
Chapter 2
Introduction to Survival Analysis

Abstract This chapter provides a concise introduction to survival analysis. We
review the essential tools in survival analysis, such as the survival function,
Kaplan–Meier estimator, hazard function, log-rank test, Cox regression, and
likelihood-based inference.
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Kaplan–Meier estimator � Log-rank test � Overall survival
Time-to-tumor progression

2.1 Survival Time

In survival analysis, the term survival time refers to the time elapsed from an origin to
the occurrence of an event. In many medical studies, the origin is the time at study
entry which can be the start of a medical treatment, the initiation of a randomized
experiment, or the operation date of surgery. In epidemiological and demographic
studies, the origin is often the date of birth. The event may be the occurrence of death.

In medical research, the term overall survival refers to survival time measured
from entry until death of a patient. For instance, to measure the effect of
chemotherapy or radiotherapy in locally advanced head and neck cancer,
researchers may use overall survival as the primary endpoint (Michiels et al. 2009).
In this study, the origin is the start of randomization.

2.2 Kaplan–Meier Estimator and Survival Function

We shall introduce the random censorship model where we consider two random
variables

• T : survival time
• U: censoring time
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Due to censoring, either one of T or U is observed. One can observe T if death
comes faster than censoring (T �U). On the other hand, one cannot exactly observe
T if censoring comes faster than death (U\T). Even if the exact value of T is
unknown for the censored case, T is known to be greater than U. What we observe
are the first occurring time (minfT;Ug) and the censoring status (fT �Ug or
fU\Tg). The random censorship model typically assumes that T and U are
independent, namely PrðT 2 A;U 2 BÞ ¼ PrðT 2 AÞ PrðU 2 BÞ for sets A and B.

Survival data consist of ðti; diÞ, i ¼ 1; . . .; n, where

• ti: survival time or censoring time whichever comes first,
• di: censoring indicator (di ¼ 1 if ti is survival time, or di ¼ 0 if ti is censoring

time).

Under the random censorship model, one can write ti ¼ minfT ;Ug and
di ¼ IðT �UÞ, where Ið�Þ is the indicator function. We shall assume that all the
observed times to death are distinct (ti 6¼ tj whenever i 6¼ j and di ¼ dj ¼ 1), so that
there is no ties in the death times. With the survival data, one can estimate the
survival function SðtÞ � Prð T [ t Þ by the following estimator:

Definition 1 The Kaplan–Meier estimator (Kaplan and Meier 1958) is
defined as

ŜðtÞ ¼
Y

ti � t;di¼1

1� 1
ni

� �
; 0� t� max

i
ðtiÞ

where ni ¼
Pn

‘¼1 Ið t‘ � ti Þ is the number at-risk at time ti; Ŝð t Þ ¼ 1 if no
death occurs up to time t; Ŝð t Þ is undefined for t[ max

i
ðtiÞ.

The derivation of the Kaplan–Meier estimator: Consider a survival function
that is a decreasing step function with jumps only at points where a death occurs at
observed times of death. Then, one can write (Exercise 1 in Sect. 2.9) the survival
function in the form

Sð t Þ ¼ Prð T [ t Þ ¼
Y

ti � t; di¼1

1� PrðT ¼ tiÞ
PrðT � tiÞ

� �
:

Second, suppose that T and U are independent. Then, one can write

Sð t Þ ¼
Y

ti � t; di¼1

1� PrðT ¼ ti; U� tiÞ
PrðT � ti; U� tiÞ

� �

¼
Y

ti � t; di¼1

1� Prðminf T; U g ¼ ti; T �UÞ
Prðminf T ; U g� tiÞ

� �
:
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Finally, we replace the probability ratio of the last expression by its estimate to
obtain

Ŝð t Þ ¼
Y

ti � t; di¼1

1�
Pn

‘¼1 Iðt‘ ¼ ti; d‘ ¼ 1Þ=nPn
‘¼1 Iðt‘ � tiÞ=n

� �
¼

Y
ti � t; di¼1

1� 1
ni

� �
:

It is now clear that the Kaplan–Meier estimator relies on the independence
assumption between T and U. ■

The Kaplan–Meier survival curve is defined as the plot of Ŝð t Þ against t,
starting with t ¼ 0 and ending with tmax ¼ max

i
ðtiÞ. The curve is a step

function that jumps only at points where a death occurs. On the curve,
censoring times are often indicated as the mark“+”.

If tmax ¼ max
i
ðtiÞ corresponds to time-to-death of a patient, then Ŝð tmax Þ ¼ 0. If

tmax ¼ max
i
ðtiÞ corresponds to censoring time of a patient, then Ŝð tmax Þ[ 0. It is

misleading to plot Ŝð t Þ only up to the largest death time max
i; di¼1

ðtiÞ, especially when

many patients are alive beyond max
i; di¼1

ðtiÞ.
Survival data often include covariates, such as gender, tumor size, and cancer

stage. With covariates, survival data consist of ðti; di; xiÞ, i ¼ 1; . . .; n, where

• xi ¼ ðxi1; . . .; xipÞ0: p-dimensional covariates

In traditional survival analysis, the data is analyzed under the following
assumption:

Independent censoring assumption: Survival time and censoring time are
independent given covariates. That is, T and U are conditionally independent
given x.

For a patient i, one can define the survival function denoted as SðtjxiÞ �
Prð T [ t j xi Þ for t� 0. The survival function is the probability that the patient is
alive at time t. The survival function SðtjxiÞ is, in fact, the patient-level survival
function as it is conditionally on the patient characteristics xi. The survival function
at xi ¼ 0 is called the baseline survival function and denoted as S0ðtÞ ¼ Sðtjxi ¼ 0Þ.

A parametric model is given by a survival function that is specified by a finite
number of parameters. For instance, we consider an exponential survival function

2.2 Kaplan–Meier Estimator and Survival Function 11



SðtjxiÞ ¼ expð �ktebxi Þ, t� 0, where k[ 0 and �1\b\1 are parameters. Let
xi denote the gender with xi ¼ 1 for male and xi ¼ 0 for female. One can show that

SðtjxiÞ ¼ S0ðtÞexpðbxiÞ for t� 0, where S0ðtÞ ¼ Sðtjxi ¼ 0Þ ¼ expð�ktÞ is the base-
line survival function. With this model, survival difference between male and
female is captured by b. The case b[ 0 corresponds to poor survival prognosis for
male relative to female; the case b\0 corresponds to good survival prognosis for
male relative to female. The case b ¼ 0 corresponds to equal survival prognosis
between male and female.

A semi-parametric model is given by a survival function that is partially
specified by a finite number of parameters. For instance, we consider a survival

function SðtjxiÞ ¼ S0ðtÞexpðbxiÞ, where the form of the baseline survival function
S0ðtÞ is unspecified. In terms of b, one can compare survival between males and
females without assuming a specific model on the baseline survival function.

2.3 Hazard Function

Hereafter, we suppose that SðtjxiÞ is a continuous survival function. The instanta-
neous death probability between t and tþ dt is Prð t� T\tþ dt j xi Þ ¼ Sð t j xi Þ
�Sð tþ dt j xi Þ, where dt is an infinitely small number. Since this probability is
equal to zero, one can consider the rate by dividing by dt such that

f ð tj xi Þ ¼ Sðt j xi Þ � Sðtþ dt j xi Þ
dt

¼ lim
Dt!0

Sðt j xi Þ � SðtþDt j xi Þ
Dt

¼ � dSðt j xi Þ
dt

:

This is the density function.
The hazard rate describes the instantaneous death rate between t and tþ dt given

that the patient is at-risk at t:

Definition 2 The hazard function (or hazard rate function) is defined as

hðtjxiÞ � Prð t� T\tþ dt jT � t; xi Þ
dt

¼
� d
dt Sð tj xi Þ
Sð tj xi Þ :

The hazard function at xi ¼ 0 is called the baseline hazard function and denoted
as h0ðtÞ ¼ hðtjxi ¼ 0Þ. The cumulative hazard function is defined as
HðtjxiÞ ¼

R t
0 hðujxiÞdu. The survival function is derived from the hazard function

through SðtjxiÞ ¼ expf �HðtjxiÞ g.
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The hazard rate is also known as the force of mortality in actuarial science and
demography. For example, let t ¼ “60 years old”, dt ¼ “1 year”, and xi ¼ 1 for
male or xi ¼ 0 for female. Then, the force of mortality hð60jxi ¼ 1Þ is equal to the
probability of death within the next one year for a 60-year-old man. The Japanese
life tables show hð60jxi ¼ 1Þ = 0.0064 (0.64%). The value of hðtjxi ¼ 1Þ mono-
tonically increases as t grows, which represents the effect of natural aging.
Eventually, it reaches hð100jxi ¼ 1Þ = 0.3995 (39.95%). This implies that 40% of
Japanese males who have just celebrated their 100th birthday will die before their
next birthday. Life tables for almost any country are available in the internet (e.g.,
Google “Taiwan life table”).

Unfortunately, the hazard function for cancer patients in medical studies rarely
shows any simple pattern (e.g., monotonically increasing or decreasing). In many
clinical trials, the time t is measured from the start of treatment, and hence, the ages
are regarded as covariates. In this case, the hazard of patients may be influenced by
the treatment effect, the follow-up processes, and cancer progression, so the effect
of natural aging may diminish. In epidemiological studies, focusing on age-specific
incidence of a particular disease, the time t is measured from birth as in the example
from Japanese life tables. However, the shape of the hazard function of disease
incidence may be difficult to specify.

This implies that many simple models, such as the exponential, Weibull, and
lognormal models, may not fit survival data from cancer patients. This is why
semi-parametric models are more useful and widely applied in medical research.
One may still accept the assumptions that the hazard function is continuous, does
not abruptly change over time, and smooth (continuously differentiable). Hazard
models with cubic splines (Chap. 4) meet these assumptions without restricting too
much the shape of the hazard function.

The semi-parametric model SðtjxiÞ ¼ S0ðtÞexpðbxiÞ can alternatively be specified
in terms of the hazard function

hðtjxiÞ ¼ h0ðtÞ expðbxiÞ ð2:1Þ

where the form of h0ðtÞ is unspecified. One can show h0ðtÞ ¼ �df log S0ðtÞ g=dt
and S0ðtÞ ¼ expf �H0ðtÞ g, where H0ðtÞ ¼

R t
0 h0ðuÞdu.

Let xi be a dichotomous covariate, such as gender with xi ¼ 1 for male and
xi ¼ 0 for female. Under the model (2.1), the relative risk (RR) is defined as

RR ¼ expðbÞ ¼ hðtjxi ¼ 1Þ
hðtjxi ¼ 0Þ :

For instance, the value RR ¼ 2 implies that death rate for xi ¼ 1 is twice the
death rate for xi ¼ 0.

Let xi be a continuous covariate, such as a gene expression. If the scale of xi is
standardized (to be mean = 0 and SD = 1), then RR ¼ expðbÞ is interpreted with
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respect to one SD increase. If one is interested in the effect of xi ¼ 2 relative to
xi ¼ �2, then RR ¼ expð4bÞ.

2.4 Log-Rank Test for Two-Sample Comparison

The log-rank test is a method to test the quality of the hazard rates between two
groups. Specifically, we consider the null hypothesis

H0 : hðtjxi ¼ 0Þ ¼ hðtjxi ¼ 1Þ; t� 0;

where xi ¼ 1 for male and xi ¼ 0 for female, for instance. This null hypothesis is
the same as the equality Sðtjxi ¼ 0Þ ¼ Sðtjxi ¼ 1Þ due to the relationship between
the hazard function and survival function. We wish to test H0 without making any
model assumption, but with the assumption that there are no ties in death times. The
treatment of ties shall be briefly discussed in Sect. 2.8.

Let ni1 ¼
Pn

‘¼1 If t‘ � ti; x‘ ¼ 1 g be the number of males and ni0 ¼Pn
‘¼1 If t‘ � ti; x‘ ¼ 0 g be the number of females at-risk at time ti. Hence,

ni0 þ ni1 is the total number at-risk at time ti. Each death at time ti corresponds to
either the death of male (xi ¼ 1) or the death of female (xi ¼ 0). If there is no effect
of gender on survival, male and female have the same death rate. Hence, the
conditional expectation of xi given ðdi ¼ 1; ni0; ni1Þ is

E½xijdi ¼ 1; ni0; ni1� ¼ Prðxi ¼ 1jdi ¼ 1; ni0; ni1Þ

¼ Prðxi ¼ 1; di ¼ 1j ni0; ni1Þ
Prðxi ¼ 1; di ¼ 1j ni0; ni1Þþ Prðxi ¼ 0; di ¼ 1j ni0; ni1Þ

¼ ni1hðtijxi ¼ 1Þ
ni1hðtijxi ¼ 1Þþ ni0hðtijxi ¼ 0Þ

¼ ni1
ni0 þ ni1

:

The last equation holds under the null hypothesis H0. The difference between xi
and its expectation leads to the log-rank statistic

S ¼
Xn
i¼1

di xi � ni1
ni0 þ ni1

� �
:

Hence, S[ 0 is associated with higher death rate in male than that in female.
Under H0, the mean of S is zero. If we assume that xi’s are independent,

14 2 Introduction to Survival Analysis



VarðSÞ ¼
Xn
i¼1

di
ni1ni0

ðni0 þ ni1Þ2
:

The log-rank test for no gender effect is based on the Z-statistic z ¼ S=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
VarðSÞp

or the chi-square statistic z2. The P-value is computed as Prð jZj[ jzj Þ, where
Z�Nð0; 1Þ.
Example 1 Consider a sample of five females and five males (n ¼ 10) with
ti ¼(1650, 30, 720, 450, 510, 1110, 210, 1380, 1800, 540), di ¼(0, 1, 0, 1, 1, 0, 1,
1, 0, 1), and xi ¼(0, 0, 0, 0, 0, 1, 1, 1, 1, 1). To calculate the log-rank statistic, it is
convenient to summarize the data into Table 2.1.

The log-rank statistic has the “(observed)-(expected)” form, namely

S ¼
Xn
i¼1

dixi �
Xn
i¼1

di
ni1

ni0 þ ni1
¼ 3� 5

10
þ 5

9
þ 4

8
þ 4

7
þ 4

6
þ 2

3

� �
¼ 3� 3:46

¼ �0:46:

The negative value of S implies that the observed mortality of male is lower than
its expected value under H0. The variance is computed from Table 2.1 as

VarðSÞ ¼
Xn
i¼1

di
ni1ni0

ðni0 þ ni1Þ2
¼ 5	 5

102
þ 5	 4

92
þ 4	 4

82
þ 4	 3

72
þ 4	 2

62
þ 2	 1

32

¼ 1:436:

Hence, the test statistic is z ¼ S=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
VarðSÞp ¼ �0:46=

ffiffiffiffiffiffiffiffiffiffiffi
1:436

p ¼ �0:384, and the
P-value is Prð jZj[ 0:384 Þ ¼ 0:70. We see no significant evidence for gender
effect on survival. ■

The log-rank test is a non-parametric test that does not employ any distributional
assumption. The log-rank test simply examines the excess mortality. Software
packages for survival analysis display both “observed” and “expected” numbers of
deaths in their outputs, in addition to the Z-value and P-value. The log-rank test can
also handle left-truncation (Klein and Moeschberger 2003). The log-rank test has

Table 2.1 Tabulation of the n ¼ 10 samples

Death times: ti with di ¼ 1 Observed: xi Expected: ni1=ðni0 þ ni1Þ
30 0 5/10

210 1 5/9

450 0 4/8

510 0 4/7

540 1 4/6

1380 1 2/3
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variants, such as multi-group tests, log-rank trend tests, and stratified log-rank tests
(Collett 2003; Klein and Moeschberger 2003).

2.5 Cox Regression

Since the hazard function is the basis of the risk comparison between two groups, it
is then natural to incorporate the effect of covariates into the hazard function.

Definition 3 The Cox proportional hazards model (Cox 1972) is defined as

hðtjxiÞ ¼ h0ðtÞ expðb0xiÞ;

where b ¼ ðb1; . . .; bpÞ0 are unknown coefficients and h0ð�Þ is an unknown
baseline hazard function.

The Cox model states that the hazard function hðtjxiÞ is proportional to h0ðtÞ
with the relative risk expðb0xiÞ. This implies that all patients share the same
time-trend function h0ðtÞ. The most striking feature of the Cox model is that the
form of h0ð�Þ is unspecified. Hence, the Cox model is a semi-parametric model,
offering greater flexibility over parametric models that specify the form of hðtjxiÞ.

One can estimate b without estimating h0ð�Þ. Based on data ðti; di; xiÞ,
i ¼ 1; . . .; n, let Ri ¼ f ‘ : t‘ � ti g be the risk set that contains patients at-risk at
time ti. The partial likelihood estimator b̂ ¼ ðb̂1; . . .; b̂pÞ0 is defined by maximizing
the partial likelihood function (Cox 1972)

LðbÞ ¼
Yn
i¼1

expðb0xiÞP
‘2Ri

expðb0x‘Þ

 !di

:

The log-partial likelihood is

‘ðbÞ ¼ log LðbÞ ¼
Xn
i¼1

di b0xi � log
X
‘2Ri

expðb0x‘Þ
( )" #

: ð2:2Þ

The derivatives of ‘ðbÞ give the score function,

SðbÞ ¼ @‘ðbÞ
@b

¼
Xn
i¼1

di xi �
P

‘2Ri
x‘ expðb0x‘ÞP

‘2Ri
expðb0x‘Þ

" #
:
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The second-order derivatives of ‘ðbÞ constitute the Hessian matrix,

HðbÞ ¼ @2‘ðbÞ
@b@b0

¼ �
Xn
i¼1

di

P
‘2Ri

x‘x0‘ expðb0x‘ÞP
‘2Ri

expðb0x‘Þ �
P

‘2Ri
x‘ expðb0x‘ÞP

‘2Ri
expðb0x‘Þ

P
‘2Ri

x‘ expðb0x‘ÞP
‘2Ri

expðb0x‘Þ

( )0" #
:

Since HðbÞ is a negative definite matrix (see Exercise 3 in Sect. 2.9), the
log-likelihood ‘ðbÞ is concave. This implies that ‘ðbÞ has a unique maxima b̂ that
solves SðbÞ ¼ 0.

Interval estimation for b is implemented by applying the asymptotic
theory (Fleming and Harrington 1991). The information matrix is defined as

iðb̂Þ ¼ �Hðb̂Þ: The standard error (SE) of b̂j is SEðb̂jÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
f i�1ðb̂Þ gjj

q
that uses

the j-th diagonal element of the inverse information matrix. The 95% confidence
interval (CI) is b̂j 
 1:96	 SEðb̂jÞ.

To gain more insight into Cox regression, we consider a simple case where xi
denote the gender defined as xi ¼ 1 for male and xi ¼ 0 for female. In this setting,
the Cox model is written as hðtjxiÞ ¼ h0ðtÞ expðbxiÞ, where the factor expðbÞ rep-
resents the RR of male relative to female.

We shall demonstrate how the factor expðbÞ is estimated by maximizing the
log-partial likelihood in Eq. (2.2). We solve the score equation SðbÞ ¼ 0 where

SðbÞ ¼
Xn
i¼1

di xi �
P

‘2Ri
x‘ expðbx‘ÞP

‘2Ri
expðbx‘Þ

" #
¼
Xn
i¼1

di
xini0 � ð1� xiÞni1 expðbÞ

ni0 þ ni1 expðbÞ :

Hence, the estimate of expðbÞ needs to satisfy the equation

expðbÞ ¼

P
i:xi¼1

di
ni0

ni0 þ ni1 expðbÞP
i:xi¼0

di
ni1

ni0 þ ni1 expðbÞ
: ð2:3Þ

This is the ratio of the expected number of deaths in male divided by the
expected number of deaths in female, which agrees with the interpretation of
expðbÞ.

Equation (2.3) can be solved by the fixed-point iteration algorithm. First,
applying the initial value expðbÞ ¼ 1 to the right-hand side of Eq. (2.3), we have

expðbÞ ¼

P
i:xi¼1

di
ni0

ni0 þ ni1P
i:xi¼0

di
ni1

ni0 þ ni1

:

We apply this value of expðbÞ to the right-hand side of Eq. (2.3) to give an
updated value of expðbÞ. This process is repeated until the updated value does not
change from the previous step. While the fixed-point iteration gives us an insight
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about how expðbÞ is estimated from data, it requires a large number of iterations
until convergence.

A computationally faster algorithm is the Newton–Raphson algorithm, which
utilizes the score function SðbÞ ¼ d‘ðbÞ=db and the Hessian HðbÞ ¼ d2‘ðbÞ=db2.
The algorithm starts with the initial value bð0Þ ¼ 0, and then follows the sequence

bðkþ 1Þ ¼ bðkÞ � H�1ðbðkÞÞSðbðkÞÞ; k ¼ 0; 1; . . .

The algorithm converges if jbðkþ 1Þ � bðkÞj � 0. Then, the estimate is b̂ ¼ bðkÞ

and its standard error is SEðb̂Þ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�H�1ðb̂Þ

q
. The score function is

SðbÞ ¼
Xn
i¼1

di xi �
P

‘2Ri
x‘ expðbx‘ÞP

‘2Ri
expðbx‘Þ

" #
¼
Xn
i¼1

di xi � ni1 expðbÞ
ni0 þ ni1 expðbÞ

� �
;

and the Hessian is

HðbÞ ¼ �
Xn
i¼1

di

P
‘2Ri

x2‘ expðbx‘ÞP
‘2Ri

expðbx‘Þ �
P

‘2Ri
x‘ expðbx‘ÞP

‘2Ri
expðbx‘Þ

( )2
2
4

3
5

¼ �
Xn
i¼1

di
ni0ni1 expðbÞ

f ni0 þ ni1 expðbÞ g2
:

We use Example 1 to compare the convergence between the fixed-point iteration
and Newton–Raphson algorithms. Table 2.2 shows that the Newton–Raphson
converges faster than the fixed-point iteration. The two algorithms reach the same
value b̂ ¼ �0:3156.

The Wald test for the null hypothesis H0 : b ¼ 0 is based on the Z-value
z ¼ b̂=SEðb̂Þ. The P-value is computed as Prð jZj[ jzj Þ, where Z�Nð0; 1Þ.

The score test for the null hypothesis H0 : b ¼ 0 uses the score statistic, and its
variance,

Sð0Þ ¼
Xn
i¼1

di xi � ni1
ni0 þ ni1

� �
; Varf Sð0Þ g ¼ �Hð0Þ ¼

Xn
i¼1

di
ni1ni0

ðni0 þ ni1Þ2
:

Table 2.2 Iteration algorithms to compute b̂ using the data of Example 1

Iteration number k Fixed-point iteration bðkÞ Newton–Raphson bðkÞ

0 0 0

1 –0.3093212 –0.3204982

2 –0.3154621 –0.3155884

3 –0.3155858 –

Note The convergence criterion is jbðkþ 1Þ � bðkÞj � 10�5
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The score test based on z ¼ Sð0Þ= ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Varf Sð0Þ gp

is exactly the same as the
log-rank test. This coincidence does not imply that the log-rank test relies on the
Cox model assumption (Sect. 2.8).

The Newton–Raphson algorithm can also be applied to the multi-dimensional
case (p� 2) (see Sect. 2.7). The fixed-point iteration algorithm, however, may not
be easily applied to the multi-dimensional case (see Exercise 4 in Sect. 2.9).

2.6 R Survival Package

We shall briefly introduce the R package survival to analyze real data. After
installing the package, we enter survival time ti, censoring indicator di, and
covariate xi for n ¼ 10 patients. Then, we run the codes:

The outputs are shown below and Fig. 2.1.

Fig. 2.1 Kaplan–Meier survival curve and the 95% CI calculated from the data of Example 1
(n ¼ 10). Censoring times are indicated as the mark“+”
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The results on the log-rank test show S ¼ 3� 3:46 ¼ �0:46 with the chi-square
statistics z2 ¼ 0:148 and the P-value = 0.701 (see the row of “x = 1”). The results
on Cox regression show b̂ ¼ �0:316, RR ¼ expðb̂Þ ¼ 0:729, SEðb̂Þ ¼ 0:825, and
z ¼ b̂=SEðb̂Þ ¼ �0:38. The P-value of the Wald test is 0.702. Hence, the log-rank
test and the Wald test show similar results. In addition, the log-rank test and the
score test yield the identical result.

Since the difference between the two groups is not significant, we combine the
two groups and then draw the Kaplan–Meier survival curve. Figure 2.1 display the
Kaplan–Meier survival curve and the 95% CI.

2.7 Likelihood-Based Inference

This section considers likelihood-based methods for analyzing the data ð ti; di; xi Þ,
i ¼ 1; . . .; n. Recall that we defined survival time T and censoring time U such that:

• T ¼ ti and U[ ti if di ¼ 1,
• T [ ti and U ¼ ti if di ¼ 0.

Combining these two events, the likelihood for the i-th patient is expressed as

Li ¼ Prð T ¼ ti; U[ tijxi Þdi Prð T [ ti; U ¼ tijxi Þ1�di :
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Under the independent censoring assumption,

Li ¼ ½ Prð T ¼ tijxi Þ Prð U[ tijxi Þ �di ½ Prð T [ tijxi Þ Prð U ¼ tijxi Þ �1�di

¼ ½ fTðtijxiÞSUðtijxiÞ �di ½ STðtijxiÞfUðtijxiÞ �1�di

¼ ½ fTðtijxiÞdi STðtijxiÞ1�di �½ fUðtijxiÞ1�di SUðtijxiÞdi �

where STðtjxiÞ ¼ Prð T [ t j xi Þ, fTðtjxiÞ ¼ �dSTðtjxiÞ=dt, SUðtjxiÞ ¼ Pr
ð U[ t j xi Þ, and fUðtjxiÞ ¼ �dSUðtjxiÞ=dt. In addition to the independent cen-
soring assumption, we further impose the following assumption:

Non-informative censoring assumption: The censoring distribution does not
involve any parameters related to the distribution of the survival times. That
is, SUðtjxiÞ does not contain parameters related to STðtjxiÞ.

Under the non-informative censoring assumption, the term fUðtijxiÞ1�di SUðtijxiÞdi
is unrelated to the likelihood for the survival times and can simply be ignored.
Therefore, the likelihood function is re-defined as

L ¼
Yn
i¼1

fTðtijxiÞdi STðtijxiÞ1�di ¼
Yn
i¼1

hTðtijxiÞdi exp½ �HTðtijxiÞ �;

where hTðtjxiÞ ¼ fTðtjxiÞ=STðtjxiÞ and HTðtjxiÞ ¼
R t
0 hTðujxiÞdu. The log-likelihood

is

‘ ¼ log L ¼
Xn
i¼1

½ di log hTðtijxiÞ � HTðtijxiÞ �: ð2:4Þ

Usually, censoring is non-informative if it is independent. Only an artificial or
unusual example yields informative but independent censoring (p. 150 of Andersen
et al. 1993; p. 196 of Kalbfleisch and Prentice 2002). It is well-known that inde-
pendent censoring is more crucial assumption than non-informative censoring that
does not lead to bias in estimation. Throughout the book, we focus on dependent
censoring rather than informative censoring.

If censoring is dependent, the likelihood for the i-th patient is

Li ¼ Prð T ¼ ti; U[ tijxi Þdi Prð T [ ti; U ¼ tijxi Þ1�di

¼ � @

@x
Prð T [ x; U[ tijxi Þ

����
x¼ti

( )di

� @

@y
Prð T [ ti; U[ yjxi Þ

����
y¼ti

( )1�di

:
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Therefore, the log-likelihood is defined as

‘ ¼
Xn
i¼1

½di log h#T ðtijxiÞþ ð1� diÞ log h#U ðtijxiÞ � Uðti; tijxiÞ �;

where

h#T ðtijxiÞ ¼ � @

@x
log Prð T [ x; U[ tijxi Þ

����
x¼ti

;

h#U ðtijxiÞ ¼ � @

@y
log Prð T [ ti; U[ yjxi Þ

����
y¼ti

;

are the cause-specific hazard functions, and

Uðti; tijxiÞ ¼ � log Prð T [ ti; U[ tijxi Þ ¼ � log Prð minf T; U g[ tijxi Þ

is the cumulative hazard function for minf T ; U g.
Suppose that the log-likelihood is parameterized by u: Then, the maximum

likelihood estimator (MLE) is defined by maximizing the log-likelihood, û ¼
argmaxu ‘ð u Þ: To find the MLE numerically, one can use the score function
Sð u Þ ¼ @‘ð u Þ=@u and the Hessian matrix Hð u Þ ¼ @2‘ð u Þ=@u@u0: The MLE
û is obtained from the Newton–Raphson algorithm

uðkþ 1Þ ¼ uðkÞ � H�1ð uðkÞ ÞSð uðkÞ Þ; k ¼ 0; 1; . . .

Interval estimates for u follow from the asymptotic theory of MLEs. The in-
formation matrix is defined as ið û Þ ¼ �Hð û Þ: The SE for ûj (the j-th component

of ûÞ is SEð/̂jÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
f i�1ðûÞ gjj

q
that uses the j-th diagonal element of the inverse

information matrix. The 95% CI is ûj 
 1:96	 SEðûjÞ:
For instance, the Cox model takes the form u ¼ ðh; bÞ and

hðtjxiÞ ¼ h0ðt; hÞ expðb0xiÞ, where h ¼ ðh1; . . .; hmÞ is a vector of parameters
related to the baseline hazard function. We assume that the baseline cumulative
hazard function H0ðt; hÞ is an increasing step function with jumps dH0ðt; hÞ ¼ ehj at
t ¼ ti with di ¼ 1. Hence, the number of parameters in h is equal to the number of
deaths m ¼Pn

i¼1 di. The MLE û ¼ ðĥ; b̂Þ is obtained from the Newton–Raphson
algorithm. It has been shown that b̂ is equivalent to the partial likelihood estimator

and ĥ is the Breslow estimator h0ðtj; ĥÞ ¼ eĥj ¼ P
t‘ � tj e

b̂
0
x‘

� 	�1
(van der Vaart

1998; van Houwelingen and Putter 2011).
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2.8 Technical Notes

Readers can skip this section as it does not influence the understanding of the latter
chapters of the book.

The log-rank test possesses an easy-to-understand optimality criterion. The
log-rank test is asymptotically efficient (most powerful) to detect the constant hazard
ratio hðtjxi ¼ 1Þ=hðtjxi ¼ 0Þ ¼ w for some w 6¼ 1. Any reasonable test, such as the
t-test, has optimality criteria to detect some specific form. The details on the
asymptotic efficiency are referred to Andersen et al. (1993) and Fleming and
Harrington (1991).

If the form of hðtjxi ¼ 1Þ=hðtjxi ¼ 0Þ is non-constant, then the log-rank test may
be sub-optimal. For example, Gehan’s generalized Wilcoxon test statistic (Gehan
1965) defined as

S ¼
Xn
i¼1

diðni0 þ ni1Þ xi � ni1
ni0 þ ni1

� �

can be more powerful than the log-rank statistic if the ratio hðtjxi ¼ 1Þ=hðtjxi ¼ 0Þ
strongly deviates from 1 in the early stage of follow-up. The generalized Wilcoxon
test statistic is a special case of the weighted log-rank statistics (Fleming and
Harrington 1991; Klein and Moeschberger 2003). If there is a concern about the
non-constant hazard ratio, the weighted log-rank statistics may be employed.

A gross misunderstanding is that the log-rank test is a test tailored to detect the
effect in a proportional hazards assumption. As mentioned earlier, the log-rank
statistic is a non-parametric test to detect excess mortality without any model
assumption.

We have derived the Kaplan–Meier estimator and the log-rank test under the
assumption that all times to death are distinct (no ties). To handle ties, it is useful to
introduce counting process formulations (Andersen et al. 1993; Fleming and
Harrington 1991). For k ¼ 0; 1, let �YkðtÞ ¼

Pn
‘¼1 If t‘ � t; x‘ ¼ k g be the number

at-risk at time t, and let �NkðtÞ ¼
Pn

‘¼1 If t‘ � t; d‘ ¼ 1; x‘ ¼ k g be the number of
deaths up to time t. Then, at time t, the number of deaths in male is
d �N1ðtÞ ¼

Pn
‘¼1 If t‘ ¼ t; d‘ ¼ 1; x‘ ¼ 1 g, and the total number of deaths is

d �NðtÞ ¼Pn
‘¼1 If t‘ ¼ t; d‘ ¼ 1 g.

The Kaplan–Meier estimator for the group k is defined as

ŜkðtÞ ¼
Y
u� t

f 1� dĤkðuÞ g; k ¼ 0; 1;

where dĤkðtÞ ¼ d�NkðtÞ=�YkðtÞ is called the Nelson–Aalen estimator.
The conditional distribution of d�N1ðtÞ given ð d�NðtÞ; �Y0ðtÞ; �Y1ðtÞ Þ is a hyper-

geometric distribution with mean
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Ef d�N1ðtÞjd�NðtÞ; �Y0ðtÞ; �Y1ðtÞ g ¼ d�NðtÞ�Y1ðtÞ
�Y0ðtÞþ �Y1ðtÞ :

Consequently, the aggregated differences between the observed and expected
deaths is

S ¼
Z1
0

d�N1ðtÞ � d�NðtÞ�Y1ðtÞ
�Y0ðtÞþ �Y1ðtÞ

� �
¼
Z1
0

d�N1ðtÞ �
Z1
0

d�NðtÞ�Y1ðtÞ
�Y0ðtÞþ �Y1ðtÞ:

The univariate partial likelihood estimator as derived in Eq. (2.3) has a counting
process form

expðb̂Þ ¼
R1
0 Wðb̂; tÞdĤ1ðtÞR1
0 Wðb̂; tÞdĤ0ðtÞ

; Wðt;bÞ ¼
�Y0ðtÞ�Y1ðtÞ

�Y0ðtÞþ �Y1ðtÞ expðbÞ :

This means that the estimator is the ratio of the expected number of deaths in
male divided by the expected number of deaths in female. This way of interpreting
the univariate estimator is suggested in Emura and Chen (2016) to argue the
robustness of the estimator against the model misspecification. Under the inde-
pendent censoring assumption, b̂ is a consistent estimator for b� that is the solution
to

expðbÞ ¼
R1
0 wðb; tÞhðtjx ¼ 1ÞdtR1
0 wðb; tÞhðtjx ¼ 0Þdt ; Wðt; bÞ ¼ p0ðtÞp1ðtÞ

p0ðtÞþ p1ðtÞ expðbÞ ;

where pkðtÞ ¼ limn!1 �YkðtÞ=n and the integral is on the range of t with
p0ðtÞp1ðtÞ[ 0. If the proportional hazards model hðtjxi ¼ 1Þ ¼ expðb0Þhðtjxi ¼ 0Þ
holds for some b0, then b� ¼ b0. Even if the proportional hazards model does not
hold, b� is still meaningful since expðb�Þ is interpreted as the RR. However, the
interpretation of the partial likelihood estimator may not be robust against the
violation of the independent censoring assumption (Chap. 3).

2.9 Exercises

1. Deriving the Kaplan–Meier estimator: Consider a survival function Sð t Þ ¼
Prð T [ t Þ that is a decreasing step function with steps at observed times of
death. Assume that all the observed times to death are distinct (ti 6¼ tj whenever
i 6¼ j and di ¼ dj ¼ 1).

(1) Show Prð T [ ti Þ ¼ Prð T [ tijT [ ti�1 Þ PrðT [ ti�1 Þ if ti [ ti�1.
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(2) Show Prð T [ tj Þ ¼
Qj
i¼1

Prð T [ tijT [ ti�1 Þ if tj [ tj�1 [ � � � [ t1 [ t0 � 0

and Sð 0 Þ ¼ 1.
(3) Show Prð T [ tijT[ ti�1 Þ ¼ 1� Prð T ¼ tijT � ti Þ if there is no death in the

interval ðti�1; tiÞ.
(4) Show Sð tj Þ ¼

Qj
i¼1

1� PrðT¼tiÞ
PrðT � tiÞ

� 	
.

2. Weibull regression: Let logðTiÞ ¼ a0 þ a0xi þ rei, where Prðei [ xÞ ¼ expð�exÞ
for �1\x\1.

(1) Derive the survival function SðtjxiÞ and the hazard function hðtjxiÞ.
(2) Show that the model can be expressed as hðtjxiÞ ¼ h0ðtÞ expðb0xiÞ.
(3) Show PrðT [ tþwjT [ t; xiÞ\ PrðT [wjxiÞ for 0\r\1 and w[ 0. What

does this inequality imply?

3. Consider a discrete random vector Xi ¼ ðXi1; . . .;XipÞ whose distribution is
given by

PrðXi ¼ xkÞ ¼ expðb0xkÞP
‘2Ri

expðb0x‘Þ ; k 2 Ri ¼ f‘ : t‘ � ti g; i ¼ 1; . . .; n:

This represents the risk of the k-th patient relative to the total risk for those who
are at-risk of death at time ti. By assuming the independence of the sequence Xi,
i ¼ 1; . . .; n, one can obtain the partial likelihood function
LðbÞ ¼Qn

i¼1 PrðXi ¼ xiÞdi .
(1) Express the score function SðbÞ using EðXiÞ.
(2) Express the Hessian matrix HðbÞ using VarðXiÞ.
(3) Discuss the conditions to make HðbÞ negative definite.

4. Suppose that data ð ti; di; xi Þ, i ¼ 1; . . .; n, follow the model
SðtjxiÞ ¼ expð �ktebxi Þ, where k[ 0 and �1\b\1. Let m ¼Pn

i¼1 di be
the number of deaths.

(1) Write down the log-likelihood function ‘ðk; bÞ ¼ log Lðk; bÞ.
(2) Derive the score functions @‘ðk; bÞ=@k and @‘ðk; bÞ=@b.
(3) Derive the fixed-point iteration algorithm and apply it to the data of Example 1.
(4) Derive the Hessian matrix of ‘ðk; bÞ.
(5) Derive the Newton–Raphson algorithm and apply it to the data of Example 1.
(6) Derive the Newton–Raphson algorithm under the transformed parameter ~k ¼

logðkÞ and apply it to the data of Example 1.
(7) Compare the numbers of iterations in all the three algorithms.
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5. Use the lung cancer data available in the compound.Cox R package (Emura et al.
2018) to:

(1) Perform univariate Cox regression treating the ZNF264 gene or the NF1 gene
as a covariate. Are these genes univariately associated with survival?

(2) Perform multivariate Cox regression treating both the ZNF264 and NF1 genes
as covariates. Are these genes associated with survival?

(3) Discuss the influence of multicollinearity between ZNF264 and NF1.
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