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Abstract. This paper is an attempt to relax the condition of using the
rules in a maximally parallel manner in the framework of spiking neural
P systems with exhaustive use of rules. To this aim, we consider the
minimal parallelism of using rules: if one rule associated with a neuron
can be used, then the rule must be used at least once (but we do not
care how many times). In this framework, we study the computational
power of our systems as number generating devices. Weak as it might
look, this minimal parallelism still leads to universality, even when we
eliminate the delay between firing and spiking and the forgetting rules
at the same time.
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parallelism · Computing universality

1 Introduction

Through millions of years human brain has evolved into a complex and enor-
mous information processing system, where more than a trillion neurons work
in a cooperation manner to perform various tasks. Therefore, brain is a rich
source of inspiration for informatics. Specifically, it has provided plenty of ideas
to construct high performance computing models, as well as to design efficient
algorithm. Inspired from the biological phenomenon that neurons cooperate in
the brain by exchanging spikes via synapses, various neural-like computing mod-
els have been proposed, such as artificial neural networks [1] and spiking neural
networks [2]. These neural-like computing models have performed significantly
well in solving real life problems.

In the framework of membrane computing, a kind of distributed and parallel
neural-like computing model were proposed in 2006 [3], which is called spiking
neural P systems (SN P systems for short). Briefly, an SN P system consists of a
set of neurons placed in the nodes of a directed graph that are linked by synapses.
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These neurons send signals (spikes) along synapses (edges of the graph). This is
done by means of firing rules, which are of the form E/ac → ap; t: if the number
of spikes contained in the neuron is described by the regular expression E (over
the alphabet {a}), then c spikes are consumed and p spikes are produced after
a delay of t steps; the produced spikes are sent to all neurons to which there
exist synapse leaving the neuron where the rule is applied. The second type of
rules are forgetting rules, of the form as → λ. The meaning is that s ≥ 1 spikes
are just removed from the neuron, provided that the neuron contains exactly
s spikes. The system evolves synchronously: a global clock is assumed and in
each time unit each neuron which can use a rule should do it. But the work of
the system is sequential locally: only (at most) one rule is used in each neuron.
When the computation halts, no further rule can be applied, and a result is
obtained, which can be defined in different ways, e.g., in the form of the time
elapsed between the first two consecutive spikes sent into the environment.

For the past decade, there have been quite a few research efforts put forward
to SN P systems. Many variants of SN P systems have been considered [4–18].
Most of the obtained classes of SN P systems are computationally universal,
equivalent in power to Turing machines [19–28]. An interesting topic is to find
small universal SN P systems [29–35]. In certain cases, polynomial solutions
to computationally hard problems can also be obtained in this framework [36,
37]. Moreover, SN P systems have been applied to solve real-life problems, for
example, to design logic gates, logic circuits [38] and databases [39], to perform
basic arithmetic operations [40,41], to represent knowledge [42], to diagnose fault
[43–45], to approximately solve combinatorial optimization problems [46].

Besides using the rules of a neuron in the sequential mode introduced above,
it is also possible to use the rules in a parallel way. An exhaustive manner of
rule application is considered in [47]: whenever a rule is enabled in a neuron, it is
used as many times as possible for the number of spikes from that neuron, thus
exhausting the spikes it can consume in that neuron. Also in [47], SN P systems
with exhaustive use of rules are proved to be universal, both in the accepting
and the generative cases.

In this paper we propose a minimal parallelism [48] which, as far as we know,
have not yet been considered in the framework of SN P systems: from each set
of rules associated with a neuron, if a rule can be used, then the rule must be
used at least once (maybe more times, without any restriction). Here we consider
SN P systems with minimal parallelism function as generator of numbers, which
is encoded in the distance between the first two steps when spikes leave the
system. Weak as it might look, we prove the equivalence of our systems with
Turing machines in the generative mode, even in the case of eliminating two
of its key features – delays and forgetting rules – simultaneously. In the proof
of this result, we play a trick (also useful in other similar cases, like [47]) of
representing a natural number n (the content of a register) by means of 2n + 2
spikes (in a neuron).

This work is started by the mathematical definition of SN P systems with
minimal parallelism, and then the computational power of SN P systems with
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minimal parallelism is investigated as number generator, in the case of eliminat-
ing delays and forgetting rules at the same time. It is proved in a constructive
way that SN P systems with minimal parallelism can compute the family of sets
of Turing computable natural numbers. At last, the paper is ended with some
comments.

2 SN P Systems with Minimal Parallelism

Before introducing SN P systems with minimal parallelism, we recall some pre-
requisites, including basic elements of formal language theory [49] and basic
notions in SN P systems [3,50].

For a singleton alphabet Σ = {a}, Σ∗ = {a}∗ denotes the set of all finite
strings of symbol a; the empty string is denoted by λ, and the set of all nonempty
strings over Σ = {a} is denoted by Σ+. We can simply write a∗ and a+ instead
of {a}∗, {a}+. A regular expression over a singleton alphabet Σ is defined as
follows: (i) λ and a is a regular expression, (ii) if E1,E2 are regular expressions
over Σ, then (E1)(E2), (E1) ∪ (E2), and (E1)+ are regular expressions over Σ,
and (iii) nothing else is a regular expression over Σ. Each regular expression E is
associated with a language L(E), which is defined in the following way: (i) L(λ) =
{λ} and L(a) = {a}, (ii) L((E1) ∪ (E2)) = L(E1) ∪ L(E2), L((E1)(E2)) =
L(E1)L(E2), and L((E1)+) = L(E1)+, for all regular expressions E1, E2 over Σ.

In what follows, we give the formal definition of SN P systems with minimal
parallelism.

An SN P system with minimal parallelism of degree m ≥ 1 is a construct of
the form

Π = (O, σ1, σ2, . . . , σm, syn, out),

where:

1. O = {a} is a singleton alphabet (a is called spike);
2. σ1, σ2, . . . , σm are neurons of the form

σi = (ni, Ri), 1 ≤ i ≤ m,

where:
(1) ni ≥ 0 is the initial number of spikes placed in the neuron σi;
(2) Ri is a finite set of rules of the following two forms:

– Firing rule: E/ac → ap; d, where E is a a regular expression over {a},
c ≥ 1, d ≥ 0, with the restriction c ≥ p. Specifically, when d = 0, it
can be omitted;

– Forgetting rule: as → λ, for some s ≥ 1, with the restriction that for
each rule E/ac → ap; d of type (1) from Ri, we have as /∈ L(E);

3. syn ⊆ {1, 2, . . . ,m} × {1, 2, . . . ,m} is the set of synapses between neurons,
with restriction (i, i) /∈ syn for 1 ≤ i ≤ m (no self-loop synapse);

4. out ∈ {1, 2, . . . ,m} indicates the output neuron, which can emit spikes to the
environment.
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The firing rule of the form E/ac → ap; d with c ≥ p ≥ 1 is called an extended
rule; if p = 1, the rule is called a standard rule. If L(E) = {ac}, the rule can be
simply written as ac → ap; d. Specifically, if d = 0, it can be omitted and the
rule can be simply written as ac → ap.

The firing rule E/ac → ap; d ∈ Ri can be applied if the neuron σi contains
k spikes, ak ∈ L(E) and k ≥ c. However, the essential we consider here is not
the form of the rules, but the way they are used. Using the rule in a minimal
parallel manner, as suggested in the Introduction, means the following. Assume
that k = sc + r, for some s ≥ 1 (this means that we must have k ≥ c) and
0 ≤ r < c (the remainder of dividing k by c). Then nc, 1 ≤ n ≤ s spikes are
consumed, k − nc spikes remain in the neuron σi, and np spikes are produced
after d time units (a global clock is assumed, marking the time for the whole
system, hence the functioning of the system is synchronized). If d = 0, then the
produced spikes are emitted immediately, if d = 1, then the spikes are emitted in
the next step, and so on. In the case d ≥ 1, if the rule is applied at step t, then in
steps t, t + 1, . . . , t + d − 1 the neuron is closed, and it cannot receive new spikes
(if a neuron has a synapse to a closed neuron and sends a spike along it, then
the spike is lost). In step t + d, the neuron fires and becomes open again, hence
it can receive spikes (which can be used in step t + d + 1). The spikes emitted
by a neuron are replicated and are sent to all neurons σj such that (i, j) ∈ syn.

The forgetting rules are applied as follows: if the neuron contains exactly s
spikes, then the rule as → λ can be used, and this means that all s spikes are
removed from the neuron.

In each time unit, in each neuron which can use a rule we have to use a rule,
either a firing or a forgetting one. Since two firing rules E1/ac1 → ap; d1 and
E2/ac2 → ap; d2 can have L(E1)∩L(E2) 	= ∅, it is possible that several rules can
be applied in a neuron. This leads to a non-deterministic way of using the rules
(but a firing rule cannot be interchanged with a forgetting rule, in the sense that
as /∈ L(E)).

The configuration of the system is described both by the numbers of spikes
present in each neuron and by the number of steps to wait until it becomes open
(if the neuron is already open this number is zero). Thus, the initial configuration
is 〈n1/0, n2/0, . . . , nm/0〉. Using the rules as described above, we can define
transitions among configurations. Any sequence of transitions starting from the
initial configuration is called a computation. The computation proceeds and a
spike train, a sequence of digits 0 and 1, is associated with each computation by
marking with 0 for the steps when no spike is emitted by the output neuron and
marking with 1 when one or more spikes exit the system. A computation halts
if it reaches a configuration where no rule in the neuron can be used.

The result of a computation can be defined in several ways. In this work, we
consider SN P systems with minimal parallelism as number generators: assum-
ing the first time and the second time spike(s) emitted from the output neuron
is at step t1 and t2, the computation result is defined as the number t2 − t1.
For an SN P system Π, the set of all numbers computed in this way is denoted
by Nmin

2 (Π), with the subscript 2 reminding that only the distance between
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the first two spikes of any computation is considered. Then, we denote by
Spik2N

minPm(rulek, consr, forgq) the family of all sets Nmin
2 (Π) computed

as above by SN P systems with at most m ≥ 1 neurons, using at most k ≥ 1
rules in each neuron, with all spiking rules E/ac → ap; d having c ≤ r, and all
forgetting rules as → λ having s ≤ q. When one of the parameters m, k, r, q is
not bounded, then it is replaced with ∗.

In order to clarify the definitions, we here discuss an example. In this way,
we also introduce a standard way to pictorially represent a configuration of an
SN P system, in particular, the initial configuration. Specifically, each neuron
is represented by a “membrane” (a circle or an oval), marked with a label and
having inside both the current number of spikes (written explicitly, in the form
an for n spikes present in a neuron) and the evolution rules; the synapses linking
the neurons are represented by arrows; besides the fact that the output neuron
will be identified by its label, i0, it is also suggestive to draw a short arrow which
exits from it, pointing to the environment.

In the system Π1 (Fig. 1) we have two neurons, labeled with 1 and 2 (with
neuron σ2 being the output one), which have 5 and 2 spikes, respectively, in
the initial configuration. Both of the two neurons fire at the first step of the
computation.

Fig. 1. A simple example of an SN P system with minimal parallel

In the output neuron σ2, the rule a2 → a; 0 is used at the first step, a spike
is sent out to the environment and no spike remains in σ2. In neuron σ1, one
can notice that 5 = 2 × 2 + 1, hence we can non-deterministically choose the
rule a5/a2 → a to be applied once or twice at the same time. If σ1 uses the rule
twice at the first step, it sends two spikes to neuron σ2 immediately (one for
each use of the rule) and neuron σ2 spikes again, using the rule a2 → a; 0 at the
second step of the computation. Thus, the result of the computation in this case
is 2 − 1 = 1.

If the rule a5/a2 → a is used only once at the first step by neuron σ1, it
sends one spike to neuron σ2. At the second step, neuron σ2 fires again, using
the rule a → a; 1 at the second step. At the third step the spike generated emits
the system and the result of the computation is 3 − 1 = 2.

Hence, Π1 generates the finite set {1, 2}.

3 Universality Result

In this section we prove that SN P systems with minimal parallelism are still
universal when eliminating both delays and forgetting rules at the same time.
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Nevertheless, the elimination has a price in terms of the number of neurons in
the modules. Our universality proof will use the characterization of NRE by
means of register machine.

A register machine is a construct M = (m,H, l0, lh, I), where m is the number
of registers, H is the set of instruction labels, l0 is the start label (labeling an
ADD instruction), lh is the halt label (assigned to instruction HALT), and I is
the set of instructions; each label from H labels only one instruction from I,
thus precisely identifying it. The labeled instructions are of the following forms:

• li : (ADD(r), lj) (add 1 to register r and then go to the instruction with label
lj),

• li : (SUB(r), lj , lk) (if register r is non-empty, then subtract 1 from it and go
to the instruction with label lj , otherwise go to the instruction with label lk),

• lh : HALT (the halt instruction).

It is known that the register machine can compute all sets of numbers which
are Turing computable, even with only three registers [51]. Hence, it character-
izes NRE, i.e., N(M) = NRE (NRE is the family of length sets of recursively
enumerable languages – the family of languages recognized by Turing machines).
We have the convention that when comparing the power of two number gener-
ating devices, number zero is ignored.

In the proof below, we use the characterization of NRE by means of register
machine, with an additional care paid to the delay from firing to spiking, and
forgetting rules. Because all rules we use have the delay 0, we write them in
the simpler form E/ac → ap, hence omitting the indication of the delay. Also
a change is made in the notation below: we add dleyt to the list of features
mentioned between parentheses, meaning that we use SN P systems whose rules
E/ac → ap; d have d ≤ t (the delay is at most t).

Theorem 1.

Spik2N
minP∗(rule3, cons4, forg0, dley0) = NRE.

Proof. In view of the Turing-Church thesis, the inclusion in NRE can
be proved directly, so we only have to prove the inclusion NRE ⊆
Spik2N

minP∗(rule3, cons4, forg0, dley0). The proof is achieved in a construc-
tive way, that is, an SN P system with minimal parallelism is constructed to
simulate the universal register machine.

Let M = (m,H, l0, lh, I) be a universal register machine. Without lose of gen-
erality, we assume that the result of a computation is the number from register
1 and this register is never decremented during the computation.

We construct an SN P system Π as follows, simulating the register machine
M and spiking only twice, at an interval of time which corresponds to the number
computed by the register machine.

For each register r of M we consider a neuron σr in Π whose contents cor-
respond to the contents of the register. Specifically, if the register r holds the
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number n ≥ 0, then the neuron σr will contain 2n + 2 spikes; therefore, any
register with the value 0 will contain two spikes.

Increasing by 1 the contents of a register r which holds the number n means
increasing by 2 the number of spikes from the neuron σr; decreasing by 1 the
contents of a non-empty register means to decrease by 2 the number of spikes;
checking whether the register is empty amounts at checking whether σr has two
spikes inside.

With each label l of an instruction in M we also associate a neuron σl.
Initially, all these neurons are empty, except for the neuron σl0 associated with
the start label of M , which contains 2 spikes. This means that this neuron is
“activated”. During the computation, the neuron σl which receives 2 spikes will
become active. Thus, simulating an instruction li : (op(r), lj , lk) of M means
starting with neuron σli activated, operating the register r as requested by op,
then introducing 2 spikes in one of the neuron σlj , σlk , which becomes active
in this way. When the neuron σlh , associated with the halting label of M , is
activated, the computation in M is completely simulated in Π, and we have
to output the result in the form of a spike train with the distance between the
first two spikes equals to the number stored in the first register of M . Additional
neurons will be associated with the registers and the labels of M , in a way which
will be described immediately.

In what follows, the work of system Π is described (that is how system Π
simulates the ADD, SUB instructions of register machine M and outputs the
computation result).

Simulating an ADD instruction li : (ADD(r), lj , lk)
This instruction adds one to the register r and switches non-deterministically to
label lj or lk. As seen in Fig. 2, this module is initiated when two spikes enter
neuron σli . Then the neuron σli sends two spikes to neuron σi,1, σi,2 and σr,
adding one to the content of the register. In the next step, the spikes emitted by
σi,1 arrive in σi,3 (which will in turn be sent to σi,6 in the following step) and
σi,4, while the spikes of σi,2 reaches σi,4 and σi,5. Neuron σi,4 will allow us to
switch non-deterministically to either σlj or σlk . If σi,4 uses the rule a4/a2 → a
only once, then two spikes will be blocked in σi,8 (those coming from σi,4 and
σi,5), while just one will arrive in neuron σi,7, waiting for other spikes to come. In
the next step, the neuron σi,4 fires again (this time applying the rule a2 → a2),
sending two spikes to σi,7 and σi,8. The two spikes are blocked in σi,8 again,
while the two spikes from σi,4 and the spike from σi,6 reaches σi,7. Together
with the one spike await, the neuron σi,7 can get fired, activating neuron σlj one
step later.

On the other hand, if σi,4 uses the rule a4/a2 → a twice, it consumes all of
the four spikes inside, and produces two spikes, having no spike left. This means
that, in the following step, σi,7 receives two spikes and σi,8 gets three (two from
σi,4 and one from σi,5). Now σi,8 contains three spikes and fires, activating σlk

in the following step. One step later, σi,7 receives another spike from σi,6 and
the three spikes together get blocked here.
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Fig. 2. Module ADD (simulating li : (ADD(r), lj , lk))

It is clear that, after each ADD instruction, neuron σi,7 and σi,8 will hold
three or two spikes, respectively, depending on the times of application of rule
a4/a2 → a chosen non-deterministically in the neuron σi,4. Thanks to the reg-
ular expressions used in the rules of σi,7 and σi,8, this does not disturb further
computations using this instruction.

Simulating a SUB instruction li : (SUB(r), lj , lk)
The SUB module (shown in Fig. 3) is initiated when two spikes are sent to neuron
σli . This neuron fires and its spike reaches neurons σr,1, σr,2 and σr. The three
rules of neuron σr allow us to differentiate whether the register is empty or not.
As we have explained, a register containing the value n means the corresponding
neuron holds 2n + 2 spikes. If register r stores number n > 0, that is to say σr

contains at least 4 spikes, the spike coming from σli makes the neuron fire (by
the rule aaa(aa)+/a3 → a) and send a spike to σr,6, which makes sure that the
rule is used only once. In the next step, σr,6 gets fired and send a spike to σr,8,
and another spike passing from σr,2 to σr,4 reaches σr,8 at the same time. These
two spikes make σr,8 can not be fired. In parallel, two spikes will arrive in neuron
σr,7, one along σr,1-σr,3-σr,5-σr,7, and the other σr-σr,6-σr,7. These two spikes
make σr,7 get fire, then σr,9, and as we will explain later, eventually allow us to
reach σlj .

On the other hand, when register r stores number zero (σr contains 2 spikes),
the spike received from σli fires the rule a3/a2 → a. The neuron σr spikes,
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Fig. 3. Module SUB (simulating li : (SUB(r), lj , lk))

consuming two of the three spikes it contains. This spike is sent to neuron σr,6,
then to neurons σr,7 and σr,8. In the following step, σr fires again (using the
rule a → a), consuming its last spike and sending a new spike to σr,7 and σr,8

(the value of register r is now degraded and needs to be reconstituted). This
spike reaches neuron σr,7 at the same time that the one coming from σr,5. Then
σr,7 cannot get fired because it contains now three spikes. Meanwhile, σr,8 also
contains now three spikes. It gets fired and spikes, allowing σr,10 to fire in the
following step. It also emits two spikes to σr which reconstitute the value 0 in
the register r before reaching σlk .

The reader can check that two AND modules (the AND module is shown in
Fig. 4) are embedded in the SUB module, making sure that further instructions
associated with register r will not wrongly switches to li and lj here. In this
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module, only if σd1 and σd2 get fired simultaneously, neuron σd6 receives three
spikes and gets fired. Otherwise, it will receive two spikes and get blocked. Hence,
σlj or σlk can get fired only if σli is activated, and other instructions associated
with register r will not activate them wrongly. Also the spikes remained in the
neurons σr,7 and σr,8 do not disturb further computations.

Fig. 4. Module AND

Because we do not know whether lj and lk are labels of ADD, SUB, or
halting instructions, hence in both of the ADD and the SUB module the rules
in the neurons σlj , σlk are written in the form a2 → aδ(ls), where the function
δ : H → {1, 2} is defined as below:

δ(l) =
{

2, if l is the label of an ADD instruction,
1, otherwise.

Outputting a computation
As shown in Fig. 5, when the computation in M halts, two spikes reach the
neuron σlh of Π1. In that moment, register 1 of M stores value n and neuron
σ1 of Π1 contains 2n + 2 spikes. The spike emitted by lh reaches neuron 1
(hence containing an odd number of spikes). Thanks to the neuron σh,2, it leads
neuron σ1 to fire continuously, consuming two spikes at each step. One step after
receiving the spike from σlh , neuron σ1 fires and two spikes reach neuron σh,2.
Next, neuron σh,4 simultaneously receives a spike from σh,3, gets fired and sends
a spike to neuron σout, which spikes for the first time one step later. From then
on, neuron σh,4 receives a couple of spikes from σh,2 that do not let it fire again,
until two steps after neuron σ1 fires for the last time (using the rule a3 → a).
When neuron σ1 stops spiking, neuron σh,4 will receive one spike, making σout

fire again and emitting its second and last spike (exactly n steps after the first
one).
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Fig. 5. Module FIN (ending the computation)

From the above description of the work of system Π, it is clear that the
system Π1 correctly simulates the register machine M and outputs exactly the
value n computed by M , i.e., N(M) = Nmin

2 (Π). This concludes the proof. ��

4 Conclusions and Discussions

In this work, we investigated the computational power of SN P systems with
minimal parallelism using as number generator. Specifically, an SN P system
with minimal parallelism is constructed to compute any set of Turing computable
natural numbers. Many issues remain to be investigated for this new class of SN
P systems.

It remains to consider the SN P systems with minimal parallelism as language
generator. Moreover, it is worth investigating the acceptive case for SN P systems
with minimal parallelism.

In the proof of Theorem 1, there are 10 auxiliary neurons in each ADD mod-
ule, and 27 in each SUB module. So compared to the results in [29–35], the SN
P system with minimal parallelism seems to have no advantage in the aspect of
small universal SN P system. It is highly possible that this disadvantage can be
made up by constructing the modules differently. This task is left as an open
problem to the readers.

Also in the proof of Theorem1, the feature of delay and forgetting rule are not
used. It is of interests to check if the number of neurons in universal SN P systems
with minimal parallelism can be reduced with using delay or forgetting rule.
Moreover, from a point of view of computation power, the boundary between
the universality and non-universality of SN P systems with minimal parallelism
is still open.

Acknowledgments. This work was supported by National Natural Science Founda-
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LNCS, vol. 8961, pp. 300–313. Springer, Cham (2014). https://doi.org/10.1007/
978-3-319-14370-5 19

35. Song, T., Pan, L.: A small universal spiking neural P systems with cooperating
rules. Rom. J. Inf. Sci. Technol. 17, 177–189 (2014)

36. Ishdorj, T.-O., Leporati, A., Pan, L., Zeng, X., Zhang, X.: Deterministic solutions
to QSAT and Q3SAT by spiking neural P systems with pre-computed resources.
Theor. Comput. Sci. 411, 2345–2358 (2010)
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