Chapter 5 )
Gene Selection and Survival Prediction Check or
Under Dependent Censoring

Abstract To select genes that are predictive of survival, univariate selection based
on the Cox model has been routinely employed in biomedical research. However,
this conventional approach relies on the independent censoring assumption, which
is often an unrealistic assumption in many biomedical applications. We introduce
an alternative approach to selecting genes by utilizing copulas to account for the
effect of dependent censoring. We also introduce a method to construct a predictor
based on the selected genes to predict patient survival. We use the non-small-cell
lung cancer data to demonstrate the copula-based procedure for selecting genes,
developing a predictor, and validating the predictor. We provide detailed instruc-
tions to implement the proposed statistical methods and to reproduce the real data
analyses through the compound.Cox R package.
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5.1 Introduction

Recent years have witnessed a rapid increase in the use of genetic covariates to
build survival prediction models in biomedical research. Accurate prediction of
survival is often possible by incorporating genetic covariates into prediction
models, as reported in breast cancer (Jenssen et al. 2002; Sabatier et al. 2011; Zhao
et al. 2011), diffuse large-B-cell lymphoma (Lossos et al. 2004; Alizadeh et al.
2011), lung cancer (Beer et al. 2002; Chen et al. 2007; Shedden et al. 2008), ovarian
cancer (Popple et al. 2012; Yoshihara et al. 2010, 2012; Waldron et al. 2014), and
other cancers. Evaluating predictive accuracy of the survival prediction models has
been a challenging area of research due to the high-dimensionality of genes
(Michiels et al. 2005; Schumacher et al. 2007; Beavelstad et al. 2007, 2009; Witten
and Tibshirani 2010; Zhao et al. 2014; Emura et al. 2017).
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To overcome the difficulty of handling the high-dimensional genetic covariates,
one often needs to obtain a small fraction of genes that are predictive of survival.
The traditional approach, called univariate selection, is a forward variable selection
method according to univariate association between each gene and survival, where
the association is measured through univariate Cox regression. A predictor con-
structed from the selected genes has been shown to be useful for survival prediction
(Beer et al. 2002; Wang et al. 2005; Matsui 2006; Chen et al. 2007; Matsui et al.
2012; Emura et al. 2017).

It is well known that Cox regression relies on the independent censoring assump-
tion. From our discussions in Chap. 3, this assumption seems unrealistic in univariate
Cox regression, where many covariates are omitted. If the independent censoring
assumption is violated, univariate Cox regression may not correctly capture the effect of
each gene and thus may fail to select useful genes. Accordingly, the resultant predictor
based on the selected genes may have a reduced ability to predict survival.

Emura and Chen (2016) introduced a copula-based method for performing gene
selection. With this method, dependence between survival and censoring times is
modeled via a copula, whereby relaxing the independent censoring assumption. In
the subsequent discussions, we revisit their method by providing more detailed
developments than the original paper. We have made the lung cancer data publicly
available in the compound.Cox R package (Emura et al. 2018) to enhance
reproducibility.

The chapter is organized as follows. Section 5.2 reviews the conventional uni-
variate selection. Sections 5.3-5.5 introduce the copula-based method of Emura
and Chen (2016). Section 5.6 includes the analysis of the non-small-cell lung
cancer data for illustration. Section 5.7 provides discussions.

5.2 Univariate Selection

Univariate selection is the traditional method for selecting a subset of genes that is
predictive of survival. As the initial step, one fits the univariate Cox model for each
gene, one-by-one. Then, one selects a subset of genes that are univariately asso-
ciated with survival. Finally, one builds a multi-gene predictor using the subset of
genes for purpose of survival prediction. The predictor is usually a weighted sum of
gene expressions whose weights reflect the degree of association.

Letx = (xi, ..., % )' be a p-dimensional vector of gene expressions, where the
dimension p can be large. Let T be survival time having the hazard function
h(t]x) =Pr(t<T<t+dt|T >t, x)/dr. It is well known that the multivariate Cox
model A(f|x) = ho(t) exp(p'x) does not yield proper estimates of p when p is very
large (Witten and Tibshirani 2010).

In biomedical research, the univariate Cox regression analysis is the traditional
strategy to deal with the large number of covariates (e.g., Beer et al. 2002; Chen et al.
2007). Let h(t|x;) =Pr(t<T<t+dt |T >t, x; )/dt be the hazard function given
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the jth gene. The univariate Cox model is specified as /;(t|x;) = ho;(t) exp(f;x;) for
each genej = 1, ..., p. The primary objective of using the univariate Cox model is
to perform univariate selection as follows: For each j=1, ..., p, the null
hypothesis Hy : f; = 0 is examined by the Wald test (or score test) under the
univariate Cox model. Then one picks out a subset of genes that have low P-values
from the tests. The genes with low P-values are then selected for further analysis.

After genes are selected, they are used to build a prediction scheme for survival. In
medical studies, it is a common practice to re-fit a multivariate Cox regression model
based on the selected genes (e.g., Lossos et al. 2004). However, we have reservations
about this commonly used strategy due to the poor predictive performance observed in
many papers (e.g., Bavelstad et al. 2007; van Wieringen et al. 2009). Alternatively, we
suggest using Tukey’s compound covariate predictor (Tukey 1993) that combines the
results of univariate analyses without going through a multivariate analysis. The
compound covariate has been successfully employed in many medical studies (e.g.,
Beer et al. 2002; Wang et al. 2005; Chen et al. 2007) and biostatistical studies (Matsui
2006; Matsui et al. 2012; Emura et al. 2012, 2017).

The two major assumptions of univariate selection are the correctness of the uni-
variate Cox model and the independent censoring assumption. The violation of these
assumptions yields bias in estimating the true effect of genes. Emura and Chen (2016)
argued that the independence of censoring is a more crucial assumption than the
correctness of the univariate Cox model. The bias due to dependent censoring gets
large if either the degree of dependence or the percentage of censoring increases (see
Sect. 3.5). In the following sections, we shall introduce a copula-based univariate
selection method that copes with the problem of dependent censoring.

5.3 Copula-Based Univariate Cox Regression

Let T be survival time, U be censoring time, and x = (xq, ..., Xp )’ be gene
expressions. The joint distribution of 7 and U can have an arbitrary dependence
pattern for any given x;. Sklar’s theorem (Sklar 1959; Nelsen 2006) guarantees that
the joint survival function is expressed as

Pr(T>t, U>ulg)=C{Pr(T>t|x;),P(U>ulx;)}, j=1,...,p,

where C;is a copula. The independent censoring assumption corresponds to C{u, v) = uv
forj=1, ..., p, namely,

Pe(T>t,U>ulx;)=Pr(T>t|x)x Pr(U>ulx), j=1,...,p. (5.1)
This is clearly a strong assumption (Chap. 3).

To relax the independent censoring assumption, Emura and Chen (2016) sug-
gested a one-parameter copula model
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Pr(T>t,U>ulx))=C{Pr(T>tlx), Pr(U>ulx;)}, j=1,....,p. (52)

Since the same copula C is assumed for every j, this assumption may still be
strong. Nevertheless, the copula relaxes the independent censoring assumption (5.1)
by allowing a dependence parameter « to be flexibly chosen by users. One example
is the Clayton copula

Colu,v)= (u+v*—1)"7 o> 0,

where the parameter « is related to Kendall’s tau through t = o/( 4 2). The copula
model (5.2) reduces to the independent censoring model (5.1) by letting o — 0.
For marginal distributions, Emura and Chen (2016) assumed the Cox models

Pr(T >t |x ) =exp{ f/\oj(t)eﬂf'xf Yoo Pr(U>ulxj ) =exp{ —Lyj(u)e’ },
(5.3)

where f3; and 7; are regression coefficients and Ag; and T'o; are baseline cumulative
hazard functions.

For purpose of gene selection, the target parameter is f3; that is the univariate effect
of the jth gene on survival. Other parameters ( Vs Nojs Ty ) are nuisance. Under the
independent censoring model (5.1), one can use the partial likelihood to estimate for
B; while ignoring the nuisance parameters. However, under the copula model (5.2),
the partial likelihood estimator gives an inconsistent estimate of 8; (Chap. 3).

The full likelihood is necessary to consistently estimate ( f3;, ;, Aoj, T'oj )
under the copula model (5.2) and the Cox models (5.3). Define notations

0Cy(u, v)/0u _ 00, (u, v)

Do:,l (M, V) =

Cy(u, v) ou
_0C,(u, v)/Ov  ODy(u, v)
Daalu, v) = Colu, v) o

where @, (1, v) = —log C,(u,v). Observed data are denoted as {(#;, 6;, x;), i = 1, ...,
n},wheret; = min(T;, U;)and §; = I(T; < U,), where I(+) is the indicator function. As

in Chen (2010), we treat A¢; and I'y; as increasing step functions that have jumps sizes
dA()j(ti) = Aoj(l‘i) — A()j(ti — dl) for 51’ =1 and dl“oj(t,-) = Foj(ti) — l"oj(t,» — dl‘)
for J; = 0. For any given «, the log-likelihood is defined as

By )y Nojy Tojlo) = Zéi[ Bjxij + logny(tis Bjy vj, Aojy Tojlor) + log dAo;(t) |
+ Z(l — 00 [ vpxi + lognyy(tis By, 75 Ao Tojlor) + logdTop(t:) ]
= > @[ exp{ —Aq()eh™ }, exp{ ~Toi(r)e’™ ],

(5.4)
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where,

mi( 6 By 7 Aoy Tojler) = exp{ —Agj(1)e’™ 1D, 1 [ exp{ —Aq;(1)e }, exp{ —To;(1)e" }],
i (15 Biy 755 Agjy Tojlor) = exp{ —Tj(1)e? }D, o] exp{ —Agi(t)el™ }, exp{ —T;(1)e’ }].

The maximizer of Eq.(5.4) given o is denoted as
( ﬁj(oc), P;(), Aoj(a), ['gi(2) ). The standard error SE{ ﬁj(a) } is computed from
the information matrix (Chen 2010).

The log-likelihood in Eq. (5.4) can be easily computed under the Clayton
copula. It can be shown that ®@,(u,v) = o 'log(u*+v*—1),
Dy, vy= u ™ '@ +v* = 17" and Do, v)=u " '@ +v - 1L
Hence,

lexp{ —Aqj(t)eli }]7*

[exp{ —Ag(r)e 3] + exp{ —To;(1)er }]7* =17
[exp{ —Toi()el 3]

exp{ —Aq(Del™ 117+ lexp{ ~To(e™ |7 — 1

’711_'/( I8 ﬁj7 Vjs AOja IﬂOj‘oC ) =

(5 Bys vjs Aojs Tojloe) =

One can apply these formulas to Eq. (5.4) to calculate the log-likelihood func-
tion and maximize it by optimization algorithms.

We implemented the computation of f3 () and SE {B () } in the compound.Cox R
package (Emura et al. 2018). In the package, the maximization of Eq. (5.4) is per-
formed by the nlm function after the log-transformations log dAq;(#;) and log dI'(1;).
The package uses the initial values f3; = y; = 0 and dAg;(t;) = dTo;(t;) = 1/n.

Technical remarks: Theoretically, if o | O, Z?j(a) approaches to the partial
likelihood estimate of f3;. Numerically, however, the value o too close to zero makes
the likelihood optimization unstable. Hence, we set ﬁj(a) = Bj(0.0l)
for 0 < a < 0.01 in the package. The value of Bj(ac) = BJ-(O.Ol) is almost the same
as the partial likelihood estimate.

5.4 Copula-Based Univariate Selection

One can use the copula-based method in Sect. 5.3 to perform univariate selection
adjusted for the effect of dependent censoring. The P-value for testing the null
hypothesis Hp : f; =0 is computed by the Wald test based on a Z-statistic

ﬁj(oc) /SE{ [3,-(05)}. One can select a subset of genes according to the P-values. With
o ~ 0 in the Clayton copula, one has C(u, v) =~ uv. Hence, the resultant test is

approximately equal to the Wald test under univariate Cox regression. In this sense,
the copula-based test is a generalization of the conventional univariate selection.
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For a future subject with a covariate vector X = (xy, ..., X,,)’, survival prediction
can be made by the prognostic index (PI) defined as PB(x)'x, where B(x) =
(By(a), -+, ﬁp(cx) ). The PI is a weighted sum of genes whose weights reflect the

degree of univariate association. If o = 0, one obtains PI = fi(O)/x which is equal to
the compound covariate based on univariate Cox regression under the independent
censoring assumption (Matsui 2006; Emura et al. 2012).

5.5 Choosing the Copula Parameter by the C-Index

Estimation of the copula parameter o is inherently difficult due to the
non-identifiability of competing risks data (Tsiatis 1975). An estimator maximizing
the profile log-likelihood for o based on Eq. (5.4) typically shows very large
sampling variation (Chen 2010). In our experience, the profile likelihood often has a
peak at extreme values; for instance, either « ~ 0 or o =~ oo under the Clayton
copula. These undesirable properties make the likelihood-based strategy less useful.

Following Emura and Chen (2016), we introduce a prediction-based strategy for
choosing o. A widely used predictive measure is a cross-validated partial likelihood
(Verveij and van Houwelingen 1993). Unfortunately, the partial likelihood is not a
valid likelihood under dependent censoring.

A more plausible predictive measure under dependent censoring is Harrell’s c-
index (Harrell et al. 1982). The interpretation of the c-index does not depend on a
specific model. We adopt a cross-validated version of the c-index defined as
follows.

We calculate the c-index based on a K-fold cross-validation. We first divide
n patients into K groups of approximately equal sample sizes. This process can be
specified by a function « : {1,...,n}— {1,.. K} indicating the group to which
each patient is allocated (Hastie et al. 2009). For each patient i, define the PI:

N ~

PI,'(OC) - B—x(i)(a)xi - El,ﬂc(z’)(a)xil + ot ﬁpﬁlc(i)(a)xipv

where Bj’,,\.@ (o) is obtained based on Eq. (5.4) with the k(i)th group of patients
removed. In this way, PI(x) is a predictor of the survival outcome (t;, J;) for the
patient i. We define the cross-validated c-index:

Z{ I( 1 <t )I( PI,(O!) > PIJ(O() )5, +I( 1<t )I( PIJ(O() > PIl(OC) )(SJ }

i< S t<i)0+1( <1 )0; }

i<j

CV(x) =

Finally, we define & that maximizes CV(x). We recommend K = 5 that is often
used when n or p is large.
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Fig. 5.1 Six replications of the cross-validated c-index CV(x). The maximum of CV(x) is
signified as a triangle (in red color)

It is computationally demanding to obtain a high-dimensional vector B_,; (o)
for every group «(i). To release the computational cost, we suggest reducing the
number p by using the initial univariate selection under « = 0, e.g., based on
P-value <0.2. The technique shall be applied to the subsequent data analysis.

A graphical diagnostic plot for CV(«) is informative to see how the proposed
method of choosing & works. We suggest using a grid search to find the approxi-
mate value of & and plot the values of CV(«) against the grids. Figure 5.1 shows the
plots of CV(a) with simulated data under our previously considered setting (Case 2
of Table 2 in Emura and Chen 2016). The figure shows that CV (&) is noticeably
larger than CV/(0). This suggest that PI;(&) has better ability to predict survival than
PI;(0) does.

5.6 Lung Cancer Data Analysis

We analyze the survival data on the non-small-cell lung cancer patients of Chen
et al. (2007). The data analysis was performed previously by Emura and Chen
(2016) using the copula-based methods. Here, we update the analysis based on the
data available in the compound.Cox R package, providing more detailed explana-
tions than the previous one. In addition, this demonstration allows researchers to
reproduce all the results easily through R.
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In the lung cancer data, the primary endpoint is overall survival, i.e.,
time-to-death. During the follow-up, 38 patients died and the remaining 87 patients
were censored. The 125 patients were split into either a training set (63 patients) or
a testing set (62 patients) in the same manner as Chen et al. (2007).

The Lung object in the compound.Cox R package contains censored survival
times ¢, censoring indicators J;, training/testing indicators, and gene expressions
x; = (xi1, - xi,,)’ for the 125 patients. Available are p = 97 gene expressions that
satisfy P-value <0.20 under the usual univariate selection performed on the training
set. All the gene expressions were coded as 1, 2, 3, or 4 according to Chen et al.
(2007). In the original analysis of Chen et al. (2007), univariate selection yielded 16
genes with P-value <0.05. In our analysis, we shall apply the copula-based uni-
variate selection to select 16 genes.

5.6.1 Gene Selection and Prediction

We applied the copula-based univariate Cox regression to the 63 patients (training
set) by using the R codes available in Appendix B. Here, we used K =15
cross-validation for examining the diagnostic plot of CV(«). The outputs are shown
below:

>res

Sbeta

VHL IHPK1 HMMR CMKOR1 PLAU
-0.093375981 -0.408433517 0.130353170 0.098116123 0.241605149

S$SE

VHL IHPK1 HMMR  CMKOR1  PLAU

0.1769419 0.1686817 0.1635025 0.1913140 0.3552096

4

VHL IHPK1 HMMR CMKOR1  PLAU

-0.52772110 -2.42132730 0.79725501 0.51285397 0.68017631

SP

VHL IHPK1 HMMR CMKOR1 PLAU
0.5976929269 0.0154639470 0.4253029451 0.6080534771 0.4963928296

Salpha
[1] 18

Sc_index
[1] 0.6312719
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Fig. 5.2 Plot of CV(a) (the cross-validated c-index) based on the lung cancer data. The value of
CV(o) is maximized at o = 18 (Kendall’s tau = 0.90)

Here, $beta = f,(&), $SE = SE{ (&) }, $Z = (&) /SE{ p,(&) }, and $P is the
P-value for each j =1, ..., 97. Also, $alpha = & and $c_index = CV(&).

Figure 5.2 displays the diagnostic plot of the cross-validated c-index CV(x)
calculated on the 63 patients (training set). The c-index is maximized at the copula
parameter & = 18 (Kendall’s tau = 0.90). This implies a possible gain in prediction
accuracy by using the Clayton copula for dependent censoring.

We selected the 16 genes among the 97 genes according to the P-values. The
outputs are shown below:

Coef P.value
MMP16 0.51  0.0003
ZNF264 0.51 0.0004
HGF 0.50 0.0010
HCK -0.49 0.0012
NF1 0.47 0.0016
ERBB3 0.46 0.0016
NR2F6  0.57 0.0030
AXL 0.77 0.0034
CDC23 0.51 0.0051
DLG2 0.92 0.0054
IGF2 -0.34 0.0081
RBBP6 0.54 0.0082
COX11 0.51 0.0116
DUSP6 0.40 0.0122
ENG -0.37  0.0140
IHPK1  -0.41 0.0155
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The resultant PI is defined as PI = ﬁj(&)xl 4+t ﬁm(&)xm, where (x1, ..., X16)
are gene expressions of the 16 genes. Accordingly,

PI = (0.51 x MMPI16) + (0.51 x ZNF264) + (0.50 x HGF) + (—0.49 x HCK) + (0.47 x NF1)
+(0.46 x ERBB3) + (0.57 x NR2F6) + (0.77 x AXL) + (0.51 x CDC23) + (0.92 x DLG2)
+ (—0.34 x IGF2) 4 (0.54 x RBBP6) + (0.51 x COX11) + (0.40 x DUSP6) + (—0.37 x ENG)
+ (—0.41 x IHPK1).

5.6.2 Assessing Prediction Performance

To validate the ability of the PI for predicting overall survival, we separate the 62
testing patients into two groups of equal sizes: 31 good prognosis patients with low
PIs and 31 poor prognosis patients with high PIs. We then calculate the two
survival curves for each group (Fig. 5.3).

The prediction performance of the PI can be measured by the difference between the
two survival curves in Fig. 5.3. The two survival curves were calculated by the copula-
graphic estimator (Rivest and Wells 2001) that adjusts for the effect of dependent
censoring with the Clayton copula at & = 18 (Kendall’s tau = 0.90). This approach
may be better than the conventional log-rank test to measure the difference between
two Kaplan—Meier estimators that are biased under dependent censoring.

Under the Clayton copula model, the copula-graphic (CG) estimator (Chap. 4) is
defined as

o |

o |

o
=
=1
3
g o | Good prognosis (n= 31)
s ° m T B I I I
= 14 iR | Bl b | T 1 1
5
@ i Mean vertical difference = 0.224

o P-value = 0.021

o e . +  Poor prognosis (n = 31)

= T T T T T T

0 10 20 30 40 50
Months

Fig. 5.3 Survival curves for the good and poor prognosis groups. The good (or poor) group is
determined by the low (or high) values of the PI. Censored patients are indicated as the mark “+”
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e e e

where n; = 377 I(; > 1;) is the number at-risk at time 7. We computed the CG

estimator by using the compound.Cox R package (Emura et al. 2018).

The separation of the two curves in Fig. 5.3 is measured by the average vertical
difference between the survival curves over the study period. This statistic is
considered as a scaled version of the area between the two survival curves. It is also
equivalent to a special case of the weighted Kaplan—Meier statistics (Pepe and
Fleming 1989). When using this statistic, the choice of the study period strongly
influences the test results. The common choice is the period where at least one
survivor exists in both groups (Chap. 2; Klein and Moeschberger 2003). The study
period is depicted in Fig. 5.3.

The P-value for testing the difference between the two groups is obtained using
the permutation test (Frankel et al. 2007). In each permutation, good prognosis
group (n = 31) and poor prognosis group (n = 31) are randomly allocated from the
62 testing samples, and then, the CG estimator is computed for each group. For
each permutation, the study period is determined and the average vertical difference
between the two CG estimators is calculated. The P-value is computed as the
proportion of 10,000 permuted test statistics exceeding the original test statistic.

The two curves are significantly separated between the good and poor prognoses
(Average difference = 0.224; P-value = 0.021). This result justifies the predictive
ability of the PI derived by using the copula-based approach.

(1) =

5.7 Discussions

We have introduced copula-based approaches for selecting genes and making
survival prediction in the presence of dependent censoring. The method can be
flexibly applied to accommodate different copulas, such as the Clayton, Gumbel,
and FGM copulas. Due to its mathematical simplicity, we prefer the Clayton copula
to other copulas in modeling dependence structure between survival time and
censoring time. However, the effect of dependent censoring on estimates can be
remarkably different between different copulas (Chap. 3). Rivest and Wells (2001)
theoretically explored the sensitivity of using different copulas on estimating a
marginal survival function.

Due to the inherent problem of the non-identifiability of competing risks data
(Tsiatis 1975), it is not easy to identify the degree of dependence (i.e., the true
copula parameter) between survival and censoring times. The problem is due to the
fact that the likelihood function contains little information to identify the true
copula parameter. Alternatively, we choose the copula parameter by using a
cross-validated c-index, a predictive measure free from the likelihood criterion. This
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method exhibited sound numerical performances in our numerical analyses.
Unfortunately, we do not have a theoretical justification of the method, such as
consistency. Recently, Emura and Michimae (2017) proposed a goodness-of-fit
procedure to test the assumption of the correct copula under competing risks.
According to their simulation results, their approaches have certain ability to
identify the correct copula under a large number of samples. However, their
approaches have not been extended to include covariates.

After relevant genes are selected, researchers often use them to stratify patients
between good and poor prognosis groups in validation samples. This is a common
strategy to assess prediction performance of the selected genes. Researchers typi-
cally use the log-rank test to see how well the Kaplan—Meier survival curves are
separated between the good and poor groups. Note that these commonly used
validation strategies may give biased results if dependent censoring exists in vali-
dation samples. Copulas are used to adjust for this bias by replacing the Kaplan—
Meier estimator by the copula-graphic estimator. Since the log-rank test is no longer
valid in the presence of dependent censoring, we apply the permutation test based
on the average vertical difference between the copula-graphic estimators. For
purpose of constructing survival forests, Moradian et al. (2017) also suggested the
copula-graphic estimator to measure the difference between two groups under
dependent censoring.

One potential drawback of the proposed gene selection method is that it needs to
impose a proportional hazards model for the censoring distribution in Eq. (5.3). On
the other hand, the traditional univariate Cox regression does not require any model
assumption on the censoring distribution. This elimination of the model assumption
is the consequence of the independent censoring assumption. Once the independent
censoring assumption is relaxed, certain model specifications for the censoring
distribution appear to be mandatory (e.g., Siannis et al. 2005; Chen 2010). If the
research interest lies in the effect of genes on both survival time and censoring time,
the proportional hazards model for the censoring distribution may provide useful
information. For instance, researchers may be interested in selecting genes asso-
ciated with both disease-specific survival and time-to-death due to other causes as
in the competing risks setting (Escarela and Carrieére 2003).
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