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Abstract In this paper, an efficient numerical algorithm is developed for the dam-

age detection of planar and space truss structures based on the modified differential

evolution algorithm (mDE) and vibration data. For this purpose, the mathematical

programming of the finite element based on the force method and the singular value

decomposition technique is presented. The general equilibrium equations in which

unknown member forces and reaction forces are taken into account are formulated.

The compatibility equations in terms of forces are explicitly presented by using the

singular value decomposition method. The modified differential evolution algorithm

(mDE) is used as an optimization algorithm of damage detection. The objective func-

tion for damage detection is based on vibration data such as natural frequencies and

mode shapes. The feasibility and efficiency of the present method are compared with

a genetic algorithm (GA) and a particle swarm optimization (PSO) for example. The

numerical results show that the proposed strategy based on force method using mDE

and vibration data can provide a reliable tool on determining the sites and extents of

multiple damages of truss structures.

Keywords Damage detection ⋅ Force method ⋅ Free vibration analysis

Modified differential evolution algorithm (mDE)

1 Introduction

The identification of structural damage is an important part of the monitoring and

repairing of structural systems during their functional age. In order to improve the

safety and life expectancy of structures, it is necessary to detect the damage extents

and sites. The damage assessment technique has drawn wide attention from various
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engineering fields such as aerospace, mechanical, and civil engineering applications.

The proposed identification of structural damage prevents the deterioration in a struc-

tural system from the impact loads and the responses of the structure. For damage

detection and structural health monitoring, techniques based on vibration data have

been extensively used. Thus, the damage evaluation of structures has derived wide

consideration from engineering fields.

The various computational techniques have been used to solve the damage detec-

tion problem such as genetic algorithm (GA), differential evolution algorithm (DE),

and particle swarm optimization (PSO). Among non-gradient-based methods, GA

has been used widely from damage detection field. The GA is a well-known global

optimizer based on the Darwin’s theory of evolution and survival of the fittest and

the natural process through reproduction [1]. It makes the mechanisms of biologi-

cal evolution to perform optimization without information regarding the objective

function. Generally, the GA has been shown to be solved various optimization prob-

lems through some basic concepts and operators. However, some research work

has appeared that it is complex for the simple GA to solve the damage quantifi-

cation problems properly. To achieve a better detection result, the various optimiza-

tion algorithms were improved [2–4]. Krishnakumar [5] proposed the micro-genetic

algorithm based on serial genetic algorithms [6], and Koh and Dyke [2] proposed

the use of correlation-based damage detection methods for long-span cable-stayed

bridge. Nobahari and Seyedpoor [7] proposed a modified genetic algorithm (MGA)

to identify multiple damage and two new tools to recognize the actual damage cor-

rectly and rapidly. Also, he used the DE algorithm to solve the optimization problem

for detecting actual sites and elements which was demonstrated by truss structures.

The GA has discrete design variables, and new attempts based on continuous domain

have been proposed such as PSO, DE, and ant colony optimization (ACO).

Turning to the problems of global optimization method, Storn and Price [8] pro-

posed the differential evolution (DE) algorithm as a simple and powerful population-

based stochastic method, which has an operation process similar to GA. In order to

overcome the shortcomings of the non-gradient-based methods regarding computa-

tional time as well as of the gradient-based methods concerning solution accuracy,

several variations of DE algorithm have been suggested. Pampara et al. [9] suggested

a binary DE using trigonometric functions, in which experimental results indicate the

effectiveness of the technique and the viability for the DE to operate in binary space.

Zou et al. [10] proposed to solve constrained optimization problems using a modified

differential evolution algorithm. Its own crossover rate and scale factor were adjusted

using uniform distribution, and mutation phase was modified to enhance the conver-

gence for unconstrained optimization problems. Concerning the damage detection,

Vo-Duy et al. [11] used a strain energy-based method and an improved differential

evolution algorithm to locate and quantify damage on the laminated composite plate.

Also, Dinh-Cong et al. [12] proposed a two-stage damage identification method to

identify the location and extent of multiple damages at individual layers in laminated

composite beams using DE algorithm. Jena et al. [13] presented a damage detection

technique combining analytical and experimental investigations on a cantilever alu-

minum alloy beam with a transverse surface crack. The damage location and assess-
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ment is the third stage and is formulated as a constrained optimization problem and

solved using the proposed differential evolution algorithm.

Based on the mentioned researches, the mDE has not yet been used as optimizer

for 2D and 3D truss structures based on force method and vibration data until now. In

this study, a mDE combined with the free vibration analysis is proposed as a highly

efficient algorithm for performing the damage identification of truss structures. The

introduced algorithm resolves efficiently the limitation of GA by randomly contin-

uous design variables instead of discrete domain as in the GA. In order to solve the

problem, the number of design variables and member types of truss structures are

first defined. Design variables are randomly created in the range of lower and upper

bounds based on the number of design variables. Consequently, based on the force

method with the present mDE in the damage detection process, the results satisfying

the required deficiencies of the force method and equilibrium matrices are selected.

2 Theoretical Modeling

In order to build a model for truss structure, the general equations and relations are

briefly presented. Several approaches that are similar to those can be found in the

literature [14, 15]. For a d-dimensional (d = 2 or 3) truss structure withmmembers, n
free nodes, and nc constrained nodes, its topology can be expressed by a connectivity

matrix 𝐂s [16]. Let rc be the unknown vector of reaction forces employed to remove

all boundary constraints. Therefore, the constrained nodes can now be treated as

free nodes. In the context, the general equilibrium equations for all nodes (including

constrained nodes) of the discrete truss can be written as follows:

̄𝐀̄𝐟 = ̄𝐩 (1)

where ̄𝐀 is called the general equilibrium matrix of all nodes, which transforms the

vector of member and reaction forces ̄𝐟 to the vector of external loads ̄𝐩, ̄𝐟 is the

unknown member and reaction force vector, and ̄𝐩 is the external load vector of all

nodes.

In this study, the SVD method is used as an effective and numerically stable algo-

rithm in order to extract r compatibility conditions. The SVD is performed on the

general equilibrium matrix ̄𝐀 instead of the kinematic matrix 𝐁 (i.e., the transpose of

the general equilibrium matrix ̄𝐀). The compatibility equations expressed in terms

of forces are obtained as follows:

𝐃̄𝐟 = 𝐩eo (2)

where 𝐃 is the compatibility matrix in terms of forces of all members and 𝐩eo is the

virtual force vector in the indeterminate truss caused by member initial elongations

𝐞o.
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For the free vibration analysis, the extended equation of motion based on the force

method can be written as

̄𝐌 ̈

̄𝐝 + ̃𝐀̄𝐟 = 0 (3)

where ̄𝐌 is the extended mass matrix,
̈

̄𝐝 is the extended acceleration vector, and ̃𝐀 is

the square full-rank matrix coupling the general equilibrium matrix and the compat-

ibility matrix. For this analysis case, it is assumed that element forces are harmonics

in time, ̄𝐟 = ̄𝐅sin(𝜔t), where 𝜔 and ̄𝐅 are the circular frequency and corresponding

force mode shape, respectively. Therefore, equation [14] can be written as the fol-

lowing eigenvalue problem

( ̃𝐀 + 𝜔

2𝐁) ̄𝐅 = 0 (4)

where

𝐁 = ̄𝐌 ̃𝐀−T𝐆 (5)

and ̄𝐌 is the extended mass matrix.

3 Structural Damage Detection

To determine the location and extent of the damages more accurately, the

natural frequency and the mode shape changes are demanded

messinastructural1998,wangstructural2001. In this study, the objective function

based on the sum of two formulations is given as follows:

f (X) = f1(X) + f2(X) (6)

where

f1(X) =
n∑

i=1

||𝜔di − 𝜔i(X)||
𝜔di

(7)

and

f2(X) =
n∑

i=1

m∑

j=1

‖‖‖‖‖

Φdj − Φj(X)
Φdj

‖‖‖‖‖
(8)

where 𝜔i is the corresponding hypothesis natural frequency which is can be expected

from analytic model and 𝜔di is the ith natural frequency of the damaged truss. Φdj
and Φj(X) are the jth component of the ith damaged force eigenvector and the jth
component of the ith hypothesis force eigenvector, respectively, in f2(X). Then, the

optimal design problem for damage identification of the truss structure is formulated
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as follows:

Minimize f (X) + 𝛾g(X) (9)

in which

g(X) = (nd − nh)2 for nd > nh (10)

where xi is the damaged elastic modulus of the ith member, 𝛾 is the penalty parame-

ter, nd and nh are the number of the damaged elements and the number of the healthy

elements, respectively. In real life, the healthy members are more than the damaged

members in structures. Thus, both algorithms in this study can be accelerated to find

better solution using the penalty function g(X). In many researches related to the

damage detection problem, the damage has been simulated by decreasing one of the

stiffness parameters of the element. In this study, the damage of truss structures is

simulated by the reduction in the elasticity modulus in each element as

xi =
E − Ei

E
, i = 1,… , n (11)

where E is the initial elastic modulus and Ei is the final elastic modulus of nth ele-

ment.

4 Optimization Algorithm

4.1 Differential Evolution Algorithm

Differential evolution (DE) has been first proposed by Storn and Price [8] as a vector-

based metaheuristic algorithm. The DE has similarity to genetic algorithms, its use

of selection, crossover, and mutation. The DE is a stochastic search algorithm with

self-organizing tendency and does not use the information of derivatives [17]. Thus,

it is a population-based, derivative-free method. In addition, DE uses real numbers

as solution strings, so no encoding and decoding is needed. The main procedure of

DE includes mutation, crossover, selection, and initialization of design variables.

4.1.1 Initialization

In the DE algorithm, d-dimensional real number of design variable vectors is ran-

domly generated as much as population size for global optimum point. The ith vector

of the population at any iteration can be expressed by conventional notation as

Xi = {xi,1, xi,2,⋯ , xi,d} (12)
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where 𝑋

𝑖

is a vector at ith population and d is a number of design variables in 𝑋

𝑖

vector. It is noted that this vector, called target vector, can be considered as chromo-

somes. A d-dimensional vector represents a candidate result to the problem and is

randomly made in the domain as follows:

xi,j = x
min,j + rand × (x

max,j − x
min,j), i = 1,NP, j = 1, n̄ (13)

where NP is the population size, 𝑛 is the number of design variables or dimensions,

𝑟𝑎𝑛𝑑 is a uniformly distributed random number in the interval [0,1], 𝑥
𝑖,𝑗

is the jth
component of individual 𝐱i, and 𝑥

min,j and 𝑥

max,j are the lower and upper bounds of

𝑥j, respectively.

4.1.2 Mutation

In the mutation step, DE generates a mutant vector 𝐯i based on the target vector 𝐱r1 by

using mutation operation at the current iteration. The frequently used some mutation

schemes are introduced as below:

𝐯i = 𝐱r1 + F × (𝐱r2 − 𝐱r3 ) (14)

where 𝐯i is a mutation vector and known as a new candidate solution; 𝐱r1 , 𝐱r2 , and

𝐱r3 are candidate solutions; r1, r2, and r3 are randomly determined from [1, NP] to

satisfy the constraints as r1 ≠ r2 ≠ r3 ≠ 𝑖; the scale factor F can be selected within

the range F ∈ [0, 2].

4.1.3 Crossover

In the crossover process, trial vector 𝐮i is created by combining the target vector 𝐱i
and the mutant vector 𝐯i. The combination of these vectors in this process is con-

trolled by a crossover ratio (CR) chosen in the range [0,1]. The CR controls how

likely it is that each component of 𝐮i comes from the mutant vector 𝐯i and is defined

by user. The range [0.1,0.8] or 0.5 can get good result at the beginning.

The crossover phase is generally performed two schemes: binomial and exponen-

tial. Due to its simplicity, the binomial crossover is employed and defined as follows:

ui,j =
{

vi,j, if (randi,j < CR) or (j = jrand)
xi,j, otherwise

(15)

in which 𝑟𝑎𝑛𝑑

𝑖,𝑗

is a uniformly distributed random number [0,1] and jrand is the inte-

ger chosen from [0,1].
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4.1.4 Selection

Finally, the 𝐮i and 𝐱i vectors are compared so that the most fit vector in each pair is

kept for the next generation and the least fit is discarded. This selection process is

essentially the same as that used in GA and expressed as

𝐱newi =
{

𝐮i, if f (𝐮i) ≤ f (𝐱i)
𝐱i, otherwise

(16)

where 𝑓 (𝐮i) and 𝑓 (𝐱i) are the objective functions.

4.2 A Modified Differential Evolution Algorithm

In this section, mutation and selection phases are modified to overcome the draw-

backs of the non-gradient- and gradient-based algorithms.

4.2.1 Modification of the Mutation Phase

Two mutation operators are adaptively chosen based on the absolute value of devi-

ation of objective function between the best individual and the entire population in

the previous generation (denoted as delta). More specifically, the value of delta is

defined by

delta =
||||
fmean − fbest

fbest

||||
(17)

where fmean is the mean objective function value of the whole population and fbest
is the objective function value of the best individual. The new mutation scheme is

described as follows:

𝐯i =
{

𝐱best + Fk × (𝐱r1 − 𝐱r2 ), if delta > threshold
𝐱r1 + Fk × (𝐱r2 − 𝐱r3 ), otherwise

(18)

where Fk
is a number randomly chosen in [0,1] at the kth iteration; threshold is a

criterion value which is chosen based on the stopping criterion of the algorithm.

4.2.2 Modification of the Selection Phase

In the DE’s selection, the vectors are compared and unselected individual is worse

than its target individual in the pair, but it can be still better than other individuals

in the entire population. Consequently, several good information of unselected indi-
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viduals can be omitted and the convergence speed of the DE algorithm is slow. The

good individuals are kept for the next iteration as follows:

𝐐 = 𝐏 ∪ 𝐔 (19)

Table 1 Induced elastic modulus for 31-bar planar truss

Member xi GA (dq) PSO This study

0.1 0.05 0.01 0.001

1 0 0.0 0.00 0.00 0.008 0.027 0.073

2 0 0.0 0.00 0.00 0.000 0.050 0.034

3 0 0.0 0.00 0.02 0.152 0.065 0

4 0 0.0 0.00 0.00 0.000 0.040 0.006

5 0 0.0 0.00 0.00 0.078 0.060 0.022

6 0 0.0 0.00 0.15 0.000 0.062 0.01

7 0 0.0 0.00 0.00 0.000 0.008 0.006

8 0.475 0.5 0.50 0.42 0.407 0.475 0.475

9 0 0.0 0.00 0.00 0.000 0.009 0.016

10 0 0.0 0.00 0.00 0.000 0.011 0

11 0 0.2 0.00 0.11 0.011 0.021 0.099

12 0 0.0 0.00 0.00 0.000 0.018 0.085

13 0 0.0 0.00 0.05 0.038 0.033 0.088

14 0 0.0 0.00 0.00 0.047 0.065 0.076

15 0 0.0 0.00 0.00 0.012 0.006 0.048

16 0.319 0.1 0.30 0.17 0.000 0.319 0.319

17 0 0.0 0.00 0.00 0.008 0.045 0.058

18 0 0.0 0.00 0.06 0.000 0.073 0.021

19 0 0.0 0.00 0.04 0.000 0.081 0.01

20 0 0.0 0.00 0.00 0.088 0.010 0.005

21 0 0.2 0.00 0.06 0.000 0.008 0.036

22 0 0.0 0.00 0.00 0.002 0.078 0

23 0 0.0 0.00 0.00 0.148 0.035 0.013

24 0 0.0 0.00 0.07 0.000 0.015 0.002

25 0 0.0 0.00 0.00 0.000 0.005 0.018

26 0 0.0 0.00 0.05 0.096 0.019 0.03

27 0 0.0 0.00 0.00 0.000 0.026 0.029

28 0 0.0 0.00 0.00 0.010 0.048 0.003

29 0 0.0 0.00 0.00 0.082 0.022 0.013

30 0 0.0 0.00 0.00 0.000 0.050 0.088

31 0 0.0 0.00 0.00 0.000 0.024 0

f (X) 1.86E-2 6.62E-3 4.19E-2 1.41E-1 4.37E-8 3.86E-11
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where 𝐏 and 𝐔 are populations consisting of NP individuals 𝐱i and 𝐮i with i = 1, NP,

respectively; 𝐐 includes all individuals of 𝐏 and 𝐔. Then, NP best individuals in 𝐐
are chosen to create a new population for the next iteration. Thus, the best solutions of

the whole population are always stored for the next generation and the convergence

rate is significantly improved.

5 Numerical Examples

In this section, two- and three-dimensional truss structures are investigated using

GA, PSO, and proposed mDE algorithm. The searching process of these algorithms

will be stopped when the maximum number of iterations is reached. In all examples,

the crossover ratio (CR) for the proposed mDE and GA is set to be 0.6 and 1.0,

respectively. Accordingly, all populations have to perform a crossover operation at all

generation and there is no use of mutation process. The first three natural frequencies

and mode shapes are used for detection. mDE algorithm and PSO find solution in a

continuous domain, while results gained by GA are done in a discrete domain. The

numerical results obtained by mDE are compared to GA and PSO to illustrate the

accuracy and effectiveness of the proposed algorithm.

5.1 31-Bar Planar Truss

The first example is a 31-bar planar truss as shown in Fig. 1 and is modeled using 28

consistent finite elements without internal nodes leading to 25 degrees of freedom.

The elasticity modulus E = 70 GPa, the mass density 𝜌 = 2,770 kg/m
3
, and the

area of cross section A = 0.01 m
2
. For every algorithms, the maximum number of

Fig. 2 Convergence history

of the 31-bar planar truss
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iterations and population size are respectively set to be 500 and 300. In damage

case, as damage ratios, the stiffness reduction in elasticity modulus 0.475 and 0.319

is induced at elements 8 and 16, respectively. The detected damages are shown by

comparing the ratios of elasticity modulus reduction in GA, PSO, and mDE. Here,

GA is considered with four different step points dq = 0.1, 0.05, 0.01, and 0.001.

The obtained results are expressed in Table 1 in comparison with each step points

of GA and PSO. From this table, the damage location and extent of proposed algo-

rithm were successfully determined than other cases of GA and agree well with this

acquired by PSO. In a narrow discrete domain of search space, GA cannot find exact

damage. Thus, GA have some difficulties about the accuracy of the solution if real

solutions have many digits after the decimal point. Figure 2 shows the comparison

Table 2 Induced elastic modulus for 25-bar space truss

Member xi GA (dq) PSO This study

0.1 0.05 0.01 0.001

1 0 0.0 0.40 0.00 0.596 0.022 0

2 0 0.0 0.00 0.00 0.006 0.011 0.008

3 0 0.0 0.00 0.03 0.022 0.008 0.006

4 0 0.0 0.05 0.00 0.066 0.029 0.052

5 0 0.0 0.00 0.00 0.276 0.064 0.056

6 0.383 0.4 0.40 0.45 0.328 0.383 0.383

7 0 0.0 0.00 0.04 0.194 0.048 0.061

8 0 0.0 0.15 0.00 0.004 0.069 0.02

9 0 0.0 0.00 0.00 0.069 0.040 0

10 0 0.1 0.25 0.24 0.055 0.052 0.01

11 0 0.1 0.00 0.08 0.295 0.092 0

12 0 0.0 0.00 0.27 0.089 0.077 0.064

13 0 0.0 0.00 0.00 0.232 0.041 0

14 0 0.0 0.00 0.00 0.137 0.030 0.024

15 0 0.0 0.00 0.00 0.047 0.071 0.039

16 0.294 0.3 0.40 0.32 0.522 0.294 0.294

17 0 0.0 0.05 0.01 0.002 0.019 0.04

18 0 0.0 0.00 0.00 0.097 0.051 0.022

19 0 0.0 0.05 0.00 0.019 0.087 0.058

20 0 0.0 0.00 0.03 0.070 0.047 0.066

21 0 0.0 0.00 0.00 0.006 0.085 0.055

22 0 0.0 0.00 0.00 0.045 0.062 0.02

23 0 0.0 0.00 0.04 0.018 0.082 0.001

24 0 0.0 0.05 0.00 0.165 0.088 0.025

25 0 0.0 0.00 0.00 0.106 0.063 0.096

f (X) 3.37E-02 2.05E-01 1.34E-01 8.65E-01 9.76E-7 2.80E-11
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of the convergence of each cases of GA, PSO and mDE at the whole iterations. As

shown in the figure, mDE converges faster and lower than GA. For more detail, the

mDE converges in 00 iterations with an objective function f (X) = 3.86 × 10−11 in the

first damage case, while each step point of GA converges 1.86 × 10−2, 6.62 × 10−3,

4.19 × 10−2, and 1.41 × 10−1 corresponding step points 0.1, 0.05, 0.01 and 0.001,

respectively.

5.2 25-Bar Space Truss

The 25-bar space truss is shown in Fig. 1, with 10 nodes leading to 18 degrees of

freedom. The area of cross section A = 0.25 m
2
, the material density 𝜌 = 7,830

kg/m.
3
, and the modulus of elasticity E = 210 GPa. Likewise, the maximum number

of iterations and population size are, respectively, set to be 500 and 300.

As a case of damage, the stiffness reductions in elasticity modulus 0.383 and 0.294

are induced at elements 6 and 16, respectively. The results gained by this example

in comparison with the GA and PSO are presented in Table. 2. It can be seen that

the present algorithm has shown excellent performance for damage detection than

all step points of GA and agrees well with the result of PSO. When the step point

increases, the gained results of GA are less accurate. Moreover, the convergence his-

tory of GA, PSO, and mDE are shown in Fig. 3. It demonstrates that mDE converges

even faster than GA. Specially, mDE converges as 2.80 × 10−11, while each step point

of GA converges as 3.37 × 10−2, 2.05 × 10−1, 1.34 × 10−1, and 8.65 × 10−1 corre-

sponding to step points dq = 0.1, 0.05, 0.01, and 0.001, respectively, and the value

of converged objective function from PSO is 9.76 × 10−7.

Fig. 3 Convergence history

of the 25-bar space truss
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6 Conclusion

This study proposed the optimization technique which properly determines the loca-

tions and extents of multiple damages of planar and space trusses based on the mod-

ified differential evolution (mDE) algorithm with comparative studies. To generate

the compatibility conditions for indeterminate trusses, the singular value decompo-

sition technique is employed on the general equilibrium equations. The force mode

vectors are introduced as eigenvectors in the objective function. The optimization

problem has been solved using mDE which has continuous design variables to iden-

tify the actual damages. Three illustrated test examples such as planar and space

trusses are considered in order to assess the performance of the proposed method.

Throughout the numerical examples, the relative performance of mDE, GA, and PSO

in the damage detection of trusses is studied. Numerical results show that the com-

bination of the present force method and mDE is far more efficient than PSO and

GA with discrete design variables for identifying multiple damages of trusses.
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