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Abstract
Uterine fibroids are benign smooth muscle tumors of monoclonal origin that 
arise from the uterus. African-American women have a higher risk of developing 
the disease than do Caucasian women, and a family history of uterine fibroids is 
a risk factor for their development. The relative risk for uterine fibroids is signifi-
cantly higher in monozygotic twins than in dizygotic twins, suggesting a correla-
tion of the disease susceptibility with the patient’s genetic background. 
Chromosomal abnormalities are observed in approximately 40% of cases, where 
nonrandom and tumor-specific chromosomal abnormalities caused by chromo-
somal rearrangements affect alterations in the driver genes of uterine fibroids, 
such as high-mobility group AT-hook 2 (HMGA2) overexpression. Hereditary 
leiomyomatosis and renal cell cancer are caused by biallelic inactivation of the 
fumarase hydratase (FH) gene. Alport syndrome associated with diffuse leio-
myomatosis is caused by deletions of collagen type IV alpha 5 chain (COL4A5) 
and alpha 6 chain (COL4A6). Somatic alterations of these genes are also observed 
in non-syndromic uterine fibroids. Whole-genome sequencing (WGS) revealed 
that approximately 70% of uterine fibroids have somatic mutations of Mediator 
complex 12 (MED12), which is the most frequently observed driver gene altera-
tion in these tumors. Through WGS, uterine fibroids have been categorized into 
at least four subgroups according to the types of driver gene alterations: MED12 
mutation, HMGA2 overexpression, biallelic FH inactivation, and COL4A5 and 
COL4A6 deletions. Each alteration is mutually exclusive in the fibroid nodule. In 
addition, the role of microRNAs in the development of uterine fibroids is exten-
sively examined.
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2.1	 �Introduction

Uterine fibroids, also called uterine leiomyomas, are benign smooth muscle tumors 
that arise from the uterus. Uterine fibroids show sex-steroid-dependent growth, and 
typically become symptomatic during the reproductive age. Epidemiological stud-
ies indicate that the susceptibility to uterine fibroids depends on the ethnicity of the 
woman. Approximately 40% of uterine fibroids have an abnormal karyotype, and 
gene alterations associated with chromosomal rearrangements are also related to the 
disease’s pathogenesis. Furthermore, driver gene alterations are frequently observed 
in karyotypically normal fibroids. Women with hereditary syndromes who have a 
germ-line mutation of some specific genes have multiple uterine fibroids, implicat-
ing the important role of genetic factors in the disease’s development. This chapter 
focuses on the genetic alterations and genomic variations and their significance in 
the pathophysiology of uterine fibroids.

2.2	 �Genetic Backgrounds

Studies have suggested an ethnic difference in the susceptibility to uterine fibroids. 
Epidemiological studies have shown that African-American women have a signifi-
cantly higher (two to three-fold) relative risk for uterine fibroids than do Caucasian 
women in the United States [1]. In addition, fibroids in African-American women 
are diagnosed at an earlier age and are more symptomatic and larger than those in 
Caucasian women [2]. Although the difference in fibroid prevalence between 
African-American and ethnicities other than Caucasian (e.g., Hispanics and Asians) 
is still controversial, its high prevalence in African-American women suggests a 
correlation with the patient’s genetic background.

A family history of uterine fibroids is another risk factor for their development. A 
case-control study revealed that both a maternal history of uterine fibroids and reduced 
parity are significant risk factors for the disease in Caucasian women [3]. First-degree 
relatives of an affected proband have a 2.2–2.5-fold higher risk of developing uterine 
fibroids, and the odds ratio increases to 5.7 after selecting for early onset cases [4, 5].

Twin cohort studies further support the relationship between genetic background 
and uterine fibroid susceptibility. In a Finnish study of monozygotic and dizygotic 
twin pairs, the relative risk for the disease was significantly higher in the monozy-
gotic twins [6]. The relative risk of hysterectomy due to uterine fibroids was also 
higher in monozygotic twins than in dizygotic twins in a United Kingdom twin 
study [7]. Monozygotic twins are identical in terms of genetic background com-
pared with dizygotic twins. These data again suggest the role of genetic factors in 
the development of uterine fibroids.
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2.3	 �Clonality

Clonality analysis has shown that a uterine fibroid is a monoclonal tumor, where 
each fibroid nodule is derived from a single progenitor myocyte due to somatic 
mutation; therefore, each fibroid results from an independent clonal event. Within 
the same uterus, each fibroid nodule shows a specific inactivation pattern of X 
chromosome-linked genes, such as glucose-6-phosphate dehydrogenase (G6PD), 
phosphoglycerate kinase (PGK), and androgen receptor (AR) genes [8–11]. The 
methylation status of these genes is different among fibroid nodules. Thus, different 
nodules in multiple fibroids are of different cytogenetic origins [12].

2.4	 �Genome-Wide Association Study

Genome-wide association study (GWAS) is a powerful tool for identifying common 
genetic variants associated with specific disorders. A case-control GWAS of 
Japanese women revealed significant associations between chromosomal loci (at 
the chromosome 10q24.33, 22q13.1, and 11p15.5 regions) and uterine fibroids [13]. 
Another GWAS on a US and Australian cohort of Caucasian women revealed one 
single nucleotide polymorphism (SNP), located on chromosome 17q25.3, to be sig-
nificantly associated with uterine fibroid risk [14]. This locus was located near the 
fatty acid synthase (FASN) gene, and FAS protein levels were significantly upregu-
lated in fibroid tissue compared with those in matched myometrial tissue. This 
implicates FASN as a candidate gene in the predisposition to uterine fibroids in 
Caucasian women.

On the other hand, the same SNP was not associated with uterine fibroid risk in 
African-American women. A GWAS in the Black Women’s Health Study, consist-
ing of a cohort of 59,000 African-American women, failed to replicate GWAS find-
ings on uterine fibroids in Japanese women [15]. There might be multiple loci in the 
genome with relatively small effects that contribute to the increased risk of uterine 
fibroids in African-American women, since ethnicity may be associated with a 
genetic predisposition to these tumors.

2.5	 �Chromosomal Rearrangements

Approximately 40% of uterine fibroids have nonrandom and tumor-specific chro-
mosome abnormalities, including deletion of portions of 7q or trisomy 12, or rear-
rangements of 12q14-15, 6p21, or 10q22 [16]. Rearrangements of chromosomes X, 
1, 3, and 13 have also been identified in fibroid nodules [4, 17].

In addition to the simple chromosomal aberrations leading to the affected single 
gene mutations, complex chromosomal rearrangements (CCRs), which lead to 
simultaneous multiple chromosomal rearrangements, have been identified in uterine 
fibroids [18, 19]. Whole-genome sequencing (WGS) of each fibroid nodule revealed 
that CCRs resembling chromothripsis (a single genomic event that results in focal 
losses and rearrangements in multiple genomic regions) are a major cause of 
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chromosomal abnormalities in uterine fibroids [20]. The CCR may allow tumor-
promoting genetic changes, which can impair the control of cell-cell checkpoints 
and the repair of DNA double-strand breaks, such as translocations of the high-
mobility group AT-hook 2 (HMGA2) and DNA repair protein RAD51 homolog B 
(RAD51B) loci [21].

One of the well-known chromosome rearrangements observed in women with 
uterine fibroids is t(12;14)(q14-q15; q23-q24), involving the overexpression of 
HMGA2 [22]. The presence of t(12;14) is often associated with fibroids of larger size 
than those with either normal karyotypes or interstitial 7q22 deletions. In fact, 
HMGA2 overexpression is observed in large fibroids [23]. This translocation allows 
fusion transcripts of RAD51B and HMGA2. RAD51B, a member of the RAD51 
recombination gene family, is located on chromosome 14q24 and is the most fre-
quent translocation partner of HMGA rearrangements. RAD51B encodes a protein 
involved in DNA double-strand break repair by homologous recombination [24, 25].

In other subgroups of uterine fibroids, rearrangements of 6p21 have been 
observed that lead to an overexpression of HMGA1, another high-mobility group 
AT-hook gene [26]. Thus, aberrant expression of HMG family genes due to chromo-
somal rearrangements may contribute to the pathogenesis of these tumors [27]. 
Deletion and translocation of chromosome 7 (i.e., del(7)(q22q32) and t(1;7)
(q42;q22)) are other frequently observed chromosomal rearrangements in uterine 
fibroids [16, 28, 29]. The fact that del(7) is often observed as a sole change indicates 
that the loss of a tumor suppressor gene may be the most likely pathogenic mecha-
nism in this subgroup, with deletion of the expression of specific genes, including 
the proliferation inhibitor HMG-box transcription factor 1 (HBP1), and the mitosis 
integrity-maintenance tumor suppressor RAD50 interactor 1 (RINT1) [16]. 
Rearrangement of 10q22 allows disruption of a histone acetyltransferase gene, 
monocytic leukemia zinc finger protein-related factor (MORF), in uterine fibroids. 
Similarly, rearrangement of 17q21 allows disruption of another gene with histone 
acetyltransferase activity, lysine acetyltransferase 2A (KAT2A) [30]. These chromo-
somal rearrangements observed in each fibroid nodule lead to aberrant expression 
of specific genes and are related to the pathophysiology of uterine fibroids.

2.6	 �Syndrome-Associated Fibroids

Women with hereditary syndromes caused by germ-line mutations of specific genes 
tend to have multiple uterine fibroids or leiomyomatosis. Hereditary leiomyomatosis 
and renal cell cancer (HLRCC) syndrome is an autosomal dominant inherited tumor 
predisposition syndrome characterized by multiple cutaneous fibroids, uterine 
fibroids, and renal cell cancer [31]. Women with HLRCC have a heterozygous germ-
line mutation of fumarate hydratase (FH) at 1q43. This fumarase enzyme catalyzes 
the hydration of fumarate to l-malate in the tricarboxylic acid cycle. Biallelic inacti-
vation of FH through loss of heterozygosity or an inactivating mutation in the wild-
type allele causes a driver alteration of fibroids. Uterine fibroids are present in almost 
all women with HLRCC. The fibroid nodules become multiple and large, and most 
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women experience heavy menstruation and pelvic pain [32]. Compared with sporadic 
fibroids, HLRCC-associated fibroids are detected in younger women, where the mean 
age at diagnosis is ~30 years [31]. In a comprehensive series of HLRCC-associated 
uterine fibroids, 7.8% of the fibroids had somatic Mediator complex 12 (MED12) 
mutations. However, these fibroids have different immunoreactivities for 2-succinyl 
cysteine that affect the accumulation of fumarate compared with FH-altered fibroids; 
therefore, fibroids with MED12 mutations are distinct from the syndrome-associated 
fibroids with biallelic inactivation of the FH gene [33].

Alport syndrome (AS), a hereditary syndrome characterizing progressive renal 
failure with hematuria, eye disorder, and high-tone sensorineural hearing loss, arises 
from mutations in genes coding for basement membrane type IV collagen. Diffuse 
leiomyomatosis is observed in the esophagus, tracheobronchial tree, and genital 
reproductive tract in women with diffuse leiomyomatosis-associated AS, a rare sub-
type of AS due to germ-line mutations in collagen type IV alpha 5 chain (COL4A5) 
and alpha 6 chain (COL4A6) [34, 35].

2.7	 �Genetic Driver Alterations of Uterine Fibroids

As stated above, uterine fibroids are monoclonal tumors, where each fibroid nodule 
has a distinct character of single myocyte origin. Chromosomal rearrangements 
cause specific driver gene alterations of uterine fibroids, where each alteration inde-
pendently occurs in each fibroid nodule. WGS has revealed that the major somatic 
gene alterations related to fibroid formation are MED12 mutations and HMGA2 
overexpression. Other alterations are biallelic inactivation of FH and deletions in 
COL4A5 and COL4A6. These alteration events occur in an independent manner and 
are mutually exclusive in uterine fibroids, with some exceptions in syndrome-asso-
ciated fibroids [33, 36, 37].

2.7.1	 �MED12 Mutations

Somatic mutations of MED12 in uterine fibroids were initially reported by Mäkinen 
et  al. in 2011 [38], where surprisingly they occurred in approximately 70% of 
fibroids in Caucasian women, as revealed by WGS. Since then, different researchers 
worldwide have identified this mutation in 50–70% of uterine fibroids beyond eth-
nic and country differentials [39, 40].

MED12 is located on chromosome Xq13 and encodes a 250-kDa protein that is 
involved in transcriptional regulation of the RNA polymerase II complex. The 
MED12 protein is a component of a subcomplex of the large Mediator complex, 
namely, the cyclin-dependent kinase 8 (CDK8) module composed of CDK8, cyclin-
C (CCNC), MED12, and MED13 [41]. In MED12 mutation-negative uterine 
fibroids, no somatic mutations in the coding regions of CDK8, CCNC, or MED13 
have been observed, suggesting that mutations in other CDK8 submodule genes do 
not contribute to the disease pathogenesis [42].
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There is a hot spot of MED12 mutations on exon 2 in uterine fibroids, the most 
common being c.131G > A. Other types of point mutations have been identified on 
exon 2 and intron 1 [43, 44]. The region of the gene that is most frequently evolu-
tionarily conserved is located on exon 2 and at the intron 1–exon 2 junction. Both 
missense and in-frame insertion-deletion mutations were observed, with a notable 
predominance of single-base substitutions in codon 44 [44].

The frequency of MED12 mutations in histopathological variants of uterine 
fibroids and uterine leiomyosarcoma has been demonstrated. Typical fibroids have 
a high mutation frequency of MED12, whereas this is less frequently observed in 
histopathological fibroid variants, including cellular leiomyoma and smooth muscle 
tumor of uncertain malignant potential [45–47]. MED12 mutations in leiomyosar-
coma are rare, and the most common variant c.130G > A in exon2, which is observed 
in typical fibroids, has never been identified in this fibroid variant [43, 48], indicat-
ing the genetic heterogeneity of uterine smooth muscle tumors.

Because of the high prevalence of MED12 mutations in uterine fibroids, the 
mode of action of this gene in the disease’s development and pathogenesis has been 
extensively studied. Recently, the role of Med12 mutation in fibroid development 
was identified using a mouse model. The common MED12 variant c.131G > A can 
drive tumor formation alone in a gain-of-function manner and cause genomic insta-
bility. Whereas conditional loss of function of Med12 did not lead to uterine fibroids 
in mice, expression of the Med12 c.131G > A variant on a background of condi-
tional Med12 knockout did [49]. In these mice, 80% of the uteri contained lesions 
consistent with fibroids, including extracellular matrix (ECM) deposits, fibroblast 
and macrophage infiltrations, and disorganized muscle fiber arrangement. Moreover, 
the Med12 c.131G  >  A variant caused uterine fibroids in mice with a wild-type 
background, where approximately 50% of the uteri from these mice developed 
fibroid-like lesions consisting of ECM deposition and disorganized smooth muscle 
fiber arrangement. The authors concluded that the Med12 missense c.131G  >  A 
variant acts as a gain-of-function mutation and is related to genomic instability in 
the fibroid-like lesions, with copy number gains and losses.

The role of Med12 in fibroid cell proliferation through direct interaction with the 
Wnt/β-catenin and associated signaling pathways has been reported [50]. The pro-
liferation of Med12 knockdown immortalized uterine fibroid cells was significantly 
inhibited compared with that of scrambled control cells. Silencing of Med12 in 
these cells showed significantly reduced levels of Wnt4 and β-catenin proteins, cell 
cycle-associated proteins, and transforming growth factor-β-regulated fibrosis-
related proteins, indicating that Med12 plays a crucial role in fibroid cell prolifera-
tion via the Wnt/β-catenin signaling pathway.

2.7.2	 �HMGA2 Overexpression

Overexpression of HMGA2 is found in 7.5–10% of uterine fibroids. HMGA2 is 
located at 12q14.3, and chromosomal rearrangements involving 12q14-15 result in 
HMGA2 overexpression in affected uterine fibroids. Expression of the HMGA2 
transcript is significantly upregulated in fibroid tissue with 12q14-15 
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rearrangements, compared with that in normal karyotype fibroids [23, 51]. HMGA2 
is a member of the high-mobility group gene family and encodes nonhistone com-
ponents of chromatin that act as architectural factors to influence diverse cellular 
processes, including differentiation, death, growth, and proliferation.

Although little is known about the underlying mechanisms through which 
HMGA2 overexpression leads to fibroid development, the overexpression of this 
gene is associated with large fibroid size, suggesting that HMGA2 promotes fibroid 
growth [52]. Expression of both HMGA2 and fibroblast growth factor 2 (FGF2) has 
a significant positive correlation with the affected chromosomal rearrangements in 
uterine fibroids [53]. Stimulation of myometrial tissue by FGF1, a strong inducer of 
HMGA2, leads to an increase of HMGA2 and FGF2, suggesting that overexpression 
of HMGA2 upregulates FGF2 expression in fibroid tissue.

HMGA2 is a predicted target of let-7 microRNAs (let-7s), which are significantly 
dysregulated in uterine fibroids [54]. High levels of let-7 and low levels of HMGA2 
expression in small fibroids and low levels of let-7 and high levels of HMGA2 expres-
sion in large fibroids have been elucidated. Furthermore, exogenous let-7s directly 
repressed HMGA2 transcripts in cultured fibroid cells, suggesting that let-7-mediated 
repression of HMGA2 may play an important role in fibroid growth [55].

A recent WGS study revealed uniquely expressed genes in the HMGA2-
overexpressing fibroids [37]. HMGA2 itself, insulin-like growth factor 2 mRNA-
binding protein 2 (IGF2BP2), and cyclin D2 (CCND2) were the top three most 
uniquely expressed genes. Expression of the proto-oncogene pleomorphic adenoma 
gene 1 (PLAG1) was significantly upregulated in fibroids with HMGA2 aberrations, 
suggesting that HMGA2 promotes fibroid tumorigenesis through PLAG1 activation.

2.7.3	 �Biallelic FH Inactivation

FH is an enzyme that catalyzes the reversible hydration/dehydration of fumarate to 
l-malate in the tricarboxylic acid cycle. Germ-line mutations in the FH gene encod-
ing fumarase, at chromosome 1q43, cause biallelic FH inactivation in HLRCC, and 
women with this condition have multiple uterine fibroids. Although FH deficiency 
through biallelic inactivation of FH also occurs in non-HLRCC uterine fibroids, the 
frequency of FH deficiency for sporadic uterine fibroids is less than 2% [56–58]. 
FH-deficient uterine fibroids are often soft and amorphous, resembling a fibrothe-
coma. Histologically, they lack cellular packeting and distinct collagenous zones and 
show chain-like or palisading nuclear arrangements, prominent staghorn or slit-like 
blood vessels, oval nuclei with no or at most mild atypia, small eosinophilic nucleoli, 
and a low mitotic rate [57]. Thus, FH-deficient uterine fibroids occur less frequently 
and consist of a distinct subgroup of non-syndromic uterine leiomyomas.

2.7.4	 �Alterations of COL4A5 and COL4A6

WGS also revealed aberrations of COL4A5 and COL4A6 on chromosome Xq22 in 
a small-numbered but distinct group of uterine fibroids [20, 37]. Both genes are 
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responsible for type IV collagen synthesis. Insulin receptor substrate-4 (IRS4), a 
gene located adjacent to COL4A5, is the most uniquely expressed gene in these 
fibroids. Deletions of COL4A5 and COL4A6 are observed in diffuse leiomyomatosis-
associated AS, a rare variant of AS characterized by renal dysfunction and leiomyo-
matosis in the gastrointestinal, respiratory, and reproductive organs [59, 60].

2.8	 �Role of MicroRNAs in the Pathogenesis 
of Uterine Fibroids

MicroRNAs (miRNAs) are noncoding, stable, single-stranded RNAs consisting of 
20–25 base pairs. These RNAs regulate the expression of multiple genes through 
posttranscriptional regulation, mainly through gene silencing. Differential and aber-
rant miRNA expression in uterine fibroids has been reported.

Microarray-based miRNA expression analysis using multiple myometrial tissue 
revealed that 45 miRNAs were significantly up- or down-regulated in uterine fibroids 
compared with the matched myometrium [54]. The authors compared miRNA 
expression profiles of uterine fibroids in women of different ethnicity and tumors of 
different size: African-American, Caucasian, and others and large, medium, and 
small tumors, respectively. Five dysregulated miRNAs were identified: the let-7 fam-
ily, miR-21, miR-23b, miR-29b, and miR-197. HMGA2 is one of the target genes of 
the let-7 family. The same research group further investigated the role of let-7 family 
miRNAs in HMGA2 expression and fibroid cell proliferation and found that the let-7 
miRNAs directly repress the dominant HMGA2 transcript [55].

Another microarray-based miRNA analysis revealed that 46 miRNAs were dif-
ferentially expressed in uterine fibroids compared with normal myometrium [61]. 
They reported the 20 most differentially expressed miRNAs, of which miR-29 spe-
cies (miR-29a, miR-29b, and miR-29c) were significantly downregulated in the 
fibroid tissue compared with myometrial tissue. Overexpression of the miR-29 fam-
ily in fibroid cells results in downregulation of the major fibrillar collagens, whereas 
downregulation of the miR-29 species results in increased expression of collagen 
type III, indicating that the miR-29 family plays a crucial role in ECM collagen 
deposition in uterine fibroids [62].

The role of miR-29b in uterine fibroid pathogenesis has been examined using a 
fibroid xenograft model [63]. Restoring miR-29b into the fibroid xenograft inhibited 
ECM accumulation, and 17β-estradiol and progesterone downregulated miR-29b and 
upregulated the mRNAs for multiple collagens. This suggests that ECM deposition in 
uterine fibroids is regulated by sex steroids via the downregulation of miR-29b.

The mechanism underlying the aberrant expression of miR-29c in uterine fibroid 
has been further clarified [64]. Expression of COL3A1 and DNA methyltransferase 
type 3A (DNMT3A), both of which are target genes of miR-29c, was increased in 
uterine fibroids, and an inverse correlation between miR-29c and its target gene 
expression was observed. Overexpression of miR-29c by the transfection of pre-miR-
29c inhibited the expression of COL3A1 and DNMT3A in leiomyoma smooth muscle 
cells, whereas knockdown of miR-29c had the opposite effect. The suppression of 
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miR-29c for its target gene expression was primarily mediated by transcription factor 
SP1, nuclear factor-kappa B signaling, and epigenetic modification.

The role of miR-21 upregulation for the apoptosis of immortalized uterine fibroid 
cells has been clarified [65]. Fibroid tissues express significantly higher levels of 
miR-21 than does the normal myometrium. Silencing of miR-21 in the fibroid cells 
increases both the cleavage of caspase-3 and the phosphorylation of elongation 
factor-2, suggesting that miR-21 may contribute to the regulation of apoptosis and 
translation in uterine fibroids. Furthermore, the roles of other dysregulated miR-
NAs, including miR-197, miR-200c, and miR-15b, in the pathogenesis of uterine 
fibroids have been elucidated [66–68].

It is obvious that dysregulated miRNAs play crucial roles in the pathophysiology 
of uterine fibroids, and specific miRNAs have specific roles through modification of 
their specific target genes. However, most of the miRNAs regulate multiple target 
genes in a complicated manner. Therefore, the targeting of miRNAs for uterine 
fibroid treatment should be further clarified.

�Conclusions

Genetic backgrounds affect the susceptibility of women to uterine fibroids, with 
genetic abnormalities being the pathological cause of the disease. Uterine 
fibroids are of monoclonal origin, where each fibroid nodule has a mutually 
exclusive driver gene alteration pattern that occurs in an independent manner. 
Chromosomal rearrangements occur in approximately 40% of uterine fibroids, 
which may cause the driver gene mutations. Several miRNAs also play roles in 
the disease’s pathology.
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