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Abstract. Population size in evolutionary algorithms (EAs) is critical
for their performance. In this paper, we first give a comprehensive review
of existing population control methods. Then, a few representative meth-
ods are selected and empirically compared on a range of well-known
benchmark functions to show their pros and cons.
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1 Introduction

Evolutionary algorithms (EAs) are a broad class of stochastic search heuristics
that perform optimization or learning tasks. While they have been successfully
applied to various science and engineering problems, the performance of EAs
depends critically on the setting of various parameters [1], among which the
population size is perhaps the most important one. Generally, a too small pop-
ulation size will lead to the premature convergence of EAs, while a too large
size will reduce the EAs’ efficiency. In traditional EAs, the population size is
typically specified by the user to a fixed value and remains constant during the
entire evolution. However, it has been well recognized that the optimal size of
population is problem-specific [2–6]. Further, it has been demonstrated that dif-
ferent population sizes may be required at different stages of evolution [7–10].
To specify the population size in such a manner therefore may significantly limit
the performance of EAs.

To deal with the above issue, dynamic population control has become an
active yet important research topic and many different schemes have been pro-
posed in literature [9,11–14]. Several works of reviewing or comparing existing
methods have been presented. In 1999, Costa [2] gave a comparative study of
population control methods, in which five dynamic population control schemes
are reviewed and compared. More than a decade later, Karafotias [15] provided
a survey regarding to the parameter control in EAs. Although a few dynamic
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population control methods have been reviewed, this work focuses mainly on
parameter setting schemes for variation operators of EAs. Recently, Piotrowski
[16] presented another review along with comparison results of several dynamic
population control schemes. The scope of this work, however, is limited to the
differential evolution (DE).

In this paper, we give a comprehensive review of the population control
methods proposed in EA literature. Further, several representative methods have
been selected and compared to gain deep understanding of their pros and cons.

2 Population Control in Evolutionary Algorithms

Much work has been carried out regarding to the control of population size in
EAs. In this section, we first provide an overview of theoretical studies in the
field and then review exiting methods, which are divided in three categories, i.e.,
deterministic, adaptive and self-adaptive methods.

2.1 Theoretical Studies

In [17], Holdener recognized that the optimal allocation of trials in genetic algo-
rithm (GA) characterized by the conjunction of substantial complexity and ini-
tial uncertainty as well as a requirement of employing new information in the
population to rapidly reduce this uncertainty. This area remains untouched for
many years until Goldberg studied the population size as a parameter from a
theoretical point of view based on the decomposition for designing competent
GAs. In this work, Goldberg [18] considers the evolution of GA as the growth
of building blocks (BBs) and points out that a successful GA should ensure
an adequate supply of BBs in the initial population. In [19], Reeves calculated
the minimum population size required for at least one instance of every allele
being presented at each locus in binary string as well as n-nary representation.
While having all alleles present in the initial population is important, this work
suggests that the present of desired building blocks in the initial population is
crucial for the GAs’ performance. Later, in [20], Goldberg determined the prob-
ability of actual building blocks presented in a population and developed models
to calculate population size required for the success probability of GA asymptot-
ically reaching 100%. Apart from the building block theory, the population size
has also been studied under the statistical decision. In [21], De Jong presented
several equations to determine the population size based on the noise theory in
statistical decision. In [7], Goldberg extended the equations to calculate the size
of population based on the permissible errors between building blocks, variation
and complexity of the problem. While, in [22], Harik developed an alternative
equation to predict the quality of solution found in a given population size based
on the theory of random walks and gamblers ruin. Unfortunately, the above the-
oretical studies are generally not practical for real applications. However, they
do reveal that the population size is crucial for the performance of EAs.
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2.2 Deterministic Methods

To deal with the issue of population size, many methods seek to dynamically
change it during evolution based on deterministic rules. In [12,23–25], Fernández
et al. presented a method based on the phenomena of plague [12], in which a
fixed number of individuals (i.e., the worst ones) are removed at every gener-
ation of evolution. Instead of removing individuals at each generation, Brest
[13] proposed a method, which gradually reduces the population size by half
each time when a specific condition is met during the evolution. This reduction
mechanism has been successfully used in EAs for solving various optimization
problems [26–32]. Extending the above mechanism, in [33], Brest et al. designed
a method, which starts with a small population size at the beginning. Then,
during the evolution, the population is first increased with a specific size deter-
mined by a constant value and then reduced by half. Although it has shown
to be promising [33], Neri [34] pointed out that such a method is not working
well in DE. Rather than increasing or decreasing a specific number of individual
after each specific number of generations during evolution, a few methods have
been proposed to automatically adjust the size of population based on predefined
functions. For example, Koumousis et al. introduced functions with saw-tooth
shape [35] and sinusoidal oscillating [36] for adjusting the population size. Other
functions, such as linear functions [30,37,38] have also been used for population
control and applied in various optimization problems [39–42].

2.3 Adaptive Methods

Adaptive methods utilize feedback from the search to determine the direction
and magnitude of change of population size. Based on the feedback information
used, we divide the existing methods into three categories and review them
accordingly.

Fitness Based Methods. The methods falling into this category adaptively
change the population size based on the fitness of individuals. In [43–47], the size
of a population is modified if the fitness of the best individual does not change
for a period of time. Specifically, Montiel [43] et al. calculated the amounts of
individuals should be inserted or deleted from the population based on two vari-
ables, “Cycling” and “Variance”. The “Cycling” is used to account the number
of times that the fitness of the best individual does not have a significant change
and the “Variance” is used to calculate the variance of the fitness of the best
individuals during the “Cycling” period. In [44], new individuals are inserted
into the population when the fitness of the best individual does not improve in
m generations. In [45,48], the population is first ordered based on the fitness of
individuals and a predefined percent of individuals is inserted or deleted from
the population. In [46], a predefined number of individuals are added if the best
individual does not change for m generations while the population is resized to
its initial size if the best individual improves its fitness. In [47], a new population
is created by selecting good individuals from an extinguished population when
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extinction occurs, and at every generation, individuals will be eliminated when
they reach their lifetime. In [49–53], subpopulations are used for competitive
evolution and are resized based their fitness. Typically, when the average fitness
of a subpopulation falls below a predefined significance level, it will be removed.
Specifically, in [50], Smorodkina provided a competition scheme between two
parallel subpopulations, while Hinterding [51] and Harik [52] do not restrict the
number of subpopulations. Schlierkamp-Voosen [49] employs a migration scheme,
in which the best individual is migrated to all other subpopulations. While, Zhan
[53] suggested that all the poor subpopulations randomly migrate one individual
to the good subpopulations.

Apart from the above methods, some methods employ lifetime and survival
probability, which is derived from the fitness, to control the population size.
The classical method is the Genetic Algorithm with Varying Population Size
(GAVaPS) proposed by Arabas et al. [11], which introduced the concept of age
for the individual. In this method, population size is dictated by birth and death
of individuals, controlled by their lifetime and measured by fitness. Proceeding
in a generational manner, each individual’s age is increased at each time step
and removed when it exceeds its lifetime. The lifetime mechanism is extended
using non-random mating to prevent incest by Fernándes et al. [54,55], and
applied to multimodal optimization [56], vehicle detection [57] and distribution
network reconfiguration [10]. The main drawback of GAVaPS is that, in the
worst case, the population size will be doubled in the successive generations
thus may lead to population explosion. To address such an issue, Bäck [58]
proposed to preserve all the fittest individuals and only two new individuals
will be generated and inserted into the population at each generation. This
scheme has been applied to co-operative co-evolution by Lorio and Li [59]. In [47],
Zhang developed an extinction scheme for population control. In this scheme,
individuals will be eliminated if there are no improvements made during the
evolution. While, in [60], Vellev introduced the concept of survival probability,
which defines a collective probability used to control the size of the population.
Along this line, Cook [61] described another formula to calculate the survival
probability for population size control.

Distribution Based Methods. This kind of methods control the population
size based on the distribution information of population. In [7], Goldberg first
proposed a micro GA in which the population is reinitialized when a nominal
convergence (e.g., when all the individuals have either identical or very similar
genotypes) is detected. In [62], a similar re-initialization scheme is introduced
with an elitist strategy along with a competition scheme, which chooses the
winner individuals to be included into the population. The micro GA has been
successfully applied in various applications [63–65], which show a better per-
formance compared to the standard GA. Another way to measure the distrib-
ution of population is to calculate the distance between individuals. In [66,67],
Khor and Tan suggested the desired population size should be bounded within a
limit, measured by the maximum distance between each other in the population.
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Liang [68] combined the relative ascending directions and the distance between
two individuals to determine whether they are located in the same peak. This
information is then used for population control. In [69], Yang calculated the sum
Euclidean distances and generated a new population if it does not change for a
period of time. While in [70], the individual with the smallest Euclidean distance
will be removed at every generation as a mechanism for population control. In
[71], Auge introduced a dispersion degree for population control. A population
initialization is launched when the calculated dispersion degree meets the stop-
ping criterion and the population size is increased by a factor of 2. In addition,
Shi [72] assumed the center of the population moved slowly when the variance
of population is large. In this case, the population size is decreased to accelerate
the speed of convergence and vice versa.

Fitness and Distribution Based Methods. The methods in this category
are based on both the fitness and distribution information for population control.
Smith [73] presented such a method, in which the mean fitness and variance of
population is calculated and compared to a predefined desired value to decide
whether assign more (or less) individuals to a population. This method was
extended by Harik [22], in which the distance between the best and second best
BBs is also considered. In [74], Tirronen provided a method based on fitness
diversity measured by the distance between pairs of individuals along with their
fitness values to control population size.

Population Status Based Methods. These methods change the population
size when the current population status meets a certain condition. They have
been used in genetic programming (GP), where solutions are represented as trees
of variable size and depth, for population control. In [75], Wagner proposed to
employ the node information for population control. Two kinds of nodes (i.e., soft
and hard) are used and the soft node is employed to control the addition of new
individuals to a population while the hard node is used to control which individ-
uals might be added. This method has been used in GP to address forecasting
problem in [76,77]. In [70], Ding presented an artificial bee colony algorithm
where the colony size is used to control the reproduction and death rate of the
population. If the colony size is larger than the initial size, the reproduction rate
threshold will be increased while the death threshold is decreased.

2.4 Self-adaptive Methods

This approach encodes the population size to be adapted into the individuals
and undergo mutation and recombination. Such a method was first proposed by
Teo [78] to adapt the population size in different evolution (DE). The method,
however, shows no significant advantages over the DE with fixed population
sizes. In [79], Eiben discussed such an approach and proposed a hybrid variant
of self-adaptive method for GA. The work shows that it is possible to define the
population size at individual level. The results show that the proposed method
has better performance than GAs with fixed population sizes.
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Table 1. Parameter setting of the six algorithms

Methods Parameter Values

dynNP-DE Number of different population sizes (Pmax) 4

Crossover operator 2-point

SAMDE The sign of trigger (P) P = 0: increase

P = 4: decrease

Crossover operator 2-point

GAVaPS MaxLifeTime/MinLifeTime 7/1

The rate of choosing individuals to reproduce 40%

APAGA MaxLifeTime/MinLifeTime 11/1

The rate of choosing individuals to reproduce Fixed 2

PL-GA Crossover operator Uniform

GPS-GA Crossover operator Uniform

3 Experimental Comparison

In this section, we shall experimentally compare several representative methods
for dynamically population control to show their advantages and disadvantages.
In the following subsections, after describing the data sets in Subsect. 3.1 and the
parameter settings of the algorithms in Subsect. 3.2, we report the comparison
results in Subsect. 3.3.

3.1 Test Suit

To access the performance of different population control strategies, a range of
well-known benchmark test functions have been considered. For the unimodal
case, we select four functions presented in [21] with minimum value zero, the
Sphere Model, Griewangk’s Function, Step Function and Quartic Function. For
the multi-model case, the Rastrigin’s function [29], Six-Hump Camel Back Func-
tion, Branin Function and Goldstein-Price’s Function have been considered. In
addition, the Schwefel’s Function [71], which is a deceptive function, and the
Rosenbrock’s Valley Function [16], which has a very complex search space, has
also been considered.

3.2 Algorithms and Parameter Settings

The following six population control algorithms have been selected for compar-
ison. The GAVaPS [11], in which each newly born individual is allocated with a
lifetime measured by fitness. Proceeding in a generational manner, individual’s
age is increased at each generation and removed when it exceeded its lifetime.
The APAGA [58], which is similar as the GAVaPS with an exception that the
fittest member will always kept in the population. In addition, only two new
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Table 2. Comparison results of six methods on 10 benchmark functions

Fun. No. of

Calls

Methods

GAVaPS APAGA PL-GA GPS-GA dynNP-DE SAMDE

f1 100000 5.02E−05 5.01E−05 5.02E−05 5.04E−05 5.02E−05 5.02E−05

f2 250000 4.94E−02 5.14E−02 5.74E−02 4.91E−02 5.08E−02 3.87E−02

f3 200000 0.11E+00 0.11E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00

f4 300000 7.43E−03 3.52E−03 1.05E−02 1.56E−02 1.59E−02 1.23E−02

f5 100000 −1.02E+01 −1.02E+00 −1.03E+00 −1.02E+00 −1.03E+00 −1.03E+00

f6 200000 0.40E+00 0.45E+00 0.39E+00 0.39E+00 0.40E+00 0.40E+00

f7 200000 0.31E+01 0.31E+01 0.31E+01 0.39E+01 0.30E+01 0.31E+01

f8 300000 2.86E−02 3.25E−01 2.42E−02 5.73E−02 1.76E−02 2.64E−02

f9 100000 −8.38E+02 −8.38E+02 −8.37E+02 −8.36E+02 −8.37E+02 −8.36E+02

f10 300000 3.89E+04 3.89E+04 3.88E+04 3.89E+04 3.90E+04 3.90E+04

individuals will be generated and inserted into the population at each genera-
tion. The PL-GA [17], which starts with a small population size and doubling
the population size when the GA converges. The GPS-GA [50], in which two sub-
populations are evolved in parallel. The dynNP-DE [13], in which the population
size is periodically descending during the evolution, and the new population size
is equal to half the previous population size. The SAMDE [45], in which the
population diversity is considered to increase or decrease the population sizes.
These algorithms are based on different rationales for population control and
have been widely applied for various applications.

The parameter setting for the six algorithms are taken from the original
papers. However, to make the comparison fair, a few parameters, which are
common for these algorithms, are set as the same values. Specifically, the initial
population size N of 20, crossover rate of 0.65 and bit mutation operator rate
0.015 are used. All algorithms to be compared adopt the tournament operator
for selection. The other parameter settings for the six algorithms are shown in
Table 1.

3.3 Results and Discussion

The comparison results of the six algorithms are shown in Table 2 in terms of
solution quality. Each algorithm is run on each function 10 times. The best
results over the ten trials are then averaged. From the results, it can be seen
that the dynNP-DE and SAMDE algorithms outperform other four algorithms
on f1, f3, f5, f7, f9 functions. Between the dynNP-DE and SAMDE, the dynNP-
DE shows better performances on multi-model functions, while SAMDE is good
at searching the unimodal functions. From the function point of view, for the
function f3, dynNP-DE, SAMDE, PL-GA and GPS-GA can identify the global
optimum, while the GAVaPS and APAGA fail to do so. This result could sug-
gest that frequently removing individuals from the population will decrease the
robustness of the algorithm. For the functions f6, only PL-GA and GPS-GA is
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Fig. 1. Comparing the convergence properties of six algorithms on different benchmark

able to find promising solutions. For the function f8, which is the most difficult
to solve among the ten functions, it can be noticed that all algorithms can be
trapped in local optimum. In overall, dynNP-DE performs the best as it could
deliver the best results on most of test functions. This is followed by the SAMDE,
PL-GA and GPS-GA.

Figure 1 shows the convergence properties of the six strategies, in which the
average of best fitness values are plotted versus the actual function evaluations of
the six algorithms. It can be observed that GAVaPS and APAGA can converge
much faster than the dynNP-DE, SAMDE, PL-GA and GPS-GA. For example,
on the test function f10, GAVaPS and APAGA are able to identify the opti-
mal solution with around 4 ∗ 103 function evaluations. Specifically, on unimodal
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functions, for instance, f1, f2, PL-GA and GPS-GA perform the worst in terms
of convergence and can take more than 1 ∗ 104 function evaluations to converge
than other four algorithms. Generally, PL-GA is the slowest method among the
six methods, while the GPS-GA is the fastest strategy.

From both the quality and convergence property, it can be generally con-
cluded that the GAVaPS and APAGA perform well on unimodal functions and
its extended version APAGA has even better performance. The main fault of
GAVaPS is excessive growth of individuals and results in an expensive evolu-
tion while APAGA slows down the increasing rate of population and improves
its efficiency. The PL-GA and GPS-GA have good performance for multi-model
functions especially in terms of convergence speed. While, the dynNP-DE and
SAMDE algorithms can perform the best in most of the test functions by aver-
age.

4 Conclusions

In this paper, we first present an extensive review of population control methods
in evolutionary algorithms. Then, we experimentally examine and analyze a few
representative methods on a set of well-known benchmark functions. The results
show that the dynNP-DE perform the best in most of the test functions by
average. This mainly due to the dynNP-DE is able to maintain a proper balance
of exploration and exploitation thus achieving a good performance.
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13. Brest, J., Maučec, M.S.: Population size reduction for the differential evolution
algorithm. Appl. Intell. 29(3), 228–247 (2008)

14. Ahrari, A., Shariat-Panahi, M.: An improved evolution strategy with adaptive
population size. Optimization 64(12), 2567–2586 (2015)

15. Karafotias, G., Hoogendoorn, M., Eiben, Á.E.: Parameter control in evolutionary
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