
Chapter 4
Analysis of Survival Data Under
an Assumed Copula

Abstract This chapter introduces statistical methods for analyzing survival data
subject to dependent censoring. We review the copula-graphic estimator, parametric
likelihood methods, and semi-parametric likelihood methods developed under a
variety of copula models. All these approaches employ an assumed copula, a
copula function that is completely specified including its parameter value to avoid
the non-identifiability.
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4.1 Introduction

The idea of an assumed copula was suggested by Zheng and Klein (1995) in their
analysis of survival data subject to dependent censoring. They considered a
bivariate distribution function of survival time and censoring time, where the form
of the copula function is completely specified, including its parameter value. This
strong assumption of the copula is imposed to make the model identifiable.
Assuming the independence copula is equivalent to the assumption of independent
censoring between survival time and censoring time.

Zheng and Klein (1995) view censoring as a competing risk of death and view
death as a competing risk of censoring. This is the setting of bivariate competing
risks where one can observe the first-occurring event time and the type of the
observed event (death or censoring whichever comes first). With this view, survival
data with dependent censoring are equivalent to bivariate competing risks data. In
the context of competing risks, the independence among event times is rarely
assumed since many medical and engineering applications yield event times that are
positively associated. Hence, statistical methods for analyzing bivariate competing
risks data can be applicable for analyzing survival data with dependent censoring.

Under an assumed copula, Zheng and Klein (1995) estimated the marginal
survival function by the copula-graphic (CG) estimator. The survival function
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estimated by the CG estimator is analogous to the one estimated by the Kaplan–
Meier estimator. The CG estimator reduces to the Kaplan–Meier estimator under
the independence copula. In real applications, the CG estimator is calculated by
assuming one of Archimedean copulas. Rivest and Wells (2001) obtained a simple
expression of the CG estimator when the assumed copula belongs to Archimedean
copulas. Nowadays, the CG estimator is an indispensable tool for analyzing sur-
vival data with dependent censoring (Braekers and Veraverbeke 2005; Staplin
2012; de Uña-Álvarez and Veraverbeke 2013; 2017; Emura and Chen 2016; Emura
and Michimae 2017; Moradian et al. 2017). Note, however, that the CG estimator
cannot handle covariates. Likelihood-based approaches can naturally deal with
covariates under an assumed copula.

Throughout this chapter, we review the copula-graphic estimator, parametric
likelihood methods, and semi-parametric likelihood methods developed under an
assumed copula.

4.2 The Copula-Graphic (CG) Estimator

Analysis of survival data often begins by drawing the Kaplan–Meier survival curve
which graphically summarizes survival experience of patients in the data. However,
under dependent censoring, the Kaplan–Meier estimator may give biased infor-
mation about survival. A survival curve calculated from the CG estimator provides
unbiased information about survival if the copula function between death time and
censoring time is correctly specified. Below, we shall introduce the CG estimator
under an Archimedean copula as derived in Rivest and Wells (2001).

Consider random variables, defined as

• T: survival time
• U: censoring time

Consider an Archimedean copula model

PrðT [ t;U[ uÞ ¼ /�1
h ½/hfSTðtÞgþ/hfSUðuÞg�; ð4:1Þ

where /h : ½0; 1� 7! ½0;1� is a generator function, which is continuous and strictly
decreasing from /hð0Þ ¼ 1 to /hð1Þ ¼ 0 (Chap. 3); STðtÞ ¼ PrðT [ tÞ and
SUðuÞ ¼ PrðU[ uÞ are the marginal survival functions.

Let ðti; diÞ, i ¼ 1; . . .; n, be survival data without covariates, where
ti ¼ minfTi;Uig, di ¼ IðTi �UiÞ, and Ið�Þ is the indicator function. Assume that all
the observed times are distinct (ti 6¼ tj whenever i 6¼ j). Based on the data, one can
estimate the survival function by the following estimator:
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The CG estimator is defined as

ŜTðtÞ ¼ /�1
h

X
ti � t;di¼1

/h
ni � 1
n

� �
� /h

ni
n

� �" #
; 0� t� max

i
ðtiÞ

where ni ¼
Pn

‘¼1 Iðt‘ � tiÞ is the number at risk at time ti; ŜTðtÞ ¼ 1 if no
death occurs up to time t; ŜTðtÞ is undefined for t[ max

i
ðtiÞ.

The derivation of the CG estimator: Assume that ST(t) is a decreasing step
function with jumps at death times. Thus, di = 1 implies ST(ti) 6¼ ST(ti − dt) and
SU(ti) = SU(ti − dt). Setting t = u = ti in Eq. (4.1), we have

/hfPrðT [ ti;U[ tiÞg ¼ /hfSTðtiÞgþ/hfSUðtiÞg:

In the left-side of the preceding equation, we estimate PrðT [ ti;U[ tiÞ by
(ni − 1)/n, where ni � 1 ¼ Pn

‘¼1 Iðt‘ [ tiÞ is the number of survivors at time ti.
Accordingly,

/h
ni � 1
n

� �
¼ /hfSTðtiÞgþ/hfSUðtiÞg: ð4:2Þ

Meanwhile, we set t = u = ti − dt in Eq. (4.1) and then estimate PrðT [ ti �
dt;U[ ti � dtÞ by ni/n. Then,

/h
ni
n

� �
¼ /hfSTðti � dtÞgþ/hfSUðtiÞg; di ¼ 1: ð4:3Þ

Equations (4.2) and (4.3) result in the system of difference equations

/h
ni � 1
n

� �
� /h

ni
n

� �
¼ /hfSTðtiÞg � /hfSTðti � dtÞg; di ¼ 1:

We impose the usual constraint that ST(ti − dt) = 1 when ti is the smallest death
time. Then, the solution to the different equations is

/hfSTðtÞg ¼
X

ti � t;di¼1

½/hfSTðtiÞg � /hfSTðti � dtÞg�

¼
X

ti � t;di¼1

/h
ni � 1
n

� �
� /h

ni
n

� �
;

which is equivalent to the CG estimator. ■
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Under the independence copula, given by /hðtÞ ¼ � logðtÞ, the CG estimator is
equivalent to the Kaplan–Meier estimator. Under the Clayton copula, given by
/hðtÞ ¼ ðt�h � 1Þ=h for h > 0, the CG estimator is written as

ŜTðtÞ ¼ 1þ
X

ti � t;di¼1

ni � 1
n

� ��h

� ni
n

� ��h
( )" #�1=h

:

This CG estimator can be computed by the compound. Cox R package (Emura
et al. 2018).

The CG estimator provides a graphical summary of survival experience for
patients in the same manner as the Kaplan–Meier estimator.

The survival curve is defined as the plot of ŜTðtÞ against t, starting with t = 0
and ending with tmax ¼ max

i
ðtiÞ. The curve is a step function that jumps only

at points where a death occurs. On the curve, censoring times are often
indicated as the mark “+”.

If tmax ¼ max
i
ðtiÞ corresponds to time-to-death of a patient, then

ŜTðtmaxÞ ¼ /�1
h ð1Þ ¼ 0. This is because /h

ni�1
n

� � ¼ /hð0Þ ¼ 1 for some i in the
definition of the CG estimator. If tmax ¼ max

i
ðtiÞ corresponds to censoring time of a

patient, then ŜðtmaxÞ[ 0.

Additional remarks: The CG estimator can be modified to accommodate a
variety of different censoring and truncation mechanisms. de Uña-Álvarez and
Veraverbeke (2013) derived the CG estimator when survival time is subject to both
dependent censoring and independent censoring. This estimator is convenient if the
data provide the causes of censors for all patients. For instance, censoring caused by
dropout may be dependent while censoring caused by the study termination is
independent (see Chap. 14 of Collett (2015)). de Uña-Álvarez and Veraverbeke
(2017) derived the CG estimator when survival time is subject to both dependent
censoring and independent truncation. Chaieb et al. (2006) and Emura and
Murotani (2015) derived the CG estimator when survival time is subject to inde-
pendent censoring and dependent truncation.
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4.3 Model and Likelihood

Throughout this chapter, we consider a bivariate survival function

PrðT [ t;U[ ujxÞ ¼ ChfSTðtjxÞ; SUðujxÞg;

where Ch is a copula (Nelsen 2006) with a parameter h; STðtjxÞ ¼ PrðT [ tjxÞ and
SUðujxÞ ¼ PrðU[ ujxÞ are the marginal survival functions. The covariates are
defined as x ¼ ðx1; x2Þ such that STðtjxÞ ¼ STðtjx1Þ and SUðujxÞ ¼ SUðtjx2Þ. For
instance, if x1 ¼ ðAge; genderÞ and x2 ¼ ðgenderÞ, the model does not consider the
effect of age on censoring time.

Survival data consist of ðti; di; xiÞ, i ¼ 1; . . .; n, where xi ¼ ðxi1; . . .; xipÞ0 is a
vector of covariates. The likelihood for the ith patient is expressed as

Li ¼ PrðT ¼ ti;U[ tijxiÞdi PrðT [ ti;U ¼ tijxiÞ1�di ¼ f#T ðtijxiÞdi f#U ðtijxiÞ1�di ;

where

f#T ðtijxiÞ ¼ � @

@x
PrðT [ x;U[ tijxiÞ

����
x¼ti

;

f#U ðtijxiÞ ¼ � @

@y
PrðT[ ti;U[ yjxiÞ

����
y¼ti

;

are called the sub-density functions. Therefore, the log-likelihood is defined as

‘ ¼
Xn
i¼1

½di log f#T ðtijxiÞþ ð1� diÞ log f#U ðtijxiÞ�: ð4:4Þ

An equivalent expression is

‘ ¼
Xn
i¼1

½di log h#T ðtijxiÞþ ð1� diÞ log h#U ðtijxiÞ � Uðti; tijxiÞ�; ð4:5Þ

where

h#T ðtijxiÞ ¼
f#T ðtijxiÞ

PrðT [ ti;U[ tijxiÞ ; h#U ðtijxiÞ ¼
f#U ðtijxiÞ

PrðT [ ti;U[ tijxiÞ ;

are the cause-specific hazard functions, and

Uðti; tijxiÞ ¼ � log PrðT [ ti;U[ tijxiÞ ¼ � log PrðminfT ;Ug[ tijxiÞ

is the cumulative hazard function for minf T ;U g.
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With appropriate models on Ch, STð�jxÞ and SUð�jxÞ, one can obtain the maxi-
mum likelihood estimator (MLE) with Eqs. (4.4) or (4.5).

4.4 Parametric Models

4.4.1 The Burr Model

Escarela and Carrière (2003) considered a copula model with the Burr distribution
defined as

STðtjx1iÞ ¼ f1þ c1ðk1itÞm1g�1=c1 ; t� 0;

SUð u jx2i Þ ¼ f 1þ c2ðk2iuÞm2 g�1=c2 ; u� 0;

where vj [ 0, cj > 0, and kji ¼ expðbj0 þ b0jxjiÞ for j ¼ 1 and 2. The Burr distribution
includes many distributions as special cases; vj ¼ 1 gives the Pareto distribution,
cj = 1 gives the log-logistic distribution, and cj ! 0 gives the Weibull distribution.
For the copula, Escarela and Carrière (2003) considered the Frank copula.

Chðu; vÞ ¼ � 1
h
log 1þ ðe�hu � 1Þðe�hv � 1Þ

e�h � 1

	 

; h 6¼ 0:

Their motivation to use the Frank model is that they wish to consider both positive
dependence ðh[ 0Þ and negative dependence ðh\0Þ between two variables.

4.4.2 The Weibull Model

Likelihood-based analyses of Escarela and Carrière (2003) focused on the Weibull
model

STðtjx1iÞ ¼ expf�ðk1itÞm1g; t� 0; SUðujx2iÞ ¼ expf�ðk2iuÞm2g; u� 0:

With the Frank copula model, they maximize the log-likelihood of Eq. (4.4) with
respect to ðb10; b1; m1; b20; b2; m2Þ given the value h. This leads to the profile
likelihood

‘�ðhÞ ¼ max
ðb10;b1;m1;b20;b2;m2Þ

‘ðb10; b1; m1; b20; b2; m2jhÞ:

The MLE of ðb10; b1; m1; b20; b2; m2Þ is obtained at a given value
ĥ ¼ argmaxh ‘�ðhÞ.
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The data analysis of Escarela and Carrière (2003) revealed that the estimator ĥ
had a wide confidence interval (CI) if no covariate enters the model. This phe-
nomenon is related to the non-identifiability of the model. The CI of ĥ was
shrunken if many covariates enter the model. Heckman and Honoré (1989) showed
that the non-identifiability is resolved by adding covariates into the marginal
models. Unfortunately, there are no papers that give the conditions (e.g., how many
covariates or how many samples) required to give reasonable precision of ĥ for
estimating the true value h.

In this context, we suggest regarding the approach of Escarela and Carrière (2003)
as a two-step fashion. The first stage selects (not estimates) h via the profile likelihood.
With the selected value ĥ, the second stage estimates the remaining parameters
ðb10; b1; m1; b20; b2; m2Þ by the MLE. The SEs of ðb10; b1; m1; b20; b2; m2Þ may not
account for the variation of ĥ following the approaches of an assumed copula.

4.4.3 The Pareto Model

In the absence of covariates, Shih et al. (2018) considered the Pareto marginal
models

STðtÞ ¼ ð1þ a1tÞ�c1 ; t� 0; SUðuÞ ¼ ð1þ a2uÞ�c2 ; u� 0;

where aj > 0 and cj > 0 are re-parameterized from the Burr models. The marginal
hazard functions are hTðtÞ ¼ a1c1=ð1þ a1tÞ and hUðuÞ ¼ a2c2=ð1þ a2uÞ and the
marginal density functions are fTðtÞ ¼ hTðtÞSTðtÞ and fUðuÞ ¼ hUðuÞSUðuÞ.
Applying the Frank copula to Eq. (4.4), the log-likelihood can be written as

‘ða1; a2; c1; c2jhÞ ¼
Xn
i¼1

diflog fTðtiÞ � hSTðtiÞþ logðe�hST ðtiÞ � 1Þ � logðe�h � 1Þþ hSðtiÞg

þ
Xn
i¼1

ð1� diÞflog fUðtiÞ � hSUðtiÞþ logðe�hSUðtiÞ � 1Þ � logðe�h � 1Þþ hSðtiÞg;

where SðtÞ ¼ ChfSTðtÞ; SUðtÞg. The MLE is obtained by maximizing the preceding
equation.

They developed a Newton–Raphson algorithm to obtain the MLE of
ða1; a2; c1; c2Þ given the value h. The Bivariate.Pareto R package (Shih and Lee
2018) can be used to compute the MLE and the SE for the parameters. Hence, this
model uses an assumed copula. Their Newton–Raphson algorithm employs a
randomization scheme to reduce the sensitivity of the convergence results against
the initial values, which is termed the randomized Newton–Raphson algorithm (Hu
and Emura 2015). When h is unknown, the profile likelihood estimate was sug-
gested, namely ĥ ¼ argmaxh ‘�ðhÞ, where ‘�ðhÞ ¼ max

ða1;a2;c1;c2Þ
‘ða1; a2; c1; c2jhÞ.
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However, they reported that the profile likelihood occasionally does not have a peak
and ĥ has a large sampling variation. These problems are related to the
non-identifiability of competing risks data (Tsiatis 1975).

Due to the difficulty of estimating h, Shih et al. (2018) considered a restricted
model STðtÞ ¼ SUðtÞ ¼ ð1þ atÞ�c. The model makes a strong assumption that the
two marginal distributions are the same. Under the Frank copula, they developed
the randomized Newton–Raphson algorithm to obtain the MLE of ða; c; hÞ. While
the peak of the likelihood always exists under this restricted model, the variation of
estimating h remains large. Including covariates into the marginal Pareto models
may improve the precision of ĥ. Alternatively, a sensitivity analysis may be con-
sidered under a few selected values of h.

4.4.4 The Burr III Model

In the absence of covariates, Shih and Emura (2018) considered the Burr III
marginal distributions

STðtÞ ¼ 1� ð1þ t�cÞ�a; t[ 0; SUðuÞ ¼ 1� ð1þ u�cÞ�b; u[ 0;

where ða; b; cÞ are positive parameters. They considered the generalized FGM
copula with a copula parameter h. In their model, the copula is imposed on a
bivariate distribution function rather than a bivariate survival function. More details
about this copula, such as the range of h and the expressions of Kendall’s tau, are
referred to Amini et al. (2011), Domma and Giordano (2013) and Shih and Emura
(2016, 2018).

Shih and Emura (2018) used the randomized Newton–Raphson algorithm to
obtain the MLE of ða; b; cÞ given the value of h. When the value of h is unknown,
they suggested making inference for ða; b; cÞ, followed by the profile likelihood
estimate ĥ ¼ argmaxh ‘�ðhÞ, where ‘�ðhÞ ¼ max

ða;b;cÞ
‘ða; b; cjhÞ. They also proposed a

goodness-of-fit method to test the validity of the generalized FGM copula and the
Burr III marginal models. The estimation and goodness-of-fit algorithms are
implemented in the GFGM.copula R package (Shih 2018). Their method is
developed for bivariate competing risks data, where dependent censoring is a
competing risk of death, and death is a competing risk of dependent censoring.

4.4.5 The Piecewise Exponential Model

The piecewise exponential model has been considered to fit survival data with
dependent censoring (Staplin et al. 2015; Emura and Michimae 2017). Let 0 ¼
a0\a1\ � � �\am be a knot sequence, where m is the number of knots. Assume
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that the hazard function for T in an interval ðaj�1; aj� is a constant ehj for
j ¼ 1; . . .;m, such that h ¼ ðh1; . . .; hmÞ are parameters without restriction to their
ranges. The survival function is

STðt; hÞ ¼ exp �ehjðt � aj�1Þ �
Xj�1

k¼1

ehkðak � ak�1Þ
( )

; t 2 ðaj�1; aj�;

where
P0

k¼1 ð�Þ � 0. In a similar fashion, define the survival function SUðu; cÞ for
the censoring time U, where c ¼ ðc1; . . .; cmÞ.

Emura and Michimae (2017) considered a copula model

PrðT [ t;U[ uÞ ¼ ChfSTðt; hÞ; SUðu; cÞg; h ¼ ðh1; . . .; hmÞ; c ¼ ðc1; . . .; cmÞ;

where STðt; hÞ and SUðu; cÞ follow the piecewise exponential models. The Clayton
copula and the Joe copula were chosen for their numerical studies. They developed
inference procedures based on the likelihood in Eq. (4.4) given the value h. Hence, they
applied an assumed copula. They did not use the profile likelihood for selecting h since
it may not work with many parameters in the marginal distributions. Alternatively, they
suggested a sensitivity analysis to examine the result under a few different values of h.

Staplin et al. (2015) originally proposed the piecewise exponential models for
dependent censoring, but did not use copulas. Consequently, the sub-density func-
tions in their likelihood function require some numerical integrations of the joint
density of T and U.

4.5 Semi-parametric Models

4.5.1 The Transformation Model

Chen (2010) considered a semi-parametric transformation model defined as

STðtjx1iÞ ¼ exp½�G1fK0ðtÞeb01x1ig�; SUðujx2iÞ ¼ exp½�G2fC0ðuÞeb02x2ig�;

where bj are regression coefficients, and Gjð�Þ is a known and nonnegative
increasing function such that Gjð0Þ ¼ 0, Gjð1Þ ¼ 1, and gjðtÞ � dGjðtÞ=dt[ 0
for j ¼ 1 and 2; K0 and C0 are unknown increasing functions. No distributional
assumptions are imposed on K0 and C0. The linear transformation GjðtÞ ¼ t cor-
responds to the Cox model.
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Under the semi-parametric transformation model, the cause-specific hazard
functions are

h#T ðtjxiÞ ¼ k0ðtÞeb01x1ig1iðt; b1; b2;K0;C0jhÞ; h#U ðtjxiÞ ¼ c0ðtÞeb
0
2x2ig2iðt; b1; b2;K0;C0jhÞ;

where k0ðtÞ ¼ dK0ðtÞ=dt, c0ðtÞ ¼ dC0ðtÞ=dt,

g1iðt; b1; b2;K0;C0jhÞ ¼ g1fK0ðtÞeb01x1igSTðtjx1iÞDh;1½STðtjx1iÞ; SUðtjx2iÞ�;
g2iðt; b1; b2;K0;C0jhÞ ¼ g2fC0ðtÞeb02x2igSUðtjx2iÞDh;2½STðtjx1iÞ; SUðtjx2iÞ�;

Dh;1ðu; vÞ ¼ @Chðu; vÞ=@u
Chðu; vÞ ; Dh;2ðu; vÞ ¼ @Chðu; vÞ=@v

Chðu; vÞ :

Under the independence copula Chðu; vÞ ¼ uv, the cause-specific hazard func-
tions are equal to the marginal hazards:

h#T ðtjxiÞ ¼ k0ðtÞeb01x1i g1fK0ðtÞeb01x1ig; h#U ðtjxiÞ ¼ c0ðtÞeb
0
2x2i g2fC0ðtÞeb02x2ig:

To obtain the MLE of ðb1; b2;K0;C0Þ, we treat K0 and C0 as increasing step
functions that have jumps sizes dK0ðtiÞ ¼ K0ðtiÞ � K0ðti�Þ for di = 1 and dC0ðtiÞ ¼
C0ðtiÞ � C0ðti�Þ for di = 0. Putting the cause-specific hazard functions into Eq. (4.5)
and replacing k0ðtiÞ by dK0ðtiÞ and c0ðtiÞ by dC0ðtiÞ, we obtain the log-likelihood

‘ðb1; b2;K0;C0jhÞ ¼
X
i

di½b01x1i þ log g1iðti; b1; b2;K0;C0jhÞþ log dK0ðtiÞ�

þ
X
i

ð1� diÞ½b02x2i þ log g2iðti; b1; b2;K0;C0jhÞþ log dC0ðtiÞ�

�
X
i

Uh½STðtijx1iÞ; SUðtijx2iÞ�;

where Uhðu; vÞ ¼ � logChðu; vÞ. Since the marginal distributions have a number of
parameters to be estimated, the profile likelihood may not properly identify a suitable
value of h. Chen (2010) suggested a sensitivity analysis to examine the result under a
few different values of h, possibly selected by prior knowledge and expert opinion.

The approach of Chen (2010) reduces to Cox’s partial likelihood approach (Cox
1972) under the independence copula and the linear transformation. Under these
assumptions, the MLE ðb̂1; b̂2; K̂0; Ĉ0Þ is obtained by maximizing two functions

‘1ðb1;K0Þ ¼
X
i

di½b01x1i þ log dK0ðtiÞ� þ
X
i

log STðtijx1iÞ;

‘2ðb2;C0Þ ¼
X
i

ð1� diÞ½b02x2i þ log dC0ðtiÞ� þ
X
i

log SUðtijx2iÞ;
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since ‘ðb1; b2;K0;C0Þ ¼ ‘1ðb1;K0Þþ ‘2ðb2;C0Þ. Then, the MLE ðb̂1; K̂0Þ for
ðb1;K0Þ is the partial likelihood estimator b̂1 and the Breslow estimator K̂0

(Chap. 2).

4.5.2 The Spline Model

Emura et al. (2017) considered a spline-based model defined as

STðtjx1iÞ ¼ expf�K0ðtÞeb01x1ig; SUðujx2iÞ ¼ expf�C0ðuÞeb02x2ig;

where bj are regression coefficients, and the baseline hazard functions are modeled
by

d
dt
K0ðtÞ ¼ k0ðtÞ ¼

X5

‘¼1
g‘M‘ðtÞ ¼ g0MðtÞ; d

dt
C0ðtÞ ¼ c0ðtÞ ¼

X5

‘¼1
h‘M‘ðtÞ ¼ h0MðtÞ;

where MðtÞ ¼ ðM1ðtÞ; . . .;M5ðtÞÞ0 are the cubic M-spline basis functions (Ramsay
1988). Here, g0 ¼ ðg1; . . .; g5Þ and h0 ¼ ðh1; . . .; h5Þ are unknown positive param-
eters. These five-parameter approximations give a good flexibility in estimation for
real applications (Ramsay 1988) and are one of reasonable choices (Commenges
and Jacqmin-Gadda 2015). Since the spline bases are easy to integrate, the baseline
cumulative hazard functions are computed as K0ðtÞ ¼

P5
‘¼1 g‘I‘ðtÞ and

C0ðtÞ ¼
P5

‘¼1 h‘I‘ðtÞ, where I‘ðtÞ is the integration of M‘ðtÞ, called the I-spline
basis (Ramsay 1988).

The joint.Cox package (Emura 2018) offers functions M.spline () for computing
M‘ðtÞ and I.spline () for I‘ðtÞ. To compute these spline bases, one needs to specify
the range of t. The package uses the range t 2 ½n1; n3� for the equally spaced knots
n1\n2\n3, where n2 ¼ ðn1 þ n3Þ=2. A possible choice is n1 ¼ miniðtiÞ and
n3 ¼ maxiðtiÞ. The expressions of M‘ðtÞ and I‘ðtÞ are given in Appendix A.
Figure 4.1 displays the M- and I-spline basis functions with the knots n1 ¼ 1,
n2 ¼ 2, and n3 ¼ 3.
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Fig. 4.1 M-spline basis functions (left-panel) and I-spline basis functions (right-panel) with knots
n1 ¼ 1, n2 ¼ 2, and n3 ¼ 3

Under the spline model, the cause-specific hazard functions are

h#T ðtjxiÞ ¼ k0ðtÞeb01x1ig1iðt; b1; b2;K0;C0jhÞ; h#U ðtjxiÞ ¼ c0ðtÞeb
0
2x2ig2iðt; b1; b2;K0;C0jhÞ;

where

g1iðt; b1; b2;K0;C0jhÞ ¼ STðtjx1iÞDh;1½STðtjx1iÞ; SUðtjx2iÞ�;
g2iðt; b1; b2;K0;C0jhÞ ¼ SUðtjx2iÞDh;2½STðtjx1iÞ; SUðtjx2iÞ�:

Putting these formulas into Eq. (4.5), we obtain the log-likelihood

‘ðb1; b2; g; hjhÞ ¼
X
i

di½b01x1i þ log g1iðti; b1; b2;K0;C0jhÞþ log k0ðtiÞ�

þ
X
i

ð1� diÞ½b02x2i þ log g2iðti; b1; b2;K0;C0jhÞþ log c0ðtiÞ�

�
X
i

Uh½STðtijx1iÞ; SUðtijx2iÞ�:

The estimator of ðb1; b2; g; hÞ is obtained by maximizing the penalized
log-likelihood

‘ðb1; b2; g; hjhÞ � j1

Z
€k0ðtÞ2dt � j2

Z
€c0ðtÞ2dt;

where €f ðtÞ ¼ d2f ðtÞ=dt2, and (j1, j2) are given nonnegative values. The parameters
(j1, j2) are called smoothing parameters, which control the degrees of penalties on
the roughness of the two baseline hazard functions. It is shown in Appendix A that
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Zn3
n1

€k0ðtÞ2dt ¼ g0Xg;
Zn3
n1

€c0ðtÞ2dt ¼ h0Xh;

X ¼ 1

D5

192 �132 24 12 0
�132 96 �24 �12 12
24 �24 24 �24 24
12 �12 �24 96 �132
0 12 24 �132 192

2
66664

3
77775;

where D ¼ n2 � n1 ¼ n3 � n2. A naïve approach is to set j1 ¼ j2 ¼ 0 as in Shih
and Emura (2018).

A more sophisticated approach is to choose (j1, j2) by optimizing a likelihood
cross-validation (LCV) criterion (O’ Sullivan 1988). Under the independence
copula, the penalized log-likelihood is written as the sum of two marginal penalized
log-likelihoods,

‘1ðb1;K0Þ � j1

Z
€k0ðtÞ2dt

� �
þ ‘2ðb2;C0Þ � j2

Z
€c0ðtÞ2dt

� �
;

where

‘1ðb1;K0Þ ¼
X
i

di½b01x1i þ log k0ðtiÞ� �
X
i

K0ðtiÞ expðb01x1iÞ;

‘2ðb2;C0Þ ¼
X
i

ð1� diÞ½b02x2i þ log c0ðtiÞ� �
X
i

C0ðtiÞ expðb02x2iÞ:

We suggest choosing j1 and j2 based on the two marginal LCVs defined as

LCV1 ¼ ‘̂1 � trfĤ�1
PL1Ĥ1g; LCV2 ¼ ‘̂2 � trfĤ�1

PL2Ĥ2g;

where ‘̂1 and ‘̂2 are the log-likelihood values evaluated at their marginal penalized
likelihood estimates, and ĤPL1 and ĤPL2 are the converged Hessian matrices for the
marginal penalized likelihood estimations, Ĥ1 and Ĥ2 are the converged Hessian
matrices for the marginal log-likelihoods such that

Ĥ1 ¼ ĤPL1 þ 2j1
Op1	p1 Op1	5

O5	p1 X

� �
; Ĥ2 ¼ ĤPL2 þ 2j2

Op2	p2 Op2	5

O5	p2 X

� �
;

where O is a zero matrix and pj is the dimension of bj for j ¼ 1 and 2. The values of
ðj1; j2Þ are obtained by maximizing LCV1 for j1 and LCV2 for j2, separately. One
may apply the R function splineCox.reg in the joint.Cox R package to find the
optimal value of j1 (or j2).

4.5 Semi-Parametric Models 53



References

Amini M, Jabbari H, Mohtashami Borzadaran GR (2011) Aspects of dependence in generalized
Farlie-Gumbel-Morgenstern distributions. Commun Stat Simul Comput 40(8):1192–1205

Braekers R, Veraverbeke N (2005) A copula-graphic estimator for the conditional survival
function under dependent censoring. Can J Stat 33:429–447

Chaieb LL, Rivest LP, Abdous B (2006) Estimating survival under a dependent truncation.
Biometrika 93(3):655–669

Chen YH (2010) Semiparametric marginal regression analysis for dependent competing risks
under an assumed copula. J R Stat Soc Ser B Stat Methodol 72:235–251

Collett D (2015) Modelling survival data in medical research, 3rd edn. CRC Press, London
Commenges D, Jacqmin-Gadda H (2015) Dynamical biostatistical models. CRC Press, London
Cox DR (1972) Regression models and life-tables (with discussion). J R Stat Soc Ser B Stat

Methodol 34:187–220
de Uña-Álvarez J, Veraverbeke N (2013) Generalized copula-graphic estimator. TEST 22(2):343–

360
de Uña-Álvarez J, Veraverbeke N (2017) Copula-graphic estimation with left-truncated and

right-censored data. Statistics 51(2):387–403
Domma F, Giordano S (2013) A copula-based approach to account for dependence in

stress-strength models. Stat Pap 54(3):807–826
Emura T, Chen YH (2016) Gene selection for survival data under dependent censoring, a

copula-based approach. Stat Methods Med Res 25(6):2840–2857
Emura T, Murotani K (2015) An algorithm for estimating survival under a copula-based dependent

truncation model. TEST 24(4):734–751
Emura T, Michimae H (2017) A copula-based inference to piecewise exponential models under

dependent censoring, with application to time to metamorphosis of salamander larvae. Environ
Ecol Stat 24(1):151–173

Emura T, Nakatochi M, Murotani K, Rondeau V (2017) A joint frailty-copula model between
tumour progression and death for meta-analysis. Stat Methods Med Res 26(6):2649–2666

Emura T (2018) joint.Cox: penalized likelihood estimation and dynamic prediction under the joint
frailty-copula models between tumour progression and death for meta-analysis, CRAN

Emura T, Chen HY, Matsui S, Chen YH (2018) compound.Cox: univariate feature selection and
compound covariate for predicting survival, CRAN

Escarela G, Carrière JF (2003) Fitting competing risks with an assumed copula. Stat Methods Med
Res 12(4):333–349

Heckman JJ, Honore BE (1989) The identifiability of the competing risks models. Biometrika
76:325–330

Hu YH, Emura T (2015) Maximum likelihood estimation for a special exponential family under
random double-truncation. Comput Stat 30(4):1199–1229

Moradian H, Denis Larocque D, Bellavance F (2017). Survival forests for data with dependent
censoring. Stat Methods Med Res, https://doi.org/10.1177/0962280217727314

Nelsen RB (2006) An introduction to copulas, 2nd edn. Springer, New York
O’ Sullivan F (1988) Fast computation of fully automated log-density and log-hazard estimation.

SIAM J Sci Stat Comput 9:363–379
Ramsay J (1988) Monotone regression spline in action. Stat Sci 3:425–461
Rivest LP, Wells MT (2001) A martingale approach to the copula-graphic estimator for the

survival function under dependent censoring. J Multivar Anal 79:138–155
Shih JH, Emura T (2016) Bivariate dependence measures and bivariate competing risks models

under the generalized FGM copula. Stat Pap, https://doi.org/10.1007/s00362-016-0865-5
Shih JH, Lee W, Sun LH, Emura T (2018) Fitting competing risks data to bivariate Pareto models.

Commun Stat Theory, https://doi.org/10.1080/03610926.2018.1425450

54 4 Analysis of Survival Data Under an Assumed Copula

http://dx.doi.org/10.1177/0962280217727314
http://dx.doi.org/10.1007/s00362-016-0865-5
http://dx.doi.org/10.1080/03610926.2018.1425450


Shih JH, Emura T (2018) Likelihood-based inference for bivariate latent failure time models with
competing risks under the generalized FGM copula. Comput Stat, https://doi.org/10.1007/
s00180-018-0804-0

Shih JH (2018) GFGM.copula: generalized Farlie-Gumbel-Morgenstern copula, CRAN
Shih JH and Lee W (2018) Bivariate.Pareto: bivariate Pareto models, CRAN
Staplin ND (2012) Informative censoring in transplantation statistics. Doctoral Thesis, University

of Southampton, School of Mathematics
Staplin ND, Kimber AC, Collett D, Roderick PJ (2015) Dependent censoring in piecewise

exponential survival models. Stat Methods Med Res 24(3):325–341
Tsiatis A (1975) A nonidentifiability aspect of the problem of competing risks. Proc Natl Acad Sci

72(1):20–22
Zheng M, Klein JP (1995) Estimates of marginal survival for dependent competing risks based on

an assumed copula. Biometrika 82(1):127–138

References 55

http://dx.doi.org/10.1007/s00180-018-0804-0
http://dx.doi.org/10.1007/s00180-018-0804-0

	4 Analysis of Survival Data Under an Assumed Copula
	Abstract
	4.1 Introduction
	4.2 The Copula-Graphic (CG) Estimator
	4.3 Model and Likelihood
	4.4 Parametric Models
	4.4.1 The Burr Model
	4.4.2 The Weibull Model 
	4.4.3 The Pareto Model
	4.4.4 The Burr III Model
	4.4.5 The Piecewise Exponential Model

	4.5 Semi-parametric Models
	4.5.1 The Transformation Model
	4.5.2 The Spline Model

	References




