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Abstract. Recommender systems have received much attention due to
their wide applications. Current recommender approaches typically rec-
ommend items to user based on the rating prediction. However, the pre-
dicted ratings cannot truly reflect users interests on items because the
rating prediction is usually based on history data and does not consider
the effect of time factor on uses interests (behaviors). In this paper, we
propose a recommendation approach combining the matrix factorization
and a recurrent neural network. In this approach, all the items rated by a
user are considered as time series data. The matrix factorization is used
to obtain latent vectors of those items. The recurrent neural network is
taken as a time series prediction model and trained by the latent vectors
of historical items, and then the trained model is used to predict the
latent vector of the item to be recommended. Finally, a recommendation
list is formed by mapping the latent vector into a set of items. Exper-
imental results show that the proposed approach is able to produce an
effective recommend list and outperforms those comparative approaches.

Keywords: Recommender systems · Matrix factorization · Recurrent
neural network · Latent factor

1 Introduction

Recommender systems are received much attention in recent years [1]. They
help users find information or goods that interest them and make enterprises get
more profits by recommending suitable items to users. Recommender systems
have been applied to a variety of areas, such as movies, music, books, news and
services recommendation.

Numerous recommender approaches have been proposed over the years
[2]. Among those approaches, content-based approaches and collaborative fil-
tering (CF) approaches are two typical categories of recommend approaches.
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CF approaches are probably the most successfully and widely used techniques
in recommender systems and includes neighbor-based CF [1–4] and model-
based CF.

As a representative of the model-based CF, the matrix factorization (MF)
approach [5,6] represents the interaction between users and items with a rating
matrix. It assumes that users and items are in the same latent space, and that
each user or item can be represented by a latent vector in the latent space. It
predicts unknown ratings in the matrix through a matrix factorization model,
which decomposes the rating matrix into users and items latent vectors.

Many researchers proposed improved matrix factorization approaches to get
better predicting results. Koren [7] proposed an approach combining the matrix
factorization with a neighbor-based approach, and integrated implicit feedback
in the modeling process. Salakhutdinov [8] proposed a probabilistic matrix fac-
torization model which greatly reduce the overfitting of the traditional matrix
factorization model. In [9], Salakhutdinov et al. further used the Markov Chain
Monte Carlo model to optimize the parameters to reduce the overfitting and
improve predicting accuracy of the probabilistic matrix factorization. In [10],
the item factors between the matrix factorization and item embedding parts are
shared, and the rating matrix and item co occurrence matrix are factorized at the
same time. Some approaches are proposed to improve predicting results through
adding supplementary information to MF [11–14]. For example, Gopalan et al.
used Poisson factorization to model both user ratings and document content.
Rather than modeling the two types of data as independent factorization prob-
lems, they connected the two latent factorizations using a correction term [11].
Mcauley et al. developed statistical models that combine latent dimensions in
rating data with topics in review text, taking the corpus likelihood acts as a
regularizer for the rating prediction model [12].

In practice, the predicted rating of a user on an item may not truly reflect
the users interest on the item. For example, the rating of a user on an item is
usually predicted based on all history data, and the predicted rating is not very
high. That does not mean that the user does not have interest in the item all the
time. The user may be interested in the item at some particular time because
the interest of a user usually changes over time. Therefore, time is an import
factor that has an effect on recommendation results.

In this paper, we propose a recommendation approach combining the matrix
factorization approach with a recurrent neural network (RNN). Instead of pre-
dicting ratings of a user on items directly, our approach considers the items rated
by a user as a time series data, and then use the RNN as a time series prediction
model to predict a recommend list to the user. First, all items rated by a user are
sorted according to the time when the user rates those items. Then, the matrix
factorization approach is used to get latent factor vectors of those items. Sub-
sequently, the RNN uses latent vectors of historical items to predict the latent
vector of the item that may interest the user. Finally, a number of items with
latent vectors closest to the predicted one forms the final recommendation list.
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The main contributions of this paper include: (1) propose a recommendation
approach combining the matrix factorization and the recurrent neural network;
(2) latent factors of items are introduced into the prediction of a recommend
list. To the best of our knowledge, our approach is the first work on applying
latent factors to the time series prediction model for items recommendation.

This paper is organized as follows. Section 2 presents the proposed recommen-
dation approach. Section 3 gives experimental results and the analysis. Section 4
concludes this paper.

2 Proposed Recommendation Approach

Given the time series of items rated by a user, our approach is to predict a set
of items that the user will consume next.

Take the movie recommendation for example, suppose that there are n users
{U1, U2, ..., Un} and m movies {I1, I2, ..., In}. All the movies watched by a user
can be sorted by the time when the user watches movies, thereby getting a
sequence of movies, denoted by S. Let {Itk , Itk +1 , ...Itk +T

} be (T + 1) consecu-
tive items in S, where tk is the index of the kth item in S.

In our approach, items {Itk , Itk +1 , ...Itk +T − 1} are used to predict item Itk +T
.

The key issue is how to express an item in the sequence S. A straight forward
method is to adopt the one-hot encoder to represent an item [21]. However, the
one-hot encoder would consume too many memory resources because there may
be millions of items for some recommendation problems. In this paper, we use
the matrix factorization approach to get a low-rank latent vector for an item.
Each item is represented by a latent vector. The number of dimensions of the
latent vector is much smaller than that of one-hot encoder of items.

Our approach is shown in Fig. 1. First, the matrix factorization approach is
used to decompose the rating matrix into latent vectors of items, such that each
item corresponds to a unique latent vector. Let κ be the number of dimensions of
a latent vectors. In the example shown in Fig. 1, κ = 5. For the consecutive items
{Itk , Itk +1 , ...Itk +T

} in S, latent vectors of items {Itk , Itk +1 , ...Itk +T − 1} are
taken as the inputs of the RNN to predict the latent vector of item Itk +T

. Finally,
the recommend list is constructed by s items whose latent vectors are closest to
the predicted latent vector. Suppose that nj is the index of the j th item in the
s sequence items. The recommendation list is expressed by {In1 , In2 , ..., Ins

}.
This approach integrates the time factor into the RNN model to emphasize the
change of users interests and behaviors with time.

2.1 Generating Latent Vectors by Matrix Factorization

Matrix factorization is one of the most popular and useful CF models in rec-
ommender systems. Users interaction with items, especially explicit feedback,
are typically represented by a rating matrix. Take a movie recommendation for
example, a user rates a movie after watching it. The rating is from 1 to 5, rep-
resenting the users evaluation on the movie. Figure 2 is a rating matrix with m
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Fig. 1. The proposed recommendation approach

users and n items. Each row is a users watching history, and each column repre-
sents the history of one movie being watched. There are many missing ratings in
the matrix. The goal of matrix factorization approach is to predict those miss-
ing ratings in the matrix, and then recommend those movies with high predicted
ratings to users.

Fig. 2. An example of rating matrix

Instead of predicting items ratings, in this paper we use the matrix factoriza-
tion to get items latent vectors. Matrix factorization is based on the assumption
that latent vectors of users and items are in the same latent space, and that
each user and item can be expressed by a latent vector. Given a rating matrix,
matrix factorization decomposes the matrix into the product of users and items
latent factors, denoted by pu ∈ �κ(u = 1, ...,m) and qi ∈ �κ(i = 1, ..., n),
respectively, where κ is the number of dimensions of latent vectors. The rating
of user u on item i is predicted by

r̂ui = puqT
i (1)
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Latent vectors of users and items are learned by using those known ratings in
the matrix. The optimization objective is to minimize the following regularized
squared error.

min
p∗,q∗

∑

(u,i)∈D

(rui − puqT
i )2 + λ(‖pu‖2 + ‖qi‖2)2 (2)

where rui is the rating of user u on item i; D is the set of all (u, i) pairs for
which the rating rui is known in the matrix. To avoid overfitting and improve the
generalization ability, we need to regularize the learned latent factors. Parameter
λ is to control the extent of regularization and usually determined by the cross-
validation [5]. The latent vectors of all users and items are learned by the gradient
descent method.

2.2 Recurrent Neural Network for Latent Vectors Prediction

Neural networks have been applied to recommender systems in recent years
[15,17,21]. Literatures [15,16] used a shallow Restricted Boltzmann Machines
neural network to predict the ratings. In literatures [17,18], unknown ratings
are predicted by auto-encoder neural networks trained by an unsupervised learn
algorithm. Paul et al. [19] devised a recommender system which is comprised of
two neural networks, one for candidate generation and the other for ranking.

Instead of using a neural network to predict the ratings, this paper uses a
recurrent neural network to predict the list of items that interests a user. Recur-
rent neural networks have been proved to be effective for time series prediction,
and as such, we adopt a recurrent neural network to predict the latent vectors
of items.

The recurrent network is shown in Fig. 3. Recurrent neural networks all loops
with themselves, allowing information to persist. In this process, each step every
unit takes previous outputs as one part of inputs. So the process is much like a
chain, and naturally fit to model the sequence data.

Fig. 3. Predicting latent vectors by RNN.

In Fig. 3, st is the state of the RNN at time step t. U(V ) is the input(output)
weight of the RNN. W is the state weight of the RNN. Inputs of the RNN are
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items latent vectors. The number of RNN unfolded back steps is denoted by T ,
which is also the window size of the items sequence.

In this paper, we adopt a popular RNN named Long Short-Term Memory
(LSTM). The parameter W is learned by the Backpropagation Through Time
algorithm [22], and other parameters are learned by the Backpropagation learn-
ing algorithm. We use the following square loss function, which is to be minimized
by the learning algorithms.

r̂ui = Etk(Itk , ̂Itk) =
1
2
(Itk − ̂Itk)2 (3)

E =
∑

tk

Etk(Itk , ̂Itk) =
1
2

∑

tk

(Itk − ̂Itk)2 (4)

where Itk is the kth item in the sequence S, and ̂Itk is the corresponding predicted
item. The loss function value is the sum of errors between predicted latent vectors
and actual ones. In the item sequence S, each set of (T + 1) consecutive items
is regarded as a training example. As shown in Fig. 3, latent vectors of the first
(last) T items are inputs (outputs) of the RNN.

2.3 Generate a Recommendation List by Predicted Latent Vectors

The output of the RNN is a predicted latent vector. Recall that we have the
latent vectors of all items. The n items whose latent vectors are closest to the
predicted one are chosen to form the recommendation list.

Euclidean distance is used to calculate the distance of any two latten vectors.

dist(qi, qj) =
√

∑

x

(qix − qj)2 (5)

where qi and qj are any two latent vectors.

3 Experiments

To verify the proposed approach, it is applied to a real life dataset, Movie-
Lens (1M), which is a popular dataset to test recommendation approaches. The
dataset has total 6040 users and 3952 movies. A user rates a movie after watch-
ing it. There are 1000209 ratings, each of which is an integer from 1 to 5. Every
user watched at least 20 movies in the dataset.

3.1 Performance Metrics

The commonly used matrix of recall rate is used to evaluate the proposed app-
roach and those comparative approaches. For user i, the recall rate is expressed
by

recalli = |recom listi
⋂

target listi|/|target listi| (6)
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For user i, the last n items in the sequence S are used as test data, and other
items are used to train the RNN. As stated in Sect. 2.3, the recommendation list
predicted by the RNN, recom listi, contains n items. target listi consists of the
last n items, that is, the last n movies actually watched by the user.

The average recall rate is defined as follows.

avg recall =
∑

i∈Users

recalli/|Users| (7)

where Users represents the set of all users. In the following experiments, the
matrix of recall rate refers to the average recall rate.

3.2 Experiment Settings

As stated in Sect. 2, for a user, a movies sequence S can be obtained. In the
sequence S, the last 10 movies are chosen as test data, and other movies as
training data to train the RNN. In the training data, the size of time window,
T , is set as 10. It means that every 10 consecutive movies in the sequence are
treated as a training example. The number of items in the recommendation list,
s, is given by 10.

The number of dimensions of latent vectors, κ, is set to be 10. The matrix
factorization in our approach is realized by the open source software LIBMF.
The MF models learning rate is set as 0.05 and the training epoch as 800.

We implement the RNN (LSTM) in the tensorflow framework of version 0.12.
The learning rate is given by 0.1 and the training epoch by 6. The parameter of
hidden size of the LSTM is set to be 10 and the number of RNN unfolded back
steps is set as 9.

3.3 Experiment Results

The proposed approach is compared against the following typical recommenda-
tion approaches.

– Item-based KNN [3,4]: item-based k-nearest neighbor collaborative filtering.
– User-based KNN [1,2]: user-based k-nearest neighbor collaborative filtering.
– MF: basic Matrix Factorization recommender.
– Biased MF: biased Matrix Factorization recommender.
– BPMF [9]: Bayesian Probabilistic Matrix Factorization using Markov Chain

Monte Carlo.
– PMF [8]: Probabilistic Matrix Factorization.

All above comparative approaches are implemented using the open source
platform librec [20]. They use the same training and test data as our approach.

Experiment results are presented in Table 1. Table 1 shows that the proposed
approach outperforms all of the matrix factorization approaches and the two
neighbor-based CF approaches. Average recall rates obtained by all matrix fac-
torization approaches are smaller than 0.08, and are much smaller than that of
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Table 1. Comparison results on MovieLens (1M) dataset.

Methods Item-based-KNN User-based-KNN MF

Recall rate 0.003 0.019 0.004

Methods BPMF PMF Biased MF

Recall rate 0.002 0.008 0.007

Methods Our approach

Recall rate 0.024

Table 2. The produced recommendation list for a user.

Recommendation list of movies

Movies Movie types

Regret to Inform(1998) Documentary

It’s a Wonderful Life(1963) Drama

Charade(1963) Comedy,Mystery,Romance,Thriller

Toy Story(1995) Animation,Childrens,Comedy

Run Silent,Run Deep(1958) War

Beauty and the Beast (1991) Animation,Childrens,Musical

Day the Earth Stood Still(1951) Drama,War

Sting(1973) Comedy,Crime

Great Escape(1963) Adventure,War

Running Free(2000) Drama

Actually watched list of movies

Movies Movie types

Beauty and the Beast(1991) Animation,Childrens,Musical

Toy Story(1995) Animation,Childrens,Comedy

Aladdin(1992) Animation,Childrens,Comedy

Close Shave(1995) Animation,Comedy,Thriller

Antz(1998) Animation,Childrens

Hunchback of Notre Dame(1996) Animation,Childrens,Musical

Bugs Life(1998) Animation,Childrens,Comedy

Mulan(1998) Animation,Childrens

Hercules(1997) Animation,Childrens,Comedy

Pocahontas(1995) Animation,Childrens,Musical

our approach. Among all comparative approaches, the user-based KNN obtains
the best average recall rate 0.019, which is also lower than that of our approach.
For the movie recommendation problem, interests and behaviors of users may
change over time and the problem is actually a time series prediction problem.
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RNN is a powerful tool for the time series prediction, such that it is more suit-
able for such problem than matrix factorization approaches, which recommend
movies based on predicted ratings and do not consider the effect of time factor
on recommendation results.

To observe recommendation results intuitively, Table 2 gives the recom-
mended list produced by our approach for a user. The actually watched movies
by the user are also given in the Table. We can see that many movies in the
recommendation list belong to the types of animations and comedies. Most of
actually watched movies also belong to the two types. It indicates that our app-
roach is able to recommend appropriate movies to the user and those movies
reflect the users interests.

4 Conclusions

In this paper, a recommendation approach combining a matrix factorization and
a recurrent neural network is proposed. Different from the traditional recommen-
dation approaches based on ratings prediction, this approach considers the items
rated by a user as a set of time series data. First, the matrix factorization is used
to obtain latent vectors of all items, such that the time series items are trans-
formed into time series latent vectors. Then, the recurrent neural network is
taken as a time series prediction mode to predict a latent vector. Finally, a rec-
ommendation list is produced by the predicted latent vector. Experiments show
that the proposed approach outperforms those comparative approaches and can
produce appropriate recommend lists for users.
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