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1 Introduction

Recently a comprehensive measurement of agent behavior can be conducted based
on high-resolution data on socioeconomic systems due to the development of
information and communication technology. In particular, we want to consider a
problem that we need to deal with the collective behavior of millions of nodes
contribute to the observable dynamical features of such a complex system (de
Menezes and Barabási 2004).

To do so, it is necessary to develop an adequate model both which considers states
of agent behavior from the comprehensive point of view and which is as simple as
one can estimate its parameters from actual data under assumptions. Specifically in
socioeconomic activities, if we regard the situation where people exchange things,
money, and information with each other as a network, then it further seems to be
fruitful to study such social or economic systems from a network point of view.

To make advances in this direction, we need to treat structure on the basis of
information transmission among heterogeneous agents in a given socioeconomic
system from a limited amount of available data without precise knowledge on
communication networks.

Several networks relating to human activity can be described as bipartite graphs
with two kinds of nodes as shown in Fig. 1. For example, it is known that
financial markets (financial commodities and participants), blog systems (blogs and
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Fig. 1 A conceptual illustration of social systems where M agents (B node) communicate with
one another in K groups (A node)

bloggers), and economic systems (firms and goods/consumers) can be described as
a directed bipartite graph (Lambiotte et al. 2007; Chmiel et al. 2007; Sato 2007;
Sato and Hołyst 2008).

Such a bipartite network is recognized by observers when constituents are
transmitted between two kinds of nodes. Links are recognized by observers when
a constituent moves from one node to another node. Therefore bipartite network
representation also seems to be one of our cognitive categories such as causality,
time and space, intensity, quantity, and so on.

This chapter considers a model-based comparative measurement of collective
behavior of groups based on their activities (Sato 2017). Specifically, a descriptive
multivariate model of a financial market is proposed from a comprehensive point
of view. Using comprehensive high-resolution data on the behavior of market
participants, correlations of log returns and quotations (transactions) are analyzed
on the basis of theoretical insights from the proposed model.

As a subject, we focus on financial markets which are attracting numerous
researchers in various fields since they are of complex systems consisting of
various types of heterogeneous agents. In the context of finance, the normal
mixture hypothesis (or more generally “mixture of distribution hypothesis”) has
been proposed as an alternative explanation for the description of return distribution
of financial assets by several studies (Mandelbrot and Taylor 1967; Clark 1973;
Tauchen and Pitts 1983; Richardson and Smith 1994). They have considered trading
volume or the number of transactions (or quotations) as a proxy of the latent number
of information arrivals. The proposed model may lead to better understanding
of dynamics for return-volume relationship including volatility persistence (Lam-
oureux and Lastrapes 1990; Andersen 1996; Liesenfeld 1998; Watanabe 2000).

Cloud-based services can be used to provide various kinds of real-world applica-
tions. In fact, rich data on both mobility and activity of users have been accumulated
by the cloud service providers. If secondary usage of the data collected in the cloud-
based servers is permitted both legally and adequately and data analytics procedures
for anonymized data can be developed, then we will be able to quantify risk and



On Measuring Extreme Synchrony with Network Entropy of Bipartite Graphs 249

chance of our society based on rich data on human mobility and activity with high
resolution.

The chapter aims to propose a method to detect change points of temporally evo-
lutionary bipartite network regarding anonymity of personal information. Moreover,
in order to confirm an ability of the proposed method empirically, the proposed
method is applied to data of trading activity collected in a cloud-based service of
the foreign exchange market and quantified trading activity of the foreign exchange
market from a comprehensive point of view.

The network structure of various kinds of physical and social systems has
attracted considerable research attention. A many-body system can be described
as a network, and the nature of growing networks has been examined well (Albert
and Barabási 2002; Miura et al. 2012). Power-law properties can be found in the
growing networks, which are called complex networks. These properties are related
to the growth of elements and preferential attachment (Albert and Barabási 2002).

A network consists of several nodes and links that connect nodes. In the literature
on the physics of socioeconomic systems (Carbone et al. 2007), nodes are assumed
to represent agents, goods, and computers, while links express the relationships
between nodes (Milaković et al. 2010; Lämmer et al. 2006). The network structure
is perceived in many cases through the conveyance of information, knowledge, and
energy, among others.

In statistical physics, the number of combinations of possible configurations
under given energy constraints is related to “entropy.” Entropy is a measure that
quantifies the states of thermodynamic systems. In physical systems, entropy
naturally increases because of the thermal fluctuations on elements. Boltzmann
proposed that entropy S is computed from the possible number of ensembles g

by S = log g. For a system that consists of two sub-systems whose respective
entropies are S1 and S2, the total entropy S is calculated as the sum of one of two
subsystems S1 + S2. This case is attributed to the possible number of ensembles
g1g2. Entropy in statistical physics is also related to the degree of complexity of a
physical system. If the entropy is low (high), then the physical configuration is rarely
(often) realized. Energy injection or work in an observed system may be assumed
to represent rare situations. Shannon entropy is also used to measure the uncertainty
of time series (Carbone and Stanley 2007).

The concept of statistical–physical entropy was applied by Bianconi (2009) to
measure network structure. She considered that the complexity of a network is
related to the number of possible configurations of nodes and links under some
constraints determined by observations. She calculated the network entropy of an
arbitrary network in several cases of constraints.

Researchers have used a methodology to characterize network structure with
information-theoretic entropy (Dehmer and Mowshowitz 2011; Wilhelm and Hol-
lunder 2007; Rashevsky 1955; Trucco 1956; Mowshowitz 1968; Sato 2009). Several
graph invariants such as the number of vertices, vertex degree sequence, and
extended degree sequences have been used in the construction of entropy-based
measures (Wilhelm and Hollunder 2007; Sato 2009).
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2 An Entropy Measure on a Bipartite Network

The number of elements in socioeconomic systems is usually very large, and several
restrictions or finiteness of observations can be found. Therefore, we need to develop
a method to infer or quantify the affairs of the entire network structure from
partial observations. Specifically, many affiliation relationships of socioeconomic
systems can be expressed as a bipartite network. Describing the network structure of
complex systems that consist of two types of nodes by using the bipartite network is
important. A bipartite graph model also can be used as a general model for complex
networks (Guillaume and Latapy 2006; Chmiel et al. 2007; Tumminello et al. 2011).
Tumminello et al. proposed a statistical method to validate the heterogeneity of
bipartite networks (Tumminello et al. 2011).

Suppose a symmetric binary two-mode network can be constructed by linking K

groups (A node) and M participants (B node) if the participants belong to groups
(Fig. 1). Assume that we can count the number of participants in each group within
the time window [tδ, (t + 1)δ] (t = 1, 2, 3, . . .), which is defined as mi(t) (i =
1, 2, . . . , K).

Let us assume a bipartite graph consisting of A nodes and B nodes, of which the
structure at time t is described as an adjacency matrix Cij (t). We also assume that
A nodes are observable and B nodes are unobservable. That is, we only know the
number of participants (B node) belonging to A nodes mi(t). We do not know the
correct number of B nodes, but we assume that it is M . In this setting, how do we
measure the complexity of the bipartite graph from mi(t) at each observation time t?

The network entropy is defined as a logarithmic form of the number of possible
configurations of a network under a constraint (Bianconi 2009). We can introduce
the network entropy at time t as a measure to quantify the complexity of a bipartite
network structure. The number of possible configurations under the constraint
mi(t) = ∑M

j=1 Cij (t) may be counted as

N(t) =
K∏

i=1

(
M

mi(t)

)

=
K∏

i=1

M!
mi(t)!(M − mi(t))! . (1)

Then, the network entropy is defined as Σ(t) = ln N(t). Inserting Eq. (1) into this
definition, we have

Σ(t) = K

M∑

n=1

ln n −
K∑

i=1

M−mi(t)∑

n=1

ln n −
K∑

i=1

mi(t)∑

n=1

ln n. (2)

Note that because 0! = 1,
∑0

n=1 ln n = 0. Obviously, if mi(t) = M for any i, then
Σ(t) = 0. If mi(t) = 0 for any i, then Σ(t) = 0. The lower number of combinations
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gives a lower value of Σ(t). To eliminate a difference in the number of links, we
consider the network entropy per link defined as

σ(t) = Σ(t)
∑K

i=1 mi(t)
. (3)

This quantity shows the degree of complexity of the bipartite network structure. We
may capture the temporal development of the network structure from the value of
σ(t). The network entropy per link σ(t) is also an approximation of the ratio of the
entropy rate for mi(t) to its mean so that

σ [m1(t), . . . , mK(t)] =
1
K

Σ[m1(t), . . . , mK(t)]
1
K

∑K
i=1 mi(t)

≈ Σ[m(t)]
〈m(t)〉 , (4)

where the entropy rate and the mean are, respectively, defined as

Σ[m(t)] = lim
K→∞

1

K
Σ[m1(t), . . . , mK(t)], (5)

〈m(t)〉 = lim
K→∞

1

K

K∑

i=1

mi(t). (6)

The ratio of the entropy rate to the mean tells us the uncertainty of the mean
from a different point of view from the coefficient of variation (C.V . =
standard deviation/mean).

To understand the fundamental properties of Eq. (3), we compute σ(t) in simple
cases. Consider values of entropy for several cases at K = 100 with different M .
We assume that the total number of links is fixed at 100, which is the same as
the number of A nodes, and we confirm the dependence of σ(t) on the degree of
monopolization. We assign the same number of links at each A node. That is, we set

mi(t) =
{

100/k (i = 1, . . . , k)

0 (i = k + 1, . . . , K)
, (7)

where k can be set as 1, 2, 4, 5, 10, 20, 50, or 100. In this case, we can calculate
σ(t) as follows:

σ(t) =
∑k

i=1 ln

(
M

100/k

)

∑k
i=1 100/k

= k

100

(
ln M! − ln(100/k)! − ln(M − 100/k)!

)
. (8)



252 A.-H. Sato

Fig. 2 (a) Plots between
σ(t) and degree of
monopolization k. Each curve
represents the relation
between σ(t) and k. Filled
squares numerical values for
M = 1000, unfilled circles
for M = 2000, filled circles
for M = 3000, and unfilled
triangle for M = 4000. (b)
Plots between σ(t) and
density of links p. Each curve
represents the relation
between σ(t) and k. Filled
squares numerical values for
M = 1000, unfilled circles
for M = 2000, filled circles
for M = 3000, and unfilled
triangle for M = 4000
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Figure 2a shows the relationship between σ(t) and the degree of monopolization
at M = 1000, 2000, 3000, and 4000. The network entropy per link σ(t) is small
if a small population of nodes occupies a large number of links. The multiplication
regime gives a large value of σ(t). The value of σ(t) is a monotonically increasing
function in terms of k. As M increases, the value of σ(t) increases. From this
instance, we confirmed that σ(t) decreases with the degree of monopolization at
A nodes.

Next, we confirm the dependency of σ(t) on the density of links. We assume that
each element of an adjacency matrix Cij (t) is given by an i.i.d. Bernoulli random
variable with a successful probability of p. Then, mi(t) = ∑M

j=1 Cij (t) is sampled
from an i.i.d. binomial distribution Bin(p,M). In this case, one can approximate
σ(t) as



On Measuring Extreme Synchrony with Network Entropy of Bipartite Graphs 253

σ(t) =
1
K

∑K
i=1 Σ[mi(t)]

1
K

∑K
i=1 mi(t)

≈ 〈Σ[m1(t)]〉
〈m1(t)〉

= 1

M

M∑

k=1

(
M

k

)

pk−1(1 − p)M−k ln

(
M

k

)

. (9)

Figure 2b shows the plots of σ(t) versus p obtained from both Monte Carlo
simulation with random links drawn from Bernoulli trials and Eq. (9). The number
of links at each A node monotonically increases as p increases. σ(t) decreases
as the density of links decreases. The dependence of the entropy per link on p is
independent of M .

3 Empirical Analysis

The application of network analysis to financial time series has been advancing.
Several researchers have investigated the network structure of financial mar-
kets (Bonanno et al. 2003; Gworek et al. 2010; Podobnik et al. 2009; Iori et al.
2008). Bonanno et al. examined the topological characterization of the correlation-
based minimum spanning tree (MST) of real data (Bonanno et al. 2003). Gworek
et al. analyzed the exchange rate returns of 38 currencies (including gold) and
computed the characteristic path length and average weighted clustering coefficient
of the MST topology of the graph extracted from the cross-correlations for several
base currencies (Gworek et al. 2010). Podobnik et al. (2009) examined the cross-
correlations between volume changes and price changes for the New York Stock
Exchange, Standard and Poor’s 500 index, and 28 worldwide financial indices. Iori
et al. (2008) analyzed the network topology of the Italian segment of the European
overnight money market and investigated the evolution of these banks’ connectivity
structure over the maintenance period. These studies collectively aimed to detect the
susceptibility of network structures to macroeconomic situations.

Data collected from the ICAP EBS platform were used. The data period spanned
May 28, 2007 to November 30, 2012 (ICAP 2013). The data included records for
orders (BID/OFFER) and transactions for currencies and precious metals with a 1-s
resolution. The total number of orders included in the data set is 520,973,843, and
the total number of transactions is 58,679,809. The data set involved 94 currency
pairs consisting of 39 currencies, 11 precious metals, and 2 basket currencies (AUD,
NZD, USD, CHF, JPY, EUR, CZK, DKK, GBP, HUF, ISK, NOK, PLN, SEK, SKK,
ZAR, CAD, HKD, MXC, MXN, MXT, RUB, SGD, XAG, XAU, XPD, XPT, TRY,
THB, RON, BKT, ILS, SAU, DLR, KES, KET, AED, BHD, KWD, SAR, EUQ,
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Fig. 3 A network representation of 94 currency pairs included in the data sets. Nodes show
currencies and links currency pairs. If there is a link between two currencies, it is shown that
the currency pair consisting of them is included in the data set

USQ, CNH, AUQ, GBQ, KZA, KZT, BAG, BAU, BKQ, LPD, and LPT).1 Figure 3
shows a network representation of 94 currency pairs.

1AED, United Arab Emirates dirham; AUD, Australian dollar; AUQ, Australian dollar (small
amount); BAG, gold (bank); BAU, silver (bank); BHD, Bahraini dinar; BKT, basket of USD/EUR;
BKQ, basket of USD/EUR (small amount); CAD, Canadian dollar; CHF, Swiss franc; CNH,
Chinese yuan; CZK, Czech koruna; DKK, Danish krone; EUR, EU euro; EUQ, EU euro (small
amount); GBP, British sterling; GBQ, British sterling (small amount); HKD, Hong Kong dollar;
HUF, Hungarian forint; ILS, Israeli new shekel; ISK, Iceland krona; JPY, Japanese yen; KES,
Kenyan shilling; KET, Kenyan shilling (small amount); KZA, Kazakhstani tenge (small amount);
KZT, Kazakhstani tenge; LPD, palladium (London); LPT, platium (London); MXN, Mexican
peso; MXQ, Mexican peso (small amount); MXT, Mexican peso (special deals); NOK, Norwegian
krone; NZD, New Zealand dollar; PLN, Poland zloty; RON, Romanian leu; RUB, Russian ruble;
SAR, Saudi Arabian riyal; SGD, Singapore dollar; SEK, Swedish krona; SKK, Slovak koruna;
SAU, silver (small amount); TRY, Turkish lira; THB, Thai baht; USD/DLR, US dollar; USQ, US
dollar (small amount); ZAR, South African rand; XAU, gold; SAU, gold (small amount); XAG,
silver; XPD, palladium; and XPT, platinum.
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3.1 The Total Number

The number of quotations and transactions in each currency pair was extracted from
the raw data. Let mX,i(t) (t = 0, . . . ; i = 1, . . . , K) be the number of quotations
(X = P ) or transactions (X = D) within every minute (δ = 1 [min]) for a currency
pair i (K = 94) at time t . Let cX(t) be denoted as the total number of quotations
(X = P ) and transactions (X = D), which is defined as

cX(t) =
K∑

i=1

mX,i(t). (10)

Let us consider the maximum value of cX(t) in each week:

wX(s) = max
t∈W(s)

{cX(t)}, (11)

where W(s) (s = 1, . . . , T ) represents a set of times included in the s-th week.
A total of 288 weeks are included in the data set (T = 288). Figure 4 shows the
maximum values cX(t) for the period from May 28, 2007 to November 30, 2012.

According to the extreme value theorem, the probability density for maximum
values can be assumed to be a Gumbel density:

P(wX;μX, ρX) = 1

ρX

exp
(
−wX − μX

ρX

− e
− wX−μX

ρX

)
, (12)

where μX and ρX are the location and scale parameters, respectively. Under
the assumption of the Gumbel density, these parameters are estimated with the
maximum likelihood procedure. The log-likelihood function for T observations
wX(s′) (s′ = 1, . . . , T ) under Eq. (12) is defined as

l(μX, ρX) =
T∑

s′=1

ln
[ 1

ρX

exp
(
−wX(s′) − μX

ρX

− e
− wX(s′)−μX

ρX

)]
. (13)

The maximum likelihood estimators are obtained by maximizing the log-likelihood
function. Partially differentiating l(μX, ρX) in terms of μX and ρX and setting them
to zero, one has its maximum likelihood estimators as

e
− μ̂X

ρ̂X = 1

T

T∑

s′=1

e
− wX(s′)

ρ̂X , (14)

ρ̂X = 1

T

T∑

s′=1

wX(s′) −
∑T

s′=1 e
− wX(s′)

ρ̂X wX(s′)
∑T

s′=1 e
− wX(s′)

ρ̂X

(15)
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Fig. 4 (a) The maximum
values of the number of
quotations within 1 min in
every week. (b) The
maximum values of the
number of transactions within
1 min in every week
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The parameters are estimated as μ̂P = 772.179499, ρ̂P = 281.741815, μ̂D =
206.454884, and ρ̂D = 35.984804.

The Kolmogorov–Smirnov (KS) test is conducted to determine the statistical sig-
nificance of the estimated distributions. The KS test is a popular statistical method
of assessing the difference between observations and its assumed distribution by
p-value, which is a measure of probability where a difference between the two
distributions happens by chance. Large p-values imply that the observations are
sampled from the assumed distribution in the null hypothesis with high significance.
Let wX(s) (s = 1, . . . , T ) be T observations, and let KT be a test statistic

KT = sup
1≤s′≤T

√
T

∣
∣
∣FT (wX(s′)) − F(wX(s′))

∣
∣
∣, (16)

where 0 ≤ F(v) ≤ 1 is an assumed cumulative distribution in a null hypothesis and
FT (v) an empirical one based on T observations such that FT (v) = k/T , in which
k represents the number of observations satisfying vX(s) ≤ v(s = 1, . . . , T ). The
p-value is computed from the Kolmogorov–Smirnov distribution.
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Table 1 The p-values of statistical tests under a stationary assumption of the Gumbel distribution
for the maximum values

p-val (P) KS-val (P) p-val (D) KS-val (D)

0.041374 1.392521 0.586818 0.774087

The KS test is conducted under the assumption of the Gumbel distribution for
the maximum value corresponding to Eq. (19):

F(wX;μX, ρX) = exp
[
− exp

(−wX − μX

ρX

)]
. (17)

The p-values of the KS test are shown in Table 1. The stationary Gumbel assumption
cannot explain the maximum values for quotes with a 5% significance level in
the KS test. The stationary Gumbel assumption may not be accepted in the case
of the block maximum number of quotes. The dominant reason is the strong
nonstationarity of the maximum number of quotes. During the last 5 years, the
currencies and pairs quoted in the electronic brokerage market increased. The mean
value of the total number constantly increased. In fact, the maximum number of
quotations wP (t) reached the maximum value on 30 July, 2012. The nonstationarity
breaks the assumption of the extreme value theorem.

It is confirmed that the stationary Gumbel assumption can be accepted for the
block maxima of transactions in each week using the KS test with a 5% significance
level. The maximum number of transactions wD(t) was reached on on January 30,
2012. This period seems to be related to the extreme synchrony.

3.2 Network Entropy Per Link

The proposed method based on statistical–physical entropy is applied to measure the
states of the foreign exchange market. The relationship between a bipartite network
structure and macroeconomic shocks or crises was investigated, and the occurrence
probabilities of extreme synchrony were inferred. We compute a statistical–physical
entropy per link from mX,i(t)(X ∈ {P,D}) with Eqs. (2) and (3), which are denoted
as σX(t). σP (t) and σD(t).

Since small values of σX(t) correspond to a concentration of links at a few nodes
or a dense network structure, let us consider the minimum value of σX(t) every
week:

vX(s) = min
t∈W(s)

{σX(t)}, (18)

where W(s) (s = 1, . . . , T ) represents a set of times included in the s-th week. A
total of 288 weeks are included in the data set (T = 288). According to the extreme
value theorem, the probability density for minimum values can be assumed to be the
Gumbel density:
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P(vX;μX, ρX) = 1

ρX

exp
(vX + μX

ρX

− e
vX+μX

ρX

)
, (19)

where μX and ρX are the location and scale parameters, respectively. Under
the assumption of the Gumbel density, these parameters are estimated with the
maximum likelihood procedure. The log-likelihood function for T observations
vX(s′) (s′ = 1, . . . , T ) under Eq. (19) is defined as

l(μX, ρX) =
T∑

s′=1

ln
[ 1

ρX

exp
(vX(s′) + μX

ρX

− e
vX(s′)+μX

ρX

)]
. (20)

Partially differentiating l(μX, ρX) in terms of μX and ρX and setting them to zero
yields its maximum likelihood estimators as

e
− μ̂X

ρ̂X = 1

T

T∑

s′=1

e
vX(s′)

ρ̂X , (21)

ρ̂X =
∑T

s′=1 e
vX(s′)

ρ̂X vX(s′)
∑T

s′=1 e
vX(s′)

ρ̂X

− 1

T

T∑

s′=1

vX(s′). (22)

The parameter estimates are computed as μ̂P = −4.865382, ρ̂P = 0.110136, μ̂D =
−5.010175, and ρ̂D = 0.120809 with Eqs. (21) and (22).

The KS test is conducted for the Gumbel distribution for the minimum values
corresponding to Eq. (19):

F(vX;μX, ρX) = 1 − exp
[
− exp

(vX + μX

ρX

)]
. (23)

The p-value of the distribution is shown in Table 2. The stationary Gumbel assump-
tion cannot explain the synchronizations observed in both quotes and transactions
completely with a 5% significance level. The stationary Gumbel assumption is
rejected because there is a stationary assumption to derive the extreme value
distribution. If we can weaken this assumption, then the goodness of fit may be
improved.

Table 2 The p-values of statistical tests under a stationary Gumbel ssumption

p-val (P) KS-val (P) p-val (D) KS-val (D)

0.001393 1.906528 0.019241 1.523791
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4 Probability of Extreme Synchrony

The literature detecting structural breaks or change points in an economic time
series (Goldfeld and Quandt 1973; Preis et al. 2011; Scalas 2007; Cheong et al.
2012) points out that nonstationary time series are constructed from locally station-
ary segments sampled from different distributions. Goldfeld and Quandt conducted
a pioneering work on the separation of stationary segments (Goldfeld and Quandt
1973). Recently, a hierarchical segmentation procedure was also proposed by
Choeng et al. under the Gaussian assumption (Cheong et al. 2012). We applied this
concept to define the segments for vX(s′) (s′ = 1, . . . , T ).

Let us consider the null model L1, which assumes that all the observations
vX(s′) (s′ = 1, . . . , T ) are sampled from a stationary Gumbel density parame-
terized as μ and ρ. An alternative model L2(s) assumes that the left observations
vX(s′) (s′ = 1, . . . , s) are sampled from a stationary Gumbel density parameter-
ized as μL and ρL and that the right observations vX(s′) (s′ = s + 1, . . . , T ) are
sampled from a stationary Gumbel density parameterized as μR and ρR .

Denoting likelihood functions as

L1(μ, ρ) =
T∏

s′=1

P(vX(s′);μ, ρ), (24)

L2(s;μL, ρL,μR, ρR) =
s∏

s′=1

P(vX(s′);μL, ρL)

×
T∏

s′=s+1

P(vX(s′);μR, ρR), (25)

the difference between the log-likelihood functions can be defined as

Δ(s) = log L2(s) − log L1. (26)

Δ(s) can be approximated as the Shannon entropy H [p] = − ∫ ∞
−∞ dv log p(v)p(v):

Δ(s) ≈ T H [P(vX;μ, ρ)]
− sH [P(vX;μL, ρL)] − (T − s)H [P(vX;μR, ρR)]. (27)

Since the Shannon entropy of the Gumbel density expressed in Eq. (12) is calculated
as

H [P(vX;μX, ρX)] = ln ρX − γE + 1, (28)
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where γE represents Euler’s constant, defined as

γE =
∫ ∞

0
ln te−tdt, (29)

we obtain

Δ(s) ≈ T ln ρ − s ln ρL − (T − s) ln ρR. (30)

In the context of model selection, several information criteria are proposed.
The information criterion provides both goodness of fit of the model to the data
and model complexity. For the sake of simplicity, we use the Akaike information
criterion (AIC) to determine the adequate model. The AIC for a model with the
number of parameters K and the maximum likelihood of L is defined as

AIC = −2 ln L + 2K. (31)

We can compute the difference in AIC between model L2 and model L1(s) as

ΔAIC(s) = AIC of L2(s) − AIC of L1

≈ −2
(
T ln ρ̂ − s ln ρ̂L − (T − s) ln ρ̂R

) + 4,

= −2Δ(s) + 4 (32)

since the number of parameters of L1 is 2, that of L2(s) is 4, and the maximum
likelihood is obtained by using their maximum likelihood estimators calculated from

ρ̂ =
∑T

s′=1 e
vX(s′)

ρ̂X vX(s′)
∑T

s′=1 e
vX(s′)

ρ̂X

− 1

T

T∑

s′=1

vX(s′) (33)

ρ̂L =
∑s

s′=1 e
vX(s′)

ρ̂L vX(s′)
∑s

s′=1 e
vX(s′)

ρ̂L

− 1

s

s∑

s′=1

vX(s′) (34)

ρ̂R =
∑T

s′=s+1 e
vX(s′)

ρ̂R vX(s′)
∑T

s′=s+1 e
vX(s′)

ρ̂R

− 1

T − s

T∑

s′=s+1

vX(s′) (35)

Therefore, P(vX;μL, ρL) is maximally different from P(vX;μR, ρR) when
Δ(s) assumes a maximal value. This spectrum has a maximum at some time s∗,
which is denoted as

Δ∗
AIC = ΔAIC(s∗) = max

s
ΔAIC(s). (36)
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The segmentation can be used recursively to separate the time series into further
smaller segments. We do this iteratively until all segment boundaries have converged
onto their optimal segment, defined by a stopping (termination) condition.

Several termination conditions were discussed in previous studies (Cheong
et al. 2012). Assuming that Δ0 > 0, we terminate the iteration if Δ∗

AIC is
less than a typical conservative threshold of Δ0 = 10, while the procedure is
recursively conducted if Δ∗

AIC is larger than Δ0. We checked the robustness of
this segmentation procedure for Δ0. Δ0 gives a statistical significance level of
termination. The value of Δ0 is related to statistical significance. According to Wilks
theorem, −2Δ(s) follows a chi-squared distribution with a degree of freedom r ,
where r is given by the difference between the number of parameters assumed in
the null hypothesis and one in the alternative hypothesis. In this case, r = 2. Hence,
the cumulative distribution function of Δ∗

AIC may follow

Pr[Δ∗
AIC > x] = 1 − γ

(
1,

x − 4

2

)
, (37)

where γ (x, a) is the regularized incomplete gamma function defined as

γ (a, x) =
∫ x

0 ta−1e−tdt
∫ ∞

0 ta−1e−tdt
. (38)

Therefore, setting the threshold Δ0 = 10 implies that the segmentation procedure is
tuned as a 4.928% statistical significance level.

Let the number of segments be LX, the parameter estimates be {μX,j , ρX,j } at

the j -th segment, and the length of the j -th segment be τX,j , where
∑RX

j=1 τX,j = T .
The cumulative probability distribution for vX(s) (s = 1, . . . , T ) may be assumed
to be a finite mixture of Gumbel distributions:

Pr(VX ≤ vX) =
∫ vX

−∞

RX∑

j=1

τX,j

T
P (v′

X;μX,j , ρX,j )dv′
X

=
RX∑

j=1

τX,j

T

{
1 − exp

[−e

vX+μX,j
ρX,j

]}
, (39)

Tables 3 and 4 show parameter estimates of vP (s) and vD(s) using the recursive
segmentation procedure. Figure 5 shows the temporal development of vP (s) and
vD(s) from May 28, 2007 to November 30, 2012. RP = 6 and RD = 6 are obtained
from vX(s) using the proposed segmentation procedure. During the observation
period, the global financial system suffered from the following significant macroe-
conomic shocks and crises: (I) the BNP Paribas shock (August 2007), (II) the Bear
Stearns shock (February 2008), (III) the Lehman shock (September 2008 to March
2009), (IV) the European sovereign debt crisis (April to May 2010), (V) the East
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Table 3 Parameter estimates obtained from the weekly minimum values of network entropy for
quotations with the recursive segmentation procedure

j Start date End date τ/T μ̂X,j ρ̂X,j

1 May 28, 2007 Oct. 15, 2007 0.072917 −4.965486 0.078571

2 Oct. 22, 2007 Aug. 17, 2009 0.333333 −4.829061 0.080558

3 Aug. 24, 2009 Oct. 21, 2011 0.274306 −4.880156 0.099532

4 Feb. 28, 2011 Jul. 30, 2012 0.260417 −4.798364 0.058265

5 Aug. 6, 2012 Sep. 10, 2012 0.020833 −4.856415 0.121566

6 Sep. 17, 2012 Nov. 26, 2012 0.038194 −5.031930 0.071871

Table 4 Parameter estimates obtained from the weekly minimum values of network entropy for
transactions with the recursive segmentation procedure

j Start date End date τ/T μ̂X,j ρ̂X,j

1 May 28, 2007 Mar. 16, 2009 0.329861 −4.903660 0.072684

2 Mar. 23, 2009 Jun. 14, 2010 0.225694 −4.990569 0.088420

3 Jun. 21, 2010 Dec. 5, 2011 0.267361 −5.065305 0.087721

4 Dec. 12, 2011 Mar. 12, 2012 0.048611 −4.826384 0.174328

5 Mar. 19, 2012 Apr. 30, 2012 0.024306 −5.108679 0.011079

6 May 7, 2012 Nov. 26, 2012 0.104167 −5.131156 0.079630

Japan tsunami (March 2011), (VI) the United States debt-ceiling crisis (May 2011),
and (VII) the Bank of Japan’s 10 trillion JPY gift on Valentine’s Day (February
2012).

Before entering these global affairs, both vP (s) and vD(s) took large values. Note
that, during the (I) Paribas shock, the (II) Bear Stearns and the (III) Lehman shock
vP (s) and vD(s) took smaller values than they did during the previous term. This
implies that a global shock may drive many participants and that these participants
may trade the same currencies at the same time. The smallest values vP (s) and
vD(t) correspond to the days of the (II) Bear Stearns shock, the (III) Lehman shock,
and the (VI) Euro crisis. These days are generally related to the start or the end of
macroeconomic shocks or crises. The period from December 2011 to March 2012
shows that the values of vD(s) are smaller than they were during other periods. This
result implies that, during period, singular patterns appeared in the transactions.

Figure 6 shows both the empirical and estimated cumulative distribution func-
tions of vP (s) and vD(s). The estimated cumulative distributions are drawn from
Eq. (39) with parameter estimates. The KS test verifies this mixing assumption.
The distribution estimated by the finite mixture of Gumbel distributions for quotes
is well fitted, as shown in Table 5. From the p-values, the mixture of Gumbel
distributions for quotations accepts the null hypothesis that vP (s) is sampled from
the mixing distribution with a 5% significance level. The mixture of Gumbel distri-
butions for transactions also accepts the null hypothesis that vD(s) is sampled from
the mixing distribution with a 5% significance level. Extrapolation of cumulative
distribution function also provides a guideline of the future probability of extreme
events. The finite mixture Gumbel distributions with parameter estimates may be
used as an inference of probable extreme synchrony.
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Fig. 5 Temporal
development of (a) vP (s) and
(b) vD(s) from May 28, 2007
to November 30, 2012. Each
color corresponds to a
segment which is shown in
Tables 3 and 4
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5 Conclusion

A method based on the concept of “entropy” in statistical physics was proposed
to quantify states of a bipartite network under constraints. The statistical–physical
network entropy of a bipartite network was derived under the constraints for the
number of links at each group node. Both numerical and theoretical calculations for
a binary bipartite graph with random links showed that the network entropy per link
can capture both the density and the concentration of links in the bipartite network.
The proposed method was applied to measure the structure of bipartite networks
consisting of currency pairs and participants in the foreign exchange market.

An empirical investigation of the total number of quotes and transactions was
conducted. The nonstationarity of the number of quotes and transactions strongly
affected the extreme value distributions. The empirical investigation confirmed that
the entropy per link decreased before and after the latest global shocks that have
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Fig. 6 Cumulative
distribution functions for the
minimum values of the
entropy per link in each week
(a) vP (s) and (b) vD(s).
Filled squares represent the
empirical distribution of
vP (s), and unfilled circles
represent the empirical
distribution of vD(s). A solid
curve represents the estimated
distribution of vP (s), and a
dashed curve represents the
estimated distribution of
vD(s)  0.0001
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Table 5 The p-values of statistical tests under the assumption of a finite mixture of Gumbel
distributions

p-val (P) KS-val (P) p-val (D) KS-val (D)

0.183793 1.092317 0.829013 0.625372

influenced the world economy. A method was proposed to determine segments with
recursive segmentation based on the Akaike information criterion between Gumbel
distributions with different parameters. Under the assumption of a finite mixture of
Gumbel distributions, the estimated distributions were verified by the Kolmogorov–
Smirnov test. The finite mixture of Gumbel distributions can estimate the occurrence
probabilities of extreme synchrony of a nonstationary system extracted as a bipartite
network. The extrapolation of the extreme synchrony can be done based on the
estimated mixture of Gumbel distributions.
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