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Abstract Anomaly detection is an important problem in real-world applications.

It is particularly challenging in the streaming data setting where it is infeasible to

store the entire data in order to apply some algorithm. Many methods for identifying

anomalies from data have been proposed in the past. The method of detecting anoma-

lies based on a low-rank approximation of the input data that are non-anomalous

using matrix sketching has shown to have low time, space requirements, and good

empirical performance. However, this method fails to capture the non-linearities in

the data. In this work, a kernel-based anomaly detection method is proposed which

transforms the data to the kernel space using random Fourier features (RFF). When

compared to the previous methods, the proposed approach attains significant empir-

ical performance improvement in datasets with large number of examples.

Keywords Streaming data ⋅ Anomaly detection ⋅ Random Fourier features

Matrix sketching

1 Introduction

Large data are encountered in many real-world applications. Due to the nature of

this data, storing and processing of such data as a whole become infeasible. One of

the important problems in modern applications is detecting anomalies. An anomaly

is a datapoint that does not conform to the same pattern as the other data points
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in a dataset [1]. Detecting anomalies has become important in areas such as space-

craft systems [2], medicine, and finance [1]. Many approaches for anomaly detection

have been proposed in the past. Subspace-based anomaly detection has been used

by some works [3–5]. It involves computing a low-rank approximation of the non-

anomalous input data points and then projecting the newly arrived points onto it. The

anomalous points are discovered, and the non-anomalous points are used to update

the low-rank approximation matrix. Huang et al. [6] used a matrix sketching tech-

nique for detecting anomalies in streaming data. They proposed a deterministic tech-

nique (DetAnom) which achieved better empirical results when compared to other

scalable anomaly detection algorithms such as support vector machine (SVM) with

linear as well as radial basis function (RBF) kernel, isolation forest [7], mass estima-

tion [8], and unconstrained least-squares importance fitting [9]. They also achieved

significant savings in time as well as space requirements. However, due to the non-

linearities in data encountered in modern applications, a linear subspace method

like [6] fails to capture the behavior of the data. A kernel function maps the data to a

non-linear feature space. Since directly applying kernel functions are computation-

ally expensive, RFF method [10] is used to approximate the kernel function. In this

work, RFF method [10] is used to transform the data to a feature space, and then the

anomalies are identified.

This work is organized as follows. The notations used are described in Sect. 2. The

previous related works are described in Sect. 3. The proposed approach is described

in Sect. 4. The experimental results and discussion are provided in Sect. 5, and the

conclusion is provided in Sect. 6.

2 Preliminaries

For a data matrix 𝐗 ∈ ℝd×n
, n is the number of examples and d is the number of

attributes of 𝐗. 𝕀d is the identity matrix of size d × d. The singular value decomposi-

tion (SVD) of 𝐗 = 𝐔𝚺𝐕T
, where 𝐔 ∈ ℝd×d

is an orthogonal matrix, 𝐕 ∈ ℝn×n
is an

orthogonal matrix, and 𝚺 ∈ ℝd×n = {𝜎i} is a diagonal matrix. The matrix 𝚺 contains

the singular values of 𝐗, sorted in the decreasing order, i.e., 𝜎i ≥ 𝜎j for i ≤ j. The

data arrives in a streaming fashion. 𝐗t denotes the data that arrives at time t, where

𝐗t ∈ ℝd×nt , d is the number of attributes of the data, and nt is the number of instances

of the data at time t. The matrix𝐗[t] ∈ ℝd×n[t] denotes the horizontal concatenation of

matrices𝐗1,𝐗2,… ,𝐗t ∈ ℝd×ni , where i = 1,… , t. The set of non-anomalous points

identified at time t − 1 is denoted by 𝐍[t−1]. The rank-k approximation of 𝐍[t−1] is

SVDk(𝐍[t−1]k ) = 𝐔(t−1)k𝚺(t−1)k𝐕
T
(t−1)k

.
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3 Previous Works

Density-based methods were used by [11, 12] to detect anomalies. The problem with

this approach is that the all pairwise distance computation is expensive and hence

cannot be used in large data. Nicolas and McDermott [13] proposed an autoencoder

and density estimation method which also has the problem of expensive computa-

tion. Many subspace based anomaly detection approaches have been proposed in

the past. Such methods construct a low-rank subspace of the non-anomalous data

points in order to detect anomalies. Huang et al. [4, 5] used a principal component

analysis (PCA)-based method using a sliding window scheme. These approaches

suffer from the drawback of poor scalability. In order to overcome the problem of

scalability, both deterministic and randomized matrix sketching-based techniques

were proposed by [6]. The deterministic method (DetAnom) is based on the fre-

quent directions (FD) algorithm of [14]. In their method, the rank-k approximation

of the non-anomalous points observed at time t − 1, 𝐍(t−1) is computed. Using its

left singular vectors 𝐔(t−1)k , the anomaly score of a new data point 𝐱i is constructed

as follows.

ai = ‖(𝕀d − 𝐔(t−1)k𝐔
T
(t−1)k

)𝐱i‖ (1)

The points that have anomaly score greater than a threshold are marked as anomalies,

and the rest are marked as non-anomalies. The left singular vectors are updated with

the newly discovered non-anomalous points using a modified FD algorithm. This

algorithm like most of the previous works does not capture the non-linearities in the

data. Kernel-based data transformation can be used to overcome the drawback of the

previous methods.

4 Proposed Approach

The proposed algorithm first uses RFF method [10], and then applies the FD-based

anomaly detection algorithm, DetAnom of [6]. The proposed algorithm, RFFAnom,

is shown in Algorithm 1. 𝐗(t−1) is the set of data points at time (t − 1), and 𝐗t is

the set of points at time t (new points). The algorithm starts with an initial set of

non-anomalous points 𝐍t−1 using which an initial sketch matrix 𝐁t−1 and the matrix

𝐔(t−1)k are computed. The columns of 𝐗t−1 are made to have unit l-2 norm, obtained

by normalizing 𝐗t−1. As in [6], it is assumed that at any time t, a set of new points

𝐗t arrives. This batch (set of points) 𝐗t is transformed to the kernel space using the

FeatureMap function in the Algorithm 2. Here, m is the number of feature maps

to be generated. In this work, m is set to be equal to d, as the aim was not to per-

form dimensionality reduction, but rather to obtain a better representation of the

non-anomalous points. The transformed points, 𝐘t ∈ ℝm×n
, are obtained as a con-

sequence of applying the FeatureMap function. These points are also normalized in

order to make its columns to have unit l-2 norm. The anomaly scores ai are calculated

as the distance between the points 𝐲i in 𝐘t and the projection of the points 𝐲i onto
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Algorithm 1 RFFAnom

Input: 𝐗t ∈ ℝd×nt ,𝐔(t−1)k ∈ ℝd×k
, 𝜂 ∈ ℝ,𝐁t−1 ∈ 𝕕m×l

,𝐍t ← [],𝐀t ← [], 𝜍 ∈ ℝ
Initial 𝐍t−1 is used to compute 𝐁t−1
for each new set of points 𝐗t do

𝐘t = FeatureMap(𝐗t , 𝜍)
for each point 𝐲i in 𝐘t do

ai = ‖(𝕀d − 𝐔(t−1)k𝐔
T
(t−1)k

)𝐲i‖
if ai ≤ 𝜂 then

𝐍t ← [𝐍t , 𝐲i]
end if

end for
𝐍[t] ← [𝐍[t−1],𝐍t ]
𝐁t ← [𝐁t−1,𝐍[t]]
̃𝐔tl

̃𝚺tl
̃𝐕T
tl
← SVDl(𝐁t )

𝐁t ← ̃𝐔tldiag(
√

�̃�
2
t1
− �̃�

2
tl
,… ,

√

�̃�
2
tl−1

− �̃�tl2 , 0)
̃𝐔tk ← [𝐮1,𝐮2,… ,𝐮k]

end for
return 𝐁t and ̃𝐔tk

the rank-k subspace 𝐔(t−1)k of the non-anomalous points 𝐍t−1. If ai is smaller than a

threshold 𝜂, then the corresponding point is appended to the set of non-anomalous

points 𝐍t . After all the non-anomalous points are obtained, the left singular vectors

𝐔(t) are updated by using the FD algorithm. In this part of the algorithm, the sketch

matrix 𝐁t ∈ ℝm×l
is updated with the new set of non-anomalous points 𝐍t . Here, l

is set as
√
m as suggested by [6]. Finally, the new set of left singular vectors ̃𝐔tk is

obtained. A diagram describing the proposed method is shown in Fig. 1. The run-

Algorithm 2 Feature Map(𝐗t , 𝜍)

𝐑 ← generate Gaussian random matrix with standard deviation 𝜍, 𝐑∈ ℝm×d

𝛾 ← Sampled uniformly at random from [0, 2𝜋], 𝛾 ∈ ℝm×1

𝐘t ←
√

2
m
cos(𝐑𝐗t+ 𝛾)

return 𝐘t

ning time of DetAnom algorithm is O(max{dnt l, dl2}), and the proposed algorithm

is slower by a factor of

√
d. This does not affect the running time in the experiments

to a great extend because the datasets considered do not have high dimensionality.

By using RFF, the running time of applying kernel functions is reduced significantly.

The space required by the algorithm is O(d.maxt{nt} + dl).
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Fig. 1 Proposed method for anomaly detection from a set of new input points

5 Experimental Results

All experiments were carried out in a Linux machine with 3.5 GHz Intel Core

i7 processor and 16 GB of RAM. For all the experiments, the proposed algo-

rithm RFFAnom is compared against deterministic algorithm DetAnom of [6].

The DetAnom algorithm has been shown to have better empirical performance than

many other scalable anomaly detection algorithms [6]. Here, non-anomalous points

are labeled as 0 and the anomalous points are labeled as 1. From the set of non-

anomalous data points, 2000 points are drawn at random and they comprise the initial

set of non-anomalous points. The size of the data arriving as input to the algorithm

at each time t is set as 5000 as suggested by [6].

5.1 Datasets Used

∙ COD-RNA [15]: contains 488,565 genome sequences with eight attributes. The

anomalies in this case are the set of non-coding RNAs. The number of examples

in classes 0 and 1 are 325710 and 162855, respectively, and the percentage of

anomalies is 33%.

∙ Forest [16]: contains 286048 instances of forest cover types. The data were

obtained from http://odds.cs.stonybrook.edu/forestcovercovertype-dataset/ and

contained 10 attributes. The number of examples in classes 0 and 1 are 283301

and 2747, respectively, so the dataset has 0.9% anomalies.

∙ Protein-Homology [17]: contains 145751 instances and 74 attributes. The number

of class 0 and 1 instances are 144455 and 1296 respectively. It has 0.8% anomalies.

∙ Shuttle: contains nine attributes and 49095 instances out of which 3511 are out-

liers. The number of non-anomalous points is 45586, so the percentage of anoma-

lies is 7%. The data were obtained from http://odds.cs.stonybrook.edu/shuttle-

dataset/.

http://odds.cs.stonybrook.edu/forestcovercovertype-dataset/
http://odds.cs.stonybrook.edu/shuttle-dataset/
http://odds.cs.stonybrook.edu/shuttle-dataset/
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∙ MNIST [18]: contains a total of 7603 instances and 100 attributes. The number

of class 0 and 1 instances is 6903 and 700, respectively. It has 9% anomalies. The

data were obtained from http://odds.cs.stonybrook.edu/mnist-dataset/.

∙ HTTP: contains 41 attributes and 200000 instances. The number of class 0 and 1

instances is 160555 and 39445, respectively, and it has 19% anomalies. The data

were obtained from UCI repository [19].

5.2 Performance Metrics

The metrics used to evaluate the result of the algorithm are described below.

True Positive Rate (TPR): It is the proportion of correctly identified instances. Here,

it is the proportion of anomalies that have been correctly identified.

TPR = TP
(TP + FN)

(2)

False Positive Rate (FPR): It is the proportion of negative instances that have been

correctly identified. Here, it is the proportion of non-anomalous points that have been

correctly identified.

FPR = FP
FP + TN

(3)

where TP is the number of true positives, FP is the number of false positives, TN is

the number of true negatives, and FN is the number of false negatives.

Area Under the Curve (AUC): It is a metric computed from the plot of TPR and FPR.

If this value is close to 1, then the performance of the algorithm is good, and if it is

less than 0.5, the performance is poor.

5.3 Results

The receiver operating characteristic (ROC) plots of the algorithms DetAnom and

RFFAnom are shown in the Figs. 2, 3 and 4. For the cod-RNA and Forest datasets, the

proposed algorithm, RFFAnom, performs much better than DetAnom. In particular,

DetAnom performs suboptimally for small values of FPR, whereas RFFAnom has

better results. The AUC values and the time taken for each dataset are shown in

Table 1.

In Fig. 3a, for the Protein-Homology dataset, DetAnom performs slightly better

than RFFAnom. It can be seen from Fig. 4a that for the MNIST dataset, the proposed

algorithm performs better than DetAnom. In Fig. 4b, for the HTTP dataset, the AUC

value of the proposed algorithm is 0.995, which is significantly better than that of

DetAnom. The figure also shows how well the proposed algorithm performs since

http://odds.cs.stonybrook.edu/mnist-dataset/
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Fig. 2 ROC curves of RFFAnom and DetAnom algorithms for a cod-RNA (left), b Forest (right)

Fig. 3 ROC curves of RFFAnom and DetAnom algorithms for a Protein-Homology (left), b Shut-

tle (right)

Fig. 4 ROC curves of RFFAnom and DetAnom algorithms for a MNIST (left), b HTTP (right)
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Table 1 AUC values and time taken by DetAnom and RFFAnom algorithms for various datasets

Dataset Algorithm AUC Time taken (s)

COD-RNA DetAnom 0.797620 3.3825

RFFAnom 0.883272 3.3717

Forest DetAnom 0.581079 2.0930

RFFAnom 0.651525 2.2101

Protein-Homology DetAnom 0.924820 5.6235

RFFAnom 0.917973 6.1562

Shuttle DetAnom 0.773587 0.3910

RFFAnom 0.781500 0.4075

MNIST DetAnom 0.917452 0.6308

RFFAnom 0.933240 0.7404

HTTP DetAnom 0.764248 4.0326

RFFAnom 0.995234 4.4200

its graph lies close to the y-axis. In general, the proposed approach performs much

better than DetAnom for datasets with large number of instances. The results indicate

that the feature space transformation improves the anomaly detection capability of

the proposed algorithm. Many datasets that are available today have some kind of

non-linearity present. The kernel feature space transformation (RFF) used in this

work effectively exploits this nature of the data.

6 Conclusion

Detecting anomalies from streaming data is an important application in many areas.

In the past, many methods for identifying anomalies from data have been proposed.

But most of these algorithms suffer from the problem of poor scalability. In this work,

a RFF-based anomaly detection method is proposed. It makes use of a kernel feature

space transformation of the data points and a FD-based anomaly detection scheme.

The proposed method has a low running time and space requirements and is hence

applicable to large datasets. Empirical results indicate that a significant improvement

in the performance was obtained for large datasets when compared to the previous

method.

Acknowledgements The authors would like to thank the financial support offered by the Ministry

of Electronics and Information Technology (MeitY), Govt. of India under the Visvesvaraya Ph.D

Scheme for Electronics and Information Technology.



A Random Fourier Features based Streaming Algorithm for Anomaly . . . 217

References

1. Chandola, V., Banerjee, A., Kumar, V.: Anomaly detection: a survey. ACM Comput. Surv.

(CSUR) 41(3) (2009). https://doi.org/10.1145/1541880.1541882

2. Fujimaki, R., Yairi, T., Machida, K.: An approach to spacecraft anomaly detection problem

using kernel feature space. In Proceedings of the 11th ACM SIGKDD International Conference

on Knowledge Discovery in Data Mining, pp. 401–410. ACM (2005). https://doi.org/10.1145/

1081870.1081917

3. Lakhina, A., Crovella, M., Diot, C.: Characterization of network-wide anomalies in traffic

flows. In: SIGCOMM (2004). https://doi.org/10.1145/1028788.1028813

4. Huang, L., Nguyen, X., Garofalakis, M., Jordan, M.I., Joseph, A., Taft, N.: In-network PCA

and anomaly detection. In: NIPS, pp. 617–624 (2006)

5. Huang, L., Nguyen, X., Garofalakis, M., Hellerstein, J.M., Jordan, M.I., Joseph, A.D., Taft, N.:

Communication-efficient online detection of network-wide anomalies. In: INFOCOM (2007).

https://doi.org/10.1109/INFCOM.2007.24

6. Huang, H., Kasiviswanathan, S.P.: Streaming anomaly detection using randomized matrix

sketching. Proc. VLDB Endow. 9(3), 192–203 (2015)

7. Liu, F.T., Ting, K.M., Zhou, Z.H.: Isolation forest. In: IEEE ICDM, pp. 413–422 (2008).

https://doi.org/10.1109/ICDM.2008.17

8. Ting, K.M., Zhou, G.T., Liu, F.T., Tan, J.S.: Mass estimation and its applications. In: ACM

SIGKDD (2010). https://doi.org/10.1145/1835804.1835929

9. Hido, S., Tsuboi, Y., Kashima, H., Sugiyama, M., Kanamori, T.: Statistical outlier detection

using direct density ratio estimation. KAIS 26(2) (2011)

10. Rahimi, A., Recht, B.: Random features for large-scale kernel machines. In: Advances in Neural

Information Processing Systems, pp. 1177–1184 (2007)

11. Breunig, M.M., Kriegel, H.P., Ng, R.T., Sander, J.: LOF: identifying density-based local out-

liers. In: ACM Sigmod Record, vol. 29, pp. 93–104. ACM (2000). https://doi.org/10.1145/

342009.335388

12. Tang, J., Chen, Z., Fu, A.W.C., Cheung, D.W.: Enhancing effectiveness of outlier detections for

low density patterns. In: Pacific-Asia Conference on Knowledge Discovery and Data Mining,

pp. 535–548. Springer, Berlin, Heidelberg (2002). https://doi.org/10.1007/3-540-47887-6_53

13. Nicolau, M., McDermott, J.: A hybrid autoencoder and density estimation model for anomaly

detection. In: International Conference on Parallel Problem Solving from Nature, pp. 717–726.

Springer International Publishing (2016). https://doi.org/10.1007/978-3-319-45823-6_67

14. Liberty, E.: Simple and deterministic matrix sketching. In: Proceedings of the 19th ACM

SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 581–588.

ACM (2013). https://doi.org/10.1145/2487575.2487623

15. Uzilov, A.V., Keegan, J.M., Mathews, D.H.: Detection of non-coding RNAs on the basis of

predicted secondary structure formation free energy change. BMC bioinform. 7(1) (2006)

16. Blackard, J.A., Dean, D.J.: Comparative accuracies of artificial neural networks and discrim-

inant analysis in predicting forest cover types from cartographic variables. Comput. electron.

agric. 24(3), 131–151 (1999)

17. Caruana, R., Joachims, T., Backstrom, L.: KDD-Cup 2004: results and analysis. ACM

SIGKDD Explor. Newslett. 6(2), 95–108 (2004)

18. Lecun, Y., Cortes, C.: The MNIST database of handwritten digits. (2009). http://yann.lecun.

com/exdb/mnist/

19. UCI repository. https://archive.ics.uci.edu/ml/machine-learning-databases/kddcup99-mld/

(1999)

https://doi.org/10.1145/1541880.1541882
https://doi.org/10.1145/1081870.1081917
https://doi.org/10.1145/1081870.1081917
https://doi.org/10.1145/1028788.1028813
https://doi.org/10.1109/INFCOM.2007.24
https://doi.org/10.1109/ICDM.2008.17
https://doi.org/10.1145/1835804.1835929
https://doi.org/10.1145/342009.335388
https://doi.org/10.1145/342009.335388
https://doi.org/10.1007/3-540-47887-6_53
https://doi.org/10.1007/978-3-319-45823-6_67
https://doi.org/10.1145/2487575.2487623
http://yann.lecun.com/exdb/mnist/
http://yann.lecun.com/exdb/mnist/
https://archive.ics.uci.edu/ml/machine-learning-databases/kddcup99-mld/

	A Random Fourier Features based Streaming Algorithm for Anomaly Detection in Large Datasets
	1 Introduction
	2 Preliminaries
	3 Previous Works
	4 Proposed Approach
	5 Experimental Results
	5.1 Datasets Used
	5.2 Performance Metrics
	5.3 Results

	6 Conclusion
	References




