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Abstract A cell-based smoothed discrete shear gap method (CS-DSG3) using
three-node triangular element was recently proposed to improve the effectiveness of
the discrete shear gap method (DSG3) for static and vibration analyses of isotropic
Mindlin plates and shells. In this study, the CS-DSG3 is further extended for static
and free vibration responses of functionally graded shells. In the present method,
the first-order shear deformation theory is used in the formulation owing to the
simplicity and computational efficiency. Several numerical examples are provided
to validate high reliability of the CS-DSG3 in comparison with other numerical
methods.

Keywords Cell-based smoothed discrete shear gap method (CS-DSG3)
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1 Introduction

Functionally graded materials (FGMs) obtained significant consideration due to
outstanding properties, such as high stiffness and strength-to-weight ratios, light-
weight, heat-resisting material. On the other hand, FGMs shells have been widely
used in aerospace, defense, electronics and nuclear reactors. Therefore, the static
and free vibration analysis of FG shells has been receiving considerable concern by
researchers. Loy et al. [1] and Pradhan et al. [2] studied the vibration of FG
cylindrical shells using the Love’s shell theory. The eigenvalue governing equations
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are solved by using Rayleigh-Ritz method. However, as the Love’s shell theory
neglects the effects of transverse shear, this theory only provides good results for an
analysis of the thin shells case. To overcome the drawbacks, the first-order shear
deformation theory (FSDT), which accounts for the transverse shear effects, was
used to analyze FG shells. Aghdam et al. [3] proposed the extended Kantorovich
method (EKM) to solve bending of moderately thick doubly curved FG shells. In
this study, they used FSDT and five highly coupled partial differential equation to
obtain in term of five displacement components. Su et al. [4] investigated the free
vibration of FG cylindrical, conical shells with general boundary conditions using
Rayleigh-Ritz method. Using the element-free kp-Ritz method, Zhao et al. [5]
investigated the static and vibration of FG shells subjected to mechanical and
thermomechanical load based on Sander’s FSDT. Recently, in order to improve the
quality of the numerical results, various theories have been developed to analyze
FG shell such as the higher-order shear deformation theory (HSDT) [6], layer-wise
theory [7]. However, these theories have a high computationally cost which causes
the limit of their practical applications. Therefore, from the engineering point of
view, the FSDT is still the most attractive and widely used approach due to its
simplicity and computational efficiency.

For the purpose of improving the quality of numerical results, Liu and Nguyen
[8] proposed a smoothed finite element method (S-FEM), which is based on the
stabilized conforming nodal integration (SCNI) of mesh-free method, including the
cell-based smoothed finite element (CS-FEM) [9–13], the node-based smoothed
finite element [14–16], the edge-based smooth finite element method [17, 18] and
the face-based smoothed finite element [19]. Each of these S-FEM has different
properties and has been successfully introduced for the analysis of practical
mechanics problems, especially for various problems plates and shells [20–22].

Among these S-FEM models, the CS-FEM shows some interesting properties in
the solid mechanics problems. Extending the idea of the CS-FEM to plate struc-
tures, Nguyen-Thoi et al. [23] have recently formulated a cell-based smoothed
stabilized discrete shear gap element (CS-DSG3) for static and free vibration
analyses of isotropic shell structures by combining the CS-FEM with the original
DSG3 [24]. In the CS-DSG3, each triangular element will be divided into three
sub-triangles, and in each sub-triangle, the stabilized DSG3 is used to compute the
strains. Then the strain smoothing technique on whole triangular element is used to
smooth the strains on three sub-triangles. The numerical results showed that the
CS-DSG3 is free of shear locking and achieves a high accuracy compared with the
exact solutions. Recently, the CS-DSG3 has been extended to analyze various plate
and shell problems such as flat shells [23], stiffened plates [25], FGM plates [26],
piezoelectricity plates [27] and composite plates [28]. However, as far as authors
are aware, static and free vibration analysis of FG shells using a CS-DSG3 has not
been found yet. Therefore, this paper aims to extend further the CS-DSG3 to static
and free vibration analyses of FG shells based on FSDT. The accuracy and relia-
bility of the proposed method are verified by comparing its numerical solutions with
those of others available numerical results.
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2 Theoretical Formulation

2.1 Functionally Graded (FG) Shells

A FG shell made from a mixture of ceramic and metal is shown in Fig. 1. In this
study, the material properties are assumed to be graded through the thickness by the
power distribution given by

PðzÞ= ðPc −PmÞVc +Pm;Vc =
1
2
+

z
t

� �n

ðn≥ 0Þ ð1Þ

where P is the effective material properties, including the modulus of elasticity E,
density ρ, Poisson’s ratio ν. Pc and Pm are the properties of the ceramic and metal,
respectively; Vc is the volume fraction of the ceramic; t is the thickness of shell and
z is the distance from its middle surface; n is the volume fraction exponent which
controls the variation of volume fraction through the thickness shown in Fig. 1b.

2.2 Weak Form of FG Shell

According to the first-order shear deformation theory, the displacement field at any
point in the shell can be expressed as follows

uðx, y, zÞ= u0ðx, yÞ+ zθxðx, yÞ,
vðx, y, zÞ= v0ðx, yÞ+ zθyðx, yÞ
wðx, y, zÞ=w0ðx, yÞ,

8<
: , ð2Þ

(a) Geometry of FG doubly curved shell. (b) Volume fraction of Ceramic (Vc )
through the thickness.

Fig. 1 a Geometry of FG doubly curved shell. b Volume fraction of Ceramic (Vc) through the
thickness
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where u0, v0 and w0 are the displacements of the mid-plane of shell in x, y and
z directions, θx and θy donate the rotations around the y- and x-axes, respectively, as
shown in Fig. 1a. The generalized strains can be written in terms of the mid-plane
deformations, which give

ε= εxx, εyy, γxy, γxz, γyz
� �T =

εm
0

� �
+ z

κ
0

� �
+

0
γ

� �
, ð3Þ

where the membrane strain εm, bending strain κ and shear strain γ are, respectively,
given by

εm =
∂u0
∂x

,
∂v0
∂y

,
∂u0
∂y

+
∂v0
∂x

� �T

;κ=
∂θx
∂x

,
∂θy
∂y

,
∂θx
∂y

+
∂θy
∂x

� �T

; γ= γxz
γyz

� �
=

∂w
∂x

+ θx,
∂w
∂y

+ θy

� �T

.

ð4Þ

The linear stress–strain relations are expressed as

σxx
σyy
σxy

8<
:

9=
;=

Q11 Q12 0
Q21 Q22 0
0 0 Q66

2
4

3
5 εxx

εxx
γxy

8<
:

9=
;;

σxz
σyz

� �
=

Q55 0
0 Q44

� 	
γxz
γyz

� �
, ð5Þ

where

Q11ðzÞ=Q22ðzÞ= EðzÞ
1− νðzÞ2 ; Q12ðzÞ= νðzÞQ11ðzÞ; Q44ðzÞ=Q55ðzÞ=Q66ðzÞ= EðzÞ

2ð1+ νðzÞÞ .

ð6Þ

The standard Galerkin weak form of the static equilibrium equations for the
Reissner-Mindlin shell can be written follow as

Z
Ω
δ

εm
κ
γ

8<
:

9=
;

T A B 0
B D 0
0 0 Ds

2
4

3
5 ε0

κ
γ

8<
:

9=
; dΩ=

Z
Ω
δuTbdΩ, ð7Þ

where the matrices A,B,D and Ds are the extensional, coupling, bending and the
transverse shear stiffness, respectively, which are given by

Aij,Bij,Dij

 �

=
Z h ̸2

− h ̸2
ð1, z, z2ÞQijdz, ði, j=1, 2, 6Þ; Ds =

Z h ̸2

− h ̸2
Q*

ijdz, ði, j=4, 5Þ,

ð8Þ

And b= 0, 0, p x, y, zð Þ, 0, 0, 0f gT is the distributed load applied on the shell.
For the free vibration problems, the standard Galerkin weak form can be

expressed by
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Z
Ω
δ

εm
κ
γ

8<
:

9=
;

T A B 0
B D 0
0 0 Ds

2
4

3
5 ε0

κ
γ

8<
:

9=
; dΩ=

Z
Ω
δuTmu ̈dΩ, ð9Þ

where m is the mass matrix containing the mass density of the material ρ.

2.3 The General FEM Formulation of FG Shells

In FEM, the problem domain is discretized using a mesh of ne three-node finite
elements such that Ω=⋃ne

e=1Ω
e and Ωi ∩Ω j =∅ for i≠ j.

The finite element approximation uh = u, v,w, βx, βy, βz
� �T of a displacement

model for FG shell elements can be expressed as

uh = ∑
Nn

I =1
NI xð ÞI6dI = ∑

Nn

I =1
NIdI , ð10Þ

where I6 is the unit matrix of sixth rank; Nn is the total number of nodes of problem

domain discretized; dI = uI , vI ,wI , βxI , βyI , βzI
� �T denotes the displacement vector

of the nodal degrees of freedom of uh associated with the Ith node; NI xð Þ is the
shape function at the Ith node. According to Eq. (4), the approximation of the
membrane, bending and shear strains can be expressed in matrix forms as

ε0 = ∑
I
RIdI ;κ= ∑

I
BIdI ; γ= ∑

I
SIdI , ð11Þ

where

RI =

NI, x 0 0 0 0 0

0 NI, y 0 0 0 0

NI, y NI, x 0 0 0 0

2
64

3
75;BI =

0 0 0 NI, x 0 0

0 0 0 0 NI, y 0

0 0 0 NI, y NI, x 0

2
64

3
75;

SI =
0 0 NI, x NI 0 0

0 0 NI, y 0 NI 0

� 	
.

ð12Þ

The discretized system of equations of the FG shell for static analysis can be
given by

Kd=F, ð13Þ
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In which K is the global stiffness matrix which can be computed as

K=
Z
Ω

R
B
S

8<
:

9=
;

T A B 0
B D 0
0 0 Ds

2
4

3
5 R

B
S

8<
:

9=
;dΩ, ð14Þ

and F is the global load vector expressed by:

F=
Z
Ω
pNdΩ+ fb, ð14Þ

In which fb is the remaining term of F subjected to prescribed boundary loads.
For the free vibration analysis problem, we obtained

K−ω2M

 �

d= 0, ð15Þ

where ω is the natural frequency and M is the global mass matrix

M=
Z
Ω
NTmNdΩ. ð16Þ

2.4 Brief on the CS-DSG3 Formulation

In the DSG3 [24], the shear strain is linear interpolated based on the concept “shear
gap” of displacement along the sides of the elements by using the standard element
shape functions. Accordingly, the approximation uhe of a three-node triangular shell
element can be written as

uhe = ∑
3

I =1
NI xð ÞI6deI = ∑

3

I =1
NIdeI , ð17Þ

where dheI = uI , vI ,wI , βxI , βyI , βzI
� �T is the nodal degrees of freedom of uhe asso-

ciated with the Ith node and NI xð Þ is linear shape functions in a natural coordinate
defined by

N1 = 1− ξ− η;N2 = ξ;N3 = η. ð18Þ

Then, the membrane, bending and shear strains in the element are then obtained by

εh0 = R1,R2,R3½ �de =Rde;κh = B1,B2,B3½ �de =Rde; γh = S1, S2,S3½ �de =Sde,

ð19Þ
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where

R1 =

b− c 0 0000

0 d− a 0000

d− a b− c 0000

2
64

3
75;R2 =

c 0 0000

0 − d 0000

− d c 0000

2
64

3
75;

R3 =

− b 0 0000

0 a 0000

a − b 0000

2
64

3
75,

ð20Þ

B1 =

000 b− c 0 0

000 0 d− a 0

000 d− a b− c 0

2
64

3
75; B2 =

000 c 0 0

000 0 − d 0

000 − d c 0

2
64

3
75;

B3 =

000 − b 0 0

000 0 a 0

000 a − b 0

2
64

3
75,

ð21Þ

S1 =
1
2Ae

00 b− c Ae 0 0
00 d− a 0 Ae 0

� 	
; S2 =

1
2Ae

00 c ac ̸2 bc ̸2 0
00 − d − ad ̸2 − bd ̸2 0

� 	
;

S3 =
1
2Ae

00 − b − bd ̸2 − bc ̸2 0
00 a ad ̸2 ac ̸2 0

� 	
,

ð22Þ

In which a= x2 − x1, b= y2 − y1, c= y3 − y1, d= x3 − x1 with
xi = xi, yif g, i=1, 2, 3 are coordinates of three nodes in the local coordinate system,
respectively, as shown in Fig. 2a and Ae denote the area of the triangular element.
The global stiffness matrix in Eq. (14) now can be written by:

(a) Three-node triangular element
and local coordinates in the DSG3.

(b) Coordinate transformation in
the triangular shell elements. 

(c) Three sub-triangles created from
the triangle 1-2-3 in CS-DSG3. 

Fig. 2 a Three-node triangular element and local coordinates in the DSG3. b Coordinate
transformation in the triangular shell elements. c Three sub-triangles created from the triangle
1-2-3 in CS-DSG3
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KDSG3 = ∑
Nn

e=1
KDSG3

e ð23Þ

where KDSG3
e is the element stiffness matrix of the DSG3 element and is given by:

KDSG3
e =TT

Z
Ωe

R
B
S

8<
:

9=
;

T A B 0
B D 0
0 0 Ds

2
4

3
5 R

B
S

8<
:

9=
;dΩ

0
@

1
AT, ð24Þ

with T is the transformation matrix of coordinate from global coordinate xyz to the
local coordinate system x ̂y ̂z ̂ [29], as shown in Fig. 2b.

In the formulation of the CS-DSG3 [23, 30], each triangular element is further
divided into three sub-triangles by connecting the central point of the element to
three field nodes, as shown in Fig. 2c. Then, the displacement vector at central point
is assumed to be the simple average of three displacement vectors of three field
nodes. In each sub-triangles, the stabilized DSG3 has computed the strains and to
avoid the transverse shear locking. Accordingly, the smoothed element membrane
strain εm̃e , the smoothed element bending strain κ ̃ and the smoothed element shear
strain γ ̃ are written follow as

ε ̃me = R̃ede; κ̃e = B̃ede; γ ̃e = S̃ede ð26Þ

where R̃e, B̃e and S̃e are the smoothed membrane gradient matrix, smoothed
bending gradient matrix and smoothed shear gradient matrix, respectively, given by

R̃e =
1
Ae

∑
3

i=1
AΔiR

Δi
e ; B̃e =

1
Ae

∑
3

i=1
AΔiB

Δi
e ; S̃e =

1
Ae

∑
3

i=1
AΔiS

Δi
e , ð25Þ

where AΔi is the area of sub-triangle Δi; RΔi
e ,BΔi

e and SΔi
e are, respectively, the

membrane, bending and shear strain gradient matrices of sub-triangle Δi. Substi-
tuting matrix R̃e, B̃e and S̃e in Eq. (26) into Eq. (14), the global stiffness matrix of
CS-DSG3 element is obtained by

KCS−DSG3
e =TT

Z
Ωe

R̃e

B̃e

S̃e

8<
:

9=
;

T A B 0
B D 0
0 0 Ds

2
4

3
5 R̃e

B̃e

S̃e

8<
:

9=
;dΩ

0
@

1
AT, ð27Þ

From Eqs. (26) and (27), we can see that the values of element stiffness matrix at
the drilling degree of freedom βz equal zero which can cause the singularity in the
global stiffness matrix when all the element meeting at node are coplanar. To solve
this problem, the null values of the stiffness corresponding to the drilling degree of
freedom are replaced by approximate values. This approximate value is taken to be
equal to 10− 3 times the maximum diagonal value in the element stiffness matrix
[23].
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3 Numerical Results

In this section, various numerical examples are presented to show the accuracy and
stability of the CS-DSG3 for static and free vibration responses of FG shells. The
results are compared to the other existing numerical solutions. The central nor-
malized deflection and non-dimensional fundamental frequencies is given by

w̄=
Ech3

qa4
w;Ω=ωh

ffiffiffiffiffiffiffiffiffiffiffi
ρc ̸Ec

p
. ð26Þ

The first example, consider a fully clamped spherical FG shell under uniformly
distributed load. Geometrical parameters for spherical shell are:
a ̸b=1,Rx =Ry =R, length-to-thickness ratio a ̸h=10 and radius-to-length ratios
R ̸a=5, 10. Mechanical properties of metal (SUS-304): Em =207.79GPa,
νm =0.32 and ceramic (Si3N4): Ec =322.27GPa, νc =0.24. The volume fraction
exponent (n) is variable. The results of the central normalized deflection are pre-
sented and compared with Aghdam et al. [3]. It is found that the results presented in
Table 1 are in excellent agreement with above-published results.

This example is further extended for static analysis of FG spherical shell when
the change in volume fraction exponent and the radius-to-length ratios are shown in
Table 2.

The next example, consider a fully clamped cylindrical FG shell subjected to
uniformly distributed load. Geometrical parameters for cylindrical shell are: a/
b = 1, Rx = R, Ry =∞, radius-to-length ratio R ̸a=2 and length-to-thickness ratio
a ̸h=10 Mechanical properties are metal (Aluminum): Em =70GPa, νm =0.3 and
Ceramic (SiC): Ec =427GPa, νc =0.17. The volume fraction exponent n is equal to
2. The results for the central normalized deflection along the x-axis are shown in
Table 3 and compared with Aghdam et al. [3] and ABAQUS. The present results
are in close agreement with EKM and ABAQUS.

Table 1 Comparison of the
central normalized deflection
of FG spherical shell

R/a Method n

0 2 ∞
5 EKM [3] – 0.0204 –

Present (8 × 8) 0.0150 0.0194 0.0229
Present (12 × 12) 0.0156 0.0203 0.0239
Present (24 × 24) 0.0160 0.0208 0.0245

10 EKM [3] 0.0165 – 0.0248
Present (8 × 8) 0.0156 0.0203 0.0242
Present (12 × 12) 0.0164 0.0212 0.0254

Present (24 × 24) 0.0168 0.0217 0.0260
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Table 4 presents the responses of FG cylindrical shell with different volume
fraction exponent and radius-to-length ratios. From Tables 3 and 4, it is found that
the behavior of FG shallow shells become softening when the volume fraction
exponent (n) increase from ceramic to metal. Furthermore, the increase of curvature
ratio leads to increasing displacement of FG shallow shells.

Finally, the vibration of simply supported FG plate and three types of shallow
shell include spherical, cylindrical and hyperbolic paraboloid is investigated. Geo-
metrical parameters for plate are a ̸b=1, length-to-thickness ratio a ̸h=10 and
shallow shell are a ̸b=1, radius-to-length ratio R ̸a=2, length-to-thickness ratio
a ̸h=10. The volume fraction exponents n = 0, 0.5, 1, 4 and 10 are considered.
Mechanical properties are metal (Aluminum): Em =70GPa, νm =0.3,
ρ=2700 kg ̸m3 and Ceramic (Alumina): Ec =380GPa, νc =0.3, ρ=3800 kg ̸m3.
Table 5 shows results with coarse mesh size 8 × 8. It is found that numerical
results are in excellent agreement with results available of Alijani et al. [31], Mat-
sunaga [32] and Chorfi and Houmat [33].

Table 2 Central normalized deflections of FG spherical shell with various radius-to-length ratio
(R/a) and the volume fraction exponent (n)

R/a n

0 0.5 1 2 4 10

2 Present (8 × 8) 0.0110 0.0127 0.0135 0.0143 0.0150 0.0158
Present (12 × 12) 0.0114 0.0132 0.0140 0.0149 0.0156 0.0164
Present (20 × 20) 0.0116 0.0134 0.0143 0.0151 0.0159 0.0167

5 Present (8 × 8) 0.0150 0.0173 0.0185 0.0194 0.0202 0.0212
Present (12 × 12) 0.0156 0.0181 0.0193 0.0203 0.0211 0.0222
Present (20 × 20) 0.0160 0.0185 0.0197 0.0208 0.0216 0.0227

10 Present (8 × 8) 0.0156 0.0181 0.0193 0.0203 0.0211 0.0222
Present (12 × 12) 0.0164 0.0190 0.0202 0.0212 0.0221 0.0232
Present (20 × 20) 0.0168 0.0194 0.0207 0.0217 0.0226 0.0237

20 Present (8 × 8) 0.0158 0.0183 0.0195 0.0205 0.0213 0.0224
Present (12 × 12) 0.0166 0.0192 0.0204 0.0215 0.0223 0.0235
Present (20 × 20) 0.0170 0.0197 0.0209 0.0220 0.0228 0.0240

Table 3 Comparison of the
central normalized deflection
(27) of cylindrical FG shell
along x-axis

x/a Present EKM [3] ABAQUS

0 0 0 0
0.1 0.0628 0.0712 0.0783
0.2 0.1739 0.1795 0.1847
0.3 0.2789 0.2771 0.2799
0.4 0.3498 0.3414 0.3426

0.5 0.3746 0.3636 0.3643
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Table 4 Non-dimensional center deflections 10 of FG cylindrical shell with various
radius-to-length ratio (R/a) and the volume fraction exponent (n)

R/a n

0 0.5 1 2 4 10

2 Present (8 × 8) 0.1470 0.2213 0.2861 0.3746 0.4551 0.5484
Present (12 × 12) 0.1512 0.2269 0.2927 0.3827 0.4652 0.5618
Present (20 × 20) 0.1612 0.2399 0.3076 0.4001 0.4863 0.5907

5 Present (8 × 8) 0.1723 0.2636 0.3436 0.4495 0.5365 0.6324
Present (12 × 12) 0.1780 0.2717 0.3536 0.4619 0.5512 0.6509
Present (20 × 20) 0.1917 0.2911 0.3768 0.4895 0.5836 0.6920

10 Present (8 × 8) 0.1766 0.2709 0.3538 0.4627 0.5505 0.6466
Present (12 × 12) 0.1825 0.2796 0.3645 0.4761 0.5664 0.6662
Present (20 × 20) 0.1969 0.3005 0.3898 0.5065 0.6016 0.7101

20 Present (8 × 8) 0.1777 0.2729 0.3564 0.4661 0.5549 0.6503
Present (12 × 12) 0.1837 0.2817 0.3675 0.4799 0.5705 0.6703
Present (20 × 20) 0.1983 0.3031 0.3935 0.5113 0.6068 0.7152

Table 5 Non-dimensional fundamental frequencies of FG plate and three types FG shallow shells

n Present Alijani et al.
[31]

Chorfi and
Houmat [33]

Matsunaga
[32]

Plate 0 0.0591 0.0597 0.0577 0.0588
0.5 0.0506 0.0506 0.0490 0.0492
1 0.0462 0.0456 0.0442 0.043
4 0.0405 0.0396 0.0383 0.0381
10 0.0381 0.0380 0.0366 0.0364

Spherical shell 0 0.0779 0.0779 0.0762 0.0751
0.5 0.0670 0.0676 0.0664 0.0657
1 0.0611 0.0617 0.0607 0.0601
4 0.0514 0.0519 0.0509 0.0503
10 0.0475 0.0482 0.0471 0.0464

Cylindrical shell 0 0.0642 0.0648 0.0629 0.0622
0.5 0.0548 0.0553 0.0540 0.0535
1 0.0500 0.0501 0.0490 0.0485
4 0.0431 0.0430 0.0419 0.0413
10 0.0403 0.0408 0.0395 0.0390

Hyperbolic
paraboloid shell

0 0.0581 0.0597 0.0580 0.0563
0.5 0.0498 0.0506 0.0493 0.0479
1 0.0455 0.0456 0.0445 0.0432
4 0.0399 0.0396 0.0385 0.0372

10 0.0375 0.0380 0.0368 0.0355
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4 Conclusions

In the present study, a combination of the cell based on smoothed discrete shear gap
method with three-node triangular elements is proposed to investigate the static
responses and free vibration of FG shells include spherical, cylindrical and
hyperboloid paraboloid shells. The first-order shear deformation theory is used in
the formulation due to the simplicity and computational efficiency. The effects of
several parameters such as the radius-to-length ratios and the volume fraction
exponent are examined. Present results are in good agreement in most of the cases
which are compared with reference solutions.
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