
UPC Architecture for High-Performance
Computational Hydrodynamics

Tung T. Vu, Alvin Wei Ze Chew and Adrian Wing-Keung Law

1 Introduction

Computational hydrodynamics (CHD) simulation has become a popular tool to
accelerate the evaluation and optimization of engineering applications. Examples
include flow simulation within the tight spacers of membrane modules for miti-
gating fouling tendency and optimizing flow configuration [1–3]. Besides mem-
brane applications, the combination of CHD with other computational tools such as
discrete element method (DEM) in porous media-related applications has also been
introduced [4, 5]. Typically, a large-scale CHD simulation run would require sig-
nificant data storage and proper management of the computer architecture. For
example, a 100 million two-dimensional (2D) mesh involving three equations
(continuity and momentum equations) would result in an approximate 600 million
cell information (100 million * 2 * 3) to be managed during each iteration.

The two common computer architectures for large-scale CHD applications are
(a) message passing interface (MPI) and (b) Open Message Interface (OpenMP).
The communication among the processors in MPI can either be point-to-point or
collective [6]. For the former, the data exchange is between two sets of tasks,
whereas the latter involves the communication among all CPUs for a given task.
Both types of communication can involve blocking or non-blocking methodologies.
The blocking method puts the program execution on hold until the message buffer
slots within the computer memory are ready, which might incur a significant idle

T. T. Vu � A. W. -K. Law (&)
Interdisciplinary Graduate School, Environmental Process
Modelling Centre (EPMC), Nanyang Environment and Water
Research Institute, Nanyang Technological University, Singapore, Singapore
e-mail: cwklaw@ntu.edu.sg

A. W. Z. Chew � A. W. -K. Law
School of Civil and Environmental Engineering, Nanyang Technological University,
Singapore, Singapore

© Springer Nature Singapore Pte Ltd. 2018
P. Gourbesville et al. (eds.), Advances in Hydroinformatics, Springer Water,
https://doi.org/10.1007/978-981-10-7218-5_3

39



time for large number of CPUs. The non-blocking method proceeds on with the
program execution and does not wait for the completion of the communication
buffer. Thus, the idle time is eliminated but data loss may be incurred. MPI has been
posited to be unsuitable for CHD architectures having large number of CPUs and
high levels of memory hierarchy [6, 7]. Comparatively, OpenMP utilizes a shared
memory architecture and does not require the message passing in MPI, which thus
makes it straightforward for application. However, its scalability is restricted
especially for industrial-scale flow problems via parallelization of the flow solver
[6].

By coupling the PGAS-UPC architecture with the two-step explicit numerical
scheme from the Lax–Wendroff family of predictors and correctors, a UPC-CHD
model was developed and evaluated on three incompressible, viscous flow cases
having moderate flow velocities under laminar conditions, namely (a) Blasius
boundary layer, (b) Poiseuille’s flow, and (c) Couette’s flow. Validation of the
implemented numerical scheme was achieved by comparing the three cases with
their respective analytical solutions for the given hydrodynamic conditions, which
showed good overall agreement. Lastly, we shall show that UPC-CHD performed
more efficiently than MPI and OpenMP at their base designs in an SGI UV-2000
server with a maximum of 100 cores in this study.

This paper is structured as follows. In Sect. 2, we describe the employed
numerical scheme for resolving the following unsteady-state 2D incompressible
CHD flow cases: (CHD case A) Blasius boundary layer (BL) flow, (CHD case B)
Poiseuille’s plate flow and (CHD case C) Couette’s flow. This is followed by the
description of the developed PGAS-UPC architecture in Sect. 3. The computational
performance of the developed architecture is then compared with that of the shared
memory SGI system and distributed memory HPC server in Sect. 4. Lastly, Sect. 5
describes the salient pointers as derived from this work.

2 Numerical Discretization

The governing equations for the viscous, unsteady, and incompressible flow in full
conservative form [8–10], with the absence of external body forces, can be
expressed in the compact form of Eq. 1.

@Q
@t

þ @F
@x

þ @G
@y

¼ @GVx

@x
þ @GVy

@y
ð1Þ

where Q is the conservative temporal term, F and G are the convective flux vectors
in the x and y directions, respectively, and GVx and GVy are the viscous flux vectors
in the x and y directions, respectively.

The exact representations of the Q, F, G, GVx and GVy [8–10] are as follows:

40 T. T. Vu et al.



Q ¼

q

qu

qv

qEt

2
6664

3
7775;F ¼

qu

pþ qu2

quv

q Etuð Þþ pu

2
6664

3
7775;F ¼

qv

quv

pþ qv2

q Etvð Þþ pv

2
6664

3
7775

GVx ¼ l

0

ux
vx

2uux þ vuy þ vvx

2
6664

3
7775;GVy ¼ l

0

uy
vy

2vvy þ uuy þ uvx

2
6664

3
7775

ð2Þ

where q is the density of water (kg/m3), u is the horizontal velocity (m/s), v is the
vertical velocity (m/s), p is the pressure (kg/m2 s), Et is the energy term (kg m2/s),
l is the dynamic viscosity of water (kg/m s), ux is the x-derivative of the u velocity,
uy is the y-derivative of the u velocity, vx is the x-derivative of u, and vy is the y-
derivative of v.

Considering a representative control volume of a single node in Fig. 1, Eq. 2 is
discretized over the control volume as shown in Eq. 3 [9, 10]. All others nodes
within the numerical domain undergo the same discretization procedure.

@Q
@t

þ FE � FW

Dx
þ GN � GS

Dy
¼ GVx;E � GVx;W

Dx
þ GVy;N � GVy;S

Dy
ð3Þ

The convective fluxes (F andG) in Eq. 4 are computed by the Roe scheme coupled
with the third-order biased approximations. The viscous terms (GVx and GVy)
in Eq. 4 are resolved using the second-order central differencing scheme [9, 10].

Fig. 1 Representative control volume of a single node for discretizing the viscous, unsteady, and
incompressible Navier–Stokes (NS) equations

UPC Architecture for High-Performance Computational Hydrodynamics 41



Fig. 2 a Numerical domain for Blasius boundary layer (BL) flow (Case A), b numerical domain
for Poiseuille’s plate flow (Case B), c numerical domain for Couette’s flow (Case C)

42 T. T. Vu et al.



For further details, the reader is referred to references [8–10]. The implemented
numerical scheme was examined for the three incompressible CHD flow cases (CHD
case A–C) by adopting the respective boundary and initial conditions in Fig. 2a–c.
Finally, we note that the temperature of all numerical domains was kept at 293.15 K.

3 UPC Implementation of CHD

The UPC-CHD model was first developed by the selected numerical scheme as
described in Sect. 2 followed by adopting the following parallelisation procedures:
(i) time-consuming functions and different forms of data dependences are first
identified, (ii) appropriate algorithms are then adopted for data divisions and storage
as based on the data dependences and model workflow, and (iii) lastly the unique
work-sharing function of PGAS-UPC has been introduced to parallelize the
workflow internally (Fig. 3).

The computational structure of UPC-CHD is summarized as follows. The flux
predictor at the n + 1/2 time level is first computed and the flux correction at the n
+2 time level is then computed by repeating the predictor computations with the
fluxes from the half-time step as the input data. Both the flux predictor and flux
corrector are within the nested loop for which the complexity of the algorithm is
identified as O(N2) where N is the number of nodes in a singular direction. The
implemented parallel algorithm in UPC-CHD aims to minimize the total run time of
the predictor and corrector fluxes within each cell as both consume the most sig-
nificant portion of the total computational time. Within the developed model, the
original nested loop is first divided into multi-sub-loops to prevent data confliction
issue. After every new nested loop, a breakpoint is inserted using a UPC function
called upc_barrier to synchronize all threads before going the next function.

The computations within the nested loops are distributed using a work-sharing
function termed as upc_forall. In UPC-CHD, the total number of threads employing
the UPC identifier, THREADS whereby each thread can be identified by using
another identifier, MYTHREAD. All threads with MYTHREAD from 0 to
THREADS-1 run through the identical code (i.e., the nested loop) except for the
fluxes computation at the first and last row of each sub-domain respectively. Each
thread computes the fluxes on the different sub-domains. We note that this proposed
approach is termed as the single-program multiple-data method (SPMD).

To demonstrate the viability of the PGAS concept, we shall now examine the
accuracy and performance of the developed UPC-CHD model for the three
incompressible CHD flow test cases.

UPC Architecture for High-Performance Computational Hydrodynamics 43



4 Model Verification and Performance Evaluation

The physical dimensions of the deployed numerical domains and the initial flow
conditions for Cases A–C are summarized in Table 1. The numerical predictions
derived for Cases A–C were compared with the respective analytical solution: (Case
A) with the analytical solution of White’s [11], (Case B) with Eq. 4 [12], and (Case
C) with Eq. 5 [12]. It can be observed from Fig. 4a–c that there is a very good
agreement between the obtained numerical values and the respective analytical
values for all CHD test cases.

DFC-CPUds

Main Solver Invisicid 
Calculation

loop upc_forall

loop upc_forall

loop upc_forall

loop upc_forall

Convective Flux Calculation()

ROE Params Calculation()
ROE Averaging()

Eigenvalue of Jacobian Calculation()

Wave Amplitutes Calculation()

Eigenvector of Jacobian Calculation()

Inner/Outer Value Calculation()

Viscous Terms Calculation()

Fig. 3 Parallel computational structure for sub-loops of UPC-CHD

44 T. T. Vu et al.



ux
U

¼ y2 � h2
� �
2 �U �l

@p
@x

� �
ð4Þ

ux
U

¼ y
h
� h2

2�U �l
@p
@x

� �
1� y

h

� � y
h

� �
ð5Þ

where ux is the horizontal velocity value obtained (m/s), U is the freestream velocity
(m/s), y is the respective y-distance (m), h is the total vertical height of the domain
(m), l is the dynamic viscosity of the fluid in the domain (kg/m s), x is the total
horizontal distance of the domain (m), and p is the pressure (kg/m s2).

With reference to Eq. 6, the parallelism performance of UPC was then compared
with that of OpenMP and MPI at their basic designs in an SGI UV-2000 server for
Cases A and B having ultra-large numerical domains. The physical dimensions of
the deployed numerical domains with its initial conditions for performance evalu-
ation are summarized in Table 2.

S Nð Þ ¼ T Nð Þ
T1 Nð Þ ð6Þ

where T Nð Þ is the run time of the parallel algorithm, and T1 Nð Þ is the run time of
the model which employs a singular core. The configuration of the SG UV-2000
server is summarized in Table 3.

With reference to Figs. 5 and 6, the speedup achieved by UPC, OpenMP, and
MPI were near-similar when the number of cores was less than 8. This is because
both UPC and OpenMP exploit the advantages of the data locality and are able to
read and write directly to the internal memory section without experiencing any
delay. The amount of time for querying and retrieving with messages in the MPI
approach is trivial when the number of cores used is small. However, beyond 16
cores and up to 100 cores maximum in this study, UPC and MPI outperform

Table 1 Physical dimensions and initial conditions of deployed numerical domains for validating
implemented numerical cases in UPC-CHD (Cases A to C)

Parameter Case A Case B Case C

Distance-x, x (m) 0.3 0.5 0.5

Distance-y, h (m) 0.02 0.00016 0.00016

No. of nodes 65 � 65 300 � 45 300 � 45

Freestream velocity, U (m/s) 5 10 10

Re 1,500,000 1600 1600
dp
dx

Pa
m

� �
0 4.70 � 106 4.70 � 106

delta-t (s) 10−6 10−6 10−6

Total runtime (s) 0.01 0.01 0.01

Temperature (K) 293.15 293.15 293.15

Kinematic viscosity (m2/s) 10−6 10−6 10−6

UPC Architecture for High-Performance Computational Hydrodynamics 45



Fig. 4 a Comparison between numerical predictions and analytical solutions for Blasius
boundary layer flow at location x = 0.2 m (Case A) b comparison between numerical predictions
and analytical solutions for Poiseuille’s flow at location x = 0.5 m (Case B) c comparison between
numerical predictions and analytical solutions for Couette’s flow at location x = 0.5 m (Case C)

46 T. T. Vu et al.



OpenMP significantly. In fact, UPC remains effective in terms of the computational
speedup with no sign of performance decline after reaching the maximum. In other
words, further acceleration can still be achieved if additional computer cores are
available.

Beyond 8 cores in Figs. 5 and 6, the performance of OpenMP deteriorats with
the deployment of 32, 64, and 100 cores as compared to 8 cores which could be
attributed to over-accessing to the shared memory section. The SGI UV-2000 server
allows applications to access all available memory in a unified manner as a virtual
shared memory block; the memory is still physically located in different nodes
which are connected to each other using the network cable. Therefore, when
extending the parallel computation to multiple nodes, the access to the shared
memory section by the OpenMP approach will be subjected to the communication
delay.

With MPI, the speedup is evident but becomes less significant beyond 64
computer cores in Figs. 5 and 6 which reiterates the limitation of MPI. In the MPI
architecture, the amount of message passing in the system will augment expo-
nentially with an increasing number of processing cores. Consequently, the total
message processing time surpasses the actual computational time on each CPU and
obviates any further improvement in the speedup performance. For the studied

Table 3 SGI UV-2000 cluster used for model testing

Cluster Node CPUs CPU
speeds
(GHz)

Cores
per node

Node
RAM
(TB)

Available
nodes

Communication
switch

SGI
UV-2000

Intel Xeon
E5-4657LV

2.4 8 2 10 (up to
100 cores)

InfiniBand
Shared-memory

Table 2 Physical dimensions and initial conditions of deployed numerical domains for evaluating
computational parallelism efficiency of UPC, OpenMP, and MPI in UPC-CHD (Cases A to C)

Parameter Case A Case B Case C

Distance-x, x (m) 0.3 0.5 0.5

Distance-y, h (m) 0.02 0.00016 0.00016

Number of nodes 5000 � 5000 10,000 � 10,000 10,000 � 10,000

Freestream velocity, U (m/s) 5 10 10

Re 1500,000 1600 1600
dp
dx

Pa
m

� � 0 4.70 � 106 4.70 � 106

delta-t (s) 10−6 10−6 10−6

Total runtime (s) 0.01 0.01 0.01

Temperature (K) 293.15 293.15 293.15

Kinematic viscosity (m2/s) 10−6 10−6 10−6

UPC Architecture for High-Performance Computational Hydrodynamics 47



CHD cases, thread Ti needs to send multi-synchronized messages every time step,
which include the following: (1) data of velocity in x- and y- directions to thread
Ti�1 and Tiþ 1, (2) data of computed convective fluxes in x- and y- directions, and
(3) updated data to the main thread. At 100 cores, over 900 synchronized messages
are needed to be processed in the system for each time step despite having only 100
rows of data to be calculated for each thread. Thus, it is possible that the total
message processing time outweighs the actual computational time on each core
which restricts the continual speedup with an increasing number of cores.

Finally, we investigated the impact of affinity on the speedup performance in
CHD case C. The computational data of the domain is first stored in block to gain
the memory locality properties, while the global memory accessing activities are

Fig. 6 Comparison of
speedup among OpenMP,
MPI, and UPC for
Poiseuille’s flow (Case B) at
varying number of computer
cores

Fig. 5 Comparison of
speedup among OpenMP,
MPI, and UPC for Blasius
boundary layer flow (Case A)
at varying number of
computer cores

48 T. T. Vu et al.



overlapped with remote control technique using the split-phase barrier to conceal
the synchronization cost. We then evaluated the performance of UPC for Case C
under two scenarios: (a) UPC-A, i.e., UPC with optimizations, and (b) UPC-NA,
i.e., UPC without optimizations, by employing the defaults setting of the GPAS
compilers. With reference to Fig. 7, the performance of UPC-A is superior than that
of UPC-NA due to the proper distribution of the array of data in the contiguous
blocks with the former.

5 Conclusion

An alternative parallelized computational hydrodynamics (CHD) model with the
UPC-PGAS architecture has been developed in this work. First, the accuracy of the
proposed model was verified on three incompressible CHD flow cases by com-
paring with the respective analytical solutions. After which, the model performance
was evaluated by comparing the total computational run time with that of both MPI
and OpenMP on an SGI UV-2000 server with 100 CPUs. It has been demonstrated
that UPC performs more efficiently than MPI and OpenMP with a near linear
speedup till 100 CPUs. The performance evaluation underlines UPC’s capability in
expediting the total run time by exploiting the data locality during parallelism.
Finally, we recommend the adoption of the affinity optimization to maximize the
parallelism performance of the developed UPC-PGAS architecture.

Acknowledgements This research study is funded by the internal core funding from the Nanyang
Environment and Water Research Institute (NEWRI), Nanyang Technological University (NTU),
Singapore. The first author is grateful to NTU’s Interdisciplinary Graduate School (IGS) for the
4-year Ph.D. scholarship for his study. The second author is grateful to NTU for the 4-year
Nanyang President Graduate Scholarship (NPGS) for his Ph.D. study.

Fig. 7 Comparison of
speedup between optimized
UPC and non-optimized UPC
for Couette’s flow (Case C) at
varying number of computer
cores

UPC Architecture for High-Performance Computational Hydrodynamics 49



References

1. Li, Y. -L., Lin, P. -J., & Tung, K. -L. (2011). CFD analysis of fluid flow through a
spacer-filled disk-type membrane module. Desalination, 283, 140–147.

2. Sousa, P., Soares, A., Monteiro, E., & Rouboa, A. (2014). A CFD study of the hydrodynamics
in a desalination membrane filled with spacers. Desalination, 349, 22–30.

3. Bucs, S. S., Radu, A. I., Lavric, V., Vrouwenvelder, J. S., & Picioreanu, C. (2014). Effect of
different commercial feed spacers on biofouling of reverse osmosis membrane systems: A
numerical study. Desalination, 343, 26–37.

4. Sobieski, W., & Zhang, Q. (2017). Multi-scale modeling of flow resistance in granular porous
media. Mathematics and Computers in Simulation, 132, 159–171.

5. Jajcevic, D., Siegmann, E., Radeke, C., & Khinast, J. G. (2013). Large-scale CFD–DEM
simulations of fluidized granular systems. Chemical Engineering Science, 98, 298–310.

6. Jamshed, S. (2015). The way the HPC works in CFD. In Using HPC for computational fluid
dynamics (pp. 41–79). Oxford: Academic Press.

7. Gourdain, N., Gicquel, L., Montagnac, M., Vermorel, O., Gazaix, M., & Staffelbach, G.
(2009). High performance parallel computing of flows in complex geometries: I. methods.
Computational Science & Discovery, 2, 015003.

8. Toro, E. F. (2009). The Riemann Solver of Roe. In Riemann solvers and numerical methods
for fluid dynamics: A practical introduction (pp. 345–376). Berlin, Heidelberg: Springer.

9. Kermani, M., & Plett, E. (2001). Roe scheme in generalized coordinates. I—formulations. In
39th Aerospace Sciences Meeting and Exhibit. American Institute of Aeronautics and
Astronautics.

10. Kermani, M., & Plett, E. (2001). Roe scheme in generalized coordinates. II—application to
inviscid and viscous flows. In 39th Aerospace Sciences Meeting and Exhibit. American
Institute of Aeronautics and Astronautics.

11. White, F. M. (1991). Ch. 7. Viscous fluid flow (2nd ed., pp. 457–528). New York:
McGraw-Hill.

12. Munson, B. R., Young, D. F., & Okiishi, T. H. (2006). Ch. 6. Fundamentals of fluid
mechanics (6th ed., pp. 263–331). Hoboken, NJ: Wiley.

50 T. T. Vu et al.


	3 UPC Architecture for High-Performance Computational Hydrodynamics
	1 Introduction
	2 Numerical Discretization
	3 UPC Implementation of CHD
	4 Model Verification and Performance Evaluation
	5 Conclusion
	Acknowledgements
	References


