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1 Introduction

As summarized in the World-Wide Failure Exercise papers [1, 2] there are very few
failure theories that accurately simulate damage initiation and propagation in uni-
directional fiber-reinforced composites deformed under quasi-static loads. Transient
problems involving shock loads are even more challenging because the propagation
of deformation through a heterogeneous medium necessarily involves interactions
among incident waves and those reflected from interfaces between distinct mate-
rials. There is a huge difference among acoustic impedances of fibers, the matrix,
and the medium surrounding the structure. Furthermore, fibers are usually trans-
versely isotropic with much higher modulus along the fiber axis than that in the
transverse direction implying that wave speeds in fibers along and across their axes
are quite different. Even though one can simulate these effects by studying
3-dimensional (3-D) deformations at the constituent level, the computational effort
for a real size structure is prohibitively large because of the tiny time-step size
needed to find a stable numerical solution. The consideration of damage initiation
and propagation further stretches the extent of computational resources required for
analyzing the problem. Studying experimentally transient deformations of blast
loaded sandwich structures is equally challenging since taking in-situ strain and
temperature measurements require using noncontacting, mostly optical, instru-
ments. Focusing these instruments at critical locations requires a priori knowledge
of points/regions of failure initiation. Thus, experimentalists, theoreticians, and
numerical analysts need to collaborate closely for a comprehensive analysis of the
problem.
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An often-used strategy to simplify the problem is to homogenize material
properties of the composite by using a micro-mechanics approach, and study
transient deformations of the homogenized structure. This mitigates problems of
wave reflections from fiber/matrix interfaces and of wide differences in wave speeds
in the two materials. However, it replaces inhomogeneous face sheets and either a
foam or a honeycomb core by homogenized media and removes stress singularities
at contact surfaces between the different materials. Thus, one cannot accurately
capture points of failure initiation especially with a stress- or a strain-based failure
criterion. For using failure criteria at the constituent level, one can use a deho-
mogenization technique to find stresses and strains at the constituent level from
those at the macro-level. Results depend upon the micro-mechanics approach, the
failure initiation criteria, the ultimate failure or the structure collapse criteria, and
the technique adopted for tracking failure propagation.

In numerical work, one usually simulates failure propagation by adopting one of
the following techniques: deleting failed elements, releasing nodes where the
material has failed, using singular surfaces, and employing a cohesive zone model
(CZM). It is quite challenging to compute mesh-independent results unless the
problem formulation involves a material characteristic length whose value cannot
be easily ascertained.

Blast and water slamming loads on a structure induce large deformations
necessitating the consideration of all material and geometric nonlinearities.
Governing equations in the Lagrangian (or the material) description of motion
involve nonlinear strain-displacement relations and those in the Eulerian (or the
spatial) formulation have the particle acceleration as a nonlinear function of the
particle velocity. Furthermore, the stress–strain relation is generally nonlinear in
either formulation, and one must use materially objective (or frame-indifferent)
constitutive relations. The time-step size for computing a stable solution of the
governing equations must satisfy the Courant–Friedrichs–Levy (CFL) condition.

A possibility is to analyze deformations of the structure by modeling it as a plate/
shell. Reissner [3] and Koiter [4] have emphasized the need to consider both
transverse shear and transverse normal deformations. Reissner stated in 1947 that
for a sandwich plate with (tf Ef)/(hc Ec) ≫ 1 both transverse shear and transverse
normal deformations should be considered. Here, tf and Ef (hc and Ec) equal,
respectively, the thickness and the longitudinal modulus of the face sheet (core).
Based on the energy considerations Koiter [4] recommended that any refinement of
the Love first approximation theory must simultaneously consider both transverse
shear and transverse normal stresses. Vel and Batra [5] have provided the exact
solution for thermally loaded linearly elastic plates with material moduli only
varying in the thickness direction. For plates with length/thickness = 5, they found
that the transverse deflection computed with the classical plate theory, the first-order
shear deformable theory and the third-order shear deformable theory deviates,
respectively, from the exact solution by 26%, 26% and 28%. These large errors
could be due to neglecting the transverse normal strain in the three theories. For the
problem studied by Vel and Batra [5], Qian et al. [6] found that a fifth-order shear
and normal deformable plate theory gives results very close to the analytical
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solution of the problem. For 100 K temperature difference between the top and the
bottom surfaces of the plate, the deflection of the centroid of the top surface equaled
twice of that of the centroid of the bottom surface signifying an average transverse
normal strain of ∼10−3. These examples signify the need for considering transverse
normal deformations for moderately thick plates/shells.

We have considered material and geometric nonlinearities and simulated damage
initiation and propagation and the consequent material degradation at the con-
stituent level while analyzing transient 3-D deformations of composite laminates.
The delamination between adjacent plies is modeled with a nodal-release technique.
However, for sandwich shells subjected to water slamming loads we have used a
layerwise third-order shear and normal deformable plate theory (TSNDT) and
simulated mixed-mode delamination with a CZM. In each case, the failed material
is not allowed to heal. The interpenetration of the material across an adjoining
surface is prevented by joining “contacting” nodes with a spring that is very stiff in
compression but weak in tension. We describe below some of the results from our
two previously published papers.

2 Failure of Fiber-Reinforced Composite Laminate Due
to Blast Loads

2.1 Material Models

2.1.1 Constitutive Relation

It is common to model, e.g., see [7, 8], the material nonlinearity by using a linear
relation between the second Piola-Kirchhoff stress tensor, S, and the Green-St.
Venant strain tensor, E. That is,

Sij =CijklEkl, i, j, k, l=1, 2, 3 ð1Þ

where C is the matrix of elasticities. The material described by Eq. (1) is called
St. Venant-Kirchhoff. Here and below, a repeated index implies summation over the
range of the index. We note that S has no physical meaning but is convenient to use,
E includes all nonlinear terms in displacement gradients, and S and E are
work-conjugate tensors. The stress–strain relation (1) is materially objective, and
one can easily implement it in a software. From S and displacement gradients, one
finds the true or the Cauchy stresses needed to ascertain damage initiation at a point.

A unidirectional fiber-reinforced lamina, modeled as a transversely isotropic
material with the fiber along the axis of transverse isotropy, has five material
constants. With S and E written as 6-D vectors, values of elasticities in the 6 × 6
matrix of material parameters are such that the matrix is positive-definite. For
simple extensional deformations of a cylindrical isotropic body made of the
St. Venant-Kirchhoff material, the structure becomes unstable in compression when
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the final length/initial length (or the axial stretch) equals 0.577 irrespective of
values of material elasticities [9]. For simple shear deformations, this material
exhibits strain hardening because the slope of the shear stress versus the shear strain
curve increases with an increase in the shear strain [9]. For a transversely isotropic
material loaded along the axis of transverse isotropy, the prismatic cylinder will
become unstable at a compressive axial strain whose value depends upon the
material elasticities.

2.1.2 Damage Modes and Initiation Criteria

Hassan and Batra [10] presumed that elasticities of the St. Venant-Kirchhoff
material degrade with an increase in the damage, and deduced the degradation
relations by using the mechanics of materials approach. They considered three
internal variables—one each for fiber breakage, matrix cracking, and fiber/matrix
debonding. The failure in a mode ensues when the corresponding internal variable
reaches a material-dependent critical value. They found expressions for the work
conjugate of an internal variable, called the thermodynamic force, by using the
Clausius–Duhem inequality, and for the energy dissipated in each failure mode.
They determined values of material parameters from the test data of Kyriakides
et al. [11].

Hassan and Batra [10] postulated a delamination surface described by a
homogeneous quadratic function of the tensile transverse normal and the transverse
shear stresses acting at a point on an interface between two adjacent plies. Each
stress component is normalized by its value at delamination initiation. Mixed-mode
delamination can occur at the interface when the transverse normal stress is tensile
but only sliding prevails when it is compressive. The energy dissipated during
delamination is calculated from the energy balance, i.e., subtracting from the work
done by external forces the total strain energy of elastic deformations and energies
dissipated due to fiber breakage, matrix cracking, and fiber/matrix debonding.

2.2 Mathematical Model

The problem is formulated in the Lagrangian description of motion using a fixed set
of rectangular Cartesian coordinate axes. With x and X denoting, respectively, the
position vectors of a material point in the current and the reference configurations,
and t the present time, equations governing deformations of a material point are

ρR uï = ðδiα + ui, αÞðCαβγδEγδÞ
h i

, β, i, α =1, 2, 3 ð2Þ

In Eq. (2), u = x – X, is the displacement of the material point X, ρR the mass
density in the reference configuration, and δiα the Kronecker delta. A superimposed
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dot indicates material time derivative, and a comma followed by α implies partial
differentiation with respect to Xα.

Boundary conditions pertinent to a test set-up, initial conditions (usually zero
displacements and null velocities), Eq. (2), and the nonlinear strain-displacement
relations provide three nonlinear partial differential equations (PDEs) for finding
u as a function of X and t.

2.3 Computational Model

We use the Galerkin method to derive a weak form of Eq. (2) that reduces nonlinear
PDEs to nonlinear ordinary differential equations (ODEs) in time. We employ
8-node brick elements, evaluate integrals on an element with the 2 × 2 × 2 Gauss
quadrature rule, integrate the resulting ODEs with respect to time t by using the
freely available subroutine LSODE (Livermore Solver for ODEs) and set in
LSODE the relative and the absolute error tolerance = 1 × 10−9.

2.3.1 Simulation of Material Failure

From the computed nodal displacements, we ascertain values of damage parameters
at each integration point within an element. When a damage initiation criterion for
fiber breakage, matrix cracking, and/or fiber/matrix debonding is satisfied at an
integration point, we gradually degrade values of the relevant elastic constants there
till they essentially become zero (i.e., very small as compared to that of the intact
material) at damage parameter = 1. We do not delete the element from the analysis
even when the material at all its eight integration points has failed. Thus, it has
kinetic energy but negligible strength and essentially zero stresses. We refer the
reader to Ref. [10] for the degradation of elasticities, and evolution equations for the
damage parameters.

We simulate delamination by using the nodal-release criterion, and prevent
non-interpretation of materials across an interface by connecting their corre-
sponding two nodes with a spring element that is weak in tension but stiff in
compression. The postulated constitutive relation for the spring is:

F = k zn
where,

k=

0, zn ̸z0 ≥ 0,

E3l 1+ ðηE3 − 1Þ zn
z0

� �2
� �

ηE3l, zn ̸z0 < − 1.

0
BB@ , − 1≤ zn ̸z0 < 0,

ð3Þ
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Here, F (zn) is the normal force (relative displacement) between the two nodes,
E3 Young’s modulus of the composite in the X3-direction, l a characteristic length,
and η a constant. Note that the value of l does not affect the mesh-dependence of
results.

2.3.2 Verification of the Code

We verified the code by using the method of fictitious body forces or equivalently
the method of manufactured solutions [13]. We also compared computed results for
a few simple problems, such as wave propagation in a bar, with their analytical
solutions. It ensures that the code correctly solves the governing equations but does
not ensure that it incorporates all of the relevant physics of the problem.

2.3.3 Validation of the Mathematical Model

We compared with the test data computed results for configurations and loading
conditions different from those used to deduce values of material parameters. The
two sets of results agreed well with each other implying that the mathematical
model incorporates in it most of the relevant physics of the problem.

2.4 Results

We present here a few results for the problem schematically shown in Fig. 1 and
borrowed from Ref. [12] wherein values of material and other parameters are listed.
The 22 cm × 22 cm × 1 cm unidirectional fiber-reinforced 4-ply panel with each
ply 0.25 cm thick, clamped on all edges, is divided into 8-node brick elements with
finer elements in the central portion. In practical applications, a thick laminate will

Fig. 1 Schematic sketch of
the problem analyzed;
reproduced from [12]
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have 103 or more layers. The four-layer laminate studied in [12] was used to
illustrate the theory within the available computational resources and the project
duration.

We simulate the blast load due to underwater explosion by applying a
time-dependent pressure field on the top surface of the specimen. The pressure
variation with time t and the distance, r, from the centroid of the top surface of the
panel has the expression

Pðr, tÞ=Pmaxe− t ̸λð− 0.0005r4 + 0.01r3 − 0.0586r2 − 0.001r + 1Þ, t>0. ð4Þ

In Eq. (4), Pmax is the peak pressure in the shock front, t the time elapsed since
the arrival of the shock wave, and λ the decay time constant. Cole [14] has given
expressions for the peak pressure, Pmax, and the decay constant, λ, in terms of the
weight, material of the explosive, and the standoff distance. The spatial variation of
Pðr, tÞ is a fit to the test data of Türkmen and Mecitolu [15]. The applied pressure is
representative of an explosive event and does not necessarily correspond to the
values measured in a test.

2.4.1 Effect of the Finite Element Mesh

For one loading, the laminate maximum centroidal deflection computed with the
four FE meshes, 20 × 20 × 4 (2,205 nodes), 20 × 20 × 8 (3,969 nodes),
40 × 40 × 4 (8,405 nodes), and 40 × 40 × 8 (15,129 nodes), till t = 230 μs,
differed at most by 4.8%. The maximum tensile (compressive) principal stress in the
laminate equaled 1.393, 1.323, 1.234, and 1.246 GPa (−0.885, −0.894, −0.917,
and −1.027 GPa) for the four FE meshes, and the total work done to deform the
body equaled 378, 408, 398, and 405 J. By examining time histories (not exhibited
here) of the deflection at centroids of planes X3 = 0 (bottom surface), X3 = 0.5 cm
(midsurface), and X3 = 1 cm (top surface) we found that the deflections at these
three points are very close to each other. It is due to the high speed of elastic waves
in the transverse direction and very small laminate thickness.

The results given below are with the 20 × 20 × 4 elements mesh.

2.4.2 Effect of Fiber Orientation

For each ply making the same fiber angle θ with respect to the global X1-axis
aligned along a panel edge, we have computed results for θ = 0°, 10°, 30°, 45°,
60°, 75°, and 90°. Although the body is initially homogeneous, it becomes inho-
mogeneous because of the different damage evolved at various points, and the
dependence of material properties upon the damage. As reported in [12], the fiber
orientation angle has the most (least) effect on the time of initiation of the fiber/
matrix debonding (the fiber breakage). However, the time of initiation and the
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complete failure due to fiber breakage at specimen’s centroid is virtually inde-
pendent of the fiber orientation angle.

2.4.3 Fiber/Matrix Debonding

Fringe plots of the fiber/matrix debonding damage variable at t = 54, 108, 148, and
188 μs, displayed in Fig. 2, reveal that the debonding starts from edges perpen-
dicular to the fibers and propagates along the fibers and toward the center. Plots of
the time histories of the evolution of the debonding damage variable at centroids of
the top, the middle, and the bottom surfaces of the laminate given in [12] suggest
that the debonding instantaneously propagates in the thickness direction.

2.4.4 Matrix Cracking

By studying fringe plots of the matrix cracking damage variable at four times
Hassan and Batra [12] concluded that the matrix cracking begins at approximately
108 μs at the bottom surface centroid and propagates faster along the fibers than in
the transverse direction. These results agree with the experimental observations of
Luo et al. [16].

We have exhibited in Fig. 3 fringe plots of the matrix cracking damage variable.
These suggest that the matrix cracking ensues from points on clamped edges of the
top surface that are parallel to the X1-axis, and propagates inwards. The cracked
matrix region on the top surface is centered about the X2-axis and that on the
bottom surface around its centroid as experimentally observed by Mouritz’s [17]

Fig. 2 Fringe plots of the fiber/matrix debonding damage variable, PD, at four different times;
reproduced from [12]
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who attributed it to high tensile bending stresses developed on the back surface.
A compressive wave reflected from the traction-free back surface as a tensile wave
induces more damage there causing the matrix cracking to initiate first on the
bottom surface. The spalling failure mode, not considered here, can ensue at points
on the bottom surface.

2.4.5 Fiber Breakage

We have depicted fringe plots of the fiber breakage damage variable at t = 160 μs
in Fig. 4. These suggest that the fiber breakage is concentrated at points along the
X2-axis that are near the specimen’s center. Similar to the damage variable for the
matrix cracking, the damage variable for the fiber breakage also increases suddenly

Fig. 3 Fringe plots of the matrix cracking damage variable, PM, at t = 160 μs; left: top surface;
right: bottom surface; reproduced from [12]

Fig. 4 Fringe plots of the fiber breakage damage variable, PF, at time = 160 μs; left: top surface;
right: bottom surface; reproduced from [12]
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from essentially 0.0 to 1.0. The time histories of the fiber breakage damage variable
are given in [12].

2.4.6 Delamination Between Adjoining Layers

We have plotted in Fig. 5 fringe plots of the fiber/matrix debonding damage
variable on planes X1 = 110 mm, and X2 = 110 mm for the 00 plies and t = 220
μs. The delamination between adjoining layers, indicated by solid lines, initiates
from more than one point, not necessarily simultaneously, on an interface between
two adjoining layers since these solid lines are not continuous through the entire
laminate. The delamination started earliest at 128 μs for fiber orientations of 0° and
90°, and latest at 140 μs for the 45° fiber orientation.

2.4.7 Energy Dissipation Versus the Fiber Orientation Angle

Figure 6 displays the energy dissipated in the four failure modes and the total work
done by external forces for different fiber orientation angles. In every case, the
kinetic energy generally equals 20% of the total work done by external forces and
the energy dissipated due to matrix cracking is negligible relative to that in other
three damage modes. This is because the elastic moduli of the matrix are very small
as compared to those of the fiber. The energy dissipated due to delamination
increases but that due to fiber/matrix debonding and matrix cracking decreases as
the fiber orientation angle is increased from 0° to 45°.

From results exhibited in Fig. 6, we find composite’s Figure of Merit defined as
the percentage of the work done by external forces that is dissipated in different
failure modes. This metric suggests that clamped unidirectional AS4/PEEK

Fig. 5 At t = 220 μs, delamination/sliding between adjoining plies indicated by solid lines, and
fringe plots of the fiber/matrix debonding damage variable, PD, on cross-sections X2 = 110 mm
(left), and X1 = 110 mm (right); reproduced from [12]
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composites with fiber orientations between 30° and 60° are equally effective in
resisting explosive loads.

2.5 Limitations of the Model

The proposed model does not account for fiber pull out, fiber kinking, fiber
buckling, and matrix crushing. The loading used to analyze the problem is a good
approximation when the explosive charge is located far from the laminate. The
mathematical model is not valid for composites reinforced with randomly dis-
tributed either short fibers or particulates, metal-matrix composites, and sandwich
structures.

3 Delamination in Sandwich Hulls Due to Local Water
Slamming Loads

We study local water slamming characterized by a large hydrodynamic load of
short duration but sufficiently high intensity to cause significant structural damage,
e.g., see Faltinsen [18]. In practical problems, the hull is generally curved and
deformable. Hull’s deformations affect the fluid motion and the hydroelastic pres-
sure acting on the fluid/hull interface. Charca and Shafiq [19], amongst others, have
experimentally studied the failure of sandwich composite panels including core
shear, delamination, and damage of the face sheets due to water slamming.

We have exhibited in Fig. 7 a schematic sketch of the problem studied. The
sandwich hull composed of stiff face sheets and a flexible core experiences localized
slamming pressure. For hull speeds of 10 m/s, viscous effects in water are often
neglected and the water compressibility plays a noticeable role only for a very short
duration after the hull contacts the water. We assume the water to be

Fig. 6 Variation with the fiber orientation angle of (left) the energy dissipated in different failure
modes and (right) total work done, strain energy, and kinetic energy; reproduced from [12]
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incompressible, inviscid, and undergoing irrotational motions. While analyzing
deformations of a sandwich structure, as recommended by Reissner [3] and Koiter
[4], we consider transverse normal and transverse shear deformations and use the
CZM as well as coupled boundary element (BE) and FE methods to delineate
delamination between adjacent plies induced by the hydroelastic pressure. We
employ the BEM to analyze the fluid motion and the FEM in conjunction with the
TSNDT to study transient deformations of the curved sandwich hull made of a
St. Venant-Kirchhoff material. The continuity of the pressure and of the normal
component of velocity at the water/hull interface couples hull’s deformations with
the water motion. The Rayleigh damping for the structure incorporated into the
problem formulation reduces oscillations in the hydrodynamic pressure on the
solid/fluid interface.

The assumptions of irrotational motion and incompressibility of the fluid imply
that there exists a velocity potential φ such that the fluid velocity v= −∇φ, where
∇ is the spatial gradient operator in the XZ-plane, and that φ satisfy the Laplace
equation. The Laplace equation under pertinent boundary conditions is solved by
the BEM with the fluid/structure interface updated after every time increment. The
Bernoulli equation relating the pressure at a point to the kinetic energy density there
is used to find the pressure.

We use the TSNDT and the FEM to analyze transient deformations of the St.
Venant-Kirchhoff hull, and use the CZM for simulating delamination between
adjacent layers of distinct materials.

The Table 1 and results described below are borrowed from Ref. [20]. In
Table 1, we have compared features of our coupled BE-FE software with those of

Fig. 7 Schematic sketch of the water slamming problem studied; reproduced from [20]

238 R. C. Batra



the commercial code, LSDYNA. It is clear that the in-house developed code avoids
fluid penetration into the hull.

3.1 Water Slamming of Linearly Elastic Straight
Sandwich Hull

We now analyze plane strain deformations of a clamped–clamped linearly elastic
straight sandwich hull of deadrise angle, β = 5°, hull length = 1 m, thickness of
each face sheet = 1.2 cm, core thickness = 3.0 cm, downward impact veloc-
ity = 10 m/s, and values of material parameters listed in Table 2. The face sheet
mass density includes the dead weight of the ship. We discretize the sandwich beam
into 60 uniform 2-node elements and the boundary of the 5 m × 15 m fluid
domain into 2-node elements. We successively refined the mesh on the fluid
boundary to get a converged solution.

For the Rayleigh damping coefficient α=5× 10− 6 and 5 × 10−7, the time
histories of the pressure at y1 = 0.35m plotted in Fig. 8 reveal a significant
reduction in oscillations in the pressure and miniscule difference in results for the
two values of α. The pressure computed without (with) using the added mass
method exhibits (no) oscillations at t = 4 ms. The three pressure variations on the
hull at t = 2.72, 4.79, and 5.75 ms are from the present BE-FE method, Qin and
Batra’s [21] semi-analytical approach, and the Das and Batra’s [22] numerical
solution computed using LSDYNA. The modified Wagner’s theory employed in

Table 1 Comparison of LSDYNA and coupled BE-FE approaches for the water slamming
problem

LSDYNA BE-FE methods

Fluid penetration into solid Yes No
Hull pressure oscillations Yes No
Dependence of results on contact algorithm Yes No
Water jet delineation Difficult Easy
Fluid flow assumptions Compressible Incompressible

and irrotational
Finding strain rates in the fluid domain Easy Difficult

Table 2 Values of material parameters of the sandwich hull

C1111 (GPa) C1133 (GPa) C3333 (GPa) C1313 (GPa) Mass density (kg/m3)

Face sheet 140.3 3.77 9.62 7.10 31,400
Core 3.77 1.62 3.77 1.08 150
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[21] gives singular pressure field and its peak value is approximated in the plot.
Except for the peak pressure, the three methods give results close to each other.
Hull’s deformations are assumed to be infinitesimal in [21] but all geometric
nonlinearities are considered in [22].

3.2 Water Slamming of Straight Sandwich Hull Made
of St. Venant-Kirchhoff Material

We have simulated two water slamming problems to delineate the influence of
geometric nonlinearities and hull stiffness on the hydrodynamic pressure acting on a
sandwich hull. For problem 1 values of elastic constants are the same as those for
the hull studied in Sect. 3.1, and for problem 2, values of all elastic parameters have
been reduced by a factor of 10 and the mass density reduced to 2,000 kg/m3. For
problem 2 we set each face sheet thickness = 6 mm, core thickness = 7.5 mm, and
hull length = 1 m. The first fundamental frequencies for the hulls of problems 1 and
2 without considering added mass are 110 and 101 Hz, respectively. The deadrise
angle and the downward velocity of the hull for both problems, respectively, equal
10° and 10 m/s. Effects of geometric nonlinearities are considered only for problem
2. The time step = 0.75 μs was used to compute results for both problems.

Time histories of the mid-span deflection depicted in Fig. 9 (left), and the
pressure distribution on the hull at two different times in Fig. 9 (right) vividly
illustrate that the consideration of geometric nonlinearities significantly influences
hull’s deformations and its interaction with the surrounding fluid. Geometric non-
linearities reduce hull’s mid-span deflection by 33% as compared to that found from
the linear theory.

Fig. 8 For initial impact speed = 10 m/s, (left) time histories of the pressure on the hull at
y1 = 0.35m for two values of the damping ratio, and with and without adding mass due to the
acceleration of particles on the hull surface. The three curves overlap each other. Right: Pressure
distribution on the hull at t = 2.72, 4.79 and 5.75 ms. Black, blue and red curves, respectively,
represent results computed by Qin and Batra [20], Das and Batra [21], and the coupled FE-BE
method. The y1-axis is along the hull; reproduced from [20]
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3.3 Water Slamming of Linear Elastic Circular
Sandwich Hull

From the variation of the hydroelastic pressure on curved and straight hulls at three
times depicted in Fig. 10, we see that the hull curvature noticeably influences the
peak pressure and the pressure distribution on the hull. For each value of time, the
peak pressure on the circular hull is considerably less than that on the flat hull and,
as expected, occurs at different locations. The pressure distribution on the hull
resembles a traveling wave with the peak pressure acting at the just wetted point,
the pressure rapidly decreasing in its wake, and staying uniform over a significant
part of the wetted length.

Fig. 9 Left: time histories of the mid-span deflection for the three problems studied; right:
hydroelastic pressure on the hull at two different times. Black, red, and blue curves represent,
respectively, results for linear problem 1, linear problem 2 and nonlinear problem 2; reproduced
from [20]

Fig. 10 Pressure distribution
on circular hull with R=5m
(solid curves) and flat (dashed
curves) hulls. Black, red and
blue curves, respectively,
represent results at t = 2.72,
4.79 and 5.75 ms; reproduced
from [20]
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3.4 Delamination in Linearly Elastic Straight Sandwich
Hull Due to Water Slamming Loads

We divide the clamped–clamped linearly elastic straight sandwich hull of
length = 1 m, deadrise angle = 5° into 81 uniform 2-node elements. The geometric
and material parameters, and the entry velocity for problem 1 are the same as those
for the hull studied in Sect. 3.1. We set σ0t = σ0n =1MPa, GIc = 625 Jm− 2,
GIIc = 418 Jm− 2, where GIc and GIIc are, respectively, the critical energy release
rates for mode I and mode II failures, and σ0t and σ0n are the strength parameters.
Values of various parameters used here are not necessarily for a real material. For
problem 2, we take the thickness of each face sheet = 2 cm, core thickness = 6 cm,
downward impact velocity = 10 m/s, deadrise angle = 10°, σ0t =3.5MPa,
σ0n =7.1MPa, GIc = 625 Jm− 2 and GIIc = 418 Jm− 2. Values of elasticities for the
core and the interface strength are listed in Table 3.

For problem 1, we have compared in Fig. 11 time histories of the deflection of
the hull centroid with and without considering delamination computed using the
BE-FEM with those of [21] obtained by using LSDYNA. It is clear that the two sets
of results are close to each other. The hull centroid deflection considering delam-
ination is larger than that without accounting for delamination. The reduction in
sandwich hull’s stiffness due to delamination increases its deflections and decreases
the hydroelastic pressure on the hull surface as shown in Fig. 12.

Table 3 Values of material parameters of the sandwich hull

C1111 (GPa) C1133 (GPa) C3333 (GPa) C1313 (GPa) Mass density (kg/m3)

Face sheet 13.4 2.40 5.92 1.92 1,850
Core 0.307 1.62 0.0923 0.107 200

Problem 1

Fig. 11 Time histories of the straight hull centroid deflection with and without considering
delamination; reproduced from [20]
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In order to quantify delamination, we introduce a scalar, ω, that equals 1 (0) at a
point for complete (no) delamination. For the two problems studied, we have
plotted in Fig. 13 fringe plots of ω in ty1-plane on the two interfaces. These plots

Problem 2

Problem 1
Problem 2

Fig. 12 Distribution of the hydroelastic pressure on the hull at two values of t. Black (red) curve
represents results with (without) considering delamination. The red and black curves at
t = 2.72 ms for problem 2 overlap as the beam has not been delaminated at this time; reproduced
from [20]

Top 
interface

Top 
interface

Bo om 
interface 

Bo om 
interface 

Fig. 13 Variation of the separation index ω with the y1-coordinate and the time, on the top and
the bottom interfaces for problems 1 (top 2) and 2 (bottom 2); reproduced from [20]
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suggest that for problems 1 and 2 the complete delamination first occurs on both
interfaces at points close to the left edge or near y1 = 0 at t = 3.6 and 6.5 ms,
respectively, and propagates to the right edge. At t = 6 ms, whereas most of the
interfaces have been delaminated for problem 1, the delamination has not begun for
problem 2. For problem 2, the two interfaces are delaminated at different rates with
the top and the bottom interfaces completely delaminated at approximately t = 9.5
and 11 ms, respectively. The delamination process is unstable for problem 2 as
evidenced by sharp increases followed by arrests in the delamination lengths.

4 Conclusions

Results presented here for the initiation and propagation of the fiber breakage,
matrix cracking, fiber/matrix debonding, and delamination between adjacent plies
in a clamped square composite laminate under a blast load suggest the following
sequence for the failures:

(i) fiber/matrix debonding at edges of the bottom and the top surfaces that are
perpendicular to the fibers,

(ii) matrix cracking at the bottom surface centroid, and at the top surface edges
normal to the fibers,

(iii) fiber breakage at the top surface edges parallel to fibers followed by that at
the bottom surface centroid,

(iv) debonding at the bottom and the top surfaces centroids,
(v) fiber breakage at the top surface centroid,
(vi) fiber breakage at the bottom surface sides, and
(vii) matrix cracking at the top surface centroid.

With all four plies having the same fiber orientation, the total energy dissipated
in all failure modes is higher for fiber orientation angles between 30° and 60° with
the panel edge than that for other fiber angles.

The slamming load on a straight sandwich hull induces delamination between
stiff face sheets and the soft core with the mode II failure being unstable. The
propagation of the hydroelastic pressure on the hull resembles a traveling wave with
the peak pressure at the front. The pressure decay in the wake is different for intact
and delaminated hulls.
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