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Abstract In this paper, improved moving element method (IMEM) is intended to
analyze the dynamic response of the beam resting on the two-parameter viscoelastic
Pasternak foundation subjected to the moving load and considering effects of beam
roughness. Beams are modeled by moving elements, while the load is fixed. The
differential equation of motion of the structural system is established based on the
principle of virtual public balance and solved by means of numerical integration
based on the Newmark algorithm. The characteristic parameters of the foundation
and the loads are investigated in order to analyze the dynamic response of the beam
such as the second parameter of foundation, the roughness of beam, the velocity and
acceleration of moving load.
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1 Introduction

Beam and plate structures are applied widely in the construction field nowadays.
The topic of the structural beam on the soil–foundation interaction is much attracted
and interested by many foreign and Vietnamese scientists. Majority of constructions
for building and traffic infrastructures are built up on the soil–foundation interac-
tion, so the scope of this application is wide. The moving load on structure is also
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represented by many researchers by different variety of types such as moving force,
moving mass, various moving forces, moving vehicles. The foundation alone when
analyzing the behavior of the structure which is described very complicated the
same as the one-parameter foundation model such as Winkler [1] or multiparameter
foundation models of Filonenko-Borodich [2], Hentényi [3], Pasternak [4], Reissner
[5]. The typical characteristics of these models are that the elastic layer (the first
parameter) that is illustrated based on the elastic Winkler foundation, with the
stiffness of elastic foundation layer which is represented by the non-mass elastic
springs; in respect to the multiparameter models, the second parameter is presented
by the stress layer elements, beams or bending plates or shear layers without the
mass of connection with the surface of springs on Winkler foundation model in
order to describe the continuous interaction of foundation. Therefore, a more
realistic model is needed for soil foundation under the loads of moving mass.
Because of its wide and realistic application, this issue is concerned deeply by many
researchers such as Chang-Yong and Yang [6], and they have analyzed the infinite
Euler–Bernoulli beam resting on Pasternak foundation subjected to moving load
which has constant velocity obtained by Fourier transformation technique to solve
the problem. Kumari et al. [7] have investigated an infinite Euler–Bernoulli beam
on Pasternak foundation; the beam is put placed on a concentrated mass which is
equal to the constant motion, and the velocity is equal to beam’s parameters.

Recently, many models of structures resting on viscoelastic and Pasternak
foundation have been developed. Luong-Van et al. [8] and Phung-Van et al. [9]
analyzed dynamics response of composite plates resting on viscoelastic foundation.
Phung-Van et al. [10] analyzed dynamics response of Mindlin plates on viscoelastic
foundation subjected to a moving sprung vehicle. Nguyen-Thoi et al. [11] analyzed
the dynamics response of composite plates on the Pasternak foundation subjected to
moving mass.

Lou and Au [12] have studied the response of Euler–Bernoulli beam under
moving mass vehicles by employing a finite element method (FEM). FEM has been
used widely to solve many complicated problems, but encountered issues when the
mass moves to the margin of the elements and also from one element to another,
while vector of moving mass must be updated at every time step. So as to make good
those shortcomings, Koh et al. [13] have proposed to put a moving coordinate to
solve the proposed moving mass of railway track. This method is called moving
element method (MEM). In this method, the railway is considered as an infinite
Euler–Bernoulli resting on beam onWinkler foundation and the train is simplified by
a “mass-spring-dashpot” system. Tran et al. [14] have employed MEM to study the
dynamic response of express railway under inconstant speed of moving mass. Ang
et al. [15] have studied a calculation to employ MEM to examine the dynamic
response of the rail on viscoelastic foundation with moving mass. Ang and Dai [16]
analyzed the reaction of the high-speed railway on foundation which has inconstant
stiffness, and the author employed the moving element method to have analytical
solutions for the response of the train. Ang et al. [17] have used MEM to research the
dynamic response of the railway system. The railway model as a mass spring system
which includes train body, cross section and wheels. Recently, Tran et al. [18] also
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utilized the moving element method to analyze the dynamics of the express railway.
In which the railway track is modeled as based on Euler–Bernoulli beam on the
elastic two-parameter, the impacts of reducing velocity process and the roughness
levels of railway track are also investigated. MEM has a lot of advantages such as the
load would never approach the margin because the limited elements system always
moves, and the moving load would not have to move from this element to another, so
it avoids updating the mass vector. This method enables the limited elements with
different lengths, and each interaction distance can be divided more effective.
However, the weak point of MEM is that must be re-updated the stiffness matrix and
dashpot matrix at every time step. It resulted in increasing the volume of calculation,
prolonging the time of analysis, and wasting the resources.

Therefore, this paper introduces one new method, that is, improved moving
element (IMEM) to analyze the dynamic response of the beam resting on vis-
coelastic two-parameter Pasternak foundation which is under moving mass and
with the consideration of beam surface. The mass matrices, the stiffness matrices,
and dashpot matrices of the moving elements are also represented in details later on.
All results obtained will be the helpful documents for studying and designing the
structural beams placed on moving loads in reality.

2 Theoretical Basis

Investigating an infinite Euler–Bernoulli beam with elastic module E, moment of
inertia I, and mass per unit length of the rail beam �m, beam is on a viscoelastic
foundation comprising of dashpots �c, vertical springs �kw, cross section ks. Figure 1
shows the beam model, foundation, and load that are applied in this research.

Fig. 1 Train–track model
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According to the coordinates in Fig. 1, the general equation of the car model Do
and Luong [19] can be expressed mathematically as follows

m1€u1 þ c1ð _u1 � _u2Þþ k1ðu1 � u2Þ ¼ �m1g ð1Þ

m2€u2 þ c2ð _u2 � _u3Þ � c1ð _u1 � _u2Þþ k2ðu2 � u3Þ � k1ðu1 � u2Þ ¼ �m2g ð2Þ

m3€u3 � k2ðu2 � u3Þ � c2ð _u2 � _u3Þ ¼ �m3gþFc ð3Þ

in which:

m1, m2, m3; c1, c2, c3; k1, k2, k3 in turn are mass, dashpots of the car, vertical
springs, and wheels;

u1; _u1; €u1; u2; _u2; €u2; u3; _u3; €u3 in turn vertical displacements, velocity, car body
acceleration, and wheel and axle;

g gravitational acceleration;
Fc the contact force between wheels and beam,

produced by the non-flat of the beam or the
roughness of the beam.

The contact force Fc (with the roughness at the contact point between the
moving load and the beam) is defined according to Koh et al. [13] as follows:

Fc ¼ c3 _ud � _u3ð Þþ k3 ud � u3ð ÞþFt ð4Þ

where:

Ft ¼ c3 _yt þ k3yt the track force, produced by the roughness of the beam;
ud denotes the vertical displacement at the contact point of the beam;
u3 denotes the vertical displacement of the wheel and axle;
yt denotes the magnitude of the track irregularity at the contact

point, and according to Koh et al. [13], the track irregularity
profile can be written in terms of a sinusoidal function as follows:

yt ¼ at sin
2pS
kt

ð5Þ

where:

at, kt denotes the amplitude and wavelength of the track irregularity, respectively;
S denotes the displacement of the object.

In the moving element method, Koh et al. [13] use x-y coordinates where x-axis
is the beam course. The moving r-y coordinates whose origin is attached to the
contact force as in Fig. 2. Therefore, this coordinates move along with the velocity
V as a moving load.
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The relationship between two axes of coordinates is demonstrated as follows:

x ¼ rþ s
y ¼ y

�
ð6Þ

where: x = fixed axis; r = movable axis; s = displacement; V(a,t) = velocity
function; t = moving time; a = acceleration.

The connection between the derivative operators of the coordinates when the
load moves with various velocities is as follows:

@4wðx; tÞ
@x4

¼ @4w�ðr; tÞ
@r4

ð7Þ

@2wðx; tÞ
@x2

¼ @2w�ðr; tÞ
@r2

ð8Þ

@wðx; tÞ
@t

¼ @w�ðr; tÞ
@t

@t
@t

þ @w�ðr; tÞ
@r

@r
@t

¼ @w�ðr; tÞ
@t

� V
@w�ðr; tÞ

@r
ð9Þ

@2wðx; tÞ
@t2

¼ @2w�ðr; tÞ
@t2

� a
@w�ðr; tÞ

@r
@r
@t

þV2 @
2w�ðr; tÞ
@r2

� 2V
@2w�ðr; tÞ
@r:@t

ð10Þ

where w(x, t) = transverse deflection of the beam in the x-y axial coordinates; w*(r,
t) = deflection of the beam in r-y coordinates.

By applying principle of virtual work and using displacement functions N, we
can write Me, Ce, Ke as generalized mass, damping and stiffness matrices of the
beam as follows:

Me ¼ �m
Zle

0

NTNdr ð11Þ

Ce ¼ c
Zle

0

NTNdr � Fe
1 ð12Þ

Fig. 2 Coordinates of MEM
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Ke ¼ EI
Zle

0

ðN;rrÞTN;rrdrþ kw

Zle

0

NTNdr � ks

Zle

0

NTN;rrdr � Fe
2 ð13Þ

Fe
1 ¼ 2�mV

Zle

0

NTN;rdr ð14Þ

Fe
2 ¼ �maþ cV½ �

Zle

0

NTN;rdr � �mV2
Zle

0

NTN;rrdr ð15Þ

P ¼
Zle

0

FcNTdr ð16Þ

with (.)r and (.)rr in turn are first derivative and second derivative of r.
To elements of the beam, the Hermitian interpolation N is written as follows:

Ne
1 ¼

1

ðleÞ3 2r3 � 3r2le þðleÞ3
h i

ð17Þ

Ne
2 ¼

1

ðleÞ3 r3le � 2r2ðleÞ2 þ rðleÞ3
h i

ð18Þ

Ne
3 ¼

1

ðleÞ3 �2r3 þ 3r2le
� � ð19Þ

Ne
4 ¼

1

ðleÞ3 r3le � r2ðleÞ2
h i

ð20Þ

Based on finite element method and using numeral degree of freedom technique,
respectively, to matrices of the general coordinates’ elements, the moving equation
of the whole beam model on the foundation is written as follows:

M€zþ C� F1ð Þ _zþ K� F2ð Þz ¼ P ð21Þ

where:

M, C, K, P, respectively, are global mass, damping and stiffness matrices, and
the global load vector;
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F1, F2 denote those elements which depend on time; F1 and F2 are not
forces but have the force unit so they can be considered to be
pseudo-force

Equation (21) is the main differential equation of the traditional MEM; in
Eq. (21), we can see the left side is comprised of elements which change over time,
and those elements are the pseudo-force F1 and F2 matrices. Therefore, when
solving the problem we need to update the global mass, damping and stiffness
matrices and this prolongs the processing time.

To fix this limitation of the traditional MEM, we like to move the pseudo-forces
from the left side of Eq. (21) to the right side. This idea is called IMEM. After the
moving, Eq. (21) is written as follows:

M€zþC _zþKz ¼ PþF1 _zþF2z ð22Þ

Solving the differential motion, Eq. (22) is put to act upon the help of computer
which is based on Newmark algorithm. This algorithm is a calculation program
written by MATLAB language, and the reliability as well as the calculation method
of the program are put to compare to the results of other authors which are available
in the reference.

3 Equation, Figure, and Table

3.1 Verifying the Calculation Program

In this part, the article examines some numerical examples to verify the correctness
and the reliability of the MATLAB program. The results are compared to those of
other authors.

Here is the verification of the high-speed train moving on beam with hanging
mass which is used by Koh et al. [13] Fig. 1. The parameters of the train, the beam,
and the foundation are demonstrated in Tables 1 and 2.

In the first example, the displacement of the beam while the train is moving on
the beam with constant velocity, without consideration of the second foundation
parameter affection (velocity V = 20 m/s, roughness amplitude margin at = 0.5 mm
and roughness wavelength kt = 0.5 m) (Fig. 3).

Table 1 Parameters for vehicle

Car Body Bogie Wheel and axle

m1 3500 kg m2 250 kg m3 350 kg

k1 1.41 � 105 N/m k2 1.26 � 106 N/m k3 8 � 109 N/m

c1 8.87 � 103 Ns/m c2 7.1 � 103 Ns/m c3 6.7 � 105 Ns/m
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In the next verification, the displacement of the beam when the train moves on
the beam with constant velocity, without consideration of the second foundation
parameter affection (first velocity V = 0 m/s, then moving with constant accelera-
tion amax = 10 m/s2, after 2 s it reaches the velocity Vmax = 20 m/s, then it moves
with constant deceleration amin = −10 m/s2, and it stops after 2 s. The total ana-
lyzing time is t = 6 s, without consideration of foundation roughness amplitude)
(Fig. 4).

From these surveyed results, we compare them to those of other authors and it
shows that the results from the article are well-matched with others which quote in
the references. It proves the calculation program is reliability. Thence, we have the
groundwork to continue to analyze the affection of foundation parameters, mass
model, the roughness of the beam surface on moving beam response.

Table 2 Parameters for beam and foundation

Beam Foundation

m 60 kg/m kw 1 � 107 N/m2

E 2 � 1011 N/m2 c 4900 Ns/m2

I 3.06 � 10−5 m4

L 50 m

Fig. 3 Beam displacement at the interaction point a Koh et al. [13], b Article

Fig. 4 Beam displacement at the interaction point a Koh et al. [13], b Article
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3.2 Numerical Survey Result

The parameters of over hanging moving mass, beam and foundation of the problem
which is showed in Tables 1 and 2. In case 1 and case 2, the second parameter of
the foundation changes in turn to ks = 0 N; 6 � 105 N; 8 � 106 N; 16 � 106 N
according to Feng and Cook [20] and the load moves on the beam with constant
velocity V = 90 m/s.

• Case 1: This problem keeps the roughness wavelength value kt = 0.5 m.
Changing the roughness amplitude on beam at in turn to 0; 0.8; 1.6; 2.4; 3.2; and
4 mm.

• Case 2: This problem keeps the roughness amplitude on beam value at = 1.6
mm. Changing the roughness wavelength kt in turn to 0.5; 1.0; 1.5; 2.0; 2.5; 3.0;
3.5; and 4.0 m.

Figure 5 indicates the analyzed results of the dynamic response of the beam in
case 1. The result shows that when increasing the second parameter of the foun-
dation, then the value of the beam displacement also decreases; the more value of ks
increases, the more value of the beam displacement decreases. Therefore, the
second parameter of the foundation is significant; it reduces dynamic response of
beam system.

Also in Fig. 5, the analysis shows that when increasing the roughness amplitude
on beam, the value of the beam displacement also increases. The more value of at
increases, the more value of the beam displacement increases. This proves that the
beam displacement depends on the roughness amplitude very large on beam. When
the roughness amplitude on beam increases, then the beam displacement also
increases likely linear with it.

Figure 6 shows the analyzed moving response in case 2. The analysis of Fig. 6
shows that the roughness wavelength on beam kt is small between 0.5 and 2 m; if
increasing the wavelength, the beam displacement also increases. Nevertheless,

Fig. 5 Maximum
displacement of the beam
when keeping the value of the
roughness wavelength
kt = 0.5 m, changing the
second parameter of the
foundation ks and the
roughness amplitude
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when the value of the roughness wavelength increases to a certain point, specifi-
cally in case 2, when the wavelength increases over 2.5 m then the beam dis-
placement decreases and is asymptotic to a certain point. When the roughness
wavelength on beam kt is between 2.0 and 2.5 m, then the beam displacement value
increases and reaches the maximum point. Specifically when ks = 6 � 106 N, then
the maximum displacement is −7.2728 mm (Table 3) with the wavelength
kt = 2.5 m.

• Case 3: This problem keeps the value of the second foundation parameter ks = 6
� 105 (N) and the roughness amplitude on beam at = 0.5 mm. Changing the
roughness wavelength kt in turn to 0.5; 1.0; 1.5; 2.0; 2.5; 3.0; 3.5; 4.0 m and
velocity V changes in turn to 5; 10; 15; 20; 25; 30; 35; 40; 45; 50; 55; 60; 65; 70;
75; 80; 85; 90; 95; 100; 105; 110; 115; 120 (m/s).

By observing Fig. 7, we can tell that to each value of the roughness wavelength,
when the velocity increases to a certain point, then the beam displacement reaches
the maximum value. When the beam displacement reaches the maximum value and
still velocity keeps going up, the beam displacement decreases and is asymptotic to
a certain point. On the other hand, when increasing the roughness wavelength on
beam, the velocity makes the displacement reach the maximum value and the beam
displacement also goes up correspondently.

From the result of Table 4, we can see that to make the beam displacement reach
the maximum value, then the ratio of the roughness wavelength and velocity has to
be a certain value. This ratio of the roughness wavelength and velocity T = kt/V is
also the beam oscillation. The appearance of the maximum displacement at
wavelength from 1.5 to 2.0 m is the consequence of resonance. In a way, the
exciting frequency fc = 1/T will be nearly to the natural frequency fn = x/2p
(Table 5).

Fig. 6 Maximum beam
displacement when keeping
the value of the roughness
amplitude on beam
at = 1.6 mm, changing the
second foundation parameter
and the roughness wavelength
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• Case 4: This math remains the roughness wavelength intact on beam kt = 0.5
m, and the second foundation parameter is 6 � 105 N. Changing the roughness
amplitude on beam at in turn to 0; 0.8; 1.6; 2.4; 3.2; and 4 mm.

• Case 5: This math remains the roughness amplitude on beam at = 1.6 mm, and
the second foundation parameter is 6 � 105 N. Changing of the roughness
wavelength on beam kt in turn to 0.5; 1.0; 1.5; 2.0; 2.5; 3.0; 3.5; and 4.0 m.

In case 4 and case 5, the velocity varies as in Fig. 8. The velocity is divided into
three phases (phase 1: increasing; phase 2: constant velocity; phase 3: decreasing).
The original velocity of the object is V = 0 m/s, then it moves with constant

Fig. 7 Maximum beam displacement when keeping the roughness amplitude on beam
at = 0.5 mm, changing velocity and the roughness wavelength

Table 4 Period and frequency of beam (mm)

Roughness
wavelength on beam
kt (m)

Maximum
displacement
(mm)

Velocity
V (m/s)

Period
T = k/V
(s)

Exciting
frequency fc = 1/T
(Hz)

0.5 −3.50179 20 0.0250 40.00

1.0 −3.47803 40 0.0250 40.00

1.5 −3.50986 55 0.0273 36.67

2.0 −3.63765 75 0.0267 37.50

2.5 −3.58805 95 0.0263 38.00

3.0 −3.51318 110 0.0273 36.67

Table 5 Natural frequency of the system in the first five modes

Natural frequency (Hz) Mode 1 Mode 2 Mode 3 Mode 4 Mode 5

fn = x/2p 0.955 11.6 38.1 65 65
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acceleration amax = 10 m/s2. After 2 s of acceleration, the object has the constant
velocity Vmax = 20 m/s in 2 s and moves with constant deceleration amin = −10 m/
s2 and stops after 2 s.

Figure 9 shows the value of the beam displacement at each phase of the velocity
and each value of the roughness magnitude on beam. The result shows that when
increasing the roughness amplitude on beam, the value of the beam displacement
increases also. Besides, other phases like acceleration, constant velocity, or
deceleration do not make the value of the beam displacement increase, and these
values are closely the same. Thence, the beam displacement depends very much on
the roughness amplitude on beam. When the roughness amplitude increases, the
value of the beam displacement also increases linearly.

Figure 10 shows the value of the beam displacement at each phase of the
velocity and each value of the roughness wavelength on beam. We can tell that the
bigger value of the roughness wavelength, the smaller the beam displacement of
three phases of the velocity. The beam displacement decreases dramatically when
the wavelength kt = 1.0 mm and is asymptotic to a certain point. This proves that
the beam displacement is also affected by the roughness wavelength on beam.

Fig. 8 Vehicle velocity
profile

Fig. 9 Maximum beam
displacement when keeping
the roughness wavelength on
beam kt = 0.5 m, changing
only the roughness amplitude
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4 Conclusions

The paper presents the result on dynamic analysis of beams on two-parameter
viscoelastic Pasternak foundation subjected to the moving load and considering
effects of beam roughness developed with Improved Moving Element Method
(IMEM). The result shows that the second foundation parameter has significant
effect on dynamic response of beam; when increasing the second foundation
parameter, the beam displacement also decreases. The model of two-parameter
foundation has the smaller displacement than the traditional viscoelastic foundation
(ks = 0).

In addition, the beam roughness also has influence significantly on dynamic
response of beam. When the roughness amplitude increases, the beam displacement
also increases with nearly linear ratio. Besides, when the roughness wavelength is
between kt = 0.5–2 m, the more roughness wavelength increases, the more beam
displacement increases. However, when the roughness wavelength reaches to a
certain point, the beam displacement will decrease and be asymptotic to a certain
point.

The resonance makes the beam displacement to reach the maximum value. The
cause of this resonance depends on many elements such as: the velocity of the mass,
the roughness wavelength on beam, and the second foundation parameter.
Therefore, it is necessary to consider the combination of all mentioned above
elements in the engineering design to avoid this dangerous resonance.

When the load moves with the various accelerations, decelerations, or constant
velocity, then the beam displacement depends on the roughness amplitude on beam.
The beam displacement increases when the amplitude increases. Moreover, the
beam displacement also varies dramatically when the roughness wavelength varies.
Thus, in the engineering design, special consideration of dynamic response of
moving load resting on beam with various speed is essential and correct to the real
demand of the structural beam.

Fig. 10 Maximum beam
displacement when keeping
the roughness amplitude
at = 1.6 mm, changing only
the roughness wavelength
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