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Abstract We investigate the bending buckling behavior of boron nitride
(BN) nanotubes through molecular dynamics finite element method with Tersoff
potential. Effects of the tube length on the critical bending buckling angle and
moment are examined for (5, 5) BN armchair and (9, 0) BN zigzag tubes, which
exhibit approximately identical diameters. The buckling and fracture mechanisms
of the tubes under bending are considered and discussed with respect to various
tube length–diameter ratios L/D = 10–40. Simulation results will help to design
and use BN nanotube-based nanocomposites and nanodevices.

Keywords Atomistic simulation bending ⋅ Boron nitride nanotube
Buckling

1 Introduction

A boron nitride nanotube (BN-NT) can be geometrically formed by rolling up a
hexagonal boron nitride (BN) layer or a carbon nanotube (CNT) [1] in which
alternating B and N atoms entirely substitute for C atoms as shown in Fig. 1.

Various techniques have been used to synthesize BN-NTs, including
arc-discharge, chemical vapor deposition, laser ablation, ball-milling methods (see,
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e.g., the review by [2]). BN-NTs exhibit good mechanical properties with high
elastic modulus of ∼0.5–1 TPa and tensile strength of ∼61 GPa [3]. They possess
distinguishable chemical and thermal stability with high oxidation resistance up to
900 °C in air [4], wide bandgaps independent of tube structures [5, 6], excellent
thermal conductivity [7]. BN-NTs are also an effective violet and ultra-violet light
emission material [8, 9]. Potential applications of BN-NTs include nanofillers in
polymeric [10] and metallic [11] composites, optoelectronic fields [8], radiation
shielding in space vehicles [12]. Potential applications of BN-NTs need a com-
prehension of the mechanical properties and performance of BN-NTs under various
loading conditions. BN-NTs under compression [13–15], tension [16, 17], torsion
[16, 18–20], and bending with two fixed or simple supports [21, 22] have been
investigated. So far, theoretical studies of the buckling behavior under bending of
BN-NTs seem unexplored. It should be noted that the buckling behavior of CNTs
under bending has been investigated by continuum methods, atomistic simulations,
and multi-scale approach; see, for example, [23, 24] and references therein.

The present work investigates through molecular dynamics finite element
method (MDFEM) the buckling behavior of BN-NTs under bending. The critical
bending buckling angle and moment are studied with respect to the length–diameter
ratios of BN-NTs.

Fig. 1 Schematic illustration of: a (9, 0) BN zigzag tube; b (5, 5) BN armchair tube

172 T. Nguyen-Van et al.



2 Framework for Analysis

Tersoff potential is used to model the B-N interatomic interactions [25]. The
potential energy E of the atomic structure is a function of atomic coordinates as
below:
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Here, the lower indices i, j, and k label the atoms of the system, where interaction
between atoms i and j is modified by a third atom k. rij is the distance between
atoms i and j; fA and fR are the attractive and repulsive pairwise terms; fC is a cutoff
function to ensure the nearest-neighbor interactions; Rij and Sij denote the small
cutoff distance and the large one, respectively; bij is a bond-order parameter,
depending on the local coordination of atoms around atom i. Further detail of the
Tersoff potential is given in [25]. Force field parameters are taken from the work by
Sevik et al. [26] for B-N interactions.

While the density functional theory (DFT) calculations and molecular dynamics
(MD) simulations are time-consuming, molecular dynamic finite element methods
(MDFEMs), sometimes known as atomic-scale finite element methods or atomistic
finite element methods, have been developed to analyze nanostructured materials in a
computationally efficient way; see, for example, [27, 28]. To achieve the atomic
positions of the BN-NT under specific boundary conditions, molecular dynamic finite
element method (MDFEM) is here adopted. In MDFEM, atoms and atomic dis-
placements are considered as nodes and translational degrees of freedom (nodal dis-
placements), respectively. Both first and second derivatives of system energy are used
in the energy minimization computation, hence it is faster than the standard conjugate
gradient method which uses only the first-order derivative of system energy as
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discussed in [27]. The stiffness matrices of these elements are established based upon
interatomic potentials. Similar to conventional finite element method, global stiffness
matrix is assembled from element stiffness matrices. Hence, relations between atomic
displacement and force can be derived by solving a system of equations. Further
detailed numerical procedure of MDFEM and our specific development for Tersoff
potentials are available in our previous work [29] and references therein. Initial
positions of atoms are generated by using the B-N bond length of 1.444 Å taken from
previous MD simulations [30] at optimized structure at 0 K with the same force field.
(5, 5) BN armchair and (9, 0) BN zigzag tubes are considered. Difference in diameters
of these two tubes is less than 4%. The diameter is about 0.717 and 0.689 nm for (9, 0)
BN armchair and (5, 0) BN zigzag tubes, respectively.

3 Results and Discussion

Figure 2 shows the variations of the bending moment versus the bending angle of
(9, 0) and (5, 0) BN tubes with the length–diameter ratio L/D = 30. The bending
angle θ is here defined as the angle between two planes containing the two ends of
the tube under bending. It can be seen from Fig. 2 that the bending moment
increases monotonously with an increase of the bending angle up to a critical value,
and then the bending moment drops suddenly, demonstrating a brittle fracture. The
critical bending angle of the (9, 0) BN zigzag tube is approximately 66.6o, 136.6o,
210.6o, and 278.0o for L/D = 10, 20, 30, and 39, respectively. The critical bending
angle of the (5, 5) BN armchair tube is about approximately 121.7o, 142.9o, 176.7o,
and 181.0o for L/D = 10, 20, 30, and 40, respectively.

Figure 3 shows the effects of tube’s length on the variations of the critical
bending moments, critical bending angle, and critical bending curvature of these

Fig. 2 Variations of the
bending moment versus the
bending angle of the (9, 0)
and (5, 0) BN tubes with
L = 30D
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Fig. 3 Variations versus the
tube length of: a the critical
bending angle; b critical
bending curvature; and
c critical bending moment
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two tubes. The critical bending moment and the critical bending curvature of (9, 0)
BN tubes increase with an increase of the tube’s length in the range L/D = 10–40,
whereas the critical bending moment and the critical bending curvature decrease
when increasing the length of the (5, 5) BN tube. The critical bending angles of
these two tubes increase with increasing the tube’s length.

The critical bending moment, the critical bending curvature, and critical bending
angle of (5, 5) tubes are higher than those of (9, 0) tubes when L/D = 10, hence
short (5, 5) tubes resist better than short (9, 0) tubes under bending. Whereas long
(9, 0) tubes undergo bending better than long (5, 5) tubes; the critical bending
moment, the critical bending curvature, and critical bending angle of (9, 0) tubes are
higher than those of (5, 5) tubes at L/D = 30 and 40 as indicated in Fig. 3. Figure 4
shows the post-buckling shapes of (9, 0) BN zigzag tubes with L/D = 10, 20, and
30. Snapshots under progressive bending are depicted in Figs. 5 and 6 for (9, 0) BN
zigzag tube with L/D = 39 and (5, 5) BN armchair tube with L/D = 20,
respectively.

Fig. 4 Post-buckling shapes of (9, 0) BN zigzag tubes: a L/D = 10, θ = 91.67°; b L/D = 20,
θ = 171.89°; and c L/D = 30, θ = 213.37°
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Fig. 5 Snapshots of a (9, 0) BN zigzag tube with L/D = 39 under a bending angle of: a 279.37o;
and b 279.49o

Fig. 6 Snapshots of a (5, 5) BN armchair tube with L/D = 20 under a bending angle of:
a 143.35o; b 143.58o; c 143.70o; and d 143.81°
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4 Conclusions

We present the simulation results of the buckling behavior of BN nanotubes under
bending with the use of MDFEM. We have found that the tube length affects
significantly the bending behavior of the tube. All tubes exhibit brittle fracture
under bending. The buckling takes place in the middle of the compressive side of
the tube. More investigation should be done to analyze in details the buckling
behavior of the BN tubes.
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