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Abstract. As the complexity of ship arrangements increases, general
arrangements optimization technology based on evolutionary algorithms
has emerged, giving enormous potential to assist designers in enhanc-
ing the range of alternative arrangements and in expediting the design
process. This paper presents a hybrid evolutionary algorithm to han-
dle the multi-objective constrained arrangements optimization problem
based on elitist non-dominated sorting strategy. To enhance the efficiency
of optimization, a hybrid evolutionary algorithm that couples an NSGA-
II with a stochastic local search technique is used to find feasible solutions
rapidly and facilitate local optimization. However, the algorithm that can
rapidly find feasible solutions is also expected to contribute to better
optimization. It has also been observed that lack of diversity of poten-
tial solutions leads to a local optimal solution which means the coherent
arrangements could not be discovered. Hence, a modified replacement
strategy is proposed to overcome this drawback. The final experimen-
tal results illustrate that the algorithm is capable of generating coherent
arrangements.

Keywords: Ship arrangements · Multi-objective optimization ·
NSGA-II · Stochastic local search

1 Introduction

The arrangements optimization problem consists of determining the best size
and position for shipboard elements on several ship decks. The optimal goals
and constraints can be divided into two aspects, those of topology and geometry.
The arrangements optimization problem is one of the classical Non-deterministic
Polynomial Complete problems [1]. Moreover, the large number of variables and
constraints are the most significant features of arrangements optimization. The
large number of variables results in very high-dimensional and vast search spaces.
On the other hand, the large number of constraints makes the feasible solution
spaces become discrete and tiny relative to the search space. The ability to find
quick solutions is a challenging task in the arrangements optimization problem.
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Generating general arrangements is a crucial part of ship design. The tradi-
tional general arrangements design method is a repetitive trial-and-error proce-
dure, where different dimensions and positions of elements are adjusted until a
feasible arrangement, satisfying design requirements, emerges. During the past
30 years, the attention to ship arrangements optimization has been steadily
increasing. Cort and Hills [2] developed a manual iterative process for ship
arrangements optimization. The opportunities and challenges within the opti-
mization depend on the experience and inspiration of designers. Andrews [3–5]
proposed a function building block approach that is still a manual optimiza-
tion. As the complexity of ship arrangements increases, the design process may
become tedious and time consuming for humans.

The use of computers and evolutionary techniques that are capable of gen-
erating and contrasting enormous layout schemes have become an effective and
practical way for handling complicated arrangements design. Lee [6–8] used a
GA to derive solutions for ship compartment layout problems. Inner walls and
passages were considered during the optimization. Kim [9] proposed an expert
system and a multistage optimization for submarine arrangement design. Ölçer
[10,11] used an integrated multi-objective algorithm and decision-making tech-
niques to determine the subdivisions arrangement of a ro-ro passenger ship. Par-
sons [12], Nick [13] and Daniels [14,15] proposed a semi-automated approach—
Intelligent Ship Arrangements (ISA) that generates arrangements in an agent-
genetic process driven by constraints and a single objective. The shipboard ele-
ments are firstly allocated to pre-defined zone-decks; subsequently, the assigned
elements are arranged in each zone-deck. Gillespie [16,17] used a network par-
titioning method to identify the interaction among ship elements that have a
fixed area and developed a non-spatial, network theory-based approach to assign
shipboard items to structural zones. Oers [18–22] developed a packing approach
combined with NSGA-II to generate three-dimensional ship configurations. Each
shipboard element was assumed as a cubic unit. It is noted that a packing density
objective and a constant objective were used by NSGA-II to enable the search
process to proceed successfully. The NSGA-II is not necessary to generate a set
of Pareto-optimal solutions in this study, but generates a large and diverse set
of feasible arrangements where designers could subsequently choose an optimal
solution based on their own judgment.

However, the problem of arrangements optimization was studied beyond the
field of ship design. Pan [23] proposed a region division based diversity maintain-
ing approach for crashworthiness design of vehicles. Within the field of architec-
ture, Rodrigues et al. [24–26] used an evolutionary approach to multi-level space
allocation problems. In this case, seven different evaluators were mentioned and
aggregated in a single objective function subject to minimization. In other appli-
cations, such as the Facility Layout Problem, a new adaptive algorithm was
proposed for a facility layout [27]. In this case, the departments’ sizes are not
predetermined.

The reviewed literature related to ship arrangements optimization indicates
that most previous studies considered arrangements optimization as deterministic
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optimization, in which the size of shipboard elements is assumed to be constant. In
addition, the majority of researchers formulated the arrangements optimization as
a single objective optimization problem.

This paper presents an elitist non-dominated sorting hybrid evolutionary
technique to the ship arrangements optimization problem, in which size and posi-
tion of shipboard elements are considered as optimal variables. Three objectives
representing the separation relationships, circulation efficiency and compactness
are introduced to search a set of competitive design solutions.

The rest of this paper is organized as follows: Sect. 2 presents the problem
formulation and how objectives and constraints are computed within the math-
ematical model. Section 3 describes the enhancement that couples an NSGA-II
with a stochastic local search technique and the modified replacement strategy
in detail. The simulation results are presented in Sect. 4. The stochastic local
search technique and modified replacement strategy are discussed in Sect. 5.
And, finally, the paper is concluded in Sect. 6.

2 Mathematical Model

In this section, the formulation of the arrangements optimization problem is
described, and the basic nomenclature and definitions used are listed in Table 1.

Table 1. Basic nomenclature

Nomenclature

Ei Shipboard element i Si Deck Space i

vi Chromosome (individual) i ci New individual generated by parent

individual vi

Pi Population of the ith generation Qi Population combined Pi and P
′′
i

P
′
i Offspring of population Pi P

′′
i Offspring of population P

′
i

xk
i x-coordinate of element Ek or space Sk in

the individual vi

lki Length of element Ek or space Sk in the

individual vi

yk
i y-coordinate of element Ek or space Sk in

the individual vi

wk
i Width of element Ek or space Sk in the

individual vi

zki z -coordinate of element Ek or space Sk in

the individual vi

hk
i Height of element Ek in the individual

vi

ok
i Orientation of element Ek in the individual

vi

ski Area of element Ek in the individual vi

rki Aspect ratio of element Ek in the individual

vi

Dij Maximum separation between elements

Ei and Ej

DX ij Longitudinal separation between elements

Ei and Ej

DY ij Transverse separation between elements

Ei and Ej

plij Length of longitudinal common boundary

between elements Ei and Ej

pwij Width of transverse common boundary

between elements Ei and Ej

dpij Path distance between elements Ei and Ej dij Arrangement difference of two

individuals vi and vj

aij Area of overlaps between elements Ei and

Ej

cdi Crowding distance of solution i

U Separation relationship satisfaction matrix Mf Frequency matrix of material flow

Mc Cost matrix of material flow R Separation relationship matrix
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2.1 Problem Formulation

The ship arrangements optimization problem can be defined as an allocation
of a set of predetermined shipboard elements E = {E1,E2 . . .EN} on multi
two-dimensional deck spaces S = {S1,S2 . . .SN}, which satisfy the topological
relations and geometric requirements.

The shipboard elements are assumed to be rectangular. Each element
Ei(xi, yi, zi, si, ri, hi, oi) is determined by seven variables. The xi, yi, zi are the
left bottom vertex point coordinate. It is noted that the area si and aspect ratio
r i may be intuitive to define the boundary conditions of optimization for the
user, but increase the computational complexity. Hence, the length l i and width
w i calculated by Eqs. (1) and (2) would be used during the search process.

li =

{√
si · ri, oi = 1√
si/ri, oi = 2 .

(1)

wi =

{√
si/ri, oi = 1√
si · ri, oi = 2 .

(2)

Each deck space Si(xi, yi, zi, li, wi) is a rectangle controlled by five variables,
and all elements must be inside the deck space. The main deck space S 1 is
dependent on the ship’s hull and is predetermined before optimization. The
upper deck spaces S i such as bridge deck space, would be decided upon during
optimization according to the arrangements on the lower decks.

Different topological attributes would be assigned to each element according
to their category and function before optimization. The separation attributes
matrix R, material flow cost matrix Mc and material flow frequency matrix Mf
would be involved in this study.

2.2 Objective Functions and Constraints

The optimization is an evolving process of a population consisting of individuals.
Each individual considered in the optimization contains the size and position of
all shipboard elements. And the evolving process is the transformation of those
individuals with the purpose of improving their performances and satisfying
their requirements. In this paper, three objective functions named Separation,
Adjacency and Compactness are introduced to evaluate the topological and geo-
metrical performance of each individual.

The Separation Function expressed by Eq. (3) is used to assess the area uti-
lization efficiency of main deck space and the separation relationship satisfaction
among shipboard elements.

minf1 = 3

√√√√|
N∑
i=1

(si · ϕi)/(l1 · w1) − θ| · min(U) ·
N−1∑
i=1

N∑
j=i+1

Uij/(N!/2). (3)
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where l1 and w1 are the length and width of the main deck space, and θ is the
most efficient use of deck area. In this study, θ = 0.65. ϕi is used to determine
whether element E i is on the main deck. If element E i is on the main deck, ϕi

would be equal to 1. Otherwise, ϕi would be equal to 0. U is the separation
relationship satisfaction matrix and U ij determined by Eqs. (4)–(9) represents
the separation relationship satisfaction between element E i and element E j .

Uij =

⎧⎨
⎩

Rij , Dij ≤ tlow
Rij · [1 + (Dij − tlow)/(tlow − tup)], tlow < Dij ≤ tup
0, tup < Dij .

(4)

Dij = max(DXij ,DYij). (5)

DXij =
{
flij , flij > 0
0, flij ≤ 0.

(6)

DYij =
{
fwij , fwij > 0
0, fwij ≤ 0.

(7)

flij = max(xi + li, xj + lj) − min(xi, xj) − (li + lj). (8)

fwij = max(yi + wi, yj + wj) − min(yi, yj) − (wi + wj). (9)

The Adjacency Function expressed by Eq. (10) is used to assess adjacency
relationship satisfaction based on the total cost of material flow. If there is
logistical flow between two elements E i and E j , the path distance dpij of E i

and E j would be calculated as rectilinear distance by Eq. (11). δ is a coefficient
which is used to calculated the distance increment due to both elements in
different ship decks.

minf2 =
N−1∑
i=1

N∑
j=i+1

(dpij · Mcij · Mfij). (10)

dpij =

⎧⎪⎪⎨
⎪⎪⎩

flij + fwij + |zi − zj | · δ, flij > 0 and fwij > 0
flij + |zi − zj | · δ, flij > 0 and fwij ≤ 0
fwij + |zi − zj | · δ, flij ≤ 0 and fwij > 0
|zi − zj | · δ, flij ≤ 0 and fwij ≤ 0.

(11)

The Compactness Function expressed by Eqs. (12)–(14) is used to assess the
compactness of the arrangements. When the arrangement is neat and compact,
partial boundaries of the elements would be the common boundaries. This means
that the total elements’ perimeters of the compact arrangement plan would be
smaller.

minf3 =
N∑
i=1

[2 × (li + wi)] −
N−1∑
i=1

N∑
j=i+1

(plij + pwij). (12)

plij =
{−flij , flij < 0 and fwij = 0

0, otherwise.
(13)
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pwij =
{−fwij , fwij < 0 and flij = 0

0, otherwise.
(14)

The Constraint Functions expressed by Eqs. (15)–(17) are used to guarantee
that there is no overlap among elements. The overlap is decomposed into a
sub-overlap in x -coordinate and a sub-overlap in y-coordinate. Only if both sub-
overlaps are merged, would there be overlaps in the deck spaces.

(xolij − |xolij |) · (yolij − |yolij |) = 0. (15)

xolij = (xi + li − xj) · (xi − xj − lj). (16)

yolij = (yi + wi − yj) · (yi − yj − wj). (17)

3 A Hybrid Evolutionary Algorithm

Determining arrangements optimization can be difficult due to the large size of
the search space and the complexity of constraints. The Elitist Non-Dominated
Sorting Genetic Algorithm (NSGA-II) has proven to be an effective method
to determine multi-objective constrained optimization. However, such heuristic
methods only handle a reduced set of design variables and constraints. In order to
better address large-scale design variables and constraints, a hybrid evolutionary
algorithm based on the NSGA-II method is used to achieve a faster convergence
of search towards Pareto-optimal front and obtain a diversified solution set. In
this section, the details of the elitist non-dominated sorting hybrid evolutionary
algorithm are described.

3.1 Chromosome Encoding

Chromosome encoding is an important component of evolutionary algorithms. In
the arrangements optimization problem, each chromosome represents a general
arrangement scheme. For an arrangements optimization problem that involves
N shipboard elements, each chromosome is composed of 7N genes. The first 3N
genes of the chromosome represent the bottom vertices x -, y-, z -coordinates of
N elements, respectively. The next 3N genes represent the length l i, width w i

and height hi of each element. The last N gene represents the orientation. It
is noted that the length l i and width w i of elements are used for convenience
in the chromosome encoding rather than area si and aspect ratio r i. The z -
coordinates z i and height hi of elements are assumed as constant in this study.
The real coding is adopted, and a solution and its corresponding chromosome v
can be formulated as follow:

v = [x1 . . . xN , y1 . . . yN , z1 . . . zN , l1 . . . lN ,w1 . . .wN , h1 . . . hN , o1 . . . oN ] (18)



58 H. Wang et al.

3.2 Genetic and Stochastic Local Search Operators

As mentioned earlier, the proposed algorithm couples the NSGA-II with a sto-
chastic local search technique to facilitate local optimization. During both search
processes, the individuals are subject to a series of adaptive stochastic opera-
tors that perform positional and dimensional transformation of elements. The
genetic operators that include both crossover and mutation operators are used
to generate new offspring P

′
i from the parent P i. And the stochastic local search

operators containing both geometric and topological operators are applied to the
individuals in offspring P

′
i for generating the new population P

′′
i . After genetic

and stochastic local search operations have been carried out, the individual’s
objective function values and constraint violation are calculated. Then a com-
bined population Qi = P

′′
i ∪ Pi is formed and sorted. Finally, the modified

replacement strategy is used to generate the next population P i+1.
There are two kinds of genetic operators. One kind of genetic operator will

be invoked to generate new individuals at a time. In this study, if the gener-
ated random number is bigger than the crossover probability pc, the crossover
operation will be carried out; otherwise, the mutation operation will be carried
out. When the crossover operator is invoked, two different individuals who have
never been selected are chosen as parents. Each gene of both parents v i and v j

is randomly crossed to produce two new individuals ci and cj . The crossover
operation is expressed by Eqs. (19) and (20).

ci(k) = 0.5 × {[1 + 2 × (rk − 0.5)] · vi(k) + [1 − 2 × (rk − 0.5)] · vj(k)}. (19)

cj(k) = 0.5 × {[1 − 2 × (rk − 0.5)] · vi(k) + [1 + 2 × (rk − 0.5)] · vj(k)}. (20)

where the random number rk is randomly generated for each gene v(k) of par-
ents. If the mutation operator is applied, just one individual, having never been
selected, is chosen as a parent. And each gene of parent v i plus a random value
Δk is required to generate the new individual ci. The random value Δk and the
mutation operation are expressed by Eqs. (21) and (22) respectively.

Δk = 2 · (rk − 0.5) · (ubk − lbk). (21)

ci(k) = vi(k) + Δk. (22)

where the ubk is the upper boundary of the gene k and the lbk is the lower
boundary of the gene k.

The stochastic local search operators are applied after the offspring P
′
i has

been generated by genetic operation. In this search process, both kind of sto-
chastic local search operators work by repositioning the shipboard elements to
better satisfy the topological and geometric requirements. Except for the x - and
y-coordinates of elements, the remaining five variables are constant during this
search process. The stochastic local search operation would not be applied to the
individuals with the lowest rank in the population P

′
i. Since all individuals on the

first front of the parent population P i and offspring population P
′
i are included

in population Q i, elitism is ensured. The topological operator is used to improve
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the fitness of individuals. When there is a separation relationship between the
two elements E i and E j , and their spacing D ij is less than the threshold t low,
the topological operator is invoked. The geometric operator is used to search for
arrangements without any overlaps. Hence, the geometric operator would just
be invoked if there are overlaps, and in contrast, the topological operator would
be used only when there are no overlaps. If either stochastic local search oper-
ator is carried out, the elements would be translated to one of eight position,
(x + μ, y + μ), (x + μ, y), (x + μ, y − μ), (x, y + μ), (x, y − μ), (x − μ, y + μ), (x −
μ, y), (x − μ, y − μ). The magnitude μ of the translation on x -coordinate direc-
tion is randomly calculated between 0 and the length of element, likewise, the
magnitude μ of the translation on y–coordinate direction is randomly calculated
between 0 and the width of element. The geometric operator is aimed to reduce
the area ai of overlap and the perimeter pi reduced the overlap side, expressed
by Eqs. (23)–(26). fl ij and fw ij are calculated by Eqs. (8) and (9). pl ij and pw ij

are calculated by Eqs. (13) and (14). The topological operator is used to reduce
the value of the Separation Function and Adjacency Function. The element will
continue to translate until fitness cannot be further reduced.

ai =
N,i �=j∑
j=1

aij . (23)

aij =
{
flij · fwij , flij > 0 and fwij > 0
0, otherwise.

(24)

pi =
N,i �=j∑
j=1

pij . (25)

pij = 2 × (li + wi) −
N,i �=j∑
j=1

(plij + pwij). (26)

The pseudocode for stochastic local search operators is outlined as follows. In
this procedure, in order to generate better individuals, the main body (Calculate
μ) of this procedure is executed at most 50 times for each individual. When the
process is continue to calculate all individuals of population, the total complexity
is O(50N ).

The pseudocode for stochastic local search operators

for j=1:N

Calculate the number of constraint violations n of element Ei;

if n>0

Geometrical operator is invoked;

elseif n=0 and Dij<tlow

Topological operator is invoked;

Set k=1;

while fitness(k)<fitness(k-1) and k<50 and u!=0

k=k+1;
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Calculate u=random(li-u) or u=random(wi-u);

Calculate the fitness ai, pi or f1, f2 of eight positions;

Select the position with minimum fitness(k) as the new position of Ei;

end while

end for

Output: the individual in population Pi.

3.3 Modified Replacement Strategy

Non-domination rank and crowding distance are two significant attributes of each
individual in the NSGA-II. The solution with the lower rank would be retained. If
both solutions have the same rank, the solution that is located in a less crowded
region would be retained [28]. The crowding distance computation for objectives
is used to measure the extent of proximity with other solutions. This guarantees
diversity of the population and a uniformly spread out Pareto-optimal front,
but the crowding distance computation for objectives is not suitable to maintain
the diversity of population for arrangements optimization. In the arrangements
optimization problem, two completely different arrangement schemes may have
similar values of the objective functions. This means the discrepancy in solution
space does not guarantee the differentiability in objective space. The failure to
keep diversity of population indicates that the original replacement strategy in
the NSGA-II is not sufficient to deal with such problems.

In this paper, a modified replacement strategy is used for the arrangements
optimization problem. The position differences of elements are calculated to esti-
mate the diversity of the solution. The quantity d ij serves as a computation of
the position difference of all elements between solution i and solution j, deter-
mined by Eq. (27).

dij =
N∑

k=1

(|xik − xjk| + |yik − yjk|). (27)

The crowding distance cd i of the solution i is expressed by Eq. (28), which
minimizes the position difference of all elements with other solutions. Hence, the
solution with larger crowding distance will be retained in the population if the
two solution are on the same non-dominate front. Since each solution must be
compared with all other solution in the population, the overall complexity of the
crowding distance calculation is O(N 2).

cdi = min(di1, di1 . . . diN ), i �= j. (28)

The pseudocode of the hybrid evolutionary algorithm is outlined as follows.
The fast non-dominated sorting approach with O(MN 2) computational complex-
ity is presented in [28]. The complexity of this modified replacement strategy is
governed by the sorting algorithm. Since K independent sortings of at most N
solutions (when all individuals are in one front F ) are involved, the modified
replacement strategy has O(KNlogN ) computational complexity.
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The pseudocode of the hybrid evolutionary algorithm

Initilization

Randomly generate P0;

Set Q0=null and t=0;

While i< max generation number

Generate offspring Pi’ using genetic operators;

Update offspring Pi’ to Pi’’ using stochastic local search operators;

Qi=[pi’’ pi];

Sort Qi;

Calculate crowding distance cdi of different front in Qi;

Delete the duplicate individuals (cdi<threshold) in Qi;

Add new random individuals in the population;

Sort Qi where front={F1,F2...};

Set Pi+1=null and j=1;

While |Pi+1|+|Fj|<pop

Calculate crowding distance of Fj;

Add the jth non-dominated front Fj to Pi+1;

j=j+1;

end While

Sort Fj according to crowding distance;

Fill Pi+1 with first pop-|Pi+1| individuals of Fj;

end While

Output: non-dominated solution in Pi.

4 A Case Study of a Survey Ship

In this section, a survey ship arrangement optimization was carried out to test
whether the proposed algorithm is capable of generating several coherent general
arrangements. The shipboard elements involved in the optimization are listed in
Fig. 1. Three ship deck spaces considered in the optimization are main deck space
S 1, accommodation deck space S 2 and bridge deck space S 3. The z -coordinate
z i and height hi of elements are constants during the optimization. It is noted
that each stair is arranged in the same position on both decks to which it is
connected. Also, the submersible decompression chamber is a fixed element dur-
ing the optimization. The bridge must be arranged in the forefront of bridge
deck space. The sizes of the initial population and the offspring are both set as
100. The crossover probability is set as 0.8, and the stopping criterion is set to
500 generations. Finally, four coherent arrangements with some differences were
generated as shown in Figs. 2, 3, 4 and 5.

To account for the effectiveness of the stochastic local search operators, the
proposed algorithm is run 10 times with and without the stochastic local search
operators on each instance. The speed of the two algorithms to find the individu-
als without any overlaps is shown in Fig. 6. The comparison of the Pareto-optimal
fronts with two different replacement strategies is shown in Fig. 7.
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Fig. 1. The color-map of shipboard elements arranged on multi-decks.

Fig. 2. The arrangement of survey ship (a).

Fig. 3. The arrangement of survey ship (b).

The proposed algorithm is run 10 times with original replacement strategy
and modified replacement strategy respectively. The number and similarity of
solutions in two Pareto-optimal fronts using different replacement strategies is
illustrated in Table 2.
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Fig. 4. The arrangement of survey ship (c).

Fig. 5. The arrangement of survey ship (d).

Fig. 6. The speed of the two algorithms to find the individuals without any overlaps.

Table 2. The number and similarity of solutions in two Pareto-optimal fronts using
different replacement strategies.

Parameters Original replacement strategy Modified replacement strategy

Number Similarity Number Similarity

Mean 85.8 91.3% 7.7 32.1%

Max 91 94.5% 11 42.9%

Min 77 87.2% 4 16.7%



64 H. Wang et al.

Fig. 7. The comparison of Pareto-optimal fronts with different replacement strategies.

5 Discussion

The stochastic local search operators and modified replacement strategy are dis-
cussed in this section.

5.1 Stochastic Local Search Operators

The experimental results of stochastic local search operators indicate that these
kind of operators are able to facilitate finding the individuals without any over-
laps, and improving the performance of the proposed algorithm. The algorithm
with the stochastic local search operators is faster to find feasible solutions than
the algorithm without the stochastic local search operators. When the stochastic
local search operation is carried out, the solutions without any overlaps emerge
between 180 and 220 generations. If the stochastic local search operators are not
invoked, the solutions without any overlaps would not be able to be discovered,
and the number of constraint violations is finally stable at 2–3. However, an
algorithm that can rapidly find feasible solutions is expected to result in better
optimization.

The Pareto-optimal fronts are also compared. The Adjacency Function and
Separation Function are selected as the objective of comparison as shown in
Fig. 7. The dashed line zone is composed of black dots that represents the Pareto-
optimal solutions generated using the stochastic local search operators. The solid
line zone is composed of red dots that represents the Pareto-optimal solutions
that does not use the stochastic local search. It can be observed that the dashed
line zone is at the bottom left of the solid line zone which means the solution
in the dashed line zone is better than in the solid line zone. Thus, it can be
concluded that the proposed coupling of the NSGA-II with a stochastic local
search technique is able to improve the fitness of solutions, and enhance the
performance of searching for a feasible solution.

5.2 Modified Replacement Strategy

The proposed modified replacement strategy is compared with the original
replacement strategy in the NSGA-II. The comparison focuses on the number
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and the similarity of solutions in different Pareto-optimal fronts using the two
replacement strategies. As shown in Table 2, the number of solutions in Pareto-
optimal fronts using the original replacement strategy is much greater than using
the modified replacement strategy. The similarity of solutions using original
replacement strategy is 91.3%, and the similarity of solutions using modified
replacement strategy is 32.1%. The results indicate that the diversity of popula-
tion is rapidly lost when the original replacement strategy is used. The original
replacement strategy would result in dozens of solutions, but all solutions rep-
resent similar arrangements. Furthermore, these solutions are just local optimal
solutions. The modified replacement strategy may result in fewer solutions within
the Pareto-optimal front, but the Pareto-optimal front contains several different
arrangement plans. For instance, there are four different arrangements in the
Pareto-optimal front as shown in Sect. 4.

6 Conclusion

This paper investigates the arrangements optimization problems where the size
and position of elements are simultaneously considered as optimization variables.
The main purpose of this study is to assist ship designers in enhancing the range
of alternative arrangements and expediting the design process.

A multi-objective constrained optimization mathematical model of arrange-
ments problem has been established according to the topological and geomet-
rical requirements. The objective functions consist of three evaluators. A series
of nonlinear equality constraints is used to determine whether there is overlap
between two elements resulting from the constraints of optimization. A survey
ship arrangements optimization is applied, and four different general arrange-
ments of the survey ship have been generated.

In order to quickly solve arrangements optimization problems, this paper
describes an elitist non-dominated sorting hybrid evolutionary algorithm, in
which the NSGA-II is enriched with a stochastic local search technique to tackle
the topological and geometrical requirements. It combines the advantages of
using an evolutionary algorithm to search a large solution space with a sto-
chastic local search technique to deal with geometrical constraints and locally
improve each individual. The modification of the replacement is used to main-
tain the diversity of population. The effectiveness of both enhancements has
been tested. The simulation results indicate that the proposed approach is able
to generate a set of coherent arrangements.
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