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Abstract Analytical behavior of rectangular plates with semi-rigid boundary
conditions under in-plane and lateral dynamic loads of constant thickness resting on
the Winkler foundation is analyzed using a modified Bolotin method. The pre-
sentation of the semi-rigid isotropic plate’s frequency in a form analogous to the
corresponding frequency of a simply supported plate is postulated, considering the
wave numbers as unknown quantities. These two equations are determined from a
system of two transcendental equations, obtained from the solution of two auxiliary
Levy-type problems. The method was shown to be remarkably accurate when used
to determine the natural frequencies of plates with non-simply supported boundary
conditions. A natural extension of this research is related to the buckling and lateral
vibration of isotropic plates subjected to in-plane forces which are time invariant
and constant over the area of the plate, with their principal directions parallel to the
plate edges and the dynamic lateral force. It is the purpose of this paper to illustrate
this extension and to demonstrate its applicability by the presentation of numerical
results for a particular plate.
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1 Introduction

The instability characteristics of isotropic rectangular concrete plate subjected to
in-plane and lateral loads are utilized in many areas including engineering design
and earthquake-resistant structures. Significant studies have been made by Vis-
wanathan et al. in 2006 on buckling analysis of rectangular plates with variable
thickness resting on elastic foundations [1]. The plate was homogeneous with the
plate thickness varying using spline function approximation techniques. The plate is
fully attached to the foundation. A pair of the rectangular plate’s opposite edges is
subjected to compressive uniform load. Two cases of boundary conditions are
considered for these edges: clamped—clamped and clamped—simply supported. The
deflection equation yields an eigenvalue problem solving in which the critical loads
and the mode shapes of buckling are obtained.

In the present work, the buckling of thin isotropic rectangular plates of constant
thickness resting on elastic foundation is studied. The boundary condition that is
considered for these edges is semi-rigid. The eigenvalue and eigenvector problems
are solved by using the modified Bolotin method. The mode shapes of buckling are
obtained from the transcendental equation.

Parametric studies of the variation of the critical load with respect to the aspect
ratio, foundation stiffness, and variation of thickness of the plate are made. Selected
mode shapes of buckling are also presented.

2 Formulation of the Problem

Consider a thin isotropic rectangular plate bounded by x =0, x = a, y = 0, and
y = b as shown in Fig. 1. The isotropic plate is subjected to the in-plane forces N,
and N, acting on and normal to the edge x=0; x =a; y=0; and y = b. Its
transverse deflection w(x, y, f) by using the classical plate theory is governed by the
fourth-order partial differential equation as follows:

4 2
D<64w(x,y, t) +264W(x,y, t) N I'w(x,y, t)) N o°w(x,y,1)

N *w(x,y,1)
ot a2ay? oy

T ox? Y9y

w(x, y,1)

0
+ka(X,yat)+Ph atz =p(x7y’t)

(1)

where w(x, y, 1) is the transverse displacement of the plate; D is the flexural rigidity
of the plate defined by
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Fig. 1 Isotropic rectangular plate of thin plate on elastic foundation subjected to the in-plane
forces

ER?

E is Young’s modulus; 4 is the plate thickness; k¢ is the foundation stiffness; v is
Poisson’s ratio; N, and N,, are normal forces per unit length of plate in the x- and y-
directions, respectively, positive if in tension; and p(x, y, 7) is the lateral dynamic
load. The forces per unit length are related to the in-plane stresses (oy, 6y, Ty,) by
N, = oh; N, = 6,h and N,y = 7,,h. Let us assume N, = aN, and N,, = 0 [2].

The isotropic plate is fully attached to the elastic foundation of elastic coefficient
ky. Let the edges x = 0; x = a; y = 0; and y = b be semi-rigid supported, then the
boundary conditions can be expressed as follows.

Atx=0and x = a:

62 s st 02 s ,[ &W . ,t
w(x,y,t)=0andD< wix,y )+y wx,y )>=k1 (x, y.1)

0x? 0y? ox (3)

Aty=0and y = b:

Pw(x,y, 1) azw(x, v, 1) ow(x,y,1)
w(x,y,7)=0and D ( P tr— 3 =k, % (4)
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Adopting the non-dimensional coordinates & = x/a; n = y/b, Eq. (1) becomes

I +25° I +s4@ + a'phdw + @Ny (Fw +as262—w + %w—o
o0&t 0E? on? o* D o D \ o0& on? D
(5)
where s is the aspect ratio defined by a/b; a is the ratio between N,/N,,.
A solution for the displacement w(&,#,f) can be expressed by:
w(&,1,1) = W (&, 1) coS(@punt) = Xy (€) Y2 (17) cOS(0nt) (6)

where ,,, is the natural frequency of the plate and W,,,(& #) is the function of
position coordinates determined for the mode numbers m and n in the &-direction
and #-direction, respectively, which can be determined from the first and second
auxiliary Levy-type problem [3].

3 Determination of the Eigenfrequencies
In order to solve the non-dimensional Eq. (5) of the problem, the free vibration
solution of the problem is set as shown in Eq. (6) above.

3.1 First Auxiliary Levy-Type Problem

Based on the modified Bolotin method, the solution of Eq. (5) for the first auxiliary
problem can be expressed in non-dimensional form as:

Won(En) = 33 Xo(8) sinran) (7)

m=1n=1

Satisfying the semi-rigid boundary conditions along £ = 0 and & = 1:

62W(§9 ’7) S2 02W(§’ '7)) - T ()W(f, ’7) (8)

+ k
o " T op ST

X (§) =0; (
where k; = % is the non-dimensional rotational stiffness coefficient that varies from
Oto 1.

Substituting Eq. (7) into Eq. (5) and satisfying the boundary conditions
according to Eq. (8), the non-dimensional eigenvector in &-direction can be
expressed as
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X (€) = % i cos(pré) + Fy sin(pné) — cosh(frné) + F, sinh(BrE)  (9)

m=1n=1
where
ﬁ=\/—%+p2+2s2q2 (10)
Fie p cos(pr) B cosh(zf)
' = T B sin(pr) —p sinh(zf) | J sin(px) —p sinh(zf) o
B p*n sinh(zf) B p*x sinh(zf) (1)
ski(p sin(pz) —p sinh(zf)) sk (B sin(pr) —p sinh(zp))
. p cos(pr) B p cosh(zp)
T p sin(pz) —p sinh(zf)  p sin(pz) — p sinh(zp) (12)
N p*x sin(pr) N p*r sin(pr)
ski(p sin(pz) —p sinh(zf)) ~ sk (f sin(pz) — p sinh(zp))
2
No=20E (13)

3.2 Second Auxiliary Levy-Type Problem

The solution of Eq. (5) for the second auxiliary problem in non-dimensional form
can be expressed as:

W (E.17) = z z Sin(2pe&) Y (1) (14)

Satisfying the semi-rigid boundary conditions along # = 0 and # = 1:

FPW(E, PW(E, ky oW (¢,
Yy (1) =0 (f n . v (f n\ _ _ koW(&n) (15)
on S o s on
where k, = % is the non-dimensional rotational stiffness coefficient that its value

varies from O to 1.

Substituting Eq. (3) into Eq. (5) and satisfying the boundary conditions
according to Eq. (15), the non-dimensional eigenvector in #-direction can be
expressed as:
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m n

Yon(n)= Y Y cos(gzn) + Fs sin(grn) — cosh(0zn) + F4 sinh(6zn) (16)

m=1n=1

where

s2Noa

1
0= —\/2p2+s2q2—
s

k20 cos(nq) — ka cosh(n0) + sz (q* + 6) sinh(z6)

F3= k(6 sin(zq) — g sinh(z0))

_ kag cos(nq) —k; cosh(z0) + sz (q* + 6) sinh(zq)
B k(6 sin(zq) — g sinh(z6))

Fy

(19)

The unknown quantities p and g which are the number of modes in the x- and y-
directions for non-simply supported conditions are calculated from the transcen-
dental equations:

- 2s2%fpﬂ + ZSZEfpﬂ cos(pr) cosh(zp)

+ (SZE% P*-5) +2* (p* +ﬂ2)2) sin(pr) sinh(zf) =0 (20)

— 2kag0 + 2kag0 cos(qr) cosh(n)

_ (21)
+ (k; (" —6%) +5°7° (¢* + 02)2) sin(gz) sinh(z0) =0

Once the value of p and ¢ are determined from Egs. (20)-(21), the
non-dimensional critical in-plane stresses for statics condition and the eigenvalues
of the system can be expressed as

_p4ﬂ4+2s2p2ﬂ4q2+s4(E+ﬂ4q4)
0= 272 (p? + s q2a)

(22)

Oy = \/p47r4 +s2p?7*(— No + 27%g?) + s* (E + gt — Noﬂzqza) (23)

—  ked* . . . . . .
where k; = f—‘;) is non-dimensional Winkler foundation stiffness.

The eigenmodes of the system are determined as the product of Eqs. (9)—(16).
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3.3 Determination of the Time Function

The time function for the system can be solved by using the Duhamel integration. It
can be expressed as:

a b
men (x)dxf Ymn(y)dy
Ton0) + 2601 1) + 03, T(0) = &7

P(l)5[x— (X() - AXH(Z - t()))]ébf —y()]

(24)

mn

where Q,,, is the normalization factor of the eigenmodes that can be expressed as:

a

b
O = / Ko (0))2x | (Vo)) (25)

0 0

The lateral load, p(x, y, ), that moves suddenly from the initial position at x = xg
to the new position at x = x; at time ¢ = £, can be expressed by using the Heaviside
unit step function, H[.] [4].

Finally, the generalized dynamic deflection of the system can be solved by
multiplying the spatial functions with the temporal function which is the solution of
Eq. (24).

4 Numerical Applications, Results, and Discussion

Using the procedure described above, the concrete plate on the Winkler foundation
subjected to the in-plane stresses in the x- and y-directions and the lateral load P
(?) is analyzed. The plate is suddenly moved from the initial position at x = x, to the
new position at x = x; at time ¢ = f5. The structural properties of the plate are
a=3m; s = a/b is varied from 1 to 2; the thickness, / is 0.12 m. The physical
characteristics of the plate are p = 2400 kg/m3; E = 30.10° N/m%; v = 0.3; E =1,
ki = 0.5; and k, = 0.5. The non-dimensional in-plane stresses in the x-direction,
Ny = 1; a = 1; the lateral load amplitude Py = 10° Nm/m?. The initial position of
the load at xo = 0.3a, yo = b/2, and t, = 2 s.

4.1 Variation of Aspect Ratio Versus the Critical in-Plane
Stress

Figure 2 shows the variation of aspect ratio as the function of the non-dimensional
in-plane stresses for the rectangular plate with semi-rigid conditions at all edges.
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Fig. 2 Non-dimensional critical buckling loads Ny = N,b*/D as a function of s = a/b for plate
with semi-rigid conditions, k; =k, = 0.5
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Fig. 3 Non-dimensional value of Ny as a function of non-dimensional value of the foundation
stiffness k¢ for 2 values of s

A rectangular plate as shown in Fig. 1 is compressed by in-plane stresses N, along
all of the four edges (@ = 1). The smallest critical load is obtained for m = 1 and
n = 1. Results from Eq. (22) are shown in Fig. 2, which shows that Ny = 19.7176.

The buckling loads displayed in Fig. 2 are critical values. That is, they are the
lowest of the doubly infinite set of bucking eigenvalues that arise for each a/b. For
016 <s <1,then m=1; for 1 <s < 2, then m =2; and for s > 2, then

m = 3. The critical loads listed in Fig. 2 are only for the range of plate aspect ratios
0.16 < s < 3.
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Fig. 4 Graph of non-dimensional foundation stiffness versus maximum dynamic deflection for
the value of s = 1; ky =k» = 0.5; Ny = 10

Increasing the aspect ratio s from s =1 to s = 1.5 results in lowering the
non-dimensional value of Ny as shown in Fig. 3. The foundation stiffness also plays
a very important factor in increasing the value of the critical in-plane stresses.

4.2 Variation of Foundation Stiffness Versus the Maximum
Dynamic Deflection

Figure 4 shows the non-dimensional foundation stiffness coefficient versus the
maximum dynamic deflection computed using the value of Ny = 10 and @ = 10
and 20. It can be seen from Fig. 3 that by increasing the foundation stiffness
coefficient, the maximum dynamic deflection decreases for the value of load’s
frequency @ = 10; 20. It is also shown from Fig. 3 that the closer the value of
load’s frequency to the value of the first natural frequency of the system, the higher
the value of the maximum dynamic deflection.

4.3 Effect of in-Plane Stress and Lateral Load on Dynamic
Deflection

Figure 5 shows the response spectra of the plate subjected to in-plane stresses in Xx-
and y-directions and lateral load p(x, y, f). The lateral load is positioned initially at
X = xo and at time ¢ = t; before suddenly moved into a new position at x = x,. It can
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Fig. 5 Response spectra of the plate subjected to in-plane stresses and lateral load

be seen that the maximum dynamic deflection is influenced by the value of N,. When
the value of N, approaches N, the dynamic deflection will reach maximum value.
Figures 5 and 6 show the various dynamic response of the plate subjected to
in-plane stresses and lateral dynamic load that are suddenly moved to its new
position for two different values of Ny. It can be seen that the dynamic response of
the system is higher when the Ny is close to the value of N,,.. By increasing the
value of in-plane stresses by 10 times for @ = 20, the dynamic response of the
system increased by 90.5% for the dynamic deflection. The dynamic response of
the system also increased drastically when the frequency of the lateral load
approaches the fundamental frequency of the system as shown in Fig. 4.

5 Conclusion

The foregoing work has shown how the modified Bolotin method is used to analyze
the buckling and the forced vibrations of rectangular plate sitting on the elastic
foundation having two opposite edges in semi-rigid conditions. The procedure may
be applied to all possible combination of fixed, simply supported, semi-rigid, or
free-edge conditions applied continuously along the edges of the plate.

Analytical solutions of the mode number in the x and in the y direction is solved
by using two transcendental equations. The whole formulation in this work is based
on the assumption that the boundary supports of the plate are semi-rigid with
rotational restraint. This is a very realistic assumption, particularly for concrete
plates, because one may find that rotational deformations exist along the joints.
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Fig. 6 Various dynamic response of plate subjected to in-plane stresses and lateral load for the

Valueofs=1;E=k_2=0.5;a=1and5=1

Critical in-plane stresses for plates on the Winkler foundation increase linearly
with the value of foundation parameter k. The load combination of the in-plane
compressive stresses in the x- and y-directions as well as the transversal load
drastically effects the maximum dynamic deflection of the system, especially when
the value of the in-plane stresses converges to the critical value and when the
frequency value of the load converges to the fundamental frequency of the system.

The stability and the dynamic analysis presented here would be quite useful for
plate structural elements such as concrete plate pavements.
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Fig. 6 (continued)
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