 
is not prominent and pathological evidence of MCD is absent. The prognosis for 
KICS is poor, with an overall survival rate of less than 60% despite intensive treat-
ment of KSHV-associated tumors and KSHV replication.

Table 16.1 Case definition of KSHV-inflammatory cytokine syndrome (KICS) (Uldrick et  al. 
2010)

1. Clinical manifestations
  a. Symptoms: fever, fatigue, edema, cachexia, respiratory symptoms, gastrointestinal 

disturbance, athralgia and myalgia, altered mental state, neuropathy with or without pain
  b. Laboratory abnormalities: Anemia, thrombocytopenia, hypoalbuminemia, hyponatremia
  c. Radiographic abnormalities: Lymphadenopathy, splenomegaly, hepatomegaly, body cavity 

effusions
2. Evidence of systemic inflammation
  Elevated C-reactive protein (≥3 g/dL)
3. Evidence of KSHV viral activity
  Elevated KSHV viral load in plasma (≥1000 copies/mL) or peripheral blood mononuclear 

cells (≥100 copies/106 cells)
4. No evidence of KSHV-associated multicentric Castleman disease

Exclusion of MCD requires histopathologic assessment of lymphadenopathy if present
The working case definition of KICS requires the presence of at least two clinical manifestations 
drawn from at least two categories (1a, b, and c), together with each of the criteria in 2, 3, and 4

16 Pathology of KSHV Infection



370

16.5  Conclusion

During the past decade, KSHV has been intensively investigated using molecular 
biological techniques, and some of the molecular mechanisms of KSHV infection 
have been elucidated. Based on such investigations, the classification of KSHV- 
associated diseases has been reconsidered and revised. Immunohistochemistry to 
detect the LANA-1 is now a gold standard for the pathological diagnosis of KSHV 
infection. Many diseases with an unconfirmed association with KSHV infection 
were excluded by LANA-1 immunohistochemistry. KSHV-associated lymphoma 
was redefined and KICS was added as a new KSHV-associated disease. These mod-
ifications to the classification of KSHV-associated diseases are the result of meticu-
lous investigations by clinicians and researchers. However, many unsolved questions 
remain in the pathogenesis of KSHV infection, especially regarding oncogenesis. It 
is clear that LANA-1 plays a unique role in the pathogenesis of KSHV, and the 
extremely high expression of viral miRNAs in KSHV-infected cells suggests that 
viral miRNAs might also play a major role in the pathogenesis of this virus, as well 
as KSHV oncogenesis. Further studies will reveal the role of viral miRNAs in 
KSHV-associated diseases.
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Chapter 17
EBV-Encoded Latent Genes

Teru Kanda

Abstract Epstein-Barr virus (EBV) is one of the most widespread human patho-
gens. EBV infection is usually asymptomatic, and it establishes life-long latent 
infection. EBV latent infection sometimes causes various tumorigenic diseases, 
such as EBV-related lymphoproliferative diseases, Burkitt lymphomas, Hodgkin 
lymphomas, NK/T-cell lymphomas, and epithelial carcinomas. EBV-encoded latent 
genes are set of viral genes that are expressed in latently infected cells. They include 
virally encoded proteins, noncoding RNAs, and microRNAs. Different latent gene 
expression patterns are noticed in different types of EBV-infected cells. Viral latent 
gene products contribute to EBV-mediated B cell transformation and likely contrib-
ute to lymphomagenesis and epithelial carcinogenesis as well. Many biological 
functions of viral latent gene products have been reported, making difficult to 
understand a whole view of EBV latency. In this review, we will focus on latent 
gene functions that have been verified by genetic experiments using EBV mutants. 
We will also summarize how viral latent genes contribute to EBV-mediated B cell 
transformation, Burkitt lymphomagenesis, and epithelial carcinogenesis.

Keywords Latent genes · EBNA · LMP · microRNA · Burkitt lymphoma · Epithelial 
carcinogenesis

17.1  Introduction

When cells are latently infected with EBV, a set of viral genes are expressed, which 
are designated as viral latent genes. There are several different forms of EBV latency, 
and those are schematically illustrated (Fig.  17.1) (Rickinson and Kieff 2007). 
Lymphoblastoid cell lines (LCLs), which are immortalized B lymphocytes estab-
lished by in vitro EBV infection, express all sets of proteins and noncoding RNAs 
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indicated in the figure. Specifically, LCLs express viral latent proteins, consisting of 
six EBV nuclear antigens (EBNAs 1, 2, 3A, 3B, 3C, and EBNA-LP) and three latent 
membrane proteins (LMPs 1, 2A, and 2B). They also express viral noncoding EBER 
RNAs (EBER1 and EBER2) and EBV-encoded microRNAs (miR-BHRF1 and miR-
BART). Transcripts from the BamHI A region of the genome (BART transcripts, 
BARTs) are also expressed. The functions of BART transcripts have been enigmatic 
for a long time, but it has now become clear that they are precursors of BART miR-
NAs. This pattern of viral gene expression is referred to as latency type III (Rickinson 
and Kieff 2007). On the other hand, typical EBV-positive Burkitt lymphoma cells 
express only EBNA1, EBERs, and BART transcripts, and such latency type is referred 
to as latency type I. In latency type II, in addition to the genes expressed in latency I, 
LMP1 and LMP2 are expressed. Latency type II can be observed in various EBV-
associated tumors, including nasopharyngeal carcinoma cells and NK/T lymphoma 
cells (Rickinson and Kieff 2007). One additional latency type is called Wp-restricted 
latency observed in Burkitt lymphoma cells, which will be discussed in Sect. 17.3.2.

Molecular functions of viral latent gene products have been extensively studied 
and characterized, and the results are thoroughly described in textbooks and review 
articles (Epstein Barr Virus Volume 1 One Herpes Virus: Many Diseases 2015a; 
Epstein Barr Virus Volume 2 One Herpes Virus: Many Diseases 2015b; Kang and 
Kieff 2015; Kieff and Rickinson 2007; Young and Rickinson 2004; Young et  al. 
2016). In these publications, many biological functions have been described for 
each latent gene product, and it is not our aim to describe all of them. Instead, this 
review will focus on latent gene functions that have been verified by genetic 

EBER1,2 EBNA-LP miR-BHRF1
EBNA2

EBNA3A,3B,3C EBNA1 miR-BART LMP2A

LMP1

BARTs

B95-8 deletion
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EBV genome (175 kb)

BHRF1

EBER1,2 miR-BHRF1 EBNA3A,3B,3C EBNA1
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Fig. 17.1 Patterns of EBV latent gene expression in different forms of viral latency. The top panel 
represents a schematic illustration of the EBV genome, while panels underneath illustrate latent 
gene expression patterns in different forms of latency. Various viral latent gene products, including 
proteins, noncoding RNAs, and microRNAs, are illustrated. Viral latent gene promoters are indi-
cated as arrows. Details of mRNA splicing are not faithfully represented
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 experiments using EBV mutants. B cell immortalization assay was used by most of 
the genetic studies for its ease of use. Thus, the results of in vitro transformation 
assay using naturally occurring as well as artificially created mutants (gene knock-
out viruses) will be described. This review will also describe how some of the latent 
gene products contribute to Burkitt lymphomagenesis as well as epithelial carcino-
genesis. Finally, since recent studies indicate that clues to understand viral gene 
functions can be obtained from viral gene heterogeneity, viral latent gene heteroge-
neity affecting viral phenotypes will be discussed.

17.2  Viral Latent Gene Products Expressed in LCLs

17.2.1  EBNA2 and EBNA-LP

At the initial phase of EBV infection to B cells, EBNA proteins are known to be 
expressed under complicated usage of viral promoters. Transcripts encoding 
EBNA2 and EBNA-LP are the first to be expressed from viral promoter Wp (BamHI 
W promoter) (Kieff and Rickinson 2007). EBNA2 and EBNA-LP proteins then 
regulate transcription starting from both viral and cellular promoters. EBNA2 con-
tributes to the activation of viral latent gene promoter Cp (BamHI C promoter), 
which drives viral latent genes including EBNA1 and EBNA3s (3A, 3B, and 3C). 
As a result, promoter usage changes from Wp to Cp. EBNA2 is also necessary for 
transactivating LMP1 promoter (LMP1p). Thus, EBNA2 turns on the expression of 
EBNA1, EBNA3s, and LMP1, which are indispensable for B cell transformation. 
When EBNA2 transactivates Cp and LMP1p, EBNA2 does not bind directly to the 
promoter region. Rather, EBNA2 is recruited to the promoter regions via a cellular 
DNA binding protein RBP-Jκ (Kieff and Rickinson 2007). EBNA2 also transacti-
vates cellular promoters, such as those of c-Myc, CD23, and CD21 (Kieff and 
Rickinson 2007).

EBNA2 is the first viral gene whose function was predicted by the phenotype of 
a naturally occurring EBV mutant. Burkitt lymphoma cell line P3HR-1 is a well- 
known virus producing cell line. P3HR-1 strain EBV is a laboratory strain, and it is 
a derivative of another Burkitt lymphoma-derived EBV strain, Jijoye. Importantly, 
P3HR-1 virus is incompetent for B cell immortalization, while its parental strain 
Jijoye can transform B lymphocytes (Rabson et al. 1982). Since P3HR-1 strain EBV 
has a deletion in EBNA2 region, it was conceivable that EBNA2 was necessary for 
EBV-mediated B cell immortalization. Later studies demonstrated that EBNA2 is 
actually indispensable for immortalization (Cohen et al. 1989) (Table 17.1).

EBNA-LP is expressed along with EBNA2 shortly after EBV infection in pri-
mary B lymphocytes. EBNA-LP cooperates with EBNA2  in activating viral and 
cellular gene expression. (Kieff and Rickinson 2007). Making EBNA-LP knockout 
EBV is technically difficult due to its repetitive nature. Still, a study indicates that 
EBNA-LP plays critical role in B cell transformation (Mannick et al. 1991).

17 EBV-Encoded Latent Genes
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17.2.2  EBNA3 Proteins

The EBNA3 genes are tandemly located in the EBV genome, and they are tran-
scribed from far upstream promoters, Cp or Wp (Fig. 17.1). Amino acid sequences 
of EBNA3 proteins are known to be heterogeneous among various EBV strains 
(Kanda et al. 2016; Palser et al. 2015). Like EBNA2, EBNA3s also contribute to 
transcriptional regulation of both viral and cellular promoters. Contribution of 
EBNA3s on EBV-mediated B cell transformation was examined by series of genetic 
experiments using P3HR-1 strain EBV.  The studies employed rescuing B cell 
immortalizing activity of P3HR-1 EBV by repairing EBNA2 gene via homologous 
recombination and simultaneously introducing second-site homologous recombina-
tion in other viral genes. P3HR-1 EBV genome with its EBNA2 gene repaired 
should become transformation-competent and immortalize B lymphocytes. If this 
transformation-competent virus has acquired a second-site mutation, one can 

Table 17.1 EBV-encoded latent genes, genetic studies, and naturally occurring mutants

Classification Latent genes

Necessity for B cell 
immortalization revealed by 
genetic studies Naturally occurring mutants

Latent 
proteins

EBNA2 Essential  
Cohen et al. (1989)

Deleted in Burkitt lymphoma- derived 
strains; P3HR-1, Daudi, Sal, Oku, Ava 
Jones et al. (1984), Kelly et al. (2002), 
and Rabson et al. (1982)

EBNA-LP Essential  
Mannick et al. (1991)

EBNA3A Essential  
Tomkinson et al. (1993)

EBNA3B Dispensable  
Tomkinson and Kieff (1992)

Mutations in diffuse large B cell 
lymphoma and in Hodgkin lymphoma 
White et al. (2012)

EBNA3C Essential  
Tomkinson et al. (1993)

EBNA1 Essential  
Humme et al. (2003)

LMP1 Essential  
Dirmeier et al. (2003) and 
Kaye et al. (1993)

LMP2 Dispensable  
Longnecker et al. (1993)

Noncoding 
RNAs

EBER1 Dispensable  
Swaminathan et al. (1991) 
and Yajima et al. (2005)

EBER2

microRNAs BHRF1 
microRNAs

Dispensable  
Seto et al. (2010)

BART 
microRNAs

Dispensable  
Robertson et al. (1994)

Deleted in B95-8 strain  
Raab- Traub et al. (1980)
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readily conclude that the viral gene mutated by second-site homologous recombina-
tion is dispensable for B cell immortalization.

The above experimental strategy revealed that EBNA3B is dispensable for B cell 
immortalization (Tomkinson and Kieff 1992). By contrast, both EBNA3A and 
EBNA3C are indispensable (Tomkinson et al. 1993) (Table 17.1). Molecular basis 
of such difference remains unknown.

EBNA3A and EBNA3C are known to counteract p16 protein (Maruo et al. 2011; 
Skalska et al. 2010). Downregulating either EBNA3A or EBNA3C expression in 
the established LCLs results in accumulation of p16 and ceasing of LCL prolifera-
tion (Maruo et al. 2011). Thus, EBNA3A and EBNA3C are also necessary to sup-
port the continuous growth of the established LCLs. EBNA3A and EBNA3C also 
epigenetically suppress a proapoptotic tumor-suppressor protein Bim (Paschos 
et al. 2009). Suppression of Bim appears to be critical during the course of Burkitt 
lymphomagenesis. This will be discussed further in Sect. 17.3.1.

Although EBNA3A, 3B, and 3C constitute a gene family, EBNA3B has mark-
edly different biological functions compared to EBNA3A and 3C. A recent study 
indicates that when EBNA3B gene is artificially deleted by gene knockout, the 
resultant EBNA3B-negative EBV exhibits enhanced B cell transformation ability as 
well as enhanced lymphomagenesis in humanized mouse model (White et al. 2012). 
Importantly, the study identified EBNA3B mutations in EBV-positive lymphomas, 
including diffuse large B cell lymphomas and Hodgkin lymphomas (Table 17.1). 
Thus, EBNA3B appears to suppress B cell transforming ability. In this viewpoint, 
while EBNA3A and EBNA3C are viral oncogenes, EBNA3B serves as a tumor sup-
pressor (White et al. 2012).

17.2.3  EBNA1

EBNA1 is an essential molecule to establish and stably maintain EBV latency for 
multiple reasons. First, EBNA1 is a key molecule to keep EBV genomes as multi- 
copy circular double-stranded DNA molecules (called episomes) in latently infected 
cells (Leight and Sugden 2000). EBNA1 binds to viral oriP sequence in a sequence- 
dependent manner. Multiple EBNA1 binding sites (more than 20 copies; copy num-
ber varies between EBV strains) are clustered within the oriP sequence. 
Simultaneously, EBNA1 binds to host cell chromosomes, which can be observed by 
cytological analyses. This is enabled by a modular domain structure of EBNA1 
protein; its C-terminal region contains a sequence-specific oriP DNA binding 
domain, while its N-terminal region contains chromosome binding domains (Leight 
and Sugden 2000) (Fig. 17.2). As a result, EBNA1 tethers EBV episomes onto host 
cell chromosomes and enables their segregation during mitosis.

Molecular mechanisms by which EBNA1 binds to chromosomes have been 
attracting interests of EBV researchers. An initially proposed hypothesis is that a 
cellular chromosome binding protein tethers EBNA1 on host chromosome (Shire 
et al. 1999). Another hypothesis is that EBNA1 protein has amino acid motifs for 
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binding to minor groove of chromosomal DNA (Sears et al. 2004). A recent study 
demonstrated that interaction between EBNA1 and chromosomes is likely to be 
electrostatic (Kanda et  al. 2013). There are total 24 arginine residues within the 
chromosome binding domains of EBNA1 (Fig. 17.2), and the regions are positively 
charged. Series of amino acid substitution mutations were introduced to these argi-
nine residues. Alanine substitution of the arginine residues results in loss of chro-
mosome binding, while substituting arginine with lysine (positively charged, just 
like arginine) does not affect chromosome binding (Kanda et al. 2013). Thus, posi-
tive charges of the chromosome binding domains appear to be primarily important.

Second, EBNA1 works as a transactivator of viral gene expression. EBNA1 
binding to oriP sequence contributes to the activation of Cp, which drives the 
expressions of EBNA2, EBNA3s, and EBNA1 itself in latency type III (Fig. 17.1).

A recombinant virus lacking EBNA1 gene can still transform B lymphocytes, 
but the transformation efficiency is several thousandfold less compared to the wild- 
type virus (Humme et  al. 2003) (Table  17.1). In the absence of EBNA1, EBV 
genome cannot be episomally maintained, and, as a result, EBV genomes should 
integrate into host chromosomes in order to stably express all the viral latent pro-
teins required for B cell transformation. The frequency of getting integrated into 
host chromosomes is much less than the frequency of forming multi-copy episomes. 
This explains why the transformation efficiency of EBNA1-negative EBV is so low.

GRGRGGSGGRGRGGSGGRGRGGSGGRRGRGRERARGGSRERARGRGRGRG 

GRGRGRGRGRGGGRP

328 377

40 54

1 64189

NLS
(379-387)

Gly-Ala repeat
sequence-specifc

DNA binding
(oriP binding)chromosome 

binding domains

327

Fig. 17.2 Shown is the amino acid (a.a.) sequence of the chromosome binding domains (a.a. 
40–54 and a.a .328–377) of EBNA1 of B95-8 strain EBV. Arginine residues in chromosome bind-
ing domains are in bold letters. The positions of nuclear localization signal (NLS), Glycine- 
Alanine repeat (Gly-Ala), and sequence-specific DNA binding (oriP binding) domain are shown
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17.2.4  LMP1

LMP1 is a membrane protein with six transmembrane domains and C-terminal 
intracellular signaling domain, to which cellular signaling molecules bind (Kieff 
and Rickinson 2007). LMP1 belongs to tumor necrosis factor (TNF) receptor family 
protein, and it is a constitutively active mimic of cellular CD40. LMP1 activates 
NF-κB, c-jun N-terminal kinase (JNK), and p38/MAPK pathways. LMP1-mediated 
activation of NF-κB pathway is necessary to maintain LCL growth, since inhibiting 
NF-κB pathway in established LCLs results in apoptotic cell death (Cahir-McFarland 
et al. 2000). LMP1 is also strongly expressed in EBV-positive Hodgkin lymphomas 
and nasopharyngeal carcinomas.

Genetic studies indicate that LMP1 is either essential (Kaye et al. 1993) or criti-
cally important (Dirmeier et al. 2003) for B cell transformation (Table 17.1). LMP1 
expression in B cells causes B cell activation phenotypes, including upregulation of 
cell surface markers (like CD23, CD39, CD40) and cell adhesion molecules (like 
ICAM-1, LFA-1). LMP1 is a classical viral oncogene, which can transform rodent 
fibroblasts (Wang et al. 1985). Thus, LMP1 is not only important for B cell transfor-
mation but also most likely contributes to various EBV-related tumorigenic diseases 
as well.

17.2.5  LMP2 Proteins

LMP2A and LMP2B are expressed in latency III infection. LMP2A is an activating 
molecule with N-terminal intracellular domain, 12 transmembrane domains, and 
C-terminal intracellular domain. N-terminal intracellular domain contributes to 
mimic B cell receptor signaling, while the C-terminal region constitutively blocks B 
cell receptor signaling (Kieff and Rickinson 2007). LMP2A and LMP2B are dis-
pensable for B cell transformation (Longnecker et al. 1993) (Table 17.1). In trans-
genic mice, LMP2A allows immunoglobulin (Ig)-negative cells to colonize 
peripheral lymphoid organs (Caldwell et al. 1998), indicating that LMP2A can sub-
stitute Ig-mediated signaling. Thus, LMP2 also provides survival and anti- 
differentiation signals to B cells (Kieff and Rickinson 2007).

A recent study indicates that germinal center-specific expression of LMP2A 
results in altered humoral immune responses through selecting low-affinity 
antibody- producing B cells (Minamitani et  al. 2015). This observation implies a 
molecular mechanism of EBV-associated autoimmune diseases, like systemic lupus 
erythematosus.
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17.2.6  EBERs

EBER1 and EBER2 are viral non-polyadenylated RNA molecules that are expressed 
at very high levels in the majority of EBV-infected cells. EBER in situ hybridization 
is the most reliable and sensitive method to detect EBV infection, and the method is 
commonly used to prove EBV infection in tissues. EBERs form secondary structure 
and are partially double-stranded, and EBERs are known to interact with various 
cellular proteins to exert various biological activities (Nanbo and Takada 2002).

Using P3HR-1 second-site homologous recombination system, it was demon-
strated that an EBV mutant lacking EBERs could still transform B lymphocytes 
(Swaminathan et  al. 1991) (Table 17.1). The result was verified by using a pure 
recombinant virus lacking EBERs derived from Akata strain EBV (Yajima et al. 
2005). Although EBER-deleted EBV could still transform B lymphocytes, they 
exhibited impaired B cell transformation efficiency when infected B lymphocytes 
were plated at low cell density (Yajima et al. 2005). EBERs are highly expressed in 
epithelial cells as well. Thus, contribution of EBERs on epithelial cell tumorigene-
sis has been attracting interests. However, the roles of EBERs on epithelial tumori-
genesis remain unclear.

EBER function in vivo was recently investigated in a humanized mouse model 
(Gregorovic et  al. 2015). The results revealed that wild-type EBV and EBER- 
deficient EBV exhibited approximately equal abilities to infect immunodeficient 
mice reconstituted with human hematopoietic system. However, this experimental 
system does not involve normal immune response against EBV-infected cells. 
Physiological phenotypes for the EBERs may only be revealed by in vivo infection 
challenged by normal immune responses (Gregorovic et al. 2015).

17.2.7  EBV-Encoded microRNAs (miRNAs) and BART 
Transcripts

Most of viral latent proteins are highly immunogenic and stimulate host immune 
response. By contrast, viral miRNAs can affect gene expression in host cells with-
out stimulating any immune response. Therefore, encoding viral miRNA is advanta-
geous to the virus.

EBV-encoded miRNAs are the very first virally encoded miRNAs ever identified 
(Pfeffer et al. 2004). The study used B95-8 strain EBV, a deletion derivative strain 
of EBV (Raab-Traub et  al. 1980), and identified only 5 miRNAs: 3 miRNAs in 
BHRF1 region and 2 miRNAs in the BART region (Pfeffer et al. 2004). Later stud-
ies revealed that there are far more miRNAs in the “wild-type” EBV, as the 12-kb 
region that is deleted in B95-8 strain is rich in pre-miRNA genes. Currently, 44 
mature miRNAs are encoded at 2 different loci in the EBV genome: 4 mature 
miRNA encoded at the BHRF1 locus (BHRF1 miRNAs) and 40 mature miRNAs 
encoded at the BART locus (BART miRNAs) (www.mirbase.org) (Fig. 17.3).
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Various EBV miRNA are expressed at markedly different levels among different 
cell lines. BHRF1 miRNAs are highly expressed in cells with latency type III, but 
they are undetectable in B cells or epithelial cells with latency type I. BHRF1 miR-
NAs accelerate cell cycle progression and exert antiapoptotic activity of B lympho-
cyte shortly after infection (Seto et al. 2010).

By contrast, BART miRNAs are expressed not only in B cells with type III 
latency but also in epithelial cells with type I latency (Klinke et al. 2014). It is now 
well established that BART transcripts serve as precursors of BART miRNAs. 
Abundant BART transcripts in latently infected epithelial cells likely cause high 
BART miRNA expression levels in epithelial cells. In epithelial carcinoma tissues, 
such as those of gastric cancer cells, especially high levels of BART miRNAs are 
expressed (Kim et al. 2013).

It is still unclear whether BART transcripts encode functional proteins or not in 
EBV-infected cells. Although open reading frames (BARF0, RK-BARF0, RPMS1, 
and A73) have been identified in the BART transcripts (Kieff and Rickinson 2007), 
their protein products have never been detected even in EBV-infected epithelial 
cells, in which abundant BART transcripts are expressed. A recombinant EBV with 
58-kilobase-pair deletion encompassing the entire BART region could still trans-
form B lymphocytes (Robertson et al. 1994), indicating that BART transcripts and 
putative protein products, if any, are dispensable for B cell transformation (Robertson 
et al. 1994). Curiously, all the pre-miRNA genes are encoded in the intronic regions 
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of BART transcripts, and processing of the pre-miRNAs precedes the completion of 
the splicing reaction (Edwards et  al. 2008). Biological meaning of this finding 
remains unknown.

Viral miRNAs can either target other EBV transcripts or transcripts of host cells. 
Many viral and cellular targets of EBV miRNAs have been identified (Klinke et al. 
2014; Kuzembayeva et al. 2014). However, most of the results have never been veri-
fied by EBV mutants. EBV encodes more than 40 mature miRNAs, and it is 
expected that these miRNAs cooperatively regulate viral and host gene expression. 
Therefore, knocking out each specific miRNA is expected to confer minimal effect. 
Instead, either knocking out or reconstitution of entire BART miRNA cluster has 
been tried (Kanda et al. 2015; Lin et al. 2015; Seto et al. 2010) (Table 17.1). One of 
such studies implies that, by affecting expression of multiple target genes, BART 
miRNAs contribute to facilitate long-term persistence of the virus in infected host 
(Lin et al. 2015).

17.3  EBV Latent Gene Products and Burkitt 
Lymphomagenesis

17.3.1  EBV Latency Type I to Cope with Myc Translocation

Burkitt lymphomas in endemic area are almost 100% EBV-positive. By contrast, in 
non-endemic area, only 25% of them are EBV-positive. Similarly, few AIDS- 
associated Burkitt lymphoma is EBV-positive (Rickinson and Kieff 2007; Thorley- 
Lawson and Allday 2008). Thus, the presence of EBV infection is not mandatory 
for Burkitt lymphomagenesis.

Burkitt lymphoma cells are derived from germinal center B cells, where chromo-
somal translocation involving Myc and Ig occurs (Thorley-Lawson and Allday 
2008). Myc-Ig gene translocation is found in all cases of Burkitt lymphoma cells. 
When Myc-Ig translocation occurs in germinal center B cells, Myc-driven growth 
program turns on. Cells overexpressing Myc are usually eliminated due to Myc- 
induced apoptosis. However, if germinal center B cells are infected with EBV prior 
to the onset of Myc-Ig translocation, cells with Myc translocation escape from 
apoptotic cell death.

It is known that Myc-induced growth program is not compatible with full EBV 
latent gene expression (Kelly et al. 2002). After primary infection of B cells with 
EBV, EBNA2 together with EBNA-LP induce EBNA3A and EBNA3C expression, 
which in turn suppress proapoptotic protein BIM by epigenetic mechanism (Paschos 
et al. 2009). Subsequently, EBNA2 is downregulated via epigenetic silencing, and 
type I latency is established, in which only EBNA1 protein is expressed under the 
control of viral Qp promoter (Kieff and Rickinson 2007) (Fig.  17.1). EBNA2- 
negative cells tolerate Myc overexpression, and epigenetic silencing of Bim thereby 
enables proliferation of cells harboring Myc-Ig translocation (Fig. 17.4). This type 
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of Burkitt lymphoma cells can proliferate even when EBV genomes are lost from 
the cells, as their growth is mediated by altered host gene expression including Myc 
overexpression (Fig. 17.4).

17.3.2  Wp-Restricted Latency and BHRF1 Expression

Rather than epigenetic silencing of EBNA2, there is another mechanism to down-
regulate EBNA2 expression, which involves genetic loss of EBNA2 gene from EBV 
genome (Fig. 17.4).

As described above, Burkitt lymphoma-derived cell line P3HR-1 harbors 
EBNA2-deleted EBV. Similarly, several additional Burkitt lymphoma-derived cell 
lines (Daudi, Sal, Oku, Ava) harbor EBNA2-deleted EBV genomes (Jones et  al. 
1984; Kelly et al. 2002). Thus, EBV strains with EBNA2 deletion may somehow be 
selected in Burkitt lymphoma cells. Supporting the idea, EBNA2-deleted EBV were 
found to establish a special latency program, designated as Wp-restricted latency 
(Kelly et al. 2006, 2009; Oudejans et al. 1995) (Figs. 17.1, 17.4). Rather than using 
Qp promoter, which is a commonly used promoter in Burkitt lymphoma cells, viral 
latent gene expression is mediated by Wp promoter in Wp-restricted latency. Wp 
promoter drives expression of viral latent proteins EBNA-LP, EBNA3s (3A, 3B and 
3C), and EBNA1. In addition, importantly, BHRF1 gene is expressed (Kelly et al. 
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2006, 2009; Oudejans et al. 1995) (Fig. 17.4). BHRF1 protein, previously assumed 
to be a lytic gene product, is expressed as a latent protein in Wp-restricted gene 
expression pattern. BHRF1 is a homolog of cellular antiapoptotic protein, bcl-2 
(Henderson et al. 1993), and BHRF1 expression appears to exert strong antiapop-
totic effect in cells harboring Myc-Ig translocation. Supporting the idea, out of EBV 
latent proteins expressed in P3HR-1 Burkitt lymphoma cells, BHRF1 serves as a 
survival factor (Watanabe et al. 2010), and the growth of P3HR-1 cells is strictly 
dependent on the presence of EBV, as BHRF1 expression is necessary for the cell 
growth (Fig. 17.4).

Therefore, deletion of EBNA2 is not merely a loss-of-function mutation. Rather, 
it contributes to EBV-mediated Burkitt lymphomagenesis (Bornkamm 2009; Rowe 
et al. 2009). In this point of view, EBNA2 deletion is also a gain-of-function muta-
tion in a certain fraction of Burkitt lymphoma cells.

17.4  EBV Latent Gene Products and Epithelial 
Carcinogenesis

EBV is also associated with various epithelial cancers. Nasopharyngeal carcinoma 
cells are more than 95% EBV-positive, thus causal relationship between EBV infec-
tion and carcinogenesis is highly suspected. On the other hand, in case of gastric 
cancers, only 10% of them are EBV-positive (Rickinson and Kieff 2007). EBV- 
positive gastric cancer cells are categorized as one of the four types of gastric can-
cers, due to their prominent CpG island methylation phenotype (Cancer Genome 
Atlas Research 2014).

It has never been demonstrated that EBV infection causes transformation of pri-
mary epithelial cells. EBV infection to primary epithelial cells is usually cytostatic; 
and infected primary epithelial cells stop to proliferate. A previous study indicates 
that EBV can establish persistent infection only in precancerous epithelial cells with 
aberrant CDK4-cyclin D expression (Tsang et al. 2012). This may reflect in vivo 
situation of epithelial cell infection. Additional host gene mutations are necessary to 
convert EBV- infected epithelial cells to cancer cells (Tsao et al. 2015).

EBV-positive epithelial cancers are in either latency type II (Nasopharyngeal 
carcinoma cells) or in latency type I (gastric cancer cells). In latency type I, only a 
few viral gene products (EBNA1, EBERs, and BART miRNAs) are expressed. 
Although oncogenic potential of these viral gene products has not been proven, 
recent studies imply that BART miRNAs significantly contribute to EBV-mediated 
epithelial carcinogenesis (Tsao et al. 2015).

A study demonstrated that all the BART miRNAs were upregulated when EBV- 
positive epithelial tumor cells were grafted into mice (Qiu et al. 2015). The study 
also indicates that BART miRNAs potentiate the growth of epithelial tumor cells 
in vivo, but not in vitro (Qiu et al. 2015). These results fit well with very high BART 
miRNA expression levels in human epithelial tumor specimens, implicating that 
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there is a selective pressure to enrich tumor cells with high BART miRNA expres-
sion in vivo.

There is also an attempt to clarify the roles of BART miRNAs during epithelial 
carcinogenesis by means of genetic study. Using B95-8 strain EBV genome cloned 
in a bacterial artificial chromosome vector, a pair of recombinant EBV, either hav-
ing the restored BART region or the BART region deleted, was obtained. Comparison 
of host gene expression in recombinant virus-infected epithelial cells, NDRG1 
(N-Myc downstream regulated gene-1) was identified as a gene that was downregu-
lated by BART miRNA cluster 2 (Kanda et  al. 2015) (Fig.  17.3). Interestingly, 
NDRG1 has been characterized as an epithelial cell-specific metastatic suppressor, 
so it is tempting to speculate that NDRG1 downregulation is somehow related to 
metastatic potential of nasopharyngeal carcinoma cells.

17.5  Latent Gene Variation among EBV Strains

The major variation in EBV genome was type 1 or type 2 (type A or type B) clas-
sification based on differences in EBNA2 and EBNA3s (Rickinson and Kieff 2007). 
It is known that type 1 EBV can transform B lymphocyte much more efficiently 
than type 2 EBV. A recent genetic study indicates that the difference is due to single 
amino acid difference between type 1 EBNA2 and type 2 EBNA2 (Tzellos et al. 
2014). By contrast, although amino acid sequences of EBNA3s between type 1 and 
type 2 EBV are quite divergent, their functions are highly conserved between type 
1 and type 2 EBV.

Naturally occurring latent gene variation also gives us clues to understand the 
functions of the genes (Table 17.1). Regarding genetic variation of EBNA2, as men-
tioned above, deletion of EBNA2 gene contributes to Burkitt lymphomagenesis. 
Genetic variation of EBNA3s remains obscure, but mutations of EBNA3B appear to 
be critical for development of diffuse large B cell lymphomas and Hodgkin lympho-
mas (White et al. 2012). BART miRNA region is apparently dispensable for B cell 
transformation, as B95-8 strain EBV, having majority of BART miRNA genes 
deleted, retains transforming activity.

It is well-known that EBV LMP1 gene is quite heterogeneous among EBV 
strains. Thus, LMP1 heterogeneity has been analyzed extensively prior to the era of 
deep sequencing technology. For example, there is apparent functional difference 
between B cell-derived LMP1 (B95-8 LMP1) and nasopharyngeal carcinoma- 
derived CAO-LMP1 (Dawson et al. 2000); CAO-LMP1 is less cytostatic compared 
to that of B95-8 LMP1 (Johnson et al. 1998). Initially, 10 a.a. (30 nucleotides) dele-
tion in the C-terminal signaling domain in CAO-LMP1 was considered to be respon-
sible for the difference. However, it is now considered that amino acid differences 
in the transmembrane domain appear to be responsible for the difference (Johnson 
et al. 1998; Nitta et al. 2004).

A recent development of deep sequencing technology enabled determining entire 
EBV genome sequencing of various EBV strains. Sequences of more than 70 EBV 
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genomes were recently determined (Palser et  al. 2015). The result revealed that 
sequence variation mainly resides in viral latent genes. With deep sequencing tech-
nology, one can identify multiple latent gene heterogeneity at once.

A study demonstrated that M81 strain of EBV, derived from nasopharyngeal 
carcinoma cells, has different properties compared to B cell-derived B95-8 strain 
EBV (Tsai et al. 2013). M81 strain EBV infects epithelial cells more efficiently than 
B95-8 strain EBV and has a tendency to spontaneously enter lytic replication cycle 
in LCLs (Tsai et al. 2013). There are multiple sequence variations between the two 
strains, and sequence variation responsible for the phenotypic difference has not 
been identified. Still, the result implicates that there may be a cancer-specific EBV 
strain. It was previously reported that multiple EBV strains exist even in individuals 
(Walling et al. 2003), and that EBV strains derived from oropharyngeal fluids were 
distinct from those derived from peripheral blood B cells of the same individual 
(Renzette et al. 2014). These results support the idea that multiple strains of EBV 
are maintained in each individual, and that a specific EBV strain can be selected to 
generate EBV-associated diseases. Since viral gene heterogeneity mainly resides in 
latent genes (Palser et al. 2015), latent gene heterogeneity may be responsible for 
causing difference of pathogenicity.

17.6  Future Perspectives

Viral latent gene functions have been most extensively analyzed by B cell immor-
talization assay for its ease of use. On the other hand, Burkitt lymphomagenesis and 
epithelial carcinogenesis are still difficult to reproduce in vitro. We definitely need 
a better in vitro infection system to investigate how viral latent gene products con-
tribute to epithelial carcinogenesis. We also need an experimental system in which 
in vitro EBV infection cooperates with host gene mutations to transform primary 
epithelial cells. When such experimental system becomes available, one can now 
examine the contribution of viral latent gene products to epithelial tumorigenesis 
using EBV mutants.

Regarding latent gene heterogeneity in relation to pathogenicity, we should accu-
mulate viral genome sequences of various EBV strains derived from healthy and 
disease-associated individuals (Farrell 2015; Feederle et  al. 2015). Recently, a 
CRISPR-Cas9 genome editing technology was successfully applied to clone EBV 
strains from gastric cancer-derived cell lines (Kanda et al. 2016). This technology 
should accelerate the accumulation of EBV genome sequences derived from various 
origins. The technology also enables investigating the biological behaviors of the 
viruses by reconstituting infectious viruses. Latent gene variations that critically 
affect viral phenotypes may be identified by applying such an experimental approach 
to various disease-associated EBV strains.
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Chapter 18
Encyclopedia of EBV-Encoded Lytic 
Genes: An Update

Takayuki Murata

Abstract In addition to latent genes, lytic genes of EBV must also be of extreme 
significance since propagation of the virus can be achieved only through execution 
of lytic cycle. Research on EBV lytic genes may thus prevent spreading of the virus 
and alleviate disorders, such as infectious mononucleosis and oral hairy leukopla-
kia, which are highly associated with EBV lytic infection. Moreover, recent 
advancements have been demonstrating that at least several lytic genes are expressed 
to some extent even during latent state. It is also demonstrated now that upon de 
novo infection, EBV expresses lytic genes in addition to latent genes before estab-
lishment of latency (this phase is called “pre-latent abortive lytic state”). In those 
cases, lytic genes also play important roles in cell proliferation of EBV-positive 
cells. However, many lytic gene products have not been identified yet nor studied 
thoroughly, and even worse, some have been misidentified in the literature. Here, I 
would like to give a detailed up-to-date review on EBV lytic genes.

Keywords EBV; Epstein-Barr virus · Gene expression · Replication · Assembly · 
Capsid · Tegument · Glycoprotein

18.1  Introduction

EBV lytic genes are categorized into Immediate-Early, Early, and Late genes and 
are expressed in a coordinated cascade manner. Two Immediate-Early genes induce 
expression of Early genes, followed by viral DNA synthesis. Then Late genes, 
encoding viral structural proteins and glycoproteins, are expressed, and viral nucleo-
capsids are assembled in the nucleus. The nucleocapsids bud into inner nuclear 
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membrane and take off the envelope at the outer nuclear membrane. After that, the 
nucleocapsids put on tegument proteins when they are enveloped again at a certain 
cytoplasmic membrane structure, presumably TGN or endosome (analogy from 
α-herpesvirus), which are then released into extracellular space.

Expression kinetics of lytic genes may seem clear, but in some cases, categoriza-
tion of EBV genes is actually not very simple. Upon de novo infection, α- or 
β-herpesviruses choose lytic program by default, while EBV generally takes latent 
infection, and lytic program can be usually induced from latent state, indicating that 
the nuance of Immediate-Early gene is slightly different. Moreover, Late gene is 
typically accompanied with noncanonical TATA as mentioned later in this review, 
but a subset of Late genes bear canonical TATA, and some Early genes carry nonca-
nonical TATA. Those genes may have to be categorized as Leaky-Late or Delayed- 
Early class, but such classification is not common in EBV. Otherwise, kinetics may 
have to be determined for each TATA but not for each gene if a gene has both 
canonical and noncanonical TATA motifs. So, I suggest kinetics of EBV lytic genes 
be taken only as a kind of rough indication.

EBV encodes >80 genes. Among them, EBNA1, 2, 3A, 3B, 3C, LP, LMP1, 2A, 
2B, EBER1, 2, and microRNAs (and presumed ORFs in the BamHI-A region) are 
accepted as latent genes. I here deal with other EBV genes as listed in the Table 18.1.

18.2  Activators of Viral Gene Expression

It is regarded that EBV encodes at least two Immediate-Early genes, BZLF1 (Zta, 
Z, ZEBRA, EB1) and BRLF1 (Rta, R). They are both molecular switches or triggers 
of EBV lytic cycle, because they are necessary and sufficient for lytic induction. We 
have an impression that the induction capacity of BZLF1 is more potent than that of 
BRLF1. These two Immediate-Early genes are positioned adjoiningly in the huge 
EBV genome, indicating that transcription of the Immediate-Early genes is epige-
netically regulated together in the same window of relatively active chromatin 
where CpG methylation level is lower (Murata et al. 2013).

BZLF1 protein is a b-Zip-type transcription factor that can be modified by phos-
phorylation and SUMO (Sinclair 2003). It predominantly localizes to the nucleus in 
infected cells. The transcription factor preferentially forms homodimer and acti-
vates (or in some cases represses) viral and cellular promoters by recruiting a his-
tone acetyltransferase, CREB-binding protein (CBP), and stabilizing TATA-binding 
protein (TBP) complex. It is of particular interest that BZLF1 protein preferentially 
binds a subset of CpG-methylated BZLF1-responsive elements rather than un- 
methylated ones (Bhende et al. 2004), which is very convincing because BZLF1 
needs to activate lytic gene promoters that are deeply silenced by heavy CpG meth-
ylation. BZLF1 is essential for lytic replication (Feederle et al. 2000) and influences 
on transformation of primary B cells at least under a particular condition (Katsumura 
et al. 2012; Kalla et al. 2010). BZLF1 is reported to disrupt promyelocytic leukemia 
(PML) bodies like HSV ICP0, although in the ubiquitin-independent mechanism. In 
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addition, BZLF1 also functions as an origin-binding protein for lytic DNA 
replication.

BRLF1 is another transcriptional activator essential for EBV lytic cycle (Feederle 
et al. 2000), which can be sumoylated, but its mode of activation is more compli-
cated and diverse than that of BZLF1. BRLF1 activates transcription of target genes 
by binding directly to BRLF1-responsive elements through its N-terminal DNA- 
binding domain, by indirectly binding to DNA through interaction with other tran-
scription factors, and even by enhancing certain signal transduction pathways, such 
as MAPK. BRLF1 is also able to associate with CBP and TBP complex.

In addition to the two transcriptional activators, an RNA-binding protein BSLF2/
BMLF1 (SM, EB2) is an essential posttranscriptional regulator (Gruffat et al. 2002). 
SM protein is derived from the spliced mRNA, joining a part of BSLF2 into BMLF1. 
It reinforces posttranscriptionally a subset of viral gene expression and has positive 
and negative effects on cellular gene expression by modulating nuclear export, 
splicing, processing, and stability of mRNAs.

18.3  Nucleotide Metabolism and DNA Replication

Lytic EBV genome multiplication occurs at discrete sites in the nucleus, and such 
scattered spots later merge and grow into a large size, typically shaping a horseshoe. 
Such nuclear architecture is called replication compartments, where viral genome 
DNA and a number of both viral and cellular factors accumulate (Tsurumi et al. 
2005). EBV lytic DNA replication starts from two particular origins called oriLyt 
(Hammerschmidt and Sugden 1988). B95-8 and P3HR-1 viruses lack either of the 
two lytic origins, but the viruses can still replicate efficiently, indicating redun-
dancy. By using cotransfection assays, at least seven viral gene products, BZLF1, 
BALF5 (Pol), BMRF1 (EA-D, early antigen, diffuse, processivity factor), BALF2 
(ssDNABP, single-stranded DNA-binding protein), BBLF4 (helicase), BSLF1 (pri-
mase), and BBLF2/3 (primase-associating factor), were identified to be essential for 
DNA replication from the oriLyt (Fixman et al. 1992; Schepers et al. 1993).

The lytic switch transcription factor BZLF1 binds to the BZLF1-responsive ele-
ments in the oriLyt and recruits those necessary factors through molecular associa-
tions (Fixman et al. 1995; Schepers et al. 1993).

BALF5 protein is a catalytic subunit of DNA polymerase, which interacts with 
the accessary factor BMRF1 and helicase/primase complex. Viral DNA synthesis 
does not initiate in the BALF5 knockout virus. It has a regulatory domain in the 
N-terminus and highly conserved DNA polymerase and exonuclease domains in the 
C-terminal half. This polymerase is used in the synthesis of both leading and lag-
ging strands at the replication fork (Tsurumi et al. 1994), unlike replication machin-
ery of the host cells. When expressed alone, BALF5 protein accumulates in the 
cytoplasm, but it can be efficiently transported to the nucleus when expressed with 
BMRF1 (Kawashima et al. 2013).
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BMRF1 is an essential, extensively phosphorylated, abundant nuclear protein 
that associates with and enhances the polymerase processivity and exonuclease 
activity of BALF5. It is similar to host PCNA, in terms of function, structure, and 
homo-oligomer formation (Murayama et al. 2009; Nakayama et al. 2010). Some 
reports indicate that BMRF1 functions as a transcriptional coactivator, too.

Another abundant replication factor BALF2, a ssDNABP, is also essential for 
viral genome replication. It augments viral DNA replication provably through 
reducing pause of the polymerase by keeping the single-stranded DNA template 
into the optimal conformation for DNA elongation (Tsurumi et al. 1998).

BBLF4, BSLF1, and BBLF2/3 form helicase/primase complex and associate 
with BALF5. The helicase presumably unwinds double-stranded DNA ahead of the 
replication fork, providing open structure for DNA synthesis. The primase complex 
catalyzes synthesis of an RNA primer for the leading strand, which is used as a 
primer for polymerase reaction. For the lagging strand, discontinuous RNA primer 
fragments are synthesized at intervals, and the gap is filled up by the polymerase. 
Such RNA primers are destined for degradation by exonuclease activity and are 
filled up with DNA.

In addition, viral uracil DNA glycosylase encoded by BKRF3 gene is also essen-
tial for efficient  lytic DNA synthesis (Fixman et al. 1995; Su et al. 2014). When 
deamination of cytosine to uracil occurs or uracil is somehow mis-incorporated into 
DNA, BKRF3 catalyzes removal of the uracil from DNA, which can be repaired 
later. It localizes in the cytoplasm when expressed alone, but coexpression of 
BMRF1 facilitates nuclear localization.

Besides such essential replication proteins, the transcript of BHLF1 gene (and 
possibly its paralog LF3) forms stable RNA-DNA hybrid at oriLyt, which appears 
essential for initiation of lytic DNA replication (Rennekamp and Lieberman 2011). 
The BHLF1 and LF3 genes are adjacent to each oriLyt, and their highly GC-rich 
mRNAs are most abundantly expressed. Disruption of BHLF1 ORF or mutation of 
the initiation codon had no effect on replication, but mutation of the TATA signal 
significantly reduced viral DNA synthesis. The BHLF1 and LF3 genes potentially 
encode highly repetitive proteins, and despite abundance of the transcripts, presence 
of the proteins is still controversial.

EBV thymidine kinase is encoded by BXLF1 gene. The enzyme is the major 
player of the salvage pathway of pyrimidine metabolism by phosphorylating thymi-
dine into thymidine monophosphate. The gene is not essential for lytic replication 
at least in rapidly growing cells like HEK293T (Meng et al. 2010), but may play an 
important role in DNA replication in nondividing cells, such as memory B cells, in 
which dNTP pool is limited.

Ribonucleotide (diphosphate) reductase (RR, RNR) of EBV is composed of two 
subunits: BORF2 and BaRF1 proteins. The complex catalyzes de novo synthesis of 
deoxyribonucleotides from ribonucleotides by reducing NDPs in order to increase 
the dNTP pool.

The BLLF3 gene encodes deoxyuridine nucleotidohydrolase (dUTPase). This 
enzyme catalyzes hydrolysis of dUTP into dUMP and thereby prevents dUTP 
 incorporation into DNA. In addition, EBV dUTPase was reported to elicit innate 
immune response by activating NF-κB (Ariza et al. 2009).
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18.4  Regulators of Late Gene Transcription

β- and γ-herpesviruses have developed a common mechanism of viral Late gene 
expression. The promoter of Late gene commonly has noncanonical TATA box 
(TATT), and viral Late gene regulator complex, composed of BcRF1, BDLF3.5, 
BDLF4, BFRF2, BGLF3, and BVLF1, which binds to the noncanonical TATA and 
perhaps recruits factors that induce Late gene transcription (Gruffat et  al. 2012; 
Watanabe et al. 2015b; Aubry et al. 2014; Djavadian et al. 2016). The mechanism of 
how the complex activates Late gene transcription remains unclear, but BcRF1 is 
thought to be the noncanonical TBP, and some of the components or the homologs 
reportedly interact with RNA polymerase II, thereby enhancing transcription from 
the noncanonical TATA.

18.5  Other Regulatory Genes

EBV encodes two homologs of Bcl-2, an anti-apoptotic cellular protein: BHRF1 
and BALF1. They are expressed in the lytic cycle with Early kinetics and thus spec-
ulated to protect lytic cells from apoptosis, but not needed for viral replication in 
cell culture. Upon primary infection, they are expressed transiently before establish-
ment of latency (termed “pre-latent abortive lytic” state), and double knockout of 
the two vBcl-2 genes resulted in significant reduction of B cell transformation effi-
ciency although knockout of either of them exhibited no obvious phenotype 
(Altmann and Hammerschmidt 2005). In “Wp-restricted Burkitt lymphoma” cells, 
in which EBNA2 is deleted, BHRF1 is expressed from the Wp and plays a pivotal 
role in survival and proliferation of the host (Kelly et al. 2009).

The BARF1 gene encodes soluble, phosphorylated, and glycosylated protein, 
expressed with Early kinetics. It can bind with colony-stimulating factor 1 (CSF-1) 
although structural analysis indicated that the mode of CSF-1 binding to BARF1 
has to be principally different from that to CSF-1 receptor. BARF1 serves as a decoy 
for CSF-1, which is known to elicit macrophage proliferation and IFN-α produc-
tion. Therefore, BARF1 can inhibit immune response against EBV. This gene is 
dispensable for lytic replication of the virus and B cell transformation (Cohen and 
Lekstrom 1999) but may be involved in efficient transformation, possibly in vivo. It 
was also reported that, when overexpressed, BARF1 induced morphological change, 
anchorage-independent growth, and tumorigenic transformation (Wei and Ooka 
1989; Sheng et al. 2003). In addition, this gene is expressed in some epithelial and 
B cells latently infected with EBV.

A seven-transmembrane G protein-coupled receptor (GPCR) of EBV is encoded 
by the BILF1 gene. It has similarity to CXCR4, forms heterodimers with cellular 
GPCRs, and alters signaling pathways (Nijmeijer et al. 2010; Vischer et al. 2008). It 
was also reported to transform NIH3T3 cells when exogenously expressed. In addi-
tion, BILF1 was found to play a role in immune evasion by targeting HLA class I 
for enhanced turnover and lysosomal degradation (Zuo et al. 2009).
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BCRF1 (vIL-10) protein is highly similar to an anti-inflammatory cytokine, 
IL-10. On one hand, vIL-10 enhances B cell proliferation. On the other hand, it 
serves to repress Th1 immunity. It is not essential for virus replication nor B cell 
transformation at cell culture levels (Swaminathan et al. 1993), but may be involved 
in immune regulation or B cell growth in vivo. It was also reported that vIL-10 is 
expressed immediately after infection during pre-latent phase and impairs NK and 
T-cell activities.

BNLF2a encodes tail-anchored polypeptide of only 60 residues unique to lym-
phocryptoviruses. BNLF2a also is involved in immune evasion; it downregulates 
HLA class I-dependent antigen presentation through blocking peptide transport by 
TAP (Hislop et al. 2007). Knockout of this gene seemingly had no effect on lytic 
replication and B cell transformation, but viral Immediate-Early and Early antigens 
are recognized more efficiently by CD8+ T-cells. In addition, BNLF2a could also be 
expressed during pre-latent phase upon de novo infection and reduces antigen pre-
sentation to EBV-specific CD8+ T-cells. Double knockout of vIL-10 and BNLF2a 
therefore had synergistic effect on protection from innate and acquired immune 
responses after de novo infection (Jochum et al. 2012). Moreover, BNLF2a is pro-
duced even during latent phase at least in gastric carcinoma cells. On the other hand, 
BNLF2b, a downstream ORF of BNLF2a, has not been reported yet.

EBV expresses a protein kinase, encoded by BGLF4. BGLF4 mRNA translation 
is intricately regulated presumably by termination/reinitiation process, in which 
short upstream ORFs of BGLF3.5 play critical roles (Watanabe et al. 2015a). This 
viral serine/threonine kinase predominantly localizes to the nucleus and can be 
incorporated into the tegument of virion. Targets of the kinase include a number of 
viral and cellular proteins, such as BGLF4 itself, BMRF1, BZLF1, EBNA-LP, 
EBNA2, EBNA1, EF-1δ, IRF3, MCM, p27Kip1, stathmin, lamins, Tip60, and even 
nucleotide analogs, ganciclovir and maribavir. The PK is also reported to induce 
chromosome condensation and DNA damage response. Analysis of phosphoryla-
tion motifs of BGLF4 target proteins indicates that it has similarity to cellular Cdk1/
Cdc2. Knockout virus of the BGLF4 gene exhibited reduced viral DNA replication; 
production of viral genes, especially Late genes; and maturation of progeny virus 
(Feederle et al. 2009b; Murata et al. 2009).

Located posterior to the BGLF4 gene is BGLF5, encoding deoxyribonuclease 
(DNase) that localizes predominantly in the nucleus and exhibits nuclease activities 
with alkaline pH preference. Disruption of the BGLF5 gene caused moderate inhi-
bition of progeny production (Feederle et al. 2009a). Electrophoresis of the viral 
genome and results from other herpesvirus counterparts suggested that it is involved 
in trimming of complicated, entangled structure of viral DNA for better accessibil-
ity of capsid/terminase complex. It should also be noted that BGLF5 protein has a 
host shutoff function by destabilizing mRNAs, including HLA I, HLA II, and TLR9, 
thus contributing to evasion from immunity (Rowe et al. 2007). In addition, BGLF5 
enhances nuclear translocalization of cytoplasmic poly(A)-binding protein, and its 
counterparts in KSHV and MHV-68 induce hyperpolyadenylation and retention of 
mRNAs in the nucleus (Park et al. 2014; Kumar and Glaunsinger 2010).
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BPLF1 is the largest protein of EBV, incorporated into tegument (thus also 
named as LTP, large tegument protein). It localizes both cytoplasm and nucleus, and 
N-terminal part is efficiently transported to the nucleus after cleavage. In HSV, its 
homolog UL36 interacts with UL37 (homolog of BOLF1) and is involved in the 
transport and secondary envelopment of the nucleocapsid and correct formation of 
capsid/tegument interface at the capsid vertex. Although such functions have not 
been tested yet for EBV BPLF1, knockout of this gene caused slight decrease of 
viral DNA replication and significant loss of progeny production and B cell trans-
formation (Saito et al. 2013; Whitehurst et al. 2015). Besides its structural function 
as a tegument protein, N-terminal part of BPLF1 retains deubiquitinase/dened-
dylase activity (Gastaldello et al. 2010). Targets of the enzyme identified to date 
include ubiquitinated BORF2, PCNA, TRAF6, Rad6/18, and neddylated cullins.

The BFLF2 and BFRF1, EBV homologs of HSV UL31 and UL34, respectively, 
alter morphology of inner nuclear meshwork composed of lamins and support pri-
mary budding of nucleocapsids into the inner nuclear membrane. BFLF2 and 
BFRF1 are phosphoproteins and are not incorporated into progeny virus particles. 
When expressed alone, BFLF2 protein localizes diffusely in the nucleus, and 
BFRF1 is located in the cytoplasm and perinuclear region, but when expressed 
together, they form a complex and colocalize at the nuclear rim with lamins. 
Knockout of either of the genes notably decreased progeny viral yield (Farina et al. 
2005; Gonnella et al. 2005).

18.6  Capsid and Related Proteins

At least five viral proteins could be detected in the mature EBV capsid: BcLF1 
(MCP, major capsid protein), BDLF1 (mCP, minor capsid protein), BORF1 
(mCPBP, mCP-binding protein), BFRF3 (small capsid protein, VCA-p18), and 
BBRF1 (Heilmann et al. 2012; Johannsen et al. 2004). One capsid is composed of 
162 capsomers (12 pentons and 150 hexons). Six molecules of MCP make up a 
hexon. Five copies of MCP form a penton and pentons are settled at the icosahedral 
vertices. A homo-oligomer composed of 12 of portal proteins configures a ring at a 
unique vertex, through which viral genome DNA enters. Two molecules of BDLF1 
protein and one BORF1 protein make up a triplex, and 320 triplex complexes lie on 
the capsid floor, connecting capsomers. Small capsid protein BFRF3 is attached to 
the distal tips of the hexon MCPs.

For initial self-assembly of EBV capsid, two scaffold proteins BVRF2 (protease/
scaffold) and BdRF1 (scaffold, VCA-p40) are needed to solidify the capsid struc-
ture (Henson et  al. 2009). BdRF1 protein is identical to the C-terminal part of 
BVRF2 ORF; it is expressed from downstream initiation codon of BVRF2. Self- 
cleavage of BVRF2 and BdRF1 triggers collapse and ejection of the scaffold pro-
teins, which is coupled to internalization of EBV genome DNA through the portal 
complex.
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The BALF3 and BGRF1/BDRF1 genes encode terminase large and small sub-
units, respectively, that cleave newly synthesized viral DNA into unit length upon 
incorporation of the viral genome through the portal (Chiu et al. 2014).

Two EBV proteins BFLF1 and BFRF1A (BFRF0.5) are involved in packaging of 
viral DNA into capsid (Pavlova et al. 2013).

18.7  Tegument Proteins

At least 13 viral tegument proteins could be detected from purified EBV parti-
cles: BVRF1 (cork, portal plug), BGLF1, BNRF1 (MTP, major tegument protein, 
p140), BPLF1 (LTP), BOLF1 (LTPBP, LTP-binding protein), BGLF4 PK, 
BBLF1 (MyrP, myristoylated protein), BGLF2 (MyrPBP, MyrP-binding pro-
tein), BSRF1 (PalmP, palmitoylated protein), BKRF4, BDLF2, BRRF2, and 
BLRF2 (Johannsen et al. 2004).

In HSV, UL25 and UL17 (homolog of BVRF1 cork and BGLF1) form a com-
plex, attach to capsid vertices, and are required for stable retention of viral DNA.

BNRF1 appeared dispensable for viral progeny production in HEK293 but is 
required for efficient transportation of virus particle to the nucleus, and it sup-
ports viral gene expression through interaction with Daxx (Feederle et al. 2006; 
Tsai et al. 2011).

Being a homolog of HSV UL37, BOLF1 is assumed to associate with BPLF1 
and incorporated into tegument. Deletion of murid herpesvirus 4 (MuHV-4) ORF63, 
homolog of BOLF1, hampered nuclear transportation of incoming nucleocapsids 
(Latif et al. 2015).

BBLF1 protein is myristoylated and palmitoylated, like HSV counterpart UL11, 
and localizes to TGN, where secondary envelopment takes place. Knockdown of 
BBLF1 caused reduction in virus particle production (Chiu et al. 2012). BGLF2 is 
speculated to associate with BBLF1, an analogy of HSV counterparts, UL16 and 
UL11. Reporter assays and knockdown of BGLF2 revealed that it promotes EBV 
reactivation by activating p38 MAPK pathway (Liu and Cohen 2016). Knockout of 
BGLF2 caused reduced progeny production in HEK293.

BSRF1 has not been reported yet, but its HSV homolog UL51 is palmitoylated 
and involved in maturation and egress of virus particles.

Our experiments indicate that BKRF4 is needed for efficient progeny produc-
tion, and its interaction with BGLF2 is important for the role (Masud et al. 2017).

Although the BDLF2 gene product has been described as a tegument protein, 
recent reports indicate that it is a glycosylated, type II membrane protein, whose 
authentic localization and processing are dependent on the association with another 
membrane protein BMRF2 (Gore and Hutt-Fletcher 2009).
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BRRF2 is a phosphorylated protein and localized in the cytoplasm. Disruption of 
this gene did not affect viral gene expression and DNA replication, but mildly 
decreased virus production (Watanabe et al. 2015c).

EBV BLRF2 has not been characterized well. Progeny production of MHV-68 
ORF52 (homolog of BLRF2)-null mutant virus was significantly impaired, and the 
reduced titer of MHV-68 knockout could be rescued by ectopic supply of EBV 
BLRF2 (Duarte et al. 2013).

In the case of HSV, in addition to the homologs of those proteins listed above, 
UL7 and UL14 are identified as tegument proteins, although their homologs of 
EBV, BBRF2 and BGLF3.5, respectively, could not be detected. BBRF2 has not 
been reported yet, but its counterpart in MHV-68 (ORF42) appeared essential (Song 
et al. 2005). Disruption of BGLF3.5 exhibited no phenotype, compared to wild-type 
(Watanabe et al. 2015a), but its counterpart in MHV-68 (ORF35) was reported to be 
essential.

18.8  Glycoproteins

Mature EBV virion envelope is associated with membrane proteins, such as 
BLLF1a/b (gp350/220), BALF4 (gB, gp110), BXLF2 (gH, gp85), BKRF2 (gL, 
gp25), BZLF2 (gp42), BILF2 (gp78), BDLF3 (gp150), BBRF3 (gM), and 
BLRF1 (gN) (O’Regan et al. 2010; Johannsen et al. 2004).

EBV gp350 (and its spliced variant gp220) bind to CD21/CR2 and CD35/CR1, 
which initiates attachment of the virus to cell surface. Disruption of gp350 had only 
mild effect on infection to B cells, indicating presence of gp350-independent infec-
tion mechanism (Janz et al. 2000).

It is also reported that the BMRF2, a membrane glycoprotein that interacts with 
αv, α3, α5, and β1 integrins, also reinforces viral attachment to cells.

Among the envelope glycoproteins, gB, gH, and gL are needed for fusion with 
epithelial cells, whereas gp42 is also required for B cell fusion. Receptor for gB in 
B cells has not been identified yet, but gB interaction with neuropilin 1 was reported 
recently to enhance entry of EBV to nasopharyngeal epithelial cells (Wang et al. 
2015). It is also speculated that EBV gB plays a role in assembly and budding of the 
virion. The gH/gL complex is able to bind integrins αvβ5, αvβ6, or αvβ8, and gH/
gL/gp42 complex binds to HLA II, both of which trigger membrane fusion.

BILF2 gene product gp78 has not been studied well.
gM and gN form a complex and coexpression of gM is needed for authentic 

processing of gN. Disruption of gN caused impairment in egress, appropriate envel-
opment, and nucleocapsid release from the envelope upon de novo infection (Lake 
and Hutt-Fletcher 2000).

Highly glycosylated protein gp150 is encoded by the BDLF3 gene. Receptor for 
this glycoprotein is unknown, and EBV lacking the gene did not exhibit any defect 
(Borza and Hutt-Fletcher 1998). Novel role of gp150 as an immune regulator has 
been reported; it appears to inhibit antigen presentation by HLA I, HLA II, and 
CD1d (Gram et al. 2016; Quinn et al. 2016).
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18.9  Other Poorly Studied Lytic Genes

An Early gene BRRF1 (Na) is located in the splicing intron of BRLF1. According 
to an analogy from its homolog in KSHV and MHV-68, BRRF1 has been impli-
cated with transcriptional activation of viral genes; however, our advertent experi-
ments using BRRF1 knockout EBV indicate that this gene is dispensable for viral 
lytic replication at least in HEK293 (Yoshida et al. 2017).

Three potential ORFs, LF1, 2, and 3, lie in the BamHI-I region, and there is one 
of the two copies of oriLyt between LF2 and 3. Transcript of LF3 is assumed to play 
a role in initiation of viral DNA synthesis as mentioned above. LF2 was shown to 
inhibit lytic replication possibly through interaction with BRLF1 and regulate type 
I interferon signaling. LF1 has not been reported yet.

The BLLF2, BTFR1, and BXRF1 genes have not been reported to date. Homologs 
of BTRF1 (ORF23) and BXRF1 (ORF20) in MHV-68 are reportedly nonessential 
for viral replication.

18.10  Conclusions

Significant number of lytic genes has been left unidentified or uncharacterized. The 
standard method for such analysis is to prepare knockout viruses, but construction 
and phenotyping of recombinant EBV take long time and are tricky. Creation of a 
new efficient strategy after B95-8 BAC system, such as CRISPR/Cas9 system 
(Masud et al. 2017), is desired. Exhaustive understanding of EBV genes may pro-
vide novel targets for development of drug or vaccine.
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Chapter 19
Animal Models of Human 
Gammaherpesvirus Infections

Shigeyoshi Fujiwara

Abstract Humans are the only natural host of both Epstein-Barr virus (EBV) and 
Kaposi’s sarcoma-associated herpesvirus (KSHV), and this strict host tropism has 
hampered the development of animal models of these human gammaherpesviruses. 
To overcome this difficulty and develop useful models for these viruses, three main 
approaches have been employed: first, experimental infection of laboratory animals 
[mainly new-world non-human primates (NHPs)] with EBV or KSHV; second, 
experimental infection of NHPs (mainly old-world NHPs) with EBV- or KSHV- 
related gammaherpesviruses inherent to respective NHPs; and third, experimental 
infection of humanized mice, i.e., immunodeficient mice engrafted with functional 
human cells or tissues (mainly human immune system components) with EBV or 
KSHV. These models have recapitulated diseases caused by human gammaherpes-
viruses, their asymptomatic persistent infections, as well as both innate and adaptive 
immune responses to them, facilitating the development of novel therapeutic and 
prophylactic measures against these viruses.
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19.1  Introduction

The two human gammaherpesviruses, Epstein-Barr virus (EBV) and Kaposi’s 
sarcoma- associated herpesvirus (KSHV), belong to the genera Lymphocryptovirus 
(LCV) and Rhadinovirus (RV), respectively. Primate rhadinoviruses can be divided 
into the two groups rhadinovirus 1 (RV1) and RV2, with KSHV belonging to the 
RV1 group. As gammaherpesviruses, EBV and KSHV share a number of common 
properties including affinity to B cells and association with malignant diseases, in 
addition to other properties common to all human herpesviruses such as lifelong 
persistent infection and involvement in opportunistic infections. LCVs have been so 
far found only in primates and are characterized by the unique ability to immortalize 
B cells, whereas RVs are prevalent more widely throughout the mammals and lack 
the ability to immortalize mature B cells. Humans are the only natural host for both 
EBV and KSHV, and modeling their life cycle and pathogenesis in laboratory ani-
mals has been hampered by this strict host specificity. However, advances in the 
research on gammaherpesviruses of various non-human host species, as well as the 
development of severely immunodeficient mouse strains, enabled the generation of 
unique animal models for human gammaherpesvirus infections (Fig.  19.1, 
Table 19.1).

EBV, the first human oncogenic virus identified, is essentially a ubiquitous virus 
prevalent in >90% of adult population in the world [reviewed in Longnecker et al. 
(2013)]. While most EBV infections are asymptomatic, primary infection in adoles-
cents and young adults may result in infectious mononucleosis (IM), characterized 
by transient EBV-induced B-cell lymphoproliferation complicated with excessive 
T-cell responses specific to the virus. As a typical LCV, EBV has the ability to 
immortalize human B cells and establish lymphoblastoid cell lines (LCLs). In 
immunocompromised hosts, including HIV-infected individuals and transplant 
recipients, EBV-immortalized lymphoblastoid cells may proliferate unlimitedly to 
induce lymphoproliferative disease (LPD), indicating the critical importance of 
immune responses, especially those by T-cells, in the control of EBV infection 
[reviewed in Hislop et al. (2007)]. EBV causes a wide variety of lymphoid and epi-
thelial malignancies including Burkitt’s lymphoma, Hodgkin’s lymphoma, naso-
pharyngeal carcinoma, and gastric carcinoma. Every year in the world, about 
120,000 new cases of malignancies are attributed to EBV (Plummer et al. 2016). 
Although B cells and epithelial cells are the main targets of EBV infection, it can 
also infect T-cells and NK cells and in rare occasions induces their systemic prolif-
eration such as chronic active EBV (CAEBV) infection [reviewed in Fujiwara et al. 
(2014)].

KSHV is the most recently identified human tumor virus and causes various 
malignancies and LPDs, including Kaposi’s sarcoma (KS), primary effusion lym-
phoma (PEL), and multicentric Castleman’s disease (MCD) [reviewed in Damania 
and Cesarman (2013)]. These KSHV-associated diseases are observed mainly in 
association with immunodeficiency caused by HIV infection or transplantation 
therapy. KS is a malignant tumor derived from vascular endothelial cells, whereas 
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Fig. 19.1 Summary of animal models for human gammaherpesvirus infections. Major findings 
obtained from each animal model of human gammaherpesviruses, as well as representative fea-
tures of human infection with EBV and KSHV, are shown. Horizontal arrows represent infections 
to natural hosts, whereas oblique arrows represent those to nonnatural hosts. See text and Table 19.1 
for details. LCV lymphocryptovirus, RV rhadinovirus, NHP non-human primate, IM infectious 
mononucleosis, LPD lymphoproliferative disease, HLH hemophagocytic lymphohistiocytosis, 
OHL oral hairy leukoplakia, KS Kaposi’s sarcoma, MCS multicentric Castleman’s disease, PE 
primary effusion lymphoma, MHV-68 murine gammaherpesvirus 68
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Table 19.1 Representative animal models of human gammaherpesvirus infections

Animal 
species Viral species

Features of EBV or KSHV 
infection reproduced Reference

Mouse 
(C.B-17 
scid)

Epstein-Barr virus 
(EBV), Human 
gammaherpesvirus 4

B-cell LPD following ip 
injection of PBMCs from 
EBV-infected individuals 
(Scid-hu PBL)

Mosier et al. (1988), 
Rowe et al. (1991), 
Johannessen and 
Crawford (1999)

Mouse 
(C.B-17 
scid)

Kaposi’s sarcoma- 
associated herpesvirus 
(KSHV), Human 
gammaherpesvirus 8

Latent and lytic infections 
with viral replication 
predominantly observed in B 
cells (Scid-hu thy/liv)

Dittmer et al. (1999)

NOG, BRG, 
NSG mice 
engrafted 
with human 
HSCs

EBV B-cell LPD, Hodgkin-like 
lymphoma, EBV-HLH, 
RA-like arthritis, persistent 
infection, innate and adaptive 
immune responses

Traggiai et al. (2004), 
Melkus et al. (2006), 
Yajima et al. (2008), 
Strowig et al. (2009), 
Lee et al. (2015), 
Chijioke et al. (2013)

BLT-NSG 
mice

KSHV Infection to B cells and 
macrophages

Wang et al. (2014)

Cotton-top 
tamarin

EBV B-cell lymphoma (used in the 
evaluation of an experimental 
EBV vaccine)

Shope et al. (1973), 
Epstein et al. (1985), 
Johannessen and 
Crawford (1999)

Common 
marmoset

EBV IM-like primary infection and 
persistent infection

Falk et al. (1976), 
Johannessen and 
Crawford (1999)

Common 
marmoset

KSHV KS-like lesion Chang et al. (2009)

Rabbit EBV B-cell LPD, peripheral blood 
EBV DNA, virus-specific 
antibodies

Takashima et al. 
(2008), Okuno et al. 
(2010), Khan et al. 
(2015)

Rhesus 
macaque

Rhesus LCV (rhLCV), 
Macacine 
gammaherpesvirus 4

IM-like syndrome, persistent 
infection, B-cell LPD, oral 
hairy leukoplakia (OHL) in 
immunocompromised hosts

Moghaddam et al. 
(1997), Rivailler et al. 
(2004,2002b), Mühe 
and Wang (2015)

Rhesus 
macaque

Rhesus rhadinovirus 
(RRV), Macacine 
gammaherpesvirus 5

Persistent infection, B-cell 
LPD, KS-like lesion in 
immunocompromised hosts

Wong et al. (1999), 
Searles et al. (1999), 
Estep and Wong 
(2013)

Common 
marmoset

Marmoset LCV, 
Callitrichine 
gammaherpesvirus 3

B-cell lymphoma Ramer et al. (2000), 
Rivailler et al. (2002a)

Mouse Murine herpesvirus 68 
(MHV-68), Murid 
gammaherpesvirus 4

B-cell lymphoma, arteritis, 
fibrosis, persistent infection

Virgin et al. (1997), 
Barton et al. (2011)
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PEL is a B-cell lymphoma of the post-germinal center origin with the expression of 
a characteristic set of markers. MCD is a B-cell LPD with prominent inflammatory 
symptoms caused by hypercytokinemia. In contrast to EBV, KSHV is not ubiqui-
tous; its seroprevalence varies from 0–5% in Japan, North and South America, and 
northern European countries to around 10% in Mediterranean countries and 30–50% 
in sub-Saharan African countries [reviewed in Rohner et al. (2014)]. This uneven 
distribution of KSHV infection is consistent with the preferential occurrence of KS 
and other KSHV-associated diseases in limited areas of the world. Although it 
appears obvious that cell-mediated immune responses play a central role in the con-
trol of KSHV infection, relatively few is known about the detail of anti-KSHV 
immune responses.

19.2  Experimental Infection of Laboratory Animals 
with Human Gammaherpesviruses

Only limited species of laboratory animals are susceptible to infection with human 
gammaherpesviruses. Cotton-top tamarins (Saguinus oedipus) can be infected with 
EBV via parenteral routes and develop B-cell lymphomas (Shope et al. 1973), and 
this model has been used for the evaluation of an early experimental EBV vaccine 
(Epstein et  al. 1985) [reviewed in Johannessen and Crawford (1999)]. Common 
marmosets (Callithrix jacchus) can be infected with both EBV and KSHV; while 
EBV induces non-specific IM-like symptoms (Falk et  al. 1976), a recent report 
showed that KSHV can cause persistent infection and induce KS-like lesions with 
characteristic spindle-shaped cells in a fraction of infected animals (Chang et al. 
2009). Although rhesus macaques could be infected experimentally with KSHV, it 
replicated in very low levels, and no viral gene expression was demonstrated (Renne 
et al. 2004).

Rabbits inoculated parenterally with EBV exhibited signs of EBV infection, 
including EBV DNA load in peripheral blood lymphocytes and serum antibodies 
specific to the virus (Takashima et al. 2008). Subsequent studies revealed that rab-
bits could be infected also by the oral route (Okuno et al. 2010), the primary natural 
route of human EBV infection. Although these early studies did not reproduce any 
specific disease conditions resembling human EBV-associated diseases, a recent 
report described EBV-induced lymphoproliferation with the latency III type viral 
gene expression (i.e., expression of EBNAs 1, 2, 3A, 3B, 3C, and LP; LMPs 1, 2A, 
and 2B; and untranslated RNAs such as EBERs, BARTs, and microRNAs) in rab-
bits treated with cyclosporine A (Khan et al. 2015).

19 Animal Models of Human Gammaherpesvirus Infections
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19.3  Lymphocryptoviruses and Rhadinoviruses of Non- 
human Primates

Gammaherpesviruses, similar to other herpesviruses, are thought to have coevolved 
with their respective hosts, and most old-world non-human primates (NHPs) and at 
least a fraction of new-world NHPs carry their own distinctive LCVs and RVs 
closely related to EBV and KSHV, respectively. Since some of these viruses share 
remarkably similar genomic contents, life cycle, and pathogenesis with either EBV 
or KSHV, the use of these viruses as surrogate models for the human viruses has 
been explored. Meanwhile, recent studies identified two species of LCVs in a num-
ber of both old-world and new-world NHPs such as gorillas, baboons, and squirrel 
monkeys, suggesting the possibility that humans might harbor a yet to be identified 
species of LCV (Damania 2007). Similarly, both RV1 and RV2 species have been 
identified in most old-world NHPs so far examined, suggesting that humans might 
also harbor an RV2 species that have not been discovered (Damania 2007). 
Gammaherpesviruses of NHPs are thus valuable not only as practical models of 
EBV and KSHV but also as source of insight into the evolution of human 
gammaherpesviruses.

19.3.1  Rhesus LCV as a Model for EBV Infection

Among the NHP LCVs closely related to EBV, the rhesus LCV (rhLCV, Macacine 
gammaherpesvirus 4 by ICTV) has been most extensively studied (Moghaddam 
et al. 1997) [reviewed in Mühe and Wang (2015)]. Sequence analysis identified in 
the rhLCV genome a homolog for each known EBV gene, with better conservation 
in lytic-cycle genes (49–98% amino acid identity) than in latent-cycle genes (28–
60%) (Rivailler et al. 2002b). Interestingly, two strains of rhLCV, corresponding to 
the type 1 and type 2 EBV strains, distinguished by sequence variation in the rhesus 
EBNA2 homolog, have been identified, suggesting the presence of a same pressure 
for the evolution of the two types of LCV in humans and rhesus monkeys.

RhLCV, just like EBV, is ubiquitous among both wild and captive rhesus 
macaques; virtually all animals get seropositive by the age of 1 year (Mühe and 
Wang 2015), resulting in asymptomatic persistent infection in memory B cells. 
Upon primary infection of naïve macaques, rhLCV induces signs and symptoms 
reminiscent of human symptomatic primary EBV infection, including lymphade-
nopathy, hepatosplenomegaly, and atypical lymphocytosis. The acute phase of pri-
mary infection, a stage difficult to investigate with EBV, can be analyzed in detail 
with rhLCV (Rivailler et al. 2004). In the peripheral blood of macaques inoculated 
orally with rhLCV, EBER RT-PCR turns positive at 7  days post-infection (p.i.); 
DNA PCR turns positive at 2–3 weeks p.i.; and atypical lymphocytosis and lymph-
adenopathy are recognized at 3–15  weeks p.i. This acute phase is followed by 
asymptomatic persistent infection similar to EBV latency in humans that is 
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 maintained by immunosurveillance. RhLCV immortalizes B lymphocytes of rhesus 
macaques and transplantation of autologous rhLCV-immortalized B cells in a rhe-
sus macaque infected with the chimeric simian/human immunodeficiency virus 
SHIV 89.6P resulted in the development of monoclonal B-cell lymphoma (Rivailler 
et al. 2004). Oral hairy leukoplakia (OHL), an immunodeficiency-associated epithe-
lial lesion caused by local EBV replication, is also reproduced in rhesus macaques 
coinfected with rhLCV and SIV (Kutok et al. 2004).

RhLCV-induced humoral and cell-mediated immune responses have been char-
acterized in detail and are considered as a suitable model to test hypotheses and 
strategies for the development of EBV vaccines. So far, the effect of vaccination 
with soluble rhgp350 (the rhLCV homolog of the EBV gp350) has been demon-
strated; upon challenge with rhLCV, immunized animals had reduced rates of sero-
conversion and reduced level of viral DNA (viral set point) when seroconverted 
(Sashihara et al. 2011). Similarly, an adenovirus-based vector encoding rhEBNA1, 
given to rhesus macaques persistently infected with rhLCV, was shown to expand 
both CD4+ and CD8+ T-cells specific to the viral protein (Leskowitz et al. 2014).

Reverse genetics studies are feasible with rhLCV, and a bacterial artificial chro-
mosome (BAC)-based rhLCV recombinant with defective rhBARF1 has been char-
acterized. RhBARF1 encodes a soluble form of the colony stimulating factor 1 
(CSF-1) receptor that inhibits CSF-1 signaling. Animals infected with this 
RhBARF1-defective rhLCV had decreased viral load in acute infection and low 
numbers of infected B cells in persistent infection, giving evidence for the putative 
immunoevasion function of BARF1 (Ohashi et al. 2012).

Although rhLCV is a remarkable experimental model to recapitulate major fea-
tures of EBV infection in an NHP species, it should be kept in mind that there are 
significant differences in the nature of the two viruses (EBV vs. rhLCV) and the two 
host species (human vs. rhesus macaque), as evidenced by the findings that EBV 
does not transform rhesus B cells and rhLCV does not transform human B cells. 
Experimental infection of rhesus macaques with EBV has not been feasible even 
when the animals were rhLCV-seronegative. High cost, limited availability of 
rhLCV-naïve host animals, and ethical considerations tend to restrict the use of this 
model only in selected studies.

19.3.2  Rhesus RVs as Models for KSHV Infection

Retroperitoneal fibromatosis (RF) is a vascular fibroproliferative disease originally 
found in macaque populations housed in primate research facilities, and its histo-
logical similarity with KS, including proliferation of spindle-shaped cells and neo-
angiogenesis, had been recognized even before the discovery of KSHV [reviewed in 
Westmoreland and Mansfield (2008)]. Persistent infection observed in animals 
affected with RF with an immunodeficiency-inducing retrovirus [simian retrovirus 
2 (SRV-2)] was also reminiscent of KS. Partial genomic DNA of a rhadinovirus spe-
cies of the RV1 group, later termed RF herpesvirus (RFHV), was identified in RF 

19 Animal Models of Human Gammaherpesvirus Infections



420

lesion by degenerative PCR (Rose et al. 1997). An RFHV-encoded nuclear protein 
homologous to the KSHV latency-associated nuclear antigen (LANA) protein was 
identified in the spindle-shaped cells in RF lesions, and RFHV is now considered as 
the etiologic agent of RF. The complete genomic sequence of an RFHV strain iso-
lated from Macaca nemestrina (RFHVMn) has been recently obtained (Bruce et al. 
2013). The RFHVMn genome is collinear with that of KSHV and has a homolog for 
every known KSHV gene, except for ORF11, K5, and K6. RFHV is thus the virus 
most closely related to KSHV so far sequenced (Bruce et al. 2013). However, RFHV 
has not been isolated and grown in vitro, and no information on its biology has been 
obtained, making it difficult at present to use the virus as a model of KSHV.

The rhesus rhadinovirus (RRV, Macacine gammaherpesvirus 5 by ICTV), an 
RV2 virus, naturally infects rhesus macaques and is closely related to KSHV (Wong 
et al. 1999) [reviewed in Estep and Wong (2013)]. The genome of a strain (17577) 
of RRV has been shown to be collinear with the KSHV genome, and 67 of its total 
79 ORFs have a homologous counterpart in KSHV (Searles et al. 1999). Among 
these 67 ORFs, 48 show >50% amino acid similarity, and 27 show >60% similarity 
(Searles et al. 1999). RRV encodes viral homologs of cellular proteins, such as IL-6, 
a G-protein coupled receptor (GPCR), interferon-regulatory factors (IRFs), and 
CD200. KSHV also encodes homologs for these cellular proteins that are assumed 
to play critical roles in KSHV pathogenesis. BAC-based viral recombinants have 
been available for in vitro and in vivo functional analyses of certain RRV genes, 
including vCD200 and vIRFs (Estep et al. 2014; Robinson et al. 2012). Although 
RRV is highly prevalent in captive rhesus macaques in primate facilities, it rarely 
induces disease in them. In immunocompromised conditions caused by the simian 
immunodeficiency virus mac239 (SIVmac239), however, it induces B-cell LPD resem-
bling the plasma cell variant of MCD (Wong et al. 1999; Mansfield et al. 1999). 
Interestingly, KS-like lesions with proliferating spindle-like cells and angiogenesis 
were induced in a rhesus macaque that was coinfected with RRV and SIVmac239 
(Orzechowska et al. 2008). Although RRV belongs to the RV2 group and its evolu-
tionary relationship with KSHV is more distant as compared with the RV1 virus 
RFHV, it is widely used as a model of KSHV, because RRV can be grown to high 
titers in cell culture.

19.3.3  Lymphocryptoviruses and Rhadinoviruses  
of New- World NHPs

Although earlier serological studies revealed no evidence for LCVs in new-world 
NHPs, a novel LCV (termed marmoset LCV (maLCV), Callitrichine gammaher-
pesvirus 3 by ICTV) was identified in fatal B-cell LPD of common marmosets 
(Ramer et al. 2000). Similar to LCVs of old-world primates, maLCV transforms B 
cells and encodes distant homologs for certain well-characterized EBV proteins 
such as EBNA1, BZLF1, and gp350, but not EBERs and BCRF1 (vIL-10) (Rivailler 
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et al. 2002a). Positional homologs for EBV EBNA2 and LMP1 have been identified 
in the maLCV genome, but they have no sequence similarity with the EBV counter-
parts. Interestingly, maLCV encodes only one copy of the positional EBNA3 homo-
log, supporting the hypothesis that EBNAs 3A, 3B, and 3C of EBV have been 
generated through gene duplication during evolution of the virus (Rivailler et al. 
2002a). Later studies suggested that a wide variety of new-world primates (not only 
the common marmoset) harbor LCVs [reviewed in Mühe and Wang (2015)]. Given 
the distant relationship with EBV, these new-world primates LCVs seem more 
interesting from the standpoint of LCV evolution rather than utility as an experi-
mental model.

Herpesvirus saimiri (HVS, Saimiriine gammaherpesvirus 2 by ICTV) is an RV2 
species that is widespread in squirrel monkeys [reviewed in Ensser and Fleckenstein 
(2007)]. HVS does not cause any disease in the natural host, but cross-species infec-
tion to other primate species, including old-world primates, results in aggressive 
lymphomas. In contrast to most other RVs, HVS transforms T-cells rather than B 
cells and represents a reliable tool to establish a human T-cell line. Although HVS 
shares a collinear genome with KSHV, its homology to KSHV is not as remarkable 
as that of RFHV and RRV.

19.4  Murine Gammaherpesvirus 68

The murine gammaherpesvirus 68 (MHV-68, Murid gammaherpesvirus 4 in ICTV) 
shares some common properties with KSHV and EBV in life cycle (e.g., B-cell 
tropism and persistence in memory B cells) and pathogenesis (e.g., B-cell LPD) 
and has been characterized as a model for human gammaherpesvirus infections. 
MHV- 68 was originally isolated from the bank vole (Myodes glareolus) but infects 
laboratory mouse strains as well [reviewed in Barton et al. (2011)]. MHV-68 is a 
rhadinovirus and its genome exhibits higher homology with that of KSHV than that 
of EBV.  The MHV-68 genome contains at least 80 genes, among which 63 are 
homologs of KSHV genes and many of these 63 genes have homologs also in the 
EBV genome (Virgin et  al. 1997). MHV-68 encodes several proteins that are 
homologous to KSHV proteins critically involved in its pathogenesis, including 
LANA, the complement regulatory protein KCP, a D-type cyclin (v-cyclin), a bcl-2 
homolog with anti-apoptotic function (v-bcl-2), and viral GPCR (vGPCR). 
Although EBV genes involved in latent infection have no homologs in MHV-68, 
there is a functional similarity among EBV EBNA1, KSHV LANA, and MHV-68 
LANA, all of which play essential roles in the replication and maintenance of viral 
episomes.

Similar to EBV and KSHV, MHV-68 does not usually induce any disease in 
immunocompetent hosts, but in immunocompromised mice, it causes B-cell lym-
phomas (Sunil-Chandra et  al. 1994). In addition, MHV-68 causes arteritis and 
multi-organ fibrosis that are considered to be caused by viral replication. MHV-68 
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however does not induce vascular endothelial tumor like KS. Intranasal or intraperi-
toneal inoculation of MHV-68 is followed first by viral replication in the alveolar 
epithelium in the lungs and then by latent infection in the spleen and the perito-
neum. The main reservoir of MHV-68 in latent infection is B cells (mainly class- 
switched memory B cells), but macrophages and splenic dendritic cells also harbor 
the virus. In contrast to EBV, but similar to KSHV, MHV-68 lacks the ability to 
transform mature B lymphocytes, although a recent report showed that it can trans-
form B cells derived from murine fetal liver (Liang et al. 2011). Differentiation of B 
cells latently infected with MHV-68 toward plasma cells leads to the reactivation of 
the viral replicative cycle, a property shared by both EBV and KSHV (Liang et al. 
2009).

Immune responses to MHV-68 have been well characterized, and some parallels 
with human gammaherpesviruses have been revealed [reviewed in Barton et  al. 
(2011)]. IFN-α and IFN-β play a critical role in the control of acute MHV-68 infec-
tion since mice with IFN-α/IFN-β knockout succumb to even low doses of MHV-68 
infection. IFN-γ, CD4+ T-cells, and CD8+ T-cells all play critical roles in the con-
trol of MHV-68 infection, especially in its latent phase. Mice deficient for IFN-γ 
suffer from arteritis and/or fibrosis due to increased MHV-68 replication; mice defi-
cient for CD4+ T-cells allow persistent high-level viral replication resulting in tissue 
damages; and those deficient for CD8+ T-cells allow increase in the number of 
latently infected cells. Basic research on gammaherpesvirus vaccine development 
has been performed with MHV-68; immunization with the MHV-68 gp150/M7 (dis-
tant homolog of the EBV gp350) protected mice from IM-like syndrome caused by 
MHV-68 challenges but not from seroconversion [reviewed in Wu et al. (2012)]. 
Accumulated knowledge and resources of mouse genetics provide an opportunity to 
investigate the role of host genetic background in the immune control of MHV-68 
infection. MHV-68 infection of mice knocked-out for various genes involved in 
innate immunity revealed that deficiency of genes involved in DNA sensing facili-
tates the establishment of latent infection (Sun et al. 2015). Research in this direc-
tion might give insights into the host genetics of human gammaherpesvirus 
infections.

Mice that are latently infected with MHV-68 were shown to have increased resis-
tance to various pathogens such as Listeria monocytogenes and Yersinia pestis, and 
this was explained by general upregulation of innate immunity by the virus (Barton 
et al. 2007). Similarly, the “armed” state of NK cells, characterized by abundant 
expression of perforin and granzyme B and readiness to kill target cells, is induced 
following the establishment of latent infection with MHV-68 (White et al. 2010). 
These findings suggest an interesting possibility that herpesvirus latency remodu-
lates host immune system and may have some symbiotic effects to protect the host 
from other infections, although it is not known whether human gammaherpesvirus 
infections also have a similar effect.
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19.5  Humanized Mice

19.5.1  Early-Generation Humanized Mouse Models 
of Gammaherpesvirus Infections

Studies on gammaherpesvirus pathogenesis and therapeutics had been hampered by 
the absence of suitable small animal models of infection, but the generation of the 
highly immunodeficient mouse strain C.B-17 scid opened the way for the develop-
ment of the first mouse model of human gammaherpesvirus infection. Due to muta-
tion of the gene coding for a subunit of DNA-dependent protein kinase, mice of this 
strain lack both B and T lymphocytes, resulting in the severe combined immunode-
ficiency (scid) phenotype (Bosma et  al. 1983). Two types of early-generation 
humanized mice were generated from C.B-17 scid mice, namely, scid-hu PBL and 
scid-hu thy/liv. Scid-hu PBL mice were prepared by transplanting human peripheral 
blood mononuclear cells (PBMCs) into the abdominal cavity of C.B-17 scid mice, 
resulting in the engraftment of various human blood components including T and B 
cells (Mosier et al. 1988). Transplantation of PBMCs from EBV-seropositive donors 
but not from seronegative ones resulted in the development of EBV-positive B-cell 
LPD (Mosier et al. 1988). Inoculation of EBV to mice that had been transplanted 
with PBMCs from seronegative donors also resulted in similar EBV-positive LPD 
(Cannon et al. 1990). Later studies showed that EBV-positive LPD in scid-hu PBL 
mice thus generated was similar to the typical type of EBV-associated LPD in 
immunocompromised patients, regarding histology [mainly diffuse large B-cell 
lymphoma (DLBCL)], surface marker expression (activated B-cell phenotype), and 
EBV gene expression (latency III) [Rowe et al. (1991) and reviewed in Johannessen 
and Crawford (1999)]. Studies with scid-hu PBL mice revealed critical roles for 
CD4+ T-cells, IL-10 signaling, and CXCL12/CXCR4 signaling in the pathogenesis 
of EBV-associated LPD [reviewed in Johannessen and Crawford (1999)]. Scid-hu 
thy/liv mice, on the other hand, were prepared by transplanting human fetal thymus 
and liver tissues under the renal capsule of C.B-17 scid mice, resulting in the devel-
opment of human T and B cells (McCune et al. 1988). Although scid-hu thy/liv mice 
were primarily used as a model of HIV-1 infection, infection models for a variety of 
other viruses, including KSHV, were prepared with them (Dittmer et  al. 1999). 
Direct inoculation of KSHV into the thymus/liver implant resulted in both latent 
and lytic infections, with viral replication predominantly observed in B cells. 
Coinfection of scid-hu thy/liv mice with KSHV and HIV-1 however did not result in 
any significant differences compared with single KSHV infection. In one study, 
C.B-17 scid mice were transplanted with human skin graft, and inoculation of 
KSHV to this transplant resulted in the development of KS-like lesions character-
ized by angiogenesis and proliferation of spindle-shaped cells expressing LANA 
(Foreman et al. 2001).
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19.5.2  New-Generation Humanized Mouse Models of EBV 
Infection

There were certain limitations in the early-generation humanized mice; the effi-
ciency of engraftment of human cells was very low and their normal functions were 
not clearly recognized. Immune responses to viruses could not be reproduced in 
these models. Means to overcome these limitations were provided by the develop-
ment of the so-called new-generation humanized mice that became possible when 
new strains of more severely immunodeficient mice were generated. The NOD/scid 
strain was generated by introducing the scid mutation into the nonobese diabetic 
(NOD) mouse strain. Chimeric mice prepared by implanting NOD/scid mice with 
human fetal bone, thymus, and skin grafts were successfully infected with KSHV 
and produced human antibodies specific to the virus (Parsons et al. 2006). More 
recently three strains of severely immunodeficient mice, namely, NOD/Shi-scid 
Il2rgnull (NOG), Balb/c Rag2−/−Il2rg−/− (BRG), and NOD/LtSz-scid Il2rg−/− (NSG), 
have been mainly used to prepare new-generation humanized mice (Ito et al. 2002; 
Traggiai et  al. 2004; Shultz et  al. 2005). Reconstitution of human B, T, and NK 
lymphocytes, macrophages, and dendritic cells was observed in these mice follow-
ing transplantation of human hematopoietic stem cells (HSCs). A specific protocol 
for preparing humanized mice involved transplantation of human fetal liver and 
thymus tissues as well as HSCs isolated from the same liver (BLT mice), enabling 
proper intrathymic education of human T-cell progenitors (Melkus et  al. 2006). 
Traggiai and others demonstrated EBV-induced B-cell proliferation and suggested 
the induction of T-cell responses to the virus in humanized BRG mice (Traggiai 
et al. 2004). EBV-specific T-cell responses restricted by human MHC class I were 
induced in EBV-infected BLT-NOD/scid mice (Melkus et  al. 2006). Following 
these pioneering works, increasing efforts have been made to reproduce various 
aspects of human EBV infection in new-generation humanized mice [reviewed in 
Fujiwara et al. (2015)].

19.5.3  EBV Pathogenesis in Humanized Mice

Humanized NOG mice inoculated intravenously with EBV were shown to repro-
duce cardinal features of EBV-associated B-cell LPD (Yajima et al. 2008) (Fig. 19.2). 
The development of LPD was dependent on the dose of the virus inoculated; EBV 
doses >102 TD50 induced LPD in most mice. Histology of this LPD was mainly the 
DLBCL type with the expression of B-cell activation markers such as CD23 and the 
germinal center marker Mum-1, and EBV gene expression was consistent with 
latency III. It was thus evident that the typical form of EBV-associated B-cell LPD 
in immunocompromised hosts was reproduced in humanized NOG mice. In some 
LPD tissues, Reed-Sternberg-like cells with multiple nuclei and Hodgkin-like cells 
with marked nucleoli were observed (Yajima et al. 2008). Following low-dose EBV 
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infection (<101 TD50), most mice did not develop LPD and survived for up to 
250 days without any signs of disease (Yajima et al. 2008). Histological analysis of 
these mice revealed a small number of EBV-infected B cells in the liver and kidney, 
indicating the establishment of persistent infection that may be similar to EBV 
latency in humans. The development of similar EBV-induced B-cell lymphoma 
with the latency III type viral gene expression was demonstrated subsequently in 
humanized NSG mice (Strowig et al. 2009). Recently, humanized NSG mice with 
predominant T-cell development were shown to develop mainly Hodgkin-like lym-
phomas, whereas those with B-cell predominance tended to develop non-Hodgkin- 
type DLBCL (Lee et al. 2015).

Features of hemophagocytic lymphohistiocytosis (HLH) were recapitulated in 
EBV-infected humanized NOG mice (Sato et al. 2011). In this study, EBV-infected 
mice exhibited persistent viremia, leukocytosis, IFN-γ hypercytokinemia, marked 

Fig. 19.2 Humanized mouse model of EBV infection. (A) Schematic illustration showing the 
process of generating a humanized mouse. (B) Representative findings obtained from EBV- 
infected humanized NOG mice. (a–e) B-cell LPD. Macroscopic view (a), in situ hybridization for 
EBER (b), immunostaining for EBNA2 (c), and HE staining (d, e) are shown. Hodgkin-like cells 
(arrowheads) and a Reed-Sternberg-like cell (arrow) are shown in (e). (f–g) Erosive arthritis. 
Massive synovial proliferation (f) and bone destruction with pannus formation (g) are shown. 
Arrows in (g) indicate multinucleated osteoclast-like cells. Reproduced from Yajima et al. (2008) 
with permission from Oxford University Press and from Fujiwara et al. (2015) and Kuwana et al. 
(2011) under Creative Commons Attribution (CC-BY) license
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CD8+ T-cell proliferation, and prominent hemophagocytosis in the bone marrow, 
spleen, and liver. These results appear significantly different from those by Yajima 
and others, who used the same NOG mouse strain and observed mainly B-cell LPD 
(Yajima et al. 2008). However, there were a number of differences in the protocol for 
preparation of humanized mice between the two groups, including the route of HSC 
transplantation, the timing of transplantation, and the sex of mice. These differences 
may have resulted in variance in the nature of T-cell responses to EBV infection.

EBV has been associated with the etiology of a variety of autoimmune diseases, 
including rheumatoid arthritis (RA), multiple sclerosis, and systemic lupus erythe-
matosus [reviewed in Niller et al. (2011)]. Patients with RA have higher anti-EBV 
antibody titer and higher peripheral blood EBV DNA load as compared with normal 
controls and patients with other inflammatory joint diseases. They have impaired 
T-cell responses to the virus, and EBV-infected cells with the expression of EBERs 
and various viral proteins have been identified in RA lesions of a fraction of patients 
(Takei et al. 1997). When major joints of EBV-infected humanized NOG mice were 
examined, histological changes characteristic to RA were demonstrated, including 
massive synovial proliferation and edema in the bone marrow adjacent to affected 
joint (Kuwana et  al. 2011). Moreover, a histological structure termed pannus, a 
pathognomonic finding in RA, representing inflammatory granulation tissue con-
taining osteoclasts, was clearly demonstrated in these mice. Although only a few 
EBER-positive cells were found in the affected synovium, many such cells were 
demonstrated in the bone marrow adjacent to the affected joint. Human B cells, 
T-cells, and macrophages are seen infiltrating the synovium and the adjacent bone 
marrow of these mice. These findings indicated that EBV can induce RA-like arthri-
tis in humanized mice. Further studies, however, especially those on the molecular 
mechanisms of this arthritis, are required to verify that these mice can be considered 
as a proper model mouse of RA.

19.5.4  Immune Responses to EBV in Humanized Mice

EBV-specific T-cell responses restricted by human MHC class I were demonstrated 
in humanized NOG mice (Melkus et al. 2006; Yajima et al. 2008). These responses 
had a protective effect in that antibody-mediated depletion of either CD8-positive or 
CD3-positive T-cells in EBV-infected mice reduced their lifespan (Yajima et  al. 
2009). IgM antibody specific to a major component (p18BFRF3) of the viral capsid 
antigen (VCA) was also identified (Yajima et  al. 2008). EBV-specific T-cell 
responses were also characterized in humanized NSG mice, and protective roles for 
both CD4+ and CD8+ T-cells against EBV-induced lymphomagenesis were eluci-
dated (Strowig et  al. 2009). These cytotoxic T-cell responses were shown to be 
directed predominantly to lytic-cycle EBV proteins (Strowig et al. 2009). Humanized 
mice prepared from an NSG substrain carrying human HLA-A2 transgene were 
shown to mount efficient EBV-specific T-cell responses restricted by the particular 
type of HLA (Shultz et al. 2010).
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Innate immune responses to EBV have been also characterized in humanized 
mice. In humanized NSG mice, NK cells, especially those of the early differentia-
tion phenotype (NKG2A+ KIR-), were shown to play a critical role in the control of 
primary EBV infection (Chijioke et  al. 2013). Depletion of NK cells resulted in 
increased level of EBV DNA load in the spleen, exaggerated CD8+ T-cell response, 
and increased risk of EBV-positive lymphoproliferation (Chijioke et  al. 2013). 
Expansion of NK cells of the early differentiation phenotype was subsequently con-
firmed in human patients with IM (Azzi et al. 2014). Since NK cells of the early 
differentiation phenotype are most abundant in newborns and decrease thereafter 
with age, it is speculated that preferential development of IM in adolescents and 
young adults rather than in small children might be due to relative deficiency of this 
particular fraction of NK cells (Azzi et al. 2014).

19.5.5  EBV Reverse Genetics in Humanized Mice

Loss-of-function mutations of some EBV genes do not exhibit any phenotypic 
changes in in vitro experiments with cultured cells, and their functions had remained 
unknown. EBNA3B had been presumed to have an important function given its 
stable conservation in virtually every wild-type EBV isolate; however an EBNA3B 
knockout (KO) EBV recombinant was able to immortalize human B cells as effi-
ciently as the wild-type virus. Unexpectedly, characterization of EBNA3B KO EBV 
in humanized NSG mice indicated that tumorigenesis by the virus was enhanced by 
this mutation (White et al. 2012). This was explained by upregulation of the T-cell 
attracting chemokine CXCL10 by EBNA3B, resulting in enhanced elimination of 
EBV-infected cells by T-cells. EBNA3B is thus the first example of a virus-encoded 
tumor suppressor gene and is speculated to have evolved to minimize oncogenic 
risk to the host. Importantly, these novel findings obtained from humanized mice 
were substantiated by human studies; various EBNA3B mutations have been identi-
fied in a number of EBV-positive DLBCL cases, implying that EBNA3B mutation 
gives some advantages in actual human lymphomagenesis.

LMP1 KO EBV recombinants had been shown to lose its B-cell transforming 
activity in vitro (Dirmeier et al. 2003). To examine the in vivo role of LMP1 in EBV- 
associated LPD, a modified version of humanized NSG mice, prepared by intraperi-
toneal injection of EBV-infected cord blood mononuclear cells (CBMCs), was used 
(Ma et al. 2015). Surprisingly, transplantation of CBMCs infected with an LMP1 
KO EBV recombinant induced EBV-positive B-cell lymphoma almost as efficiently 
as that of the same cell population infected with the wild-type EBV (Ma et al. 2015). 
Interestingly, depletion of CD4+ T-cells following transplantation abolished tumor 
formation of LMP1 KO EBV infected cells but not those infected with wild-type 
virus. These results suggested that in  vivo EBV can induce B-cell proliferation 
without LMP1, if CD4+ T-cells provide CD40 signals. Besides the EBV mutants 
described above, mutants of the BART miRNA cluster (Lin et al. 2015; Qiu et al. 
2015), BPLF1 (Whitehurst et al. 2015), EBERs (Gregorovic et al. 2015), the BHRF1 
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miRNA cluster (Wahl et al. 2013), BZLF1 (Ma et al. 2011), and LMP2A (Ma et al. 
2017) were characterized in humanized mice, and the results elucidated in  vivo 
roles for these EBV genes that had not been revealed in previous in vitro studies.

19.5.6  Experimental Treatment of EBV-Associated Diseases 
in Humanized Mice

Humanized mouse models of EBV infection have been used to evaluate novel 
experimental therapies for EBV-associated diseases. The modified version of 
humanized NSG mice described above was used to examine the effect of PD-1 and 
CTLA-4 blockade in the treatment of EBV-associated B-cell LPD (Ma et al. 2016). 
Double blockade of the T-cell inhibitory receptors PD-1 and CTLA4 enhanced 
T-cell responses to EBV and suppressed the outgrowth of EBV-positive lymphoma 
in these mice. Humanized BRG mice were used to show that targeted activation of 
Vγ9Vδ2 T-cells can enhance the control of EBV-induced LPD (Xiang et al. 2014). 
Transfer of autologous T-cells that had been activated and expanded ex vivo by IL-2 
and anti-CD3 antibody to EBV-infected humanized NOG mice resulted in the 
extension of their lifespan (Matsuda et al. 2015). Transfer of CD8+ T-cells specific 
to the EBV lytic-cycle protein BMLF1 prior to EBV inoculation to humanized NSG 
mice revealed a transient virus-controlling effect of this T-cell population 
(Antsiferova et al. 2014).

19.5.7  New-Generation Humanized Mouse Models of KSHV 
Infection

BLT-NSG mice were used to reproduce various aspects of KSHV infection (Wang 
et al. 2014). KSHV DNA and transcripts and proteins (LANA and K8.1) encoded 
by both latent- and lytic-cycle KSHV genes were demonstrated in various tissues 
including the spleen and the skin of the mice following either intraperitoneal, oral, 
or intravaginal inoculations. Infection of B cells and macrophages was demon-
strated but that in endothelial cells was not clearly shown. It is noteworthy that the 
normal oral route of human KSHV infection was reproduced in this model, although 
KSHV-related diseases and immune responses were not described. In a related 
study, human CD34+ hematopoietic progenitor cells (HPCs) were inoculated with 
KSHV in vitro and transplanted into NOD/scid mice. Human CD14+ and CD19+ 
cells reconstituted from these infected HPCs contained KSHV, suggesting that this 
system might be used as an in vivo model of persistent KSHV infection (Wu et al. 
2006). When cells of the endothelial lineage isolated from mouse bone marrow 
were transfected with a BAC plasmid containing the KSHV genome and trans-
planted to nude mice or NOD/scid mice, they developed KS-like tumor with spindle- 
shaped cells and angiogenesis (Mutlu et al. 2007).
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19.6  Mouse Xenograft Models

EBV infects not only B cells but also T and NK cells and in rare occasions induces 
their unlimited proliferation in apparently immunocompetent hosts (EBV-associated 
T-/NK-cell LPD). No EBV infection of human T or NK cells however has been 
demonstrated in humanized mice so far. To model EBV-induced T- and NK-cell 
lymphoproliferation in mice, PBMCs isolated from patients with CAEBV, a repre-
sentative EBV-associated T-/NK-cell LPD, were transplanted intravenously to NOG 
mice (Imadome et al. 2011). EBV-infected cells of CD4+, CD8+, γδT, or NK lin-
eages, depending on which cell type is infected in the donor patient, were success-
fully engrafted. Importantly, CD4+ T-cells were required for the engraftment of 
EBV-infected cells, and depletion of CD4+ cells by administration of anti-CD4 
antibody following transplantation of patient-derived PBMCs blocked engraftment. 
These results point to the possibility of a novel anti-CAEBV therapy targeting 
CD4+ T-cells. Similar transplantation of PBMCs isolated from patients with EBV- 
associated HLH also resulted in the engraftment of EBV-infected T-cells (Imadome 
et  al. 2011). NOG mice engrafted subcutaneously with cells of the SNK6 line 
derived from EBV-positive NK-cell lymphoma were used in some other studies as 
an in vivo model of EBV-associated T-/NK-cell LPD to evaluate drug candidates for 
the disease (Murata et al. 2013).

An orthotopic xenograft model of EBV-positive nasopharyngeal carcinoma was 
developed by transplanting cells of an EBV-positive NPC line in the nasopharyn-
geal epithelium of NSG mice (Smith et  al. 2011). This model was subsequently 
used to evaluate the in vivo functions of EBV microRNAs of the BART cluster (Qiu 
et al. 2015).

Xenotransplantation of the KSHV-infected, PEL-derived cell line BCBL-1 to 
C.B-17 scid mice resulted in immunoblastic lymphoma at the site of injection 
(Picchio et  al. 1997). A marked murine angiogenesis was observed in this lym-
phoma, suggesting that this system may be also used as a model of KSHV-induced 
angiogenesis. More recently, a direct xenograft model of PEL was developed by 
transplanting cells freshly isolated from pleural fluid of a PEL patient to the perito-
neal cavity of NOD/scid mice (Sarosiek et al. 2010).

19.7  Concluding Remarks

Humanized mice are a unique small animal model in which interactions between a 
virus and human cells, as well as those between the virus and the human immune 
system, can be analyzed in mice. Novel findings obtained first in humanized mice 
have been confirmed later in human studies, and they are now becoming a standard 
in vivo model of various human viruses including EBV. It is expected that they will 
be used more extensively to model KSHV infection in the near future. Humanized 
mouse models of EBV and KSHV infections will facilitate our understanding of 
their pathogenesis and the development of therapeutic and prophylactic approaches 
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against these viruses. NHP models, on the other hand, are important as animal mod-
els closely related to humans. They will remain essential as models that allow the 
evaluation of novel vaccines and chemotherapeutic interventions in primate hosts 
that closely approximate the human condition.
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Chapter 20
Gastritis-Infection-Cancer Sequence 
of Epstein-Barr Virus-Associated  
Gastric Cancer

Masashi Fukayama, Akiko Kunita, and Atsushi Kaneda

Abstract Epstein-Barr virus-associated gastric cancer (EBVaGC) is a representa-
tive EBV-infected epithelial neoplasm, which is now included as one of the four 
subtypes of The Cancer Genome Atlas molecular classification of gastric cancer. In 
this review, we portray a gastritis-infection-cancer sequence of EBVaGC.  This 
virus-associated type of gastric cancer demonstrates clonal growth of EBV-infected 
epithelial cells within the mucosa of atrophic gastritis. Its core molecular  
abnormality is the EBV-specific hyper-epigenotype of CpG island promoter  
methylation, which induces silencing of tumor suppressor genes. This is due to the 
infection- induced disruption of the balance between DNA methylation and DNA 
demethylation activities. Abnormalities in the host cell genome, including phos-
phatidylinositol-4,5-biphosphate 3-kinase catalytic subunit α (PIK3CA), AT-rich 
interaction domain 1A (ARID1A), and programmed death-ligand 1 (PD- L1), are 
associated with the development and progression of EBVaGC. Furthermore, post-
transcriptional modulation affects the transformation processes of EBV-infected 
cells, such as epithelial mesenchymal transition and anti-apoptosis, via cellular and 
viral microRNAs (miRNAs). Once established, cancer cells of EBVaGC remodel 
their microenvironment, at least partly, via the delivery of exosomes containing cel-
lular and viral miRNAs. After exosomes are incorporated, these molecules change 
the functions of stromal cells, tuning the microenvironment for EBVaGC. During 
this series of events, EBV hijacks and uses cellular machineries, such as DNA meth-
ylation and the miRNA delivery system. This portrait of gastritis-infection-cancer 
sequences highlights the survival strategies of EBV in the stomach epithelial cells 
and may be useful for the integration of therapeutic modalities against EBV-driven 
gastric cancer.
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20.1  Introduction

Epstein-Barr virus-associated gastric cancer (EBVaGC) is a distinct subtype of gas-
tric cancer, consisting of clonal growth of EBV-infected stomach epithelial cells 
(Fukayama and Ushiku 2011, Shinozaki-Ushiku et  al. 2015a). Previous studies 
investigating this unique type of gastric cancer have revealed its characteristic 
molecular abnormalities, and The Cancer Genome Atlas (TCGA) Research Network 
recently included EBVaGC as one of the four subtypes in a novel molecular classi-
fication of gastric cancer, in addition to the microsatellite instability (MSI), chromo-
somal instability (CI), and genomically stable (GS) subtypes (The Cancer Genome 
Atlas Research Network 2014).

In this chapter, we portray a gastritis-infection-cancer sequence of EBVaGC 
(Fig. 20.1) following a brief review of the epidemiological and pathological aspects 
of EBVaGC (Table 20.1). A complete understanding of the cellular and microenvi-
ronment abnormalities of this subtype of gastric cancer remains to be elucidated; 
thus, we will highlight important questions that should be addressed by future stud-
ies in the following sections.

20.2  Brief Review of Epidemiology and Pathology 
of EBVaGC

The presence of EBV-DNA was first identified by PCR analysis of gastric cancer 
tissues demonstrating lymphoepithelioma-like histology in 1990 (Burke et  al. 
1990). Subsequent studies have adopted in situ hybridization (ISH) targeting EBV- 
encoded small RNAs (EBERs) for the detection of EBV infection, since it can eas-
ily be performed with formalin-fixed and paraffin-embedded tumor tissue sections 
(Shibata et al. 1991, Shibata and Weiss 1992, Fukayama et al. 1994). Thus, from the 
beginning, the research was in combination with histopathological observations, 
and it has been suggested that EBV is associated with cancer. Almost all the cancer 
cells demonstrated positive signals of EBERs, whereas infiltrating immune cells in 
and around the tumor were negative, with the exception of a small number of posi-
tive lymphocytes.

M. Fukayama et al.



439

20.2.1  Epidemiology

Owing to high sensitivity and specificity, positive signals with EBER-ISH in cancer 
cell nuclei have been regarded as a gold standard to define EBVaGC. Using EBER- 
ISH, the following epidemiological data were obtained. The frequency of EBVaGC 
was 7–10% of gastric cancer; therefore, the annual worldwide EBVaGC-associated 
mortalities were estimated to be 70,000 cases (Khan and Hashim 2014). This fre-
quency is comparable to that of nasopharyngeal carcinoma (NPC) and is much 
higher compared with the incidence of EBV-associated lymphoid malignancies 
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Fig. 20.1 Gastritis-infection-cancer sequence of EBV-associated gastric cancer. (a) EBV infec-
tion is established in a stem cell of stomach epithelia with a background of atrophic gastritis. Virus 
DNA in a host cell nucleus takes a circular form and is tethered to cell chromatin, and then its CpG 
motifs are widely methylated toward latent infection. (b) Hypermethylation of CpG DNA of host 
genome is induced after viral DNA methylation. Then clonal growth begins. (c) Precursor and 
additional gene mutations in the infected cell affect the development and progression of cancer. (d) 
Microenvironment is altered by cytokines and exosomes from cancer cells. Expression of PD-L1 
is increased in response to cytokines from CD8+ T-cells. (e) Abnormal gene expressions in a host 
cell, latent gene expression of EBV, and miRNAs derived from host cell and virus are associated 
with cancer development and modulation of microenvironment
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(~8,000 cases of Hodgkin’s lymphoma and ~2, 000 of Burkitt’s lymphoma) (Khan 
and Hashim 2014). In regard to the regional occurrences, an inverse association has 
been suggested between the background incidence of gastric cancer and the propor-
tion of EBVaGC (Tashiro et al. 1998, Murphy et al. 2009). This phenomenon con-
trasts to the regional preference of other types of EBV-positive neoplasms, including 
cases of NPC in China and Southeast Asia and endemic Burkitt’s lymphoma in 
Africa and New Guinea. As a major carcinogen of gastric cancer, Helicobacter 
pylori (H. pylori) infection may serve a fundamental role in the developmental pro-
cess of EBVaGC. The infection rates of H. pylori do not vary between EBVaGC and 
EBV-negative gastric cancer (Camargo et  al. 2016); however, a severe degree of 
atrophic gastritis is characteristic of EBVaGC (Kaizaki et al. 1999).

20.2.2  Pathology

Clinicopathological features of EBVaGC include male predominance and a pre-
dominant location in the proximal and middle regions of the stomach. The histo-
logical features demonstrate moderately to poorly differentiated adenocarcinoma 
and relatively rich lymphocytic infiltration (Table  20.1) (Fukayama and Ushiku 
2011, Shinozaki-Ushiku et  al. 2015a). Song et  al. (2010) divided EBVaGC into 
three subgroups based on the cellular immune response: lymphoepithelioma-like 
carcinoma (LELC), Crohn’s disease-like reaction (CLR), and conventional adeno-
carcinoma (CA). The prognosis of CA-EBVaGC was the poorest, followed by CLR 
and LELC. When cases of CA were excluded, the prognosis of LELC and CRL 

Table 20.1 Clinicopathological features of EBV-associated gastric cancer

Patient

Clinical Nearly 10% of total gastric carcinoma
Male predominance
Relatively younger agea

Previous stomach resection
Cancer behavior Relatively favorable prognosis
Pathology
Macroscopic Location at gastric cardia/body, remnant stomach

Ulcerated or saucerlike tumor
Marked thickening of the gastric wall
Multiple lesionsa

Microscopic Moderately to poorly differentiated adenocarcinoma
Lymphocytic infiltration in various degrees
Lymphoepithelioma-like, Crohn’s disease-like, conventional
Lace pattern within the mucosa

Extension Lower rate of lymph node involvementa

Background Atrophic gastritis (moderate to severe in degree)
Gastritis cystica profunda

aThe findings have been suggested, but more evidence is necessary for confirmation
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cases combined was significantly improved compared with that of EBV-negative 
GC. However, a recent meta-analysis (Murphy et al. 2009) demonstrated that the 
prognosis of EBVaGC was better than that of EBV-negative GC, particularly in 
Asian individuals.

Virologic aspects of EBVaGC were first reported by the research group of Prof. 
Takada (Imai et al. 1994, Sugiura et al. 1996), including the episomal form of EBV- 
DNA and the expression of a limited number of EBV latent genes (EBNA1, LMP2A, 
and EBER). A previous study investigating the molecular abnormalities in EBVaGC 
consecutively demonstrated a paucity of apoptosis, rare abnormalities in p53 expres-
sion level, and a low frequency of allelic imbalance (loss of heterozygosity and 
MSI) (Chong et al. 1994). Subsequently, CpG island DNA methylation was identi-
fied in the promoter regions of numerous cancer-associated genes in EBVaGC 
(Kang et al. 2002, Osawa et al. 2002), which led to recognition as the core abnor-
mality of EBVaGC, i.e., EBV-specific hyper-epigenotype or EBV-CpG island meth-
ylator phenotype (CIMP) (Matsusaka et al. 2011).

20.3  The Gastritis-Infection-Cancer Sequence

Figure 20.1 presents the developmental processes of EBVaGC (Fukayama and 
Ushiku 2011, Fukayama et al. 2008). EBV infection is established in a stem cell at 
the mucosa of atrophic gastritis (A). The latent infection simultaneously induces 
hypermethylation of CpG DNA of the host genome, which is partly due to a loss of 
balance between DNA methyltransferase1 (DNMT1)-mediated methylation and 
ten-eleven translocation (TET) enzyme-mediated demethylation by overdriving the 
methylation machinery in the founder cell, which is followed by clonal cell growth 
(B). In this process, inflammation-associated signals serve important roles in 
infected cells. Genomic mutations in precursor or cancer cells affect the develop-
ment and progression of EBVaGC (C). Against the host immune response, cancer 
cells with EBV adapt and alter the constituent cells of their microenvironment (D). 
In these processes, abnormal cellular and viral microRNAs (miRNAs) serve impor-
tant roles in epithelial-mesenchymal transition, resistance against apoptosis of 
founder clones, and delivery of exosomes as a tool for modulating the microenvi-
ronment (E). As a result, EBV achieves coexistence of infected cells with immune 
cells.

20.4  From Infection to Generation of the Founder Clone

EBV is a DNA virus that takes a double-stranded and linear form within viral par-
ticles. It becomes circular and episomal within the host nuclei following infection. 
Varying numbers of terminal repeats (TRs) are excised from both ends of EBV- 
DNA at fusion of the linear DNA, and therefore, the number of TRs varies in each 
infected cell. Southern blot analysis of EBV-TRs, when applied to EBVaGC, 
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demonstrated that EBV was monoclonal in cancers at advanced stages (Imai et al. 
1994, Fukayama et al. 1994, Song et al. 2010), whereas it was monoclonal or oligo-
clonal in intramucosal cancers (Uozaki and Fukayama 2008). In addition, positive 
EBER signals were present in the nuclei of all cancer cells, indicating that EBVaGC 
consists of clonal growth of EBV-infected cells. Therefore, EBV infection is an 
early event in carcinogenesis of EBVaGC, which means that only one of the EBV-
infected founder clones becomes predominant and progresses to the monoclonal 
invasive cancer.

EBV remains in an episomal form in the host nucleus. Recent whole genome 
sequencing studies (Strong et al. 2013, Liu et al. 2016) confirmed that chromosomal 
integration of viral DNA into host genome is an extremely rare occurrence. The 
copy number of EBV-DNA per cell is variable in each case of EBVaGC from 
several to <100 copies, according to an estimate revealed by Southern blotting 
(Imai et al. 1994, Fukayama et al. 1994, Uozaki and Fukayama 2008). It has been 
suggested that copies of the same number are transmitted to the daughter cells, and 
thus the number of EBV genomes is maintained during the clonal growth of 
EBVaGC (Nanbo et al. 2007). Viral nuclear protein, EBNA1, serves a role in the 
maintenance of infection in the host cells. EBNA1 tethers the viral episomes to the 
host chromosomes and recruits a cellular origin-recognition complex to the origin 
of DNA replication (oriP) of the viral DNA (Kanda et  al. 2013). Subsequently, 
using the cellular machinery, viral replication and segregation are synchronized 
with the host cell replication and mitosis (Nanbo et al. 2007).

When we describe the process from viral entry to establishment of clonal founder 
cells (A in Fig. 20.1), several questions arise that are subsequently addressed in the 
following sections.

20.4.1  Entry of EBV to Stomach Epithelial Cells

Based on the current view regarding the mechanism underlying EBV infection of 
epithelial cells (Hutt-Fletcher 2016), the infection processes in the stomach mucosa 
are as follows; EBV is reactivated (from latent to replicative infection) in B lympho-
cytes of the stomach mucosa, and the virus particles are transferred from EBV- 
infected B lymphocytes to gastric epithelial cells. Gastric epithelial cells lack 
expressions of major histocompatibility complex class II and CD21, which function 
as receptors for EBV particles in B lymphocytes. Therefore, it was proposed that the 
entry of EBV virions is dependent on fusion with the membrane of epithelial cells, 
which is triggered by direct interaction between viral glycoproteins gH-gL complex 
and the αvβ5, αvβ6, or αvβ8 integrin.

In experimental conditions (Imai et al. 1998), EBV infection in gastric cancer 
cell lines can be established with approximately 800-fold-higher efficiency by cell- 
to- cell contact using an EBV-positive lymphocyte cell line, Akata, compared with 
direct incubation with viral particles. Nanbo et al. (2016) proposed the cell-to-cell 
transmission mechanism; EBV latently infected lymphocytes contact with epithelial 
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cells via integrin β1/β2 and other molecules, which induced the lytic cycle of EBV 
and intracellular adhesion molecule-1 (ICAM-1) translocation to the cell surface, 
stabilizing cell-to-cell contact on the side of the lymphocytes. The viral particle is 
then transmitted by clathrin-mediated endocytosis to epithelial cells. Further series 
of events include absorption of viral particles, transportation of EBV-DNA to the 
nucleus, and subsequent replication of viral DNA for establishing latent gene 
expression.

20.4.2  Amplification of EBV-DNA

It has not been clarified how the copy number of EBV-DNA is determined in the 
nucleus of a founder clone (Lieberman 2013). As an initial step, the following 
events proceed in addition to the establishment of viral latent gene expressions: 
circularization and chromatinization of the viral genome including assembly of 
viral chromatin, patterning of histone posttranslational modifications and DNA 
methylation, and formation of higher-order chromosome conformations. Shannon- 
Lowe et al. (2009) demonstrated that early gene expression of the lytic cycle was 
required for amplification of the EBV genome in a semi-permissive epithelial cell 
line, AGS. In the same experimental conditions, infection of B cells with one or two 
copies of EBV induced rapid amplification of the viral genome to >20 copies per 
cell. Conversely, this amplification was not normally observed following infection 
of primary epithelial cells or undifferentiated epithelial cell lines, and the viral DNA 
was eventually lost. Thus, there may be certain prerequisites for the founder cells to 
accomplish amplification of EBV genome in the initial step of latent infection. 
Mutations of the genes, phosphatidylinositol-4,5-biphosphate 3-kinase catalytic 
subunit α (PIK3CA) and AT-rich interaction domain 1A (ARID1A), are possible 
candidates as cellular prerequisites (Abe et al. 2015), which will be discussed in 
Sect. 20.6.

20.4.3  Survival Advantage of EBV-Infected Cells

The important question is whether EBV provides a survival advantage to the non-
neoplastic stomach epithelial cells. Recently, Kanda et al. (2016) cloned EBV virus 
from gastric cancer cell lines (SNU719 and YCCEL1) and established stable latent 
infection with these viruses in immortalized keratinocytes (using the expression of 
a mutant form of cyclin-dependent kinase 4/cyclin D1/human telomerase reverse 
transcriptase). Viral gene expression was restricted to a low level of EBNA1 and 
BamHI-A region rightward transcripts (BART) miRNAs. Of note, EBV-infected 
keratinocytes demonstrated resistance to mutant Ras-induced vacuolar degeneration 
and cell death, which are inevitable in uninfected keratinocytes. However, EBV-
infected keratinocytes did not proliferate following survival of oncogene- inducing 
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cell death. This suggested that EBV infection provided a survival advantage to the 
dysplastic cells, although it was not enough for cancerization. These results resem-
ble the situation in telomerase reverse transcriptase-immortalized nasopharyngeal 
epithelial cell line infected with EBV: Overexpression of cyclin D1 or knockdown 
of p16 may counteract EBV-induced growth arrest and senescence (Tsang et  al. 
2012).

In regard to the issue of a survival advantage, it is necessary to estimate the fre-
quency of EBV infection in stomach epithelial cells in vivo. The majority of infec-
tion may be abortive, and the success rate of establishing the latent infection in an 
epithelial cell is extremely low. A few EBER-positive epithelial cells on the surface 
of gastric mucosa have previously been observed (Fukayama et al. 1994). One or a 
few glands consisting of EBER-positive epithelial cells are far infrequent, but they 
present in nonneoplastic mucosa (Fukayama and Ushiku 2011).

20.4.4  Role of Background Gastritis and H. pylori Infection

As aforementioned in Sect. 20.2.1, a severe degree of atrophic gastritis is frequently 
observed in the surrounding mucosa of EBVaGC. Lytic infection of EBV in the 
stomach mucosa has been revealed to be associated with gastritis and H. pylori 
infection (Shukla et al. 2012). Recently, the cooperation of H. pylori in EBVaGC 
was demonstrated (Saju et al. 2016). SHP1, a host cell phosphatase, interacts with 
H. pylori CagA and dephosphorylates tyrosine-phosphorylated CagA, which 
induces repression of the CagA-SHP2 signaling pathway. Of note, SHP1 was epige-
netically downregulated in EBV-infected cells, resulting in acceleration of onco-
genic activity of CagA. Thus, H. pylori CagA directly contributed to the development 
of EBVaGC by constitutively activating SHP2.

20.5  DNA Methylation and Virus-Host Interactions

Epigenetic regulation is essential for virus and host cells of EBV-associated neo-
plasms (Kaneda et  al. 2012). For the virus, methylation of viral DNA serves an 
important role for latent infection (Hammerschmidt 2015). The transcription initia-
tion sites for lytic genes of EBV are densely methylated in latently infected cells. In 
response to reactivation signals, viral immediate early transcription factors, Rta 
(BRLF1, IE2) and Zta (ZEBRA, BZLF1), are expressed, and Zta selectively binds 
to the methylated CpG motifs of viral promotors in early genes, which induces the 
cells to transition from latency to lytic infection. Thus EBV utilizes the methylation 
state as a marker of latency.

Unexpectedly, DNA methylation was revealed to occur at high frequencies in 
CpG islands of the promotor region of host genes in EBVaGC (Kang et al. 2002, 
Osawa et al. 2002) (B in Fig. 20.1). Various tumor suppressor genes, including p14, 
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p16, and E-cadherin, are suppressed by promoter methylation in EBVaGC. This 
process is not random, as mutL homolog 1 (MLH1) in particular, which is methyl-
ated in gastric cancers of MSI subtype, is not methylated in EBVaGC (Fukayama 
et al. 2008). We performed genome-wide comprehensive methylation analysis of 
gastric cancers (Matsusaka et al. 2011) and identified three distinct epigenotypes 
[EBV(−)/low methylation, EBV(−)/high methylation, and EBV(+)/high methylation] 
(Fig.  20.2.a). EBV epigenotype consisted of three sets of methylated genes, 

Fig. 20.2 EBV-driven CpG DNA methylation in gastric cancer. (a) CpG island DNA methylation 
in EBV-associated gastric cancer. (b) Infection-induced disruption of the balance between DNA 
methylation and DNA demethylation activities. Viral latent protein, LMP2A, induces overexpres-
sion of host cell DNMT1 through phosphorylation of STAT3, which leads to CpG methylation in 
promotor region of cancer-repressive genes. TET2, a member of TET family enzymes which pro-
motes reversal of DNA methylation, is repressed by EBV infection through LMP2A, BARF0, and 
increased miR93 and miR29a. Consequently, methylation/demethylation balance inclines toward 
hypermethylation conditions
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common marker genes, high marker genes, and EBVaGC-specific genes. 
Furthermore, using MKN7, a gastric cancer cell line with low CpG methylation, we 
revealed that global methylation was induced by EBV infection in both sets of high 
marker and EBV-specific marker genes.

20.5.1  Mechanisms Underlying EBV-Driven Hypermethylation

The mechanisms of EBV-driven hypermethylation (Fig.  20.2) have not yet been 
fully elucidated. We observed that viral latent protein, LMP2A, induced overexpres-
sion of DNMT1 via phosphorylation of signal transducer and activator of transcrip-
tion 3 (STAT3), leading to methylation of the phosphatase and tensin homolog 
(PTEN) promotor in infected gastric cancer cell lines (Hino et al. 2009); however, 
this pathway only partially explains the global CpG island methylation of 
EBVaGC. DNA methylation is a dynamic process, which is balanced between driv-
ing force and resistance factors. Cytosine methylation is due to DNMTs, whereas its 
demethylation is mediated via oxidation of 5-methylcytosine by TET family of 
dioxygenases. We recently conducted an RNA-sequencing analysis of gastric epi-
thelial cells with and without EBV infection and revealed that TET family genes, in 
particular TET2, were repressed by EBV infection at the mRNA and protein levels 
(Namba-Fukuyo et al. 2016). Hydroxymethylation target genes for TET2 enzyme 
overlapped significantly with methylation target genes in EBV-infected cells. When 
TET2 was knocked down by short hairpin RNA, EBV infection induced higher 
methylation in methylation-acquired promoters or de novo methylation acquisition 
in methylation-protected promoters, which induced gene repression. However, the 
role of TET2 is complementary as a resistance factor against de novo methylation, 
since TET2 knockdown alone did not induce de novo DNA methylation without 
EBV infection.

20.5.2  Chronological Sequence of DNA Methylation

Chromatin remodeling, including histone modifications, constitutes EBV-hyper- 
epigenotype and has been intensively investigated (Funata et al. 2017). But for the 
time being, we speculate that hypermethylation in EBVaGC may be due to overdriv-
ing of methylation mechanisms inherent to host cells (Fukayama et al. 2008, Kaneda 
et al. 2012). Using an experimental EBV infection system (Matsusaka et al. 2017), 
viral DNA methylation was revealed to precede the host DNA methylation by 
1 week, and methylation of the host genome commences following completion of 
viral DNA methylation. The methylation of viral genes may be due to a host defense 
mechanism against foreign DNA, and the activated methylation machinery induces 
repression of tumor suppressor genes, which then promote the survival of infected 
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cells. Furthermore, suppression of viral latent proteins benefits the virus by allow-
ing it to evade host immune responses. Thus, overdriving of the cellular methylation 
mechanisms may be one of the survival strategies of EBV.

20.6  Molecular Abnormalities of Host Cells

As mentioned in the introduction (Sect. 20.1), the TCGA molecular classification of 
gastric cancer consists of four subtypes (The Cancer Genome Atlas Research 
Network 2014). Among them, EBVaGC is characterized by EBV-specific hyper- 
epigenotype or EBV-CIMP.  The study further identified recurrent mutations of 
ARID1A (55%) and PIK3CA (80%). Other frequent mutations included BCL-6 
corepressor (BCOR, 23%); however, mutation of tumor protein p53 (TP53) was 
extremely rare. Chromosomal abnormality was demonstrated to be uncommon in 
EBVaGC, but amplification of JAK2, programmed death-ligand 1 (PD-L), and PD- 
L2 were frequent in EBVaGC.

When we consider the frequencies of these mutations, there are two possible 
explanations (Abe et al. 2015) (C in Fig. 20.1), although both are not exclusive: (i) 
higher frequencies suggest that these mutations occur during an earlier phase of 
cancer development, but lower frequencies require later timing of mutation, and (ii) 
there are several specific subgroups harboring specific sets of mutations.

20.6.1  PIK3CA

PIK3CA is an important regulator of the PI3K/protein kinase B (Akt) signaling 
pathway. Mutations in PIK3CA are frequent in cancer of various organs, including 
colon, breast, endometrium, and ovary cancers. These mutations are mostly hotspot 
mutations located on exon 9 (E542K and E545K) and exon 20 (H1047R). Referring 
to other sequencing studies of gastric cancer, the frequencies of PIK3CA mutation 
vary considerably in EBVaGC (Wang et al. 2014, Fang et al. 2016). The variable 
frequencies may be due to the differences in the detection methods or the patients’ 
characteristics, including ethnicity and location of cancer. The mutation sites in 
PIK3CA are distributed widely in EBVaGC with only 28% of mutations observed in 
hotspots (The Cancer Genome Atlas Research Network 2014). A considerable num-
ber of the non-hotspot mutants were demonstrated to possess moderate-to-weak 
transformation activity and/or lipid phosphorylation activity (Burke et al. 2012). It 
is possible that PIK3CA mutation precedes EBV infection, which subsequently aug-
ments the functions of mutated PIK3CA in order to activate the PI3K/AKT signal-
ing pathway. Coexistence of PIK3CA mutations with ARID1A mutation was 
frequently observed in ovarian clear cell cancer and in specific foci of endometriosis, 
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in particular atypical endometriosis (Yamamoto et al. 2012). Further studies inves-
tigating PIK3CA mutations in nonneoplastic mucosa are required in order to clarify 
its association with EBV infection.

20.6.2  ARID1A

ARID1A is a subunit of the SWItch/sucrose non-fermentable (SWI/SNF) chromatin 
remodeling complex and is thought to have a tumor suppression role by regulating 
chromatin structure and gene expression. There are no hotspots in ARID1A muta-
tions, but most are missense or truncation mutations, which result in loss or low 
expression levels of ARID1A protein (Wang et al. 2011). In order to identify its 
abnormalities, we used immunohistochemistry to analyze a large series of gastric 
cancer tissue microarrays, and it was revealed that expression of ARID1A was fre-
quently lost in EBVaGC (Abe et al. 2012). Homogeneous loss within the tumor was 
characteristic to EBVaGC, and this finding was independent of invasion depth, 
which indicates that abnormality of ARID1A is an early event in EBVaGC carcino-
genesis. In a deep sequencing study of nonneoplastic gastric mucosa (Shimizu et al. 
2014), ARID1A mutations were present in chronically inflamed and H. pylori- 
infected gastric mucosa. These observations suggest that the mutation event pre-
cedes EBV infection. Mutations in ARID1A, leading to altered chromatin structures, 
may facilitate viral entry to the nucleus, subsequent CpG methylation, or activation 
of the PIK3CA/AKT signaling pathway (Zhang et al. 2016).

20.6.3  Amplification of PD-L1

A comprehensive analysis of gastric cancer revealed that PD-L1 was amplified in 
EBVaGC (The Cancer Genome Atlas Research Network 2014). PD-L1 is a ligand 
of programmed death-1 (PD-1), which is a co-receptor of mature CD4+ and CD8+ 
T-cells. PD-L1 is mainly expressed on the surface of antigen-presenting cells and 
various tumor cells. Following ligation with PD-L1, the PD-1 signaling pathway is 
activated and delivers inhibitory signals for T-cell activation, which results in 
immune tolerance or evasion. The expression of PD-L1 was frequently detected in 
cancer cells of EBVaGC (34%), and fluorescence in situ hybridization analysis 
demonstrated PD-L1 gene amplification in 11% of cases (Saito et al. 2017). PD-L1- 
amplified cells corresponded with PD-L1-positive cells demonstrating high intensi-
ties of staining, whereas other cancer cells revealed weak or moderate intensities of 
staining. Thus, PD-L1 amplification occurs as a clonal evolution in the PD-L1- 
expressing cancer cells in EBVaGC. Kataoka et al. (2016) recently reported struc-
tural disruption of PD-L1 3′-UTR, which leads marked elevation of aberrant PD-L1 
transcripts in adult T-cell lymphomas and a subset of gastric cancers including 
EBVaGC.
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20.7  Tumor Microenvironment

The mechanisms underlying EBV-mediated alterations of the microenvironment of 
the infected cells require further investigation (D in Fig. 20.1). The microenviron-
ment and cancer cells are postulated to cooperate for the development and progres-
sion of cancer. The microenvironment of EBVaGC appears characteristic, including 
the prominent infiltration of CD8+ cytotoxic T-cells (CTLs). Based on gene expres-
sion profiling in EBVaGC (Kim et al. 2015b), the majority of alterations occur in 
immune response genes, which may contribute to the recruitment of reactive 
immune cells. Integrated pathway analysis of TCGA (The Cancer Genome Atlas 
Research Network, 2014) demonstrated that IL-12-mediated signaling was charac-
teristic of EBVaGC, suggesting a robust immune cell presence (antitumor response).

20.7.1  How to Survive in the Milieu of Antitumor Response

IL-12 exerts antitumor responses via interferon-γ. How do cancer cells of EBVaGC 
evade the immune response? In our study by immunohistochemistry, PD-L1 expres-
sion in cancer cells was associated with CD8+ immune cell density (Saito et  al. 
2017), suggesting that cancer cells increased PD-L1 expression level in response to 
cytokines from CD8 + CTL (adaptive expression). Furthermore, PD-L1+ immune 
cells infiltrated into the cancer stroma of EBVaGC more frequently compared with 
EBV-negative GC, particularly diffuse and intestinal subtypes (corresponding to GS 
and CI subtypes of gastric cancer, respectively). PD-L1+ immune cells were also 
frequently observed in MLH1-negative cases (MSI subtype), suggesting that 
EBVaGC and MSI subtypes acquire the ability to recruit PD-L1+ immune cells or 
induce PD-L1 expression in infiltrating cells against a burden of lymphocyte 
infiltration.

In parallel with the case of PD-L1  in immune cells, the microenvironment of 
EBVaGC is remodeled by accumulation of forkhead box P3+ cells (regulatory 
T-cells, Treg) (Zhang et  al. 2015) and CD204+ macrophages (tumor-associated 
macrophages, TAM) (Ichimura et al. 2016), although the latter are relatively less 
frequent. Due to the finely balanced milieu, a small population of CD66b + neutro-
phils (anticancer tumor-associated neutrophils) may affect the behavior of EBVaGC 
(Abe et al. 2016).

20.7.2  Tools for Immune Evasion

In infiltrating cells of EBVaGC, the expression level of indoleamine 2,3- dioxygenase 
(IDO1) is upregulated (Strong et  al. 2013, Kim et  al. 2015b). IDO1 is a potent 
immune-inhibitory molecule that inhibits the immune responses via the local 
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depletion of tryptophan, which is essential for anabolic functions in T-cells. 
Cytokines and chemokines produced by EBVaGC may affect the profile of infiltrat-
ing immune cells (Chong et al. 2002). Recently, exosomes have attracted attention 
as a modality of intercellular communications (Pegtel et al. 2010). Exosomes are 
small vesicles (30–150  nm in diameter) with lipid bilayer membranes and are 
derived from endoplasmic multivesicular bodies containing proteins, lipids, and 
RNAs from their cell origin. Exosomes are released into the extracellular space and 
deliver their contents from cell to cell. The molecular profile of exosomes has been 
vigorously investigated in NPC, including LMP1-positive exosomes (Meckes 
2015). These exosomes contain other EBV-specific molecules, including viral miR-
NAs and cellular miRNAs of infected cells. When incorporated with recipient cells, 
contents of exosomes alter the recipient cellular functions (Meckes et al. 2010), and 
these changes contribute to the recruitment and expansion of Treg (Mrizak et al. 
2014). Furthermore, increased circulating exosome concentrations were associated 
with advanced lymph node stage and poor prognosis in patients with NPC (Ye et al. 
2014). Thus, exosomes from the tumor tissues and the patients’ plasma should also 
be investigated in EBVaGC.

20.8  Host Cell and Virus miRNAs

miRNAs are small, noncoding RNA molecules ~22 nucleotides in length and are 
novel, posttranscriptional regulators of gene expression. Cancer cells of EBVaGC 
express both cellular and viral miRNAs, which provide characteristic features to 
themselves (E in Fig. 20.1).

20.8.1  Host Cell miRNAs

We previously reported that two cellular miRNAs, hsa-miR-200a and hsa-miR- 
200b, were downregulated in EBVaGC tissue samples and cell lines (Shinozaki 
et al. 2010). These miRNAs target the transcription repressors, zinc finger E-box- 
binding homeobox (ZEB)1 and ZEB2, which regulate E-cadherin expression levels. 
Downregulation of these miRNAs ultimately reduced E-cadherin expression level 
and induced epithelial-to-mesenchymal transition. EBV latent gene products, 
BARF0, EBNA1, LMP2A, and EBERs, cooperatively suppressed hsa-miR-200a 
and hsa-miR-200b expression in cell lines, whereas decrease of E-cadherin expres-
sion was significant only in EBER-transfected cells. Marquiz et al. (2014) demon-
strated that EBV infection to AGS cells induced a decrease in the expression levels 
of tumor suppressor miRNAs (anti-oncomirs), including the let-7 and miR-200 
families.

M. Fukayama et al.



451

20.8.2  Virus miRNAs

A total of 25 EBV miRNA precursors and 44 mature EBV miRNAs have been reg-
istered (Shinozaki-Ushiku et al. 2015b). EBV miRNAs are produced from these 25 
precursors, 3 of which are transcribed from BHRF1 and the remaining 22 are from 
two regions of BARTs of the EBV genome. BHRF-derived miRNAs are only tran-
scribed in EBV-infected lymphoblastic cells, whereas BART-derived miRNAs are 
expressed in EBV-infected neoplastic cells. Recent RNA-sequencing studies of 
EBVaGC demonstrated that the majority of the transcripts of EBV consist of 
BARTs. Numerous spliced transcripts, other than pre-miRNAs, remain in the 
nucleus of infected cells without definite evidence of translated proteins. Marquiz 
et al. (2015) demonstrated that considerable components of BARTs may act as long 
noncoding RNAs, which are involved in repressive complexes with cellular genes. 
Conversely, miRNAs are now intensively studied in cancer and viruses. Based on 
the study analyzing tissue samples from patients with EBVaGC (Shinozaki-Ushiku 
et al. 2015b), we revealed that ebv-miR-BART1-3p, 3, 4, 5, and 17-5p (cluster 1), 7, 
9, 10, and 18-5p (cluster 2) and 2-5p were expressed at relatively high levels.

Functions of viral miRNAs, in particular those involved in the maintenance of 
viral latency and transformation of host cells, have been intensively investigated in 
NPC (Lo et  al. 2012); however, they remain largely undetermined in EBVaGC 
(Table 20.2) (Shinozaki-Ushiku et al. 2015b, Choy et al. 2008, He et al. 2016, Tsai 
et al. 2017, Kang et al. 2017, Kim et al. 2015a, Jung et al. 2014, Choi and Lee 2017, 
Choi et al. 2013, Kang et al. 2017, Kanda et al. 2015). We demonstrated that ebv-
miR-BART4-5p regulates the expression of a pro-apoptotic protein, BH3- interacting 
domain death (BID) agonist in EBVaGC (Shinozaki-Ushiku et al. 2015b). The rate 
of apoptosis revealed to be reduced in tissue samples of EBVaGC, and the gastric 
cancer cell lines infected with EBV exhibited downregulation of BID and resistance 
to apoptosis. However, it remains unknown whether the functions of each miRNA 
can be precisely determined. Marquitz et al. (2011) demonstrated that BART cluster 
1 and a number of miRNAs targeted a pro-apoptotic molecule, BCL2-like 11 (Bim). 
In the reporter assay, the Bim 3′ untranslated region was inhibited by both clusters 
but not by an individual miRNA. The complexity of functional effects of viral miR-
NAs was also revealed by Kanda et al. (2015). They identified BART22 as being 
responsible for NDRG1 downregulation in epithelial cells by performing in vitro 
reporter assays. Conversely, EBV genetic analyses by deletion of fragments of clus-
ter 2 (encompassing BART22) demonstrated that the entire BART cluster 2 was 
responsible for downregulation. Thus, functions of ebv- miR- BARTs are redundant, 
and deregulation of cellular miRNAs may compensate the results. Furthermore, 
in vitro experiments may not reflect in vivo functions, as highlighted by Qiu et al. 
(2015).
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Table 20.2 BART microRNAs in EBV-associated gastric cancer

BART- 
miRNA Amounta Target

Subject 
(gastric cancer) Comment Reference

4-5p High Bid GC tissues of 
FFPE (n = 10)
KT, SNU719, 
MKN1-EBV, 
NUGC3-EBV, 
AGS-EBV

Profiling of BARTs in 
EBVaGC
Anti-apoptosis

Shinozaki- 
Ushiku et al. 
(2015b)

5-5p High PUMA AGS-EBV 
(AGS/Bx1)

Anti-apoptosis Choy et al. 
(2008)

6-3p Intermediate lncRNA 
LOC553103

(AGS) Reverse of EMT
Inhibition of cell 
metastasis and invasion

He et al. 
(2016)

9 High pre-miR-200a, 
pre-miR-141

GC tissues of 
FFPE (n = 52)
SNU719

Profiling of BARTs in 
EBVaGC
Downregulation of 
miR-200, miR-141

Tsai et al. 
(2017)

15-3p Intermediate Bruce AGS-EBV, 
SNU719
Exosome

Induction of apoptosis
Enriched in exosomes, 
suggesting transmission 
to the neighboring cells

Choi et al. 
(2013)

15-3p Intermediate TAX1BP1 AGS-EBV Activation of NFkB
Enhancement of 
chemosensitivity to 
5-FU

Choi and 
Lee (2017)

20-5p Low Prognosis of 
the patients 
with EBVaGC

GC tissues of 
FFAP (n = 59)

Expression of 
miR-BART1-5p, 4-5p, 
and 20-5p and 
prognosis of the 
patients
BART20-5p with worse 
recurrence-free survival

Kang et al. 
(2017)

20-5p Low BAD AGS-EBV Anti-apoptosis, growth 
promotion, resistance 
to 5FU and docetaxel

Kim et al. 
(2015a, b)

20-5p Low BZLF1, 
BRLF1

AGS-EBV Maintenance of latent 
infection

Jung et al. 
(2014)

Cluster 
1

Low-high Bim AGS-EBV Capability of apoptosis
Reporter assay of Bim 
3′ UTR could not 
determine responsible 
miRNAs

Marquitz 
et al. (2011)

Cluster 
1 and 2

Low-high Cell growth in 
NOD mice

Xenograft 
model
AGS-EBV 
(AGS/Bx1)

Increase of tumor 
growth in vivo
Not associated with 
expression of specific 
BART miRNA, but 
with upregulation of all

Qiu et al. 
(2015)

GC gastric cancer, EBVaGC EBV-associated gastric cancer, FFPE formalin-fixed paraffin- 
embedded specimens
aAmount is described according to Shinozaki-Ushiku et al. (2015b)
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20.9  Future Perspective

This review is a portrait of the gastritis-infection-cancer sequence of EBVaGC. A 
problem facing investigations of this virus-driven stomach cancer is a lack of a suit-
able model system to reconstitute the process from virus entry to generation of the 
founder clone. To clarify these initial steps, organoid culture of the stomach epithe-
lial cells (McCracken et al. 2014, Bartfeld et al. 2015) should be applied to this issue 
in combination with live imaging of EBV and H. pylori infection. Application of 
single-cell sequencing and stem cell biology will be required for further analyses.

In order to concur advanced and metastatic cancers of this virus-induced and 
virus-driven cancer, multiple counteractions to the viral strategy should be devel-
oped including (i) augmentation of the immune response, for example, therapeutic 
vaccine (Taylor and Steven 2016, Taylor et  al. 2014), adoptive T-cell transfer 
(Manzo et al. 2015, Su et al. 2016), and immune checkpoint therapy; (ii) prevention 
of exosome delivery; (iii) damping inflammatory signals (Ho et  al. 2013); (iv) 
reversing CpG methylation of viral and cellular genomes (Yau et al. 2014, Hui et al. 
2016), which also induces transition to lytic infection; and (v) other modalities of 
directly inducting lytic infection (including radiotherapy and chemotherapy) (Fu 
et al. 2008, Lee et al. 2015). A number of clinical trials for EBVaGC or virus-asso-
ciated cancers are currently ongoing (four trials are now recruiting as of April 2017; 
EBV and gastric cancer at https://clinicaltrials.gov/).
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Chapter 21
EBV in T-/NK-Cell Tumorigenesis

Hiroshi Kimura

Abstract Epstein–Barr virus (EBV), which is associated with B-cell proliferative 
disorders, also transforms T- or natural killer (NK)-lineage cells and has been 
 connected with various T- or NK (T/NK)-cell malignancies, such as extranodal 
NK/T-cell lymphoma-nasal type and aggressive NK-cell leukemia. Chronic active 
EBV (CAEBV) disease, which occurs most often in children and young adults in 
East Asia, is an EBV-associated T-/NK-cell lymphoproliferative disease. Patients 
with CAEBV often progress to overt lymphoma or leukemia over a long-term clini-
cal course. EBV’s transforming capacity in B cells is well characterized, but the 
molecular pathogenesis of clonal expansion caused by EBV in T/NK cells has not 
yet been clarified. In the primary infection, EBV infects B cells and epithelial cells 
and may also infect some T/NK cells. In some individuals, because of poor presen-
tation by specific human leukocyte antigens or the genetic background, EBV-
infected T/NK cells evade host immunity and survive. Occasionally, with the help 
of viral oncogenes, EBV-associated T/NK lymphoproliferative diseases, such as 
CAEBV, may develop. The subsequent accumulation of genetic mutations and/or 
epigenetic modifications in driver genes, such as DDX3X and TP53, may lead to 
overt lymphoma and leukemia. Activation-induced cytidine deaminase and the 
APOBEC3 family, driven by EBV infection, may induce chromosomal recombina-
tion and somatic mutations.
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21.1  Introduction

Epstein–Barr virus (EBV) infects only human beings, so its host range is very lim-
ited. Host-cell ranges are also narrow, primarily because of receptor tropism. EBV 
preferentially infects B cells and is associated with various B-cell-origin diseases 
(Longnecker et al. 2013; Grywalska and Rolinski 2015), such as infectious mono-
nucleosis, Burkitt lymphoma, and posttransplant lymphoproliferative disorders 
(Table  21.1). EBV also infects epithelial cells and has been linked to several 
epithelial- cell-origin diseases, including nasopharyngeal carcinoma and gastric 
cancer (Table 21.1). However, EBV can infect non-B lymphocytes, such as T-cells 
and natural killer (NK) cells, and its association with T- and NK (T/NK)-cell-origin 
diseases has been demonstrated (Cohen et al. 2009).

Table 21.1 EBV-associated diseases (non-T/NK cells)

Disease entity
Association 
to EBV (%) Infected cells

Latency 
type Population at high risk

Infectious mononucleosis 100 B III Adolescents
Burkitt lymphoma, 
endemic

100 B I Equatorial Africa, New 
Guinea

Burkitt lymphoma, 
sporadic

30 B I

Hodgkin lymphoma, 
mixed cellularity

60–80 B II

Hodgkin lymphoma, 
nodular sclerosis

20–40 B II

Lymphomatoid 
granulomatosis

100 B II Western countries

EBV+ diffuse large 
B-cell lymphoma of 
elderly

100 B III?

Posttransplant 
lymphoproliferative 
disorders

>90 B III Recipients with heart, 
lung, or intestine 
transplantation

Lymphoma associated 
with HIV infection

40 B I-III

Primary effusion 
lymphomaa

70–80 B III HIV-infected individuals

Plasmablastic lymphoma 70 Plasma blasts I? HIV-infected individuals
Hairy leukoplakia 100 Epithelial cells Lytic 

infection
HIV-infected individuals

Nasopharyngeal 
carcinoma

100 Epithelial cells II Southern China

Gastric cancer 9 Epithelial cells I

HIV human immunodeficiency virus
aUniversally associated with human herpesvirus 8
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EBV, which was originally isolated from Burkitt lymphoma in 1964 (Epstein 
et al. 1964), has been studied extensively in the context of B-cell lymphomagenesis 
for more than 50 years. Because EBV-associated T-/NK-cell tumors are rare and the 
generation and handling of EBV-positive T/NK cells are more difficult than B or 
epithelial cells, the precise mechanism of T-/NK-cell tumorigenesis has not yet been 
clarified. In this chapter, I will summarize the pathogenesis of EBV-associated T-/
NK-cell neoplasms. In particular, oncogenicity in EBV-associated T-/NK-cell lym-
phoma will be the focus.

21.2  A Historical Perspective on T-/NK-Cell Tumorigenesis

An association between EBV, Burkitt lymphoma, and nasopharyngeal carcinoma 
was demonstrated soon after the first isolation of EBV (Epstein et  al. 1964; Zur 
Hausen et al. 1970). However, a linkage to T-/NK-cell tumors was observed for the 
first time in the late 1980s. In 1988, Jones et al. reported T-cell lymphomas contain-
ing EBV DNA (Jones et  al. 1988), nearly 25  years after the discovery of EBV 
(Table 21.2). This delay was partly due to the rarity of T-/NK-cell tumors, but the 
main reason was that there had been no reliable way to detect EBV-infected cells. 
The development of EBV-encoded small RNA (EBER) in situ hybridization boosted 
the discovery of a variety of EBV-associated diseases (Weiss et al. 1989). In 1989, 
the first case of EBV-associated NK-cell lymphoproliferative disease was reported 
(Kawa-Ha et al. 1989). Since then, linkages between previously known T-/NK-cell 
tumors and EBV have been found (Table 21.2) (Kikuta et al. 1988; Harabuchi et al. 
1990; Hart et al. 1992; Kawaguchi et al. 1993; Ishihara et al. 1997; Iwatsuki et al. 
1999).

In the 1990s, several EBV-positive T-/NK-cell lines were established. Most of 
them were derived from patient specimens (Imai et  al. 1996; Tsuchiyama et  al. 
1998; Tsuge et al. 1999; Zhang et al. 2003), but some were established by in vitro 
infection of EBV-negative cell lines (Table 21.2) (Paterson et al. 1995; Fujiwara and 
Ono 1995; Isobe et al. 2004). These cell lines have helped greatly in studying the 
pathogenesis of EBV in T-/NK-cell tumors, combined with the development of 
mouse xenograft models (Imadome et al. 2011; Fujiwara et al. 2014).

In the twenty-first century, novel techniques, such as DNA microarrays, array 
comparative genomic hybridization, and “next-generation” sequencing, have been 
applied to genome-wide association studies and whole-genome/exome sequencing. 
With these techniques, the tumorigenesis of EBV-associated T-/NK-cell tumors is 
now being clarified to some extent (Iqbal et al. 2009; Karube et al. 2011; Jiang et al. 
2015; Li et  al. 2016), although the precise mechanism(s) remain unresolved 
(Table 21.2).
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21.3  EBV-Associated T-/NK-Cell Tumors

There are various EBV-associated T-/NK-cell tumors, from lymphoproliferative 
disease to overt leukemia/lymphoma (Table 21.3). Although some have names sug-
gesting seemingly benign diseases (e.g., mosquito bite allergy), all are basically 
neoplasms where EBV-infected T/NK cells proliferate with clonality and infiltrate 
organs.

In the 2008 WHO classification of tumors of hematopoietic and lymphoid tis-
sues, the following diseases are listed as mature T-cell and NK-cell neoplasms 
 associated with EBV: aggressive NK-cell leukemia, extranodal NK/T-cell lym-
phoma-nasal type (ENKL), systemic EBV-positive T-cell lymphoproliferative dis-
ease of childhood, hydroa vacciniforme-like lymphoma, and EBV+ peripheral T-cell 
lymphoma, not otherwise specified (Chan et  al. 2008a, b; Quintanilla- Martinez 

Table 21.2 Discoveries and events associated with T-/NK-cell tumorigenesis and EBV

Year Investigators Discovery and event Reference

1988 Jones et al. Linkage to T-cell lymphoma Jones et al. (1988)
1988 Kikuta et al. T-cell infection in chronic active EBV disease Kikuta et al. (1988)
1989 Kawa-Ha et al. Linkage to NK-cell lymphoproliferative 

disease
Kawa-Ha et al. 
(1989)

1990 Harabuchi et al. Linkage to extranodal NK/T-cell lymphoma Harabuchi et al. 
(1990)

1992 Hart et al. Linkage to aggressive NK-cell leukemia Hart et al. (1992)
1993 Kawaguchi et al. T-cell infection in EBV-associated 

hemophagocytic lymphohistiocytosis
Kawaguchi et al. 
(1993)

1995 Paterson et al. In vitro infection of T-cell line Paterson et al. (1995)
1995 Fujiwara et al. Establishment of T-cell lines by in vitro 

infection of HTLV-1-positive T-cell line
Fujiwara and Ono 
(1995)

1996 Imai et al. Establishment of T-cell lines from clinical 
specimens

Imai et al. (1996)

1997 Ishihara et al. Linkage to severe mosquito bite allergy Ishihara et al. (1997)
1998 Tsuchiyama 

et al.
Establishment of an NK-cell line Tsuchiyama et al. 

(1998)
1999 Iwatsuki et al. Linkage to hydroa vacciniforme Iwatsuki et al. (1999)
2004 Isobe et al. Establishment of an NK-cell line by in vitro 

infection to an NK-cell leukemia line
Isobe et al. (2004)

2009 Iqbal et al. Mutational analysis by array comparative 
genomic hybridization in NK-cell 
malignancies

Iqbal et al. (2009)

2011 Imadome et al. Mouse xenograft model of chronic active EBV 
disease

Imadome et al. 
(2011)

2015 Jiang et al. Whole exome sequencing in extranodal 
NK/T-cell lymphoma

Jiang et al. (2015)

2016 Li et al. Genome-wide association study in extranodal 
NK/T-cell lymphoma

Li et al. (2016)
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et al. 2008; Pileri et al. 2008). Except for peripheral T-cell lymphoma, EBV is asso-
ciated strongly with each disease (Table 21.3). In the 2016 revision of the WHO 
classification, EBV+ T-cell lymphoproliferative disease of childhood and hydroa 
vacciniforme-like lymphoma have been renamed EBV+ T-cell lymphoma of child-
hood and hydroa vacciniforme-like lymphoproliferative disorder, respectively 
(Swerdlow et al. 2016; Quintanilla-Martinez et al. 2017). Chronic active EBV dis-
ease (CAEBV) of the T-/NK-cell type and severe mosquito bite allergy are also 
described in the text of the classification under the umbrella term of EBV-associated 
T-/NK-cell lymphoproliferative disorders (EBV-T/NK LPD) in the pediatric age 
group (Quintanilla-Martinez et al. 2017). Because the etiology of each disease is not 
yet fully understood, the classification and terminology are incomplete and need 
further improvement.

ENKL, which is also called nasal NK-/T-cell lymphoma, is a predominantly 
extranodal lymphoma, characterized by vascular damage, necrosis, and a cytotoxic 
phenotype (Elenitoba-Johnson et al. 1998; Chan et al. 2008b). The upper aerodiges-
tive tract, including the nasal cavity and paranasal sinuses, is most commonly 
involved. This disease often progresses, with extensive midfacial destructive lesions 
(previously called lethal midline granuloma), and sometimes disseminates to other 
sites, including the skin and gastrointestinal tract. As it has a poor response to che-
motherapy, the prognosis of ENKL is poor (Chan et al. 2008b). EBV is invariantly 
associated with this lymphoma, so an etiological link with EBV infection has gener-
ally been assumed. ENKL is more prevalent in East Asians and Native Americans 
in Mexico, Central America, and South America. The most typical immunopheno-
type of ENKL is CD2+, CD3−, and CD56+, indicating NK cells.

Table 21.3 EBV-associated T- or NK-cell lymphoproliferative diseases/lymphoma

Disease entity
Association 
with EBV (%)

Infected 
cells

Latency 
type

Population at 
high risk

Angioimmunoblastic T-cell lymphoma >90 Ba II
Aggressive NK-cell leukemia >90 NK II Asians
Extranodal NK/T-cell lymphoma, 
nasal type

100 NK, T II East Asians

Peripheral T-cell lymphoma, not 
otherwise specified

30 T II

Chronic active EBV disease of T/NK 
type

100 T, NK (B) II East Asians

Severe mosquito bite allergy 100 NK (T) II East Asians
EBV-associated hemophagocytic 
lymphohistiocytosis

100 CD8+ T, NK II

Systemic EBV+ T-cell lymphoma of 
childhood

100 T II East Asians

Hydroa vacciniforme-like 
lymphoproliferative disorder

100 γδT, NK II Asians, Native 
Americans

aNeoplastic T-cells are EBV-negative
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CAEBV is a potentially life-threatening illness of children and young adults, 
characterized by the clonal proliferation of EBV-infected lymphocytes (Okano et al. 
2005; Cohen et al. 2009; Kimura et al. 2012). The T-/NK-cell type of this disease 
has a strong racial predisposition, with most cases occurring in East Asians and 
some cases in Native American populations in the Western Hemisphere (Cohen 
et al. 2011; Quintanilla-Martinez et al. 2017); this distribution is analogous to that 
of ENKL. Typically, patients with CAEBV develop fever, hepatosplenomegaly, and 
lymphadenopathy; other common symptoms are thrombocytopenia, anemia, skin 
rash, diarrhea, and uveitis (Kimura et al. 2003). Patients often have abnormal liver 
function tests and an abnormal EBV serology, with high antiviral capsid antigen 
IgG antibodies (Straus et al. 1985). This disease is refractory to antiviral agents and 
conventional chemotherapies and thus has a poor prognosis. Stem-cell transplanta-
tion alone is a curative treatment for the disease, although the incidence of 
transplantation- related complications is high (Gotoh et al. 2008; Kawa et al. 2011).

21.4  Etiological Factors in the Development of T-/NK-Cell 
Tumors

Although EBV is ubiquitous, it remains unclear why the virus causes T-/NK-cell 
tumors in only some individuals (Kimura 2006). Some of them have risk factors, 
many of which are geographical (Table 21.3). This contrasts with B-cell diseases, 
where immunodeficiency is the main risk factor (Table  21.1). There are several 
hypotheses to account for the regional or racial deviation.

First, the genetic background may be related to the development of T-/NK-cell 
tumors. A positive association with human leukocyte antigen (HLA) A26 and a 
negative association with B52 were observed in EBV-T/NK LPD (Ito et al. 2013b). 
Interestingly, both the A26 and B52 alleles are frequently seen in East Asia and 
Mexico, where the prevalence of EBV-T/NK LPD is high. There are at least two 
possible explanations for these associations. One is that HLA-A26 does not effec-
tively present epitopes from EBV latent antigens. Another is that genetic traits 
related to lymphomagenesis, which are codominantly expressed with HLA-A26, 
play important roles. Associations with HLA loci have been reported in other EBV- 
associated malignancies that show geographically distinct distributions. HLA- 
A02:07, which is common among Chinese people but not among Caucasians, is 
associated with nasopharyngeal carcinoma (Hildesheim et  al. 2002). However, 
HLA-A1 is associated with an increased risk of developing EBV+ Hodgkin lym-
phoma (Niens et al. 2007).

Second, specific EBV strains or variants that can efficiently infect T/NK cells or 
can evade innate or acquired immunity may have a higher tendency to develop T-/
NK-cell tumors. For example, nasopharyngeal carcinoma has a geographic bias to 
East Asia. Associations between nasopharyngeal carcinoma and specific strains or 
variants of EBV have been extensively studied, although definitive conclusions 
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have not been reached (Neves et al. 2017). There are anecdotal papers on defective 
EBV or specific variants among T-/NK-cell tumors (Alfieri and Joncas 1987; Itakura 
et al. 1996). However, so far, no direct evidence has demonstrated a relationship 
with specific strain variants or mutants (Shibata et al. 2006; Kimura 2006). Recently, 
Coleman et al. showed that type 2 EBV can more efficiently infect T-cells than type 
1 EBV (Coleman et al. 2015), although type 2 is not common in East Asia, where 
T-/NK-cell tumors are more common. Indeed, all of the established EBV+ T-/
NK-cell lines involve type 1 EBV (unpublished data).

Finally, environmental factors may be associated with the progression or devel-
opment of T-/NK-cell tumors. In Burkitt lymphoma, which is endemic in central 
Africa, co-infections with malaria or plant exposure (Euphorbia tirucalli) may 
enhance the tumorigenesis of EBV (Osato et al. 1987; Longnecker et al. 2013). The 
consumption of salted fish is believed to be a risk factor for nasopharyngeal carci-
noma (Louie et al. 1977). On the other hand, case-control studies have shown that 
exposure to pesticides and chemical solvents could cause ENKL (Xu et al. 2007; 
Aozasa et  al. 2008). Agricultural pesticide use is associated with chromosomal 
translocation in non-Hodgkin lymphoma (Xu et al. 2007). Similar environmental 
and lifestyle factors may be associated with the development of ENKL.

21.5  Infection of T or NK Cells

In primary infection, EBV in saliva infects naïve B cells, directly or indirectly via 
epithelial cells, and EBV-infected B cells become transformed and proliferate 
(Cohen 2000; Thorley-Lawson and Gross 2004). EBV attaches to B cells through 
binding gp350/220 to CD21, which is the receptor for the C3d component of com-
plement, and gH/gL/gp42 to HLA class II molecules (Hutt-Fletcher 2007; 
Longnecker et al. 2013). Both CD21 and HLA class II are expressed on the surface 
of B cells, so B cells are natural hosts of EBV. During primary infection, epithelial 
cells of Waldeyer’s ring also become infected with EBV (Borza and Hutt-Fletcher 
2002). EBV attaches to epithelial cells through the binding of BMRF2 to integrins 
(α1, α3, α5, and αv integrins) and gH/gL to αvβ6 and αvβ8 integrins (Tugizov et al. 
2003; Longnecker et al. 2013).

Although it is limited, there is some evidence that EBV infects T/NK cells in the 
primary infection. EBER-positive T/NK cells are seen in both tonsils and peripheral 
blood from patients with acute infectious mononucleosis (Anagnostopoulos et al. 
1995; Hudnall et al. 2005; Kasahara et al. 2001). However, the mechanism by which 
EBV attaches and enters T/NK cells remains unknown. Basically, T/NK cells 
express neither CD21 nor HLA class II. T/NK cells express some integrins, and 
their expression is increased when stimulated. Thus, integrins may function as the 
receptors in T/NK cells as well as in epithelial cells. It is also possible that EBV may 
attach to T-cells via CD21, which is expressed in premature T-cells and common 
lymphoid progenitors (Fischer et al. 1991). It has been shown that EBV can infect 
premature T-cells and common lymphoid progenitors (Panzer-Grumayer et  al. 
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1993; Ichigi et  al. 1993; Paterson et  al. 1995; Fischer et  al. 1999). Interestingly, 
there have been several reports that show dual infections in both T-cell and NK-cell 
lineages in patients with CAEBV (Endo et al. 2004; Ohga et al. 2011; Sugimoto 
et al. 2014), supporting the hypothesis that EBV may infect common progenitor 
cells. Regarding cell phenotypes, EBV-infected T-cells are variable: CD4+ T, CD8+ 
T, CD4+ CD8+ T, CD4− CD8− T, and γδ T-cells have been reported (Kimura et al. 
2012).

Another possibility is that EBV may infect from EBV-infected B cells or epithe-
lial cells to T/NK cells by cell-to-cell infection. It has been reported that NK cells 
activated by EBV-infected B cells acquire CD21 molecules by synaptic transfer, and 
these ectopic receptors allow EBV binding to NK cells (Tabiasco et al. 2003). Such 
cell-to-cell infection through an immunological synapse has been observed in 
HTLV-1 infection between T-cells (Van Prooyen et al. 2010). EBV-infected T/NK 
cells usually express cytotoxic molecules, such as perforin, granzyme, and T-cell 
intracytoplasmic antigen (TIA)-1 (Ohshima et  al. 1997b, 1999; Quintanilla- 
Martinez et al. 2000), indicating that they have a killer cell phenotype. Indeed, NK 
cells, CD8+ T-cells, and γδ T-cells, which are typical EBV-infected cell types seen 
in EBV-associated T-/NK-cell tumors, are basically killer cells. These results sug-
gest that T/NK cells that attempt to kill EBV-infected B or epithelial cells may 
become infected with EBV through close contact through an immunological syn-
apse (Kimura et al. 2013).

21.6  EBV Gene Expression in T-/NK-Cell Tumors

Based on the pattern in normal B cells, EBV latency programs are classified as 0, I, 
II, or III (Longnecker et al. 2013). Similar to Hodgkin lymphoma and nasopharyn-
geal carcinoma, EBV-infected T/NK cells belong to latency type II, where only 
three viral proteins, EBNA1, LMP1, and LMP2A, are expressed (Chen et al. 1993; 
Kimura et al. 2005; Ito et al. 2013a). Noncoding RNAs, such as EBERs and BARTs, 
are also expressed in this latency type. In latency type II, immunodominant anti-
gens, EBNA2 and EBNA3s, are not expressed. Thus, EBV-infected T/NK cells do 
not express major antigens against cytotoxic T lymphocytes and thus have an advan-
tage in evading host immunity.

In CAEBV, which also belongs to type II latency, the frequency of LMP1 expres-
sion is variable among patients (Iwata et al. 2010; Kanemitsu et al. 2012). It seems 
that EBV latent gene expression in T/NK cells is heterogeneous, including variant 
transcripts (Yoshioka et al. 2001; Fox et al. 2010). LMP1 expression has a favorable 
impact on clinical outcomes in extranodal NK/T-cell lymphoma (Kanemitsu et al. 
2012; Yamaguchi et al. 2014). This would seem to contradict the notion that LMP-1 
is a potent oncoprotein that promotes proliferation and inhibit apoptosis. More 
recently, mutual exclusivity among tumors with somatic NF-κB pathway aberra-
tions and LMP1 overexpression has been reported in nasopharyngeal carcinoma, 
suggesting that NF-κB activation is selected for by both somatic and viral events (Li 
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et al. 2017). Loss of EBV was reported in a patient with cutaneous ENKL (Teo and 
Tan 2011). In vitro disappearance of EBV has been reported in EBV-infected B-cell 
lines (Shimizu et al. 1994). These results support the idea that subclones of origi-
nally EBV-positive lymphoma cells may have evolved alternative, virus- independent 
mechanisms to sustain oncogenic signaling pathways (Gru et al. 2015).

21.7  Tumorigenesis

Tumorigenesis in EBV-associated lymphoma/leukemia is a multistage process. 
There are two potential models of the multistage process. One is that EBV infects 
T/NK cells, followed by host-gene mutations and/or epigenetic modifications 
(Fig. 21.1a). In this model, the EBV-infected cells proliferate and evade apoptosis 
with the help of viral oncogenes. In the long run, mutations/modifications accu-
mulate, leading to the development of overt lymphoma/leukemia. EBV-T/NK 
LPD may be an intermediate phase in this process (Fig. 21.1a). CAEBV, which is 
a representative EBV-T/NK LPD, usually develops in children or adolescents. 
Onset at an early age matches the infection’s first mode. Another model is that 

a b

EBV 
infection

Genetic mutations
Epigenetic modifications

Mutant virus? EBV 
infection

Aging 
Environmental factors

Genetic mutations
Epigenetic modifications

EBV-T/NK LPD

Lymphoma/Leukemia

HLA association?
Genetic background?

Extrinsic factors?

Fig. 21.1 Multistage models of tumorigenesis in EBV-associated T-/NK-cell lymphoma or leuke-
mia (a) infection-genetic alteration sequence (b) genetic alteration-infection sequence
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EBV infects cells where mutations/modifications have already accumulated 
(Fig. 21.1b). This second model corresponds to ENKL, which develops in older 
people (Chan et al. 2008b). Aging and long-term exposure to environmental fac-
tors could induce genetic mutations in T/NK cells of the nasal cavity. A bimodal 
age distribution has been noted in patients with ENKL: adolescents and the elderly 
(Takahashi et al. 2011). Patients with different peaks may have different processes 
of lymphomagenesis.

In the process of lymphomagenesis, mutations in host cell genes are necessary. 
What causes such genetic changes? Activation-induced cytidine deaminase (AID), 
which belongs to the APOBEC3 protein family, is one candidate. AID is expressed 
in germinal center B cells and induces somatic hypermutations and class switch 
recombination (Honjo et al. 2004). This enzyme is necessary for the chromosomal 
breaks in c-myc and its translocations (Robbiani et  al. 2008). EBV-oncoprotein 
LMP-1 increases genomic instability through upregulation of AID in B-cell lym-
phomas (He et al. 2003; Kim et al. 2013). More recently, it has been shown that viral 
tegument protein BNRF1 can induce centrosome amplification and chromosomal 
instability, thereby conferring a risk of the development of tumors (Shumilov et al. 
2017). By contrast, APOBEC3 cytidine deaminases can target and edit the EBV 
genome (Suspene et al. 2011). Thus, EBV infection per se may play an important 
role in c-myc translocation and lymphomagenesis of Burkitt lymphoma and other 
B-cell lymphomas. In AID transgenic mice, B-cell lymphoma develops (Okazaki 
et  al. 2003). Interestingly, not only B-cell but also T-cell lymphoma develops in 
these mice. Furthermore, AID is expressed in HTLV-1+ cell lines and HTLV-1+ 
T-cells in peripheral blood (Ishikawa et  al. 2011; Nakamura et  al. 2011b). AID 
expression is high not only in EBV-positive T-/NK-cell lines but also in EBV- 
infected NK cells from patients with EBV-T/NK LPD (Nakamura et al. 2011a). In 
patients with ENKL, cytogenetic abnormalities are seen on the sixth chromosome 
(Ohshima et al. 1997a), although currently it is unclear whether this is a primary or 
progression-associated event (Chan et al. 2008b).

The next question is which are the key genes for development into T-/NK-cell 
lymphoma. Recent genetic studies have revealed that some of the driver gene muta-
tions are related to the development of ENKL. Using a CGH array, PRDM1, 
HACE1, and FOXO3 were identified as driver gene candidates (Iqbal et al. 2009; 
Huang et al. 2010; Karube et al. 2011). More recently, JAK3 mutations were identi-
fied by exome sequencing (Koo et al. 2012), although the frequency is apparently 
not as high as first reported (Kimura et al. 2014; Guo et al. 2014). By whole exome 
sequencing, Jiang et al. reported that these driver gene mutations, such as DDX3X, 
TP53, and STAT3, were found at higher frequencies in Chinese patients with ENKL 
(Jiang et al. 2015) (Fig. 21.2). However, BCOR1 was the leading mutated gene in 
Japanese patients, followed by TP53 and DDX3X (Dobashi et  al. 2016). 
DDX3X; DEAD-box helicase 3, X-linked, is an ATP-dependent RNA helicase and 
plays roles in transcriptional regulation, pre-mRNA splicing, and mRNA export. Its 
mutations are seen frequently not only in ENKL but also in Burkitt lymphoma 
(Schmitz et al. 2012). Although DDX3X mutations are also seen in EBV-unrelated 
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diseases, such as medulloblastoma (Pugh et al. 2012), its mutation may be associ-
ated with the development of EBV-associated tumors.
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Chapter 22
Vaccine Development for Epstein-Barr 
Virus

Jeffrey I. Cohen

Abstract Epstein-Barr virus (EBV) is the primary cause of infectious mononucle-
osis and is associated with several malignancies, including nasopharyngeal carci-
noma, gastric carcinoma, Hodgkin lymphoma, Burkitt lymphoma, and lymphomas 
in immunocompromised persons, as well as multiple sclerosis. A vaccine is cur-
rently unavailable. While monomeric EBV gp350 was shown in a phase 2 trial to 
reduce the incidence of infectious mononucleosis, but not the rate of EBV infection, 
newer formulations of gp350 including multimeric forms, viruslike particles, and 
nanoparticles may be more effective. A vaccine that also includes additional viral 
glycoproteins, lytic proteins, or latency proteins might improve the effectiveness of 
an EBV gp350 vaccine. Clinical trials to determine if an EBV vaccine can reduce 
the rate of infectious mononucleosis or posttransplant lymphoproliferative disease 
should be performed. The former is important since infectious mononucleosis can 
be associated with debilitating fatigue as well as other complications, and EBV 
infectious mononucleosis is associated with increased rates of Hodgkin lymphoma 
and multiple sclerosis. A vaccine to reduce EBV posttransplant lymphoproliferative 
disease would be an important proof of principle to prevent an EBV-associated 
malignancy. Trials of an EBV vaccine to reduce the incidence of Hodgkin lym-
phoma, multiple sclerosis, or Burkitt lymphoma would be difficult but feasible.

Keywords Epstein-Barr virus · Infectious mononucleosis · Nasopharyngeal carci-
noma · Burkitt lymphoma · Hodgkin lymphoma · Gastric carcinoma

Most primary infections with Epstein-Barr virus (EBV) occur in infants or young 
children, and these infections are asymptomatic or result in nonspecific symptoms 
(Cohen 2000). The virus infects epithelial cells in the oropharynx where it replicates 
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and subsequently infects B lymphocytes, or it may infect B cells in the tonsillar 
crypts directly. These B cells circulate throughout the body and may undergo lytic 
infection with production of progeny virus or, more often, undergo latent infection 
with very limited viral gene expression.

22.1  The Burden of EBV

Epstein-Barr virus is the principal cause of infectious mononucleosis and is a cofac-
tor for several epithelial and lymphoid cell malignancies. The incidence of infec-
tious mononucleosis in the United States is about 500 cases per 100,000 persons 
each year (Luzuriaga and Sullivan 2010). While infectious mononucleosis is often 
thought of as a mild disease, about 20% of patients will have persistent fatigue at 
2 months and 13% at 6 months (Rea et al. 2001). About 1% of patients will have 
severe neurologic, hematologic, or liver complications from the disease. Infectious 
mononucleosis is the most common cause of lost time for new Army recruits.

EBV is associated with several malignancies; the criteria for association of EBV 
with cancer include finding the viral genome in every tumor cell, the presence of 
viral gene expression, and evidence that EBV is clonal (or oligoclonal) in the tumor 
cells. Each year worldwide there are about 84,000 cases of gastric carcinoma, 
78,000 cases of nasopharyngeal carcinoma, 29,000 cases of Hodgkin lymphoma, 
7000 cases of Burkitt lymphoma, and 2000 cases of lymphoma in transplant recipi-
ents associated with EBV (reviewed in Cohen et  al. 2011). About 9% of gastric 
carcinomas are associated with EBV; 90% of gastric lymphoepitheliomas, 7% of 
moderately to well-differentiated adenocarcinomas, and 6% of poorly differentiated 
gastric adenocarcinomas are EBV-positive. Virtually all anaplastic nasopharyngeal 
carcinomas contain EBV genomes. The incidence of nasopharyngeal carcinoma is 
particularly high in southern China with a rate of 80 per 100,000 in men >40 years 
old. About 30–40% of Hodgkin lymphomas in developed countries are EBV- 
positive, while 80–90% of these lymphomas are EBV-positive in developing coun-
tries. About 85% of Burkitt lymphomas in Africa are EBV-positive, while about 
15% of these tumors in the United States are virus-positive. In sub-Sahara Africa, 
the incidence of Burkitt lymphoma is 20 per 100,000 in children between the ages 
of 5 and 9 years old. The rate of EBV posttransplant lymphomas varies among the 
type of transplant ranging from about 1% in renal and hematopoietic stem cell trans-
plant recipients to about 10% in intestinal transplant recipients. Up to 10% of sero-
negative children receiving a solid organ transplant may develop EBV posttransplant 
lymphoproliferative disease. Patients with HIV are at increased risk for EBV- 
associated malignancies including Burkitt lymphoma, diffuse large B cell lym-
phoma, Hodgkin lymphoma, immunoblastic lymphoma, primary central nervous 
system lymphoma, and smooth muscle tumors. EBV is also associated with other 
tumors in otherwise healthy persons including angioimmunoblastic T-cell lym-
phoma, extranodal NK/T-cell nasal lymphoma, diffuse large B cell lymphoma, and 
peripheral T-cell lymphoma.
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EBV has also been associated with multiple sclerosis. A meta-analysis of 14 
studies showed a relative risk of 2.3-fold for multiple sclerosis after EBV infectious 
mononucleosis (Thacker et al. 2006). A case-control study of persons who devel-
oped multiple sclerosis showed that 100% of EBV-seronegative persons became 
EBV-seropositive before the onset of multiple sclerosis, while only 36% of persons 
without multiple sclerosis became EBV-seropositive during the same time frame 
(Levin et al. 2010). A prospective study of military personnel showed that the risk 
of multiple sclerosis increased as serum titers to the anti-EBV nuclear antigen com-
plex increased; the risk was 36-fold higher in persons with titers ≥320 compared to 
those with titers <20 (Munger et al. 2011).

EBV is associated with lymphoproliferative disease in immunodeficient patients 
(reviewed in Cohen 2015b ). Boys with X-linked lymphoproliferative disease type 
1, who have mutations in SH2D1A, can develop fatal infectious mononucleosis with 
infiltration of multiple organs by lymphocytes and histiocytes. Mutations in other 
genes including BIRC4, CD27, CD70, CORO1A, FAAP24, LRBA, and MAGT1 pre-
dispose patients to severe EBV disease, usually in the absence of increased suscep-
tibility to other pathogens. Mutations in STXBP2, PRF1, or UNC13D predispose to 
severe EBV infections and hemophagocytic lymphohistiocytosis. Finally, mutations 
in other genes including ATM, CARD11, CTPS1, FCGR3A, GATA2, MCM4, 
PIK3CD, PIK3R1, and STK4, as well as genes associated with severe combined 
immunodeficiency, increase the risk of severe EBV disease as well as infections due 
to other pathogens.

22.2  EBV Glycoproteins as Vaccine Candidates

Glycoproteins, present on the surface of viruses and virus-infected cells, have typi-
cally been primary candidates for development of vaccines to prevent infection and/
or disease. EBV infection of B cells requires the function of several glycoproteins 
(reviewed in Longnecker et  al. 2013). EBV glycoprotein gp350 is important for 
attachment of the virus to B cells. EBV gp350 binds to its receptor, CD21 (also 
known as complement receptor CR2) or CD35 (also termed complement receptor 
1). This results in attachment of the virus to the B cell, and the virus is then taken up 
by endocytosis with fusion of the viral envelope to the host cell membrane mediated 
by EBV gp42 binding to MHC class II. Thereafter, gH/gL are thought to activate gB 
for fusion of the viral membrane to the plasma membrane of B cells. gH/gL and gB 
are essential for herpesvirus infection of cells and gp42 is required for EBV entry 
into B cells.

gp350 is a type I membrane protein and is the most abundant glycoprotein on the 
surface of virus-infected cells and on virions. gp350 is not strictly essential for virus 
infection but is important for efficient infection of B cells in vitro (Janz et al. 2000). 
The amino acid sequence of gp350 is highly conserved among different isolates 
especially in the amino terminal region; however, there are differences in the amino 
terminal region between EBV types 1 and 2 (Lees et al. 1993; Kawaguchi et al. 
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2009). Recent sequencing of clinical isolates indicates that gp350 is less conserved 
than other glycoproteins important for infection (Palser et al. 2015; Santpere et al. 
2014), likely due to pressure to evolve in response to its role as a target for cytotoxic 
T-cells. There is little change in gp350 amino acid sequence in individuals between 
the time of acute infectious mononucleosis and convalescence; the few changes that 
do occur are located outside the CR2-binding domain (Weiss et al. 2016). In gen-
eral, the CR2-binding site on gp350 is highly conserved.

EBV infection of epithelial cells involves EBV BMRF2 binding to integrins, fol-
lowed by gH/gL binding to integrins and ephrin receptor A2, triggering activation of 
gB and fusion of the viral envelope to the plasma membrane of the epithelial cell. 
EBV infection of epithelial cells occurs at the cell surface, not through endocytosis.

22.3  EBV Lytic Proteins as Vaccine Candidates

The symptoms of infectious mononucleosis are thought to be due to the T-cell 
response to the virus (Silins et al. 2001). T-cell responses are important for control-
ling reactivation of the virus and the level of virus in the blood (reviewed in Taylor 
et al. 2015). Therefore, a vaccine that induces an effective T-cell response to EBV 
might reduce symptomatic disease and/or lower the viral load. The level of virus in 
the blood has shown to be a risk factor for development of lymphoproliferative dis-
ease after hematopoietic cell transplantation (van Esser et  al. 2001; Aalto et  al. 
2007). Since EBV-seronegative recipients of solid organ transplants typically 
become infected from EBV in the transplanted organ, a vaccine to control prolifera-
tion of virus-infected cells in the organ may require T-cells in addition to antibody.

Different types of immunogens to induce T-cell responses have been suggested 
for a prophylactic EBV vaccine (Brooks et al. 2016). EBV immediate-early proteins 
Zta (encoded by BZLF1) and Rta (encoded by BRLF1) are the first genes expressed 
during infection, and these are produced before most of the immune evasion genes 
are expressed which dampen T-cell responses (reviewed in Longnecker et al. 2013). 
Destruction of EBV-infected cells expressing Zta or Rta would reduce the likeli-
hood of the cells producing late proteins and virions. Zta and Rta are important 
T-cell targets in patients with infectious mononucleosis (Callan et al. 1998, Steven 
et al. 1997; Precopio et al. 2003). Patients with EBV posttransplant lymphoprolif-
erative disease who resolve their disease after a reduction in immunosuppression 
have an increase in CD8 T-cells to Zta (Porcu et al. 2002). Zta and Rta are recog-
nized by CD8 T-cells more often than early or late proteins (Pudney et al. 2005). 
However, a recent study suggests that CD8 T-cells do not recognize Zta or Rta 
within the first day after EBV infection in vitro (Brooks et al. 2016).

Another approach is to induce T-cell responses to early or late lytic EBV pro-
teins. While initial studies showed that CD4 T-cell responses that lyse virus-infected 
B cells are directed against structural proteins including EBV gp350 and glycopro-
tein B (Adhikary et al. 2006, 2007), more recent studies show that multiple lytic 
proteins including BMLF1 (a posttranscriptional regulatory protein), BMRF1 
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(polymerase-associated processivity factor), BNRF1 (the major tegument protein), 
BORF1 (DNA packaging protein), BcLF1 (major capsid protein), and BXLF1 (thy-
midine kinase) are targets of CD4 cells (Long et al. 2011; reviewed in Taylor et al. 
2015). BMLF1 and BMRF1 are expressed early in infection, before virus structural 
proteins are made, and are targets of both CD4 and CD8 cells. EBV structural pro-
teins in the nucleocapsid or envelope are presented directly to newly infected cells 
and can be processed and recognized by CD4 T-cells. These proteins can be detected 
by CD4 T-cells early after infection (Adhikary et al. 2006), and gp350, gH, and gB 
are recognized by CD4 T-cells within the first day after infection in vitro (Brooks 
et al. 2016).

22.4  EBV Latent Proteins as Vaccine Candidates

Another approach for a prophylactic EBV vaccine is to induce T-cell responses to 
EBV latency proteins, such those initially expressed during EBV infection of B 
cells. By 12 h after infection, EBV nuclear antigen 2 (EBNA-2) and EBNA leader 
protein (EBNA-LP) are detected (Alfieri et al. 1991). A recent in vitro study showed 
that several epitopes within EBNA2 induce immunodominant CD8 T-cell responses 
and that EBNA-2 CD8 T-cells recognize EBV-infected B cells within 1 day after 
virus infection of B cells before CD8 T-cells that recognize other latent proteins 
(Brooks et al. 2016). These EBNA-2-specific T-cell responses inhibit outgrowth of 
EBV-transformed B cell lines. EBNA-2 and EBNA-LP are also targets of CD4 
T-cells (reviewed in Taylor et al. 2015). Thus, a prophylactic vaccine that induces 
T-cell responses to the first viral proteins expressed after infection in B cells, such 
as EBNA-2 or EBNA-LP, might destroy any newly infected cells.

22.5  Adaptive Immunity to EBV

Infection with EBV induces antibodies and T-cells specific for viral proteins. 
Glycoprotein gp350 is the principal target of neutralizing antibody for EBV infec-
tion of B cells (North et al. 1980; Thorley-Lawson and Poodry 1982). Injection of 
antibody to gp350 prevents lymphoproliferative disease in an immunocompromised 
mice model (Haque et al. 2006). Antibody to gp42 also neutralizes infection of B 
cells, while antibody to gH/gL (Li et al. 1995) and BMRF1 (Tugizov et al. 2003) 
neutralizes EBV infection of epithelial cells. EBV neutralizing antibody in human 
sera correlates better with levels of antibody to gp350 than gp42 (Sashihara et al. 
2009). B cell neutralizing antibody reaches peak levels at a median of about 180 days 
after the onset of infectious mononucleosis (Bu et al. 2016). Immunoprecipitating 
antibody to EBV gp350 and gp42 achieves peak levels only at a median of about 
900 and 400 days, respectively after onset of symptoms. Thus, antibody maturation 
can take over a year to occur after primary EBV infection. These findings are 
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consistent with other activities mediated by antibody to EBV proteins which also 
require time to develop. Antibody-dependent cellular cytotoxicity (ADCC) directed 
against cells expressing gp350 was not detected in sera from persons at the onset of 
infectious mononucleosis but was detected in healthy EBV-seropositive persons 
(Xu et al. 1998). Similarly, antibody-dependent cell-mediated phagocytosis (ADCP) 
was rarely detected during the initial phase of infectious mononucleosis but was 
frequently present 6 months later (Weiss et al. 2016). At present it is unknown which 
activities mediated by antibodies are most important for protection against EBV 
infection or disease.

CD8 T-cell responses during infectious mononucleosis are targeted to EBV lytic 
antigens including gp350, gH, gL, and gB (reviewed in Taylor et al. 2015); over 
time the number of CD8 T-cells recognizing lytic antigens declines, and T-cells 
recognizing EBV latency proteins increase (Hislop et al. 2002). CD8 T-cells during 
infectious mononucleosis recognize immediate-early proteins most often and late 
proteins least often (Pudney et al. 2005); the EBNA-3 proteins are the predominant 
latency proteins targeted by CD8 T-cell targets (Steven et al. 1997). In contrast, dur-
ing infectious mononucleosis CD4 T-cells are directed more toward latent antigens, 
especially EBNA-3 proteins (Woodberry et  al. 2005). CD4 T-cells recognize 
immediate- early, early, and late proteins without a preference for the kinetic class of 
gene expression in EBV-seropositive persons (Long et  al. 2011). Glycoproteins 
including gp350, gH, gL, gp42, and gB are also recognized by CD4 T-cells (reviewed 
in Taylor et al. 2015). These findings suggest that a vaccine targeting CD8 T-cells 
might focus more on lytic antigens especially immediate-early proteins, while a 
vaccine targeting CD4 T-cells might focus on EBNA-3.

22.6  EBV Glycoprotein Vaccines: Immunogenicity 
in Animals

EBV gp350 has been shown to induce EBV neutralizing antibodies, ADCC, or 
T-cell responses in animals using a number of different platforms. EBV neutralizing 
antibodies were first reported in rabbits (Thorley-Lawson 1979) and cottontop tam-
arins (Morgan et al. 1984) immunized with gp350 purified from virus-infected cells. 
Owl monkeys immunized with gp350 purified from EBV-infected cells developed 
EBV neutralizing and ADCC antibodies (Qualtiere et  al. 1982). Subsequently 
recombinant gp350 purified from mammalian cells was shown to induce neutraliz-
ing EBV antibody in rabbits (Emini et al. 1988; Jackman et al. 1999) and cottontop 
tamarins (Finerty et al. 1992). Mice vaccinated with recombinant gp350 adjuvanted 
with a TLR4 agonist (glucopyranosyl lipid A) in emulsion developed EBV neutral-
izing antibodies and gp350-specific CD4 T-cell responses (Heeke et  al. 2016). 
Immunization of HLA-A2 transgenic mice with a gp350 peptide induced cytotoxic 
T-cell responses and protected the animals against vaccinia virus expressing gp350 
(Khanna et  al. 1999). Immunization of mice with a plasmid expressing gp350 
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induced antibodies that mediated ADCC and gp350-specific cytotoxic T-cells (Jung 
et  al. 2001). In another approach, neutralizing antibodies were detected in mice 
immunized with vaccinia virus expressing gp350 or a combination of four vaccinia 
viruses expressing gp350, gB, EBNA-2, or EBNA-3C mixed together (Lockey et al. 
2008). CD4 T-cell responses to EBNA-2 were detected in mice vaccinated with the 
combination of the four vaccinia viruses.

New approaches have recently been developed to express gp350 in a multimeric 
configuration. First, a tetrameric gp350 construct was expressed in Chinese hamster 
ovary cells that induced 19-fold higher levels of neutralizing antibodies in mice than 
soluble gp350; however, the neutralization assay did not use EBV, but instead the 
ability to block binding of gp350 to a cell line expressing CD21 (Cui et al. 2013). In 
a follow-up paper from the same group, mice immunized with the tetrameric gp350 
showed fourfold higher titers compared with animals immunized with monomeric 
gp350 using a virus neutralizing assay (Cui et al. 2016). Second, the ectodomain of 
gp350 was fused to the F protein of Newcastle disease virus, and the chimeric pro-
tein was incorporated into the membrane of viruslike particles (VLPs) composed of 
the Newcastle disease virus matrix and nucleoprotein. Mice immunized with these 
gp350 VLPs produced higher levels of EBV neutralizing antibodies than those 
immunized with soluble gp350, although the differences were not statistically sig-
nificant (Ogembo et al. 2015). Third, a portion of the ectodomain of gp350 (contain-
ing the CR2-binding domain of gp350) was fused to ferritin or encapsulin, and 
nanoparticles were produced that contain 24 or 60 copies of gp350, respectively 
(Kanekiyo et al. 2015). Immunization of mice with the nanoparticles induced neu-
tralizing titers that were about 1000-fold higher than that obtained with soluble 
gp350; immunization of cynomolgus monkeys that were seropositive for cynomol-
gus monkey lymphocryptovirus (an ortholog of EBV) with the nanoparticles 
induced three- to tenfold higher neutralizing titers than that obtained with soluble 
gp350. Vaccination of mice with ferritin-gp350 nanoparticles protected the animals 
from challenge with vaccinia virus expressing gp350; vaccination with encapsulin-
 gp350 nanoparticles did not protect the mice.

Other EBV glycoproteins have also been used to induce neutralizing antibody to 
EBV or T-cell responses in mice and rabbits. Vaccination of rabbits with trimeric 
gB, monomeric gH/gL, or trimeric gH/gL induced 18-fold, 20-fold, or >100-fold 
higher levels of EBV neutralizing antibody than monomeric gp350 (Cui et al. 2016). 
In another approach, two Newcastle disease virus VLPs were constructed; one con-
taining the ectodomain of EBV gH fused to the Newcastle disease virus F protein, 
the EBV gL ectodomain fused to the Newcastle disease virus HN protein, and the 
carboxyl half of EBV EBNA1 fused to the Newcastle disease virus NP protein 
(Perez et al. 2016). The second VLP contained the ectodomain EBV gB fused to the 
Newcastle disease virus F protein, and EBV LMP2 fused to the Newcastle disease 
virus NP protein. Mice immunized with either of the two EBV Newcastle disease 
virus VLPs produced high levels of EBV neutralizing antibodies and EBV-specific 
T-cell responses in mice. Immunization of HLA-A2 transgenic mice with gH 
 peptides induced cytotoxic T-cell responses and protected the animals against vac-
cinia virus expressing gH (Khanna et al. 1999).
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Another approach to an EBV vaccine used EBV VLPs. A producer cell line con-
taining an EBV genome deleted for EBNA2, LMP1, EBNA3A, and EBNA3C, but 
still containing viral proteins needed for assembly and release of virions, was used 
to produce EBV VLPs (Hettich et  al. 2006). Mouse immunized with these EBV 
VLPs produced neutralizing antibody and T-cell responses to viral proteins (Ruiss 
et al. 2011).

22.7  EBV Lytic Proteins: Immunogenicity in Animals

EBV BZLF1 encodes the immediate-early protein (Zta). SCID mice injected with 
human peripheral blood mononuclear cells from an EBV-seropositive donor were 
vaccinated with dendritic cells transduced either by an adenovirus expressing Zta or 
adenovirus with an empty vector (Hartlage et al. 2015). Mice receiving dendritic 
cells expressing Zta developed Zta-specific T-cell responses and had delayed devel-
opment of EBV lymphoproliferative disease compared with animals receiving den-
dritic cells not expressing Zta.

22.8  Animal Studies Using EBV Challenge Models

Most prophylactic EBV vaccines have used gp350. Initial experiments focused on 
cottontop tamarins, which develop EBV-positive mono- or oligoclonal large B cell 
lymphomas after parental inoculation with high titers of virus (Cleary et al. 1985). 
The first proof of principle for an EBV vaccine was reported by Epstein et  al. 
(1985). Tamarins vaccinated intraperitoneally with purified cell membranes con-
taining gp350, isolated from virus-infected (B95-8) cells, developed neutralizing 
antibody to EBV and were protected from EBV tumors after challenge with virus. 
In additional experiments, animals vaccinated with gp350 incorporated into lipo-
somes developed neutralizing antibody and were also protected against challenge 
with EBV. Subsequent experiments performed in cottontop tamarins showed that 
purified gp350 in immunostimulating complexes (ISCOMs) or muramyl dipeptide 
in squalene, recombinant gp350  in alum or muramyl dipeptide in squalene, or 
adenovirus or vaccinia virus expressing gp350 protected animals from lymphoma 
after challenge with EBV (reviewed in Cohen 2015a). Infection of common mar-
mosets with EBV results in lymphocytosis and development of heterophile anti-
bodies similar to those seen with infectious mononucleosis (Wedderburn et  al. 
1984). Vaccination of common marmosets with vaccinia or adenovirus expressing 
gp350 reduced EBV replication after challenge with the virus (reviewed in Cohen 
2015a).

Analysis of these studies showed that neutralizing antibody did not always cor-
relate with protection from disease. In two studies, cottontop tamarins immunized 
with adenovirus or vaccinia virus expressing gp350 did not develop detectable 
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levels of EBV neutralizing antibody but were protected from challenge with EBV 
(Morgan et al. 1988; Ragot et al. 1993). In another study, not all cottontop tamarins 
that developed high neutralizing titers to EBV after vaccine were protected against 
challenge with the virus (Epstein et al. 1986). The reasons for these findings are not 
clear at present and may due to insufficient time for maturation of neutralizing 
antibody responses or to other activities of antibodies including ADCC, ADCP, or 
complement- dependent cytotoxicity. Alternatively these vaccines could induce 
protective CD4 or CD8 T-cell immunity.

Another model that has been used to test gp350 vaccines is rhesus lymphocryp-
tovirus (LCV) infection in rhesus macaques. Virtually all adult rhesus macaques are 
naturally infected with rhesus LCV. Oral inoculation of seronegative animals results 
in atypical lymphocytes in the blood, lymphadenopathy, latent infection in circulat-
ing B cells, virus shedding from the saliva, and antibody responses to lytic and 
latent EBV antigens (Moghaddam et al. 1997). Rhesus LCV was used as a model to 
test different types of vaccines (Sashihara et al. 2011). Rhesus macaques were vac-
cinated with rhesus LCV gp350, viruslike replicon particles expressing rhesus LCV 
gp350, a mixture of replicon particles expressing rhesus LCV gp350, EBNA-3A, 
and EBNA-3B, or saline. The highest levels of antibodies to gp350 were observed 
in animals vaccinated with soluble gp350. Rhesus LCV-specific CD4 and CD8 
T-cell responses were observed in animals vaccinated with viruslike replicon parti-
cles expressing EBNA-3A and EBNA-3B, but not with particles expressing gp350. 
Rhesus macaques vaccinated with rhesus LCV gp350 had the best level of protec-
tion after challenge; animals that still became infected after challenge had the low-
est level of rhesus LCV DNA in the blood nearly 3 years after infection. These 
results emphasize the important role of immune responses to gp350 for protecting 
animals from infection and for reducing the level of EBV in the blood in animals 
that still become infected after challenge.

22.9  EBV Vaccine Trials in Humans

The first EBV vaccine trial in humans used live recombinant vaccinia virus express-
ing gp350 (Gu et al. 1995). Vaccination of adults that were seropositive for both 
EBV and vaccinia virus did not induce increased titers to EBV. Vaccination of chil-
dren that were both EBV-seropositive and vaccinia virus-seronegative boosted EBV 
neutralizing antibody titers. Vaccination of infants that were seronegative for both 
EBV and vaccinia virus induced neutralizing antibodies in all 9 infants; one-third 
became infected with EBV within 16  months after vaccination, while 10 of 10 
unvaccinated control infants became infected. The numbers were too small to prove 
efficacy. Live vaccinia virus is no longer a practical platform for a vaccine in the 
general population.

A recombinant gp350 vaccine produced in Chinese hamster ovary cells was 
tested in two double-blind randomized controlled studies (Moutschen et al. 2007). 
In a phase 1 study that included EBV-seropositive and EBV-seronegative adults, all 
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seronegative vaccine recipients produced ELISA antibody to gp350; more subjects 
who received the vaccine in alum/monophosphoryl lipid A (MPL) adjuvant devel-
oped neutralizing antibodies than those receiving the vaccine in alum alone. In a 
phase 1/2 study, EBV-seronegative adults received gp350 in alum, alum/MPL, or no 
adjuvant. ELISA antibody titers to gp350 were induced in all the subjects in this 
study; neutralizing titers developed in 50–60% of persons, and more persons receiv-
ing the vaccine in alum adjuvant developed neutralizing titers than those receiving 
vaccine in alum/MPL or no adjuvant. One serious adverse event occurred that was 
suspected to be related to the vaccine; a subject who received gp350 in alum/MPL 
developed headache, meningismus, and oligoarthritis which resolved after 2 months.

A phase 2 double-blind placebo-controlled trial was then performed in EBV- 
seronegative adults using 50 ug of gp350 in alum/MPL (Sokal et al. 2007). Eighty- 
eight of 90 persons in the vaccine group and 90 of 91 in the placebo completed the 
study. Subjects received three doses of vaccine or placebo at 0, 1, and 5 months and 
were followed for symptoms of infectious mononucleosis for 18 months after the 
second dose of vaccine. Using an according to protocol analysis, there were fewer 
cases of infectious mononucleosis in the vaccine group, but the difference did not 
reach statistical significance (p = 0.06); in the intention to treat analysis, the differ-
ence was significant (p = 0.03) with a vaccine efficacy to prevent infectious mono-
nucleosis of 78%. The incidence of asymptomatic EBV infection was similar in 
both groups. One month after the third dose of vaccine, 99% of subjects had gp350 
antibodies, and these antibodies persisted for 18 months; 70% of vaccinated sub-
jects developed competition ELISA antibodies (a surrogate for neutralizing anti-
body); EBV DNA levels in the blood were not measured. No serious adverse events 
were reported.

A phase 1 trial using 12.5 μg or 25 μg of EBV gp350 vaccine in alum adjuvant 
was performed in EBV-seronegative children with chronic renal insufficiency while 
waiting for kidney transplants (Rees et  al. 2009). All 13 children who could be 
evaluated developed antibody to EBV, but only 4 developed EBV neutralizing anti-
body. Antibody levels fell rapidly, and 2 of 13 children became infected with 
EBV. The authors concluded that additional doses of vaccine and/or a more potent 
adjuvant would be needed for such a vaccine to reduce EBV disease.

A randomized single-blind, placebo-controlled phase 1 study of two doses of an 
EBV peptide vaccine was tested in HLA B*801 EBV-seronegative young adults 
(Elliott et al. 2008). Subjects received 5 ug or 50 ug of an EBNA-3A peptide with 
tetanus toxoid in a water in oil emulsion (Montanide ISA 720) or placebo. None of 
the 10 subjects who received the vaccine developed infectious mononucleosis, 
while 1 of the 4 placebo recipients developed the disease; 4 of the 10 vaccine recipi-
ents developed asymptomatic EBV infection, while 1 of the 4 placebo recipients 
had an asymptomatic infection. EBV-specific T-cell responses were detected in 8 of 
9 subjects who received the vaccine. No serious adverse events were noted. While 
the numbers were small, the results resembled the phase 2 gp350 trial with a  possible 
reduction in infectious mononucleosis with the vaccine without a reduction in 
asymptomatic EBV infection.
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22.10  Future Vaccine Trials

The phase 2 gp350 trial showed that gp350 in alum/MPL reduced the rate of infec-
tious mononucleosis by 78% (Sokal et al. 2007). A phase 3 trial of a vaccine that 
includes gp350 should be tested in young seronegative adults to determine if the 
vaccine definitely can reduce the rate of infectious mononucleosis. Infectious mono-
nucleosis is associated with increased rates of Hodgkin lymphoma and multiple 
sclerosis. About 1 of 800 persons in Sweden and Denmark with EBV-positive infec-
tious mononucleosis developed Hodgkin lymphoma (Hjalgrim et al. 2003). The risk 
increased within 1 year after onset of mononucleosis and declined back to the rate 
seen in controls at about 12 years. The median time from infectious mononucleosis 
to EBV-positive Hodgkin lymphoma was 4  years, and the relative risk of EBV- 
positive Hodgkin lymphoma was 4.0 after EBV infectious mononucleosis. 
Therefore, a vaccine that reduces infectious mononucleosis might reduce Hodgkin 
lymphoma, although the relatively low rate of lymphoma would require a very large 
study.

The prevalence of multiple sclerosis in the United States is about 1 to 1.5 per 
1000. A meta-analysis of 18 studies showed that the relative risk of multiple sclero-
sis after EBV infectious mononucleosis was 2.2 (Handel et al. 2010). In a nested, 
case-controlled study of persons who developed multiple sclerosis who had serial 
serum samples stored, the mean interval between primary EBV infection and onset 
of multiple sclerosis was estimated to be 5.6 years (with a range of 2.3–9.4 years) 
(Levin et al. 2010). These data suggest that a vaccine that prevents infectious mono-
nucleosis might reduce the rate of multiple sclerosis. Importantly, such a vaccine 
might definitively demonstrate (or refute) a causative role of EBV in multiple 
sclerosis.

EBV-positive posttransplant lymphoproliferative disease usually occurs within 
1  year of hematopoietic stem cell transplantation and within 3  years after solid 
organ transplantation. The rate of EBV posttransplant lymphoproliferative disease 
is 24–33-fold higher in persons with primary infection after transplant (Preiksaitis 
and Cockfield, 1998). About 6% of seronegative persons who receive solid organ 
transplants develop posttransplant lymphoproliferative disease (Sarabu and Hricik 
2015). The EBV level in the blood is predictive of posttransplant lymphoprolifera-
tive disease (van Esser et al. 2001; Aalto et al. 2007), and rituximab (monoclonal 
anti-CD20 antibody), given when the viral load is increasing in the blood, usually 
reduces the viral load to undetectable levels and may reduce posttransplant lympho-
proliferative disease (van Esser et al. 2002). Therefore, a vaccine that prevents EBV 
infection or reduces the viral load during primary infection might reduce the rate of 
EBV posttransplant lymphoproliferative disease. Similarly, an elevated EBV load in 
the blood of patients with HIV was associated with a 2.5-fold increased risk of 
developing systemic B cell lymphoma a median of 10 months after blood was drawn 
(Leruez-Ville et al. 2012). A prior study in which rhesus macaques were vaccinated 
with a rhesus LCV gp350 vaccine and challenged with wild-type rhesus LCV 
showed that animals that became infected after challenge had a lower viral load 
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nearly 3  years after challenge compared with control animals (Sashihara et  al. 
2011). Unfortunately, viral loads were not measured in the phase 1, 1/2, and 2 trials 
of the recombinant gp350 vaccine in humans (Moutschen et al. 2007, Sokal et al. 
2007), but sensitive assays can reliably measure EBV DNA levels in healthy sero-
positive persons (Hoshino et al. 2009). This may be important since there is a sig-
nificant correlation between the level of EBV DNA in the blood and the severity of 
symptoms with infectious mononucleosis (Balfour et al. 2013). Thus, an EBV vac-
cine that does not prevent infection might still reduce the viral load in the blood 
after infection and decrease the risk of severe infectious mononucleosis and EBV- 
associated malignancies.

An EBV vaccine might also be used to prevent X-linked lymphoproliferative 
disease type 1  in EBV-seronegative boys with mutations in SH2D1A or in other 
patients with genetic disorders that predispose to EBV malignancies (reviewed in 
Cohen 2015b) who have not yet become infected. A potential concern is that patients 
who have X-linked lymphoproliferative disease type 1 might not have a normal 
response to the EBV vaccine. Mice with mutations in SH2D1A have acute IgG anti-
body responses but a near complete absence of antigen-specific long-lived plasma 
cells and memory B cells (Crotty et al. 2003).

Burkitt lymphoma is a common malignancy in children in sub-Sahara Africa. 
About 50% of these children are infected with EBV before 1 year of age, so a vac-
cine would have to be given at a very young age, and recipients would need to be 
followed for 5–10 years to determine if the vaccine reduces the rate of disease.

A vaccine trial to reduce rates of nasopharyngeal carcinoma or EBV-positive 
gastric carcinoma would be difficult to perform due to long latency period between 
primary infection and development of these carcinomas. Even if such a vaccine 
does not prevent infection, it still might reduce the rate of these malignancies. 
Higher EBV gp350 and B cell neutralizing antibody levels correlated with a reduced 
risk of nasopharyngeal carcinoma in one study (Coghill et al. 2016). This suggests 
that a vaccine that induces persistently elevated levels of EBV B cell neutralizing 
antibodies might reduce the rate of nasopharyngeal carcinoma.

At a meeting held at the National Institutes of Health in 2011 (Cohen et al. 2011), 
there was a strong consensus that clinical trials be performed with vaccine candi-
dates with a goal to prevent infectious mononucleosis and EBV-associated cancers. 
In addition, priorities for future research that were identified included determining 
disease-predictive surrogate markers of EBV malignancies to use as endpoints for 
EBV vaccine trials, identifying immune correlates of protection from EBV infec-
tion and disease, establishing epidemiologic studies to determine the benefit of an 
EBV vaccine, developing a plan to determine vaccine efficacy for preventing malig-
nancies, and establishing a strategy to facilitate collaborations between academic, 
industry, and government organizations to accelerate EBV vaccine  development.
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