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Preface

This book contains selected papers from the second International Conference on
Advances in Computational Mechanics (ACOME 2017), held at Phu Quoc Island,
Vietnam, from 2 August to 4 August 2017. The conference provides an interna-
tional forum for scholars and researchers to exchange knowledge and expertise in
the development of modern numerical methods and their applications to chal-
lenging engineering problems. The ACOME conference in 2017 received over
140 submissions from different universities and research institutes of 20 countries.
They were allocated into 6 parallel technical sessions, including eight plenary
talks and several keynote talks. This book contains 75 selected papers from the
conference that cover “Biological Systems”, “Computational Fracture and Damage
Mechanics”, “Catastrophic Destruction Mechanics and Numerical Modelling”,
“Computational Mechatronics”, “Composites and Hybrid Structures”, “Flow
Problems”, “Multiscale Multiphysics Problems”, “Numerical Methods and
High-Performance Computing”, “Optimisation and Inverse Problems”, “Reinforced
Concrete, Steel and Steel-Concrete Composite Structures”. These papers were
selected in a peer-reviewing process by at least two independent reviewers that are
recognised experts in the topical field.

The editors would like to thank all the authors for their contributions to this
conference. We also express our sincere gratitude to the dedicated reviewers for
their time and contribution to enhance the scientific quality of the manuscripts.

The conference was jointly hosted by the Vietnam Association of Computational
Mechanics (VACOM) and Ho Chi Minh City University of Technology
(HUTECH). We gratefully acknowledge the financial support from the sponsors:
National Foundation for Science and Technology Development (NAFOSTED),
SAKI Corporation, Duy Tan University (DTU) and China Medical University
Taiwan (CMU).

Ho Chi Minh, Vietnam Hung Nguyen-Xuan
Ghent, Belgium Phuc Phung-Van
Weimar, Germany Timon Rabczuk
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Part I
Computational Fracture and Damage

Mechanics



Truss Damage Detection Using Modified
Differential Evolution Algorithm
with Comparative Studies

Sumin Kim, Nam Il Kim, Hyunjoo Kim, T. N. Nguyen, Q. X. Lieu
and Jaehong Lee

Abstract In this paper, an efficient numerical algorithm is developed for the dam-

age detection of planar and space truss structures based on the modified differential

evolution algorithm (mDE) and vibration data. For this purpose, the mathematical

programming of the finite element based on the force method and the singular value

decomposition technique is presented. The general equilibrium equations in which

unknown member forces and reaction forces are taken into account are formulated.

The compatibility equations in terms of forces are explicitly presented by using the

singular value decomposition method. The modified differential evolution algorithm

(mDE) is used as an optimization algorithm of damage detection. The objective func-

tion for damage detection is based on vibration data such as natural frequencies and

mode shapes. The feasibility and efficiency of the present method are compared with

a genetic algorithm (GA) and a particle swarm optimization (PSO) for example. The

numerical results show that the proposed strategy based on force method using mDE

and vibration data can provide a reliable tool on determining the sites and extents of

multiple damages of truss structures.

Keywords Damage detection ⋅ Force method ⋅ Free vibration analysis

Modified differential evolution algorithm (mDE)

1 Introduction

The identification of structural damage is an important part of the monitoring and

repairing of structural systems during their functional age. In order to improve the

safety and life expectancy of structures, it is necessary to detect the damage extents

and sites. The damage assessment technique has drawn wide attention from various
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engineering fields such as aerospace, mechanical, and civil engineering applications.

The proposed identification of structural damage prevents the deterioration in a struc-

tural system from the impact loads and the responses of the structure. For damage

detection and structural health monitoring, techniques based on vibration data have

been extensively used. Thus, the damage evaluation of structures has derived wide

consideration from engineering fields.

The various computational techniques have been used to solve the damage detec-

tion problem such as genetic algorithm (GA), differential evolution algorithm (DE),

and particle swarm optimization (PSO). Among non-gradient-based methods, GA

has been used widely from damage detection field. The GA is a well-known global

optimizer based on the Darwin’s theory of evolution and survival of the fittest and

the natural process through reproduction [1]. It makes the mechanisms of biologi-

cal evolution to perform optimization without information regarding the objective

function. Generally, the GA has been shown to be solved various optimization prob-

lems through some basic concepts and operators. However, some research work

has appeared that it is complex for the simple GA to solve the damage quantifi-

cation problems properly. To achieve a better detection result, the various optimiza-

tion algorithms were improved [2–4]. Krishnakumar [5] proposed the micro-genetic

algorithm based on serial genetic algorithms [6], and Koh and Dyke [2] proposed

the use of correlation-based damage detection methods for long-span cable-stayed

bridge. Nobahari and Seyedpoor [7] proposed a modified genetic algorithm (MGA)

to identify multiple damage and two new tools to recognize the actual damage cor-

rectly and rapidly. Also, he used the DE algorithm to solve the optimization problem

for detecting actual sites and elements which was demonstrated by truss structures.

The GA has discrete design variables, and new attempts based on continuous domain

have been proposed such as PSO, DE, and ant colony optimization (ACO).

Turning to the problems of global optimization method, Storn and Price [8] pro-

posed the differential evolution (DE) algorithm as a simple and powerful population-

based stochastic method, which has an operation process similar to GA. In order to

overcome the shortcomings of the non-gradient-based methods regarding computa-

tional time as well as of the gradient-based methods concerning solution accuracy,

several variations of DE algorithm have been suggested. Pampara et al. [9] suggested

a binary DE using trigonometric functions, in which experimental results indicate the

effectiveness of the technique and the viability for the DE to operate in binary space.

Zou et al. [10] proposed to solve constrained optimization problems using a modified

differential evolution algorithm. Its own crossover rate and scale factor were adjusted

using uniform distribution, and mutation phase was modified to enhance the conver-

gence for unconstrained optimization problems. Concerning the damage detection,

Vo-Duy et al. [11] used a strain energy-based method and an improved differential

evolution algorithm to locate and quantify damage on the laminated composite plate.

Also, Dinh-Cong et al. [12] proposed a two-stage damage identification method to

identify the location and extent of multiple damages at individual layers in laminated

composite beams using DE algorithm. Jena et al. [13] presented a damage detection

technique combining analytical and experimental investigations on a cantilever alu-

minum alloy beam with a transverse surface crack. The damage location and assess-
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ment is the third stage and is formulated as a constrained optimization problem and

solved using the proposed differential evolution algorithm.

Based on the mentioned researches, the mDE has not yet been used as optimizer

for 2D and 3D truss structures based on force method and vibration data until now. In

this study, a mDE combined with the free vibration analysis is proposed as a highly

efficient algorithm for performing the damage identification of truss structures. The

introduced algorithm resolves efficiently the limitation of GA by randomly contin-

uous design variables instead of discrete domain as in the GA. In order to solve the

problem, the number of design variables and member types of truss structures are

first defined. Design variables are randomly created in the range of lower and upper

bounds based on the number of design variables. Consequently, based on the force

method with the present mDE in the damage detection process, the results satisfying

the required deficiencies of the force method and equilibrium matrices are selected.

2 Theoretical Modeling

In order to build a model for truss structure, the general equations and relations are

briefly presented. Several approaches that are similar to those can be found in the

literature [14, 15]. For a d-dimensional (d = 2 or 3) truss structure withmmembers, n
free nodes, and nc constrained nodes, its topology can be expressed by a connectivity

matrix 𝐂s [16]. Let rc be the unknown vector of reaction forces employed to remove

all boundary constraints. Therefore, the constrained nodes can now be treated as

free nodes. In the context, the general equilibrium equations for all nodes (including

constrained nodes) of the discrete truss can be written as follows:

̄𝐀̄𝐟 = ̄𝐩 (1)

where ̄𝐀 is called the general equilibrium matrix of all nodes, which transforms the

vector of member and reaction forces ̄𝐟 to the vector of external loads ̄𝐩, ̄𝐟 is the

unknown member and reaction force vector, and ̄𝐩 is the external load vector of all

nodes.

In this study, the SVD method is used as an effective and numerically stable algo-

rithm in order to extract r compatibility conditions. The SVD is performed on the

general equilibrium matrix ̄𝐀 instead of the kinematic matrix 𝐁 (i.e., the transpose of

the general equilibrium matrix ̄𝐀). The compatibility equations expressed in terms

of forces are obtained as follows:

𝐃̄𝐟 = 𝐩eo (2)

where 𝐃 is the compatibility matrix in terms of forces of all members and 𝐩eo is the

virtual force vector in the indeterminate truss caused by member initial elongations

𝐞o.
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For the free vibration analysis, the extended equation of motion based on the force

method can be written as

̄𝐌 ̈

̄𝐝 + ̃𝐀̄𝐟 = 0 (3)

where ̄𝐌 is the extended mass matrix,
̈

̄𝐝 is the extended acceleration vector, and ̃𝐀 is

the square full-rank matrix coupling the general equilibrium matrix and the compat-

ibility matrix. For this analysis case, it is assumed that element forces are harmonics

in time, ̄𝐟 = ̄𝐅sin(𝜔t), where 𝜔 and ̄𝐅 are the circular frequency and corresponding

force mode shape, respectively. Therefore, equation [14] can be written as the fol-

lowing eigenvalue problem

( ̃𝐀 + 𝜔

2𝐁) ̄𝐅 = 0 (4)

where

𝐁 = ̄𝐌 ̃𝐀−T𝐆 (5)

and ̄𝐌 is the extended mass matrix.

3 Structural Damage Detection

To determine the location and extent of the damages more accurately, the

natural frequency and the mode shape changes are demanded

messinastructural1998,wangstructural2001. In this study, the objective function

based on the sum of two formulations is given as follows:

f (X) = f1(X) + f2(X) (6)

where

f1(X) =
n∑

i=1

||𝜔di − 𝜔i(X)||
𝜔di

(7)

and

f2(X) =
n∑

i=1

m∑

j=1

‖‖‖‖‖

Φdj − Φj(X)
Φdj

‖‖‖‖‖
(8)

where 𝜔i is the corresponding hypothesis natural frequency which is can be expected

from analytic model and 𝜔di is the ith natural frequency of the damaged truss. Φdj
and Φj(X) are the jth component of the ith damaged force eigenvector and the jth
component of the ith hypothesis force eigenvector, respectively, in f2(X). Then, the

optimal design problem for damage identification of the truss structure is formulated



Truss Damage Detection Using Modified Differential Evolution Algorithm . . . 7

as follows:

Minimize f (X) + 𝛾g(X) (9)

in which

g(X) = (nd − nh)2 for nd > nh (10)

where xi is the damaged elastic modulus of the ith member, 𝛾 is the penalty parame-

ter, nd and nh are the number of the damaged elements and the number of the healthy

elements, respectively. In real life, the healthy members are more than the damaged

members in structures. Thus, both algorithms in this study can be accelerated to find

better solution using the penalty function g(X). In many researches related to the

damage detection problem, the damage has been simulated by decreasing one of the

stiffness parameters of the element. In this study, the damage of truss structures is

simulated by the reduction in the elasticity modulus in each element as

xi =
E − Ei

E
, i = 1,… , n (11)

where E is the initial elastic modulus and Ei is the final elastic modulus of nth ele-

ment.

4 Optimization Algorithm

4.1 Differential Evolution Algorithm

Differential evolution (DE) has been first proposed by Storn and Price [8] as a vector-

based metaheuristic algorithm. The DE has similarity to genetic algorithms, its use

of selection, crossover, and mutation. The DE is a stochastic search algorithm with

self-organizing tendency and does not use the information of derivatives [17]. Thus,

it is a population-based, derivative-free method. In addition, DE uses real numbers

as solution strings, so no encoding and decoding is needed. The main procedure of

DE includes mutation, crossover, selection, and initialization of design variables.

4.1.1 Initialization

In the DE algorithm, d-dimensional real number of design variable vectors is ran-

domly generated as much as population size for global optimum point. The ith vector

of the population at any iteration can be expressed by conventional notation as

Xi = {xi,1, xi,2,⋯ , xi,d} (12)
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where 𝑋

𝑖

is a vector at ith population and d is a number of design variables in 𝑋

𝑖

vector. It is noted that this vector, called target vector, can be considered as chromo-

somes. A d-dimensional vector represents a candidate result to the problem and is

randomly made in the domain as follows:

xi,j = x
min,j + rand × (x

max,j − x
min,j), i = 1,NP, j = 1, n̄ (13)

where NP is the population size, 𝑛 is the number of design variables or dimensions,

𝑟𝑎𝑛𝑑 is a uniformly distributed random number in the interval [0,1], 𝑥
𝑖,𝑗

is the jth
component of individual 𝐱i, and 𝑥

min,j and 𝑥

max,j are the lower and upper bounds of

𝑥j, respectively.

4.1.2 Mutation

In the mutation step, DE generates a mutant vector 𝐯i based on the target vector 𝐱r1 by

using mutation operation at the current iteration. The frequently used some mutation

schemes are introduced as below:

𝐯i = 𝐱r1 + F × (𝐱r2 − 𝐱r3 ) (14)

where 𝐯i is a mutation vector and known as a new candidate solution; 𝐱r1 , 𝐱r2 , and

𝐱r3 are candidate solutions; r1, r2, and r3 are randomly determined from [1, NP] to

satisfy the constraints as r1 ≠ r2 ≠ r3 ≠ 𝑖; the scale factor F can be selected within

the range F ∈ [0, 2].

4.1.3 Crossover

In the crossover process, trial vector 𝐮i is created by combining the target vector 𝐱i
and the mutant vector 𝐯i. The combination of these vectors in this process is con-

trolled by a crossover ratio (CR) chosen in the range [0,1]. The CR controls how

likely it is that each component of 𝐮i comes from the mutant vector 𝐯i and is defined

by user. The range [0.1,0.8] or 0.5 can get good result at the beginning.

The crossover phase is generally performed two schemes: binomial and exponen-

tial. Due to its simplicity, the binomial crossover is employed and defined as follows:

ui,j =
{

vi,j, if (randi,j < CR) or (j = jrand)
xi,j, otherwise

(15)

in which 𝑟𝑎𝑛𝑑

𝑖,𝑗

is a uniformly distributed random number [0,1] and jrand is the inte-

ger chosen from [0,1].
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4.1.4 Selection

Finally, the 𝐮i and 𝐱i vectors are compared so that the most fit vector in each pair is

kept for the next generation and the least fit is discarded. This selection process is

essentially the same as that used in GA and expressed as

𝐱newi =
{

𝐮i, if f (𝐮i) ≤ f (𝐱i)
𝐱i, otherwise

(16)

where 𝑓 (𝐮i) and 𝑓 (𝐱i) are the objective functions.

4.2 A Modified Differential Evolution Algorithm

In this section, mutation and selection phases are modified to overcome the draw-

backs of the non-gradient- and gradient-based algorithms.

4.2.1 Modification of the Mutation Phase

Two mutation operators are adaptively chosen based on the absolute value of devi-

ation of objective function between the best individual and the entire population in

the previous generation (denoted as delta). More specifically, the value of delta is

defined by

delta =
||||
fmean − fbest

fbest

||||
(17)

where fmean is the mean objective function value of the whole population and fbest
is the objective function value of the best individual. The new mutation scheme is

described as follows:

𝐯i =
{

𝐱best + Fk × (𝐱r1 − 𝐱r2 ), if delta > threshold
𝐱r1 + Fk × (𝐱r2 − 𝐱r3 ), otherwise

(18)

where Fk
is a number randomly chosen in [0,1] at the kth iteration; threshold is a

criterion value which is chosen based on the stopping criterion of the algorithm.

4.2.2 Modification of the Selection Phase

In the DE’s selection, the vectors are compared and unselected individual is worse

than its target individual in the pair, but it can be still better than other individuals

in the entire population. Consequently, several good information of unselected indi-
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viduals can be omitted and the convergence speed of the DE algorithm is slow. The

good individuals are kept for the next iteration as follows:

𝐐 = 𝐏 ∪ 𝐔 (19)

Table 1 Induced elastic modulus for 31-bar planar truss

Member xi GA (dq) PSO This study

0.1 0.05 0.01 0.001

1 0 0.0 0.00 0.00 0.008 0.027 0.073

2 0 0.0 0.00 0.00 0.000 0.050 0.034

3 0 0.0 0.00 0.02 0.152 0.065 0

4 0 0.0 0.00 0.00 0.000 0.040 0.006

5 0 0.0 0.00 0.00 0.078 0.060 0.022

6 0 0.0 0.00 0.15 0.000 0.062 0.01

7 0 0.0 0.00 0.00 0.000 0.008 0.006

8 0.475 0.5 0.50 0.42 0.407 0.475 0.475

9 0 0.0 0.00 0.00 0.000 0.009 0.016

10 0 0.0 0.00 0.00 0.000 0.011 0

11 0 0.2 0.00 0.11 0.011 0.021 0.099

12 0 0.0 0.00 0.00 0.000 0.018 0.085

13 0 0.0 0.00 0.05 0.038 0.033 0.088

14 0 0.0 0.00 0.00 0.047 0.065 0.076

15 0 0.0 0.00 0.00 0.012 0.006 0.048

16 0.319 0.1 0.30 0.17 0.000 0.319 0.319

17 0 0.0 0.00 0.00 0.008 0.045 0.058

18 0 0.0 0.00 0.06 0.000 0.073 0.021

19 0 0.0 0.00 0.04 0.000 0.081 0.01

20 0 0.0 0.00 0.00 0.088 0.010 0.005

21 0 0.2 0.00 0.06 0.000 0.008 0.036

22 0 0.0 0.00 0.00 0.002 0.078 0

23 0 0.0 0.00 0.00 0.148 0.035 0.013

24 0 0.0 0.00 0.07 0.000 0.015 0.002

25 0 0.0 0.00 0.00 0.000 0.005 0.018

26 0 0.0 0.00 0.05 0.096 0.019 0.03

27 0 0.0 0.00 0.00 0.000 0.026 0.029

28 0 0.0 0.00 0.00 0.010 0.048 0.003

29 0 0.0 0.00 0.00 0.082 0.022 0.013

30 0 0.0 0.00 0.00 0.000 0.050 0.088

31 0 0.0 0.00 0.00 0.000 0.024 0

f (X) 1.86E-2 6.62E-3 4.19E-2 1.41E-1 4.37E-8 3.86E-11
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where 𝐏 and 𝐔 are populations consisting of NP individuals 𝐱i and 𝐮i with i = 1, NP,

respectively; 𝐐 includes all individuals of 𝐏 and 𝐔. Then, NP best individuals in 𝐐
are chosen to create a new population for the next iteration. Thus, the best solutions of

the whole population are always stored for the next generation and the convergence

rate is significantly improved.

5 Numerical Examples

In this section, two- and three-dimensional truss structures are investigated using

GA, PSO, and proposed mDE algorithm. The searching process of these algorithms

will be stopped when the maximum number of iterations is reached. In all examples,

the crossover ratio (CR) for the proposed mDE and GA is set to be 0.6 and 1.0,

respectively. Accordingly, all populations have to perform a crossover operation at all

generation and there is no use of mutation process. The first three natural frequencies

and mode shapes are used for detection. mDE algorithm and PSO find solution in a

continuous domain, while results gained by GA are done in a discrete domain. The

numerical results obtained by mDE are compared to GA and PSO to illustrate the

accuracy and effectiveness of the proposed algorithm.

5.1 31-Bar Planar Truss

The first example is a 31-bar planar truss as shown in Fig. 1 and is modeled using 28

consistent finite elements without internal nodes leading to 25 degrees of freedom.

The elasticity modulus E = 70 GPa, the mass density 𝜌 = 2,770 kg/m
3
, and the

area of cross section A = 0.01 m
2
. For every algorithms, the maximum number of

Fig. 2 Convergence history

of the 31-bar planar truss
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iterations and population size are respectively set to be 500 and 300. In damage

case, as damage ratios, the stiffness reduction in elasticity modulus 0.475 and 0.319

is induced at elements 8 and 16, respectively. The detected damages are shown by

comparing the ratios of elasticity modulus reduction in GA, PSO, and mDE. Here,

GA is considered with four different step points dq = 0.1, 0.05, 0.01, and 0.001.

The obtained results are expressed in Table 1 in comparison with each step points

of GA and PSO. From this table, the damage location and extent of proposed algo-

rithm were successfully determined than other cases of GA and agree well with this

acquired by PSO. In a narrow discrete domain of search space, GA cannot find exact

damage. Thus, GA have some difficulties about the accuracy of the solution if real

solutions have many digits after the decimal point. Figure 2 shows the comparison

Table 2 Induced elastic modulus for 25-bar space truss

Member xi GA (dq) PSO This study

0.1 0.05 0.01 0.001

1 0 0.0 0.40 0.00 0.596 0.022 0

2 0 0.0 0.00 0.00 0.006 0.011 0.008

3 0 0.0 0.00 0.03 0.022 0.008 0.006

4 0 0.0 0.05 0.00 0.066 0.029 0.052

5 0 0.0 0.00 0.00 0.276 0.064 0.056

6 0.383 0.4 0.40 0.45 0.328 0.383 0.383

7 0 0.0 0.00 0.04 0.194 0.048 0.061

8 0 0.0 0.15 0.00 0.004 0.069 0.02

9 0 0.0 0.00 0.00 0.069 0.040 0

10 0 0.1 0.25 0.24 0.055 0.052 0.01

11 0 0.1 0.00 0.08 0.295 0.092 0

12 0 0.0 0.00 0.27 0.089 0.077 0.064

13 0 0.0 0.00 0.00 0.232 0.041 0

14 0 0.0 0.00 0.00 0.137 0.030 0.024

15 0 0.0 0.00 0.00 0.047 0.071 0.039

16 0.294 0.3 0.40 0.32 0.522 0.294 0.294

17 0 0.0 0.05 0.01 0.002 0.019 0.04

18 0 0.0 0.00 0.00 0.097 0.051 0.022

19 0 0.0 0.05 0.00 0.019 0.087 0.058

20 0 0.0 0.00 0.03 0.070 0.047 0.066

21 0 0.0 0.00 0.00 0.006 0.085 0.055

22 0 0.0 0.00 0.00 0.045 0.062 0.02

23 0 0.0 0.00 0.04 0.018 0.082 0.001

24 0 0.0 0.05 0.00 0.165 0.088 0.025

25 0 0.0 0.00 0.00 0.106 0.063 0.096

f (X) 3.37E-02 2.05E-01 1.34E-01 8.65E-01 9.76E-7 2.80E-11
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of the convergence of each cases of GA, PSO and mDE at the whole iterations. As

shown in the figure, mDE converges faster and lower than GA. For more detail, the

mDE converges in 00 iterations with an objective function f (X) = 3.86 × 10−11 in the

first damage case, while each step point of GA converges 1.86 × 10−2, 6.62 × 10−3,

4.19 × 10−2, and 1.41 × 10−1 corresponding step points 0.1, 0.05, 0.01 and 0.001,

respectively.

5.2 25-Bar Space Truss

The 25-bar space truss is shown in Fig. 1, with 10 nodes leading to 18 degrees of

freedom. The area of cross section A = 0.25 m
2
, the material density 𝜌 = 7,830

kg/m.
3
, and the modulus of elasticity E = 210 GPa. Likewise, the maximum number

of iterations and population size are, respectively, set to be 500 and 300.

As a case of damage, the stiffness reductions in elasticity modulus 0.383 and 0.294

are induced at elements 6 and 16, respectively. The results gained by this example

in comparison with the GA and PSO are presented in Table. 2. It can be seen that

the present algorithm has shown excellent performance for damage detection than

all step points of GA and agrees well with the result of PSO. When the step point

increases, the gained results of GA are less accurate. Moreover, the convergence his-

tory of GA, PSO, and mDE are shown in Fig. 3. It demonstrates that mDE converges

even faster than GA. Specially, mDE converges as 2.80 × 10−11, while each step point

of GA converges as 3.37 × 10−2, 2.05 × 10−1, 1.34 × 10−1, and 8.65 × 10−1 corre-

sponding to step points dq = 0.1, 0.05, 0.01, and 0.001, respectively, and the value

of converged objective function from PSO is 9.76 × 10−7.

Fig. 3 Convergence history

of the 25-bar space truss
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6 Conclusion

This study proposed the optimization technique which properly determines the loca-

tions and extents of multiple damages of planar and space trusses based on the mod-

ified differential evolution (mDE) algorithm with comparative studies. To generate

the compatibility conditions for indeterminate trusses, the singular value decompo-

sition technique is employed on the general equilibrium equations. The force mode

vectors are introduced as eigenvectors in the objective function. The optimization

problem has been solved using mDE which has continuous design variables to iden-

tify the actual damages. Three illustrated test examples such as planar and space

trusses are considered in order to assess the performance of the proposed method.

Throughout the numerical examples, the relative performance of mDE, GA, and PSO

in the damage detection of trusses is studied. Numerical results show that the com-

bination of the present force method and mDE is far more efficient than PSO and

GA with discrete design variables for identifying multiple damages of trusses.
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Finite Element Simulation on Small
Punch Test for an Evaluation
of J-integral for TRIP Steel

H. T. Pham and T. Iwamoto

Abstract The small punch test (SPT) has been recently successfully developed for
the purpose of evaluating the fracture toughness in not only brittle but also ductile
materials. It is considered that fracture toughness of materials can be estimated by
means of the SPT based on the measurement of equivalent fracture strain in the SPT
and its correlation with fracture toughness. Moreover, fracture toughness of TRIP
(transformation-induced plasticity) steel was evaluated by J-integral by using
pre-cracked specimen under three-point bending test in the past study. However, the
value of J-integral is determined at a limited range of deformation rate in
three-point bending test. Thus, fracture toughness of TRIP steel needs to be eval-
uated by means of the SPT, especially at a relatively high deformation rate.
Additionally, since the effect of strain-induced martensitic transformation during
plastic deformation of TRIP steel coupled with a high increase of temperature is
quite complicated, a computational work is indispensable. In this study, finite
element simulations are performed for the SPT at various deflection rates and
different sizes of specimen and puncher by an application of damage model for
type-304 austenitic stainless steel, a kind of TRIP steel. The rate-sensitivity of
fracture-mechanical characteristics is examined for different sizes of specimen and
puncher. Furthermore, a relationship between equivalent fracture strain in the SPT
and J-integral obtained from three-point bending test is challenged to be correlated.
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1 Introduction

The small punch test (SPT), a kind of test for bending deformation using very small
disc specimens, has become widespread over last decades. It has been widely
applied to evaluate mechanical properties [1] due to a simple testing methodology
as well as a reduction of machining costs. Also, the SPT is successfully developed
for the purpose of evaluating the fracture toughness in not only brittle but also
ductile materials [2–5]. It is considered that fracture toughness of materials can be
estimated by means of the SPT based on the measurement of equivalent fracture
strain in the SPT and its correlation with fracture toughness [4].

On the other hand, TRIP (transformation-induced plasticity) steel has been
nowadays wide application in automotive industries to keep the safe upon to a
collision of vehicle because of its high energy absorption capacity [6, 7]. In order to
utilize its application in impact condition, the fracture-mechanical characteristics of
TRIP steel, which are subjected to high deformation rate, need to be investigated. In
the previous study [8], fracture toughness of TRIP steel was evaluated by J-integral
by using pre-cracked specimen under three-point bending test. However, the value
of J-integral is determined at a limited range of deformation rate because a con-
ventional impact test based on the Split Hopkinson pressure bar method cannot be
applied for a large dimension specimen. From the point of view mentioned above,
fracture toughness of TRIP steel can be evaluated by means of the SPT, especially
at a relatively high deformation rate and an investigation on SPT for TRIP steel is
necessary. Additionally, since the effect of strain-induced martensitic transforma-
tion during plastic deformation of TRIP steel coupled with a high increase of
temperature is quite complicated [9, 10], a finite element simulation is
indispensable.

The relationship between fracture toughness of materials and equivalent fracture
strain obtained from SPT in austenitic stainless steel, a kind of TRIP steel, was
investigated by some researchers. Mao et al. [4] reported that equivalent fracture
strain can be directly related to the fracture toughness, and an empirical formulation
was proposed for this relationship. Then, Shindo et al. [11] introduced an equation
for the correlation of J-integral and equivalent fracture strain in SPT only under the
condition of low deformation rate and cryogenic temperature for some austenitic
stainless steels. More recently, computational on SPT of type-304 austenitic
stainless steel was conducted by Ling et al. [12]. The size effect of specimen and
puncher in SPT for this material was examined by Yang et al. [13] by means of a
finite element simulation with an application of a damage model. Although
numerous investigations on SPT can be found, standardization of this method is still
in progress [14]. As a result, an examination of the size effect as well as an
evaluation of J-integral by means of SPT needs to be conducted for TRIP steel.

In this study, finite element simulations are performed for the SPT at various
deflection rates and different sizes of specimen and puncher by an application of
damage model for type-304 austenitic stainless steel, a kind of TRIP steel. Then,
a comparison of computational results with experimental result as well as other
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publication is given to confirm the validity of computation. The rate-sensitivity of
fracture-mechanical characteristics is examined for different sizes of specimen and
puncher. Furthermore, based on the conventional method, a relationship between
equivalent fracture strain in the SPT and J-integral obtained from three-point
bending test on pre-cracked specimen in the previous study [8] is challenged to be
correlated.

2 Methodology

2.1 Conventional Method for Estimation of Fracture
Toughness from the SPT

Figure 1 shows a schematic illustration of the SPT. In the actual situation, a disc
specimen is placed in the center of the lower die. The upper and lower dies of the
fixture are clamped together by the screws. During the test, the load is applied to the
specimen through a puncher which consists of a pusher rod and a hard ball made of
steel or ceramic.

Figure 2 shows a typical plot of the force-deflection curve obtained from the
SPT [5]. The force-deflection curve can be divided into several parts [5]. Part I
mainly indicates the purely elastic properties of the materials. Part II describes the
transition between the elastic and elasto-plastic deformation behavior. Part III
corresponds to membrane stretching behavior due to plastic bending up to part IV
where the first necking is produced and then damage occurs.

Furthermore, it is reported that equivalent fracture strain is one of the most
important fracture parameter of the SPT for an evaluation of fracture toughness of
materials [3–5]. In order to obtain equivalent fracture strain, the values of the
thickness in the specimen at the thinnest section, tf , are necessary to measure.
A measurement of tf is indicated in Fig. 3 which shows a photograph of the

Fig. 1 A schematic
illustration of the SPT
apparatus
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deformed specimen after failure in experiment [5] and simulation. The profile of
deformed specimen obtained from the simulation is examined at the level of
deformation at maximum force, dm. Since tf cannot be measured by the same
method to that in Fig. 3a, it is determined by the thickness of specimen at the
thinnest section at this level of deformation as shown in Fig. 3b. Then, the
equivalent fracture strain, εq̄f , is determined by using the following equation under
an assumption that the volume of specimen during plastic deformation is constant
[4].

εq̄f = ln
to
tf

� �
ð1Þ

where to is the initial thickness of the specimen. At the same time, ε ̄qf can also be
calculated from the value of deflection at the initial fracture, df . However, the
determination of initial fracture of specimen in the SPT is quite complicated.
Therefore, the value of deflection at the maximum force, dm as shown in Fig. 2,

Fig. 2 A typical
force-deflection curve
obtained from the SPT [5]

Fig. 3 A method for measurement of thickness of deformed specimen at the thinnest section in
a experiment [5] and b simulation
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is usually used instead of df in some past studies [4, 5] for a calculation of εq̄f in the
SPT as,

εq̄f = α
dm
to

� �n

ð2Þ

Value of α and n can be identified from a correlation between ln ðto ̸tf Þ and dm/to
in a logarithmic plot. Finally, a correlation of equivalent fracture strain in the SPT
and fracture toughness of the material is challenged to obtain.

2.2 Computational Method

2.2.1 Damage Model Applied for Finite Element Simulation

The kinetics model of SIMT proposed by Iwamoto et al. [9] and the multiaxial
constitutive equations [10] including the heat conduction equation [15] for TRIP
steel are employed. In addition, in order to describe the damage and fracture process
of material, a modified version of the Johnson-Cook (JC) damage model [16] is
applied. In the paper by Yoon et al. [17], the damage variable at a material element,
ω, can be incorporated into the constitutive relation when the value of ω is less than
1.

It is assumed that the failure is occurred only in the parent phase and it is only
included into the stress-strain relationship of parent phase as,

σ ̄0ðγÞ = ð1−ωÞ σy γð Þ +C1 1− exp −C2ε ̄pslipðγÞ
� �h iC3

� �
ð3Þ

The damage variable is determined by Dey et al. [18] based on the JC damage
model as,

ω=
Z ε ̄ṗslipγð Þ

εf̄
dt,

εf̄ = D1 +D2 exp D3Σð Þf g 1+
ε ̄ṗslipγð Þ
ε0̇

 !D4

1 +D5
T −Tr
Tm − Tr

� �
, ð4Þ

where t is the time, εf̄ is the equivalent fracture strain of one material element, T is
absolute temperature and D1 ∼D5 are material parameters. Table 1 shows the newly
identified parameters for type-304 austenitic stainless steel.
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2.2.2 Finite Element Model and Boundary Conditions

In this study, a disc specimen with 10 mm in diameter and 0.5 mm in thickness is
used. The diameter of the puncher is 2.4 mm, and the span length is set to be 4 mm.
In order to investigate the influence of dimension of specimen as well as puncher on
rate-sensitivity of fracture-mechanical characteristics, another bigger specimen with
12.8 mm in diameter and 0.5 mm in thickness is also used. The diameter of the
puncher is 4.8 mm, and the span length is 6.4 mm in this case. Figure 4 shows a
finite element model for an axisymmetric computational simulation in the case of
puncher with diameter of (a) 2.4 and (b) 4.8 mm. The simulation is performed at
293 K for both cases of the puncher. Due to a symmetry on the shape of the
specimen and boundary condition, the deformation of the specimen in an entire
region is simulated with the finite element discretization by a crossed-triangular
axisymmetric element. Partial areas of the lower and upper surfaces of the specimen
are fixed as similar to the paper by Ling et al. [12]. The nodal displacement rates, δ ̇,
at the axisymmetric boundary in the horizontal direction and the fixed surfaces in
the vertical direction are set to be zero.

Table 1 Material parameters
of damage model for type-304
austenitic stainless steel

D1 D2 D3 D4 D5 Tr
(K)

Tm
(K)

2.0 1.936 −2.969 −0.06 1.014 293 1673

Fig. 4 A finite element
model for an axisymmetric
computational simulation in
the case of puncher with
diameter of a 2.4 and
b 4.8 mm
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3 Results and Discussion

3.1 Validity of Computation and the Size Effect
on the Rate-Sensitivity of Mechanical-Fracture
Characteristics

Figure 5 shows a force-deflection curve obtained from experiment and simulation at
deflection rate of 0.033 mm/s for the cases of puncher with diameter of 2.4 and
4.8 mm. The shape of the curves is quite similar to a typical shape of
force-deflection curve in SPT as shown in Fig. 2. In both cases of puncher, a fairy
good agreement between experiment and computation can be seen. From this fig-
ure, the deflection at the maximum force is determined to be 1.8 and 2.5 mm for the
puncher with diameter of 2.4 and 4.8 mm, respectively.

Moreover, Fig. 6 shows the shape of deformed specimen in the simulation with
the distribution of the damage variable at deflection rate of 0.033 mm/s and
deflection at the maximum force for the case of puncher having 2.4 mm in diam-
eter. The value of damage variable is concentrated in a small region where a
necking may appear. The profile of deformed specimen in the simulation as well as
position of fracture point is quite similar to that in Fig. 3a and observation of Ling
et al. [12]. From Figs. 5 and 6, the validity of computational results can be con-
firmed sufficiently.

Figure 7 shows the force-deflection relationship at different deflection rates for
two cases of the puncher. In general, the case of larger puncher shows higher value
of maximum force and deflection at the maximum force. Therefore, it can be
considered that the total consumption energy, which is calculated by the area under
the force-deflection curve until the maximum force, increases with an increase in
the diameter of the puncher and specimen. From this figure, a bigger specimen with
larger puncher is fractured at larger deformation compared to a smaller one.

Fig. 5 Force-deflection
curves obtained from
experiment and simulation for
two cases of puncher
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Additionally, a negative rate-sensitivity of maximum force as well as the deflection
at the maximum force can be seen in cases of the puncher with 2.4 and 4.8 mm in
diameter.

Figure 8 shows the relationship between deflection at the maximum force and
deflection rate in a semi-logarithmic plot for two cases of the puncher. The value of

Fig. 6 Shape of deformed
specimen with the distribution
of damage variable at
deflection rate of 0.03 mm/s
and deflection of 1.8 mm
(puncher 2.4 mm)

Fig. 7 Force-deflection
curve obtained from
simulation for two cases of
puncher at various deflection
rate

Fig. 8 Rate-sensitivity of
deflection at maximum force
in a semi-logarithmic plot for
two cases of puncher
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deflection at the maximum force slightly decreases with an increase in the deflection
rate and shows a linear relationship. A similar tendency can be observed from two
cases of the puncher. Thus, it can be considered that the equivalent fracture strain is
lower at higher rate of deformation.

3.2 An Evaluation of J-integral Based on the Conventional
Method

The conventional method described in the above section is applied to calculate
equivalent fracture strain computationally. Values of deflection at the maximum
force and thickness of deformed specimen at the thinnest section are presented in
Table 2 for different deflection rates.

Figure 9 shows the plotted relationship between ln(ln ðto ̸tf Þ) and ln(dm/to).
From this figure, the relationship between ln(ln ðto ̸tf Þ) and ln(dm/to) is approxi-
mately linear. Therefore, the value of α and n in Eq. (2) is determined as 0.19 and
0.67, respectively. Equation (5) for a calculation of equivalent fracture strain of the
SPT can be obtained.

Table 2 Values of deflection at the maximum force and thickness of deformed specimen at the
thinnest section

Deflection rate (mm/s) 0.0033 0.033 0.33 3.3 167 1667 3333

dm (mm) 1.87 1.71 1.581 1.4241 1.2671 1.071 1.049
tf (mm) 0.30 0.33 0.34 0.347 0.349 0.361 0.364

Fig. 9 Relationship between
ln(ln ðto ̸tf Þ) and ln(dm/to)
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εq̄f =0.19
dm
to

� �0.67

ð5Þ

Finally, the relationship between equivalent fracture strain and deflection rate in
a semi-logarithmic plot is shown in Fig. 10. From this figure, a negative
rate-sensitivity of equivalent fracture strain of the SPT with almost linear rela-
tionship can be observed. Otherwise, in previous study [8], TRIP steel shows a
positive rate-sensitivity of J-integral as shown in Fig. 11. An opposite in
rate-sensitivity of equivalent fracture strain of the SPT and J-integral can be seen.
This result might come from several reasons. One of them is that value of J-integral
at high deformation rate might have a limitation because of some problems due to
its weakness. Moreover, the deformation mode of the SPT and three-point bending
test on pre-cracked specimen is totally different. Furthermore, to obtain a correlation
between equivalent fracture strain in Fig. 10 and J-integral obtained from
three-point bending test, the method for normalization of deflection rate of these

Fig. 10 Relationship
between equivalent fracture
strain and deflection rate in a
semi-logarithmic plot

Fig. 11 Relationship
between J-integral and
normalized deflection rate in a
semi-logarithmic plot
obtained from three-point
bending test [8]

26 H. T. Pham and T. Iwamoto



testing methods should have a correlation. Due to a difference in the shape and
dimension of the specimen in the SPT and three-point bending test, the correlation
of the method for normalization is quite difficult to obtain. Consequently, the
correlation between the equivalent fracture strain of the SPT and J-integral could
not be achieved for rate-sensitivity based on the conventional methodology. In
order to obtain the correlation, it is necessary to propose a new method.

4 Concluding Remarks

In this study, finite element simulation was performed for the SPT for TRIP steel at
different deflection rates for the cases of puncher having 2.4 and 4.8 mm in
diameter. The validity of computation was confirmed by a comparison of compu-
tational result with experimental result for both two cases of puncher. The inves-
tigated steel indicates a negative rate-sensitivity of maximum force as well as
deflection at the maximum force in the SPT. At higher deflection rate, the damage
occurs when deflection is lower level. Although the total consumption energy is
considerably higher in case of larger puncher and bigger specimen, a similar ten-
dency of deflection at the maximum force can be obtained for different sizes of the
puncher and specimen. Furthermore, a correlation between equivalent fracture
strain and fracture toughness of the steel cannot be obtained based on the con-
ventional method because of an opposite in rate-sensitivity and a different method
for normalization of deflection rate in the SPT and three-point bending test. In order
to obtain a correlation, it is necessary to propose a new method.
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On the Buckling Behavior
of Multi-cracked FGM Plates

Nguyen Dinh Duc, Truong Duc Trinh, Thom Van Do
and Duc Hong Doan

Abstract In this paper, a model of statically stability plate with crack-based finite
element analysis will be introduced by numerical simulation computation. The sim-
ulation model was built based on phase field theory in mechanics of fracture; the case
study of plate was significantly computed with the new third-order shear deformation
plate theory (TSDT), which is derived from an elasticity formulation, rather by the
hypothesis of displacements [1]. Importantly, to verify of reliability of the modeling
computation theory, the simulation result was compared to the experiment of Seifi and
Nafiseh [2] to ensure the essential reliability for the paper. After that, the authors also
propose and test the effects due to the size, the declination of cracks as well as the
thickness of the plate to the stability, additionally, the relation between number of
cracks and buckling load involved to instability of plate will be discussed. Lastly,
visual configurations about forms of instability of plate with cracks will be presented.

Keywords Buckling ⋅ TSDT ⋅ Phase field method ⋅ Multi-crack

1 Introduction

Nowadays, the structures of composite with functionally graded material
(FGM) plate are applied in use of technical reality and engineering applications
widely [3]. However, there are appearances of defects such cracks caused by many
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unexpected reasons due to the working conditions, from manufacturing processes to
working conditions in use that make cracks. These appearances of crack will
weaken the hardness of the structure as well as durability significantly. When the
plate is under pressure load on the surface, it is easier to make the plate be unstable
comparing to the case of plate that do not have fractures, especially size and
position of cracks also affect differently to the possibility of unstable in structures of
plates. Therefore, research about instability of plate with internal cracks has the
great meaning in real construction [4, 5], becomes a basement for studying which
factors of crack affects majorly to stable ability of plate, and a step to the com-
putation in expanding of crack in structures.

Recent years, the influence of crack to the stable possibility of the FGMs plate
form has been studying in both numerical theory and experiment, especially some
kinds of the FGMs plates such as ceramic-metal FGM have been manufactured
successfully and further developed as well as designed in many engineering
applications of extremely severe working conditions such as high-temperature
working environment due to its gradually various changes of material property
characteristics. Since their superior features and great characteristics of ceramic
could resist against heat and corrosion, and the high toughness of metal also attracts
energy and plastic deformation. The FGMs have significantly abilities of with-
standing intense high-temperature gradient and maintaining the structural integrity,
even eliminating interface problems or thermal stress concentration [6]. During the
working processing period, the plate could normally have the in-plane compressible
forces because of thermal or mechanic loads, these forces easily make the structure
of plate to be in buckling phenomenon before reaching to the yield stress state, then
the structure will take on a great deformation behavior, obviously the capacity of
load carrying is totally reduced at this buckling state, furthermore, this phenomenon
also becomes more seriously with the appearances of defects. As a consequence, the
critical buckling issue with fracture in this FGMs plate plays a very important role
in both plate structure study and practical application. This paper will focus
specifically on the study of critical buckling load phenomena of FGMs plate with
internal flaws under the variation of number cracks.

There are several studies in the exploration of buckling behaviors in FGPs.
Shariat and Eslami [7] built a new closed-form computation for thermal buckling of
FGPs which is a thick plate based on the first-order shear deformation theory, also by
using this theory, the circular deformation of FGPs under thermal loading with
temperature dependent properties was studied by Golmakani and Kadkhodayan [8].
On the other hand, Najafizadeh and Haydari [9] already investigated the critical
buckling temperature rise of circular FGPs based on the third-order shear defor-
mation theory. In Talha and Singh [10] study, an analysis of static behavior and free
vibration with various boundary conditions using high-order theory-based finite
element methods (FEM) presented. Additionally, studies on fracture got many
concentrations recently. While Dolbow et al. [11] applied extend finite element
method (XFEM) to modeling the mix mode of the deflection of the Mindlin-Reissner
plate theory, then explored the strength of the stress concentration in crack plates.
Moreover, the effect of boundary conditions, defect size, the gradient volume
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fraction index, are studied using FEM in the purpose of analyzing the critical
buckling temperature rise in a composite plate with a circular cutout by Shaterzadeh
et al. [12]. Especially, among the studies which analyzed the buckling with internal
crack, Yu et al. [13] already investigated thermal buckling impacts using extended
isogeometric analysis of FGPs with cracks, Baiz and Natarajan [14, 15] used XFEM
and SFEM to attempt linear plate buckling analysis with crack based on
Mindlin-Reissner plate theory; furthermore by using XFEM and first-order shear
deformation theory, Baiz P. and Natarajan S. also figured out the influence of crack’s
geometric impact in FGMs plate. It can see that cracked plate get many interests in
buckling problems. Phase field method is a new method applied in fracture study in
structure in representing the geometry and approximations with high accuracy; this
method shows advantages when analyzing and modeling internal fracture in struc-
ture for both static and dynamic problems [16, 17]. For instance as remarkable in
strong point of phase field method, Areias et al. [18] applied phase field method in
finite strain plates to represent bending with fracture; the advantages in fracture and
crack modeling by phase field method are shown more by Amiri et al. [19] in which
the author built crack model for thin shell; obviously, parameters needed in phase
field method will bring the level of computation become much harder. Nonetheless,
the analysis of critical buckling load with multiple defects in FGPs also plays an
important role in understanding the behaviors of plate with internal cracks, but there
are still quite rare studies on this kind of problem.

In this paper, an investigation of critical buckling behaviors of FGPs with
multiple fractures using phase field method for modeling the defects in design based
on the new third-order shear deformation theory is proposed by Shi [1]. The cal-
culated numerical results are taken to compare with the reference [13, 14] to show
the accuracy of the analysis. Then, the effects and impacts of multiple cracks on
buckling values in FGPs also are represented and analysis in the following section.
The rest of the paper is represented as following sections. In the Sect. 2, the theory
to build numerical formulation is reported in Sects. 2.1 and 2.2. While Sect. 3 is
presented for critical buckling analysis for cracks based on phase field method for
the numerical results with analysis and discussion for different cases of cracks on
plate, firstly is two cracks, secondly is three and lastly is three cracks concentrated
together at central position of plate. The conclusion is summarized in Sect. 4.

2 Formulation for Third-Order Shear Deformation
Theory

2.1 Functionally Graded Plates

Functionally graded plates are normally considered to be changed by the material
properties according to the vary in the plate thickness due to the volume fractions
(n). In this study, the functionally graded plate (FGP) type is chosen as
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ceramic-metal FGP with a thickness h as described in Fig. 1, supposing that its
bottom and top surfaces are being fully composed by metallic and ceramic,
respectively. To make the integral computation be easier, the xy-plane is chosen to
be in the mid-plane of the plate, whereas the positive z-axis is upward from the
xy-plane. There are several explanations for the variation of the volume fractions;
however, in this study, the common simple power-law assumption for describing
the volume fraction of the ceramic (Vc) and the metal (Vm) [13, 20] is being used:

Vc =
z
h
+

1
2

� �n

;Vm =1−Vc with n≥ 0 ð1Þ

where z is the thickness coordinate variable with − h ̸2≤ z≤ h ̸2, the subscripts
c and m represent the ceramic and metal material components, respectively. In this
paper, the variable n is signified as non-negative volume fraction gradient index.
The Young’s modulus E, the Poisson’s ratio υ with a power-law distribution as
below [20]:

EðzÞ=Em + ðEc −EmÞ z
h
+

1
2

� �n

, υðzÞ= υm + ðυc − υmÞ z
h
+

1
2

� �n

ð2Þ

2.2 Kinematic Equations of Plates

This part introduces a finite element formulation for functionally graded plate which
uses a new simple third-order shear deformation plate theory. This theory is orig-
inally proposed by Shi [1] based on rigorous kinematic assumption on displace-
ments. Previous effort presented in reference [6] has made to reveal the advantages
of this new theory as it substantially provides more accuracy than other
higher-order shear deformation plate theories. It may be due to the fact that the
kinematic of displacements is derived from an elasticity formulation rather than the
hypothesis of displacements. The three-dimensional displacements (u, v, w) at a
point (x, y, z) in the plate can be expressed in terms of five unknown variables as
follows:

Ceramic surface

Mid-plane

Metal surface

h/2

h/2

Fig. 1 Geometry of a functionally graded plate
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uðx, y, zÞ= u0ðx, yÞ+ 5
4 z− 4

3h2 z
3

� �
ϕxðx, yÞ+ 1

4 z−
5
3h2 z

3
� �

w0, x

vðx, y, zÞ= v0ðx, yÞ+ 5
4 z− 4

3h2 z
3

� �
ϕyðx, yÞ+ 1

4 z−
5
3h2 z

3
� �

w0, y

wðx, y, zÞ=w0ðx, yÞ
ð3Þ

εx
εy
εxy
γyz
γxz

8>>>><
>>>>:

9>>>>=
>>>>;

=

u0, x + z 14 ð5ϕx, x +w, xxÞ+ z3 − 5
3h2
� �ðϕx, x +w, xxÞ

v0, y + z 14 ð5ϕy, y +w, yyÞ+ z3 − 5
3h2
� �ðϕy, y +w, yyÞ

u0, y + v0, x + z 14 ð5ϕx, y +2w, xy +5ϕy, xÞ+ z3 − 5
3h2
� �ðϕx, y +2w, xy +ϕy, xÞ

5
4 ðϕy +w, yÞ+ z2 − 5

h2
� �ðϕy +w, yÞ

5
4 ðϕx +w, xÞ+ z2 − 5

h2
� �ðϕx +w, xÞ

8>>>>><
>>>>>:

9>>>>>=
>>>>>;
ð4Þ

where u, v, w define the displacements at the mid-plane of a plate in the x, y, z
directions, respectively. While ϕx, ϕy represent the transverse normal rotations of
the x- and y-axes. In Eqs. (3) and (4), the comma describes the differentiation
against x and y coordinates.

From the Hooke’ law, the constitutive relations of normal and shear stress are
following equations:

σ =DmðzÞðεð0Þ + zεð1Þ + z3εð3ÞÞ
τ=DsðzÞðγð0Þ + z2γð2ÞÞ
With σ = σx σy σxy

� �T ; τ= τyz τxz
� �T ð5Þ

DsðzÞ= EðzÞ
2ð1+ vÞ

1 0
0 1

� 	
;DmðzÞ= EðzÞ

1− v2

1 ν 0
ν 1 0
0 0 1

2 ð1− νÞ

2
4

3
5 ð6Þ

It is necessary to notice that Eq. (5) are denoted εð0Þ; εð1Þ; εð3Þ; γð0Þ; γð2Þ for the
strain and shear components induced from Eq. (4) of displacements in the plate
[21].

So that, according to the third-order shear deformation theory proposed by Shi
[1], the normal forces, bending moments, higher-order moments and shear forces
can be computed and written in matrix form as following:

N ̃

M̃

P ̃

Q ̃

R ̃

8>>>>>>><
>>>>>>>:

9>>>>>>>=
>>>>>>>;

=

A B E 0 0
B D F 0 0
E F H 0 0
0 0 0 A ̂ B ̂
0 0 0 B ̂ D ̂

2
66664

3
77775

εð0Þ

εð1Þ

εð3Þ

γð0Þ

γð2Þ

8>>>>>>><
>>>>>>>:

9>>>>>>>=
>>>>>>>;

ð7Þ
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With ðA,B,D,E,F,HÞ=
Zh ̸2

− h ̸2

ð1, z, z2, z3, z4, z6ÞDmðzÞdz; ðÂ,B ̂,D ̂Þ

=
Zh ̸2

− h ̸2

ð1, z2, z4ÞDsðzÞdz
ð8Þ

UðδÞ= 1
2
qTe

Z
Ω

BT
1AB1 +BT

1BB2 +BT
1EB3 +BT

2BB1

+BT
2DB2 +BT

2FB3 +BT
3EB1 +BT

3FB2

+BT
3HB3 +BT

4 ÂB4 +BT
4B ̂B5 +BT

5B ̂B4

+BT
5D ̂B5

0
BB@

1
CCAdΩqe ð9Þ

2.3 Phase Field Theory and Crack Modeling

Phase field theory provides a parameter s which is varying continuously in the
interval of (0,1). When s equal to 0, then there is a fracture in the considering phase
of material plate, oppositely with s equal to 1. If s varies in the interval of (0,1), it
means the plate begins to be softer and at the onset of bending. Therefore, it can be
said that phase field theory helps crack modeling become easily to control by
varying the state of normal-softening-fracture by solving the phase field parameter s
from 0 to 1. This parameter s is considered as a variable in strain energy formula by
s2 function, thus the crack in plate could happen as strain energy reduces to 0.

From the kinematic equation derived above, the total strain energy of plate due
to the normal forces, bending moments, higher-order moments and shear forces
could be represented by:

Uðδ, sÞ=

1
2 q

T
e

R
Ω s2

BT
1AB1 +BT

1BB2 +BT
1EB3 +BT
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+BT
3HB3 +BT

4 ÂB4 +BT
4 B̂B5 +BT
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+BT
5D ̂B5

0
BBB@

1
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2

R
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2

R
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� �
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� �T h3

12 dΩ

+ 1
2

R
Ω s2 ϕy, x ϕy, y

� �
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12 dΩ+
R
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h i
dΩ
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=
Z
Ω
s2Ψ ðδ)dΩ+

Z
Ω
GCh

ð1− νÞ2
4l

+ l ∇sj j2
" #

dΩ

( )

ð10Þ

where qe is used to denote the element displacement vector, and GC is used for the
critical energy release rate in Griffith’s theory, and l is a positive regularization
constant to adjust the size of the fracture zone.
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σ̂0 =
σ0x τ0xy
τ0xy σ0y

� 	
ð11Þ

The first variation of the functional Uðδ, sÞ is particularly computed by

δUðδ, s, δδÞ=0
δUðδ, s, δsÞ=0



ð12Þ

Continuously, the formulations for pre-buckling analyzes of cracked plate could
be described as functions below:

∑Ke + λcr ∑Ke
G

� �
δ=0

� ð13Þ
Z
Ω
2sΨðδÞδsdΩ+

Z
Ω
2GCh −

ð1− νÞ
4l

+ l∇s∇ðδsÞ
� 	

dΩ=0



ð14Þ

Once computed the value δ of from Eq. (14), it could be easily computed for
eigenvalue λcr in Eq. (13) which is considered as the critical buckling load.

3 Numerical Results and Discussion

In this section, the critical buckling analysis of FGPs with multiple internal cracks
using phase field method coupled with finite element method is presented. In all the
numerical calculation, a square of Al/ZrO2 plate with cracks which is meshed by
10 × 10 element scheme is assigned. All the plates being studied are considered
under uniaxial load. The critical buckling load, which is being solved directly from
the eigenvalue equation of buckling plates by the development of the third-order
shear deformation theory, is numerically analyzed. The value of buckling load is
presented as a non-dimensionalized value kc = ð102λcra0Þ ̸ðEh0Þ ðwith a0 = 10h0Þ.
For convenience in representing the results, different boundary conditions at each
edge of the plate are namely set up as simply supported (S), clamped (C), and free
(F). The analyzed square plate has length and wide to be H = L = 0.2 m, while the
thickness of plate is set as h = H/100 or h = 0.002 m for analyzing, due to the
variation of change of the volume fraction index, the length of the cracks as well as
the distance among cracks.

3.1 Convergence and Accuracy Studies

There is still rarely numerical result in critical buckling load investigated with
internal crack; in this part specifically, the critical buckling temperature rise
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(CBTR) of a square plate with length and wide to be H = L = 0.2 m, subjected to a
uniform temperature rise is considered to verify the convergence property and
accuracy of the developed phase field based on third-order shear deformation theory
in order to compare to the reference solutions [13].

Considering a plate with an inclined central crack subjected to a temperature rise
as showed in Fig. 2 is studied with the change of inclined angles and vary of the
values gradient volume facture index. As the results described in Table 1, the
CBTR computed by the third-order shear deformation theory with various inclined
angles converges well to the reference solutions [13]. The reference solutions [13]
were derived based on the present XIGA with the first-order shear deformation
theory. The results also reveal one interesting point that when the plate exhibits
much more metallic behavior, or the larger gradient volume fraction index, the more
convergence CBTR could reach, though with the gradient volume fraction index is
0, the CBTR is a little higher than the reference solutions [13], and the decrease of
CBTR as the volume fraction index from 0 to 5 is significant, in about twice.

L

H
c

α

y

x

Fig. 2 Model geometry of a
square Al/ZrO2 with an
inclined central crack

Table 1 Comparison of the critical buckling of a fully simple supported square Al/ZrO2 with the
effect of the inclined angle of crack (c/H = 0.6) altered by volume fraction exponent

n Inclined angle (degree)

0 15 30 50 60 75 90

0 Ref. [13] 8.894 8.797 8.608 8.506 8.608 8.797 8.894

Computed 12.0379 11.9206 11.4213 11.4219 11.4213 11.9206 12.0379

0.5 Ref. 13] 6.114 6.047 5.918 5.848 5.918 6.047 6.114

Computed 6.76757 6.70251 6.42222 6.4243 6.42222 6.70251 6.76757

1 Ref. [13] 5.412 5.353 5.238 5.176 5.238 5.353 5.412

Computed 5.56817 5.48895 5.34501 5.28711 5.34501 5.48895 5.56817

2 Ref. [13] 5.012 4.958 4.851 4.794 4.851 4.958 5.012

Computed 4.94782 4.8761 4.74779 4.69783 4.74779 4.8761 4.94782

5 Ref. [13] 4.771 4.718 4.616 4.561 4.616 4.718 4.771

Computed 5.08094 5.00445 4.87055 4.82002 4.87055 5.00445 5.08094

36 N. D. Duc et al.



This phenomenon can also be found the same for the reference solutions [13]. It can
be observed in the numerical results that both solutions show the same behavior as
the CBTR values decrease with increasing the volume fraction exponent and
become converge as increasing of n.

On the other hand, the reference solutions [14] provided the investigation of a
square plate with the same characteristics of the analysis in this study. Tables 2 and
3 describe the numerical solution comparisons with the reference [14]. Since the
reference solutions are considered with the Mindlin-Reissner plate theory with
different types of plate elements, this analysis has been changed the modeling into
the homogeneous plate, and make the comparison with the results in which the
mesh distortion is 0 [14]. All of the results are very close to each other in both cases
that having crack or no crack; this shows the clearly reliability for the modeling in
this study. Furthermore, according to the reference [14], the solutions also reveal
that the convergence and the influence of crack size impacts to the critical buckling
load which is the same with the results in this study represented in the detail
analysis in the next parts.

3.2 Critical Buckling with Two Cracks Equidistant Analysis

A square of Al/ZrO2 plate with two cracks equidistant from the central as described
in Fig. 3 has been studied. Figure 4 presents the gained numerical results of the
critical buckling load of a fully simple supported Al/ZrO2 plate as the length of
cracks is set to increase from 10 to 90% of the total length of the plate. The
numerical analysis is significantly computed based on the change of volume frac-
tion index, the cracks size, and the distance between two cracks set in the plate
interface. The presented numerical results show that when the distance between two
cracks is kept equilateral on the surface of the plate and increasing the volume
fraction index, it makes a decrease of the critical load, no matter how increasing

Table 2 Comparison of critical buckling of simply supported square plate with thickness ratio h/
H = 0.01 and longitudinal central crack c/H = 0.2

Mesh density Computed MITC [14] MISC2 [14] MISC2_b [14]

31 × 31 4.2742 4.0229 4.0325 4.0394

Table 3 Comparison of critical buckling of simply supported square plate with thickness ratio h/
H = 0.01 and no crack

Mesh density Computed Q4R [14] MITC [14] MISC2 [14] MISC2_b [14]

11 × 11 4.4793 4.0715 4.0437 4.0320 4.0389
15 × 15 4.3216 4.0371 4.0223 4.0161 4.0198
19 × 19 4.2232 4.0222 4.013 4.0092 4.0115
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changes of cracks sizes, however, as increasing the length of crack, it also induces a
gradual decrease of the critical buckling load as described in Fig. 4.

On the other hand, in the second analysis as shown in Fig. 5, if keeping the crack
size as half of the length of the plate and make an increasingly change in the volume
fraction index, it can be found that similarly to the case of previous test when the
crack sizes in length increases, the numerical results of critical load decrease.

Especially, as making increasing the distance between two cracks from 10 to
90% of the total length of the plate, contrary to the first test, the critical load values
are also increasing measurably, notice that at the beginning when increasing the
distance of two cracks, there is a little diminish of the critical load at first, the reason
is as the distance between two cracks is too small and the buckling phenomena
happen from the center at first, thus it easily to release the energy of buckling load
than when the position of cracks is far from the central positions.

In the next analysis in Fig. 6, the influence and relationship between the size of
cracks and distance between two cracks are presented. Obviously, according to two
previous numerical results, it is reasonable to predict that the critical buckling will
be reducing as spreading the size of cracks, and be rising as expanding the distance
between of the crack. By Fig. 6, the numerical results reveal that the analysis is
reliable to each other. Figure 7 shows the first five buckling mode shapes of cracked

L

H

c

y

d

x

Fig. 3 Functionally graded
plate with two cracks
equidistant geometric

Fig. 4 Critical buckling
values with the change of
volume fraction index (n) and
crack’s length (c/H)
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Fig. 5 Critical buckling
values with the change of
volume fraction index (n) and
distance between cracks (d/H)
when keeping the crack’s size
as 0.5 of plate’s length

Fig. 6 Critical buckling
values with the change of
cracks’ length (c/H) and
distance between cracks (d/H)
when keeping the volume
fraction index as 0.5

Mode #1 Mode #2 Mode #3

Mode #4 Mode #5

Fig. 7 First five buckling modes of CFCF plate with two cracks (L = H = 0.2 m, h = 0.002 m,
c/H = 0.5)
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plates with two cracks equidistant, obviously, the numbers of cracks affects much in
the shape of plate at buckling state.

3.3 Critical Buckling with Three Cracks Equidistant
Analysis

This section is devoted for the next numerical example by considering the same
characteristics of Al/ZrO2 plate with three cracks equidistant from the central as
described in Fig. 8 has been studied. In this analysis, when progressively increasing
the length of cracks or growing the gradient volume fraction, it is easy to see that
the critical buckling decreases as showed in Fig. 9. However, in the test of keeping
the equal length of cracks as half of the plate’s length and making change in
distance among cracks as Fig. 10 presented, as the distance among crack is small,
there is a little reduce of buckling load, but when the distance of two out side cracks
becomes larger compared to the position of the central cracks, the load increases
back; especially, it can be seen that the critical load is changed not much due to the

L

H

c

y

x

d

Fig. 8 Functionally graded
plate with three cracks
equidistant geometric

Fig. 9 Critical buckling
values with the change of
volume fraction index (n) and
crack’s length (c/H)
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change of crack’s length, the reasons are that the energy loss from the central crack
position also compensate for the energy of buckling state from two out side cracks.

In the next test, the model is set up by keeping the constant of the volume fraction
index and making change in both the length of cracks and the distance among cracks
as shown in Fig. 11, the impacts from numbers of cracks show clearly in this part
since compare to the plate having only two cracks. The critical load in this test is only
half comparing to that of plate having two cracks, furthermore, one of three cracks
are at the central, so it is easy to release the buckling energy, similarly to previous
test, the critical buckling is not changed much when increasing the distance among
cracks, but as the crack’s lengths become larger, the buckling state get easier to
release energy and that is why the critical load is also smaller.

The further observation on the numerical critical buckling results is presented in
Table 4; it shows a strong influence of the boundary conditions on the buckling
load. The cracks affect the critical buckling load as it is found to be decreased for
the CCCC, SCSC, SSSS, and SFSF boundary conditions. The load of the CCCC is
much greater than that of a SSSS as well as the other boundary conditions. The
forces or constrains make the critical load decrease when enlarging the volume
fraction index from ceramic to metal material as well as when changing the
boundary conditions. However, as the volume fraction index becomes larger than 1,
even increasing the length of crack, the critical buckling load is not changed much,
but become converge (Table 4). Figure 12 describes the first five buckling mode
shapes cracked plates with three cracks equidistant.

Fig. 10 Critical buckling
values with the change of
volume fraction index (n) and
distance between cracks (d/H)
when keeping the crack’s size
as 0.5 of plate’s length

Fig. 11 Critical buckling
values with the change of
cracks’ length (c/H) and
distance between cracks (d/H)
when keeping the volume
fraction index as 0.5
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3.4 Critical Buckling of Three Cracks Concentrated
at Central of Plate

The development of dynamics cracks is an important study in the future, thus in this
part, the impact of multiple cracks which are connected to each other in the central
of plate that will be presented. The square plate with the same characteristics as two
previous sections is chosen. Three cracks with the equal length are changed from
c/H = 0.1–0.4 and the crack angle α is 45° as Fig. 13. Figure 14 represents the
behaviors of buckling state in this case; obviously, as cracks concentrate at the
central with the increasing progressively, the critical buckling load will be reduced
much. The length of cracks is proportional to the buckling load. It can be said that
avoiding central cracks as well as the numbers of cracks affects significantly to the
buckling fail of plates. Figure 15 also presents the first five buckling mode shapes

Table 4 Critical buckling
load of plate with two cracks
for different boundary
conditions (h/H = 0.01,
c/H = 0.5) altered by volume
facture exponent

n CCCC SCSC SSSS SFSF

0 27.7015 24.7433 12.0902 4.87837
0.5 15.6317 13.9517 6.79643 2.74525
1 12.936 11.4476 5.57393 2.25181
5 11.795 10.442 5.07708 2.0529
10 11.9537 10.5941 5.17638 2.08977

Mode #1 Mode #2 Mode #3

Mode #4 Mode #5

Fig. 12 First five buckling modes of CFCF plate with three cracks (L = H = 0.2 m,
h = 0.002 m, c/H = 0.5)

42 N. D. Duc et al.



L

H
c

α

y

x

α

Fig. 13 Functionally graded
plate with three cracks
concentrated at central
geometric

Fig. 14 Critical buckling
values with the change of
volume fraction index (n) and
crack’s length (c/H)

Mode #1 Mode #2 Mode #3

Mode #4 Mode #5

Fig. 15 First five buckling modes of CFCF plate with three concentrated cracks (L = H = 0.2 m,
h = 0.002 m, c/H = 0.5)
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of cracked plates with three cracks which are concentrated to each other at the
central position of the plate, obviously, comparing to the two equidistant cracks and
three equidistant cracks, from the five mode shapes, it can be said that not only the
numbers of cracks but also the distribution or shapes of cracks in the plate also have
significantly large impacts in the shape of plate at buckling state.

4 Conclusions

Based on the third-order shear deformation theory promoted by Shi [1] as well as
phase field theory, the paper has analyzed the critical buckling behaviors of func-
tionally graded plates with multiple internal defects such as cracks. In this cracked
plate buckling problem, plate is compressed in two opposite clamped edges while
free the other two edges. The influences of the gradient volume fraction index, the
number of cracks as well as their positions, the length of cracks, and boundary
conditions on the critical buckling load are investigated. When raising the gradient
volume fraction index or in increasing the length of cracks, the critical buckling
load is decreased, and the plate is prone for buckling; it is contrary that when
increasing the distance between cracks, the critical load is increasing. The boundary
conditions, on the other hand, have the significantly important affects to the
buckling state indeed. The study also points out that the impacts of cracks when
they are at the central also influence the critical buckling load since the central
position is where buckling happens at first. The accuracy of the buckling load
obtained has high reliability and good agreements with the reference solutions for
thin plates with internal defects. Nevertheless, the present numerical study opens
new potentials and further extension to other promising problems such as dynamics
cracks progress leads to develop multiple cracks, especially thermal buckling
problems which have thermal factor impact.
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Using a Non-local Elastic Damage Model
to Predict the Fatigue Life of Asphalt
Pavement Structure

H. T. Tai Nguyen and N. Hung Nguyen

Abstract Asphalt concrete is a composite material comprising aggregate, sand,
mineral filler and bitumen as a binder. Although good compaction is performed
during the construction, there is still relatively large discontinuity inside the
material, and this will favour the appearance of micro-cracks, which decreases the
performance of the material. Structural cracking resulted from repeated loading, or
fatigue cracking, is a common failure mode of asphalt pavement structure, reducing
the serviceability of the pavement. Owing to the present of micro-cracking, the
fatigue cracking of asphalt pavement is generally modelled by using damage the-
ory. In this paper, the authors aim to illustrate the application of an isotropic
non-local elastic damage model in predicting the fatigue life of a pavement struc-
ture. A scalar D, called damage variable, is used to define the damage state at a
point of the material, and the evolution of this variable at a point depends on the
historic damage state as well as the present strain tensor at that point. The model
parameters are determined on the basis of fatigue test results—namely, 4-point
bending test. Numerical examples are presented to illustrate the ability of using
damage theory to predict the damage evolution of a pavement structure as well as
its service life.
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1 Introduction

Asphalt concrete is a widely used material for pavement surface because of its
advantages, such as good workability, ease of repair and smoothness for vehicles
travelling on it. Rutting and fatigue cracking are two common distresses of asphalt
pavement. While rutting distress generally occurs relatively early after opening to
traffic, fatigue cracking can be observed only after millions of load passes. The
appearance of fatigue cracks does not reduce traffic safety as soon as it appears, yet
it will facilitate the penetration of water, which will accelerate the degradation of
the pavement structure. Therefore, the prediction of resistance to fatigue cracking,
or fatigue life, is an important aspect in pavement structure design.

The fatigue life of a pavement structure can be estimated by using a simple
prediction model of the tensile strain at the bottom of the asphalt layers due to the
bending effect of traffic loading (bottom-up cracking). In many design guides for
pavement structures [1, 2], prediction models, or transfer functions, have been
specified to estimate the fatigue life. The model parameters in these design guides
have been determined in advance based on laboratory test results of asphalt con-
crete beams [3, 4], fatigue testing of test-tracks [5] and field observations of
pavements constructed in the past.

Along with the development of computational method, the modelling of fatigue
behaviour of asphalt pavement structure under the exertion of repeated loading
using numerical method is more and more favoured, including that using the theory
of fracture [6–8] and damage [9–14]. Owing to the present of micro-cracking inside
the material, the fatigue cracking of asphalt pavement is more frequently modelled
by using damage theory. Because spurious localisation of strain and damage into a
zone of vanishing volume commonly arises from the calculation using the classical
continuum local damage theory, the non-local damage theory of Cabot and Bazant
[15] is the most appropriate choice to overcome this issue. The evolution of fatigue
cracking can be represented by the loss of stiffness in the structure, which is
modelled by a damage law depending on the historic damage state and the strain
tensor within the non-viscous behaviour assumption [10, 11, 16] or by a more
sophisticated and versatile constitutive law when viscous behaviour is fully con-
sidered [17].

The purpose of this paper is to illustrate the use of a non-local elastic damage
model to predict the fatigue life of asphalt pavement structure. Based on our
observations on fatigue test results of several asphalt concretes in Vietnam and
inspired by the idea of [10, 11], a modified damage model is also proposed.

2 Theoretical Formulation

Let Σ denote the second Piola–Kirchhoff stress tensor, which describes the stress
state of a solid body in equilibrium under exterior loads and effects, and F denotes
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the deformation gradient tensor. Unless otherwise stated, Einstein’s summation
convention is used throughout. The local equilibrium equation of a solid body at
any point is expressed by Eq. (1):

DivðF ⋅ΣÞ+ ρ0f =0 ð1Þ

where ρ0 is the density body, f is the prescribed body force of unit mass, and the

Div operator is defined as DivðF ⋅ΣÞð Þi =
∂ðF ⋅ΣÞij
∂Xj

. Let E denote the Green–Lagrange

strain tensor, which is related to the displacement field U by

E=
1
2
ðGradðUÞ+GradTðUÞ+GradTðUÞ ⋅GradðUÞÞ ð2Þ

where the Grad operator is defined as GradðUÞð Þij = ∂ðU)i
∂Xj

.

Under the effect of repeated loading, micro-cracking presents in the material,
which decreases the effective resisting area of the material. Consequently, the true
stress is higher than the macroscopic stress while the true strain remains unchanged.
The relationship between the true and macroscopic stresses can be expressed as
Eq. (3):

Σ′ =
Σ

1−D
ð3Þ

where D is a scalar describing the damage state at a point of the material. The value
of D is in the range of [0, 1], where D = 0 corresponds to no damage occurring and
D = 1 represents a total failure of the material at that point.

For the sake of simplicity, let us assume that there is not plastic deformation in
the asphalt pavement, and the behaviour of material is time-independent. The true
stress is therefore assumed to be related to the elastic strain by means of Saint–
Venant Kirchhoff’s law:

Σ′ =2μE+ λ ⋅ trðEÞ ⋅ I ð4Þ

where I is the second-order tensor of unity, μ is the shear modulus, λ is the Lamé
constant, and the trace of tensor E is defined as trðEÞ=Eii. The shear modulus and
Lamé constant are related to the Young modulus E and the Poisson ratio ν by
μ=E ̸½2ð1+ νÞ�, λ=Eν ̸½ð1+ νÞð1− 2νÞ�. Substituting Eq. (3) in Eq. (4) gives rise
to Eq. (5)

Σ= ð1−DÞ 2μE+ λ ⋅ trðEÞ ⋅ I½ � ð5Þ

In other words, the stiffness of the material at a point decreases by a factor of
(1 − D). The reduction of material stiffness can be expressed by the evolution of
internal variable D. In case of modelling the fatigue behaviour of asphalt concrete,
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the development of D can be expressed as a function of historic damage state and
strain tensor as follows:

ΔD
ΔN

= f ðD,EÞ ð6Þ

where N is the number of load cycles.

2.1 Damage Model for Predicting the Fatigue Life
of Asphalt Concrete

Under cyclic loading, the material gets damage and loses its initial stiffness.
Because the material is much stronger in compression than in tension, only tensile
strain is considered in the damage model. The equivalent tensile strain is normally
used and is defined using Mazar’s definition [18]

Eeq =
ffiffiffiffiffiffiffiffiffiffi
⟨Ei⟩

2
q

ð7Þ

where ⟨Ei⟩ is the positive part of ith principal value of strain tensor. Inspired by the
idea of [10, 11], the damage growth used in this work is modified as follows:

f ðD,EÞ= A

1+ exp α
Eeq D
� �m� � +B

" #
ðEeqÞn ð8Þ

where A,B, α,m, n are model parameters to be identified based on laboratory test
results.

2.2 The Need of Non-local Elastic Damage Theory

Many authors have demonstrated that the damage obtained with the local damage
theory often localise into a zone of vanishing volume [15]. There are several
techniques to ignore this spurious solution but the most general and effective one is
to use the non-local damage theory.

A non-local damage treatment can be performed by replacing the local value of
equivalent strain in Eq. (7) at a point X by its average value over a certain volume,
defined by
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eEeqðXÞ= 1
Vr

Z
Vr

φðRÞEeqdV ð9Þ

where Vr is the representative volume in which the value of equivalent strain at a
point is averaged by those at other points on that volume, φðRÞ is a weight function
of R being the distance from a point to X. A bell shape function is used for φðRÞ in
this work, defined by

φðRÞ= 1− R2

R2
c
if R≤Rc

0 if R>Rc

�
ð10Þ

where Rc is the characteristic radius of the representative volume. Interested authors
are also invited to consult the works of Jirasek [19, 20] and Belaidi Chabane
Chaouche et al. [21] for a more detailed discussion on choosing weight function and
the computational aspects of non-local damage theory.

2.3 Tangent Stiffness Matrix

Because of nonlinearity, discrete equilibrium equation system resulting from finite
element discretisation can be solved with the Newton–Raphson method, and tan-
gent stiffness matrix must be determined. From Eq. (5), the tangent stiffness can be
expressed as follows:

∂Σ
∂E

= ð1−DÞ 2μeI+ λeJ� 	
−

∂D
∂E

⊗ 2μE+ λ ⋅ trðEÞ ⋅ I½ � ð11Þ

where the fourth-order tensor of unity is defined as ðeIÞijkl = δik ⋅ δjl, ðeJÞijkl = δij ⋅ δkl
and δ is Kronecker delta. Because the damage variable D is evaluated using the
non-local equivalent strain, its derivative with respect to strain tensor E is non-local
and very complicated. If enough small time steps are applied, eEeq

n− 1 at the previous
step can be used in place of eEeq and the non-local term related to the derivative of
D does not remain. Thus, the only non-local term is the equivalent strain. The
remaining terms are local as they are in a usual local finite element implementation.

3 Numerical Examples

This section shows the calculation results carried out on the basis of the previous
formulation. All numerical results have been obtained using a home-made finite
element programme developed under the Intel Visual Fortran environment.

Using a Non-local Elastic Damage Model … 51



3.1 An Elastic Bar Subjected to Cyclic Tensile Strain

This example addresses an elastic bar prescribed by a cyclic tensile strain of con-
stant amplitude. The existence of exact solution to the problems allows the author to
assess the efficiency of the formulation proposed. Because the strain has the same
value at all point, the damage is therefore constant in space. The evolution of
damage variable obeys the damage law presented in Eq. (8). Moreover, the
non-local equivalent strain is also constant in space because of the uniform dis-
tribution of the local one.

Let us consider an elastic damage circular bar of 0.38 m in length and 0.1 m in
diameter, which is excited by a cyclic strain of constant amplitude at two
extremities. Because of axisymmetry, the problem can be treated in two dimen-
sions, and just a half of the bar is discretised by 256 8-node rectangular elements as
shown in Fig. 1a. The boundary conditions are as follows. The displacements along
the z-axis are restrained for all nodes at the left boundary, and the displacements
along the r-axis are restrained for all nodes on the symmetric axis. All nodes on the
right extremity are prescribed by a cyclic displacement of constant amplitude such
that the tensile strain amplitude is Emax = 10− 4 m ̸m. The model parameters are
assumed to be as follows: E=5GPa, ν=0.35, A=1.2 × 102, B=5.0,
α=1.67 × 10− 3, m=2, n=2, and the characteristic radius of representative volume
is chosen Rc =0 or 0.03m. The calculation results show that the damage is uni-
formly distributed in the bar, and the damage value calculated using non-local
theory coincides that resulted from a local damage calculation (Fig. 1b). The
numerical results match well with the analytical solution obtained using the explicit
Euler method as can be observed in Fig. 1b.

A limited numerical parametric study has also been conducted to investigate the
influence of the model parameters on the calculation result. It can be seen in Fig. 2
that the value of A,B, α has a different effect on the reduction in stiffness of the bar.
Both parameters A and B have an influence on the rate of stiffness reduction. The
larger the value of A and B is, the larger the rate of damage will be. While the effect

Fig. 1 Simple cyclic traction test. a Finite element modelling. b Evolution of damage (or loss of
stiffness). Solid line: analytical solution, line with symbols: numerical solutions
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of B is almost unchanged, the effect of A can be attenuated by changing the
parameters α and m. The value of n represents the sensitivity of damage in the
material to the stress level. By choosing these model parameters, one can represent
the fatigue behaviour of asphalt concrete as will be presented in the next example.

3.2 4-point Bending Test

3.2.1 Description of the Test

The 4-point bending test is normalised in many standards, such as AASHTO-T321
[3] and EN 12697-24 [4] and is widely used for evaluating the resistance of asphalt
concrete to fatigue cracking when it is excited by a cyclic loading (Fig. 3). The

Fig. 2 Influence of the model parameters on the calculation result
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sample used has a form of a beam with dimensions 380 × 50 × 63 mm3, which is
prepared by sawing a slab cut from onsite pavement or prepared by a roller sector
compactor. During the test, the asphalt concrete beam is held at a constant tem-
perature by air conditioning. The applying forces have a form of a haversine
function whose amplitudes are controlled to maintain a maximum stress or strain of
constant amplitude in the beam. The corresponding displacement of the beam is
also recorded.

The maximum tensile stress is located at the lower edge of the beam and is given
by Σmax = 3Fa ̸ðbh2Þ, in which a is the equal distance between the supports and the
acting points of applied forces and b, h are the width and height of the beam,
respectively. The corresponding maximum tensile strain is a function of the dis-
placement u, distance a, and the length of span L by Emax = 12uh ̸ð3L2 − 4a2Þ. The
stiffness of the beam is defined as the ratio of stress to strain S=Σmax ̸Emax, and
therefore, the stiffness is a function of force and displacement.

There are two types of test including the constant stress and constant strain
testing. In a constant stress testing, the applied forced is controlled to maintain a
maximum stress of constant amplitude while the displacement is recorded to cal-
culate the stiffness of the beam. The test usually ends up with the total failure of the
beam. In contrast, the beam is normally considered failure if the reduction in
stiffness reaches 50% in a constant strain testing.

3.2.2 Finite Element Modelling

The problem can be solved in two dimensions, and just a half of the beam is
discretised using 256 8-node rectangular elements as shown in Fig. 4a. The total
number of nodes in the problem is 849. The boundary conditions of the problem are
as follows. Horizontal displacements are restrained for all nodes on the right side of
the beam. The node at the location x=0.011875 m, y= − 0.05m is fixed for all
displacements, and the node at the location x=0.130625 m, y=0 is prescribed by a
cyclic force or displacement of constant amplitude. The model parameters are the
same as those in the previous example, and the characteristic radius of represen-
tative volume is chosen Rc =0.03m.

• Constant strain testing

Fig. 3 4-point bending test
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The prescribed displacement amplitude is constant and its value is such that the
amplitude of the maximum equivalent tensile strain in the beam is equal toeEeq
max = 10− 4 m ̸m (see Fig. 4b). Such displacement was found to have an amplitude

of u= − 0.848 × 10− 4 m. The convergence was achieved in only 1–2 iterations on
average, and the programme took approximately 2 min to complete 2,000 incre-
ments with an Intel Core i5 personal computer, in which 1000 load cycles were
considered per increment.

The calculated results are summarised as follows. After 2,000,000 load cycles,
the stiffness of the beam loses 10% of its initial value, and the distribution of
damage in the beam is similar to that of equivalent strain (Fig. 5a). Damage almost
occurs at the lower edge of the beam located between the two acting points of
applied force where the equivalent strain amplitude is the highest. The loss of beam
stiffness increases with an increase of load cycles, and strain amplitude is also
presented in Fig. 5b.

Fig. 4 Modelling the 4-point bending test. a Finite element modelling. b Distribution of the
equivalent strain in the beam (only values of greater than or equal to 4 × 10− 5 are shown)

Fig. 5 Calculation results. a Distribution of damage in the beam (only values of greater than or
equal to 0.06 are shown). b Reduction in stiffness of the beam—constant strain testing
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• Constant stress testing

The prescribed force amplitude is constant during the test and its value is such
that the maximum equivalent tensile strain amplitude in the beam is initially equal
to that in the constant strain testing eEeq

max = 10− 4 m/m, giving rise to
F ̸2= − 0.335747 × 104 N. The calculated results are summarised as follows. After
1,400,000 load cycles, the beam decreases 50.3% of its initial stiffness. Therefore,
the number of load cycles needed for the beam to fail in constant stress testing
condition is much smaller than that in constant strain testing condition. The stiffness
of the beam decreases rapidly in the last load cycles (see Fig. 6), resulting in lack of
numerical convergence.

3.2.3 Choosing the Characteristic Radius

In this section, the effect of characteristic radius changes on the numerical solution,
especially the strain localisation is considered. The problem used in this section is
the same as that in the previous section excepted that the value of the characteristic
radius varies in the range of ½0, h�—namely, 0, h/5, 2 h/5, 3 h/5, 4 h/5, and h. The
calculation results show that there are spurious strain localisations into a zone of
vanishing volume in case of Rc ∈ ½0, 2h ̸5� as illustrated in Fig. 7, and the char-
acteristic radius has a strong influence on the maximum equivalent strain amplitude
as demonstrated in Table 1. The larger the representative volume is, the lower the
maximum equivalent strain amplitude will be because of the average effect. Con-
sequently, the value of Rc affects the evolution of damage in the beam in a way that
the loss of stiffness always decreases with an increase of the characteristic radius.
Thus, the characteristic radius should have the lowest value such that there is not

Fig. 6 Reduction in stiffness
of the beam—constant stress
testing

56 H. T. T. Nguyen and N. H. Nguyen



spurious strain localisation, and the relevant value of Rc in this example is
Rc =3h ̸5, or Rc =0.03m. This value verifies well the suggestion of Bazant and
Cabot [22] that the characteristic radius should be 2.7 times the size of maximum
aggregate size, ranging from 0.025 to 0.051m for asphalt concrete.

3.2.4 Model Parameters Identification

In this section, we make use of the 4-point bending test results for the
back-calculation of model parameters. The process of identifying model parameters
is as follows. After the laboratory test results were obtained; the 4-point bending
test problem was solved with different ranges of input model parameters. The model
parameters to be determined are the input parameters that reproduce the stiffness
loss curve, which well fit those obtained from the laboratory tests. Let us consider a
set of 4-point bending test results of a specific asphalt concrete at three specific
strain amplitude—namely, 10− 4 m/m, 2 × 10− 4 m/m, and 4 × 10− 4 m/m as shown
in Fig. 8 (the continuous lines). The following input data reproduces the stiffness
loss curve and well fit the results obtained from the 4-point bending test: E=5GPa,

Fig. 7 Strain localisation in case of: a Rc =0 (values of less than 0.0002 are not shown),
b Rc =2h ̸5 (values of less than 0.0001 are not shown)

Table 1 Effect of characteristic radius on the maximal equivalent tensile strain

Characteristic
radius Rc

eEeq
maxð×10− 6 m ̸mÞ

u= − 0.848× 10− 4 m
eEeq
maxð×10− 6 m ̸mÞ

u= − 1.696× 10− 4 m
eEeq
maxð×10− 6 m ̸mÞ

u= − 3.392× 10− 4 m

0 170.5 340.7 681.5
h ̸5 146.1 292.2 583.4
2h ̸5 122.9 245.8 491.2
3h ̸5 100.3 200.3 400.5
4h ̸5 82.6 165.3 330.5
h 73.5 144.8 296.0
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ν=0.35, A=4.42 × 104, B=44.2, α=10− 3, m=2, n=2.5. In other words, these
parameters can be considered as material constants and will be used in the next
example to predict the fatigue life of a realistic pavement structure made of this
material.

3.3 Predicting the Fatigue Life of a Pavement Structure

Let us consider two typical pavement structures that are commonly used for
national road and expressway in Vietnam. The first one is a 2-asphalt layer structure
hereafter denoted as thin structure, and the second one is a 3-asphalt layer structure
hereafter denoted as thick structure. The thin structure is widely used for national
highway because of its low cost while the thick structure is almost only used for
expressway where high level of evenness and longer service life are required. The
thickness of the first, the second, and the third asphalt layer is generally 5 cm, 7 cm,
and 9 cm, respectively. According to the Vietnam Standard for calculating pave-
ment structure 22TCN: 211-06 [23], the wheel load is represented by a uniformly
distributed force of 100 kN acting upon a circular area of 33 cm in diameter,
corresponding to a pressure of 0.6 MPa.

Because of axisymmetry, the pavement structure can be treated in two dimen-
sions, and just a half of the pavement structure is discretised by 735 8-node rect-
angular elements as shown in Figs. 9a and 10a. The total number of nodes in the
problem is 2318. The boundary conditions of the problem are as follows. Hori-
zontal displacements are restrained for all the leftmost nodes and for those on the
symmetric line. All nodes on the bottom of the structure are fixed for all
displacements.

Fig. 8 Model parameters
identification
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The asphalt layers are assumed to be an elastic damage material while the base
and subgrade are assumed to be purely elastic. The bonds between asphalt layers
and between an asphalt layer and the base are perfect to simplify the problem. The
programme took 1–2 iterations on average for one increment, and the total com-
putational time for a problem was approximately 22 min. The calculation results are
summarised as follows. The maximum equivalent tensile strain at initial configu-
ration for the thin structure is 3.19 × 10− 4 m/m and located at the bottom of the
second asphalt layers as can be seen in Fig. 9b. After 272,500 load cycles, the
stiffness of the thin structure decreases 72.4% of its initial value (Fig. 11, the curve
in blue). The damage is concentrated at the lower edge of the asphalt layer at the
beginning and gradually develops to surface of the pavement as can be seen in

Fig. 9 2-asphalt layer structure. a Finite element discretisation. b Distribution of equivalent
tensile strain amplitude (values of less than 10− 4 are not shown). c Distribution of damage after
292,100 load cycles (values of less than 0.2 are not shown)
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Fig. 9c. If the failure of a pavement structure is defined as the state at which the
reduction of stiffness reaches 50%, the number of load cycles to failure, or the
fatigue life, of the thin structure is only 292,100 cycles.

This value is too much lower compared to the fatigue life of a realistic pavement
whose value is generally millions of load cycles. The reason is that the pavement is
subjected to healing phenomenon that occurs between vehicle passes and during the
high temperature periods and the wheel loads on realistic pavement do not apply at
the same location, which increase the fatigue life [24]. Moreover, the stiffness
reduction in the 4-point bending test is influenced by other effects, such as nonlinear
effect, self-heating, and thixotropy during the test, which increase artificially the

Fig. 10 3-asphalt layer structure. a Finite element discretisation. b Distribution of equivalent
tensile strain amplitude (values of less than 5 × 10− 5 are not shown). c Distribution of damage
after 9,915,000 load cycles (values of less than 0.2 are not shown)
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reduction in stiffness of the beam [25–27]. Therefore, the predicted fatigue life
based on laboratory 4-point bending test result should be multiplied by a factor,
called shift factor, to account for the differences between laboratory and field
conditions. By using a shift factor of 18.4 proposed by the Asphalt Institute [24],
the fatigue life of this pavement will be 5,374,640 load cycles, which is a rea-
sonable value.

The same calculation is performed for the thick structure. The results show that
the maximum equivalent tensile strain is two times smaller ð1.61 × 10− 4 m ̸mÞ
compared to that of the thin structure, giving rise to a much longer fatigue life
(1.5 × 108 cycles). This value is extrapolated from the curve of loss of stiffness
presented in Fig. 11 (the curve in red). The distribution of maximum equivalent
tensile strain amplitude at initial configuration and the damage state in the thick
structure are also presented in Fig. 10b, c. It is clear that the fatigue life of a
3-asphalt layer structure is much longer than that of a 2-asphalt layer structure. The
excess cost for adding the third asphalt layer in the structure is compensated by a
much longer fatigue life and therefore a reduction in the maintenance cost.

4 Conclusions

The non-local damage theory is successfully applied to predict the fatigue life of
asphalt pavement structure, and the proposed damage model is capable to reproduce
the reduction in stiffness of asphalt concrete structures. The issue of spurious
localisation of strain and damage into a zone of vanishing volume is properly
addressed if an enough large characteristic radius is used. By using the damage
value computed at the previous step instead of the actual one in the damage law, the

Fig. 11 Reduction in
stiffness of pavement
structure. The curve in blue
corresponds to 2-asphalt layer
structure and that in red
corresponds to 3-asphalt layer
structure
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evaluation of tangent stiffness becomes local, which simplifies the calculation while
enough accuracy can be attained if enough small calculation steps are applied. The
formulation is nearly local, which is illustrated and validated by means of specific
calculation examples. The first example is devoted to validating the formulation via
a simple example of a one-dimensional elastic damage bar for which an analytical
solution exists, whereas the last two examples relate to simulating the fatigue
behaviour and evaluating the fatigue life of an asphalt concrete structure. It can be
observed from the calculation results that the fatigue life of the pavement structures
in these examples has reasonable value compared to that of a realistic pavement.
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Failure of Building Structural Members
During the Cooling Phase of a Fire

Q. V. Truong, T. H. Pham and T. B. Chu

Abstract Fires in buildings are characterized by a heating phase followed by a
cooling phase, but the effects of the cooling phase on structures are not well
researched. This work presents an analysis of the behavior of different structural
members under natural fires, with the aim to characterize their delayed failure in the
cooling phase of a natural fire. Thermo-mechanical numerical simulations based on
the nonlinear finite element method (SAFIR code) are conducted. Results show
that, for all the studied members (column, beam) and materials (reinforced concrete,
steel, steel-concrete composite), structural failure during the cooling phase of a fire
is a possible event. The time structures fail can be up to 250 min later than the time
maximum temperature in room reaches. The major factors that affect delayed failure
time of structural members are the duration of heating phase of the fire, the applied
load ratio, and the thickness of thermal insulation material (including concrete
material). This work enhances the understanding of the structural behavior in the
cooling phase of a fire and gives information for the safety of the fire fighters and
people in a natural fire.
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1 Introduction

In a performance-based approach, natural fire models include the heating phase and
the cooling phase, while standard fires consist in heating phase only such as the
standard ISO 834 and ASTM E119 fires [1, 2] (Fig. 1). In literature, most resear-
ches on building structures in fire conditions focus on the behavior of structures in
the heating phase only [3–5]. Recently, the possibility of structural collapse during
or after the cooling phase has been examined by some authors, [6–8] but they focus
mainly on the possibility of structural collapse and the minimum value of heating
time that the structures fail. This research focuses on the analysis of delayed failure
time of building structural members in the cooling phase of a natural fire. The
moment structures may fail is important to fire fighters who need to know the
failure time to avoid danger during fire fighting operation.

To allow for comparative analyses and quantification of the response, following
definitions are introduced:

• Load ratio: the ratio of applied load acting on the structural element in fire
conditions to the load-carrying capacity of the element at room temperature. In

Fig. 1 Natural fire curve and standard fire curve
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the event of a fire, the applied loads are much lower than the maximum design
loads specified for normal temperature conditions because load combination
factors are smaller under fire conditions compared to normal conditions. Load
ratio is recommended less than 0.65 in EN1991-1-2 [9] and not greater than 0.6
as calculated in the thesis of Chu Thi Binh [10]

• Fire resistance rating (R): the fire resistance time (in minute) of structures
exposed to a standard fire until failure. R relates closely to the applied load ratio.

• Heating time (HeatT): The duration of heating phase (in minute) of a natural fire
(Fig. 2).

• Time of failure (Tfail): The duration (in minute) from the beginning of the fire to
the moment structures fail.

• Delayed failure time (DelayT): The duration (in minute) from the end of heating
phase to the moment structures fail: DelayT = Tfail − HeatT

The objective of this research is to do numerical analyses of various structural
elements subjected to natural fires in order to identify which parameters affect the
delayed failure time (DelayT). The studied structural elements are columns and
beams made of reinforced concrete, steel, and steel-concrete composite.
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2 Computational Models of Structural Members Exposed
to Natural Fire

The analysis of structural members subjected to fire has been done using SAFIR
code. SAFIR is a nonlinear finite element software developed at the University of
Liege, Belgium for the simulation of thermal and structural behavior under ordinary
and fire. More information about SAFIR program is given in [11]. The validation of
SAFIR code has been done in some studies [12, 13].

2.1 Fire Model

The adopted model for the natural fires is the parametric fire model from EN
1991-1-2 [9]. The value of the factor Γ is 1.0 in the model, which makes the heating
phase of the time–temperature curve of this natural fire model approximates the
standard ISO curve. Figure 2 shows the time-temperature curves for different values
of HeatT. Curve HeatT_60 expresses the natural fire with 60 min of heating phase.
FISO is the standard fire curve ISO 834.

2.2 Heat Transfer Analysis

A uniform temperature is assumed over the height of the element. Thus, thermal
analysis can be reduced to a two-dimensional problem. The cross section is dis-
cretized using triangular and quadrilateral elements. Figure 3 represents one of the
composite sections analyzed in this study.

The thermal properties of steel and concrete are taken from Eurocodes [14].
Where concrete is used, siliceous concrete is chosen, with a density of 2400 kg/m3

and a water content of 48 kg/m3.

(a) Discretization of a cross section (b) Temperatures in the cross section
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2.3 Structural Analysis

In the model, the structural elements are built up by means of several 2-D Bernoulli
beam elements. The cross section is divided into fibers that match the discretization
used for the thermal analysis.

In this research, all the mechanical properties of the steel and concrete follow the
recommendations of the Eurocodes. The mechanical behavior of steel follows the
model of Eurocode [15]. For concrete material, the Explicit Transient Creep
Eurocode model added to SAFIR code by Gernay T. [16] is used.

3 Analysis of the Failure of Building Structural Members
in the Natural Fire

3.1 Temperature Evolutions in Cross-Section of Structural
Elements

Figure 4 shows the temperature evolution in a section of steel-composite element.
The furnace temperature is a natural fire with 60 min of heating phase. The tem-
peratures of external steel hollow section (node 6), the internal steel profile (node
7), and the concrete core (node 3) are shown. The furnace and the external steel
profile reach maximum temperature at time 60 min while the internal steel profile
reaches maximum temperature after 120 min. The temperatures of concrete in
center zone keep on increasing even after 180 min. The column may not fail after
60 min exposed to heating phase (if the fire resistance R is greater than 60 min) but
it possibly fails after more than 60 min, during the cooling phase of the fire.

3.2 Delayed Failure Time (DelayT) of Structural Element

It is defined that DelayT = Tfail − HeatT. An example of steel-concrete composite
column in Fig. 4 is used to explain. The columns expose to natural fire HeatT =
60 min. It is calculated that the column fails at time Tfail = 120 min, so
DelayT = 120 − 60 = 60 min. It means that the column fails 60 min later than the
moment the fire starts decreasing its temperature. It is important to know the
delayed time to let the fire fighters keep off the failure of the buildings. One of
the objectives of this study is to give an insight into the parameters that affect the
delayed failure time DelayT of structural elements made of steel, concrete, and
steel-concrete composite.
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3.3 Parametric Studies of Delayed Failure Time (DelayT)

Twenty-four cross sections have been studied. This article shows six typical cross
sections (Table 1). The other cross sections are similar to the cross-sectional types
of the profiles in Table 1 but different dimensions and different steel profiles. The
steel profiles are accordant with European standards.

The structural element (beam or column) is divided into 10 beam elements to
take into account deformed geometry. Columns are hinged at both ends and sub-
jected to a compression load which is constant during the fire (Fig. 5). Beams are
simply supported beams subjected two point loads (Fig. 6).

The fire resistance R and the time of failure Tfail are calculated for columns with
various fire curve, cross-section, column length, concrete grade, and load ratio.
Column length is from 2 to 8 m. Beam length is from 4 to 6 m. Concrete strength
30, 40, and 50 MPa is used. Applied load ratios from 0.2 to 0.6 are studied.

The simulations aim at assessing the failure of the structural member during the
course of the natural fire. For a given structural member, numerical simulations are
run under different natural fire exposures (see Fig. 2). The objective is to find the
relationship between some parameters such as heating time HeatT, load ratio,
concrete cove thickness on DelayT of structural members. Moreover, the study
finds how great DelayT could be for calculated structural members.

Fig. 4 Temperature evolution in steel-composite sections in the natural fire with 60 min of
heating phase
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3.3.1 Effect of Heating Time HeatT

Tfail and DelayT are calculated with different fire curves (different HeatT). Table 2
shows the results of beam profile 20 and column profile 14 under a defined load. In
beam profile 20, the fire resistance of the beam is 115 min. Therefore, under the fire
curve with HeatT = 115, the beam fails at time 115 (=R), of course. Under the fire
curve with HeatT = 95, the beam fails at time 120. Under the fire curve with
HeatT = 100, the beam fails at time 116, and so on with HeatT = 91 the beam does
not fail. The note “NO” in Table 2 expresses the element does not fail in this fire
exposure. Results show that the smaller HeatT is, the greater DelayT is.

3.3.2 Effect of Load Ratio

The parameter “load ratio,” defined as the ratio of axial load acting on the column to
the load-carrying capacity of the column at room temperature, is of more important
than the applied load value acting on the column, as the load ratio represents the
extent to which the column is stressed.

Table 1 Cross-sections of studied structural elements

Cross-section name Image Description

Profile 22 Steel beam covered by fire insulations
Steel profile: HE160B
Supports concrete slab

Profile 20 RC beam
Section dimension: 300 × 600 mm
Containing 3 steel bars of 20 mm diameter

Profile 21 RC column
Section dimension: 300 × 300 mm
Containing 4 steel bars of 20 mm diameter

Profile 14 Composite section
External steel profile: S 350 × 8
Internal steel profile: HE260B

Profile 11 Composite section
External steel profile: C 355.5 × 6
Internal steel profile: HE200B

Profile 15 Composite section
External steel profile: C 355.5 × 6
External steel profile: C 273 × 12
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Fig. 5 Column model

Fig. 6 Beam model and
bending moment

Table 2 Results of beams profile 20 and columns profile 14 with various HeatT and load ratio

Element R (min) HeatT (min) Tfail (min) DelayT (min) R-HeatT (min)

Beam Profile 20 115 115 115 0 0

105 115 10 10

100 116 16 15

95 120 25 20

92 126 34 23

91 NO

Column profile 14 164 164 164 0 0

159 164 5 5

154 165 11 10

144 169 25 20

139 172 33 25

129 186 57 35

126 208 82 38

125 NO 39
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The structural elements were analyzed with the load ratio from 0.3 to 0.6.
Results with R lower than 30 min are ignored because they are not useful in
practice. Table 3 shows results of columns profile 15, column profile 11, and beam
profile 20. Column height is 3 m, concrete grade is C50, and eccentricity of axial
load is 1 cm. Beam length is 6 m, and concrete grade is C30. For each value of load
ratio, DelayT is calculated with various values of HeatT but Table 3 notes only the
case that gives the greatest DelayT. As shown in Table 2, for a defined member
the smallest HeatT gives the greatest DelayT. In some other publications [6, 17], the
minimum value of HeatT that results in a failure of structures is noted DHP (du-
ration of heating phase). Calculating DHP requires an iterative process, which may
be computationally expensive.

Results show that load ratio affects much Tfail and DelayT.
In most cases, DelayT decreases when load ratio increases but in some cases it

does not follow this correlation (see columns profile 11 in Table 3). Some com-
posite elements of external steel tube embeds another internal steel profile have
unusual great DelayT. The load resistance of the element first decreases then raises
then decreases during the fire. It can be explained that after the heating phase of the
fire the external steel tube is cooler while the internal steel profile is continuously
hotter, so the external steel profile is recovering its strength while the internal steel
profile is losing its strength. It results in the load resistance of the members
sometimes decreases sometimes raises with fire time, leading to unusual great value
of DelayT. This phenomenon often appears in composite columns consist of a
hollow steel section embed another steel profile. It rarely appears in reinforced
concrete elements and steel elements. The reason may be the cooler zone of the
elements during cooling phase plays more important role in composite columns
than in reinforced concrete or steel members.

Table 3 Results of columns profile 15, column profile 11, and beam profile 20 with various load
ratios

Element Load ratio R (min) HeatT (min) Tfail (min) DelayT (min)

Column Profile 15 0.3 140 111 167 56
0.4 104 85 126 41
0.5 64 57 76 19
0.6 41 36 47 11

Column Profile 11 0.3 97 77 114 37
0.4 69 56 80 24
0.5 51 34 118 84
0.6 37 27 83.5 57

Beam Profile 20 0.3 115 92 126 34
0.4 102 80 113 33

0.5 91 70 102 32
0.6 81 62 87 25
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3.3.3 Effects of Insulation Cover Thickness

The failure time Tfail of beam profile 22 with various values of insulation cover
thickness is calculated. The insulation is CAFCO300 spay applied fireproofing. The
thickness of the insulation layer is 12, 15, 18, and 24 mm. For each value of
insulation cover thickness, the element has each value of fire resistance R so we
calculated with different HeatT for different values of insulation cover thickness. It
cannot compare DelayT of the elements under different fire curves so we compare
the greatest value DelayT could be for each of the values of the insulation cover
thickness. It is the value of DelayT corresponding to the minimum value of HeatT
that makes elements fail. Results show that the thicker insulation layer gives the
greater DelayT (Table 4).

3.3.4 Effect of Concrete Cover Thickness

The fire resistance R and Tfail of column profile 21 with various values of concrete
cover thickness are calculated. Because concrete acts as an insulation layer for steel
bar in reinforced concrete structures so the greater concrete cover thickness is, the
greater DelayT can be (Table 5).

Table 4 R, Tfail, and DelayT with various thickness of fire protection layer

Element Insulation
thickness (mm)

Load
ratio

R
(min)

HeatT
(min)

Tfail
(min)

DelayT
(min)

Beam
profile 22

24 0.5 175 175 175 0
24 0.5 150 179 29
24 0.5 132 205 73
24 0.5 131 NO

Beam
profile 22

18 0.5 132 132 132 0
18 0.5 122 133 11
18 0.5 102 153 51
18 0.5 101 NO

Beam
profile 22

15 0.5 112 112 112 0
15 0.5 91 118 27

15 0.5 88 127 39
15 0.5 87 NO

Beam
profile 22

12 0.5 91 91 91 0
12 0.5 86 91 5
12 0.5 73 102 29
12 0.5 72 NO
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3.3.5 Finding the Great Value of DelayT

The value of DelayT is important with fire fighters who need to know to keep off
the failure of the buildings. Therefore, one objective of this study is to know how
great the value of DelayT could be for studied structural elements. With results of
parametric studies of various structural elements, it is recognized that DelayT trends
to be greater with composite columns, high concrete cover thickness, and small
HeatT. Therefore, steel-concrete composite columns are calculated to find the great
value of DelayT. Column profile 17 with parameter in Table 6 gives the great

Table 5 R, Tfail, and DelayT with various concrete cover thickness

Element Concrete cover
thickness (mm)

HP
(min)

Load
ratio

R
(min)

HeatT
(min)

Tfail
(min)

DelayT
(min)

Column
profile 22

27 FISO 0.4 60 60 60 0
27 55 0.4 55 61 6
27 49 0.4 49 66 17
27 48 0.4 48 68 20
27 47 0.4 47 NO

Column
profile 22

31 FISO 0.4 64 64 64 0
31 59 0.4 59 65 6
31 53 0.4 53 68 15
31 50 0.4 50 73 23
31 49 0.4 49 NO

Column
profile 22

45 FISO 0.4 74 744 74 0
45 59 0.4 69 75 6
45 53 0.4 54 87 33
45 50 0.4 53 94 41
45 49 0.4 52 NO

Table 6 DelayT of column profile 17

Cross-section Height
(m)

Load
ratio

R
(min)

HeatT
(min)

Tfail
(min)

DelayT
(min)

Profile 17

Composite
section
C 406.4 × 6
C 273 × 12

7 0.3 266 178 284 106
7 0.4 109 123 375 252
7 0.5 158 73 222 149
7 0.6 123 45 183 138
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values of DelayT. Profile 17 has the same cross-section type with Profile 15 but the
external steel tube is C406.4 × 6. As can be seen, DelayT can be up to 252 min.

4 Conclusion

• Delayed failure time (DelayT) of structures during the cooling phase of the fire
is important to fire fighters. Therefore, it should be brought more attention to the
value of DelayT.

• Parametric studies have been done for various structural elements consist of
steel, concrete, and steel-concrete composite materials. The type of
cross-section, dimensions, concrete grade, and load ratio is varied widely in
practical range. For all calculated elements, the delayed time of failure DelayT
can be up to 252 min. Steel-concrete composite columns often have greater
DelayT because external steel tube can recover its strength much during the
cooling of the fire.

• Load ratio affects mainly the value of DelayT. In most cases, DelayT decreases
when load ratio increases but in some composite columns, it does not follow this
correlation. This manner can be explained logically.

• Insulation cover thickness and concrete cover thickness have moderate effect on
the value of Tfail and DelayT. The greater insulation material thickness is, the
greater DelayT could be.

• More numerical studies should be done to find the correlation between DelayT
and main parameters such as load ratio, slenderness of column, eccentricity of
load, and concrete strength.
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Numerical Studies of Some Modified
Polarization Saturation Models in 2-D
Semipermeable Piezoelectric Media
Using Distributed Dislocation Method

Kuldeep Sharma and Sandeep Singh

Abstract In this paper, some modified polarization saturation models are proposed
and studied numerically in 2-D semipermeable piezoelectric media using dis-
tributed dislocation technique (DDT). The polarization saturation (PS) model is
modified here by varying the saturated condition imposed on the electrically sat-
urated strip, i.e. a constant saturated condition to linear, quadratic and cubic varying
electric displacement saturated condition. Numerical studies for these proposed
models are simulated by considering their equivalent forms based on the principle
of superposition. A centre-cracked problem in 2-D semipermeable piezoelectric
media under arbitrary poling direction and in-plane electromechanical loadings is
considered for these analyzes. To validate the developed numerical codes and
iterative numerical approach for finding the unknown saturated zone length, the
obtained results for PS model are compared with the analytical results available in
literature. Thereafter, the results are presented for modified PS models, they show
the effect of variation in saturation condition on saturated zone length, critical
applied electric displacement loading and crack opening potential (COP), whereas
no significant effect has been observed on local intensity factor (LIF) and crack
opening displacement (COD). Further, saturated zone length increases with respect
to increase in degree of variation of saturation condition, i.e. from constant to cubic.
Moreover, the variation shows the effect on implication of applied electric loading
and defines the critical applied electric loading corresponding to each model. It is
observed that the critical value of applied electric loading significantly decreases
with the increase in degree of variation of saturation condition. Here, a significant
effect of poling direction is also found in all the parameters such as saturated zone
length, LIF, COD and COP.
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Keywords Distributed dislocation method ⋅ Local intensity factor
Piezoelectric ⋅ Polarization saturation ⋅ Semipermeable

1 Introduction

Piezoelectric materials due to their electromechanical coupling properties are
considered as one of the important smart materials and have been extensively used
as an actuator and transducer in smart embedded structures. However, these
materials are highly brittle but have low fracture toughness in nature. Therefore,
they are always susceptible to fracture/failure under high electromechanical load-
ings in the presence of defects such as cracks, voids or inhomogeneities. Moreover,
under high electric fields, piezoelectric ceramics showing a reduction of the ionic
movement and so it creates a limitation on the amount of polarization and hence the
saturation in the electric displacement. In addition to this, the presence of defects
causing a drastic amplification in stresses and in the electric quantities, and there-
fore, considered these regions as possible areas where electric displacement satu-
ration might reach and play a key role in defining the fracture parameters. Gao and
his co-researcher [1] were the first who considered the role of electric displacement
saturation in studying the fracture mechanics of piezoelectric materials and pro-
posed a polarization saturation model. They justified this model by considering
piezoelectric materials as mechanically brittle and electrically ductile and proposed
the same in analogous to Dugdale’s model [2]. In this model, they considered an
electrical yielding zone in front of the crack-tip in the form of a strip which is
bounded by the normal saturated electric displacement value. Even to explain the
discrepancies between the experimental obtained results and theoretical predicted
values (on the basis of linear theory piezoelectricity) under the influence of electric
loading, they proposed the new fracture parameters, i.e. local energy release rate
and global energy release rate. Their predictions on the basis of local energy release
rate subjected to electric loadings were found in broad agreement with the exper-
imental evidences. Moreover, the obtained local energy release rate was indepen-
dent of the size and strength of the saturated zone. Thereafter, several researchers
[3–12] worked on PS model and studied various types of fracture mechanics
problems in piezoelectric and magnetoelectroelastic materials using PS model.
Considering the unknown saturated electric displacement distribution over the
saturated strip, Ru [3] derived a generalized solution using complex variable
technique and presented the effect of electrical polarization saturation on the stress
intensity factor in piezoelectric materials. Wang [4] presented a fully anisotropic
analysis of strip electric saturation model by demonstrating the crack perpendicular
and parallel to the poling axis. Similar to PS model, Zhang et al. [5] proposed a
dielectric breakdown (DB) model in 2-D piezoelectric media. In DB model,
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the electric field in a strip ahead of the crack-tip was assumed to be equal to the
dielectric breakdown strength, which was considered in analogy with the classical
Dugdale model for plastic yielding. Using the Stroh formalism and the dislocation
modelling of a crack, they derived the relationship between the DB strip size and
applied mechanical and electrical loads, the intensity factors of stresses and electric
displacement and the local energy release rate. Fan et al. [6] applied the non-linear
hybrid extended displacement discontinuity-fundamental solution method
(NLHEDD-FSM) to obtain the numerical solution of PS/DB models in 2-D finite
piezoelectric media.

In most of the literature till date on PS/DB models, researchers studied the cracks
problems based on PS/DB models using impermeable crack-face conditions. To
attempt this paucity, Fan et al. [7] presented an analytical study of a semipermeable
crack in 2-D piezoelectric media based on PS model using distributed dislocation/
semi-analytical technique. Numerical results were demonstrated which showed the
effect of different boundary conditions on the electric yielding zone and the local
stress intensity factor. Loboda et al. [8] extended PS model to limited permeable
crack in an interlayer between piezoelectric materials with different zones of
electrical saturation and mechanical yielding. Later, Zhao et al. [9] extended the
2-D PS model to derive the fundamental solutions and numerical modelling of
polarization saturated elliptical crack in a 3-D transversely isotropic piezoelectric
medium. Fan et al. [10] presented the numerical solution of PS model in 3-D
piezoelectric medium using extended displacement discontinuity boundary integral
equation and the boundary element method. Bhargava and Jangid [11] extended PS
model to study the semipermeable two collinear cracks in an infinite 2-D piezo-
electric media. They applied the complex variable technique to obtain the analytical
expressions for saturated zone length, COD, COP and local intensity factor. Apart
from extension of non-linear (PS/DB and Dugdale) models in 2-D to 3-D or
multiple cracks or bimaterials, etc., Dugdale model was also modified by various
researchers [13, 14] after varying the condition of normal cohesive stress. Bhargava
and Hasan [14] modified the Dugdale model for multiple collinear cracks by
quadratically varying normal cohesive stress distribution over the rims of yield
zones. Even in piezoelectric media, similar modifications were made by Ru [3] who
derived an analytical solution of generalized impermeable PS model by considering
the unspecified normal electrical displacement distributed over the electrical
yielding zone in place of constant saturated value. Bhargava and Setia [12] pro-
posed and studied the impermeable crack-arrest models in 2-D piezoelectric strip by
linearly varying the saturation condition. But till date, no modified PS model
(varying the saturated condition) is reported in 2-D semipermeable piezoelectric
media by considering the arbitrary polarized direction. Therefore, to attempt this
paucity, authors proposed modified PS models by varying polarization saturation
condition from constant to linear, quadratic and cubic types of varying polarization
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saturation condition. Numerical studies of these modified models along with PS
model are presented here for an arbitrary polarized semipermeable centre crack in
an infinite 2-D piezoelectric media by using DDT and Gauss-Chebyshev quadrature
method. In addition to this, authors simulate the PS model/modified PS models by
solving their equivalent forms numerically using DDT derived on the basis of
principle of superposition. Results are obtained for saturated zone length, COD,
COP and local intensity factor w.r.t electrical loading for all the modified models
subjected to electromechanical loadings and for different set of crack-face
conditions.

2 Equivalent Form of PS Models/Modified PS Models
Using Principle of Superposition

According to PS model [1], an electric yielding zone near the crack-tip was con-
sidered and approximated to a line segment in front of the crack-tip along with a
constant normal electric displacement equal to its saturated value imposed on the
strip. Figure 1a represents the geometrical representation of the PS model in an
infinite 2-D piezoelectric media. It shows a centre crack with centre at origin along
with saturated zone length c− a lying on both sides of crack. As per the model, the
cracked domain is considered as mechanically defective with crack length equal to
2a ð− a≤ x≤ aÞ and electrically defective with effective crack length of
2c ð− c≤ x≤ cÞ and additionally the rims of the strips are bounded by normal
electric displacement equal to its saturated value, i.e. Ds.

In this paper, employing the principle of superposition, authors considered its
equivalent form by considering a crack length equal to 2c ð− c≤ x≤ cÞ which is
considered both mechanically and electrically defective of the same length. But the
rims of the zones are arrested by applying not only the saturated normal electric
displacement, i.e. Ds but also by external applied mechanical loading, i.e. σ∞22 as it is
the same mechanical loading responsible for opening the crack mechanically. The
geometry of this equivalent form of PS model is shown in Fig. 1b.

The main advantage of considering this approach is that cracks problems in 2-D
piezoelectric media based on PS models can be easily studied numerically. It would
be also helpful to study those problems where analytical solutions are difficult to
obtain on the basis of PS/DB models such as study of multiple cracks, cracks in
multilayered piezoelectric media, etc. Geometrical representation of the modified
PS models and their equivalent forms are shown in Fig. 1c, d.
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3 Basic Equations of Piezoelectricity and Generalized
Stroh Formulation

The basic equations and the boundary conditions for 2-D linear piezoelectric
materials in a fixed rectangular coordinate system xj j=1, 2, 3ð Þ can be expressed as

Fig. 1 a Model geometry of the PS model b equivalent form of PS model c generalized modified
PS model d equivalent form of generalized PS model
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3.1 Field Equations

Constitutive equations: σij =Cijksεks − esijEs;Di = eiksεks + κisEs ð1Þ

Kinematic equations: εij =
1
2

ui, j + uj, i
� �

;Ei = −φ, i ð2Þ

Equilibrium equations: In the absence of body forces and charges, the equilib-
rium equations for the stresses and electric displacements can be described as

σij, j =0;Di, i =0 ð3Þ

where Cijks and eiks are the elastic and piezoelectric constants, respectively;
σij, εij,Di and Ei are the components of the stress, strain, electric displacement and
electric field, respectively; while κis defines the dielectric permittivity. The comma
denoted in Eqs. (2) and (3) represents the partial differentiation against the argu-
ment following it; ui is the component of the elastic displacement vector u; while φ
is the electric potential; where i, j, k and s=1, 2, 3.

3.2 Boundary Conditions

The boundary conditions in the form of resultant of stresses and electric dis-
placements applied on the boundary of the domain are given by

σijnj = tj and Djnj = −ω ð4Þ

where tj and ω represent the prescribed traction value and charge defined on surface
while n being the outward drawn unit normal vector on S.

3.3 Crack-Face Boundary Conditions

There are mainly three boundary conditions on crack faces taken in literature [7,
15], namely impermeable, permeable and semipermeable. The impermeable and
semipermeable crack-face boundary conditions are represented mathematically as

Impermeable boundary conditions: Crack faces Γc are assumed to be
traction-free and electrically impermeable, i.e.

σijnj =0 and Djnj =0 on Γc ð5Þ

Semipermeable boundary conditions: Semipermeable boundary conditions pro-
posed by Hao and Shen [16] for piezoelectric ceramics are more realistic boundary
conditions and are given by
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σijnj =0 and D+
2 =D−

2 =Dc
2 = − κc

ΔφðxÞ
Δu2ðxÞ ð6Þ

where “+” and “−” represent the upper and lower crack surfaces, ΔφðxÞ is the
electrical potential jump and Δu2ðxÞ is the crack opening displacement; while κc is
the permittivity of medium between crack faces.

It is interesting to see that one can reduce semipermeable boundary conditions to
impermeable one when the term κc in Eq. (6) is set to be equal to zero. For
semipermeable conditions, the permittivity constant of the air is taken, i.e.
κc =8.85 × 10− 12 Fm− 1.

3.4 Generalized Stroh Formulation

For two-dimensional deformations, the generalized displacement vector
U= u1, u2, u3, ξ½ �T, and the generalized stress vector ψ= ψ1,ψ2,ψ3,ψ4½ �T which
depend on the coordinate system ðx, yÞ can be expressed as

U=2ReðAfðzÞÞ and ψ=2ReðBfðzÞÞ ð7Þ

where z= x+py. The eigenvalues p and eigenvectors A are obtained after solving
the following characteristic equation

Ci1k1 ei11
e1k1 − κ11

� �
+

Ci2k1 +Ci1k2 ei21 + ei12
e2k1 + e1k2 − κ12 − κ21

� �
p+

Ci2k2 ei22
e2k2 − κ22

� �
p2

� �
Ai

A4

� �
=0 ð8Þ

whereas the eigenvectors B are determined by the following relation:

Bi

B4

� �
=

Ci1k2 ei12
e1k2 − κ21

� �
+p

Ci2k2 ei22
e2k2 − κ22

� �� 	
Ai

A4

� �
. ð9Þ

The stress and electric displacement can be evaluated by using the following
relations as

t1
t2

� �
=

−ψ, 2
ψ, 1

� �
=

σ11, σ12, σ13, D1f g
σ21, σ22, σ23, D2f g

� �
ð10Þ

For a piezoelectric dislocation located at z0 in an infinite piezoelectric medium,
the analytic function in the vector form is given as

f ðzÞ= ⟨ln ðz− z0Þ⟩q, ð11Þ

where q= 1
2πi ATF +BTbð Þ represents the generalized piezoelectric dislocation in

the form of generalized Burgers vector, b= b1, b2, b3, b4½ �T and the generalized
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force vector F = F1,F2,F3, −ω½ �. Here, bi i=1, 2, 3ð Þ and b4 are mechanical dis-
placement jump and an electric potential jump in the plane, respectively. Also, Fi

denotes a line force per unit length along the xi direction and ω stands for a line
charge per unit length.

Further, if a conventional dislocation is located at a point xd on the x-axis in an
infinite body without any crack, the dislocation induces a generalized stress, Σ2, k

and an electric displacement component, D2, k along the x-axis as:

Σ2, k =
1

π x− xdð Þ
G1

G2

� � b1
b2
b3

8<
:

9=
; and D2, k =

1
π x− xdð Þ GT

2


 �
b4 ð12Þ

where H =2Re iAB− 1
� �

and H − 1 = G1 GT
2

G2 G4

� �
.

Also, if an electric dislocation is located at a point xd on the x-axis without any
crack, then the generalized stress, Σ2, k and an electric displacement component,
D2, k along the x-axis induced by this dislocation are defined as:

Σ2, k =
1

π x− xdð Þ
GT

2
G4

� � b1
b2
b3

8<
:

9=
; and D2, k =

1
π x− xdð ÞG4b4. ð13Þ

4 Distributed Dislocation Technique
(DDT) and Mathematical Formulation of the Problem

DDT [17] is based on the concept of expressing the crack in a material as a
continuous distribution of dislocations. By doing this, the problem of crack(s) in the
specimen is reduced into simultaneous singular integral equations in terms of dis-
location density variable(s) at the crack. After solving these integral equations, one
can obtain the dislocation density variable(s) at the crack-tip, and hence the fracture
parameters which are in terms of dislocation densities at the crack-tip. Bilbey et al.
[18] analyzed the problem of strip plastic yielding model using DDT. Both the
crack and the strip plastic zones are simulated by an array of dislocations. Sharma
et al. [15] applied the DDT to study the array of equidistant semipermeable inclined
cracks in 2-D piezoelectric media. Zhang et al. [5] and Fan et al. [7] applied the
DDT to study the impermeable DB model and semipermeable PS model, respec-
tively. In their approach, they reduced the problem into system of integral equations
and then obtained the analytical solution of the field variables. This approach could
be useful to those problems where analytical expressions are easy to obtain but for
multiple cracks problems, crack with inclusion and bimaterials problem, etc., the
kernel function involved in the integral equations are not in the simple form 1

x− xd
½L�,

L is a material matrix, so it is difficult to obtain the analytic form of solution in
those cases. Therefore, in this manuscript, authors proposed an equivalent form of
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the PS/DB model using principle of superposition, reduced it in terms of simulta-
neous integral equations and then solved the same by using numerical quadrature
scheme, i.e. Gauss-Chebyshev quadrature scheme. The obtained numerical results
of PS model are found in good agreement with the established results [1, 7] or
analytical results, and hence show the accuracy and efficacy of this approach and
method for studying the PS models in 2-D piezoelectric media.

Similar to the approach followed by Zhang et al. [5] and Fan et al. [7], equivalent
form of PS model (i.e. a crack in piezoelectric media of length equal to effective
crack length, i.e. crack with saturated zone lengths, − c≤ x≤ c) is modelled as a
continuous distribution of array of dislocation with generalized Burger vectors,
b= b1, b2, b3, b4½ �T with corresponding density functions mi i=1, 2, 3 and 4ð Þ at
point x0 along the effective crack. Geometrical representation of the problem is
shown in Fig. 1.

After employing the continuous distribution of dislocation and applied surface
traction charge conditions as defined in Eq. (12), a system of singular integral
equations for dislocation density, mibi, is obtained as

Zc

− c

1
π x− x0ð ÞG1⟨mi⟩

b1
b2
b3

2
4

3
5dx0 +

Zc

− c

1
π x− x0ð ÞG

T
2m4b4dx0 +

σ∞21
σ∞22
σ∞23

8<
:

9=
;=0, xj j≤ a,

ð14Þ
Zc

− c

1
π x− x0ð ÞG2⟨mi⟩

b1
b2
b3

2
4

3
5dx0 +

Zc

− c

1
π x− x0ð ÞG4m4b4dx0 +D∞

2 −Dc
2 = 0, xj j≤ a,

ð15Þ

Zc

− c

1
π x− x0ð ÞG1⟨mi⟩

b1
b2
b3

2
64

3
75dx0 +

Zc

− c

1
π x− x0ð ÞG

T
2m4b4dx0 +

σ∞21
σ∞22
σ∞23

8><
>:

9>=
>;

=

σ∞21
σ∞22
σ∞23

8><
>:

9>=
>;, a≤ xj j≤ c, ð16Þ

Zc

− c

1
π x− x0ð ÞG2⟨mi⟩

b1
b2
b3

2
64

3
75dx0 +

Zc

− c

1
π x− x0ð ÞG4m4b4dx0 +D∞

2 −Dc
2

= f ðxÞDS −Dc
2, a≤ xj j≤ c, ð17Þ

where Dc
2 = − κc

H41σyx +H42σyy +H43σyz +H44 Dy −Dc
2ð Þ

H21σyx +H22σyy +H23σyz +H24 Dy −Dc
2ð Þ is obtained by solving the

non-linear equation in Dc
2 and H =2Re ðAB− 1Þ.
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Moreover, by varying the function f ðxÞ as follows, authors presented numerical
studies for some modified PS models.

Case 1: f ðxÞ=1, Case 2: f ðxÞ= xj j
c
, Case 3: f ðxÞ= x

c

� 2
, Case 4: f ðxÞ= x

c

��� ���3.
Further, for single-valued displacements and electric potential, the following

conditions must also be satisfied

Zc

− c

mibidx0 = 0 for i=1, 2, 3 and 4. ð18Þ

To obtain the solution of the aforementioned singular integral equations, authors
employed the numerical approach, i.e. Gauss-Chebyshev quadrature method [17].

As per this scheme, the discretized form of any singular integral equation of the
form

Z1

− 1

LvðξÞ
πðξ− ηÞ dη= − t*ðηÞ ð19Þ

can be written as

∑
m

k =1

1
m

L
sr0 − skð Þ

� �
vðskÞ= − t*ðsroÞ

and single-valued condition reduces to

∑
m

k =1
vðskÞ=0, ð20Þ

where

vðξÞ= ∑m
k=1 wkvðskÞp

1− s2k
� � , sk = cos

ð2k− 1Þπ
2m

� �
, k=1, 2, . . .m and sr0 = cos

rπ
m

� 
, r=1, 2, . . .m− 1..

Once the generalized dislocation densities mb have been obtained, the intensity
factors (IFs) at the crack-tips ð±aÞ and effective crack-tips ð±cÞ are given by
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Ka
IIK

a
I K

a
IIIK

a
IV


 �T =
ffiffiffiffiffiffi
π

4ci

r
H − 1 v1ð±a ̸cÞv2ð±a ̸cÞv3ð±a ̸cÞv4ð±a ̸cÞ½ �T ð21Þ

and

Kc
IIK

c
I K

c
IIIK

c
IV


 �T =
ffiffiffiffiffiffi
π

4ci

r
H − 1 v1ð±1Þv2ð±1Þv3ð±1Þv4ð±1Þ½ �T , ð22Þ

respectively.
Using Fan et al. [7], the local intensity factor is evaluated as

Kl
I =Ka

I −
G42

G22
Ka
IVG42, where =H − 1ð4, 2Þ and G22 =H − 1ð2, 2Þ. ð23Þ

5 Evaluation of Unknown Saturated Zone Length

Since, the approach proposed by the authors is a numerical one, so evaluation of
saturated zone length is one of the important tasks, considering other parameters
fixed such as crack length and loadings, etc. Moreover, it is an unknown quantity
prior to get numerical solution. Therefore, it is obtained here by applying an iter-
ative approach in which saturated zone length is varied alongwith imposing a
supplementary condition of finite electric displacement at the outer tips of the zone.
Further, the zone length is varying arbitrarily from zero to a suitable finite value and
correspondingly obtained the normalized electric displacement intensity factor
K*
IV

� �
at each varying tip of the zone. Hence, an interval is obtained where the K*

IV

changes its sign. To find the accuracy of the solution up to three decimal places,
authors vary the arbitrary zone length by considering a small step size, i.e., 0.001
units and further applied the bisection method to get the accuracy up to three
decimal places. By doing this way, approximated saturated zone length is evaluated
where the K*

IV is zero. Figures 2a, b validate the aforementioned approach with
established results [1, 7] of PS model considering both impermeable and
semipermeable crack conditions and subjected to D∞

2 ̸Ds =0.5 and σ∞yy =10MPa
loading. Validation accords this technique and approach, and hence the same is also
applied on other modified PS models.

6 Numerical Studies

In this section, numerical studies of PS and modified PS models are presented w.r.t
electrical loading, polarization angle and crack-face conditions by considering
centre-cracked problem in 2-D piezoelectric media. The study is presented for
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PZT-4 material with electromechanical loadings σ∞22 = 10MPa and electric dis-
placement loading D∞

2 = 0.08C ̸m2 (if not specified). Throughout the analysis,
saturated electric displacement loading is considered equal to Ds =0.2C ̸m2.

To verify the accuracy of the numerical solution and proposed modelling, results
of normalized saturated zone length are obtained for PS model w.r.t electric dis-
placement loading under both crack-face conditions and also compared with the
reference solutions of Fan et al. [7]. A good agreement of results are obtained and
shown in Figs. 2b and 3a.

Also, the variations in normalized saturated zone length w.r.t electric displace-
ment loading are presented in Fig. 3 for modified PS models. The study is presented
for semipermeable crack-face conditions and considering different polarization
angles, i.e. 00, 300, 500 and 800. Figure 3 shows that the saturated zone length
increases w.r.t electric displacement loading for all the PS models. But for a par-
ticular electrical loading, saturated zone has higher values as saturated condition
varies from constant to cubic and this difference increases with the increase in
electrical loading. Moreover, the behaviour of saturated zone length and modified
PS models w.r.t electric displacement loading are found same for all the polar-
ization angle. However, a significant effect of poling direction is observed on the
saturated zone lengths. At a particular electrical loading, the value of saturated zone
length decreases w.r.t increase in polarization angle and even at higher polarization
angle no significant effect of saturation condition is observed on it.

Further, to understand the effect of polarization angle and variation in saturation
condition on PSmodels, analyzes of normalized local intensity factor is presentedw.r.
t electric displacement loading under the impermeable and semipermeable crack-face
conditions. It is found that local intensity factor increasesw.r.t electrical loading for all
polarization angles which is in agreement to the experimental evidences. Further, the
obtained results underϕ=00 are in agreement with the established results [1, 7]. Also,
local intensity factor decreasesw.r.t to increase in polarization angle whereas no effect
of saturated condition is observed on the local intensity factor.
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Fig. 2 a Numerical approach to find the saturated zone length for PS model b numerical
validation of the modelling and technique
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In addition to this, COD and COP are also obtained for PS/modified PS models
subjected to different polarization angle and semipermeable crack-face conditions.
No significant effect has been obtained in case of COD w.r.t variation in saturated
normal electric displacement condition (or modified PS models) whereas its effect
has been observed on COP. Its values obtained along the saturated zone increases in
magnitude w.r.t constant to cubic saturated varying conditions whereas it is almost
same along the cracklength. Also, a significant effect of poling direction is observed
on both COD and COP (Figs. 4 and 5).

The effect of saturation condition is also observed on the applied electrical
loading. Figure 6 shows the variation in K*

IV w.r.t arbitrarily varying normalized
saturated zone length subjected to different electrical loading, i.e.
D∞

2 ̸Ds =0.75, 0.65 and 0.62 and considering linearly varying PS model. It shows
that maximum applied electric displacement loading is approximately 0.62 times
the saturated value. Moreover, the critical applied electric loading is slightly higher
for semipermeable conditions than the impermeable conditions. Similar types of
behaviour are observed for PS model, quadratic PS model and cubic PS model.
Analysis based on aforementioned iterative approach shows that critical applied
loading for PS model, quadratic and cubic varying PS models are approximately
equal to Ds, 0.5Ds and 0.4Ds, respectively.
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Fig. 4 Variations in normalized local intensity factor w.r.t electric displacement loadings for
different polarization angles ϕ=00, 300, 500 and 800
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Fig. 5 Variations in COD, COP and normalized COP w.r.t x ̸a, x ̸c and x ̸c, respectively for
different polarization angle
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7 Conclusions

Authors present a detailed numerical study of some modified polarization saturation
models in a cracked 2-D piezoelectric media subjected to semipermeable crack-face
conditions and arbitrary polarization direction. The results of fracture parameters for
PS/modified PS models are obtained after considering their proposed equivalent
form numerically using DDT. This approach can be extended to study the PS
models/modified PS models to study multiple cracks problems, cracks in a finite
piezoelectric media and multilayered piezoelectric composite, etc. Some conclu-
sions derived from the present work are as follows:

• Equivalent form of PS model is proposed and studied using DDT. Obtained
results of saturation zone length and local intensity factors using proposed
equivalent model are found in good agreement with the established results [1,
7].

• Modified PS models are proposed and studied here successfully using DDT.
Proposed models have shown the effect of saturation condition imposed over the
strip on the saturation zone length, COP and critical applied electric loading.
Saturation zone length increases w.r.t increase in the degree of variation of
saturation condition whereas critical applied electrical loading shows the reverse
behaviour, i.e. decreases w.r.t increase in degree of variation of saturation
condition. No effect of variation in saturation condition is observed on the local
intensity factor.

• Effects of poling direction and crack-face conditions are observed on saturation
zone length, local intensity factors, COD and COP (Figs. 4 and 5).

• Accuracy of the obtained numerical results shows the efficiency and efficacy of
the proposed modelling of PS/modified PS models using DDT.

Acknowledgements Authors gratefully acknowledge NIT Uttarakhand, Srinagar (Garhwal),
India, for providing the research facilities during the course of this work.

Fig. 6 Evaluation of critical applied electric displacement loading for linearly varying PS model
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Stress Analysis of Silicon-Based Anode
in Li-Ion Battery

T. Nguyen-Huu and Q. Le-Minh

Abstract We analyze during charging the stress evolution in silicon-based anodes
of lithium-ion batteries by using an extensive finite element simulation. Effects of
charge rates and geometric parameters of the anodes are considered. Results are
useful for the design of new architectures of anodes for lithium-ion batteries.

Keywords Diffusion ⋅ Finite element analysis ⋅ Li-ion battery
Stress

1 Introduction

The lithium (Li) storage capacity of silicon (Si) has been theoretically estimated at
4200 and 3579 mAh/g, when Li22Si5 and Li15Si4 lithium alloys are formed,
respectively [1–4]. This Li storage capacity of Si is much higher than that of
graphite (372 mAh/g) [5, 6], which is the most common anode material in com-
mercial Li-ion batteries. While the maximum volume expansion in graphite anode
is about 10% due to the insertion of Li, the volume expansion of the anode can
reach up to about 400% for Si-based anodes [2, 3, 7, 8]. During the charge/
discharge, the huge volume variation of the metal- or alloy-based anodes causes
high stresses, cracking, pulverization, voids of the anode, and loss of electrical
contact, which results in poor cycling stability and battery fading [9–15]. Therefore,
the commercialization of the alloy-based anode materials is still limited. Among
various new architectures and structures of anodes, which have been proposed to
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overcome these limitations, we focus here a new structure with silicon on nanopillar
copper recently proposed by [16] as schematically shown in Fig. 1. Previous
computational studies, see e.g. [17–21], have shown that stress-strain state of
anodes and the performance of Li-ion batteries depend on the detailed structures of
anodes as well as of the batteries, therefore stress analyzes should be simulated
before their fabrications to reduce the cost. The new structure with silicon on
nanopillar copper indicated in Fig. 1 has been recently fabricated [16]. Simulation
of the stress-strain state in Si anode during charging is much needed to better
understand its performance and helps the improvement of this new structure.
Therefore, the present study investigates through an extensive FEA, stress, and
deformation during charging of this new silicon/copper structure for anode in Li-ion
batteries.

2 Numerical Procedure

Due to the periodicity of the nanopillar structures as depicted in Fig. 1, only a
representative volume is studied. We adopt here the axisymmetric model for this
representative volume as shown in Fig. 1. Hence, only one half of the model is used
in FEA as shown in Fig. 2. We note that our model excludes the end cap of silicon
for simplicity with D = 1 μm, d = 500 nm, H1 = 1 μm, H2 = 2 μm, and
h = 150 nm. Four-node bilinear axisymmetric elements are used. The copper
substrate and silicon anode consist of 3222 and 9600 elements, respectively. Elastic
perfectly plastic model is adopted here for copper. The Young’s modulus, Poisson’s
ratio, and yield stress of copper are here taken as 90 GPa, 0.28, and 330 MPa,
respectively [18].

Fig. 1 Schematic illustration of silicon on nanopillar copper for anode in Li-ion batteries [16]
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Due Li insertion, Si anode undergoes softening. The mechanical properties of Si
are taken as follows [22]:

ESiðCÞ=E0 +C E1 +E0ð Þ, ð1aÞ

νSiðCÞ= ν0 +C ν1 + ν0ð Þ, ð1bÞ

σySiðCÞ= σy0 +C σy1 + σy0
� �

. ð1cÞ

C is the concentration of Li-ion in Si anode. We denote C=C ̸Cmax.
C=0 ðC=0Þ and Cmax = 3.75 ðC=1Þ correspond to the initial state (uncharging
with pure silicon) and final state (fully charging with alloy Li15Si4), respectively.

ESiðCÞ, νSiðCÞ, and σySiðCÞ are the Young’s modulus, Poisson’s ratio, and yield
stress of the Si anode at the Li-ion concentration C. The Young’s modulus E0,
Poisson’s ratio v0, and yield stress σy0 of the Si anode without Li-ion ðC=0Þ are
E0 = 150GPa, v0 = 0.21, and σy0 = 1.5GPa, respectively. The Young’s modulus E1,
Poisson’s ratio v1, and yield stress σy1 of the Si anode with C=1 are
E1 = 50GPa, v1 = 0.21, σy1 = 0.6GPa, respectively.

The expansion coefficient of Si anode due to the Li-ion insertion is written as
follows [22]:

α=
Ln 1+ΩC

� �

3C
, ð2Þ

Fig. 2 A half of the representative volume used in FEA (D = 1000 nm, d = 500 nm,
H1 = 1000 nm, H2 = 2000 nm, h = 150 nm)
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where Ω=2.7, because the volume expansion of Si anode is about 270% when it
contains fully Li-ion (Li15Si4 alloy is formed).

The diffusion coefficient of Li-ion into Si anode is taken as D = 10−16 m2/s [23].
Cohesive zone is used to model the imperfect interface between Si and Cu with a
moderate interfacial fracture toughness Gc = 20 J/m2 [18]. The flux of Li-ion is
taken as J = 1 nm−2 s−1 [24].

3 Results and Discussion

First, we show that simulation results are independent of the discretization of our
finite element model (FEM). We have used two FEMs. Si anode is discretized by
9600 and 38400 (four times larger) elements in the first and second FEM,
respectively. Computed results of the stress in Si anode are almost similar with two
FEMs as indicated in Fig. 3. To save computational cost, we use the first FEM as
described in the Sect. 2. Figures 4, 5, and 6 show the distribution of Li-ion,
equivalent Von Mises stress, and total equivalent plastic strain in Si anode at
different stages of the charging process, respectively. During charging, the Li-ion
concentration in the outer surface of Si anode is higher than that inside the anode.
This phenomenon has been previously observed in other structures of Si anodes
[19, 20]. The Li-ion concentration is highest at the corner and outer surface of the
anode. The normalized concentration of Li-ion at the corner is estimated at about
0.13, 0.32, 0.48, and 0.77 at the charging time t/tmax = 0.01, 0.05, 0.1, and 0.2,
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Fig. 3 Variation of the maximal equivalent Von Mises stress in the anode versus the normalized
charging time
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Fig. 4 Distribution of normalized concentration of Li-ion C in the anode at normalized charging
time (t is the charging time, tmax is the total charging time for full insertion of Li-ion in anode): a t/
tmax = 0.01; b t/tmax = 0.05; c t/tmax = 0.1; and d t/tmax = 0.2
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Fig. 5 Distribution of equivalent Von Mises stress in the anode at normalized charging time: a t/
tmax = 0.01; b t/tmax = 0.05; c t/tmax = 0.1; and d t/tmax = 0.2
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Fig. 6 Distribution of the total equivalent plastic strain at normalized charging time: a t/
tmax = 0.01; b t/tmax = 0.05; c t/tmax = 0.1; and d t/tmax = 0.2
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respectively. Just after short charging time (t/tmax ∼ 0.01, t is the charging time and
tmax is the charging time with the full concentration of Li-ion in Si anode), the
equivalent Von Mises stress reaches a peak value of ∼1535 MPa and remains a
constant during the charging as shown in Fig. 3. This value of stress excesses well
the yield stress of Si. Consequently, the plastic deformation occurs just after short
charging time at the corner of Si anode as shown in Fig. 6. During charging, the
plastic deformation accumulates and enlarges in Figs. 6 and 7. The total equivalent
plastic strain increases almost monotonously with an increase of the charging time
as indicated in Fig. 7. The maximum total equivalent plastic strain is estimated at
about 25, 54, 62 and 100% at the charging time t/tmax = 0.01, 0.05, 0.1, and 0.2,
respectively. At the corner of Si anode, the Li-ion concentration, equivalent Von
Mises stress, and total equivalent plastic strain are highest.

4 Summary

The stress and deformation during charging of the anode made by silicon on
nanopillar copper for anode in Li-ion batteries have been studied through an
extensive FEA. It is found that stress and plastic strain increase rapidly during
charging. Charging parameters should be carefully chosen to decrease the stress and
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plastic deformation of the Si anode. More investigation should be done to analyze
in details these issues.
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Modeling of 3D Inflatable Large
Deformation Air Plug in Contact With
Concrete Lining

Anan Liao, Hui Shang, Xiaoyong Kou, Jun Huang and Xiaoying Zhuang

Abstract Resilient tunnel plug is a recently developed technique for the block of

flood in tunnel by using an inflatable cylindrical airbag with air concealed. The

plug, i.e., air bag surface, itself is made of textile composite with high strength,

lightweight and easily foldable. The air plug can be inflated in a short amount of

time and aligns with the internal surface of the tunnel tightly so that the fluid will be

stopped at the required position. The use of air plug provides new solutions to the

response of emergencies and accidents in tunnel operation such as the screening of

smoke from fire and flood from precipitation. Recently, the possibility of using the

air plug for the rescue of accidents in tunneling construction is being explored. In

this paper, the feasibility of utilizing air plug to screen the soil and water flow in case

of boring face failure is investigated. Membrane element is used to model the plug,

and surface-based fluid modeling based on the Uniform Pressure Method (UPM) is

used to model the coupling between the deformation and the pressure of the plug.

Surface-to-surface contact interaction is used to model the frictional contact between

the tunnel lining and the air plug surface. It is revealed that for embedded depth up

to 20 m, the air plug can provide sufficient friction to resist the flow of water and soil
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without inducing excessive deformation of the tunnel structure. However, the care-

ful choice of the pressure is important to avoid excessive deformation of the tunnel

lining.

Keywords Large deformation ⋅ Inflatable plug ⋅ Membrane Structure ⋅ UPM

Contact ⋅ Tunnel

1 Introduction

In recent years, tunnels and underground structures have been rapidly developed in

China, meanwhile quite a number of accidents and disasters took place during exca-

vation, and safety issues arise with increasing complexities in geological conditions

in urban areas. Especially, the collapse and the inrush of water and mud that can

result in earth movement of surrounding buildings and destruction of entire tunnels.

In general, these accidents caused by both natural conditions and human errors are

recognized to occur suddenly, spread easily, develop rapidly, and leave short time to

reaction. Once the accident happens, two measures, namely blocking and supporting,

are commonly used to control the spreading of damage and hazard. With blocking,

which uses rapid hardening cement or polyurethane to form waterproof shield, it is

possible to partly seal the leakage point, reduce the amount of water pouring-in and

improve the stress condition. On the other hand, supporting, by definition, means

using steel supports to increase the stiffness and strength of underground structure

and control the surface settlement. However, these traditional approaches are often

proved to be inefficient, often not in time and not mobile enough since the site of

accident is unknown in advance. Therefore, new approaches for mitigating threats

should be considered and developed.

With the development of modern construction technology, membrane structures

started to be widely used from the middle of the twentieth century [1]. Modeling of

thin structures still poses challenges to computational methods which are urgently

needed to support the design of protection underground systems; see for instance,

the contributions in [2–15] of efficient thin shell/membrane formulations. Another

challenge is modeling the complex behavior of reinforced concrete structures which

are dominated by several different fracture mechanisms including bending, anchor-

age, and shear failure to name a few. Efficient formulations for reinforced concrete

structures can be found for instance in [16–22].

Two types of membrane structures are the most commonly used, i.e., air-supported

membrane structure and inflatable membrane structure. For air-supported membrane

structures, membrane is tensioned to resist external loads and cover large span by

inflating air or using cables as well as other rigid supports. And inflatable mem-

brane structure is usually an inflatable plug with a particular shape which has been

already applied to numerous fields, e.g., automobile airbags, the airbags used for

the Mars pathfinder, as well as other industrial applications [23]. The development

of textile composite materials and membrane structures presents new solutions for
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sealing gas, fire, flood, and mud. An inflatable membrane structure, i.e., inflatable

plug, filled with air or other medium can provide flexible block at a certain position

in a pipeline or even a tunnel, by the friction provided through the contact pressure

developed between the membrane surface and structure surface [24]. Compared with

traditional sealing methods, the advantages are obvious as reflected in light weight,

quick response, low maintenance costs, convenient operation, and minimal influ-

ence on existing facilities [25]. Recently, many inflatable pipe plugs with diameters

ranging from 50 to 2700 mm are used in underground pipes, e.g., water supply and

drainage. These plugs with small sizes turn out to be economic and efficient in stop-

ping oil spilling, water and smoke leakage, etc.

Meanwhile, large inflatable plugs have been proposed to protect underground sub-

way tunnels that are susceptible to extreme climate induced hazards and terrorist

attacks [26]. It is recognized that inflatable plug for large-scale tunnel are firstly

implemented by the US Department of Homeland Security Science and Technology

Directorates Resilient Tunnel Project [27]. The project is aimed at restraining flood-

water in the event of flooding to a certain area in the transportation subways. Sosa

et al. [28] designed and manufactured a full-scale prototype that is composed of a

cylindrical region closed by two end caps and made of three-layer Vectran material to

study the deployment and sealing characteristics of the system. The results showed

that the plug sealed the test tunnel and resisted the simulated flood successfully.

Apparently, damages can be substantially minimized by narrowing down the area

affected by the event, buying as much time as possible for evacuating workers, grout-

ing reinforcement as well as deploying inner support system, etc. By partitioning off

the tunnel, dangers can be controlled within certain areas; meanwhile, adjacent ones

will not be influenced or be slightly affected only. Inflatable large deformation air

plugs are supposed as a flexible strategy to achieve this goal.

However, most of the existing air plug applications and researches focus on the

blocking of low pressure fluid in small pipelines. For large-sized sections with high

pressure fluid, air plug sealing technology is still in its early stage, and there are

only few studies existing so far which are however focused on shape, packing, as

well as material characteristics without considering the deformation of tunnel lining

[29]. The possibility of using air plug for disaster reduction in tunneling construction

remains to be explored. This paper investigates the feasibility of utilizing air plug to

screen the soil and water flow in case of boring face failure in tunnels under con-

struction, and close attention is also paid to the deformation of tunnel lining under

high internal pressure.



108 A. Liao et al.

Fig. 1 The inflatable tunnel plug and the block of water inflow on right face

2 Working Conditions of Inflatable Air Plug for Tunnel
Under Construction

The basic working principle of inflatable tunnel plug is shown in Fig. 1. In order to

achieve the best effect of blocking the tunnel section, the following conditions should

be satisfied:

(1) The air plug should be placed in a section behind the boring face where defor-

mation tends to be stable as soon as there are signs of disaster, making sure that there

will be enough time for the plug to reach the required shape and pressure.

(2) Compared with operating tunnels, there are less cables and pipes inside tunnels

under construction, and the majority of them can be pretreated or removed. However,

the friction coefficient may decrease significantly if there is mud attached to the plug,

and there is often much mud in unfinished tunnels. So during the deployment, large-

scale facilities such as rails that may cause gaps and leakage should be removed, and

mud in the tunnel section should be cleaned as much as possible.

(3) The methods that can be used to inflate the plug depend on the hazard to

be contained and have obvious difference in inflation times [25]. To make inflation

as quickly as possible, methods such as releasing compressed gas, using controlled

chemical reactions, or using phase-change systems can be applied. However, a fast

inflating rate can mean high risks of burst and other dangers. To stand high external

pressure, the plug can be inflated with liquid, but the self-weight of liquid may cause

large settlement. In short, pumping air is a safe and suitable method in this case.

(4) To maintain axial stability of plug, there are two possible methods, i.e., fully

relying on friction between plug and tunnel lining or using additional mechanical

anchors to assist [30]. Of these two choices, the former method is less harmful to the

tunnel and the inflatable plug, while there are concentrated loads at the anchorage

region.

The numerical model in the next section is developed basing on these working con-

ditions.
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3 The Numerical Model

The numerical simulation of this paper is performed by using Abaqus/Explicit. Two

main components are considered in the numerical modeling, one is the inflatable air

plug for tunnel under construction, and the other is the tunnel in which the plug will

be installed. Other components include auxiliary planes which help to fold and move

the plug [31].

The plug is composed of a middle cylindrical region and two semi-spherical end

caps, ignoring the fill ports. The cylindrical region is the fundamental part which is

in contact with the tunnel lining and responsible for sealing the tunnel. The upstream

one of the two end caps is in direct contact with mud and water, and the downstream

one is rather free. According to the research by Barbero [25], the size of the cylinder

must be slightly larger than the tunnel section to ensure that the plug adapts to pipes

and cables and fits the tunnel section perfectly. The plug is modeled with membrane

elements, which are surface elements transmitting in-plane forces only and have no

bending stiffness, with an equivalent single-layer membrane thickness of 8 mm. The

material of the plug is linear elastic with a density of 1300 kg/m
3

and a Young’s

modulus of 2000 MPa.

The tunnel, according to the Shanghai metro tunnel, is a single-layer lining shield

tunnel under straight joint assembling with an outside diameter of 6.6 m, an inside

diameter of 5.9 m, a segment thickness of 0.35 m, and a ring width of 1.2 m. Each

lining ring consists of a key block, two adjacent blocks, two standard blocks, and one

arch block. Two rings are connected using 17 M30 longitudinal bolts, and blocks

in one ring are connected using 12 M30 circular bolts. The segment–joint model,

illustrated in Fig. 2, is utilized to model the action of the tunnel lining [32]. The steel

bars (black parts in Fig. 2) are embedded in the segment so that there will not be

any relative displacement between the steel bars and the concrete. The nuts of the

bolts (red parts in Fig. 2) are also embedded in the corresponding positions of the

segments, but the screws (blue parts in Fig. 2) are independent of the segments. The

water stops, hand holes, other embedded parts, tunnel facilities, etc., are ignored.

The segments and the bolts are modeled using solid elements, while the steel bars

are modeled using beam elements. When the analyses emphasize on the plug itself,

e.g., the study of axial stability of the plug, the tunnel lining can be then simplified

as a rigid shell and modeled with rigid elements.

The material of segments, i.e., C55 concrete, is elastic-plastic, and the parameters

are set according to the average strength for nonlinear analysis. The relationship of

stress and strain can be written as

𝜎 =
(
1 − dt

)
𝜎t

dt =

{
1 −

(
1.2x − 0.2x6

)
x ≤ 1

1 − x
𝛼t(x−1)1.7+x

x > 1

x = 𝜖∕𝜖t

(1)
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Fig. 2 Part of the

segment–joint model

under tension, and

𝜎 =
(
1 − dc

)
𝜎c

dt =

{
1 −

[
𝛼ax +

(
3 − 2𝛼a

)
x2 +

(
𝛼a − 2

)
x3
]
x ≤ 1

1 − x
𝛼d(x−1)2+x

x > 1

x = 𝜖∕𝜖c

(2)

under compression, where 𝛼t, 𝛼a, and 𝛼d are parameters depended on the strength of

the concrete. Some important parameters of the concrete and their values are listed

in Table 1, and the stress-strain curve of the concrete is illustrated in Fig. 3. HRB400

steel bar and grade 6.8 bolt are both ideal elastic-plastic.

The contact between segment and segment as well as segment and plug is mod-

eled using surface-to-surface contact interaction. The normal behavior of the contact

relationship is defined as hard contact using penalty contact enforcement, and when

surfaces are in contact, any contact pressure can be transmitted between them. The

tangential behavior is achieved using the basic Coulomb friction model with differ-

ent friction coefficients. The friction coefficient between different segment surfaces

is 0.4, and between segment and plug is 0.3. Additionally, the self-contact of differ-

Table 1 Values of parameters of C55 concrete

Parameter Value

Youngs modulus Ec 35.5 GPa

Tensile strength ft 3.35 MPa

Peak tensile strain 𝜖t 125×10−6 GPa

Compressive strength fc 43.3 MPa

Peak compressive strain 𝜖c 1832×10−6

Density 𝜌c 2500 kg/m
3
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ent parts of the plug is modeled using the same contact relationship with a friction

coefficient of 0.3.

To take into account the coupling between the deformation of the plug and the

pressure exerted by the contained fluid inside the plug, the Uniform Pressure Method

based on the control volume algorithm is used. Thus, the gas inside the plug is

modeled using the surface-based fluid modeling technique in Abaqus, which is an

improvement of the UPM. The basic assumption of the surface-based fluid mod-

eling is that the fluid inside the structure is homogeneous and the pressure within

-5.0
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15.0

25.0

35.0

45.0

-0.002 0 0.002 0.004 0.006 0.008 0.01

(MPa)

Fig. 3 Stress-strain curve of C55 concrete

Fig. 4 Mises stress of plug with and without using UPM (MPa)
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Fig. 5 Pressure and volume

of plug with and without

using UPM
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the structure is spatially uniform during the whole process. The modeling requires

the definition of the closed surface-based cavity inside the structure using the fluid–

structure interface, the nature of the fluid, the reference point of the cavity, etc. And

the finite element calculations are performed using volume elements created inter-

nally and automatically. Results show that when the internal air pressure is bigger

than the external water pressure, the differences between using and not using the

surface-based fluid modeling are negligible. However, when the internal pressure is

smaller, the differences can be very obvious as shown in Figs. 4 and 5. Figure 5 also

shows that by using the UMP, the gas in the plug satisfies the ideal gas equation

when there is no gas exchange and the isothermal condition is satisfied.

4 Analysis of Axial Stability of the Plug

4.1 Analysis Of Axial Stability Under Normal Condition

The axial stability of the plug is controlled by the external water pressure and the fric-

tion provided by the contact pressure between the plug surface and the tunnel lining.

Based on the working conditions of inflatable air plug, the facilities inside the tunnel

are ignored, and the tunnel lining is simplified as a rigid shell. According to Mar-

tinez’ study, the length of the cylindrical region should be close to its diameter, thus

it is set to 6.0 m while the inner diameter of the tunnel is 5.9 m. The diameter of the

cylindrical region and the end caps is set to 5.900, 5.959, and 6.018 m, respectively,

(i.e., 0, 1 and 2% larger than the tunnel) to analyze and compare the axial stability of

plugs with different sizes. Under the normal condition in which the internal air pres-
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(a) Deflating and adjusting the plug

(b) Moving the plug into the tunnel (c) Inflating and applying external pressure

Fig. 6 Numerical simulation process for axial stability analyses

Table 2 Simulation results of axial stability under normal condition

Plug diameter D∕m Total normal contact

forces Nin∕103kN

Total external axial

forces Fex∕103 kN

Safety factor 𝜂a

5.900 25.00 4.99 1.50

5.959 27.63 5.06 1.64

6.018 28.95 5.10 1.70

sure and the external water pressure are stable, the total normal contact forces Nin
and the total external axial forces Fex are calculated with the numerical simulation

process as shown in Fig. 6, assuming that the air pressure is 220 kPa and the average

water pressure is 183 kPa. Defining the axial stability safety factor 𝜂a as:

𝜂a =
𝜇Nin

Fex
(3)

where 𝜇 is the friction coefficient between the tunnel lining and the plug which is

0.3 in these cases; the results are listed in Table 2.
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Fig. 7 Development of contact pressure of plugs with different sizes during inflation

As it is shown in Table 2, even for the most critical case, the safety factor is larger

than 1, indicating that with suitable air pressure, the air plug is able to resist the water

pressure and block the tunnel section. As plug diameter increases, the total contact

forces increase significantly while the changes in total external forces are relatively

small, resulting in larger safety factor, which coincides with the research by Barbero

et al. [25]. Development of average contact pressure of the bottom area during the

inflating process illustrated in Fig. 7 further explains these results, as a larger plug

size comes with a higher final contact pressure. However, a larger plug size may

also lead to more wrinkles developing during the inflation, which could be natural

channels for leaking and are against the axial stability of the plug.

4.2 Analysis Of Axial Stability With Sudden Change In
Water Pressure

After being deployed and fully inflated, the plug starts to block the water and the

pressure is relatively low at this stage. Right at the moment that the section is full,

the water head should be recalculated according to the groundwater level, resulting in

a sudden increase in external water pressure. The axial stabilities of the plug before,

at, and after the sudden pressure change are analyzed. The numerical simulation is

simplified by setting up a plug of nominal size firstly inside the tunnel shell and

inflating as well as applying external pressure afterward. A plug diameter of 5.900

m and a total plug length of 11.9 m are set, which can been seen from the previous

section is the most critical case. The initial air pressure of the plug is 270 kPa. The

average water pressure is 29.5 kPa at first and changes to 233 kPa instantaneously
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Fig. 8 Mises stress of the

plug before, at, and after the

sudden pressure change

(MPa)

Table 3 Simulation results of axial stability under normal condition

Stage Total normal contact

forces Nin∕103 kN

Total external axial

forces Fex∕103 kN

Safety factor 𝜂a

Before the change 28.98 0.68 12.79

At the change 30.40 8.68 1.05

After the change 28.95 6.32 1.37

(corresponding to a tunnel embedded depth of 20 m). The von Mises stress and the

axial displacement in each stage are illustrated in Figs. 8 and 9, respectively, with

the total normal contact forces, etc., listed in Table 3. The results show the plug suf-

fered sudden changes in stress condition and axial displacement as it is impacted.

The safety factor decreases when the increase of pressure happens and recoveries

afterward. During the whole process, the safety factor remains being larger than 1,

indicating that the inflatable plug is able to withstand sudden changes in water pres-

sure to some extent.
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Fig. 9 Axial displacement

of the plug before, at, and

after the sudden pressure

change (mm)

5 Analysis of Deformation of Tunnel

The deformation of tunnel lining interacted with plug is the result of both external

earth pressure and internal plug pressure, so the key of this section is to study the

variations of stress and deformation of tunnel lining subject to internal pressure.

Since the lining contacts only with the cylindrical part of the air plug, a half-model

is taken regardless of the influence of the external water pressure. The numerical

model is also simplified by setting up a plug of nominal size inside the tunnel as

shown in Fig. 10.

The simulation is conducted using loading structure method. The earth pressure

at the top of the tunnel lining is 303 kPa/m and at the bottom is 428.4 kPa/m, corre-

sponding to a tunnel embedded depth of 15 m, and the coefficient of earth pressure

is set to 0.65. The subgrade reaction is considered with a coefficient of 8000 kN/m
3
.

The pretightening force of each bolt is about 100 kN. Two major steps of the simu-

lation are (1) applying earth pressure, dead loads, and pretightening forces and (2)

applying pressure on the inner surface of the plug, which is 225 kPa in this case.
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Fig. 10 Numerical model

for deformation of tunnel (in

half- view)

Fig. 11 Circumferential strain and stress (MPa) before applying internal pressure

5.1 Deformation Of The Tunnel Before Applying Internal
Pressure

After the earth pressure and other boundary conditions have been applied, the tunnel

lining changes form circular to oval with radius increased in the horizontal direction

and decreased in the vertical direction. The maximum horizontal relative displace-

ment is 9.2 mm (1.4 of Dex, and Dex is the outer diameter of the tunnel lining), and

the minimum vertical relative displacement is −9.6 mm (−1.5 of Dex), both of which

satisfy the requirement of the shield tunnel design. The deformation of the lining is

relatively small, and the largest longitudinal joint open is less than 0.1 mm.

As shown in Fig. 11, the maximum circumferential tensile strain is 81 × 10−6
at the outer side of the haunch, and the corresponding maximum tensile stress is

2.9 MPa. The minimum circumferential compressive strain is −393 × 10−6 at the

inner side of the joint in the haunch, and the corresponding minimum compressive

stress is of −14.1 MPa. Both tensile and compressive strains have not exceeded the

corresponding peak value. In addition, the maximum tensile stress of the bolts is

153.9 MPa, and the maximum tensile stress of the steels is 71.3 MPa. Both of them

are still in elastic state.
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Fig. 12 Horizontal and vertical displacement after applying internal pressure (mm)

5.2 Deformation Of The Tunnel After Applying Internal
Pressure

As shown in Fig. 12, the tunnel lining deforms unevenly after applying the plug pres-

sure, and the lining ring corresponding to the middle of the plug deforms the most.

The maximum horizontal relative displacement reaches 13.4 mm (2.0 of Dex), and

the minimum vertical relative displacement reaches−11.2 mm (−1.7 ofDex). Instead

of supporting the tunnel vertically, the internal plug pressure causes the section to

be more oval, yet the threshold of the shield tunnel deformation according to design

code is still satisfied. This can be explained as that the lining suffers larger loads

vertically than laterally, in another word, the lateral constraint is weaker. Since the

deformation increases, the longitudinal joints open much more with a maximum

value of 0.8 mm at the outer side of haunch and a value of 0.4 mm at the inner side

of the arch crown.

As shown in Fig. 13, for the most deformed lining ring, the tensile strain of the

concrete at the inner side of the joint in the haunch is very large, which may be

attributed to the constructional reinforcement is not modeled in these areas. Besides,

the minimum circumferential compressive strain is −336×10−6 at the inner side of

the joint in the haunch and the corresponding minimum compressive stress of −11.1

MPa. The circumferential tensile strain is 87×10−6 at the inner side of the arc crown,

and the corresponding maximum tensile stress is 3.2 MPa. In addition, the maximum

tensile stress of the bolts is 251.4 MPa, the maximum tensile stress of the steels is

158.2 MPa, and both remain within elastic stage.

6 Conclusion

This paper presented the numerical models to simulate an inflatable large deforma-

tion air plug in contact with concrete lining. The axial stability of plug under different

conditions and the deformation of tunnel interacting with plug were studied. With

an appropriate pressure, the inflatable plug is able to remain stable in the axial direc-

tion, even in cases of accidents, e.g., a sudden change in external water pressure.
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Fig. 13 Circumferential strain and stress (MPa) after applying internal pressure

When the size of the plug is close to the tunnel, the larger the diameter of the plug,

the greater the total normal contact forces. However, more wrinkles are likely to

appear on plug with a larger size. In conclusion, the inflatable plug is feasible to seal

large-sectional tunnels. With the internal plug pressure, the tunnel lining deforms

unevenly and appears more oval, resulting in larger joint opens which weakens the

waterproof of the joints, yet the threshold of the shield tunnel deformation according

to design code is still satisfied. The internal plug pressure and external earth pres-

sure counteract with each other. So the internal pressure should be carefully chosen

and controlled according to both the axial slippage of plug and the deformation of

tunnel lining on site. With the application of the Uniform Pressure Method and other

modeling techniques, the numerical models provide a reasonably accurate predicting

tool, which allows further parametric studies of designing and deploying inflatable

tunnel plugs. In the future, we intend to quantify uncertainties in the input parame-

ters as in [33–35, 35–38] to finally optimize tunnel air plug systems accounting for

uncertainties as has been done in other applications by [39–45].
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Upper Bound Limit Analysis of Circular
Tunnel in Cohesive-Frictional Soils
Using the Node-Based Smoothed Finite
Element Method

T. Vo-Minh, T. Nguyen-Minh and A. Chau-Ngoc

Abstract In this paper, a numerical procedure using the node-based smoothed finite
element method (NS-FEM) is proposed to evaluate the stability of a plane strain
circular tunnel in cohesive-frictional soils subjected to continuous loading on the
ground surface. In the NS-FEM, the strain smoothing is calculated over smoothing
domains associated with the nodes of the elements. The soil is described as a uniform
Mohr–Coulomb material and it obeys an associated flow rule. The limit load and
failure mechanisms of circular tunnel are calculated from solving the optimization
problems. In this study, the influence of the soil weight (γD/c′), the ratio of tunnel
diameter to its depth (H/D) on the stability numbers (σs/c′) and collapse mechanisms
are investigated. The results obtained from the present analysis are compared with
the available literature for tunnels located below the horizontal ground surface.

Keywords Limit analysis ⋅ Circular tunnel ⋅ Stability ⋅ SOCP
NS-FEM

1 Introduction

In recent years, underground systems have become essential for the rapid devel-
opment of many major cities. In fact, such underground infrastructures as under-
ground railway and gas pipeline have become increasingly popular in many

T. Vo-Minh ⋅ T. Nguyen-Minh (✉) ⋅ A. Chau-Ngoc (✉)
Faculty of Civil Engineering, Ho Chi Minh City University of Technology,
Ho Chi Minh City, Vietnam
e-mail: nmtam@hcmut.edu.vn

A. Chau-Ngoc
e-mail: cnan@hcmut.edu.vn

T. Vo-Minh
e-mail: thienk94@gmail.com

T. Vo-Minh
Faculty of Civil Engineering, HUTECH University, Ho Chi Minh City, Vietnam

© Springer Nature Singapore Pte Ltd. 2018
H. Nguyen-Xuan et al. (eds.), Proceedings of the International Conference
on Advances in Computational Mechanics 2017, Lecture Notes in Mechanical
Engineering, https://doi.org/10.1007/978-981-10-7149-2_9

123

http://crossmark.crossref.org/dialog/?doi=10.1007/978-981-10-7149-2_9&amp;domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-981-10-7149-2_9&amp;domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-981-10-7149-2_9&amp;domain=pdf


metropolises to meet the demand of citizens. During the construction of such
underground networks, the depth of tunnels need to be investigated carefully
because this plays an important role in constructing process and may help to reduce
the cost of constructions. Moreover, in order to construct the tunnel systems in
highly populous cities, engineers need to determine the limit load and failure
mechanism of tunnels subjected to continuous loading on the ground surface.

The stability of circular tunnel was first studied at Cambridge University in the
1970s. A series of centrifuge model tests of tunnels in dry sand were described by
Atkinson and Pott [1]. Atkinson and Cairncross [2] investigated the failure mech-
anism of circular tunnels when considering soil behaviour as a uniform Mohr–
Coulomb material. In the study of Cairncross [3], experiment approach was used to
determine the deformation around a circular tunnel in stiff clay. In 1979, Senevi-
ratne [4] investigated the influence of pore-pressure on the stability of circular
tunnels in soft clay. Mair [5] also conducted some centrifugal model tests to esti-
mate the stability of circular tunnels in soft clay for plane strain. In 1994, Chambon
and Corte [6] conducted a series of centrifuge tests to evaluate the tunnel face
stability in sand. Recently, Kirsch [7] and Idinger et al. [8] performed small-scale
tunnel model in geotechnical centrifuge to investigate the face stability of shallow
tunnel in dry sand.

The stability of a tunnel in cohesive material using the upper and lower bound
theorems has been studied by several researchers, for example, the works of Davis
et al. [9], Mühlhaus [10], Leca and Dormieux [11]. Recently, Zhang et al. [12]
proposed a new 3D failure mechanism using the upper bound limit analysis theory
to determine the limit support pressure of the tunnel face.

In recent decades, the finite element method using triangular element (FEM-T3)
has been rapidly developed to solve important geotechnical problems. A finite
element procedure for linear analysis was first given by Sloan and Assadi [13] to
evaluate the undrained stability of a square tunnel in a soil whose shear strength
increases linearly with depth. Lyamin and Sloan [14], Lyamin et al. [15] and
Yamamoto et al. [16, 17] developed FEM-based nonlinear analysis methods to
calculate the failure mechanisms of circular and square tunnels in cohesive-frictional
soils. However, one of the marked drawbacks of FEM-T3 elements is volumetric
locking phenomenon, which is often occurred in the nearly incompressible materi-
als. To overcome this, Chen et al. [18, 19] proposed a stabilized conforming nodal
integration using the strain smoothing technique. Liu et al. [20–31] applied this
technique to standard FEM and proposed a class of smoothed finite element method
(S-FEM). Typical S-FEM models include the cell-based S-FEM (CS-FEM) [21],
node-based S-FEM (NS-FEM) [22], face-based S-FEM (FS-FEM) [23], and
edge-based S-FEM (ES-FEM) [24]. Several further developments of S-FEMs for
limit and dynamic analysis have been investigated in [32–36].

In this study, the node-based smoothed finite element method (NS-FEM) has
been employed for upper bound limit problems due to following advantages:
(i) total degrees-of-freedom significantly decreased, leading to a fast convergence
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for solutions, (ii) volumetric locking phenomenon is prevented by using NS-FEM
method in solving undrained geotechnical analysis, (iii) by using of smoothed
strains in NS-FEM, the integration is conducted in the edges of smoothed cells, as a
results, there is no need to calculate the derivatives of the shape function. Studies
demonstrate that the NS-FEM performs well in heat transfer analysis [37, 38],
fracture analysis [39], acoustic problems [40, 41], axisymmetric shell structures
[42], static and dynamic analysis [43–45]. Recently, Vo et al. [46, 47] applied an
upper bound limit analysis using NS-FEM and second order cone programming
(SOCP) to determine the stability of dual circular and dual square tunnels in
cohesive-frictional soils.

This paper presents the stability analysis of circular tunnel in cohesive-frictional
soils subjected to surcharge loading using NS-FEM. In this study, the influence of
the soil weight, internal friction angle and the ratio of tunnel diameter to its depth
on the stability numbers and collapse mechanisms are investigated. To evaluate the
accuracy of this suggested procedure, the obtained results are compared with those
of Yamamoto et al. [17].

2 Problem Definition

The circular tunnel is considered to have diameter D and depth H as illustrated in
Fig. 1. The soil behavior is described as a uniform Mohr–Coulomb material with
value of cohesion c′, friction angle ϕ′ and unit weight γ. Drained loading conditions
are considered, and continuous loading is applied to the ground surface. The sta-
bility of the tunnel is described by the dimensionless stability number σs/c′ which is
a function of ϕ′, γD/c′ and H/D as shown in the following equation:

σs
c′

= f ðϕ′,
γD
c′

,
H
D
Þ ð1Þ

Fig. 1 Circular tunnel
subjected to surcharge loading
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In order to calculate the stability numbers σs/c′, the variation of the soil weight
γD/c′ = 0–3, internal friction angle ϕ′ = 0°–35° and the ratio H/D = 1–5 are
investigated. To describe the rough or smooth interface condition between the
loading and the soil, the lateral displacement are fix to zero (u = 0) or free (u ≠ 0)
along the ground surface.

3 Brief on the Node-Based Smoothed Finite Element
Method

In the NS-FEM, the problem domain Ω is discretized by Ne triangular elements with
totally Nn nodes and Nn smoothing domains Ω(k) associated with the node k such
that Ω= ∑Nn

k=1 Ω
ðkÞ and Ωi∩Ωj = ∅, i ≠ j. Smoothing domain of the node k in

NS-FEM is constructed based on the elements connected to the nodes k, as illus-
trated in Fig. 2. The requirement of the smoothing domain is non-overlap and not
required to be convex. Therefore, the smoothing domain is created by connecting
sequentially the mid-edge-points to the centroids of the surrounding triangles.

The matrix form of the smoothed strain associated with the node k can be
calculated by

ϵk̃ = ∑
I ∈NðkÞ

B̃IðxkÞdI ð2Þ

where N(k) is a group of nodes associated with smoothing domain Ω(k), dI is the
nodal displacement vector and B̃IðxkÞ is the smoothed strain-displacement matrix
on the smoothing domain Ω(k) that can be expressed as

centroid of triangle           

Γ(k)

Ω(k)

k : field node  
:
: mid-edge point

Fig. 2 Triangular elements and smoothing cells associated with the nodes in the NS-FEM

126 T. Vo-Minh et al.



B̃IðxkÞ=
bĨxðxkÞ 0
0 bĨyðxkÞ
bĨyðxkÞ bĨxðxkÞ

2
4

3
5 ð3Þ

bĨmðxkÞ= 1
AðkÞ

Z

ΓðkÞ

nðkÞm ðxÞNIðxÞdΓ, ðm= x, yÞ ð4Þ

where AðkÞ =
R
ΩðkÞ dΩ is the area of the cell Ω(k), nðkÞm ðxÞ is a matrix with compo-

nents of the outward normal vector on the boundary Γ(k), NI(x) is the FEM shape
function for node I.

Implementing Gauss integration over each sub-boundary Γ(k) of Ω(k), the Eq. (4)
can be rewritten as

bĨmðxkÞ= 1
AðkÞ ∑

neg

j=1
NIðxGPj ÞnðkÞjm lðkÞj , ðm= x, yÞ ð5Þ

where neg is the total number of the sub-boundary segment of Γ(k), xjGP is the Gauss
point of the sub-boundary segment of Γ(k) which has length lj

(k) and outward unit
normal njm

(k).

4 NS-FEM Formulation for Plane Strain
with Mohr-Coulomb Yield Criterion

The Mohr-Coulomb yield criterion is assumed to be applicable for the soil mass. It
is also considered that the soil mass follows an associated flow rule. Therefore, the
power of plastic dissipation can be calculated by [48]

DðεÞ=
Z
Ω

c′t cosϕ′dΩ ð6Þ

where t is a vector of additional variables defined by

ρk k≤ t

ρ=
ρ1
ρ2

� �
=

εxx − εyy

γxy

" #
ð7Þ
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The changed volume after deformation in cohesive-frictional soil can be cal-
culated from

εxx + εyy = t ⋅ sinϕ′ ð8Þ

The problem domain is discretized using NS-FEM, the smoothed strains can be
calculated from Eq. (2). The upper bound limit analysis for plane strain can be
determined by minimizing the objective function

σs
c0

= α+ =min ∑
Nn

i=1
c0 ⋅Ai ⋅ ti ⋅ cosϕ

0 −W0
extðuÞ

� �

st

u=0 on Γu

WextðuÞ=1
εĩxx + εĩyy = ti sinϕ′, i=1, 2, . . . . . . ..,Nn

ρk ki ≤ ti, i=1, 2, . . . . . . ..,Nn

8>><
>>:

ð9Þ

where α+ is a stability number, Ai is the area of the element of node i, Nn is the total
number of nodes in domain, ϕ’ is the internal friction angle, W0

extðuÞ is the external
work of loads not subjected to α+.

The computations were performed on a Dell Optiplex 990 (Intel CoreTM i5,
1.6 GHz CPU, 8 GB RAM) in Window XP environment using the conic
interior-point optimizer of the Mosek package [49].

5 Numerical Examples

Due to symmetry, only half of the problem is considered. In this paper, GiD [50]
was used to generate three node triangular elements with reduced element size close
to the periphery of the tunnel. The size of domain is chosen sufficiently large
enough to ensure that the failure mechanism only taking place inside the considered
domain. For the case of H/D = 1, the typical finite element meshes of 5280 tri-
angular elements are employed in numerical analysis as shown in Fig. 3.

In order to find the collapse load, the details of the rigid-block mechanism were
presented by Chen [51]. And then, Yamamoto et al. [17] applied the upper bound
rigid-block mechanism to calculate the stability numbers of circular tunnel sub-
jected to surcharge loading.

In this paper, the results obtained when analyzing a variety of tunnels depth
using NS-FEM and SOCP were plotted in Figs. 4, 5, 6 and 7. It is noticeable that
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the failure mechanisms obtained by this proposed procedure are identical to those
derived from rigid blocks and the results of Yamamoto et al. [17].

Figure 4 shows the power dissipation of circular tunnel for shallow tunnel in the
case that small friction angle ϕ′. In this figure, a failure surface originates around
the middle part of the tunnel and extends up to the ground surface. When friction
angle ϕ′ increases, as shown in Fig. 5, the failure plane is moved close to the

(a) Upper bound mesh
(rough interface) 

(b) Deformed mesh (c) Velocity plot

Fig. 3 Typical NS-FEM meshes for a circular tunnel (H/D = 1, γD/c′ = 1, ϕ′ = 5°)

(a) Power dissipation
σs /c’ = 

/c’=1.81 

1.6 7
(b) Rigid -block 

mechanism

φ’H

D

σs

Fig. 4 Comparison of
rigid-block mechanism with
NS-FEM limit analysis (H/
D = 1, γD/c′ = 1, ϕ′ = 5°,
smooth interface)
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symmetrical plane of the tunnel. As expected, the failure mechanism obtained from
this suggested method is almost identical to rigid blocks results.

The stability of deep tunnels was also considered in this study. When H/D
increases, as shown in Figs. 6 and 7, the failure mechanism originates the bottom of
the tunnel and extends up to the ground surface. It is clear that the figure of failure
mechanism obtained is quite the same that of rigid-block approach. However, the
stability numbers obtained from assuming rigid-block mechanism are greater than

(a) Power dissipation
σs /c’ = 

/c’ =5.55 

4.57
(b) Rigid-block 

mechanism

φ’
H

D

σs

Fig. 5 Comparison of
rigid-block mechanism with
NS-FEM limit analysis (H/
D = 1, γD/c′ = 1, ϕ′ = 20°,
smooth interface)

(a) Power dissipation
σs /c’ = 5.09

/c’ = 7.23

(b)Rigid-block mechanism

φ’
H

D

σs

Fig. 6 Comparison of
rigid-block mechanism with
NS-FEM limit analysis (H/
D = 2, γD/c′ = 1, ϕ′ = 15°,
smooth interface)
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those of this proposed numerical procedure. The obtained results are in well
agreement with the average values of the lower bound and upper bound reported by
Yamamoto et al. [17]. The errors stability numbers calculated from NS-FEM limit
analysis and Yamamoto et al. [17] in the cases are shown in Figs. 4, 5, 6, 7 are
0.59%, 0.4%, 0% and 1.35%, respectively.

To investigate the influence of number of elements in simulated model, the
stability numbers σs/c′ of both FEM-T3 and NS-FEM are demonstrated in Table 1
(for the case H/D = 1, γD/c′ = 1, ϕ′ = 5°). For a coarse mesh, the stability number

(a) Power dissipation
σs /c’ = 1.46

/c’ = 2.55
(b)

mechanism

φ’

H

D

σs

Rigid-block 

Fig. 7 Comparison of
rigid-block mechanism with
NS-FEM limit analysis (H/
D = 4, γD/c′ = 1, ϕ′ = 5°,
smooth interface)

Table 1 The comparison of stability numbers using NS-FEM and FEM (For the case: H/D = 1,
γD/c′ = 1, ϕ′ = 5°, smooth interface)

σs/c′ FEM-T3 (UB) 3.5997 3.5460 2.7074 2.6139 2.2906 2.2888 2.1169
NS-FEM (UB) 1.6725 1.6714 1.6682 1.6652 1.6637 1.6636 1.6620

Ne 791 969 1320 1603 2072 3646 5280
Nn 444 538 723 871 1115 1928 2765
Nvar FEM-T3 3261 3983 5406 6551 8446 14794 21370

NS-FEM 2220 2690 3615 4355 5575 9640 13825
UB = Upper bound, LB = Lower bound, Ne = no. of elements, Nn = no. of nodes, Nvar = no. of
variables, Nvar(FEM-T3) = 2Nn + 3Ne, Nvar(NS-FEM) = 5Nn
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using NS-FEM is more accurate than FEM-T3. When the meshes are refined, the
accuracy of FEM-T3 increases, but the convergence rate is very slowly. In com-
parison with those of Yamamoto et al. [17], it is recognized that the numerical
procedure using NS-FEM and SOCP not only reduces a appreciable amount of
variables in optimization problem, but also helps to reduce time for solving opti-
mization problems. The convergence rate is illustrated by Fig. 8.

The values of stability numbers obtained by using NS-FEM and SOCP are
summarized in Tables 2 and 3. It can be noted that irrespective of the value of ϕ′,
the stability number decreases with an increase in γD/c′, its mean that the soil
weight effects to the failure mechanism of circular tunnel. In some cases of H/
D = 4, H/D = 5 and γD/c′ = 3, the stability numbers that approximate zero are
indicated by “− ”, its mean that the tunnels collapse under the weight of the soil.

It is important to note that the meaning of the stability. The negative results
imply that a tensile normal stress can be applied to the ground surface to ensure that
there is no collapse occurred, but this can not be seen in engineering practice. The
positive one means that the tunnel will be collapsed when it is subjected a com-
pressive stress on the ground surface as this value.

Fig. 8 Comparison of convergence rate between NS-FEM and FEM-T3 (for the case: H/D = 1,
γD/c′ = 1, ϕ′ = 5°)
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Figures 9, and 10 illustrate the stability numbers obtained using NS-FEM and
those of Yamamoto et al. [17] in the case smooth interface and rough interface.
These figures show that the results derived from this proposed method are in well
agreement with the average values of the lower bound and upper bound reported by
Yamamoto et al. [17]. It is worth noting that the number of elements in the meshes
used in NS-FEM ranged from 3650 to 5280 triangular elements, while there were a
significantly larger number elements employed in Yamamoto’s model (28800 tri-
angular elements and 43020 stress/velocity discontinuities).

(a) φ’ = 50

(b) φ’ = 100

(c) φ’ = 200

(d) φ’ = 300

Fig. 9 The variation of stability numbers σs/c′ for different values of H/D a ϕ′ = 5°, b ϕ′ = 10°,
c ϕ′ = 20°, d ϕ′ = 30° smooth interface
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6 Conclusions

This paper has presented a new method for upper bound limit analysis of
cohesive-frictional soils using the node-based smoothed finite element method
(NS-FEM) and second-order cone programming (SOCP). Stability numbers are
provided in charts as a function of H/D, ϕ′ and γD/c′. The stability numbers are
found to increase with ϕ′ and H/D and decrease with γD/c′. Various numerical
examples for circular tunnel problems have been carried out showing that the
presented method is able to provide accurate and stable solutions with minimal
computational effort. The obtained results are in well agreement with the average
values of the lower bound and upper bound reported by Yamamoto et al. [17]. It is
promising to develop the proposed method for more complex and large scale
problems.

(a) φ’ = 50

(b) φ’ = 100

(c) φ’ = 200

(d) φ’ = 300

Fig. 10 The variation of stability numbers σs/c′ for different values of H/D a ϕ′ = 5°, b ϕ′ = 10°,
c ϕ′ = 20°, d ϕ′ = 30° rough interface
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Numerical Studies on Contact Problem
of Inter-locking Concrete Blocks
Forming Revetment Structure

L. Dang-Bao, P. Truong-Thi, M. A. Wahab and Hung Nguyen-Xuan

Abstract The importance of revetment slope (RS) structures for protecting coastal
is indisputable. RS structures not only can maintain stability of embankment, but
also can reduce sea wave energy by its optimized geometric features. For years,
civil engineers have developed numerous solutions of RS structures based on
theoretical aspects, experiments, and numerical analysis. Due to the lack of analysis
criterion, design codes, and experimental facilities, numerical analysis methods
significantly become of interest. One of the most challenges is that to perform the
interactions between concrete blocks, which form RS structure, and water, i.e.
dynamic fluid–structure interaction (FSI). Also, interaction between RS structures
and embankment or foundation slope stability must be investigated carefully.
Analysis of inter-locking block interactions is one of our missions in the
VLIR-OUS TEAM 2017 project that we are running. In addition, due to the lim-
itation of existing RS structures, e.g., heavy and dense materials, optimizations of
RS structure are concerned. This paper is to overview the development of RS
structures and approaches for analyzing contact problems. Theoretical aspects and
computational modeling procedures are mentioned. ABAQUS commercial software
is adopted. Hence, novel efficient RS structures could be developed and applied in
the real world.
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1 Introduction

Nowadays, climate change affects human life worldwide. Extreme events such as
droughts, desertification, melting ice sheets, heavy precipitation, flooding, typhoon,
high sea level rise, take place frequently more than ever [1]. One of them, extreme
sea level rise has been seriously taken into account, especially in nations adjacent to
the sea, e.g., Vietnam. For decades, it can be seen that sea level gradually increases
due to melting ice sheets at the poles as shown in Fig. 1 [2]. Several countries
which have coastline are vulnerable due to extreme sea level rise causing coastal
hazards as shown in Fig. 2. Many efforts have been made to decrease the influence
of that phenomenon. Numerous solutions for protecting hinterland have been
applied. RS structures are known as one of effective solutions, which can be
implemented in various structural formations and materials as well. An overview of
development of RS structures is presented in Sect. 2.

As a part of the project, we attempt to analyze the interactions between
inter-locking blocks forming RS structures under dynamic load, e.g., sea wave. This
kind of contact between solid bodies under loading is a nonlinear problem, although
stresses in solid bodies still in elastic regime. Due to the complication of contact
problem, finite element method (FEM) is adopted [3–5]. Contact problem concept
will be discussed in Sect. 3. Computational aspect with illustrated models will be
presented in Sect. 4. Appropriate modeling techniques are proposed for researchers
in order to achieve more accurate results.

Fig. 1 Global mean sea level [2]
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2 Revetment Slope Structures Consideration

For long time ago, people have attempted to apply dozens of coastal protecting
solutions. In this article, RS structures are prior considered. Classical revetments
can be classified into following categories: natural material (sand, clay, and grass),
protected by loose units (gravel and riprap), protected by inter-locking units
(concrete block and mats), protected by concrete and asphalt slabs [6]. In this order,
the resistance of RS structures is derived from friction, cohesion, self-weight of the
units, and mechanical strength. Each type of revetments owns certain advantages
and disadvantages. In addition, they can be combined with other protecting struc-
tures such as breakwater in order to efficiently mitigate the influence of extreme sea
level rise. For a permanent solution, RS structures formed by inter-locking concrete
blocks are of interest as shown in Fig. 3a, b.

The main drawback of traditional concrete material is its weight. In some case,
however, there are regions where geotechnical conditions are not good enough
particularly low soil strength, which is unsuitable to employ such heavy structures

Fig. 2 Coastal erosion in Australia, Photograph by John Grainger

Fig. 3 a Inter-locking blocks forming RS structure, b RS structure failure, and c illustration of
thin-wall RS structure from BUSADCO, Internet
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at those regions. Therefore, in an attempt to vanish that disadvantage, alternate
materials, e.g., foam concrete, fiber-reinforced concrete are used. Using
eco-friendly and recycling materials receives massive support from society.
Recently, a construction company named BUSADCO, located in Vietnam, has
developed novel RS thin-wall structures that can reduce weight of components as
shown in Fig. 3c [7]. However, due to the lack of analyzing criterion and design
code, such structures are only examined in laboratory. This led to high cost of
experimental process. Therefore, numerical analysis method is adopted that can
help designer to eliminate undesired structures. Our work in this project is to supply
an effective tool to validate BUSADCO’s patents.

3 Contact Problem Concept

Basically, there are two theories of numerical contact problem in term of the
difference in their approaches: the penalty function method and the Lagrange
multipliers method. The main distinct between them is in the way they involve in
their formulations the potential energy of contacting surfaces [3, 5]. The penalty
function method is useful for solving frictional contact problems while the
Lagrange method, based on multipliers, known for its accuracy. The main draw-
back of the Lagrange method is that it may lead to ill-converging solutions, while
the penalty method may lead to inaccurate ones. In the following, the penalty and
Lagrange methods will be presented in detail.

The penalty method includes adding a penalty term to enhance the computing
process. In contact problems, the penalty term involves the stiffness matrix of the
contact surface. The matrix results from the concept that one body imaginary
penetrates another. The stiffness matrix of the contact surface is added to the
stiffness matrix of the contacting body, hence the incremental equation of the finite
element becomes:

Kb +Kc½ �u=F, ð1Þ

where Kb is the stiffness matrix of contacting body; Kc is stiffness matrix of contact
surface which is a nonlinear term; u is displacement; F is force. The total load and
displacement values are:

Ftot = ∑ΔF, ð2Þ

utot = ∑Δu, ð3Þ

where Ftot is the force vector and utot is displacement vector.
To derive the stiffness matrix, the contact region (enclose the contact surface) is

divided into a series of contact elements. The element represents the interaction
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between the surface nodes of one body with the respective element face of another.
Figure 4a shows a contact element in a two-dimensional application. It consists of a
slave node (point S) and a master line, connecting nodes 1 and 2. S0 marks the slave
node before the application of the load increment, and S marks the node after
loading.

Given the nature of the numerical simulations presented afterward, only the
sliding mode of friction will be presented. In this case, the tangential force acting at
the contact surface equals to the magnitude of the friction force, hence the first
variation of the potential energy of a contact element is:

δΠc = fnδgn + ftδgt = kngnδgt + sng gtð Þμdkngnδgt, ð4Þ

where kn represents penalty terms used to express the relationship between the
contact force and the penetrations along the normal direction; kt—penalty terms
used to express the relationship between the contact force and the penetrations
along the tangential direction; gn—penetration along the normal direction;
gt—penetration along the tangential direction;

fn = kngn, ð5Þ

ft = − sgn gtð Þμd kngnð Þ. ð6Þ

In the case of classical Lagrange multiplier method, the contact forces are
expressed by Lagrange multipliers. The augmented Lagrange method includes the
regularization of classical Lagrange method by adding a penalty function from the
penalty method [8]. This method does not allow any relative motion between two
closed surfaces until resultant shear stress is equivalent to the critical shear stress as
shown in Fig. 4b. Unlike the classical one, augmented Lagrange method can be
applied to sticking friction, sliding friction, and frictionless contact.

The contact problem includes the minimization of potential Π by equating to
zero the following expression:

(a) Penalty method (b) Lagrange method 

Fig. 4 Illustrations of finite element formulations of contact problems
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Π u,Λð Þ=ΠbðuÞ+ΛTg+
1
2
gTkg, ð7Þ

where

ΛT = λ1n
λ1t

� �
, λ2n

λ2t

� �
, . . . λkn

λkt

� �� �
, ð8Þ

with λn—Lagrange multiplier for the normal direction; λt—Lagrange multiplier for
the tangential direction;

g= g1n
g1t

� �
, g2n

g2t

� �
, . . . gkn

gkt

� �� �
. ð9Þ

4 Contact Constraint Enforcement Methods
and Application

In this section, contact constraint enforcement methods for normal contact are taken
into account throughout a validated RS structure simulated by ABAQUS/Standard
software. Additionally, the contact pressure–overclosure relationships are also
important relationships for contact problems. The most common one, which is used
in these simulations under considering contact conditions, is “hard” contact
criterion.

There are three contact constraint enforcement methods available in ABAQUS/
Standard: penalty method, augmented Lagrange method, and directly method. The
first one is a stiff approximation of hard contact. The second one uses the same kind
of stiff approximation as the penalty method, but also uses augmentation iterations
to improve the accuracy of the approximation. The last one attempts to strictly
enforce a given pressure–overclosure behavior per constraint, without approxima-
tion or use of augmentation iterations. Each method owns certain advantages and
disadvantages. For the below RS structure, in terms of hard contact simulation, the
directly method is susceptible to over constraint issues. Hence, only two methods,
penalty method and augmented Lagrange method, will be applied for such inter-
actions. The results are used for comparison in order to propose appropriate method
for certain problem. In addition, ABAQUS/Standard offers linear and nonlinear
variations of the penalty method. With the linear penalty method, the so-called
penalty stiffness is constant, so the pressure–overclosure relationship is linear. With
the nonlinear penalty method, the penalty stiffness increases linearly between
regions of constant low initial stiffness and constant high final stiffness, resulting in
a nonlinear pressure–overclosure relationship as shown in Fig. 5.

For tangential contact, ABAQUS uses a penalty scheme to impose friction
constraints. The penalty scheme allows some relative motion of the surfaces when it
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should be sticking. The magnitude of sliding is limited to an elastic slip, which is
characterized by slip tolerance and contact surface length. Another method that can
enforce the sticking and sliding constraints more precisely is Lagrange multipliers
scheme. To reduce computational load and convergence issues, penalty method is
recommended for tangential interaction of such inter-locking blocks forming RS
structures (Fig. 6).

In this section, comparison between two contact constraint enforcement methods
are made in terms of displacement of structures, contact pressure, and stress in the
same certain area. In doing so, validated model is employed. The procedure of
modeling is illustrated in Fig. 8 in detail. A RS structure formed by above
inter-locking blocks and a pressure load is applied, representing sea wave load as
shown in Fig. 9 [10, 11]. Only a part involving 6 × 12 blocks is considered for
reducing computation load as shown in Fig. 7. Slope of roof is 1:4. The lower and

Fig. 5 Comparison of linear and nonlinear pressure–overclosure relationships [9]

Fig. 6 Shape of concrete block [10]
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upper edges of rectangular mat are defined as symmetric boundaries. The remaining
edges are clamped. The coefficient of friction between the blocks is 0.3. Value of
Young’s modulus, Poisson’s ratio, and density of concrete used in the simulation
are 2.5 × 1010 N/m2, 0.2, and 2500 kg/m3, respectively. Mesh density is high
enough to ensure the accuracy. The pressure distribution on area of mat when
strongest wave hitting the RS structure is determined by Djunkovski’s formula as
follows [12]:

Pm =KP̄γhs, ð10Þ

Fig. 7 Forming RS structure
by 6 × 12 blocks in
ABAQUS software

Fig. 8 Schematic of
modeling procedure

Fig. 9 Distribution of
pressure wave load on the
roof of revetment slope
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where

P̄m is relative pressure exerted on the wave slope depending on the height of wave
hs,

K is coefficient depends on ratio λ ̸hs and angle of slope,
γ is density of seawater.

In this simulation, value of Pm corresponding typhoon level 9 is equal to 95 kPa.
Foundation beneath cover layer is simplified by springs connecting blocks to

earth. Spring stiffness is calculated by formula as follows:

Kstr = kzAi, ð11Þ

where

Ai is contact area between block and foundation,
kz is foundation coefficient determined by expression:

kz =
p
S

ð12Þ

S is final stable settlement value; p is applied pressure load in experimental
measurement.

Here, we assume kz, then calculate Kstr for each spring depend on different Ai.
In simulations, general contact and contact pair algorithms for modeling contact

are chosen. Other contact algorithms in ABAQUS/Standard that are contact ele-
ments are not considered. For general contact algorithm, interactions typically
include all bodies in the model with single interaction property. Default surfaces are
defined automatically but can include/exclude surface pairs. Whereas, contact pairs
algorithm describes contact between two individual specified surfaces. Each algo-
rithm owns certain advantages and disadvantages (Figs. 10, 11, 12, and 13).

The simulation results for comparing two contact constraint enforcement
methods are presented in Tables 1 and 2 in case of general contact and contact pair,
respectively.

Fig. 10 von Mises stress

Numerical Studies on Contact Problem … 151



Fig. 11 Displacement perpendicular to roof of embankment

Fig. 12 Tetrahedral mesh
density

Fig. 13 von Mises stress on
single block
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It is seen that the results of two contact algorithm are slightly identical. However,
it is observed that contact pairs algorithm consume more time for calculation than
other because it has more restrictions on type of surfaces involved. For comparison
of two contact constraint enforcement methods, simulation results are not much
different in terms of von Mises stress. However, in terms of displacement of cover
layer, penalty method in case of nonlinear consideration results in the highest value,
but maximum contact pressure resulting from this method is smallest. The reason is
that in nonlinear penalty method, the initial penalty stiffness is less than linear one
ten times. Moreover, in the contact stiffening regime, the contact pressure varies
quadratically for penetrations, and in our simulation, the nonlinear penalty stiffness
still less than linear penalty stiffness constant that results in smaller contact pres-
sure. It is recommended that nonlinear penalty method should be applied for such
inter-locking blocks forming RS structures.

5 Conclusion

Overview of RS structures and contact problem concept was revealed. Contact
constraint enforcement methods and illustrated computational result are presented,
so that researchers can obtain a better approach for inter-locking interaction
problem. Many factors such as interactions, meshing, constraints must be consid-
ered carefully for improving the accuracy. Hence, an innovative tool for designing
revetment structures can be proposed.
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ject, VLIRUOS2017-2021-75900, funded by the Flemish Government. Authors would like to
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Table 1 Comparison of two contact constraint enforcement methods (general contact algm.)

Classification Penalty method Augmented Lagrange method
Linear Nonlinear

Max. disp. of roof (mm) 22.43 25.76 22.22
Max. von Mises stress (N/m2) 2.879E7 2.811E7 2.884E7
Max. contact pressure (N/m2) 4.356E7 2.870E7 5.128E7

Table 2 Comparison of two contact constraint enforcement methods (contact pairs algm.)

Classification Penalty method Augmented Lagrange method
Linear Nonlinear

Max. disp. of roof, mm 21.39 23.05 21.16
Max. von Mises stress (N/m2) 2.796E7 2.820E7 2.786E7
Max. contact pressure (N/m2) 4.271E7 2.900E7 5.012E7
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Part II
Multiscale Multiphysics Problems



Orientation-Dependent Response
of Pure Zinc Grains Under
Instrumented Indentation:
Micromechanical Modeling

N. P. T. Nguyen, F. Abbès, B. Abbès and Y. Li

Abstract This chapter concerns the micromechanical behavior modeling of a pure
zinc polycrystal. An inverse optimization strategy was developed to determine
plastic deformation properties from instrumented indentation tests performed on
individual grains of cold-rolled polycrystalline sheets. Nanoindentation tests have
been performed on grains using a spherical–conical diamond indenter, providing
load-penetration depth curves. The crystalline orientation of those grains has been
determined using an EBSD analysis. Furthermore, a crystal plasticity model has
been implemented in the finite element code Abaqus using a user material sub-
routine. To identify the constitutive model parameters, the inverse identification
problem has been solved using the MOGA-II genetic algorithm coupled with a
finite element analysis of the nanoindentation test. In a first approach, the identi-
fication procedure used the load-displacement curves issued from the indentation
performed on a grain of given crystalline orientation. A good agreement is achieved
between experimental and numerical results. This constitutive model has been
validated by simulating the indentation response of grains of distinct crystalline
orientations, involving different slip systems activity rates.
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1 Introduction

Zinc metal has a number of characteristics that make it a well-suited corrosion
protective coating for iron and steel products. Its high corrosion resistance in most
environments accounts for its successful use as a protective coating on a variety of
products and in many exposure conditions, especially in automotive and building
applications [1].

In automotive industry, hot-dip galvanized sheets, with 100% of zinc, or
GALFAN (with 95% zinc and 5% Al) are the most used products. The mechanical
resistance is not the only matter of interest but corrosion resistance and aesthetics
are also important. An efficient coating then requires a good forming ability and
adhesive bonding, with no crack or flaking during forming process.

Zinc has a hexagonal close-packed (hcp) crystalline structure. Compared to other
hcp metals like titanium or magnesium, zinc is characterized by a high c/a lattice
ratio (ca

��
Zn =1.856, ca

��
Mg =1.624, ca

��
Ti =1.588) and then exhibits a strong anisotropic

behavior.
Due to the lack of adequate constitutive laws, hcp sheet forming finite element

simulations have been generally performed using classical macroscopic anisotropic
criteria for cubic metals [2, 3]. Recent advances in the formulation, numerical
implementation, and validation of macroscopic plasticity models for hcp materials
have allowed a better capture of specific features like the anisotropy and the ten-
sion–compression asymmetry in yielding of hcp metals [4–9].

A physically based approach requires a good understanding of the deformation
mechanisms, namely dislocation slip at the individual grain scale in the polycrys-
talline sample. Moreover, depending on its orientation, the grain response involves
different slip systems’ activity rates. Indeed, an accurate determination of slip
resistance and its evolution, that is hardening, is of prime importance to well predict
the macroscopic response of a polycrystalline specimen.

In practice, the first possibility consists in carrying out in situ SEM microtensile
tests. Electron backscatter diffraction (EBSD) maps are taken before and after
testing on selected areas of the specimen. Then slip trace analysis is conducted to
identify the active deformation modes based on the obtained SEM images and
EBSD data. Correlating those data with available and possible deformation systems
then enables the determination of the corresponding critical resolved shear stress
(CRSS).

Another way concerns instrumented indentation tests performed on grains of
distinct crystallographic orientations. Then, combining crystal plasticity finite ele-
ment method (CPFEM) with an inverse identification, one can determine the
unknown CRSS. This chapter details such approach in the case of a pure poly-
crystalline zinc sheet.

This chapter is organized as follows: Sect. 2 presents the crystal plasticity model
and the governing equations implemented in the finite element code Abaqus using a
user material subroutine. In Sect. 3, we present the material under study, the sample
preparation and the experimental protocol for instrumented indentation tests. The
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identification strategy for the optimization of the slip resistance and slip hardening
parameters is described in Sect. 4. In Sect. 5, the numerical results are discussed
along with experimental data.

2 Crystal Plasticity Model

The crystal plasticity theory postulates that the plastic deformation results from the
cumulative effect of crystalline glide in all activated slip systems. The deformation
rate is then given by the sum over all the shear rates contributed by all activated
systems. Obeying Schmid’s law, the shear strain rate γ ̇ αð Þ on the αth slip system is
given by the following power law:

γ ̇ αð Þ = γ ̇ αð Þ
0

τ αð Þ

τ αð Þ
c

�����
�����
n

sgn τ αð Þ
� �

ð1Þ

where γ ̇ αð Þ
0 is the reference shear strain rate on slip system α, τ αð Þ

c is the slip
resistance, that is the critical resolved shear stress of the slip system α, and n is the
strain-rate sensitivity exponent.

For multiple slips, the evolution of the slip resistance gðαÞ is governed by the
hardening law expressed through a linear incremental relation:

gð̇αÞ = ∑
β
hαβγð̇βÞ ð2Þ

where hαβ stands for the slip hardening moduli, the sum ranges over all activated
slip systems. Here hαα and hαβ (α ≠ β) are called self and latent hardening moduli,
respectively.

Peirce et al. [10] have expressed the relation between self and latent hardening
moduli as follows:

hαα = hðγÞ= h0 sec h2
h0γ

τs − τ0

��� ���
hαβ = qhðγÞ ðα≠ βÞ

(
ð3Þ

where h0 denotes the initial hardening modulus, τ0 is the critical resolved shear
stress and τs is the saturation strength. γ is the Taylor cumulative shear strain on all
slip systems:

γ = ∑
α

Z t

0

γ ð̇αÞ
�� ��dt ð4Þ
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The parameter q characterizes the hardening behavior. It is defined as the ratio of
latent over self-hardening moduli, taken equal to unity in our simulations.

Because of zinc’s high c/a axial ratio, the basal glide is the primary slip system
(B⟨a⟩ 0001f g⟨112 ̄0⟩). To achieve the Taylor criterion [11] requiring five indepen-
dent slip systems for the ductility of polycrystalline metals, deformation is
accommodated by prismatic glide (P⟨a⟩ 101 ̄0f g⟨112 ̄0⟩) and/or 2nd-order pyramidal
glide (Π2⟨c+ a⟩ 112 ̄2f g⟨112 ̄3⟩).

It is worth mentioning here that we have not considered 1st-order pyramidal slip
systems (Π1⟨a⟩), following the analysis of Yoo and Wei [12], who have stated that
basal and prismatic slip systems are crystallographically equivalent to Π1⟨a⟩ glide.

Finally, following the work of Yoo and Lee [13], given its c/a axial ratio, zinc
exhibits compression twins 101 ̄2f g⟨101 ̄1 ̄⟩ causing a contraction along the c-axis.

The afore-mentioned deformation systems are illustrated in Fig. 1.
The crystal plasticity model for cubic systems was initially implemented into the

implicit finite element (FE) code ABAQUS/Standard through a user material sub-
routine (UMAT) by Huang [14] and modified by Kysar and Hall [15]. We have
adapted this UMAT for crystal plasticity modeling of zinc hcp crystal. The FE
formulation includes elastic-plastic and viscoplastic deformation. The plastic
deformation is assumed due solely to the crystallographic dislocation glide,
deformation by diffusion, twinning, and grain-boundary sliding not being consid-
ered here.

Fig. 1 Deformation modes in zinc
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3 Experimental Procedure

3.1 Sample Preparation

The material under study is an annealed cold-rolled sheet (1-mm thickness) of
high-purity polycrystalline zinc (Zn > 99.99 + wt%). The chemical composition is
given in Table 1.

The as-received sheets have been plastically deformed (thickness reduction rate
of 50%) and annealed at a temperature of 100 °C for a period of 2 h to trigger the
recrystallization of new grains.

Microstructure characterization was evaluated by electron backscatter diffraction
(EBSD) using a JEOL65 field emission gun-scanning (FEG) electron microscope
(SEM) equipped with OIM EBSD system. Samples preparations for EBSD
examination were first ground with sand paper, and then they were polished with
1-μm diamond paste to mirror finish. In order to achieve the surface quality required
for nanoindentation tests and EBSD examination (i.e, deformation-free and
scratch-free surface), a chemo-mechanical polishing with colloidal silica suspension
(∼40 nm) on porous neoprene polishing cloth for about 35 mn was used.

3.2 Instrumented Indentation Tests

Instrumented indentation tests were performed using a 90° cono-spherical diamond
indenter (tip radius of 1 μm) mounted in a NHT-2 nanoindenter (CSM Instru-
ments). Indentations were carried out in load-control mode, at a constant loading
rate F ̇=50 μN s− 1, following a trapezoidal loading curve, with loading up to a
maximum load Fmax, then holding for a duration equal to the loading one to test
creep behavior, and finally complete unloading.

The selected grains for nanoindentation tests are shown on the following EBSD
maps (Fig. 2a, b), along with their location in the standard stereographic triangle
(Fig. 2c). The size and the crystalline orientation using the Euler-Bunge angles of
those grains are listed in Table 2 [16]. In what follows, grains for which the 〈c〉
axis (i.e., 〈0001〉) is parallel to the normal direction of the sheet are called basal
grains. Grains for which the ⟨1 ̄21 ̄0⟩ direction is parallel to the normal direction of
the sheet are called pyramidal grains. Finally, grains for which the ⟨011 ̄0⟩ direction
is along the normal direction of the sheet are called prismatic grains.

To avoid grain-boundary influence, indents were located in the mid-zone of
individual grains. To get the local crystal orientation at the indentation site, the

Table 1 Chemical analysis (ppm) of as-cast high-purity (99.99 + %) polycrystalline zinc

Ag Cd Ca Cr Cu Cs Fe Mn Ni Pd Pb Rh Ta T Ti

0.36 3.4 <0.1 0.55 4.0 <0.1 4.9 0.18 0.66 <1 12 <0.5 <10 5.1 4.5
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precise locations of the indents were checked a posteriori by EBSD and secondary
electron imaging in the scanning electron microscope (SEM). It is worth men-
tioning that no twinning was observed [16].

4 Identification Process

Three-dimensional finite element simulations of the nanoindentation tests were
performed using the commercial software ABAQUS/Standard 6.13. Assuming a
single-crystal-like behavior, each grain has been modeled as a cylinder of 60-μm
diameter and 60-μm height to avoid grain-boundary effects. The selection of the
mesh size is generally a compromise between the computational cost and the
solution accuracy. The sample was discretized using 26624 eight-node linear
hexahedral elements with reduced integration scheme (C3D8R) to ensure that the
mesh was fine enough, especially the area that makes contact with the indenter.
Away from the tip, the mesh density was progressively coarsened to keep the
simulations computationally tractable. The total number of elements is about 10
times more than those used in published papers by Liu et al. [17, 18] for similar
depth of indentation (200–300 nm), and of same order than those used by Liu et al.
[19] for depth of indentation of 2000 nm. In terms of boundary conditions, the
bottom face of the specimen was fully constrained. The indenter was only allowed
to move in the z-direction. The FE model is illustrated in Fig. 3.

Fig. 2 Selected grains for nanoindentation tests

Table 2 Average diameter and crystalline orientation of the selected grains

Grain number Average diameter (μm) Euler-Bunge angles
(°)

Crystalline orientation

φ1 ϕ φ2

5 24.138 3.4 24.6 49.6 Basal
14 19.292 15.1 87.1 0.1 Prismatic
15 10.943 50.3 83.8 24.7 Pyramidal
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The cono-spherical indenter was modeled as a fully rigid body, with a tip radius
of 1 μm and a half-included angle of 45°.

A friction coefficient of 0.1 was assumed between the indenter and the zinc
substrate. Even if friction is known to play a minor role on the load versus dis-
placement response during indentation [20], the use of a friction coefficient
enhances convergence by limiting mesh elements distortion in the contact area. The
effect of coefficient of friction on the nanoindentation behavior of single-crystal
copper has been investigated by Liu et al. [17] and it was found that while the
introduction of friction does not change the nanoindentation load–displacement
relationship, it changes the indent surface pileup profiles.

Furthermore, like experimental conditions, all simulations were performed under
quasi-static, isothermal load-controlled conditions. In addition, nonlinearity option
was used to account for both material and geometric (finite strains and rotations)
nonlinearities.

The stiffness tensor C was considered to model the single-crystal elastic
response, which is composed of six terms, listed in Table 3 [21].

Since plastic deformation is obtained by crystallographic dislocation slips, a total
of 12 slip systems were considered: basal slip systems (3), prismatic slip systems
(3), and Π2⟨c+ a⟩ slip systems. According to the proposed crystal plasticity model,
and in addition to the strain-rate sensitivity exponent “n,” 4 material parameters

(h αð Þ
0 , τ αð Þ

0 , τ αð Þ
s , and γ ̇ αð Þ

0 ) should be identified for each family of slip systems.

Fig. 3 3D finite element model

Table 3 Elastic constants
(GPa) of the zinc single
crystal

C11=C22 C12 C13=C23 C33 C44=C55 C66

165 31.1 50 61.8 39.6 66.95
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To keep the inverse identification problem more tractable, we assumed first
similar values of reference shear strain rate on each slip system α, that is

γ ̇ αð Þ
0 = γ0̇ = 1.25 × 10− 2 [1].
Furthermore, the basal glide being the easy slip system for zinc, we assumed a

constant ratio between basal and prismatic glide initial yield stresses on the one
hand, and between basal and pyramidal glide initial yield stresses on the other hand.
Namely, τPrism0 ̸τBasal0 = 15 and τPyr⟨c+ a⟩

0 ̸τBasal0 = 10, as suggested by Philippe et al.
[22] and Fundenberger et al. [23].

Besides, we supposed a correlation between the initial yield stress and the sat-
uration strength of each slip family, considered as constant, that is

τ αð Þ
s ̸τ αð Þ

0 = sat>1.
Hence, determining the “sat” parameter allows getting the saturation strengths of

the considered slip systems (τBasals , τPrisms , τPyr⟨c+ a⟩
s ).

Finally, this identification strategy allowed the reduction of the parameter vector
to a 6-component vector only (hBasal0 , hPrism0 , hPyr⟨c+ a⟩

0 , τBasal0 , sat, n) instead of the
initial set of thirteen parameters.

Those material parameters are obtained through an inverse identification pro-
cedure, by iterative adjusting to match numerical and experimental load-penetration
depth curves. The optimization loop combines the FE analysis (ABAQUS code)
and the optimization procedure. In practice, we used the genetic algorithm
MOGA-II to minimize the objective function defined as follows:

Fobj =
1
N

∑
N

i=1
hnumðP, tiÞ− hexpðtiÞ
� �2 ð5Þ

where P stands for the vector of unknown parameters, N is the number of data set, ti
denotes the time of the corresponding experimental point “i,” and hnum P, tið Þ and
hexp tið Þ are the indenter displacements numerically computed and experimentally
measured, respectively.

The workflow of the optimization process is shown in Fig. 4.

MOGA-II
(New vector P)

Initial vector P0 Parameter vector P
Script: - Edit input file

- Run ABAQUS
- Extract results
- Evaluate Fobj

Convergence EndYesNo

Fig. 4 Flowchart of the optimization process for material parameter identification
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5 Results and Discussion

5.1 Identification of the Crystal Plasticity Model Parameters

Given the identification strategy described in Sect. 4, we have selected Grain #14
for the identification of the crystal plasticity model parameters. As summarized in
Table 2 and plotted in Fig. 2c, this grain is close to the ⟨011 ̄0⟩ corner and therefore
has the ⟨011 ̄0⟩ crystal direction almost parallel to the indentation direction.

The data set used is the load-penetration depth measured in load-control mode at
a maximum load of 1 mN. The loading conditions are similar to the experimental
ones, including the loading, holding, and unloading stages.

Figure 5 depicts the experimental load-penetration depth curve, and the
numerical one issued from the identification procedure. The identified parameters
are summarized in Table 4.

One can notice the good agreement between the experimental data and the
simulated response of Grain #14. An analysis of the onset of slip systems activity in
the area underneath and around the indenter is shown in Fig. 6. Point I which is
located underneath the tip is the point where first signs of yield are observed. As
penetration depth increases, Points II and III, respectively, located around and far
from the indenter, undergo plastic deformation at a lower rate.

Fig. 5 Experimental and
simulated load-penetration
depth curves for Grain #14

Table 4 Crystal plasticity model parameters identified for pure zinc

γ0̇ s− 1ð Þ n hBasal0 (MPa) hPrism0 (MPa) hPyr⟨c+ a⟩
0 (MPa) τBasal0 (MPa) sat

0.0125 58 104 595 845 3 3.5
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Figure 7 illustrates the corresponding evolution of shear strain (γ αð Þ) on all slip
systems at Point I location. The onset of plasticity occurs at 3.5 nm and is initiated
by activation of the easy glide 0001ð Þ⟨12 ̄10⟩ basal slip system, consistent with
experimental observations [23]. It is followed by the early activation of the
0001ð Þ⟨112 ̄0⟩ basal slip system, 101 ̄0½ �⟨12 ̄10⟩ and 1 ̄100½ �⟨112 ̄0⟩ prismatic slip
systems, and 12 ̄12½ �⟨1 ̄21 ̄3⟩ and 1 ̄1 ̄22½ �⟨112 ̄3⟩ pyramidal slip systems, between
4 nm and 6 nm penetration depth. Indeed, the contribution of 011 ̄0½ �21 ̄1 ̄0 prismatic
slip system, 2 ̄112½ �⟨21 ̄1 ̄3⟩ and 21 ̄1 ̄2½ �⟨2113⟩ pyramidal slip systems to the total
cumulative shear strain over the entire loading stage is not observed. Moreover, the
remaining slip systems are activated progressively with increasing penetration
depth to accommodate the plastic deformation.

Fig. 6 Total cumulative shear strain versus penetration depth at three selected points (Grain #14)

Fig. 7 Evolution of γ αð Þ at Point I for all slip systems (Grain #14)
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5.2 Validation of the Crystal Plasticity Model

To assess the validity of the proposed model, indentation tests performed on grains
of different crystalline orientations were simulated using the CPFEM model with
the identified parameters given in Table 4. Grain #5 and Grain #15 have been
selected given their quite distinct location in the standard stereographic triangle.
Therefore, such distinct crystalline orientations should involve different slip sys-
tems activity rates.

The comparison between experimental data and numerical simulations is
depicted on Fig. 8. It is worth noting that the mechanical behavior of such grains
under heterogeneous loading conditions is fairly good predicted by our model.
Those results validate the identified model for pure zinc.

6 Conclusion

In this chapter, we studied the orientation-dependent response of pure zinc grains.
Nanoindentation experiments were performed on grains of different crystalline
orientations. A crystal plasticity model was implemented in the FE code Abaqus
through a user subroutine. The model parameters were identified by solving an
inverse problem. Experimental data and numerical results are in good agreement.
The analysis of the slip systems activity in the area underneath the indenter high-
lights that the basal glide is activated as primary slip system, followed by secondary
slip systems provided by pyramidal 〈c + a〉 and/or prismatic glide to accommodate
the deformation. The model thus identified can be used, for example, in deep
drawing of zinc sheet finite element analysis for further experimental validations
[24].

Fig. 8 Prediction of Grain #5
and Grain #15
nanoindentation responses
using the identified model
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Atomistic Simulation of Boron
Nitride Nanotubes Under Bending

T. Nguyen-Van, T. Nguyen-Danh and Q. Le-Minh

Abstract We investigate the bending buckling behavior of boron nitride
(BN) nanotubes through molecular dynamics finite element method with Tersoff
potential. Effects of the tube length on the critical bending buckling angle and
moment are examined for (5, 5) BN armchair and (9, 0) BN zigzag tubes, which
exhibit approximately identical diameters. The buckling and fracture mechanisms
of the tubes under bending are considered and discussed with respect to various
tube length–diameter ratios L/D = 10–40. Simulation results will help to design
and use BN nanotube-based nanocomposites and nanodevices.

Keywords Atomistic simulation bending ⋅ Boron nitride nanotube
Buckling

1 Introduction

A boron nitride nanotube (BN-NT) can be geometrically formed by rolling up a
hexagonal boron nitride (BN) layer or a carbon nanotube (CNT) [1] in which
alternating B and N atoms entirely substitute for C atoms as shown in Fig. 1.

Various techniques have been used to synthesize BN-NTs, including
arc-discharge, chemical vapor deposition, laser ablation, ball-milling methods (see,
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e.g., the review by [2]). BN-NTs exhibit good mechanical properties with high
elastic modulus of ∼0.5–1 TPa and tensile strength of ∼61 GPa [3]. They possess
distinguishable chemical and thermal stability with high oxidation resistance up to
900 °C in air [4], wide bandgaps independent of tube structures [5, 6], excellent
thermal conductivity [7]. BN-NTs are also an effective violet and ultra-violet light
emission material [8, 9]. Potential applications of BN-NTs include nanofillers in
polymeric [10] and metallic [11] composites, optoelectronic fields [8], radiation
shielding in space vehicles [12]. Potential applications of BN-NTs need a com-
prehension of the mechanical properties and performance of BN-NTs under various
loading conditions. BN-NTs under compression [13–15], tension [16, 17], torsion
[16, 18–20], and bending with two fixed or simple supports [21, 22] have been
investigated. So far, theoretical studies of the buckling behavior under bending of
BN-NTs seem unexplored. It should be noted that the buckling behavior of CNTs
under bending has been investigated by continuum methods, atomistic simulations,
and multi-scale approach; see, for example, [23, 24] and references therein.

The present work investigates through molecular dynamics finite element
method (MDFEM) the buckling behavior of BN-NTs under bending. The critical
bending buckling angle and moment are studied with respect to the length–diameter
ratios of BN-NTs.

Fig. 1 Schematic illustration of: a (9, 0) BN zigzag tube; b (5, 5) BN armchair tube
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2 Framework for Analysis

Tersoff potential is used to model the B-N interatomic interactions [25]. The
potential energy E of the atomic structure is a function of atomic coordinates as
below:

E= ∑
i
Ei =

1
2
∑
i≠ j

Vij,Vij = fC rij
� �

fR rij
� �

+ bijfA rij
� �� �

; ð1aÞ

fR rij
� �

=Aijexp − λIijrij
� �

, fA rij
� �

= −Bijexp − λIIij rij
� �

; ð1bÞ

fC rij
� �

=

1, rij ≤Rij;
1
2 +

1
2 cos π. rij −Rij

Sij −Rij

� �
, Rij ≤ rij ≤ Sij;

0, rij ≥ Sij;

8
><

>:
ð1cÞ

bij = χij 1+ βnii ζ
ni
ij

� �− 1 ̸2ni
, ζij = ∑

k≠ i.j
fC rikð Þωikg θijk

� �
, g θijk
� �

=1+ c2i ̸d2i − c2i ̸ d2i + hi − cos θijk
� �2h i ð1dÞ

λIij = λIi + λIj

� �
̸2, λIIij = λIIi + λIIj

� �
̸2,Aij =

ffiffiffiffiffiffiffiffiffi
AiAj

p
,Bij =

ffiffiffiffiffiffiffiffiffi
BiBj

p
,Rij

=
ffiffiffiffiffiffiffiffiffi
RiRj

p
, Sij =

ffiffiffiffiffiffiffiffi
SiSj

p ð1eÞ

Here, the lower indices i, j, and k label the atoms of the system, where interaction
between atoms i and j is modified by a third atom k. rij is the distance between
atoms i and j; fA and fR are the attractive and repulsive pairwise terms; fC is a cutoff
function to ensure the nearest-neighbor interactions; Rij and Sij denote the small
cutoff distance and the large one, respectively; bij is a bond-order parameter,
depending on the local coordination of atoms around atom i. Further detail of the
Tersoff potential is given in [25]. Force field parameters are taken from the work by
Sevik et al. [26] for B-N interactions.

While the density functional theory (DFT) calculations and molecular dynamics
(MD) simulations are time-consuming, molecular dynamic finite element methods
(MDFEMs), sometimes known as atomic-scale finite element methods or atomistic
finite element methods, have been developed to analyze nanostructured materials in a
computationally efficient way; see, for example, [27, 28]. To achieve the atomic
positions of the BN-NT under specific boundary conditions, molecular dynamic finite
element method (MDFEM) is here adopted. In MDFEM, atoms and atomic dis-
placements are considered as nodes and translational degrees of freedom (nodal dis-
placements), respectively. Both first and second derivatives of system energy are used
in the energy minimization computation, hence it is faster than the standard conjugate
gradient method which uses only the first-order derivative of system energy as
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discussed in [27]. The stiffness matrices of these elements are established based upon
interatomic potentials. Similar to conventional finite element method, global stiffness
matrix is assembled from element stiffness matrices. Hence, relations between atomic
displacement and force can be derived by solving a system of equations. Further
detailed numerical procedure of MDFEM and our specific development for Tersoff
potentials are available in our previous work [29] and references therein. Initial
positions of atoms are generated by using the B-N bond length of 1.444 Å taken from
previous MD simulations [30] at optimized structure at 0 K with the same force field.
(5, 5) BN armchair and (9, 0) BN zigzag tubes are considered. Difference in diameters
of these two tubes is less than 4%. The diameter is about 0.717 and 0.689 nm for (9, 0)
BN armchair and (5, 0) BN zigzag tubes, respectively.

3 Results and Discussion

Figure 2 shows the variations of the bending moment versus the bending angle of
(9, 0) and (5, 0) BN tubes with the length–diameter ratio L/D = 30. The bending
angle θ is here defined as the angle between two planes containing the two ends of
the tube under bending. It can be seen from Fig. 2 that the bending moment
increases monotonously with an increase of the bending angle up to a critical value,
and then the bending moment drops suddenly, demonstrating a brittle fracture. The
critical bending angle of the (9, 0) BN zigzag tube is approximately 66.6o, 136.6o,
210.6o, and 278.0o for L/D = 10, 20, 30, and 39, respectively. The critical bending
angle of the (5, 5) BN armchair tube is about approximately 121.7o, 142.9o, 176.7o,
and 181.0o for L/D = 10, 20, 30, and 40, respectively.

Figure 3 shows the effects of tube’s length on the variations of the critical
bending moments, critical bending angle, and critical bending curvature of these

Fig. 2 Variations of the
bending moment versus the
bending angle of the (9, 0)
and (5, 0) BN tubes with
L = 30D
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Fig. 3 Variations versus the
tube length of: a the critical
bending angle; b critical
bending curvature; and
c critical bending moment
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two tubes. The critical bending moment and the critical bending curvature of (9, 0)
BN tubes increase with an increase of the tube’s length in the range L/D = 10–40,
whereas the critical bending moment and the critical bending curvature decrease
when increasing the length of the (5, 5) BN tube. The critical bending angles of
these two tubes increase with increasing the tube’s length.

The critical bending moment, the critical bending curvature, and critical bending
angle of (5, 5) tubes are higher than those of (9, 0) tubes when L/D = 10, hence
short (5, 5) tubes resist better than short (9, 0) tubes under bending. Whereas long
(9, 0) tubes undergo bending better than long (5, 5) tubes; the critical bending
moment, the critical bending curvature, and critical bending angle of (9, 0) tubes are
higher than those of (5, 5) tubes at L/D = 30 and 40 as indicated in Fig. 3. Figure 4
shows the post-buckling shapes of (9, 0) BN zigzag tubes with L/D = 10, 20, and
30. Snapshots under progressive bending are depicted in Figs. 5 and 6 for (9, 0) BN
zigzag tube with L/D = 39 and (5, 5) BN armchair tube with L/D = 20,
respectively.

Fig. 4 Post-buckling shapes of (9, 0) BN zigzag tubes: a L/D = 10, θ = 91.67°; b L/D = 20,
θ = 171.89°; and c L/D = 30, θ = 213.37°
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Fig. 5 Snapshots of a (9, 0) BN zigzag tube with L/D = 39 under a bending angle of: a 279.37o;
and b 279.49o

Fig. 6 Snapshots of a (5, 5) BN armchair tube with L/D = 20 under a bending angle of:
a 143.35o; b 143.58o; c 143.70o; and d 143.81°
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4 Conclusions

We present the simulation results of the buckling behavior of BN nanotubes under
bending with the use of MDFEM. We have found that the tube length affects
significantly the bending behavior of the tube. All tubes exhibit brittle fracture
under bending. The buckling takes place in the middle of the compressive side of
the tube. More investigation should be done to analyze in details the buckling
behavior of the BN tubes.

Acknowledgements Danh-Truong Nguyen’s work was funded by Vietnam National Foundation
for Science and Technology Development (NAFOSTED) under grant number 107.02-2016.13.
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Part III
Optimization and Inverse Problems



A Quick Computational Method
for Improving Aerodynamic Shape
of UAV Wing

D. Tran-Duy, C. Nguyen-Duc, K. Mai and T. Nguyen-Duc

Abstract To obtain an optimal aerodynamic 3D shape of small-sized UAV wing at
small flight speed and high lift coefficient, the optimization problem is set to
minimize drag coefficient with fixed plane form and constant lift coefficient. The
thickness of chordwise function is assumed to be given. The direct optimization
problem must be solved by CFD methods with viscosity consideration in 3D flow
that involves a great volume of computations which is feasible only to super
computers [1, 6]. This chapter presents a combined direct inverse method that
makes the optimization problem be feasible to ordinary PC.

Keywords Computational mechanics ⋅ Wing shape optimization
CFD ⋅ Vortex lattice method

1 Introduction

Unmanned aerial vehicle (UAV) with surveillance mission and flight time is mainly
in cruise mode. At this time, the lifting force and weight of the UAV are equal, and
lift coefficient CL is calculated according to the formula:

CL =
G
S

0.5ρV2

where V—speed of cruise flights; ρ—density of air; S—area of wing; G—weight of
the UAV.
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To provide the necessary quality of surveillance in UAV, its flight speed is not
required to be large. And in order to increase the width of visibility swarth, it is
necessary to fly at high altitude, so the air density is small. To reduce the impact of
wind disturbance on complex terrain, the specific load on the wing (ratio G

S) should
be also designed to be large. Therefore, the above-mentioned formula shows that
the UAV cruise flights must be implemented at high lift coefficient.

Optimizing the wing shape plays an important role in reducing the drag of the
whole aircraft, and there are many works on this subject. However, almost all works
focus on solving the 2D problem at high speed (small lift coefficient) with the effect
of viscosity and the 3D problem with compressible flow but without viscosity
(potential flow). Some works were implemented in 3D flow and with compress-
ibility and viscosity, but because of very large computational volume, the problem
solutions are feasible only to super computers [1, 2]. For the case of high lift
coefficient, it is necessary to solve the 3D problem, the computation volume is huge
even without the compressibility, so it is often sovel without viscosity. However,
since most UAVs are small in size with small flight speed, the numbers Re are small,
and the viscosity of the flow can not be ignored when the considering problem is set
to minimize drag coefficient. So that involves a great of computation volume which
is feasible only to super computers even without compressibility because of
necessity to consider many wing shapes in the optimization process.

To reduce the volume of calculation and to make the optimization problem
feasible to ordinary PC, the paper presents a combined direct–inverse method to
solve the optimization problem. The inverse problem is based on the elliptical
spanwise distribution of aerodynamic loads (that is optimal according to linear
lifting surface theory) with a smooth entry on leading edge [3]. The solution by the
vortex lattice method will give us some curved surface [4]. The curved surface is
considered as a mean surface and is added with the given thickness function, for
example, according to aerofoil NACA 0012, to obtain so-called quasi-optimal wing
shape. The quasi-optimal wing shape will be the initial shape for further opti-
mization. The last one is solved by gradient method using commercial CFD soft-
ware ANSYS/CFX. The parametrization of the quasi-optimal wing geometry is made
by only two design variables: (i) the given lift coefficient C*

L for inverse linear
problem to obtain the mean surface and (ii) the added twist angle φ of the wing tip
section relative to the wing root section assuming the twist angles are changed
spanwise as a linear function. The lift coefficient C*

L given for inverse linear
problem is a representative parameter for both chordwise curvature and the span-
wise twist/curvature of the mean surface. Thus, the direct optimization problem is
solved with only three parameters: angle of attack α,C*

L, and φ instead of using
dozens of parameters as other authors do [2, 5, 6].

The significant effect of wing shape optimization was demonstrated for the
wings with one and the same rectangular plan form and relative thickness. The
comparison of the optimized wing at CL = 0.3 with the wing with symmetrical
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airfoil NACA 0012 showed the essential improvements in lift-to-drag ratio at cruise
flights with increased lift coefficients, as well as the comparison with the wing with
a curved airfoil showed the apparent improvements at flights with small lift coef-
ficients. Thus, the proposed wings allow to “reconcile” the drag coefficient CD of
classic wings with different curvatures. It leads to less fuel consumptions, which
allows to get more payload for a given flight time when the UAV flies at different lift
coefficients.

2 A Solution Method and Results

2.1 Method and Algorithms for Determination
of Quasi-Optimal Wing Shape

2.1.1 A Proposed Distribution of Aerodynamic Loads Function
to Ensure Smooth Entry on Leading Edge and Elliptical
Spanwise Distribution on a Rectangular Plane Form

We will consider a rectangular wing with the size of the chord is b and the span L,
the reference system of Oxy is chosen as shown in Fig. 1. To ensure the elliptical
spanwise distribution of aerodynamic loads (according to linear lifting surface
theory) with smooth entry on leading edge, moreover chordwise distribution of
aerodynamic loads function is continuous and with limited the slope of this function
(to limit the positive pressure gradient to delay the flow separation), at the same
time aerodynamic loads at the rear edge of wing is zero (Kutte—Zhoucovsky’s
postulate). One of the distributions of aerodynamic loads function that fits all the
said condition may be as following:

Δp=A ⋅ x x− bð Þ2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1−

y
L
2

� �2
s

ð2:1Þ

x

b

O

y

L

Fig. 1 Reference system on
the plane form of a
rectangular wing
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Determination of the coefficient A:

Formula for aerodynamic lift: Z =0.5C*
LρV

2S=C*
Lq∞S ð2:2Þ

Where q∞ =0.5ρV2 is the speed pressure of the undisturbed flow, S = bl—area of
the wing.

Aerodynamic lift is also calculated according to the formula:

Z =
ZZ

ΔpdS= q∞

ZZ
ΔpdS= q∞ ∫

b

0
∫
L
2

− L
2

A ⋅ x x− bð Þ2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1−

y
L
2

� �2
s

dxdy=Aq∞
πLb4

48

ð2:3Þ

Comparing (2.2) and (2.3)⇒

A=
48C*

LS
πLb4

ð2:4Þ

Finally, we will have a desired distribution of aerodynamic loads on the plane
form of a rectangular wing:

Δp=
48C*

LS
πLb4

x x− bð Þ2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1−

y
L
2

� �2
s

ð2:5Þ

2.1.2 A Method to Determine the Mean Surface Satisfying a Given
Distribution of Aerodynamic Loads on the Wing

The essence of determining the mean surface satisfying given distribution of
aerodynamic loads on the wing is to find the local slope of mean curved line at
different cross sections (the derivatives of the mean curved line). By integrating
these local slopes with initial conditions on the leading edge of the base plane, the
curved surface will satisfy the given distribution of aerodynamic loads. The details
of the method are presented as follows.

A curved surface with relatively small slope and set to coming flow under a
small enough angle of attack. In the linear consideration, the “superimposed” rule
of solutions can be applied to the aerodynamic loads, namely “The aerodynamic
loads on the curved surface at a certain angle of attack α is equivalent to the
aerodynamic loads on the flat plate at angle of attack α and plus the aerodynamic
loads on the curved surface at zero angle of attack” (Fig. 2).

α
V

α = +
V α=0V

Fig. 2 Equivalent flows in linear consideration
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Symbols:

Δpij.: Dimensionless aerodynamic loads in ij-th cell on curved surface at an
angle of attack α;

Δp1ij: Dimensionless aerodynamic loads in ij-th cell on flat plate (the base plane)
at the angle of attack α;

Δp2ij : Dimensionless aerodynamic loads in ij-th cell on curved surface at zero
angle of attack.

Due to the imposition of aerodynamic loads on the curved surface at an angle of
attack α, orΔpij has been determined.Δp1ij determined by the vortex lattice method [3].
Then, aerodynamic loads in ij-th cell on curved surface at angle of attack α = 0 is:

Δp2ij =Δpij −Δp1ij. ð2:6Þ

Assuming that only the ij-th cell of the curved surface inclined relatively to a
base plane at an angle of αij, the inclination of the cell i*j*(i = i*, j = j*) will be
found independently, while the remaining cells remain not inclined (αi*j* = 0 when
i ≠ i*, j ≠ j*). Then, the aerodynamic loads in ij-th cell are calculated by the
formula [3]:

Δpi
*j*
ij =2 n− 1ð Þαi*j*Γ

αi* j*
ij ð2:7Þ

where n, N is the number of strips divided spanwise and chordwise of the wing; i, j
is the index that characterizes the position of the vortex spanwise and chordwise
i=1, n, j=1,N
� �

; Γ
αi* j*
ij is the derivative of vortex dimensionless strength on the

ij-th cell at the angle of αi*j* [3].
In the linear consideration, the angles of αi*j* are small: when all the ij-th cells

are tilted to the corresponding angle of αi*j* i* = 1, n, j* = 1,N
� �

then aerodynamic
loads in ij-th cell on curved surface at angle of attack α = 0:

Δp ̄2ij = ∑
n

i* = 1
∑
N

j* = 1
Δp ̄i

*j*
ij ð2:8Þ

From (2.6), (2.7), and (2.8)⇒ linear algebraic systems (2.9) to find local angles
of αi*j* :

2 n− 1ð Þ ∑
n

i* = 1
∑
N

j* = 1
αi*j*Γ

αi* j*
ij =Δpij −Δp1ij ð2:9Þ

Integrating (getting a sum of Δz) angles of αi*j* (≈ dz
dx) with initial condition is the

leading edge of curved surface on the base plane (z1j =0, j=1,N)⇒ the formula
for determining the zij coordinate corresponding to the xij coordinate of the curved
surface:
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z1j =0, j=1,N
zij = ∑k= i

k=2 xkj − x k− 1ð Þj
� �

tgα k − 1ð Þ*j* , i=2, n, j=1,N

(
ð2:10Þ

The set of points (xij, zij) determines the mean surface of the wing satisfying the
given distribution of aerodynamic loads. The result is more accurate when the
number of dividing lines n (the spanwise direction) and N (the chordwise direc-
tions) is greater.

2.1.3 Determination of the Shape of the Wing According
to the Mean Surface

Assuming that the mean surface of the wing was defined and function of mean line
of the j-th section will be as follows:

zcj = fj xcð Þ, j=1,N ð2:11Þ

The thickness chordwise function may be taken according to the symmetric
NACA aerofoil [7]:

zt =
bcmax
0.2

a0
x
b

� �0.5
+ a1

x
b

� �
+ a2

x
b

� �2
+ a3

x
b

� �3
+ a4

x
b

� �4� �
ð2:12Þ

where a0 = 0.2969, a1 = −0.126, a2 = −0.3516, a3 = 0.2843, and a4 = −0.1036;
b: the chord length;+ cmax = cmax

b : the largest relative thickness, and cmax is the
largest thickness of aerofoil.

The symbols (xuj, zuj), (xlj, zlj) are the coordinates of the points defining the upper
and under lines of the aerofoil of the j-th section of the wing. Equations defining the
deformation of j-th section of the wing [7]:

xuj = xcj − ztsinθj
zuj = zcj + ztcosθj

	
,

xlj = xcj + ztsinθj
zlj = zcj − ztcosθj

	
, θj = atan

dzcj
dx

� �
ð2:13Þ

2.1.4 The Results of Determination of Quasi-Optimal Wing Shape
and Its CFD Simulation

The received quasi-optimal wing shape with input data:
+ Lift coefficient of wing C*

L = 0.8 (determining the mean curved surface as
solution of linear inverse problem);

+ Chord b = 0.337[m]; span of wing L = 1[m]; the largest (relative) thickness
cmax = 12%;
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+ Number of strips divided spanwise and chordwise: n = 41, N = 21.
The distribution of aerodynamic loads on a half wing is presented in Fig. 3. The

results of computation program of the quasi-optimal wing shape are shown in
Fig. 4.

On the other hand, the authors implemented CFD simulation of the
quasi-optimal wing shape by the ANSYS/CFX commercial software and at the angle
of attack α = 8°, flight altitude H = 0[m] (ρ = 1.225[kg/m3]). The simulation
results calculate the lift coefficient of the quasi-optimal wing: CL = 0.85, the dif-
ference from the linear vortex lattice method (C*

L = 0.8) is 7%. The error is
acceptable and the suitability of the results of programs confirms the reliability of
the computational program for inverse problem solution.

Fig. 5 shows the graph CD = f(CL) of the quasi-optimal wing C*
L = 0.8 and

some equivalent classic wings (with the same plane form b = 0.337[m], L = 1[m],
and the same relative thickness cmax = 12%) at the high lift coefficient range. The
results were obtained by the ANSYS/CFX software.

Fig. 3 Given distribution of
aerodynamic loads on the half
wing corresponding to the lift
coefficient C*

L = 0.8
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Based on the results some comments may be made. They are as follows:
+ At CL = 0.85 (corresponding to the calculation point determining the

quasi-optimal wing shape C*
L = 0.8): the quasi-optimal wing has not reduced the

drag coefficient CD in comparison with the classic wings.
+ At increased lift coefficients CL, the drag coefficient CD is reduced signifi-

cantly. For example, at CL = 1.2, the drag coefficient CD of the quasi-optimal wing
C*
L = 0.8 was reduced by 13% compared to the wing with symmetrical aerofoil

(NACA 0012) was reduced by 5% compared to wing have curvature of the aerofoil
is 2% (NACA 2412).

So the quasi-optimal wing is not optimal at the angle of attack α* according to
the thin-wing theory, which is optimal at angles of attack α greater than α*. This is
why wing shapes are found from a computational program called the quasi-optimal
wing.

Fig. 4 Half-wing shape of quasi-optimal wing corresponds to the lift coefficient of wing C*
L = 0.8

Fig. 5 Graph CD = f(CL) of the quasi-optimal wing C*
L = 0.8 and some equivalent classic wings

at high lift coefficient range
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The program results of the quasi-optimal wing shape corresponding to C*
L = 0.5,

C*
L = 0.3 were shown in Figs. 6 and 7. Comparing Figs. 4, 6 and 7 one may see the

quasi-optimal wing with the greater C*
L, then its mean surface has the greater

curvature. At the same time, the geometric twist angle φ0 (which is the angle of the
wing tip section relative to the wing root section) is also greater.

The graphs CD = f(CL) of some quasi-optimal wings were shown in Fig. 8:
+ The quasi-optimal wing with the greater C*

L the drag coefficient CD reduction
is more significant at higher lift coefficients CL (corresponding to the lift coefficient
range C*

L > 1.1).
+ In contrast, the quasi-optimal wing with the smaller C*

L the drag coefficient CD

reduction is as much at smaller lift coefficients CL (corresponding to the lift coef-
ficient range C*

L < 0.9).

2.2 Optimization of Quasi-Optimal Wing Shape

2.2.1 Construction of the Optimization Problem of Drag
Coefficient CD

If one selects a large number of parameters to optimize, then the computation volume
drastically increases and the optimization process may be impossible to ordinary PC.

Fig. 6 Half-wing shape of quasi-optimal wing corresponding to the lift coefficient of wing
C*
L = 0.5

Fig. 7 Half-wing shape of quasi-optimal wing corresponding to the lift coefficient of wing
C*
L = 0.3
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Hence, it is necessary to select a small set of parameters but those which have a
strong influence on the coefficients CD, CL to optimize the wing shape.

Obviously, the parameter angle of attack α (defined as angle of attack of the
chord of wing root section of the wing) and the parameter C*

L (represents the whole
mean surface shape of quasi-optimal wing, both the curvature of every section and
the twist angles between themselves) are the most influential among the coefficients
CD, CL. Also, the quasi-optimal wing has geometry twist φ0 is significantly, so one
can choose as a third design parameter the added twist angle φ of the wing tip
section relative to the wing root section assuming the twist angles are changed
spanwise as a linear function:

φ yj jð Þ= yj j
L
2

φ ð2:14Þ

where φ > 0 when angle of attack of chord of the wing tip section is greater than of
attack of chord of the wing root section of the quasi-optimal wing and vice versa.

Thus, the problem is set out as follows:
Give CL = const, find three parameters α,φ,C*

L

� �
opt so as to:

CD =CD α,φ, C*
L

� �
→CDmin with the constraint CL α,φ,C*

L

� �
=Cht

L = const

ð2:15Þ

where the constraint conditions are made in a cruise flights mode with lift coeffi-
cient CL =Cht

L .
The following presents an algorithm for solving optimization problem (2.15)

using a gradient method, although the optimum has been found by this method only
numerically (it is not strictly proofed).

Fig. 8 Graph CD = f(CL) of the some quasi-optimal wings
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2.2.2 Optimization Algorithm the Drag Coefficient CD with Constraint
Conditions the Lift Coefficient CL = Const by Gradient Method

Considering the optimization problem (2.15), Fig. 9 shows how to determine the
“fastest direction of decreasing” the coefficient CD and ensure the coefficient CL to
satisfy the constraint surface CL =Cht

L = const. This step length must be chosen
appropriately and play a very important role in the speed of convergence of the
optimization process and this issue will be considered later. There are some
definitions:

+ Surfaces CL = const is the constraint surface of equation:

CL α,φ,C*
L

� �
=Cht

L = const ð2:16Þ

+ Contour line CD = const is the curve of equation:

CD α,φ,C*
L

� �
= const

CL α,φ,C*
L

� �
= const

	
ð2:17Þ

+ ∇C kð Þ
D , ∇C kð Þ

L , respectively, is gradient vector of drag coefficient CD, lift
coefficient CL at the point k of calculation on the constraint surface CL = const, and

the formula determines the gradient vector ∇C kð Þ
D , ∇C kð Þ

L :

∇C kð Þ
D =

∂C kð Þ
L

∂α kð Þ ,
∂C kð Þ

L

∂φ kð Þ ,
∂C kð Þ

L

∂C* kð Þ
L

 !
;

∇C kð Þ
L =

∂C kð Þ
D

∂α kð Þ ,
∂C kð Þ

D

∂φ kð Þ ,
∂C kð Þ

D

∂C* kð Þ
L

 ! ð2:18Þ

As well known in numerical methods, the partial derivatives of the coefficient
CD, CL by some variable are replaced by the ratio of their increments (when
changing only that variable) and the increment of that variable.

Fig. 9 Determining the
direction of fastest decreasing
the coefficient CD while
providing the coefficient CL
closest asymptotically to the
constraint surface in 3D space
by the numerical gradient
method
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∇C kð Þ
D ≈

ΔC kð Þ
D αð Þ

Δα kð Þ ,
ΔC kð Þ

D φð Þ
Δφ kð Þ ,

ΔC kð Þ
D C*

y

� �
ΔC* kð Þ

L

0
@

1
A;ΔC kð Þ

L ≈
ΔC kð Þ

L αð Þ
Δα kð Þ ,

ΔC kð Þ
L φð Þ

Δφ kð Þ ,
ΔC kð Þ

L C*
L

� �
ΔC* kð Þ

L

 !

ð2:19Þ

To find the gradient information ∇C kð Þ
D , ∇C kð Þ

L relatively accurate by numerical

method, the choice the increments Δα kð Þ, Δφ kð Þ, ΔC* kð Þ
L at the k-th calculation point

must be reasonable. They must be selected several times in the computer to find the

appropriate increments for accurately determining the gradient information ∇C kð Þ
D ,

∇C kð Þ
L . This information is considered accurate when giving the increments Δα kð Þ,

Δφ kð Þ, ΔC* kð Þ
L change smaller, at the same time with each change the calculated

ratios ΔC kð Þ
D

Δα kð Þ ;
ΔC kð Þ

D
Δφ kð Þ ;

ΔC kð Þ
D

ΔC* kð Þ
L

; ΔC kð Þ
L

Δα kð Þ ;
ΔC kð Þ

L
Δφ kð Þ ;

ΔC kð Þ
L

ΔC* kð Þ
L

are relatively stable.

+ D kð Þ is projection vector of vector −∇C kð Þ
D on a plane perpendicular to the

vector ∇C kð Þ
L at the k-th calculation point.

+ CDmin is coefficient CD achieve the smallest value corresponding to the
solution of the constrained optimization problem CL = const. Call αopt, φopt, C*

Lopt

is the solution of the problem (2.15). Then:

CDmin =CD αopt,φopt,C
*
Lopt

� �
ð2:20Þ

According to the work [8]: the fastest approach to the optimum

CDmin = f αopt,φopt,C
*
Lopt

� �
must be in the direction of the vector D kð Þ at the k-th

calculation point, while the vector D is determined as the projection of the anti-
gradient −∇CD to the surface CL = const.

Formula determines the vector D kð Þ (in matrix form):

D kð Þ = −P kð Þ∇C kð Þ
D ;P kð Þ = I−∇C kð Þ

L
∇CT kð Þ

L

∇C kð Þ
L




 


2 ð2:21Þ

Here: I, P, respectively, is unit matrix and projection matrix size 3 × 3;

∇CT kð Þ
L is the transpose matrix of the matrix ∇C kð Þ

L ;

∇C kð Þ
L




 


2 is square of the modulus of vector ∇C kð Þ
L .

The numerical optimization algorithm for the coefficient CD with the constraint
CL = const is shown in Fig. 10:

194 D. Tran-Duy et al.



Accordingly, the steps to perform the numerical optimization process are
explained as follows: assuming that the initial point is the point 1: u 1ð Þ; at this point,
one computes the gradient vectors ∇C 1ð Þ

L , ∇C 1ð Þ
D and the projection vector D 1ð Þ.

Then to make a step h 1ð Þ toward the vector D 1ð Þ to the point u 2ð Þ
0 . In common case,

the point u 2ð Þ
0 is not on constraint surface, so at this point, one has to adjust the

variable (for this problem, it is most convenient to adjust only the angle of attack α)
to set the point 2: u 2ð Þ on the constraint surface CL = const. The calculation process
is repeated with convergent condition when the following signs appear
simultaneously:

• Coefficient CD begins to increase or lift-to-drag ratio K begins to decrease.
• Module of projection vector D kð Þ

 

≪ D 1ð Þ

 

 (much smaller than the value in the

first step).

• If the number of iterations is n, then CDmin =C n− 1ð Þ
D ,Kmax =K n− 1ð Þ.

Some notes to choose the step length | h kð Þj by numerical method: the step length
jh kð Þj decides the speed of convergence of optimization process (if selection is not
suitable, the algorithm even may not convergence). In particular, each of the points
computed by ANSYS software takes time from some dozens of minutes. If the step
length is too large, then the coefficients CD, CL will go far beyond the optimal point
and the constraint surface CL = const; this slows down the convergence speed or
even makes the optimization process not to converge. If the step length is too small,
of course, the speed of convergence is very slow.

2.2.3 Optimization Results and Comments

The results of optimization of the wing shape are illustrated with the input data as
follows:

Fig. 10 Numerical algorithm for optimizing coefficient CD have the constraint CL = const
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+ Chord: b = 0.337[m]; span of wing: L = 1[m]; the largest (relative) thickness:
cmax = 12%;

+ Constraint condition: CL =Cht
L = 0.3 (cruise flights with lift coefficient

CL = 0.3);
+ Flight speed V = 30[m/s], altitude H = 0[m] (ρ = 1.225[kg/m3]).

Optimization results:

+ CDmin = 0.0265 at the point: α,φ,C*
L

� �
opt = (2.8°, 0.4°, 0.3);

+ The optimal wing with constraints CL =Cht
L = 0.3 is called the optimal wing

CLopt = 0.3; (Fig. 11).

Comments:
* The graph CD = f(CL) of the optimal wing CLopt = 0.3 and some equivalent

classic wings are shown in Figs. 12 and 13:
+ At the high lift coefficients, coefficient CD of optimal wing CLopt = 0.3 is

basically equivalent to the wing have curvature of aerofoil is 4% and were sig-
nificantly reduces in comparison with the wing with symmetrical aerofoil (Fig. 12).
For example, when CL = 1.2: coefficient CD of optimal wing CLopt = 0.3 and wing
with 4% curvature were decreased 12% in comparison with the wing with sym-
metrical aerofoil.

+ At the small lift coefficients, coefficient CD of optimal wing CLopt = 0.3 was
lower than the wing have curvature of the aerofoil is 4% and higher in comparison
with the wing with symmetrical aerofoil (Fig. 13). For example, when CL = 0.1,
the coefficient CD of optimal wing CLopt = 0.3 was reduced by 5% in comparison
with the wing with 4% curvature and 4% higher in comparison with the wing with
symmetrical aerofoil.

* At the optimal point, added twist angle φopt = 0.4° is not significant. There-
fore, the mean surface of the quasi-optimal wing with geometrically twist angle is
essentially optimal (that means no need to optimize this parameter) and the optimal

Fig. 11 Optimal half-wing shape CLopt = 0.3
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wing shape at cruise flights mode with certain lift coefficient CL is, in fact, the
quasi-optimal wing shape. However, this quasi-optimal wing must have lift coef-
ficient determining mean surface C*

L =C*
Lopt and to fly at angle of attack α = αopt,

where C*
Lopt and αopt are the solutions of the optimization problem CD →CDmin,

CL =Cht
L = const.

* As well known, a wing with a symmetrical aerofoil have the smallest coeffi-
cient CD when flying with lift coefficient CL → 0. Figure 14 shows the
quasi-optimal wing shape with lift coefficient determining mean surface C*

L =0
shows the quasi-optimal wing has “degenerated” into a wing with a symmetrical
aerofoil.

Fig. 12 Graph K = f (Cy) optimal wing CLopt = 0.3 and some equivalent classic wings

Fig. 13 Graph K = f (Cy) optimal wing CLopt = 0.3 and some equivalent class wings small lift
coefficient region
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* The similarity between the optimal wing and the bird’s wings is as follows
(Fig. 15):

+ The mean line of aerofoil at different cross sections (parallel to the symmetry
plane) has an increasing curvature from the root to the tip of the wing;

+ The chords of the sections are “twisted” in the direction to decrease the local
angle of attack also from the root to the tip of the wing.

During flight at different speeds and altitudes (corresponding to the different lift
coefficients), the bird’s wings will change their shape (mostly changes in the mean
surface) to adapt to the flight parameters. Thus, the optimal wing partly explains the
bird’s wings—the optimization of the nature.

Fig. 14 Quasi-optimal half-wing shape C*
L =0 is “degenerated” into a wing with symmetrical

aerofoil

Fig. 15 Comparison of optimal wing and the bird’s wings
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3 Conclusions

The optimal wing allows to “reconcile” the drag coefficient CD of classic wings
with different curvatures or the optimal wing were decreased the drag coefficient at
high lift coefficient range but no significant increase the drag coefficient at small lift
coefficient range. It leads to less fuel consumptions that allows to get more payload
for a given flight time when the UAV flies at different lift coefficients.

For UAV performing multiple missions (cruise flights with different lift coeffi-
cient CL), the above selection of the optimal wing shape is a suitable choice.
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Abstract In this paper, an efficient differential evolution (DE) algorithm is pre-
sented to solve constrained optimization problem. To skip unnecessary function
evaluations, a simple mechanism called nearest neighbor comparison (NNC) is
applied. The NNC is a method to prejudge a solution by its nearest point in the
search population, so that unpromising solution will be skipped without evaluation.
The NNC has been proposed to reduce the number of function evaluations effec-
tively in unconstrained optimization. In this study, the NNC method is proposed for
constrained optimization by combining with the ε constrained method. Moreover, a
simple directional mutation rule is introduced to increase the possibility of creating
improved solutions. Both the NNC method and the directional mutation rule do not
require additional control parameter for DE, as often found in several modified DE
variants. The effectiveness of the proposed constrained DE algorithm, named as
εDEdn, is illustrated by solving five benchmark engineering design problems. The
results show that the NNC combined with the ε constrained method can omit up to
fifty percents function evaluations. It is also shown that the direction mutation can
increase the convergence rate of the optimization. Comparing with other
state-of-the-art DE variants reported in the literature, the proposed DE often gives
equal or better results with considerably smaller number of function calls.
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1 Introduction

Engineering optimization problems arising from modern engineering design pro-
cess often involve inequality and/or equality constraints. Most of these constrained
optimization problems (COPs) are complex and difficult to solve by traditional
gradient-based techniques. Meta-heuristic algorithms have received considerable
attention and have been successfully applied in many real applications in recent
years.

Among different meta-heuristics (MH), differential evolution (DE) [1], a
population-based MH, is considered as one of the most efficient algorithms, suitable
for various optimization problems from diverse domains of science and technology.
The advantage of DE is that it has simple structure, requires few control parameters
and highly supports parallel computation. Together with the constraint-handling
techniques, DE has been applied to the COPs [2]. However, like many
population-based MH, one of the main issues in applying DE is its expensive
computation requirement, since DE often needs to evaluate objective function as
well as constraints thousand times to get a well acceptable solution.

A simple method, the nearest neighbor comparison, has been proposed to reduce
the number of function evaluations effectively [3]. This method uses a nearest
neighbor in the search population to judge a new point whether it is worth evalu-
ating, i.e., the function evaluation of a solution is omitted when the fitness of its
nearest point in the search population is worse than that of the compared point. The
nearest neighbor comparison (NNC) method has been proposed for unconstrained
optimization [3].

In this study, the NNC method is proposed to constrained optimization. In order
to use the nature of NNC, the ε constrained method [4] is applied to handle
constraints. The ε constrained method can transform algorithms for unconstrained
problems into algorithms for constrained problems using the ε level comparison
that compares search points based on their pair of fitness value and their constraint
violation. It has been shown that the application of ε constrained method to DE
(εDE) could solve constrained problems successfully and stably [5, 6]. The pro-
posed constrained DE in this paper is defined by applying the NNC method to the ε
level comparison. Thus, it is expected that both the number of fitness evaluations
and the number of constraint evaluations can be reduced. Moreover, a simple
directional mutation rule based on the order relation of two different points is
introduced to increase the possibility of creating improved solutions. The effec-
tiveness of the proposed constrained DE, named as εDEdn, is shown by solving five
well-known benchmark engineering design problems and comparing the results
with those of εDE and other state-of-the-art DE algorithms.
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2 The Epsilon Constrained Method

2.1 Constrained Optimization Problem

We consider the following optimization problem with equality constraints,
inequality constraints, and boundary constraints:

minimize f ðxÞ
subject to gjðxÞ≤ 0, j=1, . . . , q

hjðxÞ=0, j=1+ q, . . . ,m
xli ≤ xi ≤ xui , i=1, . . . ,D

ð1Þ

where x is a D-dimension vector, xi is the i-th decision variable of x, f ðxÞ is an
objective function, gjðxÞ≤ 0 and hjðxÞ=0 are q inequality constraints and m-
q equality constraints, respectively. The functions f, gi, and hi are real-valued
functions, can be linear or nonlinear. Values xli and xui are the lower bound and
upper bound of xi, respectively.

2.2 The ε Constrained Method

In the ε constrained method, the constraint violation is defined by the maximum of
all constraints (Eq. (2)) or the sum of all constraints (Eq. (3)):

ϕðxÞ=max max
j
f0, gjðxÞg, max

j
hjðxÞ
�� ��� �

ð2Þ

ϕðxÞ= ∑
j

maxf0, gjðxÞg
�� ��p + ∑

j
hjðxÞ

�� ��p ð3Þ

where p is a positive number. The ε constrained method uses the ε level comparison
that is defined as an order relation on a pair of objective function value and con-
straint violation f ðxÞ,ϕðxÞð Þ. Let f1 (f2) and ϕ1 (ϕ2) be the function value and the
constraint violation at a point x1 (x2), respectively. Then, for any ε ≥ 0, ε level
comparisons < ε and ≤ ε between f1,ϕ1ð Þ and f2,ϕ2ð Þ are defined as follows:

f1,ϕ1ð Þ< ε f2,ϕ2ð Þ⇔ f1 < f2, if ϕ1,ϕ2 < ε or ϕ1 =ϕ2
ϕ1 <ϕ2, otherwise

�
ð4Þ

f1,ϕ1ð Þ≤ ε f2,ϕ2ð Þ⇔ f1 ≤ f2, if ϕ1,ϕ2 ≤ ε or ϕ1 =ϕ2
ϕ1 <ϕ2, otherwise

�
ð5Þ
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When ε = ∞, the ε level comparisons < ε and ≤ ε become the ordinary compar-
isons < and ≤ between function values. When ε = 0, < ε and ≤ ε are equivalent
to the lexicographic orders in which the constraint violation ϕðxÞ precedes the
function value f ðxÞ. Using the ε constrained method, a constrained optimization
problem is converted into an unconstrained one by replacing the ordinary com-
parison in direct search methods with the ε level comparison.

3 Improved Epsilon Differential Evolution

3.1 Basic Differential Evolution

Differential evolution (DE), which was introduced by Storn and Price [1], is a
population-based optimizer. DE uses a population of NP candidate vectors
xkðk=1, 2, . . . ,NPÞ (called individuals) of the design variables. The population is
then restructured by survival individuals evolutionally. The basic steps of DE are as
follows: initialization, mutation, crossover, and selection.

Initialization
First, an initial population is randomly sampled from the solution space as Eq. (6),

xk, i = xli + rand½0, 1�× ðxui − xliÞ, i=1, 2, . . . ,D ð6Þ

where xli and xui are the lower and the upper bounds of xi, respectively; D is the
number of design variables of the optimization problem; rand½0, 1� is a uniformly
distributed random real value in the range [0, 1].

Mutation
For each target vector xk, a mutant vector y is first generated. Various mutation
strategies can be employed to create the mutant vector. The most popular one in
classical DE is the so-called ‘DE/rand/1,’ where the mutant vector is determined as:

y= xr1 +Fðxr2 − xr3Þ ð7Þ

where xr1 , xr2 , xr3 are three mutually different individuals randomly selected from
the current population, i.e., r1 ≠ r2 ≠ r3 ≠ k;F is a scaling factor, a real and constant
factor usually chosen in the interval [0, 1] which controls the amplification of the
differential variation. In Eq. (7), xr1 is called the base vector, while the others are
called the difference vectors.
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Crossover
Crossover is introduced to exchange the information of the mutant vector with the
target vector xk , creating a trial vector z with its elements determined by:

zi =
yi, ifðrand½0, 1�≤CrÞorðr= iÞ
xk, i, otherwise

�
ð8Þ

where i=1, 2, . . . , D, rand½0, 1� is a uniformly distributed random number in [0,
1]; r is a randomly chosen integer in the interval ½1, D� to ensure that the trial vector
has at least one element from the mutant vector; Cr is the crossover rate predefined
in [0, 1], which control the fraction of elements copied from the mutant vector.

Selection
The trial vector z is compared with the target vector xk of the current population,
and the better one will be selected as member for the population of next generation.

3.2 Directional Mutation Rule

In the mutation operators of Eq. (7), a random variation is derived from the differ-
ence of two randomly selected different vectors. Consequently, it has no bias to any
special search directions. To take advantage of guiding information of the popula-
tion, the scaled differential variation is multiplied by a ‘directed’ factor d, i.e.,

y= xr1 + d × Fðxr2 − xr3Þ ð9Þ

where d takes either value 1 or −1 depending on the order relation between the
difference vectors xr2 and xr3 . Specifically, d is determined as

d=
1, if xr2 is better than xr3
− 1, otherwise

�
ð10Þ

This kind of directional mutation has the same concept of the well-known
opposition-based method presented for improving DE performance in the literature
[7]. This rule guarantees that the differential variation is oriented toward a better
vector, thus increasing the possibility of creating an improved solution.

3.3 Nearest Neighbor Comparison

Basic DE calls for function evaluation for all trial vectors and many of them do not
survive in the selection phase. Thus, many evaluations are useless. It is desirable
that trial vectors that might produce no better fitness should not be evaluated. It is
particularly important in problems where function evaluation is costly. A method
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called ‘Nearest neighbor comparison’ (NNC) is a recently developed method by
Pham [3], which can effectively reduce the number of function evaluations for
various unconstraint benchmark optimization problems. In this study, the NNC
method is incorporated to the ε constrained method to reduce unnecessary function
evaluations in solving constrained optimization problem. The method is briefly
described as follows. For more details of NNC, readers can refer to Ref. [3].

Firstly, for each trial vector z created, a vector xn (n∈ ½1,NP�) in the current
population which is closest to z is sought using normalized Euclidean distance
measure:

dðx, zÞ=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
∑
D

i=1

xi − zi
xmax
i − xmin

i

� �2
s

ð11Þ

where dðx, zÞ is the distance measure between two vectors x and z; xmax
i and xmin

i are
the current maximum and minimum values of the corresponding design variable xi
of all solutions in the population. Thus, xn is the vector in the current population
with smallest distance to the trial vector z.

Secondly, xn is compared with the target vector xk. If xn is worse than xk, the
trial vector is likely worse than the target vector and it will be skipped. Otherwise,
the trial vector is evaluated for further selection decision. In this way, several
unpromising trial vectors are omitted, and useless function evaluations can be
reduced during the searching process.

3.4 The Proposed ε Constrained DE

The proposed ε constrained DE has the same steps as the classical DE, i.e., it
consists the initialization, mutation, crossover, and selection. The modifications are
made in the mutation step with the use of ‘directed’ value d (Eq. (9)), and in the
selection step with the application of NNC method using the ε level comparison.
The NNC selection can be written as follows:

If fn,ϕnð Þ≤ ε fk,ϕkð Þ
Then Calculate f ðzÞ,ϕðzÞ;

If f ðzÞ,ϕðzÞð Þ≤ ε fk,ϕkð Þ
Then xk = z; fk = f ðzÞ;ϕk =ϕðzÞ;
End

End

It is noted that both xnand xk are known vectors in the current population, i.e., the
objective values and constraint violations (fn,ϕn) and (fk ,ϕk) are already calculated
and stored in the previous generation.
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Obviously, the NNC method requires computational cost for searching nearest
vectors. Nevertheless, this additional cost is normally negligible compared with the
overall computational cost taken to solve the optimization problem. It is assumed
that the computational cost for function evaluation is so large, and the size of the
population is so small that the time taken for the detection of nearest vectors will be
comparatively small.

In addition, the judgment becomes less reasonable if the trial solution and its
nearest neighbor are not close enough, especially when the search space is large. If
the nearest neighbor comparison is not efficient, the algorithm may reject good trial
solutions (solutions those are actually better than the target one). Thus, the size of
the population plays an important role on the effectiveness of the NNC. A big
population can help reducing wrong judgments, however, lowers the convergence
speed. For the considered examples in this study, the population size of 40 is found
to be adequate for balancing between efficiency and velocity of the algorithm.

The proposed DE algorithm, named as εDEdn, requires no additional parameter
setting. The pseudo-code of εDEdn is shown in Algorithm 1. In the Algorithm 1,
two termination criteria are employed, which are the number of function evaluations
(FE) and the deviation (delta) of the objective function value. Here, delta is
determined as in [8].

delta= fmean ̸fmin − 1j j ð12Þ

where fmin is the objective function value of the best individual, and fmean is the
mean objective function value of the whole population.

The optimization process will stop when FE exceeds a maximum number of
evaluations, FEmax (assume that we have a computational budget of FEmax function
evaluations), or when delta is less than a tolerance value Tol.

Algorithm 1: The pseudo-code of εDEdn

Define NP, F, Cr, FEmax,, Tol, fitness function, constraints, and design variable bounds;
Generate initial population and evaluate fitness f and constraint violation for each individual;
FE=NP; t=1;
while (FE < FEmax) and (delta > Tol) do

for k = 1 to NP do
Choose random index r from {1,2,…,D};
Select randomly three indices r1≠r2≠ r3≠ k;
Set directed value d according to Eq. (10)
for i = 1 to D do

Mutation and Crossover according to Eqs. (9) and (8)
end for
Search for the nearest neighbor xn of z;
Apply the NNC selection;

end for
delta = | fmean/fmin – 1|
t = t+1;

end while
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4 Solving Engineering Optimization Problems

4.1 Test Problems and Experimental Conditions

In this section, five benchmark engineering design problems are solved to test the
performance of εDEdn. The problems are as follows: the welded beam design [9],
the tension/compression spring design [10], the pressure vessel design [11], speed
reducer design [12], and the three-bar plane truss sizing [9]. Due to space limitation,
the formulations of these problems are omitted here.

The parameter setting for the ε level comparison is as follows. The constraint
violation ϕ is given by the sum of all constraints (p = 1) in Eq. (3). The ε level is
controlled according to Eq. (13) [5]. The ε level is updated until the number of
iterations reaches the control generation Tc. After the number of iterations exceeds
Tc, the ε level is set to 0 to obtain feasible solutions.

εðtÞ= εð0Þ 1− t
Tc

	 
p
for t≤Tc

0 for t>Tc

(
ð13Þ

where εð0Þ=ϕðxθÞ, xθ is top θ-individual in the initial population and θ=0.2NP,
p is a parameter to control the speed of reducing relaxation of constraints and p = 5.

For each test problem, three algorithms are first examined, which are the epsilon
constrained differential evolution (εDE), the epsilon constrained differential evo-
lution with directional mutation (εDEd), and the epsilon constrained differential
evolution with directional mutation, and NNC method (εDEdn). Then, the proposed
εDEdn is compared with some state-of-the-art DE variants found in the literature.
To obtain statistical results, 50 independent runs are carried out for each test case.

To evaluate the performance of different algorithms, beside the accuracy of the
search results, the number of function evaluation (FE) is also used as a performance
measure. The number of function evaluations is a reasonable measurement criterion
for measuring different algorithms as different algorithms often have different
computational complexity. Thus, the following measurements are employed to
evaluate the performance:

• Best function value (Best);
• Mean of function values (Mean);
• Standard deviations of function values (SD);
• Worst function value (Worst); and
• Average function evaluations (FE).

In the first set of experiments, the algorithms εDE, εDEd, and εDEdn are
compared based on the same stop condition delta ≥ Tol = 10−6. In the second set
of experiments, the termination criterion for εDEdn is as follows: FE ≥ FEmax, in
which FEmax = 10,000 for the welded beam problem, the tension/compression
spring problem, the pressure vessel problem; FEmax = 15,000 for the speed reducer
problem; and FEmax = 2000 for the three-bar truss sizing problem. These values of
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FEmax are chosen to be equal or less than those of the other compared algorithm
reported in the literature.

The binary crossover and random mutation with one pair of individuals (DE/
rand/1/bin) are adopted as the base algorithm. The parameters of DE are given in
Table 1. All codes are implemented in MATLAB R2012a and executed on a
personal computer with an Intel CPU Core i3 2.3 GHz and 2 GB RAM.

4.2 Experimental Results and Discussion

4.2.1 The Welded Beam Design Problem

Figure 1 plots the average convergence curves of best objective function values
over the number of function evaluations obtained by εDE, εDEd, and εDEdn.
Clearly, the εDEdn converges faster than εDE and εDEd. The εDEd is faster than
εDE in the early iterations.

The statistical results in 50 runs for εDE, εDEd, and εDEdn, are given in
Table 2. It is shown that the results of εDEdn and εDEd are similar, and better than
those of εDE in terms of the mean, the worst and the standard deviation values.
Especially, on average εDEdn can reduce about half of the number of function
evaluations in comparison with εDE and εDEd.

Table 1 Parameter setting for DE

Welded beam Spring Pressure vessel Speed reducer Three-bar truss

NP 40 40 40 40 20
F 0.5 0.8 0.8 0.5 0.8
Cr 0.9 0.9 0.9 0.7 0.9
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Fig. 1 Convergence graphs
of welded beam problem
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Table 3 compares the results obtained by the proposed εDEdn with those of
some state-of-the-art DE variants found in literature, including constrained modified
differential evolution (COMDE) [13], improved constrained differential evolution
(rank-iMDDE) [14] and novel differential evolution (NDE) [15]. A result in
boldface means a better (or best) solution obtained. From the results in Table 3, we
can see that εDEdn obtains the optimal solution in all runs. Moreover, εDEdn gives
smallest standard deviation values compared with other DE algorithms. The number
of actual function evaluations by εDEdn is even much smaller than the other
algorithms, except NDE.

4.2.2 The Tension/Compression Spring Design Problem

Figure 2 shows the best function values corresponding to εDE, εDEd, and εDEdn
over the number of function evaluations. The figure shows that εDEd is faster than
εDE, and εDEdn is the fastest algorithm. The statistical results in Table 4 indicate
that, with about one-half of function calls, εDEdn can obtained solution with similar
quality as those obtained by εDE.

The optimization results of εDEdn are compared with the results obtained by
other DE algorithms in Table 5. We can observe that εDEdn with about one-half of
function evaluations provides as good results as other algorithms, such as εDE-LS
(improved local search based epsilon differential evolution) [16] and εDE-PCGA (ε
constrained differential evolution with pre-estimated comparison using
gradient-based approximation) [17], and it is better than rank-iMDDE, COMDE,
and NDE in terms of both solution quality and number of function calls. It should
be noted that εDE-PCGA is an algorithm which applied the same function reduction

Table 2 Optimization results for welded beam problem

εDE εDEd εDEdn
Best 1.724852784 1.724852702 1.724852958
Mean 1.724854486 1.724853617 1.724853991
Worst 1.724857335 1.724854977 1.724856338
SD 1.1363E-06 5.6288E-07 8.2970E-07
Average FE 8893 7903 4507

Table 3 Comparison with other DE algorithms on welded beam problem

Method Best Mean Worst SD FE

εDEdn 1.724852309 1.724852309 1.724852309 6.04E-15 10,000
εDEdn 1.724852309 1.724852309 1.724852309 3.21E-12 8000
COMDE [13] 1.724852309 1.724852309 1.724852309 1.60E-12 20,000
rank-iMDDE [14] 1.724852309 1.724852309 1.724852309 7.71E-11 15,000
NDE [15] 1.724852309 1.724852309 1.724852309 3.73E-12 8000
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strategy, i.e., using prejudgement of a trial solution before evaluating it. However,
εDE-PCGA employed gradient-based approximation to estimate a trial solution,
while the proposed εDEdn used the nearest neighbor solution to approximate a trial
solution.

4.2.3 Pressure Vessel Design Problem

For this problem, εDEdn is the fastest algorithm, and εDEd is faster than εDE, as
clearly seen from Fig. 3. Experimental results on the problem are shown in Table 6.
Clearly, εDEdn requires less function evaluations than εDE and εDEd. Comparing
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Fig. 2 Convergence graphs of tension/compression problem

Table 4 Optimization results for tension/compression spring problem

εDE εDEd εDEdn
Best 0.012665233 0.012665233 0.012665233
Mean 0.012665238 0.012665236 0.012665239
Worst 0.012665247 0.012665244 0.012665284
SD 2.6793E-09 2.1439E-09 8.0297E-09
Average FE 12664 10561 6057

Table 5 Comparison with other DE algorithms on tension/compression spring problem

Method Best Mean Worst SD FE

εDEdn 0.012665233 0.012665233 0.012665233 3.01E-11 10,000
COMDE [13] 0.012665233 0.012667168 0.012676809 3.09E-06 24,000
rank-iMDDE [14] 0.012665233 0.012665264 0.01266765 2.45E-07 19,565
εDE-LS [16] 0.012665233 0.012665233 0.012665233 5.01E-14 20,000
εDE-PCGA [17] 0.012665233 0.012665233 0.012665235 4.43E-10 20,000

NDE [15] 0.012665232 0.012668899 0.012687092 5.38E-06 24,000
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with εDE, εDEdn can omit more than 40% evaluations. It also found that εDE
converges to a local minimum once. Comparing with other DE algorithms
(Table 7), εDEdn provides equal or better results. With respect to the number of
function evaluations, εDEdn is superior to the other algorithms.
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of pressure vessel problem

Table 6 Optimization results
for pressure vessel problem

εDE εDEd εDEdn
Best 6059.714468 6059.714388 6059.714629
Mean 6060.332153 6059.715170 6059.715958
Worst 6090.527144 6059.716300 6059.717720
SD 4.357363963 0.000495493 0.000788475
Average
FE

7982 6932 4478

Table 7 Comparison with other state-of-the-art algorithms on pressure vessel problem

Method Best Mean Worst SD FE

εDEdn 6059.714335 6059.714335 6059.714335 9.46E-13 10,000

COMDE [13] 6059.714335 6059.714335 6059.714335 3.62E-10 30,000

rank-iMDDE [14] 6059.714335 6059.714335 6059.714335 7.57E-07 15,000

εDE-LS [16] 6059.7143 6059.7143 6059.7143 3.4030E-13 20,000

εDE-PCGA [17] 6059.714335 6059.714335 6059.714335 3.96E-09 20,000

NDE [15] 6059.714335 6059.714335 6059.714335 4.56E-07 20,000
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4.2.4 Speed Reducer Design Problem

Figure 4 illustrates the convergence histories of the best objective function. Clearly,
εDEd is much faster than εDE, and εDEdn is fastest. The statistical results are given
in Table 8. The results show that εDEdn can omit more than 30% function eval-
uations. Comparing with other DE variants, the εDEdn gives equal or better results
with considerably smaller number of function calls (see in Table 9).
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Table 8 Optimization results for speed reducer design problem

εDE εDEd εDEdn
Best 2994.472198 2994.472482 2994.473424
Mean 2994.475645 2994.474308 2994.475647
Worst 2994.480189 2994.477360 2994.478818
SD 0.001615587 0.001278890 0.001266380
Average FE 7100 6311 4917

Table 9 Comparison with other state-of-the-art algorithms on speed reducer problem

Method Best Mean Worst SD FE

εDEdn 2994.4710661 2994.4710661 2994.4710661 3.87E-12 15,000

COMDE [13] 2994.4710661 2994.4710661 2994.4710661 1.54E-12 21,000

rank-iMDDE [14] 2994.471066 2994.471066 2994.471066 7.93E-13 19,920

εDE-LS [16] 2994.471071 2994.471098 2994.471137 1.70E-05 21,000

εDE-PCGA [17] 2994.4710661 2994.471066 2994.4710661 1.16E-10 20,000

NDE [15] 2994.4710661 2994.4710661 2994.4710661 4.17E-12 18,000
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4.2.5 Three-Bar Truss Sizing Problem

The convergence curves of the best objective function over the function evaluations
are depicted in Fig. 5. We can see from Fig. 5 that εDEd is faster than εDE, and
εDEdn is the fastest algorithm. The optimization results given in Table 10 show
that all εDE, εDEd, and εDEdn provide equally good results. However, εDEdn uses
only about 50% function evaluations comparing with εDE. For this problem, εDEdn
is superior to the other DE variants in term of function evaluations required to
obtain an optimal solution (Table 11).
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Table 10 Optimization results for three-bar truss problem

εDE εDEd εDEdn
Best 263.8958444 263.8958453 263.8958456
Mean 263.8959041 263.8958743 263.8958901
Worst 263.8961593 263.8959373 263.8960654
SD 6.8847E-05 1.9603E-05 4.1248E-05
Average FE 1524 1377 773

Table 11 Comparison with other state-of-the-art algorithms on three-bar truss problem

Method Best Mean Worst SD FE

εDEdn 263.8958434 263.8958434 263.8958434 2.44E-13 2000

COMDE [13] 263.8958434 263.8958434 263.8958434 5.34E-13 7000

rank-iMDDE [14] 263.8958434 263.8958434 263.8958434 0.00E + 00 4920

εDE-LS [16] 263.8958434 263.8958434 263.8958434 2.3206E-14 15,000

εDE-PCGA [17] 263.89584 263.89584 263.89584 2.1268E-14 15,000

NDE [15] 263.8958434 263.8958434 263.8958434 0.00E + 00 4000
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5 Conclusion

This paper presented a new constrained differential evolution, εDEdn, for solving
engineering optimization problems. The new algorithm combines differential evo-
lution, the nearest neighbor comparison, and the ε constrained method. It is
enhanced further with a simple directional mutation rule. The performance of
εDEdn was evaluated by five widely used benchmark engineering design problems.
It was observed that εDEdn reduced the evaluations of the constraints and objective
function up to 50% comparing with εDE. With lower function evaluation
requirement, εDEdn is also very competitive when comparing with other DE
algorithms. Therefore, the εDEdn can solve constrained engineering optimization
problems very effectively, especially for the problems with expensive function
evaluation.
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Optimization of the Longitudinal
Cooling Fin by Levenberg–Marquardt
Method

Q. Nguyen, S. Nguyen-Hoai, T. Chuong-Thiet and T. Lam-Phat

Abstract The optimization of longitudinal cooling fin by using Levenberg–Mar-
quardt method (LMM) is implemented in this paper. The fin profile is constructed
by Bezier curve, and the control points of the Bezier curve are considered the
optimization variables. Furthermore, a “volume updating” mechanism was intro-
duced into LMM to obtain the minimum volume of the optimal fin. To demonstrate
the proposed method, two cases with the various conditions of the longitudinal
cooling fin design problems are examined and the geometry parameters of optimal
fin from the proposed method will be compared with the published optimal results.
From the obtained results, it can be declared that LMM can be utilized efficiently to
determine the minimum volume of the longitudinal cooling fin.

Keywords Shape optimization ⋅ Levenberg–Marquardt method
Fin problem

1 Introduction

In automobile engine, heat devices, and electronics devices, fins are important
equipment to enhance the rate of the heat transfer between the devices and the
surrounding air. However, in many practical applications, the volume (mass) of the
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system can be increased when the fins are used. Thus, the optimization of the fin is
essential and is interested by many researchers in the past few years [1].

One of the approaches for the fin optimization is that the fin shape needs to be
obtained to minimize its volume for a known transfer rate. In this approach, the
optimization fin with the minimum volume is a parabolic profile and this was
proven firstly by Schmidt [2]. After that, Duffin [3] evaluated again this result by
performing some powerful formulations. In another research, Natarajan and Shenoy
[4] optimized the profiles of the convection pin fin with an assumption of the
variable convection heat transfer coefficient, h=1 ̸Dn. The results archived from
Ref. [4] presented that Schmidt’s results still correct for the optimal fin with the
variable convection heat transfer coefficient. Nevertheless, these optimum results by
analytical analysis are only obtained under the assumptions of the constant thermal
parameters and the power law of the convection heat transfer coefficient.

For the optimization of the nonlinear fin problem with non-constant thermal
properties, some scientists utilized the numerical method and an optimization
algorithm to deal with. For instance, the finite element method and Genetic algo-
rithm (GA) were used in Fabbri [5] and Copiello and Fabbri [6] to optimize the
longitudinal fin with polynomial shape. Azarkish et al. [7] optimized the longitu-
dinal fin with a given volume to find out the maximum heat loss in one-dimensional
model by using the finite volume method and GA. The obtained results in [5–7]
showed that GA can be utilized for solving the nonlinear fin optimization problems.
However, GA is adaptive heuristic search algorithm known as non-gradient-based
method and thus has the high computational cost. To save the computational cost,
some researchers used the gradient-based method to deal with the fin optimization
problem. For example, Bobaru and Rachakonda [8] used sequential quadratic
programming to optimize the two-dimensional fin profile and Huang and Hsiao [9]
used conjugate gradient method to find out the optimal shape of the spine and
longitudinal fins. Recently, Nguyen and Yang [10] used the modified Newton–
Raphson method to minimize the volume of the longitudinal fin with the parabolic
shape which built by B-spline and Bezier curve. The results in [10] also showed that
Bezier curve with three control points can be used to determine the minimum
volume of longitudinal fin for the linear or nonlinear fin design problems.

In this work, we continue to examine the problem in Ref. [10] by another
method. In particularly, we use Levenberg–Marquardt method (LMM) to determine
the minimum volume of the general fin design problems. LMM is known as the
damped least-squares method and is more robust than Newton–Raphson method for
solving the nonlinear problem as the general longitudinal cooling fin design
problem as in Ref. [10]. In this work, the governed heat transfer equation of the fin
problem is nonlinear with the presence of temperature-dependent convective heat
transfer coefficient and emissivity coefficient. Thus, the finite element method is
applied to solve this equation. On the other hand, the fin shape is constructed by
Bezier curve with three control points as [10]. LMM is used to find the optimal
locations of these control points by minimizing an appropriate function represen-
tation. Furthermore, to obtain the minimum volume of the fin, a mechanism
“volume updating” is also introduced to LMM algorithm.
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2 Problem Statement

In general, a longitudinal fin model with the symmetric profile built by Bezier curve
is considered as Fig. 1. In the steady state condition, the general heat transfer
equation of the two-dimensional fin problem without internal heat source takes on
the following forms:

∂

∂x
k
∂T
∂x

� �
+

∂

∂y
k
∂T
∂y

� �
=0 in domain of fin (ΩÞ ð1Þ

− kAb
∂T
∂x

= qflow at fin base (Γ0Þ ð2Þ

− k
∂T
∂x

+
∂T
∂y

� �
.n= hðT −T∞Þ+ εσðT4 −T4

surÞ at convective surface (Γ1Þ ð3Þ

k
∂T
∂y

=0 at symmetric of fin (Γ2Þ ð4Þ

where T is the temperature field over the domain of fin (domain Ω), with the fin
cross-sectional area, Ab, at the base and the inward total heat loss at the base
(boundary Γ0) denoted by qflow, k is the thermal conductivity, h is the convection
heat transfer coefficient (boundary Γ1), ε is emissivity coefficient, σ is
Stefan-Boltzmann constant, T∞ and Tsur are the ambient and surrounding temper-
ature, respectively, and n is the exterior normal vector of the convective surface
(boundary Γ2). In general, the coefficients k, h, ε are constant or functions of
temperature.

When the shape of fin and all boundary condition are given, the temperature field
of the fin and the base temperature could be obtained by solving the forward fin
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Fig. 1 Single longitudinal fin with variable cross-sectional area
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problem by Eqs. (1–4). In this work, the finite element method (FEM) [11] is
applied to solve this forward problem.

3 Bezier Curve for Fin Shape Design

Bezier curve is commonly used in the geometry design and the optimization [12]. In
this research, Bezier curve is considered to create the shape of longitudinal cooling
fin. In general, a Bezier curve B(t) is defined as a polynomial spline function of p-th
degree given by:

BðuÞ= ∑
m

i=0
PiNi, pðuÞ ð5Þ

where Pi is the set of m control points, and Ni, pðtÞ are the basis functions of degree
p which are defined as:

Ni, 0ðuÞ= 1 if ui ≤ t≤ ui+1

0 otherwise

�
ð6Þ

Ni, pðuÞ= u− uið ÞNi, p− 1ðuÞ
ui+ p − ui

+
ui+ p − u
� �

Ni+1, p− 1ðuÞ
ui+ p+1 − ui+1

ð7Þ

and u is independent value, U is a monotonically increasing knot vector with
m+ p+1 elements expressed in the by:

U = f0, . . . , 0,|fflfflfflfflffl{zfflfflfflfflffl}
p+1

1, . . . ,m− p− 1, n− p, . . . , n− p|fflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflffl}
p+1

g ð8Þ

The requirement of any Bezier curve is given as:

p=m− 1 ð9Þ

The characteristic and detailed information of Bezier curves are presented by
Rogers [12] and Piegl and Tiller [13].

In this paper, the location of the control points of Bezier curve is considered as
design variable and directly updated during the fin shape optimization process.
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4 Levenberg–Marquardt Method

In this paper, the aim of the problem is to determine the optimum position of the
control points to obtain the minimum volume of the longitudinal cooling fin for the
known heat loss and base temperature. Consequently, the location of the control
points is considered as the optimization variable. The number of variables depends
upon the number of the degree of freedom of the control points. In this work, we use
Bezier curve with three control points (m = 3). Thus, there are 2m − 2 = 4 opti-
mization variables including two variables for the first and last control point and
two variables for the middle control point as Fig. 2.

Furthermore, to ensure that the unphysical fin profile is not occurred and keep on
the continuity during the optimization process, the location of the control points
must fulfill the conditions as following:

xP1 = 0≤ xP2 ≤⋯≤ xPm
yP1 ≥ yP2 ≥⋯≥ yPm =0

(
ð10Þ

LMM is used to optimize the fin profile with the minimum volume by finding
out the optimum location of the control points. To do that, the expected base
temperature Txpcd and the expected fin volume Vxpcd are necessary to be given first;
the calculated temperature Φi

c and the calculated volume of fin Vc are evaluated
from the direct problem. Then, the estimation of the optimal shape of the fin can be
archive by minimizing the following sum of squares function:
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JðχÞ= ∑
N

i=1
Φi

c − Txpcd
� �2

+ V ̂c −Txpcd
� �2

= ∑
N +1

i=1
Yi − Txpcd
� �2 ð11Þ

where N is the number of the temperature equation obtained from the base, Y in-
cludes Φi

c and V ̂c; Txpcd is the expected temperature at the base, V ̂c is the converted
volume given by:

Vĉ =
Vc

Vxpcd
⋅Txpcd ð12Þ

and the optimization variables are set as following:

χ= xP1 , xP2 , . . . , xPN jyP1 , yP2 , . . . , yPNf gT ð13Þ

To minimize the function J in Eq. (11), the position of the control points satisfies
the following set of nonlinear equations:

∑
∂Y
∂χ

ðY− TxpcdÞ=0 ð14Þ

In the other word, the value of unknown position of the control points can be
obtained by solving the system of Eq. (14). Due to the nonlinearity of Eq. (14),
LMM is chosen. This method uses the parameter µ to guarantee the iterative
convergence. In general, the formula to compute the search direction for the
parameters χ in LMM can be expressed as following:

χk +1 =χk − ðBTB+ μΩÞ− 1BTðY−TxpcdÞ ð15Þ

where B= ∂Y ̸∂χ is the sensitivity matrix, Ω is the diagonal matrix, and k is the
iteration index.

Equation (15) shows that the solution can be achieved when the appropriate
volume of the longitudinal cooling fin and its base temperature is specified. Nev-
ertheless, the minimum volume of the fin is undetermined prior and is the goal
obtained. To deal with this problem, a mechanism called “volume updating” is
introduced into LMM. This mechanism is based on “curve fitting” mechanism of
LMM. In this mechanism, the obtained solution is the best approximation which is
defined as that which minimizes the sum of squared differences between the
computed and expected value. Thus, the value of N is larger in Eq. (15), the
solution to the expected temperature compared to the expected volume is closer.
Consequently, “volume updating” approach is expressed as following:
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Step 1: Set N with a big value and guess an initial fin volume with small value.
Step 2: Find the best solution by using Eqs. (11–15).
Step 3: Update the new fin volume archived from the best solution of step 2 and
return to step 1.
Step 4: Stop the process if the stopping criterion is fulfilled.

In this work, the solution of the problem stops when the stopping criterion is
satisfied. Two stopping criteria are used in the proposed method. One is for
updating the fin volume, and another is for LMM.

From the literature [14], the volume of the longitudinal cooling fin would be
updated when both of two criteria are satisfied as following:

Y−Txpcd ≥ 0
J χk +1ð Þ− J χκð Þk k≤ δ J χk+1ð Þk k

�
ð16Þ

and the stopping criterion of LMM iteration is given by:

Φ− Txpcd
�� ��≤ e Txpcd

�� �� ð17Þ

or

J χk +1ð Þ− J χκð Þk k≤ δ J χk+1ð Þk k ð18Þ

where e and δ are the convergence tolerances.
Finally, the computational algorithm of the proposed method can be illustrated

as following:
Set the initial control point χ0, the initial volume of fin V0

xpcd, the adjusting factor
μ (say μ=1 in the present work), and the convergence tolerance e and δ. The value
χk is determined at the iteration k as following:

Step 1: Compute the calculated temperature Φi
c by solving the direct problem

Eq. (1)
Step 2: Calculate χk+1 through Eq. (15) and determine new J from Eq. (11).
Step 3: If Jðχk+1Þ> JðχkÞ or the condition of Eq. (10) is not satisfied, replace
μk =10μk, and return step 3. Otherwise, accept the new χk +1.
Step 4: Update the fin volume if the updating criterion Eq. (16) is satisfied and
replace k by k + 1, set μk+1 = 0.1μk, and return to Step 1.
Step 5: Terminate the process if the stopping criteria in Eqs. (17) and (18) are
satisfied. Otherwise, replace k by k + 1 and return to Step 1.
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5 Results and Discussions

To validate the proposed method, two cases with the various conditions of the
longitudinal fin design problems are adopted in this section. Besides, the optimal
results are compared with Schmidt [2], Nguyen and Yang [10], and Azarkish et al.
[15] results.

For case 1, a linear longitudinal cooling fin design problem is investigated with
the constant convective heat transfer coefficient of h = 5.24 [W/m2K] and the
thermal conductivity of k = 210 [W/mK]. The expected base temperature Ta =
500 [K] and the ambient temperature are Tb = 300 [K]. The height of the longi-
tudinal cooling fin is H = 0.4 [m] with the given heat loss qflow = 152.6 [W].
Bezier curve with three control point, m = 3, is used in this case. The value of both
updating and stopping criteria are set 10−5, and the initial volume is
V0
xpcd =8× 10− 5 [m3].
The semi-shape of the optimal fin obtained by using LMM in case 1 is illustrated

in Fig. 3a, and the temperature distribution along the longitudinal cooling fin length
is shown in Fig. 3b. The profile of the optimal longitudinal cooling fin and the
temperature distribution along the fin length archived by Schmidt [2] are also
presented in Fig. 3. Table 1 shows the geometry parameters of the optimal fin. The
relative deviation of the optimal fin geometry parameters between the proposed
method and Schmidt [2] results is also illustrated in Table 1. From the obtained
results, the optimal longitudinal cooling fin by the proposed method is in good
agreement with Schmidt’s. In Fig. 3, we see that these optimal shapes are coinci-
dent. Furthermore, the relative deviation of the optimal geometric parameters
between the proposed method and the method in Schmidt [2] is very small (as
Table 1). This can be declared that LMM determine accurately the minimum
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volume of the optimal longitudinal cooling fin for the specified base temperature
and the given heat flow in the linear fin design problems.

For case 2, a nonlinear longitudinal cooling fin design problem is considered
with the variable convective heat transfer, the constant emissivity coefficient of
ε=0.3, and the constant thermal conductivity of k = 210 [W/mK]. The variable
connective heat transfer coefficient is defined as following [8]:

h=
8k Pr1 ̸2

3H 336 Pr + 9
5

� �	 
 gβ TðxÞ−T∞½ �H3

v2

� �1 ̸4

ð19Þ

where all the fluid properties are calculated by Tm = ðTb +T∞Þ ̸2. The given heat
loss in this case is qflow = 224.1 [W].

By using the proposed method, the fin shape and temperature distribution along
the fin length of the optimal fin built by Bezier curve are illustrated in Fig. 4. The
Nguyen and Yang [10] and Azarkish et al. [15] results are also shown in this figure.
Moreover, the geometric parameters of optimal fin and the relative discrepancy of
optimal geometric parameters between the obtained results with Nguyen and Yang
[10] results and between the obtained results with Azarkish et al. [15] results are
presented in Table 2 and Table 3, respectively. From obtained results, the obtained
minimum volume by the proposed method is in good agreement with that by

Table 1 Optimal fin dimensions and their relative deviation in case 1

Geometry parameter The proposed method Schmidt [2] Deviation (%)

Volume (m3) 15.987e-05 15.988e-5 0.003
Length, L(m) 0.3620 0.3633 0.4
Semi-width, w(x) 1.65e-03 1.65e-3 0.000
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Nguyen and Yang [10] results. However, we can see that the obtained minimum
volume by the proposed method is quite different with that by Azarkish et al. [15].
For particularly, the relative difference of the optimal volume between the proposed
and Nguyen and Yang [10] method is 0.3%, and that between the proposed and
Azarkish et al. [15] method is 1.8%. The relative differences of the length and width
of the optimal fin are also shown in Tables 2 and 3. In general, this deviation is
small and is due to the errors of the numerical solutions in solving the direct
problems and the optimization algorithm.

From the obtained results in two cases above, it can be claimed that LMM can be
applied efficiently to find out the minimum volume of the optimal longitudinal fin
for the general fin design problems.

6 Conclusions

In this work, the minimum volume of the general longitudinal cooling fin design
problems was presented by using LMM combining with Bezier curve. A mecha-
nism “volume updating” was presented in LMM to achieve the minimum volume of
the optimum longitudinal cooling fin for the given heat loss and the expected
temperature at the fin base. Two cases with the various conditions of the longitu-
dinal cooling fin design problems are adopted. The obtained results by LMM have
been compared with the results of Schmidt [2], Nguyen and Yang [10], and
Azarkish et al. [15]. The results showed that the values of the minimum volume of
the optimal fin are in good agreement with that of Schmidt [2], Nguyen and Yang
[10], and Azarkish et al. [15] in two cases. In the other words, it can be declared that
LMM can determine efficiently and accurately the minimum volume of the optimal
longitudinal cooling fin with the shape built by Bezier curve for the given heat loss

Table 2 Optimal fin dimensions and their relative deviation between the proposed method and
Nguyen and Yang [10] result in case 2

Geometry
parameter

The proposed method
(LMM)

Nguyen and Yang
[10]

Deviation
(%)

Volume (m3) 15.903e-5 15.952e-5 0.3
Length, L(m) 0.2905 0.2854 1.7
Semi-width, w(x) 2.28e-03 2.16e-03 5

Table 3 Optimal fin dimensions and their relative deviation in case 2

Geometry parameter The proposed method (LMM) Azarkish [15] Deviation (%)

Volume (m3) 15.903e-5 16.190e-5 1.8
Length, L(m) 0.2905 0.3100 6

Semi-width, w(x) 2.28e-03 2.10e-03 8
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and the expected temperature at the base. Furthermore, the proposed method in this
work does not depend on the type of the direct problem and can be thus applied for
any linear or nonlinear fin design problem.
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Optimization of Stiffened Composite
Plate Using A New Adjusted Differential
Evolution Algorithm
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Abstract Stiffened composite plates have been widely used in many engineering
areas including construction, shipbuilding, and aircraft. And so, the demand of
optimizing the design of stiffened composite plate has also been rising. In this
paper, a so-called ABDE (ANN-based differential evolution) algorithm is intro-
duced to search for the optimal design of stiffened composite plates. The new
algorithm is the combination of the artificial neural network (ANN) and an
improved differential evolution (DE) algorithm in solving optimization problems. In
this technique, the ANN helps to quickly compute the respond of the structure,
which is used in constraint handling step or finding the value of an objective
function of DE algorithm. This helps to decrease the cost and increase the speed of
convergence effectively.

Keywords Differential Evolution (DE) ⋅ Artificial Neural Network (ANN)
Optimization algorithm ⋅ Stiffened composite plate ⋅ Composite structures

T. Lam-Phat (✉) ⋅ S. Nguyen-Hoai
GACES, HCMC University of Technology and Education, Ho Chi Minh City, Vietnam
e-mail: thuanlp@hcmute.edu.vn; lamphatthuan@gmail.com

S. Nguyen-Hoai
e-mail: sonvn55@yahoo.com

V. Ho-Huu ⋅ T. Nguyen-Thoi
Division of Computational Mathematics and Engineering, Institute for Computational
Science, Ton Duc Thang University, Ho Chi Minh City, Vietnam
e-mail: hohuuvinh@tdt.edu.vn

T. Nguyen-Thoi
e-mail: thoitrung76@gmail.com

Q. Nguyen
Department of Engineering Technology, Pham Van Dong University,
Quang Ngai, Vietnam
e-mail: nquan@pdu.edu.vn

© Springer Nature Singapore Pte Ltd. 2018
H. Nguyen-Xuan et al. (eds.), Proceedings of the International Conference
on Advances in Computational Mechanics 2017, Lecture Notes in Mechanical
Engineering, https://doi.org/10.1007/978-981-10-7149-2_16

229

http://crossmark.crossref.org/dialog/?doi=10.1007/978-981-10-7149-2_16&amp;domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-981-10-7149-2_16&amp;domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-981-10-7149-2_16&amp;domain=pdf


1 Introduction

Structural optimization is a potential field and has attracted the attention of many
researchers around the world. During the past decades, many optimization tech-
niques have been proposed and applied to solve a wide range of various problems.
The algorithms can be classified into two main groups: gradient-based and
popular-based approach. Some of the gradient-based optimization methods can be
named here as sequential linear programming (SLP) [1, 2], sequential quadratic
programming (SQP) [3, 4], steepest descent method, conjugate gradient method,
and Newton’s method [5]. Most of them are applied to continuous design variables.
The population-based techniques can be listed such as genetic algorithm (GA),
differential evolution (DE), particle swarm optimization (PSO), cuckoo search (CS),
and firefly algorithm (FA) [6]. These methods are used extensively in structural
problems because of their flexibility and efficiency in handling both continuous and
discontinuous design variables. In addition, the solutions obtained from
population-based algorithms in most cases are global ones. Among the methods
mentioned above, the differential evolution is one of the most widely used methods.
Since it was first introduced by Storn and Price [7], many studies have been carried
out to improve and apply DE in solving structural optimization problems. The
results have proven the great effectiveness of the method [8–12]. However, like
many other population-based optimizations, one of the disadvantages of DE is that
the optimal computational time is much slower than the gradient-based optimization
methods. This is because DE takes a lot of time in evaluating the fitness of indi-
viduals in the population. Specifically, in the structural optimization problem, the
calculation of the objective function or constraint function values is usually done by
using the finite element to analyze the structural response. To overcome this dis-
advantage, artificial neuron networks (ANN) are proposed to combine with the DE
algorithm. Based on the idea of imitation of the brain structure, ANN is capable of
approximating an output corresponding to a set of input data quickly after the
network has been trained, also known as a learning process. Thanks to this
remarkable advantage, the computation of objective function or constraint function
values in the DE algorithm will be done quickly. As a result, ANN will help
significantly improve the efficiency of DE calculations. The effectiveness and
applicability of ANN since the early groundwork ideas put forward by Warren
McCulloch and Walter Pitts [13] in 1943 have so far proved to be very convincing
through numerous studies. Application areas include system identification and
control, pattern recognition, sequence recognition (gesture, speech, and handwritten
text recognition), data mining, visualization, machine translation, social networking
filtering, and email spam filtering [14–19].

The next issue is the development of optimal algorithms integrated ANN with
DE and applying the proposed algorithms to a practical structure to examine the
effectiveness of the method. At present, the structures made from the composite
material are widely used in almost all fields such as construction, mechanical
engineering, marine, and aviation. In particular, stiffened composite plates made of
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composite material are an outstanding form and are used increasingly by its
superior advantages. By combining the advantages of composite materials and the
reinforced beams structure, the reinforced composite plates have very high bending
strength with very lightweight. Due to its high practical applicability, the need to
optimize the design of the structure to save costs and increase the efficiency of use
is also high. However, because of the complexity of computing the behavior of this
particular type of structure, finding a good algorithm for optimizing design
parameters is essential to ensure computational efficiency.

In this paper, the ANN-based differential evolution (ABDE) algorithm is pro-
posed to optimize the fiber angles of the stiffened composite plate. In the ABDE
algorithm, ANN was used to approximate the objective function value from the set
of different design variables instead of using the finite element analysis as in the
previous DE algorithm. Thanks to the remarkable performance in terms of calcu-
lating the value of the objective function of ANN, the optimal performance of the
problem also increased significantly. The numerical results presented in this paper
demonstrate the effectiveness and accuracy of the proposed method.

2 Fundamental Theory

2.1 Brief on the Behavior Equation of Stiffened Composite
Plate

Stiffened composite plate is formed by a composite plate combining with a stiff-
ening Timoshenko composite beam, as illustrated in Fig. 1. The beam is considered
as a stiffener and is set parallel with the axes in the surface of the plate. The centroid
of the beam has a distance e from the middle plane of the plate. The plate-beam
system is discretized by a set of node. The degree of freedom (DOF) of each node of

the plate is d= u, v,w, βx, βy
� �T , in which u, v,w are the displacements at the middle

Fig. 1 Plate composite stiffened by an r-direction stiffener
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of the plate and βx, βy are the rotations around the y-axis and x-axis. Each node of

the beam has the DOF of dst = ur, us, uz, βr, βs½ �T , where ur, us, uz are, respectively,
centroid displacements of the beam and βr, βs are the rotations of beam around r-
axis and s-axis.

The displacement compatibility between plate and beam is ensured by:

u= urðrÞ+ zβrðrÞ; v= zβsðrÞ; w= uzðrÞ ð1Þ

The strain energy of composite plate is given by:

UP =
1
2

ZZ
A
εT0D

mε0 + εT0D
mbκb +κT

bD
mbε0 +κT

bD
bκb + γTDsγ

� �
dA ð2Þ

where ε0,κb, γ are, respectively, membrane, bending, and shear strains of com-
posite plate and are expressed as follows

ε0 = u, x, v, y, u, y + v, x
� �T ;κb = βx, x, βy, y, βx, y + βy, x

� �T ; γ= w, x + βx,w, y + βy
� �T .

ð3Þ

Dm,Dmb,Db,Ds are material matrices of plate.
The strain energy of composite stiffener is given by

Ust =
1
2

Z
l

ðεbstÞTDb
stε

b
st + ðεsstÞTDs

stε
s
st

� �
dx ð4Þ

where εbst , εsst are, respectively, bending, the shear strain of beam and are expressed
as follows

εbst = ur, r + z0βr, r, βr, r, βs, r
� �T ; εsst = uz, r + βr½ �T ð5Þ

Db
st,D

s
st are material matrices of the composite beam.

Using the superposition principle, total energy strain of stiffened composite plate
is obtained:

U =UP + ∑
Nsi

i=1
Ust ð6Þ

where Nst is the number of stiffeners.
For static analysis, the global equations for the stiffened composite plate

K½ � Δf g= Ff g can found in [20] for detail.
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2.2 Brief on the ANN-Base Differential Evolution
Algorithm

a. Differential Evolution Algorithm

The original differential evolution algorithm firstly proposed by Storn and Price
consists of four main phases: initialization, mutation, crossover, and selection. In
the initialization phase, the population is created by randomly sampling from the
search space. Each individual xi of the population is then used to generate a new
mutant vector vi in the next phase of mutation. After that, at the crossover step, a
trial vector ui is created by replacing some elements of the mutant vector vi via
crossover operation. And finally, a comparison between the objective function
values of the trial vector ui with the target vector xi is made to select a new set of
population for the next generation. To improve the effectiveness of the algorithm,
Ho-Huu et al. [9–12] have recently proposed some modifications on the mutation
phase, and the selection phase of the original algorithm and the new version of DE
were proved to be more effective than the original one. Specifically, in the mutation
phase, the individuals participating in mutation are chosen following a priority
based on their fitness instead of being chosen randomly. In the selection phase, the
children population C consisting of trial vectors is combined with parent population
P of target vectors to create a combined population Q. Then, best individuals are
chosen from the combined population Q to construct the population for the next
generation. By doing so, the best individuals of the whole population are always
saved for the next generation and significantly improve the speed of convergence of
the solution.

The modified algorithm is then expressed as below [21]:

1:
2:
3:
4:
5:
6:
7:
8:
9:

10:
11:
12:
13:
14:
15:
16:
17:
18:

Generate the initial population
Evaluate the fitness for each individual in the population using FEM
while <the stop criterion is not met> do

Calculate the selection probability for each individual
for i =1 to NP do {NP: Size of population}

Do mutation phase based on Roulette wheel selection
jrand = randi(1,D) {D: number of design variables}

for j =1 to D do
if rand[0,1] < CR or j == jrand then {CR: crossover control parameter}

ui,j = xr1,j + Fx(xr2,j - xr3,j) {F:randomly chosen within [0,1] interval}
else

ui,j = xi,j
end if

end for
Evaluate the trial vector ui using FEM

end for
Do selection phase based on Elitist selection operator
end while
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b. Artifical Neural Network

Neural networks consist of a large class of different architectures. In this paper,
one of the most useful neural networks in function approximation, multilayer
perceptron (MLP), is used. An MLP consists of an input layer, several hidden
layers, and an output layer as in Fig. 2.

In an MLP network, a single node i, also called a neuron, includes a summer and
a nonlinear activation function g is shown in Fig. 3.

The inputs xk, k = 1, …, K to the neuron are multiplied by weights wki and
summed up together with the constant bias term θi. The resulting ni is the input to
the activation function g. The activation function was originally chosen to be a relay
function, but for mathematical convenience, a hyperbolic tangent (tanh) or a sig-
moid function are most commonly used. The output of node i becomes

yi = gi = g ∑
K

j=1
wjixj + θi

 !
ð7Þ

Input layer Output layer

Hidden layer 1 Hidden layer n

Neurons Neurons

Fig. 2 MLP network model
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Fig. 3 Single node in a MLP network
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Connecting several nodes in parallel and series, an MLP network is formed.
A typical network is shown in Fig. 4.

The output yi, i = 1, 2 of the MLP network becomes

yi = g ∑
3

j=1
w2
jigðn1j Þ+ θ2j

 !
= g ∑

3

j=1
w2
jig ∑

K

k=1
w1
kjxk + θ1j

� �
+ θ2j

 !
ð8Þ

To find the best MLP network with a set of given input-output data (xi, yi),

i = 1, …, N, the parameters wk
ji, θ

k
j

� 	
need to be determined. The algorithms for

determining the network parameters are called learning or teaching algorithms.
There are many teaching algorithms. In this paper, the Levenberg-Marquardt
algorithm is used. The procedure of teaching algorithms for multilayer perceptron
networks is summarized below:

• The structure of the network is first defined. In the network, activation functions
are chosen, and the network parameters, weights, and biases are initialized.

• The parameters associated with the training algorithm like error goal, the
maximum number of epochs (iterations) is defined.

• The training algorithm is called.
• After the neural network has been determined, the result is first tested by sim-

ulating the output of the neural network with the measured input data. This is
compared with the measured outputs. Final validation must be carried out with
independent data.

The advantage of ANN is that the network after being determined can be used to
approximate the output immediately from any given set of input data. And this is
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Fig. 4 Multilayer perceptron network with one hidden layer
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really helpful in evaluating fitness functions or objective functions in many opti-
mization algorithm.

c. The ANN-Based Differential Evolution Algorithm

By combining the above advantages of ANN and the DE algorithm, the
ANN-based differential evolution optimization algorithm is proposed. Specifically,
the calculation of the objective function values of individuals in the population at
each generation and the evaluation of the trial vectors in the crossover step carried
out by finite element analysis as in the original DE algorithm are replaced by the
approximation of the ANN as illustrated in Fig. 5. In Fig. 5, the process of building
an ANN model usually consists of three main parts: sampling, training, and veri-
fying the net as illustrated in the block of “ANN Building steps.” In this paper, the
samples used for ANN training are created by the FEM, and the algorithm used to
train the net is Levenberg-Marquardt.

Thanks to the advantage of being able to immediately evaluate the fitness of all
individuals in the population by just a single command “net(popular)” rather than
using the for/end loop and finite analysis for each individual value, the

Evaluate the trial vector 
using the ANN 

Stop criterion

Do the Mutation

Do the Crossover  to 
create trial vector

Selection 

Initialize the 
population 

End

Evaluate the fitness 
using the ANN 

Start

Initialization

Mutation

Crossover

Selection

Sampling

Net training
(Building ANN model) 

Check overfitting
(Verify the ANN model)

Applicable ANN model

ANN Building steps

Fig. 5 Optimization process of the ABDE algorithm
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computational speed of the ABDE optimization algorithm is increased significantly.
Although the approximation of the structural respond of stiffened composite plate
based on the training network “train(net,input,output)” is erroneous; however, this
error is small and the accuracy is acceptable. This is demonstrated in the numerical
results of the paper.

In addition, the proposed ABDE algorithm has the great advantages that the
original DE algorithm based on finite element analysis is impossible or difficult to
do, such as the ability to solve optimization problems that does not have the
behavior equation of the object or providing a good support in studying the effect of
the optimal parameters on the result of the problem.

3 Numerical Results

3.1 Static Analysis of the Stiffened Composite Plate

Finite element analysis of static structural respond will be used to generate the set of
input samples for the network training model of ANN. Therefore, it is important to
ensure the accuracy of the static analysis. In this section, the static response analysis
of stiffened composite plate was performed by finite element method using the
triangle element CS-DSG3 [22]. The results were compared with the available
results of other authors to ensure the accuracy of the method. The square plate
model under simply supported condition is reinforced in the X-direction and has the
dimensions as shown in Fig. 6. The plate has thickness t, and dimensions in x and y
directions are lx = 254 mm and ly = 254 mm, respectively.

Both plate and beam have four symmetric layers. The fiber orientation for layers
of the plate is a set [θ1 θ2 θ2 θ1], and for the layers of the beam is [θ3 θ4 θ4 θ3]. The
plate and beam are made of the same materials with E1 = 144.8GPa,
E2 =E3 = 9.65GPa, G12 =G13 = 4.14GPa, G23 = 3.45GPa, υ12 = υ13 = υ23 = 0.3.
The plate is subject to a uniform load f = 0.6895 (N/mm2).

lx ly

x y 

z 

h 

t 

r 

Fig. 6 Model of a stiffened
composite plate
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The static analysis is carried out for two cases of fiber angle of ½0◦ ̸90◦ ̸90◦ ̸0◦�
and ½45◦ ̸− 45◦ ̸− 45◦ ̸45◦�. The central deflection of the stiffened composite plate
obtained from FEM is shown in Table 1. The results are compared with those by Li
and Kolli and show good agreement. The maximum error is just 0.55%.

3.2 The Effective of the Differential Evolution Algorithm

To verify the accuracy of the DE algorithm, the fiber-angle optimization of two
models of square and rectangular stiffened composite plate is considered in this
section. The stiffeners in both cases are in X-direction as shown in Fig. 7. The
objective function in this problem is the strain energy of the plate.

The optimization problem is expressed as:

min
θ

U= 1
2 d

TKd

subject to 0≤ θi ≤ 180, i=1, . . . , 4

(

where U is strain energy and θI is fiber orientation of ith layer.
In order to save the time of computation but still ensure accuracy, the integer

values of design variables were used in this analysis.
The optimization parameters of differential evolution algorithm used in this stage

are given here:

Initial population size (NP): 20 individuals each generation

Table 1 Comparison of central deflection (mm) of the simply supported square stiffened
composite plates

Fiber angle for both beam and plate ½0◦ ̸90◦ ̸90◦ ̸0◦� ½45◦ ̸− 45◦ ̸− 45◦ ̸45◦�
Method CS-DSG3 [20] [23] CS-DSG3 [23]

Central deflection 1.0917 1.0396 1.0892 2.5049 2.4912

Fig. 7 Optimization analysis of stiffened composite plate a square plate—b rectangular plate
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Total generation: 200
The crossover control parameter (Cr): 0.9
The scaling factor (Fx): 0.8
Tolerance: 1e-6

The optimal results of fiber orientations for both cases are presented in Table 2.
The results from the Table 2 show that the solutions by the DE agree very well with
those by the GA. The errors of strain energy in both cases are very low. The
maximum one is just about 0.2% for the case of a rectangular plate. However, the
computational time of the DE algorithm is much better. Especially, in the case of a
rectangular plate, the time of computation from the GA method is nearly double in
comparison with the one from DE, 4995 s and 2851 s, respectively. This proves the
accuracy and the effectiveness of the DE method.

The results of Table 2 also show that the geometric parameters of the structures
also have influence to the optimal values of the problems. This is explained by the
fact that the optimal fiber orientations of the square and rectangular plate are quite
different under the same conditions.

3.3 The ANN-Based Differential Evolution

In this section, the ABDE optimization algorithms were applied to three problem
models: rectangular plate with X-directional stiffener (R-X), rectangular plate with
Y-directional stiffener (R-Y), and square plate reinforced in two directions X and Y
(S-XY). The results in this section obtained by the computer with the following
configuration:

Processor Intel® Core™ i5-2430M CPU @ 2.4 GHZ
Installed Memory (RAM) 4.00 GB (3.90 GB usable)
System type 64-bit Operating System, x64-based processor

Firstly, the samples for net training were created with 10,000 samples for each
case. The net after training will be checked for “overfitting phenomenon” with other
1,296 samples to ensure the accuracy and the applicability of the net. The time for
sampling and the average errors of overfitting checking process are presented in the
below Table 3.

Table 2 Optimal results of two problems

Type of stiffened
plate

Method Optimal angle (°) Strain energy
(Nm)

Computational time
(s)θ1 θ2 θ3 θ4

Square DE 135 48 0 180 6183.2 2065
GA 135 48 0 180 6183.1 2253

Rectangular DE 160 37 0 180 30366 2851
GA 159 37 0 180 30300 4995
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The average errors for three cases are small, so the ANN model can ensure the
accuracy in approximating the objective function of the stiffener composite plate in
the optimization process of the DE algorithm.

The optimal results are shown in Table 4. Compared to the optimal results
obtained from the DE algorithm, the values of the design variable computed from
ABDE are very similar. The errors of objective function values obtained for the
three models were 0.86%, 1.57%, 1.99%, respectively. These errors are most
influenced by the training model of ANN. However, with a maximum error of
1.99%, it is perfectly acceptable. Besides, a superior advantage in terms of com-
putational time, which is also the strongest advantage of the ABDE algorithm, was
very well expressed. The cost for the R-X model computed by ABDE is only 8 s
compared to 2851 s of DE, which is 356 times faster. The remaining two cases of
R-Y and S-XY models, the cost are, respectively, 13 s and 5 s compared to 2903 s
and 1497 s of the DE algorithm. This superiority is due to the fact that the objective
function can be approximated from the ANN model by a single command: net
(popular), which is independent of the population of each generation, instead of
using for/end loop as in the original DE algorithm. In three cases above, the lowest
computational time with the highest error is of S-XY case. This is because the
square plate has a smaller dimension in comparison with the rectangular one, so the
computational time is faster. Meanwhile, the error may be caused by the error in
the approximation of ANN model and the accuracy of the FEM procedure in
creating the sample for neural network training. Therefore, to ensure the accuracy
and the effectiveness of the proposed method, the ANN training and sampling step
must be considered carefully.

The results in Table 4 can prove the ABDE algorithm’s superior accuracy and
efficiency in comparison with the independent DE algorithm. This is especially

Table 3 Sampling and
overfitting checking error

Samples Case Total time (s) Avg. error (%)

10000 R-X 38535 2.55
10000 R-Y 39188 3.55
10000 S-XY 19434 3.01

Table 4 Comparision of accuracy and computational time between DE and ABDE

Type of stiffened
plate

Method Optimal angle (°) Strain energy
(Nm)

Error
(%)

Cost
(s)θ1 θ2 θ3 θ4

R-X DE 160 37 0 180 30366 0.86 2851
ABDE 160 38 0 180 30104 8

R-Y DE 178 12 0 180 33039 1.57 2903
ABDE 177 11 0 180 32520 13

S-XY DE 135 45 0 0 4223 1.99 1497
ABDE 134 42 0 0 4307 5
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useful for solving problems with a large quantity of loops and high-cost objective
functions.

Additionally, this algorithm can also be applicable for many types of problems
including linear and nonlinear ones because the idea here is just alternating the
approach of evaluating the objective function by using ANN instead of using FEM.
Therefore, the computational time is saved. Moreover, the ANN model can well
approximate both linear and nonlinear response. So, this technique will be applied
for both linear and nonlinear optimization problems.

4 Conclusions

The ANN algorithm combined with the DE algorithm in the optimization of the
fiber direction of stiffened composite plate gives a good result in accuracy, with the
maximum error being 1.99%. This error is due to the influence of the evaluation of
the objective function from the ANN algorithm. However, the computational time
is superior due to the fact that the time taken to calculate the objective function from
ANN is much faster than calculating the objective function value from the
numerical method such as FEM. This will be very useful in calculating large
problems with many loops.

In addition, integrating ANN with an optimal population-based approach has
several benefits:

• The problem not having clear behavioral equation can still be resolved, just need
the data set of input and output.

• Changing the values of the parameters of the optimization methods (tol, pop-
ulation size, …) for checking the sensitivity (the influence of the optimization
parameters) may take a lot of time. ANN will help resolve this problem quickly
thanks to the superior advantage in terms of saving time.

• Saving a lot of time when experimenting a variety of optimization methods with
the same structure. After the ANN model has been built, the process of eval-
uating objective functions or constraint functions in population-based opti-
mization methods can be quickly done by ANN. This helps to quickly check the
effectiveness of many optimization methods and is very useful in research work.
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Theorical and Experimental Studies
on Hybrid Steel-RC Walls

Nguyen Quang-Huy, Hjiaj Mohammed and Tran Van Toan

Abstract Hybrid RCS frames consisting of reinforced concrete (RC) column and

steel (S) are used frequently in practice for mid- to high-rise buildings. RCS frames

possess several advantages from structural, economical and construction view points

compared to either traditional RC or steel frames. One of the key elements in RCS

frames is the composite shear wall consisting of several steel sections encased in

reinforced concrete. Regarding the RC walls reinforced by more than one steel pro-

file, namely hybrid steel-RC wall, although a number of researchers have focused

on its various aspects, they are currently not covered by standards because they are

neither reinforced concrete structures in the sense of Eurocode 2 or ACI318, nor

composite steel-concrete structures in the sense of Eurocode 4 or AISC 2010. This

paper deals with theoretical and experimental study on hybrid walls with several

embedded steel profiles. The first part of this paper is dedicated to present a tentative

design model for hybrid elements (walls and columns) subjected to combined axial

force, bending and shear. Particular attention will be paid to shear (longitudinal and

transversal) resistances because preventing shear failure is one of the major concerns

when designing a composite structural member. Next, an experimental study on the

static behavior of hybrid walls subjected to combined shear and bending is presented.

Six hybrid walls with different types of the structural steel-concrete connection and

reinforcement detailing are tested. The specimens exhibited ductility behavior. The

specimens with shear connectors (i.e. headed studs, stiffeners) were more ductile in

terms of displacement ductility than the ones without connectors. Finally, to assess

the validity of the developed design model a comparison between the experimental

results and design predictions is presented.

N. Quang-Huy (✉) ⋅ H. Mohammed

Structural Engineering Research Group, INSA de Rennes,

20 Avenue des Buttes de Coësmes, 35043 Rennes, France

e-mail: qnguyen@insa-rennes.fr

H. Mohammed

e-mail: mhjiaj@insa-rennes.fr

T. Van Toan

Thuyloi University, 175 Tay son, Hanoi, Vietnam

e-mail: tranvantoan@wru.vn

© Springer Nature Singapore Pte Ltd. 2018

H. Nguyen-Xuan et al. (eds.), Proceedings of the International Conference
on Advances in Computational Mechanics 2017, Lecture Notes in Mechanical

Engineering, https://doi.org/10.1007/978-981-10-7149-2_17

245

http://crossmark.crossref.org/dialog/?doi=10.1007/978-981-10-7149-2_17&domain=pdf


246 N. Quang-Huy et al.

Keywords Steel ⋅ Concrete hybrid shear walls ⋅ Shear connection ⋅ Design

method ⋅ Static test

1 Introduction

The design of a framing system that combines structural steel and reinforced concrete

produces a building having the advantages of each material, stiffness, damping, and

economy of reinforced concrete, and the speed of construction, strength, long-span

capability, and light weight of structural steel. One of the key elements is the compos-

ite wall, where the practice of encasing structural steel shapes encased in reinforced

concrete is common. The use of encased composite walls is actually more or less

limited to the simple encased steel profile because this kind of composite walls is

covered by standard rules of [1]. Regarding the concrete walls reinforced by more

than one steel profile, namely “hybrid” wall, although a number of researchers have

focused on its various aspects [2–4], they are currently not covered by standards

because they are neither reinforced concrete structures in the sense of Eurocode 2

[5] or ACI-318 [6], nor composite steel-concrete structures in the sense of Eurocode

4 [1] or AISC [7]. Gaps in knowledge are mostly related to the problem of force

transfer between concrete and embedded steel profiles, a situation in which it is nei-

ther known how to combine the resistances provided by bond, by stud connectors

and by plate bearings, nor how to reinforce the transition zones between classical

reinforced concrete and concrete reinforced by steel profiles.

Various types of composite walls have been developed, investigated and used for

core walls of high-rise buildings in seismic zones. Zhao and Astaneh-Asl (2004) [8]

attached RC panels to the steel plate walls using bolts, resulting in highly ductile

behavior and stable cyclic post-yielding performance. Saari et al. (2004) [9] studied

the behavior of headed shear stud connectors for use in steel frames with partially

restrained connections and reinforced concrete infill walls, attached compositely to

the steel frame around the perimeter of each wall panel. Zhou et al. (2010) [10] per-

formed experimental and numerical studies of composite shear with multi-embedded

steel sections at wall boundaries as well as wall middles. They indicated that com-

posite shear walls with multi-embedded steel sections had better energy dissipation

capacity than that with steel sections only at boundaries. The presence of multi-

embedded steel sections did not affect the final failure mode of the composite shear

walls, but they would restrain the development of cracks and prevent the concrete

from serious spalling. Similar kind of composite shear walls was experimentally and

numerically studied by Dan et al. (2011) [4]. They encased vertical steel profiles into

RC walls and demonstrated the effectiveness of the steel profiles in improving the

seismic performance of RC shear walls. Rafiei et al. (2015) and Hossain et al. (2016)

[11, 12] studied the behavior of composite shear walls consisting of two skins of

profiled steel sheeting and an infill of concrete under in-plane monotonic and cyclic

loading respectively, demonstrating more ductile behavior and higher energy absorb-

ing capacity. Zhang et al. (2016) [13] proposed and investigated a nouvel structural
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shear wall consisting of bundled lipped channels seam-welded together and in-filled

concrete. They pointed out that that the level of axial force ratio and the configura-

tion detail significantly affect the entire hysteresis performance, while the presence

of shear studs delays the occurrence of fracture and failure.

This paper deals with design method and experimental study of hybrid walls

with several embedded steel profiles. The first part of this paper is dedicated to

present a tentative design model for hybrid elements (walls and columns) subjected

to combined axial force, bending and shear. This model is based principally on the

design rules of [5] and [1]. Particular attention will be paid to shear (longitudinal

and transversal) resistances. Next, an experimental study on the static behavior of

hybrid walls subjected to combined shear and bending is presented. Six hybrid walls

with different types of the structural steel-concrete connection and reinforcement

detailing are tested. Finally, to assess the validity of the developed design model a

comparison between the experimental results and design predictions is presented.

2 Design Method

As already mentioned in the introduction, the studied hybrid walls are not yet covered

by design standards. The present study aims to develop a tentative design method for

such element subjected to combined axial force, bending and shear. Let consider a

hybrid steel-concrete element subjected to axial force, bending and shear as shown

in Fig. 1. The cross-section consists of a rectangular RC section reinforced by several

steel profiles.

(a) hybrid wall

(b) Corss-section

Fig. 1 Description of studied hybrid walls
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In the proposed design method, particular attention will be paid to shear (lon-

gitudinal and transversal) resistances because preventing shear failure is one of the

major concerns when designing a such composite structural member. Experiments

conducted with simple encased steel profile shown that the shear failure generally

involves three possible failure modes:

(1) the diagonal shear failure, which closely resembles the shear failure of an ordi-

nary reinforced concrete structural member;

(2) the longitudinal shear failure, which results in cracks along the interface of the

steel flange and concrete.

(3) the flexural failure, which results in vertical cracks at mid-span.

A method for the calculation of the number of connector to ensure the full inter-

action between steel profiles and concrete around is firstly developed. The bending

resistance will be determined using the M-N interaction curve which is build using

the method of stress distribution of Eurocode 4 [1]. Regarding the shear resistance,

a strut-and-tie model is developed taking into account the contribution of the steel

profiles. For the sake of simplicity, in this work, we consider only the case of three

encased steel profiles. The three steel profiles are oriented such that they are sub-

mitted to weak axis bending. The second order effect is not treated in this paper. All

details of the design model related to the second effect of hybrid members can be

found in [15].

Design Resistance of Cross-Section to Combined Compression and Bending

There is nowadays no design standard providing the guidance on how to deter-

mine properly the plastic resistances of composite section with more than one

encased steel profile. However, once the steel profiles are fully embedded in con-

crete, the resistance of hybrid cross-sections to combined compression and bend-

ing and the corresponding interaction curve may be calculated assuming rectangular

stress blocks as shown in Fig. 1. This method is inspired from the simplified method

of design of Eurocode 4 [1]. In this method, the tensile strength of the concrete is

neglected.

If the shear force Va,Ed acting on one steel section exceeds 50% of the design

shear resistance of the steel section Vpl,a,Rd, the influence of the transverse shear on

the resistance in combined bending and compression should be taken into account

by a reduced design steel strength (1 − 𝜌)fy where

𝜌 =
( 2Va,Ed

Vpl,a,Rd
− 1

)2

(1)

The shear force Va,Ed acting on one steel section is assumed to be determined by:

Va,Ed =
VEd
na

Mpl,a,Rd

Mpl,Rd
(2)
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Fig. 2 Decomposition of hybrid section; and strut-and-tie model fore shear resistance

where Mpl,a,Rd is the plastic resistance moment of na steel sections and Mpl,Rd is the

plastic resistance moment of the hybrid section.

Design Transverse Shear Resistance

If the encased steel profiles are considered as reinforcing bars, the shear resistance

can be evaluated using the strut-and-tie model proposed in Eurocode 2 [5]. How-

ever it is obvious that the shear resistance provided by the steel profiles must be

not negligible for such hybrid section. In our design approach it is assumed that the

shear resistance of the hybrid section is given by adding up the shear resistances of

RC section and composite steel-concrete section. As shown in Fig. 2, the composite

section has a width limited to the width of the steel shape ha and the RC section has

a width bc = b − ha where b being the width of hybrid section.

VRd = VRd,RC + VRd,a (3)

where:

∙ VRd,RC is the design shear resistance of RC section which is determined in accor-

dance with Eurocode 2:

VRd,RC = min
⎡⎢⎢⎢⎣
VRd,s =

Asw
s

zfywd cot 𝜃

VRd,max =
𝛼cw bc z 𝜈1 fc
cot 𝜃 + tan 𝜃

⎤⎥⎥⎥⎦
(4)

∙ VRd,a is the design shear resistance of composite section which is given by:

VRd,a = na(1 − 𝜂)Vpl,a,Rd (5)

with na being the number of steel profiles; Vpl,a,Ed being the design shear resistance

of one steel section determined in accordance with Eurocode 3; The coefficient 𝜂

represents the influence of normal stress on the shear resistance of steel profile when
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the design axial force exceeds 50% of the plastic resistance to compression Npl,Rd :

𝜂 =
( 2NEd
Npl,Rd

− 1
)2

(6)

Design Longitudinal Shear Resistance

Vertical force equilibrium:

VEd = b z 𝜎cw sin2 𝜃 + naVa,Ed (7)

where 𝜎cw is the compression stress in struts; z is the distance between the compres-

sion and tension chords. In wall with huge embedded steel sections, it is proposed to

consider z as the distance between the center of top and bottom embedded profiles.

𝜃 is the inclination of the compression struts.

The longitudinal shear force acting on the bottom (or top) embedded profile can

be obtained by

gEd =
ha𝜎cw sin 𝜃 (cos 𝜃 − 𝜇 sin 𝜃)

𝜒a
(8)

where 𝜒a is the perimeter of the steel profile section. If the longitudinal shear force

gEd is greater than the design shear strength 𝜏Rd given in [1], shear connectors are

therefore needed to ensure the full interaction between steel profiles and concrete.

In this case, the longitudinal shear force, namely VL, acting on the shear connectors

from the cross-section where the full plastic bending moment is reached to the cross-

section where the bending moment vanishes is

VL = Aa(1 − 𝜌)fy (9)

where Aa is area of one steel profile. The minimum number of shear stud needed for

one steel profile to ensure the full interaction is nmin = VL∕PRd where PRd is design

shear resistance of one shear connector.

3 Experimental Program

Description of Test Specimens

The experimental program consists of seven 2:3 scale wall specimens whose one is

RC wall (served as reference specimen) and six others are composite wall with three

encased steel profiles. They have been designed using the design model presented

above. All specimens had the same size, geometry and longitudinal reinforcing bar

arrangements. The primary differences between seven specimens were the type of

the structural steel-concrete connection and the stirrup spacing. Details evaluated in
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Fig. 3 Details of the test specimens

the test include the contributions of the steel profiles, shear studs, stiffeners, bond

and stirrup spacing to the bending and shear resistance. Figure 3 shows the design

details of all the seven specimens of hybrid walls.

Test Setup

The test setup is shown in Fig. 4. The third-point flexural beam test configuration

was adopted to evaluate the resistance of specimens to combined bending and shear

without axial force. Specimens were loaded at the mid-length by two hydraulic actu-

ators (1500 kN capacity each). Pinned boundary conditions at the each end of the

specimens were simulated by two supports as shown in Fig. 4. A transverse brace

system was used in order to avoid out-of-plan displacement of the specimens.

Instrumentation

Several different instruments were used in the testing of the specimens. The arrange-

ment of the instrumentation is presented in Fig. 5. During the loading, the test results

were recorded every second.
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Fig. 4 Test setup

Fig. 5 Detailed arrangement of measuring devices
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4 Experimental Results

A stable applied load versus displacement behaviour was observed in all seven speci-

mens. Figure 6 presents the load versus displacement at mid-span curves for all spec-

imens. It was observed that ductile failure took place gradually with the widening

of the critical flexural cracks. It can be seen that the specimens with shear connec-

tors had more ductile behavior than the ones without connectors. Table 1 presents

the correspondence between the forces and the displacements at different character-

istic points from the tests, which are: As yielding point of the first longitudinal rein-

forcement layer; Bs yielding point of the second longitudinal reinforcement layer;

Cs yielding point of stirrups; Ds yielding point of the lower encased steel profile; Fs

ultimate load capacity of the specimen; and Ys yielding of the specimen [16].

The strength of the specimens was defined in terms of load bearing capacity and

represents the maximum applied vertical force. The absolute values of the load bear-

ing capacity are presented in Table 1. The maximum load bearing capacity of the

hybrid specimens was attained by CWHC and DWHC specimens, whilst the mini-

mum is attained by BWHC specimen. The differences between these values must be

due to the different concrete strengths, due to the type of the structural steel-concrete

connection (i.e. bond, shear stud and stiffener) and due to the stirrup spacing of the

specimens. The normalized load bearing capacity is defined as the ratio between

the load bearing capacity of hybrid specimens and the load bearing capacity of the

reference A-RC specimen. Figure 7 shows the normalized values of the load bear-

ing capacity also with reference to the normalized concrete compressive strength of

the specimens. It can be noticed that for BWHC specimen, although the concrete

compressive strength is almost the same with A-RC specimen, the difference in load

bearing capacity is about 2 times. For BW, CW and DW specimens, which were

realized using a concrete of 1.3 times compressive strength from the compressive

Fig. 6 Load-displacement

at mid-span curves for all

specimens
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Fig. 7 The normalized load

bearing capacity of the

specimens

strength of A-RC specimen, the difference in load bearing capacity is about between

2.2 and 2.4 times. This highlights the important contribution of three encased steel

profiles on the load bearing capacity. Moreover, for CWHC and DWHC specimens,

which were realized using a concrete of 1.3 times compressive strength from the

compressive strength of A-RC specimen, the difference in load bearing capacity is

2.5 times for the hybrid specimens. This means that the double number of stirrups

did not improve significantly the load bearing capacity of hybrid specimens. This

small increasing may be explained as the concrete strength became a little bit higher

due to the confinement making by the stirrups. This is to say that the failure of CW

and DW specimens was not caused by the yielding of the stirrups.

5 Assessment of the Proposed Design Model

Assessment of the Design Resistances

To compare the accuracy of the proposed design model to predict the bending and

shear resistances of hybrid walls, a comparison between ultimate experimental and

predicted strength was carried out. For the comparison purposes, the evaluation of

flexural and shear resistances is made for the maximal applied load recorded on each

test. The design-experimental comparisons are summarized in Table 2. Regarding

the bending resistance, the Mpl,Rd∕MEd ratio varied from 0.88 to 1.08 with a mean

value of 0.94 and a standard deviation of 0.075. This is to say that the proposed

design model provides fairly consistent and conservative bending strengths of the

tested hybrid walls.

The VRd∕VEd ratio varied from 1.83 to 2.94. It is noted that due to the contribu-

tion of the shear resistance of the steel profiles the transverse shear strength VRd is

largely greater than VEd. Therefore, the observed ultimate state of all hybrid speci-

mens is ductile bending. If the contribution of the steel profiles to the transverse shear

strength would be neglected, the resistance of specimen CW and DW would be con-

ditioned by the shear resistance VRd,s which represents the yielding of stirrups. How-
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Table 2 Predicted versus experimental strengths

Specimen Experimental values Design calculation EC4

Fmax
(KN)

VEd
(KN)

MEd
(KNm)

Va,Ed
(KN)

𝜎cW
(Mpa)

a gEd
(MPs)

Mpl,Rd
(KNm)

vRd
(KN)

b
𝜏Rd

(MPa)

BW 1613 807 1512 130 5.96 0.75 11446 1614

BWHC 1467 734 1375 114 5.57 0.70 1490 2160

CW 1678 839 1573 131 6.39 0.81 1493 1614

CWHC 1809 905 1696 141 6.88 0.87 1491 2160 0.51

DW 1768 884 1658 137 6.75 0.85 1498 1614

DWHC 1774 887 1663 139 6.74 0.85 1489 2160

a
The coefficient of friction is taken as 0.5 (see Eurocode 4 part 1 Sect. 6.7.4.2(4))

b
𝜏Rd including 𝛽 factor of Eurocode 4 for concrete cover greater than 40 mm; 𝛽 = 1.7

ever, no yielding stress of stirrups was detected from the tests resulting in the non-

negligible contribution of the steel profiles to shear resistance. Indeed, the proposed

design model predicts that about 47% of the total shear force VEd acts on the steel

profiles (the naVa,Ed∕VEd ratio varied from 0.468 to 0.482). In order to evaluate the

validity of the evaluation of the shear force in the steel profiles by the design model,

we consider the case of VEd = 600 kN which corresponds to a total applied load of

1200 kN. Shear force in the profiles is calculated from the measurements at rosettes.

As can be seen from Fig. 5, only the rosettes R2, R5 and R8 which are at a dis-

tance greater than the section height from the side forces can be considered as being

outside of the disturbance zone and is used for the comparison purposes. The design-

experimental comparison of the shear force in steel profiles is presented in Table 3. It

can be observed that the measured shear forces are not equal in the three embedded

profiles. There seem to be some regularity in the differences, with the lower profile

being more stressed. The shear force in steel profiles is calculated as the sum of the

individual shear force measured in each profile. The Vdesign
a,Ed ∕Vexp

a,Ed ratio varied from

0.922 to 1.027 with a mean value of 0.81 and a standard deviation of 0.054. This is

to say that the design predictions fits very well with the measured values. Further-

more, it is noted that the shear force in the lower steel profile Vrosette2
a,Ed is much lower

than the shear resistance of one steel profile Vpl,a,Rd = 1.333 × 462.62∕
√
3 = 1068

kN. Therefore, for the tested specimens the influence of the transverse shear on the

bending resistance can be neglected.

The prediction of the longitudinal shear stress at concrete-steel profile interface

is presented in Table 2. As can be seen, at the maximum applied load the predicted

shear stress gEd is greater than the design shear strength 𝜏Rd which is taken equal to

0.51 MPa according to Eurocode 4 part 1 Sect. 6.7.4.3(4). This points out that in all

specimen for design conditions the shear connectors are always requited to provide

at least a shear resistance equal to 0.51 MPa. This is correct since the observation

is that the specimens without shear connector (BW and BWHC) have significant

strength loss after reaching the maximum load and a less ductile behaviour than

specimens with connectors. Note that according to the design prediction the applied
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Table 3 Shear force in the steel profiles at applied load of 1200 kN

Specimen VRosette2
a

(KN)

VRosette5
a

(KN)

VRosette8
a R8

(KN)

Vexp
a,Ed (KN) Vdesign

a,Ed (KN)
Vdesign

a,Ed

Vexp
a,Ed

BW 175.50 40.87 74.24 290.61 289.47 0.996

BWHC 166.80 62.08 44.69 273.57 280.83 1.027

CW N/A N/A 45.53 N/A 280.21 N/A

CWHC 162.90 N/A 41.96 N/A 280.67 N/A

DW 181.20 37.01 84.92 303.13 279.34 0.922

DWHC 191.50 N/A 96.90 N/A 281.09 N/A

Note N/A stands for “not available” due to some deficient rosettes
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Fig. 8 Applied load versus slips in specimens without shear connector

load corresponding to a shear stress of 0.51 MPa is about 1100 kN. It indicates that

below this load level the bond and friction can ensure the full interaction between

steel profiles and concrete and the specimens without shear connector must have the

same global behaviour as the ones with connectors. This is indeed in good agreement

with what can be seen in Fig. 8.

6 Conclusions

In this paper, analytical and experimental aspects for hybrid steel-concrete walls with

several steel encased profiles have been described. Firstly, a design model for hybrid

walls subjected to combined compression, bending and shear has been proposed.

Particular attention has been paid to transverse shear resistance for which a strut-

and-tie model has been developed taking into account the contribution of the steel

profiles. Furthermore, the proposed design model provides a method to evaluate lon-

gitudinal shear the concrete-steel profile interface, which is necessary to design an

adequate shear connection of the profile to concrete. Secondly, an experimental study

on the behavior of hybrid walls subjected to combined shear and bending has been

presented. The hybrid walls consists of three steel profiles HEB100 totally encased

into reinforced concrete. Seven 2:3 scale specimens were tested at Structures Labo-
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ratory of INSA Rennes. Three point bending test configuration was adopted because

the mean objective is to evaluate the resistance to combined bending and shear of

the composite walls. The wall behavior was examined by considering the load ver-

sus stress response at various points in the longitudinal rebars, in the steel profiles,

in the stirrups and in the concrete. Based on the results described in this paper, the

following conclusions can be drawn:

∙ For six hybrid specimens, the load bearing capacity was very close. The load-

displacement experimental curves indicates that they had almost the same

behaviour until the applied reached about 70% of the load bearing capacity. The

specimens with shear connectors were more ductile in terms of displacement duc-

tility than the ones without connectors;

∙ The concrete confinement made by mean of stirrups in specimens BWHC, CWHC

and DWHC does not significantly increases the specimen’s load bearing capacity.

In other words, the concrete may be already well confined with the number of

stirrups placed in specimens BW, CW and DW;

∙ The proposed design model provides a fairly consistent and conservative bending

strength of the tested hybrid walls;

∙ The proposed design model provides a faire estimation of the part of applied shear

which is applied to the embedded steel profiles; this allows to take into account the

influence of transverse shear on the combined axial force and bending resistance.

∙ When used with design values of bond and friction shear strength of Eurocode 4,

the proposed design model gives a faire estimation of the longitudinal shear stress

at the concrete-steel profile interface.

Acknowledgements The authors gratefully acknowledge financial support by the European Com-

mission (Research Fund for Coal and Steel) through the project SMARTCOCO (SMART COmpos-

ite COmponents: concrete structures reinforced by steel profiles) under grant agreement RFSRCT-

2012-00031.

References

1. Eurocode 4. EN1994-1-1 Design of composite steel and concrete structures—Part 1: General

rules and rules for buildings

2. Echigo S, Tachibana Y, Kitajima A (1998) New type hybrid structure and practical analysis

method of creep and shrinkage. Constr Build Mater 12(2–3):93–103

3. Morino S (1998) Recent developments in hybrid structures in Japan-research, design and con-

struction. Eng Struct 20(4–6):336–346

4. Dan D, Fabian A, Stoian V (2011) Theoretical and experimental study on composite steel-

concrete shear walls with vertical steel encased profiles. J Constrl Steel Res 67(5):800–813

5. Eurocode 2. EN1992-1-1 Design of concrete structures—Part 1: General rules and rules for

buildings

6. American Concrete Institute (2005) Building code requirements for reinforced concrete. ACI-

318

7. American Institute for Steel Construction (2010) Specifications for structural steel buildings.

ANSI/AISC 360-05, AISC



Theorical and Experimental Studies on Hybrid Steel-RC Walls 259

8. Zhao Q, Astaneh-Asl A (2004) Cyclic behavior of traditional and innovative composite shear

walls. J Struct Eng 130(2):271–284

9. Saari WK, Hajjar JF, Schultz AE, Shield CK (2004) Behavior of shear studs in steel frames

with reinforced concrete infill walls. J Constr Steel Res 60(10):1453–1480

10. Zhou Y, Lu X, Dong Y (2010) Seismic behaviour of composite shear walls with multi-

embedded steel sections. Part I: Experiment. Struct Des Tall Spec Build 19(6):618–636

11. Rafiei S, Hossain KMA, Lachemi M, Behdinan K (2015) Profiled sandwich composite wall

with high performance concrete subjected to monotonic shear. J Constr Steel Res 107:124–

136

12. Hossain KMA, Rafiei S, Lachemi M, Behdinan K (2016) Structural performance of profiled

composite wall under in-plane cyclic loading. Eng Struct 110:88–104

13. Zhang X, Qin Y, Chen Z (2016) Experimental seismic behavior of innovative composite shear

walls. J Constr Steel Res 116:218–232

14. Plumier A, Dragan D, Nguyen Q-H, Dege H (2017) An analytical design method for steel-

concrete hybrid walls. Structures 9:185–199

15. Keo P, Somja H, Nguyen Q-H, Hjiaj M (2015) Simplified design method for slender hybrid

columns. J Constr Steel Res 110:101–120

16. Li B, Lam ES, Wu B, Wang Y (2013) Experimental investigation on reinforced concrete inte-

rior beam-column joints rehabilitated by ferrocement jackets. Eng Struct 56:897–909



Numerical Study on a New
Through-Column-Type Joint for RCS
Frame

D. D. Le, X. H. Nguyen and Q. H. Nguyen

Abstract Hybrid RCS frames consisting of reinforced concrete (RC) column and

steel (S) are used frequently in practice for mid- to high-rise buildings. RCS frames

possess several advantages from structural, economical, and constructional view

points compared to either traditional RC or steel frames. One of the key elements

in RCS frames is the beam–column joints. This paper deals with numerical study

on static response of a new reinforce concrete-steel (RCS) exterior beam–column

joint. The studied beam–column joint detail is a through-column type in which an H

steel profile totally embedded inside RC column is directly welded to the steel beam.

The H steel profile was covered by two supplementary plates in the joint area. This

detail provides two main advantages: The column is continuous, and no stirrups in

the joint area are needed. The nonlinear behavior of the new joint is studied numeri-

cally and showed that this proposed joint is suitable as a special moment connection.

In addition, the parametric studies are carried out to investigate the influences of the

stirrups, the encased profile length, and supplementary plate length on the behavior

of the joint.
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1 Introduction

Hybrid RCS frames consisting of reinforced concrete (RC) column and steel (S) are

used frequently in practice because of their advantages such as reduction in struc-

ture’s weight, covering large spans, increasing the lateral stiffness, convenience in

adoption of strong column- weak beam criterion in tall buildings, and enhanced duc-

tility and energy dissipation capacities [1]. One of the key elements in RCS frames

is the beam–column joints. The connections between the column and beam can be

divided into two types: continuous beam through (CBT) and continuous column

through (CCT). In CBT connections, the beam runs through the joints continuously

and the column envelopes the beams at the connection. On the contrary, with the

CCT connection, the column runs continuously through the joint. FBPs, cover plate,

or shear studs are placed in the joint area. The beams are connected directly to the

plates by penetration weld.

The CBT joints are primarily problematic due to possible congestion of vertical

rebars passing through the continuous beam and difficulties in pouring and com-

pacting concrete in such location, especially for the middle CBT connection [1].

Kanno and Deierlein (2000) [2] suggested different types of CBT such as face bear-

ing plate (FBP), extended face bearing plate (E-FBP), transverse beam, small col-

umn. Other types of through-column joints have also been suggested by Nishiyama

et al. (2004) [3]. In the suggested configurations, steel beams are split by the con-

tinuous RC column and connected directly to the cover plate or face bearing plates,

confined by horizontal stiffened, vertical stiffener, diagram. In 2013, a new through-

column-type joint for composite reinforced concrete and steel frames was proposed

by Mirghaderi and Eghbali (2013). In 2016, several new configurations for composite

steel–concrete connections were proposed for a continuous column and a steel beam

by Zibasokhan et al. (2016) [1]. The continuous column is confined by the cover

plates in all of column faces. The steel beam is connected directly to the column

by shear studs or the steel U-channels. Recently, European RCFS SMARTCOCO

(2017) [4] project investigated the design of the new type beam–column joint to

connect a steel beam and a reinforced concrete (RC) column. The steel profile is

totally embedded into a RC column which is used to connect the beam through the

steelwork part of composite section.

Despite the extensive research conducted on RCS connections, research methods

are mainly through experiments and analyses of RCS connections using finite ele-

ment method still remain in the beginning stage. Compared to the experiment, finite

element method is more effective from an economical viewpoint and can also gain

important data that could not be measured in experiment. [5] have presented the for-

mulation for a plasticity-based distributed beam–column element that can be used for

the seismic analysis of three-dimensional mixed frame structures comprised of steel,

reinforced concrete, and composite members. Cheng and Chen (2005) [6] have sim-

ulated the force-deformation behavior of RCS joint sub-assemblages by a nonlinear

analysis program, DRAIN-2DX, with consideration of composite effects of the beam

and slab as well as shear distortion in the panel zone. Noguchi and Uchida (2004)
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[7] utilized the nonlinear three-dimensional finite element method (FEM) to analyze

two frame specimens with reinforced concrete columns and steel beams, which had

different beam–column joint detailing. Li et al. (2012) [8] studied the influence of

different parameters on the behavior of composite frame structures by finite element

software ABAQUS.

A novel through-column-type joint, in which an H steel profile covered by two

supplementary plates totally embedded inside RC column is directly welded to

the steel beam (Fig. 1), is recently proposed within INSAR-UTC Nafosted project

(2016–2019) [9]. Compared to the RCS joint studied within European RCFS

SMARTCOCO (2017) [4], the main advantage of this joint is that the problematic

due to congestion of stirrups passing through the continuous beam can be avoided

because the stirrups at the joint region are omitted. Unfortunately, this kind of joint

detail is not covered yet by the existing design guidelines. Indeed, Eurocodes 2, 3,

and 4 give some provisions that can partly be used for the design of such a joint.

There remains however a real lack of knowledge relatively to the issue of the force

transmission from the embedded steel profile to the surrounding concrete of the col-

umn. Questions that can rise when designing such a connection are about the optimal

anchorage length to embed the H steel profile or the optimal length of the supple-

mentary plates. Therefore, experimental tests and numerical simulations need to be

conducted to answer to these questions. In this paper, the main objective is to develop

a reliable nonlinear three-dimensional finite element model to investigate the behav-

ior of the new RCS joint detail illustrated in Fig. 1. The finite element ABAQUS

software is employed. Extensive parametric studies are carried out to investigate the

influences of the stirrups, the encased profile length, and supplementary plate length

on the behavior of the joint.

Fig. 1 Novel through-column-type joint detail proposed within INSAR-UTC Nafosted project

(2016–2019) [9]
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2 Finite Element Model

Advances in computational features and software have brought the finite element

method within reach of both academic research and engineers in practice by means

of general-purpose nonlinear finite element analysis packages, with one of the most

used nowadays being [10] software. The program offers a wide range of options

regarding element types, material behavior, and numerical solution controls, as well

as graphical user interfaces, auto-meshers, and sophisticated post-processors and

graphics to speed the analyses. In this paper, this commercial software is employed to

develop reliable three-dimensional finite element model for the RCS joint specimen.

Due to the symmetry of the specimen geometry and loading, in order to save the

calculation time, only half of the specimen was modeled. A full view of specimen

is shown in Fig. 1 for reference. Five components of specimen (concrete column,

rebars, steel beam, embedded steel profile, and headed studs) are modeled sepa-

rately and assembled to make a complete specimen model. In addition, the inter-

action between components influences greatly the analysis results. Thus, the inter-

face and contact between the concrete in joint region and the structural steel, the

headed studs and concrete, the interaction of reinforcement and concrete need also

to be modeled. Furthermore, the choice of element types, mesh sizes, boundary con-

ditions, and load applications that provide accurate and reasonable results are also

important in simulating the behavior of the RCS joint. Displacements are assumed

to be small; therefore, the nonlinear geometric effect is not considered. However, the

material nonlinearity is included in the finite element analysis.

Selection of Element Type and Meshing

The concrete column, steel beam, and headed stud are modeled with solid C3D8R

element available in ABAQUS library. The C3D8R element is an 8-node linear brick

element with reduced integration stiffness and with hour-glass enhanced. Note that

compared to the quadratic brick C3D20R element (20-node element), the accuracy

of this element is slightly lower, but using this element leads to a significant reduc-

tion of degree of freedom therefore computational cost. Furthermore, according to

ABAQUS manual, this element is suitable for nonlinear analysis including contact,

large deformation, plasticity, and failure. The reinforcement bars can be modeled

using solid, beam, or truss elements. The use of solid elements is computationally

expensive and therefore not chosen. Because the reinforcing bars do not provide a

very high bending stiffness, the 2-node linear 3-D truss elements, namely T3D2, are

used.

Figure 2 shows the meshing of the FE model for the concrete column, rebars, steel

beam, embedded steel profile. In order to achieve the reliable results, the fine mesh

was used in the connection zone. Reasonable convergence was achieved with such

a mesh size, and refinement of the mesh was studied only up to the point where the

change in the mesh size did not have an impact on the results.
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Fig. 2 FE type and mesh of components of the exterior RSC joint specimen

Interaction Conditions Between Components

Contact interactions between components may significantly affect the complete spec-

imen behavior and need to be carefully conditioned. Improper definition of contact

interactions may introduce nonphysical into the simulation. In fact, the reinforcing

bars are fully anchored in concrete so that embedded constraint can be used for the

interaction between rebars and concrete surrounding. This constraint implies an infi-

nite bond strength at the interface between the concrete and the reinforcement. In

the present case, the truss elements representing the reinforcement are the embedded

region while the concrete slab is the host region. Surface-to-surface contact elements

(available in ABAQUS library) are used to model the interaction between concrete

column and steel profile. The interaction properties are defined by the behavior nor-

mal and tangential to the surfaces. For the normal behavior, surface “hard” contact

constraint is assumed. This type of normal behavior implies that no penetration is

allowed at each constraint location. For the tangential behavior, the penalty frictional

formulation is used, and the coefficient of friction between the steel profile and the

concrete column is assumed to be 0.5.

Loading and Boundary Conditions

One of the objectives of this numerical study is to estimate the strength of the test

specimens in the future experimental study. Therefore, the loading and boundary

conditions are taken as in the experimental test setup which is illustrated in Fig. 3.

The loading is applied continuously in the form of the displacement control manner.

The displacement of 75 mm is imposed on the whole cross section at the beam end

in horizontal direction.
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Fig. 3 Test setup

Material Modeling of Steel

The von Mises yield criterion with isotropic hardening rule is used for the structural

steel, reinforcing steel, and steel plate. An elastic-linear-work-hardening material,

available in ABAQUS material library, is considered with tangent-hardening modu-

lus being equal to 1/10000 of elastic modulus, in order to avoid numerical problems.

The yielding stress and elastic modulus are taken equal to 280 MPa and 210000 MPa

for structural steel, respectively, while 360 MPa and 200000 MPa for reinforcing steel

and headed stud.

Material Modeling of Concrete

The concrete damaged plasticity (CDP) model, developed by Lee and Fenves [11],

available in ABAQUS material library is used to model the concrete material. This

model consists of the combination of nonassociated multi-hardening plasticity and

scalar damaged elasticity to describe the irreversible damage that occurs during the

fracturing process. In the CDP model, five parameters control the evolution and the

shape of the yield surface and the flow potential. The first parameter is the dilation

angle which is measured at high confining pressure in the plan of hydrostatic pressure

stress p and Mises equivalent stress q. The second parameter is the eccentricity of the

plastic potential surface. The third parameter is the ratio of initial equibiaxial com-

pressive yield stress fb0 to initial compressive yield stress fc0. The next parameter

is named K which allows to determine the shape of loading surface in the devia-

toric plane. The last one is the viscosity parameter which allows to slightly exceed

the plastic potential surface area in certain sufficiently small problem steps to over-

come convergence problems. Therefore, a very small value (0.0001) is chosen for

simulation in this study.

For compressive behavior, the uniaxial stress–strain curve of [12] is selected

for the determination of yield stress and inelastic strain. The compressive stress is

assumed to increase linearly with respect to the total strain until the initial yield/

damage stress which is taken equal to 0.4fcm where fcm is the mean compressive cylin-

der strength. The initial Young’s modulus is calculated according to [12]. The Pois-

son’s ratio is taken as 0.2. Then, the compressive stress grows until failure strength
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Table 1 Material parameter of CDP model for concrete of fcm = 40 MPa

Density Parameters of CDP model

ρ (tonne/mm
3
) 2.4 × 10−9 Dilation angle 36◦

Elasticity Eccentricity 0.1

E (MPa) 33346 fb0/fc0 1.15

𝜈 0.2 K 0.6667

Viscosity

parameter

0.001

Compressive behavior Tensile behavior

Yield stress

(MPa)

Inelastic strain Damage Yield (MPa) Displacement

(mm)

Damage

16.00 0.00000 0.000 2.90 0.000 0.000

27.68 0.00017 0.039 1.94 0.066 0.381

35.73 0.00043 0.088 1.30 0.123 0.617

40.00 0.00100 0.181 0.87 0.173 0.763

39.19 0.00132 0.234 0.59 0.220 0.853

36.71 0.00170 0.298 0.39 0.265 0.909

32.52 0.00212 0.376 0.26 0.308 0.944

24.16 0.00278 0.516 0.18 0.351 0.965

fcm. The strain (𝜀c1) associated with fcm is equal to 0.0022, given by [12]. After

exceeding the compression strain 𝜀c1, localization of damage occurs and the com-

pressive stress decreases with the softening strain. For tensile behavior of concrete,

the effects of the reinforcement interaction with concrete is considered and the ten-

sion stiffening is specified by means of a post-failure stress–displacement relation-

ship. The damage parameters in compression as in tension are determined by assum-

ing that the split of inelastic strains into plastic and damaging parts by the scalar

parameter as proposed by [13]. The material properties assigned in CDP model are

summarized in Table 1.

3 Parametric Studies

Parameter Sets

In our parametric studies, the geometrical properties of the beam and the RC column

(as shown in Fig. 4) are unchanged. The parameter sets are the embedded H pro-

file, the thickness of supplementary plates, and the length of supplementary plates.

Table 2 summarizes the values of the parameter sets used in the parametric studies.
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Fig. 4 Description of the test specimen modeled by FE model

Influence of Length of Embedded H Profile

The influence of length of embedded H profile on the global behavior of the hybrid

joint is presented in Fig. 5 in terms of load-displacement curves. The length of

embedded H profile, namely Le, was taken from 40 to 330 cm. It can be observed

that, for L smaller than 80 cm, the stiffness and resistance of the joint increase with

increasing of Le. However, the load-displacement curves obtained with L ≥ 120 cm

remain almost unchanged. It can be pointed out from this numerical study that the

joint behavior is not affected by the length of embedded H profile when the latter

exceeds three times of the beam height. Further, experimental research needs to be

conducted to confirm this.

Influence of Thickness of Supplementary Plates

The main advantage of the proposed joint detail compared to the one proposed in

European RCFS SMARTCOCO (2017) [4] project is that the stirrups in the beam–

column connection region can be omitted because of the presence of supplemen-

tary plates. Therefore, in this parametric study the influence of the supplementary

plates on the behavior of the proposed joint is carried out. Figure 6 presents the load-

displacement curves obtained with different thickness of supplementary plates. Note
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Table 2 Parameter sets for parametric studies

Parameter sets

Name of Model

Length of 
embedded 
H profile
(LE) mm

Supplementary Plate (200xLPxt) Stirrups
in joint
region

Length
LP mm

With
200 mm

Thickness
t mm

L40 400 5ϕ10
L60 600 5ϕ10
L80 800 5ϕ10
L120 1200 5ϕ10
L160 1600 5ϕ10
L200 2000 5ϕ10
L300 3300 5ϕ10
L120P15x40 1200 400 200 15
L120P15x60 1200 600 200 15
L120P15x80 1200 800 200 15
L120P15x100 1200 1000 200 15
L120P15x120 1200 1200 200 15
L120P3x60 1200 600 200 3
L120P5x60 1200 600 200 5
L120P10x60 1200 600 200 10
L120P15x60 1200 600 200 15
L120P20x60 1200 600 200 20
L80P5x60 800 600 200 5
L80P10x60 800 600 200 10
L80P15x60 800 600 200 15
L80P20x60 800 600 200 20

that the length of embedded H profile is taken equal to 120 cm in order to avoid

the influence of length of the embedded H profile (see paragraph above). The black

line in Fig. 6 corresponds to the case with out supplementary plate but five stirrups

𝜙5 are present in the joint region. The other curves correspond to the cases where

the stirrups are removed and replaced by the plates of 60 cm length. It can be seen

from Fig. 6 that the supplementary plates can play the role of stirrups in the joint

region. Regarding the influence of the thickness of supplementary plates, more the

thickness increases more the stiffness and resistance of the joint increase. The load-

displacement curves remain almost unchanged when the thickness exceeds 15 mm.



270 D. D. Le et al.

Fig. 5 Influence of the

length of embedded H profile
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Influence of Length of the Supplementary Plates

The numerical results shown in Fig. 6 indicated that by adding the supplementary

plates, the stirrups in the joint region can be omitted. However, the curves in Fig. 6

correspond to the cases where the length of supplementary plates, namely Lp, is

equal to the height of the steel beam. Question can be raised is what is the influence

of length of supplementary plates on the global behavior of the joint. Therefore, five

values of the plate length are considered in this parametric study. Figure 7 presents

the load-displacement curves obtained with different lengths of the supplementary

plates. As can be seen, the load-displacement curves remain almost unchanged when

the length Lp is greater than the height of the steel beam. This is to say that the

supplementary plates are needed only in the beam–column connection area.
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Fig. 7 Influence of the

length of supplementary

plates

0 10 20 30 40 50 60 70 80 90 100
0

50
100

150
200
250

300
350

400
450
500

Displacement [mm]

Ap
pl

ie
d 

lo
ad

 [k
N

]

L120P15x40
L120P15x60
L120P15x80
L120P15x100
L120P15x120

4 Conclusion

In this paper, a numerical analysis of the behavior of a novel type of exterior RCS

joint subjected to static loading has been presented. The considered exterior RCS

connection consists of an H steel profile covered by two supplementary plates totally

embedded inside RC column directly welded to the steel beam. This type of beam-

to-column joint has been recently proposed within INSAR-UTC Nafosted project

(2016–2019) [9] because it seems to present some advantages compared to the exist-

ing RCS joint in terms of resistance and construction methods. A 3-D finite element

model has been created using ABAQUS software. This model takes into account

the material nonlinearities, interaction, and the contact between steel and concrete.

Extensive parametric studies have been carried out to investigate the influences of the

stirrups, the encased profile length, and the supplementary plate length on the behav-

ior of the joint. The numerical results indicated that the effect of length of embedded

H profile on the joint behavior is no longer significant when it exceeds about three

times of the steel beam height. This is to say that the optimal anchorage length to

embed the H steel profile is Le = 3Hbeam. It has been observed that that the presence

of the supplementary plates in the joint region can allow to remove the stirrups in

this region. Furthermore, parametric study performed with different lengths of the

supplementary plates pointed out that the supplementary plates are needed only in

the beam–column connection area. However, future experimental research needs to

be conducted to confirm this.
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Flexural Behavior of Unbonded
Post-Tensioned Concrete T-Beams
Externally Bonded With CFRP Sheets
Under Static Loading

Q. P. T. Truong, P. Phan-Vu, D. Tran-Thanh, T. D. Dang
and L. Nguyen-Minh

Abstract This paper presents a study on flexural behavior of unbonded
post-tensioned concrete T-beams (UPC) externally strengthened by CFRP sheets
under static loading with or without the presence of U-strip CFRP anchorage
systems. A total of nine UPC T-beams in large size including one control
unstrengthened beam and eight beams externally strengthened with varied number
of CFRP sheets (2, 4, and 6 plies) were tested. Two types of transverse CFRP
U-strip anchorage system were also retrofitted in the shear span. The results showed
that CFRP sheets significantly increased the flexural capacity (up to 37%),
decreased deflection in serviceability state, improved ductility, and reduced crack
width (up to 48%) of the tested beams. The maximum strain in CFRP sheets in
strengthened UPC T-beams ranged from 38.7 to 69.3% of the rupture strain of the
CFRP sheets and tended to decrease with a large number of CFRP sheets. Strain in
tendons of strengthened beams was significantly affected by the CFRP sheets and
transverse U-strip anchorage system.

Keywords CFRP sheet ⋅ Flexural strengthening ⋅ Number of CFRP
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List of Symbols

AN1 U-strip anchorage system with one 300-mm-wide strip and three
100-mm-wide strips installed within the distance of L/4 = 1350 mm
from each end of CFRP sheet

AN2 U-strip anchorage system with six 100-mm-wide strips evenly spaced
within the distance of L/4 = 1350 mm from each end of CFRP sheet

an number of CFRP U-strip 100-mm-wide anchorage
acr,exp crack width of tested beam, mm
acr,u,CFRP maximum crack width of FRP-strengthened beam, mm
acr,u,0 maximum crack width of the control beam, mm
tf thickness of one ply of the CFRP sheet, mm
acr,CFRP crack width of FRP-strengthened beam, mm
af width of the CFRP reinforcing plies, mm
n number of plies of CFRP sheet
sf spacing of CFRP U-strip, mm
wf width of CFRP U-strip anchors, mm
Pcr,exp cracking load of test beam, kN
Pexp test load, kN
Pu,0,exp ultimate load of the control beam, kN
Pu,exp ultimate load of test beam, kN
δu,exp maximum displacement at midspan of test beam, mm
δexp,mid displacement at midspan of test beam, mm
εten,u,mid maximum tensile strain in unbonded tendon at midspan, ‰
δu,0 maximum displacement at midspan of the control beam, mm
εcu maximum concrete strain, ‰
εCFRP tensile strain in CFRP sheets, ‰
εsu maximum tensile strain in non-prestressed reinforcement at the ultimate

load, ‰
εfu,end maximum tensile strain in CFRP sheets at the ends of the bond length,

‰

εfu,L/3 maximum tensile strain in CFRP sheets of test beam at the loading
locations, ‰

εfu,mid maximum tensile strain in CFRP sheets of test beam at midspan, ‰

1 Introduction

Recently, most of the studies relating to the repair and retrofit of prestressed members
using CFRP materials have mainly focused on pretensioned concrete (PC) beams,
particularly on degraded or damaged PC beams due to overloading or impact of
overheight vehicles or construction equipment [1–6]. All experimental results have
pointed out that using ofCFRP strengthening systems helped increase the stiffness and
flexural capacity of specimens, reduce crack spacing and crack width, as well as delay
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the debonding of FRP sheets and consequently improved the ductility of strengthened
beams.Although pretensionedmembers have constituted a fair proportion of structure
members, there have been very few researches about FRP-strengthening on such type
of members, especially on unbonded post-tensioned ones (UPC) [7–10]. This lack of
experimental results has deemed as a main reason why existing guidelines for the
design and construction of CFRP systems have not yet proposed any terms for this
case of UPC beams. Differing from bonded ones, the behavior of unbonded tendons is
really complicated due to not working together with surrounding concrete and CFRP
reinforcing plies. As a result, the interaction between unbonded strands and the
surrounding concrete as well as FRP sheets in UPC beams becomes weaker as
compared to that in bonded PC beams in which FRP sheets, tendons and nearby
concrete maintain the integrity and thus the strain compatibility condition in these
components is satisfied. This difference might result in the decrease in the flexural
FRP-strengthening effectiveness in the case of UPC beams. It is, therefore, crucial to
thoroughly understand the tendon’s behavior and its interaction with CFRP rein-
forcement in order to support the evaluation and calculation of the efficiency of
FRP-strengthening more complete and reliable under the existing guidelines [11–13]
in the absence of design instruction of CFRP materials for UPC beams.

This paper deals with flexural behavior of UPC T-beams externally strengthened
by CFRP sheets with or without the usage of U-wrap CFRP anchorage systems.
The experimental program was conducted on nine post-tensioned concrete T-beams
in large size encompassing one control beam and eight beams strengthened with 0,
2, 4, and 6 CFRP plies, respectively. All specimens were monotonically tested
under four-point loading. Main purposes of this study are: (1) assess flexural
capacity of CFRP-strengthened UPC T-beams with or without CFRP anchorage
systems under static loading; (2) evaluate interaction between unbonded tendons
and CFRP sheets as well as the influence of the CFRP sheets upon strain in tendons.

2 Experimental Program

2.1 Material Properties

The concrete for casting specimens was produced with graded aggregates as fol-
lows: cement PC40 (410 kg/m3); crushing stone 1 × 2 (22 mm, 1028 kg/m3);
river sand (0 ÷ 4 mm, 550 kg/m3); crushed sand (0 ÷ 2 mm, 247 kg/m3); and
plasticizing admixture (5.5 l/m3). The average 28-day cube compressive strength is
determined by the compression test on six cubes of size 150 × 150 × 150 mm,
fc,cube = 47.2 MPa and the splitting tensile strength of concrete fsp,cube = 5.8 MPa.
The concrete slump approximates 12 ± 2 cm. Each beam was prestressed with
seven-wire unbonded strands of which the nominal diameter = 12.7 mm, the
nominal yield strength fpy and nominal ultimate strength fpu were 1675 MPa,
1860 MPa, respectively. Modulus of elasticity of strand is Ep = 195 GPa. The
average yield strength and ultimate tensile strength of non-prestressed
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reinforcement and stirrup were determined by tensile testing on three reinforcing
steel specimens as follows: fy = 430 MPa and fu = 600 MPa; fyw = 342 MPa and
fuw = 463 MPa. Modulus of elasticity of reinforcement is Es = 200 GPa. Hand
layup was used as the method of constructing CFRP composite system. The
mechanical properties of the carbon fiber fabric were given as follows: thickness
tf = 0.166 mm; ultimate tensile strength ffu = 4900 MPa; tensile modulus Ef =
240 GPa; rupture strain εfu = 2.1%. The resin has the ultimate tensile strength fepoxy,
u = 60 MPa and tensile modulus = 3000–3500 MPa.

2.2 Test Beams

The experimental program was carried out on nine UPC T-beams, including one
unstrengthened control beams (M0) and eight beams externally bonded with dif-
ferent layers of CFRP sheets (2, 4, and 6 layers). The dimensions of the test beams
were illustrated in Fig. 1 with 360 mm depth, 200 mm flange width, 6000 mm
length, and 5600 mm span length. The specimen size was selected as one-half scale
of the actual size of reinforced concrete bridges in Dong Thap, Viet Nam. Speci-
fications of the cross section are designed in accordance with ACI 318-14 for Class
U-uncracked members. All beams were prestressed with two unbonded
low-relaxation seven-wire 12.7 mm diameter draped strands. Non-prestressed
reinforcement is provided by two 12 mm diameter mild steel bars at the tension
fibers of the beam web and four 10 mm diameter bars at the compression zone of
the flange. The stirrups with diameter of 6 mm were set with a spacing of 175 mm
along the span and a spacing of 50 mm at beam ends. The specimen geometry was
illustrated in Fig. 1 and summarized in Table 1.

The bottom concrete surface of the strengthened beams was applied the unidi-
rectional CFRP sheets, of which fibers were parallel to the beam longitudinal axis.
Among these strengthened beams, five beams were retrofitted with two types of
CFRP U-strip anchorage system for debonding mitigation. Details of the CFRP
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Fig. 1 Details of internal reinforcement with the arrangement of strain gauges (dimensions in
mm)
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strengthening configuration and two types of U-strip anchorage system were shown
in Fig. 3 and summarized in Table 1.

2.3 Test Setup and Instrumentation

The specimens were tested in a four-point flexural loading configuration (Fig. 2).
The load provided by one hydraulic jack was transferred to the beam specimen as
two-point loads via a distribution steel girder. The distance between the loading
points and the nearest support approximates one-third of span L/3 = 1870 mm.

Four strain gauges (SGs) were installed on the bottom surface of strengthened
beams along the CFRP bonding length to record strain of CFRP sheet at four
positions: one at the midspan, two at loading points, and one at a distance of 650 m
from the support. The strain of prestressing strands was determined by four SGs:
one at the distance of 150 m from the anchor head; one at the midspan; and two at
the draped positions of the strand profile. One strain gauge was installed on the
longitudinal reinforcement at midspan to measure their strain. Another four SGs
were bonded on the concrete surface along the beam height at midspan to record the
concrete strain. Beam deflection was measured by five linear variable differential
transformer (LVDT) located at different positions: one at the midspan, two at the
loading points, and the remaining two at the support locations. The specimens were
subjected to static loading. The beams were initially loaded with an incremental
load of 15 kN prior to the predicted cracking load. After first crack appeared, the
specimens were loaded up to failure with an incremental load of 30 kN. Each
incremental loading was maintained for approximately 3 min to record displace-
ment, deformation, crack width, fracture formation, and development. All dis-
placement and deformation measurements are automatically recorded via a data

Fig. 2 Test beam in
laboratory
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acquisition system with multiple channels. The arrangement of measuring devices
is shown in Fig. 3.

3 Experimental Results

3.1 Failure Mode

The experimental results of all beams are summarized in Table 2. The flexural
failure of the control unstrengthened beam occurred along with crushing of com-
pression concrete. In eight strengthened beams, flexural failure was accompanied by
cover delamination and debonding of CFRP sheets without damage of compression
concrete (Fig. 5). Concrete flexural cracks began to form within the flexural span at
a load level of approximately 35% of the failure load Pu,exp, originated at the
tension zone perpendicular to the beam longitudinal axis then propagated upward to
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Flexural Behavior of Unbonded Post-Tensioned … 279



the compression flange. At the subsequent load levels, together with the growth of
existing cracks, new cracks appeared and propagated progressively toward the two
supports. At the load level of approximately 70% of the failure load Pu,exp, some
inclined cracks started to be visible in the shear span. At the load level of
approximately 90% Pu,exp, cover delamination initiated within the constant
moment region then debonding at curtailment of externally bonded CFRP rein-
forcement accompanying with rupture of the U-strip anchorage occurred at failure
(Fig. 4).

At failure of non-anchorage strengthened beams, cover delamination occurred at
the loading region whereas debonding of the CFRP reinforcing sheet initiated at the
loading region then propagated toward the other side support. At failure of U-strip
anchorage beams, debonding and delamination occurred at the non-anchorage
region, and the rupture of U-shaped anchorage strips along with debonding of
CFRP sheet may happen at one side of the beam (Fig. 5). This clearly shows the
considerable effect of the U-strip anchorage system on debonding of the externally
bonded CFRP sheet. Overall, the U-strip anchorage system most likely delayed the
debonding failure thereby improved the flexural strength and deformation capacity
of strengthened beams [2, 5]. Cracking in U-strip anchorage beams was delayed
with their smaller crack width as compared to that of non-anchorage strengthened

Table 2 Summary of test results

Specimen Pcr,exp Pu,exp δu,mid cu fu,end fu,L/3 fu,mid ten,u,mid su GF

kN kN mm ‰ ‰ ‰ ‰ ‰ ‰ N/mm

M0 50 145 75.12 3.50 – – – 8.94 33.53 150

M2CB 50 156 81.68 1.91 0.21 12.39 5.93 8.95 11.60 185

M4CB 50 165 90.20 2.18 0.26 11.39 11.53 9.35 29.15 219

M6CB 68 190 105.11 2.65 0.33 8.13 5.78 9.87 32.09 291

M2CB-AN1 60 176 100.02 2.57 0.13 14.56 10.98 10.31 27.40 246

M4CB-AN1 60 189 115.79 2.79 2.78 12.98 11.51 11.03 20.83 314

M6CB-AN1 69 199 124.01 2.95 0.39 9.56 7.64 11.51 19.44 366

M2CB-AN2 60 169 90.00 2.37 0.43 13.93 11.53 10.13 27.64 211

M4CB-AN2 60 189 115.00 2.51 1.77 11.54 13.25 10.85 – 315

Fig. 4 Cover delamination at the constant moment region of strengthened beams
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beams. The failure crack width of the strengthened beams was 1.3–3.5 times less
than that of the control beam.

Based on the empirical observations presented above, it can be seen that the
failure mechanism of CFRP-strengthened UPC beams with and without CFRP
U-strip anchorage systems under flexural loading is quite complicated. Multiple
failure modes may occur at the same time in the beam, where two main mechanisms
are delamination and debonding. In this study, cover delamination almost exclu-
sively occurred in the flexural span, or within the constant moment region, while the
CFRP debonding appeared in the shear span, or in the region from one loading
point to the nearest support. In the flexural span, the very high tensile stresses cause
the early flexural cracks and gradually reduce the adhesion of the longitudinal steel
reinforcement to the concrete cover. At a sufficiently large loading, the width of
these cracks rises rapidly, causing the relative slipping between the longitudinal
reinforcement and the concrete cover, resulting in splitting cracks and propagating
along the longitudinal reinforcement axis on the concrete surface within the flexural
span. At the loading close to the failure load level, the splitting cracks were large
enough to connect to each other, result in the separation of the bottom cover
concrete from the rest of the beam section, hence leading to delamination. Besides,
in the shear span, the tensile stress in the tensile region of beam was slight, the crack

M0 

M2CB

M4CB

M6CB

M2CB-AN1

M4CB-AN1

M6CB-AN1

M2CB-AN2

M4CB-AN2

Fig. 5 Crack patterns of test beams
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width of this region was smaller, the decrease rate in the adhesion strength of steel
reinforcement with the surrounding concrete was slower, and the slipping of steel
reinforcement was less than that in the flexural span. At a sufficiently large loading,
the tensile stress in the shear span, which may have exceeded the adhesion between
the resin and the concrete substrate, was not large enough to cause the significant
slipping of the steel reinforcement, hence the thin mortar-rich layer was damaged,
causing the debonding of the CFRP sheet in the shear span prior to crack occur-
rence. These findings may provide valuable database for future study on
FRP-strengthened UPC beams in the field of numerical simulation.

3.2 Flexural Behavior of Specimens

From the commencement of loading up to approximately 35% of the failure load of
the control beam (M0), the load-deflection curves of all specimens initially
exhibited linear relationship without significant difference in flexural behavior
(Fig. 6). It can be seen that the initial visible cracks occurred in the tension zone of
9 specimens at the load level from 35 to 38% of the failure load of the control beam.
As previously known, in the RC or PC beams prior to the occurrence of crack
formation, reinforcing steel and prestressing tendons slightly contribute to carrying
load and their deformation was very small, therefore, the increase or decrease in
their reinforcement ratio as well as in CFRP external reinforcement ratio has no
significant effect on flexural behavior. However, from the load level of 35% of the
control beam’s failure load up to the rupture load of strengthened beams, the
occurrence and expansion of the flexural cracks weakened the beam stiffness, and
the beam displacement began to increase rapidly with continued loading. In this
stage, CFRP reinforcing sheet reduced the beams’ displacements by limiting the
expansion of the flexural cracks, thereby resulting in the displacements of
strengthened beams smaller than that of the control beam at a same load level.

Fig. 6 Relative load and
midspan-displacement
relationship of test beams
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Furthermore, the deformation capacity (the experimental ultimate deflection) of
non-anchorage strengthened beams and that of U-strip anchorage beams increased
from 9% to 54%, from 20% to 65%, respectively, compared to that of the control
beam. This result shows that the increase in the number of CFRP externally rein-
forcing layers has significantly improved the ductility of the beams, and the
deformation capacity of U-strip anchorage beams was better than that of
non-anchorage strengthened beams with the same CFRP flexural reinforcement
ratio (Fig. 7a).

The CFRP external reinforcing sheet significantly enhanced the flexural capacity
of the beams. The increase in the experimental ultimate flexural resistance of
strengthened beams, ranging from 8 to 31% for non-anchorage strengthened beams
and from 17 to 37% for U-strip anchorage beams, was in line with the increase in
the number of CFRP reinforcing plies (Fig. 7b). For this reason, the two types of
anchorage system AN1 and AN2 considerably contributed to the flexural
strengthening effectiveness of the CFRP external reinforcing sheet. However, there
are no significant differences in flexural strength between the beams retrofitted with
these two types of anchorage system.

3.3 Cracking Behavior and Fracture Energy of Test Beams

The CFRP external reinforcing sheet exhibited its effectiveness in crack control and
crack width reduction (Fig. 8). The fracture behaviors of strengthened beams were
similar but the cracking growth rate in non-anchorage strengthened beams was
higher than that in U-strip anchorage beams. Flexural cracks in strengthened beams
occurred later than that in the control beam. The cracking load Pcr,exp of the
strengthened beams was from 20 to 38% higher than that of the control beam
(Table 2). At the failure load of the control beam Pu,0,exp, the crack width of the
strengthened beams was 2.5–3.5 times smaller than that of the control beam. Fig-
ure 9a shows that the crack width in strengthened beams decreased with the
increase in the number of CFRP reinforcing layers. The reason is that the CFRP

Fig. 7 a Increase in ultimate midspan displacement. b Increase in ultimate flexural resistance
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axial rigidity (EfAf) was improved as the number of CFRP reinforcing plies
increased (Ef and Af are the elastic modulus and the area of CFRP external rein-
forcement, respectively), resulting in the tensile stress reduction in CFRP sheet and
the decline of crack width. For that reason, at the failure load of each beam, the
maximum crack width in strengthened beams was 1.3–3.5 times smaller than that of
the control beam (Fig. 9b). The crack width reduction in U-strip anchorage beams
is considerably greater than that in non-anchorage strengthened beams.

Together with the empirical method of analyzing structural behavior, numerical
analysis method, such as FEM, is commonly used thanks to its advantages in cost
and time savings, flexibility and multivariable analysis capabilities. In comparison
with steel structures, cracking analysis is really complicated in the case of concrete
or RC structures. Comprehensive understanding of the behavior of concrete
structures before and after the occurrence of cracks is extremely significant in
prediction of load-bearing capacity, deformation, and, most importantly, lifetime of
structures. Some recent researches, such as Rabczuk et al. (2005, 2008, 2010)
[14–16] and Rabczuk and Belytschko (2004, 2006, 2007) [17–19], have proposed
several analytical methods and models for crack simulation in RC structures and the

a
cr,lim

=0.4 mm

Fig. 8 Relative load and
crack width relationship of
test beams

Fig. 9 Crack width reduction versus axial stiffness of CFRP sheets: a at the failure load of the
control beam—Pu,0,exp; b at the failure load of the strengthened beams—Pu,exp
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results are very promising. In most of recent methods and models of crack analysis,
the fracture energy, GF, is considered as an important material parameter. In order
to provide the basis parameter for the next potential study relating to the numerical
analysis of the flexural behavior of CFRP-strengthened UPC beams, in this
research, the parameter GF was determined according to the guidelines of RILEM
(1985) [20]. GF is the ratio of the area under load–displacement curve to the
corresponding cross section area. The results presented in Table 2 indicated that the
fracture energy of the control beam was about 150 N/mm, however, in the case of
strengthened beams, CFRP sheets considerably increased the fracture energy
of these beams. As compared to the control beam, the fracture energy of
CFRP-strengthened beams without U-wraps increased by 1.23, 1.46, and 1.94
times, corresponding to 2, 4, and 6 FRP layers strengthening. When it comes to
strengthened beams with U-wraps, there were increases of 1.64, 2.09, and 2.44
times in fracture energy for AN1 anchorage beams retrofitted with 2, 4, and 6 FRP
layers, respectively, and of 1.41 and 2.1 times for AN2 anchorage beams retrofitted
with 2 and 4 FRP layers, respectively.

3.4 Strain in CFRP External Reinforcing Sheet

The relation between load levels and strain in CFRP sheets of test beams is shown in
Fig. 10. From the first load level up to the load level of 40% of the failure load of the
control beam—Pu,0,exp, the deformations of CFRP reinforcing sheet were inconsid-
erable and hardly dependent on CFRP external reinforcement ratio or anchorage
types. When the loading level reached approximately 40% Pu,0,exp, the CFRP sheet
with its remarkably increasing deformation began to considerably contribute to the
beam flexural behavior. During this stage, the CFRP sheets of the non-anchorage
strengthened beams have deformed more than that of the U-strip anchorage beams.
The strain in the CFRP sheets at the loading locations tended to be greater than that at
midspan. Non-anchorage strengthened beams retrofitted with 2, 4, and 6 CFRP
reinforcing plies exhibited the maximum strain in CFRP sheets of 12.39‰, 11.53‰,

Fig. 10 Relative load and strain in CFRP sheets: a at midspan; b at loading points
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and 8.13‰, respectively. Similarly, for the U-strip anchorage strengthened beams,
CFRP strain was ranged from 9.56‰ (for beams bonded with 6 CFRP reinforcing
layers) to 14.56‰ (for beams bonded with 2 CFRP reinforcing layers), thereby it can
be seen that the maximum strain in CFRP sheet tended to decrease with the increase in
the number of CFRP sheets. It can be explained that debonding of CFRP sheets tended
to occur quickly as the increase in the number of CFRP reinforcing layers reduced the
force transmission from the concrete substrate to the CFRP reinforcing sheet (this is
evident at the slope reduction exhibited in the curves of load—strain in CFRP sheets).
The U-strip anchorage systems improved the ductility of strengthened beams,
therefore, the CFRP sheets of U-strip anchorage strengthened beams have attained its
higher deformation as well as withstanding greater load than that of non-anchorage
beams; however, debonding of CFRP sheets was not mitigated in the beams exter-
nally bonded with multiple layers of CFRP sheets. The deformation of CFRP rein-
forcing sheet distributed along the bond length is shown in Fig. 11. These CFRP
deformation charts of tested beams, except for that of the beam M4CB-AN2, repre-
sent an unequal distribution along the CFRP sheet length with high density at mid-
span, greatest strain at the loading points and deformation decreasing toward the
support locations. By observing the failuremodes of the beams presented above, it can
be seen that this uneven distribution of CFRP sheet deformation was governed by the
cover delamination or debonding of external reinforcement. The regions in CFRP
sheets significantly affected by debonding or delamination exhibited large deforma-
tion. It should be noted that the deformation of CFRP sheets at the loading points was
up to 52.5% greater than that at midspan. This phenomenon can be explained by the
local effect in the material behavior. In addition, the strain distribution in CFRP sheets
of non-anchorage beams inconsiderably differed from that of U-strip anchorage
beams.

Fig. 11 Typical strain distribution of CFRP sheets along the bond length

286 Q. P. T. Truong et al.



3.5 Strain in Tendons

The relation between load and deformation of the tendon at midspan is shown in
Fig. 12. Prior to the occurrence of cracks, strain in unbonded tendons Δεps,exp was
inconsiderable. After visible cracking appeared, the tendon deformation increased
rapidly, and strain in prestressing tendon of strengthened beams tended to be smaller
than that of the control beam at the same load level (Fig. 12). Under the load level
Pcr,lim,0 at which the control beam reached the limited crack width of acr,lim = 0.4
mm (P

cr,lim,0
is equivalent to 77% Pu,exp,0), the increment in the maximum tendon

strain of the control beams was 1.51‰ while that of the strengthened beams M2CB,
M4CB and M6CB attained 1.43‰, 1.29‰, and 1.24‰, respectively. It can be seen
that the strain increment in unbonded prestressing tendons at Pcr,lim,0 tended to
decline with the large number of CFRP sheets, and the load level at which
strengthened beams reached the allowable crack width acr,lim (from 0.9 to 0.97 times
of Pu,exp,0) was considerably greater than Pcr,lim,0.

The deformation reduction in prestressing tendon was more apparent at the load
level equivalent to the failure load of the control beam. At the failure load level of
the control beam, with the increase in the number of CFRP reinforcing plies
(ranging from 2 to 6 layers), the reduction in tendon strain in non-anchorage
strengthened beams, AN1 anchorage beams, AN2 anchorage beam was ranged
from 23 to 50%, from 35 to 49%, and from 29 to 46%, respectively. However, at the
failure load of strengthened beams, the CFRP reinforcing sheet increased the
deformability of the tendon from 4.6 to 10.4% (in non-anchorage beams), from 15.3
to 28.7% (in AN1 anchorage beams), and from 15.2 to 21.4% (in AN2 anchorage
beams). For that reason, it can be seen that the CFRP reinforcing sheet and
transverse U-strip anchorage had a significant effect on the performance of tendon.
The U-strip anchorage systems were sufficient to regulate the deformation of CFRP
external reinforcement and prestressing tendons in tested beams. In addition, the
maximum strain of prestressing tendons exceeded the yielding strain value
(= 8.6‰).

Fig. 12 Relative load and
strain in tendons at midspan
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4 Conclusions

Based on the findings obtained from this study, the following conclusions can be
drawn:

1. The CFRP sheets have shown some of the following benefits for the unbonded
post-tensioned concrete beams:

• The CFRP sheets enhance considerably the flexural resistance of tested
beams (up to 31% for non-anchorage strengthened beams and 37% for
U-strip anchorage beams);

• The CFRP sheets showed its efficiency in reducing beam deflection (up to
30% for non-anchorage strengthened beams and 29% U-strip anchorage
beams) and strongly improved the beam ductility and deformability (up to
54% for non-anchorage strengthened beams and 65% for U-strip anchorage
beams);

• Crack width was significantly reduced (up to 48%);
• Maximum strain in tendon increased (10.4% for non-anchorage strengthened

beams and 28.7% for U-strip anchorage beams). In other words, the CFRP
sheets improved the performance of the tendons.

2. With the usage of CFRP U-strip anchorage system, the strain of CFRP sheets
was significantly increased (approx. 18%); however, there were slight differ-
ences in flexural resistance between the beams retrofitted with these two types of
U-strip anchorage system.

3. The maximum strain in CFRP sheets of non-anchorage strengthened beams
ranged from 8.13 to 12.4‰ (equivalent of 39 to 59% of the CFRP sheet’s
rupture strain), from 9.56 to 14.56‰ for that of U-strip anchorage beams
(equivalent of 46 to 69% of the CFRP sheet’s rupture strain). The maximum
strain in CFRP sheets tended to decrease with the increase in the number of
CFRP sheets.
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Numerical Analysis of the Behaviors
of End-Plate Beam-to-Column Steel
Joints Subjected to Cyclic Loading

A. T. Le and H. Pham

Abstract This chapter presents the implementation of the modified Richard-
Abbott model for the response of the extended end-plate composite joints subjected
to cyclic loading. The combination of finite element models simulated in ABAQUS
and the Richard-Abbott mathematical expression is the method to construct the
hysteretic moment–rotation curves of the joint. The joint’s parameters are found
based upon the comparison between the analysis and the experimental results. After
that, the behavior of the joint is analyzed subjected to various cyclical loads. The
dissipated energy of the joint within a load cycle is estimated and discussed.
Relationship between dissipated energy and stiffness degradation of a joint is found
as the joint subjected to the arbitrary cyclic loading.

Keywords Dissipated energy ⋅ The steel–concrete composite joints
The hysteretic moment–rotation curve ⋅ Partial-strength composite joint
The rigidity degradation of the joint

1 Introduction

The behavior of a composite structure of steel and concrete under seismic load
depends on the composite behavior of connection joints. The behavior of con-
nections greatly influences the horizontal deformation of a frame structure [1]. For
example, if the joint’s stiffness reduces 50–60%, the frame stiffness will reduce
20–30%. Some researcher approved that the composite joints are represented by
mechanical characteristic as strength, ductility, and energy dissipation. A cyclic
loading will lead to the possibility of continuous reduce in strength and stiffness of
the connection until it is destroyed.
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Behavior predictions of a composite connection joint under cyclic loads are very
difficult. It is combined of many members with difference material behaviors. They
include plasticity behavior of materials, nonlinear deformation, nonlinear loading,
cracking of concrete, slip, and other nonlinear parameters. In addition, it is difficult
to determine the behavior of the connection due to the presence of pinching under
cyclic loading.

In the past, two mathematical models were proposed to determine the behavior
of the joint. The expression of Ramberg–Osgood (1943) [2] described the defor-
mation or displacement as a nonlinear function of stress or force. Popov and Pinkey
(1968) [3] applied the Ramberg–Osgood model for a symmetry welded
steel–concrete composite joints. After that, Popov and Bertero (1973) [4] used the
Ramberg–Osgood model for end-plate steel–concrete composite joints. On the
other hand, the mathematical expression proposed by Richard-Abbott (1975) [5, 6]
described the force or stress as a nonlinear function of deformation or displacement.
In 1984, the expression of Richard-Abbott was first applied by De Martino to
determine the behavior of the joint. However, the model did not simulate the
pinching coefficient. In 2000, Della Corte proposed a new model based on the
expression of Richard-Abbott with some improvement of the limit of this expres-
sion, simulate the pinching effect. The model can simulate more accurately the
hysteretic moment–rotation curve of a joint.

Moreover, previous researches concentrated to the joint behavior subjected to
several certain cyclic loads. They concentrated on matching the modeled moment–
rotation curves to their experiment results. Besides, they did compare the dissipated
energy of joints between experiment results and those from mathematical models.
However, seismic load is commonly complex, and they might be composed of
various load patterns. The behavior of a certain joint should be considered subjected
to the arbitrary load patterns. For exploring behavior of a composite joint subjected
to the more complex load patterns, this chapter focuses on determining the
mechanical characteristics of an extended end-plate composite joint. The considered
characteristics are hysteretic moment–rotation curves, stiffness, and energy dissi-
pation capacity.

The chapter simulated the steel–concrete composite joints in ABAQUS envi-
ronment subjected to different loads proposed by European Convention for Con-
structional Steel work (ECCS). The Richard-Abbott models with parameters
determined from experiment results are utilized for the study.

2 Characteristic Behaviors of a Joint

In case of joint subjected to static load, the main properties required for the analysis
behaviors of a joint are the moment resistance Mj,Rd, the rotation stiffness Sj, ini, and
the rotation capacity ϕcd. The joint’s behavior is assumed fully rigid under torsion
or shear forces, and it is semi-rigid subjected to bend or axial forces.
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Figure 1 shows a steel joint subjected to monotonic loading. As small load, the
internal moment and rotation are increased linearly. The relationship is a linear line
presented in Fig. 1b. Rotation stiffness Sj, ini could be determined as in Fig. 1b. As
load keeps increasing, the moment–rotation relationship becomes a curve. There are
some components of the joint started yield. After that, the component stiffness is
reduced continuously until the joint failures. Moment–rotation relationship
becomes a horizontal line.

Difference between the behavior of the joint subjected to static load, the joint
subjected to cyclic load has the relationship between strength and deformation
presented as the hysteretic moment–rotation curve. Figure 2 shows the hysteretic
moment–rotation curve of a joint under cyclical loading. In the experiments, the
acting on a joint often is the displacement control instead of the force control. The
acting on a joint with the displacement control is called as load. As the joints
reaching the hardening state, the hysteretic curve does not get the same as the
original curve as the load is changed from push to pull, Fig. 2a. After a cycle of
push and pull acting on the joint, there are nearly closed curves of moment–rotation
relationship, called as hysteretic curves. On the hysteretic curve, there are pinching,
friction, stiffness and strength degradation. They are illustrated in Fig. 2a. The
Fig. 2a also shows the changing in peak of internal moment with height. There is
degradation of both stiffness and strength following every loop of load. The friction
force occurs when the internal components are slipped together. Besides, the
pinching behavior illustrated in Fig. 2b, which is controlled by the parameter P, is
defined in Eq. 1 [7] based upon the moment–rotation relationship of experiment.

P=
Mlo

ap

Map
ð1Þ

where Mlo
ap and Map could be determined geometrically as illustrated in Fig. 2b.
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Fig. 1 Joint subjected to static load [1]. a Bolted end-plate joint, and b moment–rotation curve
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The area inside the closed curve in Fig. 2c, called as Edis, represents the dissi-
pated energy capacity of a joint. Besides, Fig. 2c also illustrates the cumulative
energy EH corresponding to the stiffness k of the joint in a branch of the hysteretic
moment–rotation curve. The cumulative energy is known as the greatest defor-
mation energy and defined as follows

Eh =
k ×ϕ2

o

2
ð2Þ

where ϕo is defined in Fig. 2c.
Because of the stiffness degradation, stiffness degradation of joint (kj) should be

estimated in every cycle of load and defined as follows [9] :

ki =
M +

imax

�� ��+ M −
imin

�� ��
ϕ+
imax

�� ��+ ϕ−
imin

�� �� ð3Þ

where M +
max and ϕ+

max are the biggest values of moment and rotation of the push
branch; M −

min and ϕ−
min are the highest values of moment and rotation of the pull

branch; the abbreviation “i” indicates the ith loading cycle.
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Fig. 2 Behavior of a joint under cyclical loading. a Hysteretic moment–rotation curves [8],
b Loading branch with pinching, [7] and c Dissipated energy capacity of a joint in a cyclic load [1]
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3 Loading Controlled Displacement Test Protocols

Loading protocols provided by the European Convention for Constructional Steel
work (ECCS 1986) for carrying out tests of characteristic of structural components
under cyclic loading [10]. Four patterns controlled displacement are selected in the
study based on the loading protocols of ECCS, which are illustrated in Fig. 3.

In the Fig. 3, the amplitude patterns of various loads depend on the yield dis-

placement (e+y or e−y ). The yield displacements are defined as e+y =
F +
y

tgα+
y

and

e−y =
F −
y

tgα−
y
. Where F± is the yield load in the positive/negative force, and tgα± is

slope of the tangent at the origin of the (F–e) curve.
For LOAD 1, the amplitude increases every cycle as follow: e±y ̸4, 2 e±y ̸4, 3

e±y ̸4, e±y , 2e±y , and then, the amplitude increases every three cycles as ð2+ 2nÞe±y .
For LOAD 2, the displacement amplitude varies from e±y ̸e±u =0.25 to e±y ̸e±u =6,
and then, it is kept unchanged. For LOAD 3, the displacement amplitude increases
suddenly from e±y ̸e±u =0.25 to e±y ̸e±u =6, and then, it is kept unchanged. Finally,
the displacement amplitude varies cyclic from e±y ̸e±u =3 to e±y ̸e±u =9 in the pattern
of LOAD 4.
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Fig. 3 Controlled displacement test protocols [10]
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4 Modified Richard-Abbott Model

Richard-Abbott’s model is the model based on a formula developed by Richard in
1975 to reproduce the elastic–plastic behavior of several materials [6]. It was ini-
tially used to simulate the static response of joints. After that, the moment–rotation
curve produced from the analysis of static response of joints is based to simulate the
cyclic response of joints. The initial branch of the moment–rotation curve, Fig. 4a,
is described in Eq. 4.

M =
ðkupap − kuppapÞϕ

1+ 1+ ðkupap − kuppapÞϕ
Map

� �N
� �1 ̸N − kuppapϕ ð4Þ

The generic push branch of a moment–rotation curve was proposed by Della
Corte [7]. It is given by Eqs. 5 and 6 and illustrated in Fig. 4.

M =Mn −
ðkupap − kuppapÞðϕn −ϕÞ

1+ 1+ ðkupap − kuppapÞðϕn −ϕÞ
Moa

� �N
� �1 ̸N − ðkupap − kuppapÞðϕn −ϕÞ ð5Þ

N =
ln 2

ln M1
Map

− kpap
kap − kpap

� � ð6Þ

The pinching is considered by smoothing hysteretic curve [11] illustrated in
Fig. 2b. The push branch is interpolated between the upper and lower bound curve.
The upper bound curve is the curve determined by Eqs. 5 and 6, while the lower
curve is constructed by pinching parameters and determined so that the branch
considering pinching is fit to the experiment curve. The modified push branch could
be described by the equations below.
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Fig. 4 Branch of the hysteretic moment–rotation curves. a initial push branch, and b generic
branch [6]
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M =
ðktap + ktpapÞϕ

1+
ðktap + ktpapÞϕ

Mt
a

� �nta
� �1 ̸nta

− ktpapϕ ð7Þ

ktap = kupap + ðkloap − kupapÞt ð8Þ

Mt
a =Mlo

ap + ðMap −Mlo
apÞt ð9Þ

ktpap = kuppap + ðklopap − kuppapÞt ð10Þ

nta = nap + ðna − napÞt ð11Þ

t=
ðϕ ̸ϕlimÞt1a

ðϕ ̸ϕlimÞt1 + 1

" #t2a

ð12Þ

ϕlim = ϕoj j+ ϕmaxj j ð13Þ

where kupap and kloap are the initial stiffness of upper and lower bound curves; kuppap and
klopap are the post-limit stiffness of upper and lower bound curves; Mlo

ap, k
up
ap , k

up
pap, k

lo
ap,

klopap, and Map are the values illustrated in Fig. 2b; nap and na are the shape
parameters. The parameter “t” is in the range [0, 1] defining the transition law from
the lower bound to the upper bound curve. ϕoj j is the absolute value of the rotation
corresponding to the starting point of the current excursion (Fig. 4a); ϕmaxj j is the
maximum absolute value of the rotation experienced in the previous loading his-
tory; t1a and t2a are the two parameters related to the pinching.

The cyclic loading is accompanied by degradation of the structure response
because of deterioration of joint’s components. This can be taken into consideration
both for strength and stiffness by the following equations.

Mp, red =Mp 1− iM ×
Eh

Moa ×ϕo

� �
ð14Þ

Kp, red = kap 1− iK ×
Eh

Moa ×ϕo

� �
ð15Þ

where iM and iK are experiment parameters; Eh is the cumulative energy determined
by Eq. 2.

Cyclic action in the inelastic range produces plastic deformation. Plastic
deformation is accumulated until ductility of the system locally exhausted, and
failure occurs due to fracture. Hardening due to cyclic plastic deformation is con-
sidered to be isotropic. Besides, the experimental results of constant deformation
amplitude tests show that the cyclic hardening grows up in few cycles and then
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becomes stable if joints are not exhibiting strength. The following equations are
proposed for hardening consideration.

Mp, inc =Mp If ϕmax
p ≤ϕo ð16Þ

Mp, inc =Mp 1+Hh
ϕmax
p −ϕo

ϕo

� �
If ϕmax

p >ϕo ð17Þ

where Mp and Mp, inc are the initial and the increase value of moment considering
hardening; ϕmax

p is the greatest rotation; ϕo is the value of the plastic rotation. Hh is
an empirical coefficient defining the level of the isotropic hardening.

The pull branch is obtained in the same way, replacing Mp,ϕp by Mn,ϕn and the
parameters of Moa, ka, kpa are replaced by the parameters at unloading Mod, kd, kpd.

5 An Application of Modified Richard-Abbott Model

In the study, two steel–concrete composite joints are simulated in ABAQUS
environment. One is the external joint, and the other is the internal joint of a frame.
The joint models are verified by the experiment performed by Ferrario [10]. In the
experiment, each joint is subjected to both monotonic and cyclical loading. The
cyclical loading pattern is LOAD 1 of ECCS.

The experiment joints are shown in detail in Fig. 5. The beams are made of
IPE300 section that acted compositely with the 150 mm thick concrete slab poured
on a 55 mm deep trapezoidal composite steel deck. The steel wires ϕ6 mm of
the deck are spaced at 150 mm and oriented perpendiculars to the direction of the
moment frames. Shear studs of 19 mm arranged in pairs are placed at every rib. The
beam-to-column joint has been designed with a thin end plate of 15 mm thickness
and 6 ϕ24 bolts, illustrated in Fig. 5. Column is encased in concrete with longi-
tudinal (ϕ12) and transversal (ϕ8) reinforcing steel provided in the concrete por-
tions of the columns. The materials include the concrete class of C25/30, the
structural steel class of S235, and reinforcing steel class of B450-C. The horizontal
displacement-controlled load was established by a hydraulic jack at top column.
Measurement results based on the linear variable differential transformers (LVDTs)
are utilized to construct the moment–rotation curve in case the joint subjected to
static loading and to construct the hysteretic moment–rotation curves in case the
joint subjected to cyclic loading. Figure 5 also shows the finite element models of
joints after they are analyzed. The boundary condition and loading direction are
presented in Fig. 5b, d corresponding to the internal and external joint.

In the study, the element type of C3D8R is used for solid parts. They include
concrete, stud, bolt, and steel section. C3D8R could be suitable for nonlinear anal-
ysis. The rebar is assigned by the element type of T3D2, which could be utilized for
plasticity model. The profile steel sheet is considered as shell element. S4R is
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assigned to the profile steel sheet. Individual elements are connected together by
interaction type of master–slave. The concrete damaged plasticity model is selected
for concrete material. The parameters of the model are proposed by ABAQUS [12].
The parameters include deviator stress invariant ratio K = 0.667, potential eccen-
tricity ε = 0.1, Biaxial/uniaxial compressive strength ratio σbo ̸σco =1, 16, dilation
angle ψ =5◦, and viscosity parameter μ=0, 1. The von Mises yield criterion is
utilized for steel material. The elastic modulus of steel Es is 210000 MPa. The
Poisson’s ratio is 0.3. The mass density of the steel is 7850 kg/m3.

Figure 6 presents the comparison of the moment–rotation curve subjected to the
monotonic load of both internal and external joints described above. In the figure,
the curves established from the ABAQUS model could reach to the critical point.
The critical point (cr) illustrated in the figure is the point corresponding to maxi-
mum values of both moment and rotation. It could be seen that the gaps between
experiment and simulation curves are not great. The error values of moment are
ranged from 4.3 to 12.5%, while error values of rotation are ranged from 2.4 to
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11.2%. Small errors between measure and calculated values demonstrate that the
finite element model of joints is reliable.

The modified Richard-Abbott (2000) mathematical expression with pinching
parameters is applied to determine behavior of the above composite joints. Two
consecutive steps are performed.

First, necessary parameters of a composite joint are determined based upon the
moment–rotation curve as the joint is subjected to monotonic load. The parameters
illustrated in Fig. 4a include the initial stiffness, the moment resistance, and the
post-limit stiffness. They are evaluated so that the curve of Richard-Abbott model
fits the experiment curve.

Second, the other parameters of the model are determined to simulate the
behavior of the composite joint subjected to cyclic load. They are utilized to control
the shape of push or pull branch. Those parameters, including pinching parameters,
are estimated so that the hysteretic moment–rotation curves obtained from the
model are fit completely those of experiment. Table 1 summarizes the obtained
parameters of both internal and external joints. They are described in the Sect. 4
and illustrated in Fig. 4b. In the table, abbreviation “a” is represented for the push
branch, and abbreviation “d” is represented for the pull branch of the moment–
rotation curve. Based on the obtained parameters, the hysteretic moment–rotation
curves and the dissipated energy calculated by each of load cycles are plotted in
comparison with those obtained from the experiment.

The load pattern of LOAD 1 is considered with the displacement amplitude
increased up to e±y ̸eu =10. It is the displacement amplitude of 21st loading cycle.
This is also the displacement amplitude causing the failure of the external joint. The
values of moment and rotation reach to their maximum values, the “cr” point in
Fig. 6a.

Figure 7 shows the comparison results of both internal and external composite
joints. It could be observed that the hysteretic moment–rotation curves fitting to
experimental curves. Besides, the dissipated energy results are approximately equal
to experimental results. It is noticed that the dissipated energy is not considered as
the behavior of joints is elastic. The dissipated energy values of the several initial
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Table 1 Modified Richard-Abbott model parameters

Model parameters Internal joint External joint

kupap = kloap, k
up
pd = klopdðkN m ̸mradÞ 73000, 369800 59259.3, 238000

Moa,ModðkN mÞ 240, 200 200, 120

Mlo
oa,M

lo
odðkN mÞ 156, 130 130, 75

kuppap = klopap, k
up
pdp = kuppdpðkN m ̸mradÞ 1650, 1950 750, 500

n1ap, n
1
dp 2, 2 2, 2

n2ap, n
2
dp 1, 1 1, 1

t1a, t1d 6, 6 6, 6
t2a, t2d 0.15, 0.15 0.15, 0.15
Ca,Cd 1, 1 1, 1
ika, ikd 0.01, 0.01 0.01, 0.01
iMa, iMd 15, 15 15, 15
Ha,Hd 1E-7, 1E-7 1E-7, 1E-7

Ea
max,E

d
max(rad) 0.1, 0.1 0.1, 0.1
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load cycles are ignored in the chart. In this case, dissipated energy is determined
from e±y ̸eu =1, the 4th loading cycle. The experiment results are presented up to
the 16th loading cycle, the displacement amplitude of e±y ̸eu =8. Thus, the com-
parison of dissipated energy between experiment and modeling in Fig. 7b, d is only
presented up to the 16th loading cycle.

For the external joint, the biggest error of dissipated energy is 27.9% at the 13th
cycle load, and the smallest is 1.9% at the 4th cycle load. In case of the internal
joint, the biggest error of dissipated energy is 28.6% at the 12th cycle load, and the
smallest error is 4.02% at the 4th cycle load. Those small errors indicate that the
combination of finite element models and Richard-Abbott mathematical model
could exactly simulate the behavior of steel–concrete composite joints subjected to
cyclical loading. They are utilized to explore the behavior of the joint subjected to
four cyclical load patterns described above.

6 The Behaviors of the Joints Subjected to the Cyclic
Loading Patterns of ECCS

The behaviors of the composite joints subjected to an arbitrary load pattern are
analyzed in this section. The hysteretic moment–rotation curves are conducted by
the combination of finite element model and modified Richard-Abbott mathematical
expression. The pinching parameters are included into the analysis process. Load
patterns of ECCS described in the Sect. 3 are selected for the study. The numbers of
load cycles reaching the “cr” point, the failure point of a composite joint, vary
depending on load pattern and amplitude of load. For exploring the failure point of
the joint subjected different loading patterns, the number of load cycles in case of
LOAD 1, 2, 3 and 4 is selected as 33, 36, 36, and 39, respectively. The different
behavior of joints could be observed as there are the differences of hysteretic
moment–rotation curves in Figs. 8 and 9. Through the hysteretic moment–rotation
curves, the degradation of stiffness could be observed. However, the degradation of
a joint subjected to the arbitrary load patterns could not be seen obviously.

Figures 8e and 9e show the dissipated energy accumulated through every cycle
load. It could be observed that there is an intersection point of different accumulated
energy curves. The intersection point is located around the 16th loading cycle. The
16th loading cycle is also the final loading cycle reported in the experiment with the
joint subjected to the LOAD 1 pattern. This intersection point could be used to
determine the failure point of the joint [8].

Figures 8f and 9f show the relationship of the stiffness degradation (kj) and the
dissipated energy Edis in a loading cycle. The power-law equations could fit the
relationship between the rigidity degradation and the dissipated energy. The relation
equations are proposed as follows:

302 A. T. Le and H. Pham



kj =107 ×E − 0.791
dis ðkN m ̸mradÞ, R2 = 0, 9357 ð18Þ

The fitting rate is measured by R-squared values. It could be seen in Figs. 8f and
9f. The R-squared values reaching to one indicate that the dissipated energy over a
load cycle could be predicted based on the rigidity degradation of the joint as the
joint subjected to the arbitrary load patterns. On the other hand, the rigidity
degradation of the joint may be determined based upon the curves of monotonic
load. Thus, the dissipated energy of the arbitrary cyclic load could be predicted
based on the curves of monotonic load.
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7 Conclusions

The finite element model of an internal joint and the other of an external joint are
established in ABAQUS environment for exploring the behavior of a certain
steel–concrete composite joint subjected to the arbitrary load patterns. They are
verified by the experiment of Ferrario [10] in cases of the joint subjected to both
monotonic and cyclic loads. The moment–rotation curves obtained from the finite
element models as joint subjected to the monotonic loading are combined with the
modified Richard-Abbott model to erect the hysteretic moment–rotation curves.
The current approach could produce the small errors between modeling and testing
results. Then, the models are utilized for exploring the effect of the arbitrary load
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patterns subjecting to a certain composite joint. Four different load patterns pro-
posed by ECCS are selected for the exploration. As a result, the failure point of joint
could be determined easily from the intersection of various accumulated dissipated
energy curves. Besides, the dissipated energy over a load cycle could be estimated
from the rigidity degradation of joint based upon the regression equations as the
steel–concrete composite joints are subjected to the arbitrary load patterns.
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Experimental and Numerical Research
on the Fire Behaviour of Steel Column
Protected by Gypsum Plasterboard
Under Fire Condition

T. Nguyen-Vo, V. Nguyen-Duc and H. Tran

Abstract In Vietnam, the fire problem in steel structures is relativity much, thus
the study of fire protection solutions for the load-bearing steel structures (beams,
columns) is very important. One of solution is the use of gypsum plasterboard. This
paper presents firstly an experimental identification of the thermal conductivity of
gypsum plasterboard used in Vietnam and then a full-scale experimental investi-
gation relative to the fire resistance of steel column protected by gypsum plaster-
board. In parallel, a numerical model is also developed in order to simulate the
thermal transfer and mechanical behaviour of steel column protected by gypsum
plasterboard under fire conditions. This model is used to compare with the exper-
imental results and to analyse the influence of different parameters on the fire
behaviour of steel column protected by gypsum plasterboard in Vietnam conditions.

Keywords Steel column ⋅ Fire resistance ⋅ Gypsum plasterboard
Fire test ⋅ Numerical model

1 Introduction

Steel structures have been popularly used in the world and increasingly used in
many projects in Vietnam. Besides many advantages of steel structures, one of its
inconvenient is the low fire resistance. Thus, the study of fire protection solutions
for the load-bearing steel structures (beams, columns) is very important. One of the
solutions is the use of gypsum plasterboard.
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The studies on the behaviour of steel structures protected by gypsum plaster-
board have also been mentioned in a number of studies in the world. However,
these research works have not yet mentioned the impact of the actual moisture in
the gypsum on its insulation capacity when the fire occurs. The thermal calculation
used the thermal conductivity of gypsum plasterboard as a constant with a dehy-
drated gypsum plasterboard provided by the manufacturer, while at the moment of a
fire occurring, there still exists an amount of free and chemical water in gypsum
plasterboard. Impacts of heat during fire will make these water dehydrated, causing
the thermal conductivity coefficient to change. Therefore, the fire resistance for the
protected structures when using the values of the changing thermal conductivity
coefficient mentioning the effects of dehydration process will create results close to
the reality, ensuring the safety for the structures.

This paper presents firstly an experimental identification of the thermal conduc-
tivity of gypsum plasterboard heated in one side in fire condition. Based on the results,
a full-scale experimental investigation relative to the fire resistance of steel column
protected and unprotected by gypsum plasterboard was conducted in order to analyse
the behaviour of steel column protected and unprotected in standard fire test. In
parallel, a numerical model is also developed in ANSYS in order to simulate the
thermal transfer and mechanical behaviour of steel column protected and unprotected
by gypsum plasterboard under fire conditions. This model is used to compare with the
experimental results and to analyse the influence of different parameters on the fire
behaviour of steel column protected by gypsum plasterboard in Vietnam conditions.

2 Experimental Identification for Thermal Conductivity
Coefficient of Gypsum Plasterboard in Fire Condition

Plasterboard is made mainly of plaster with the chemical formula CaSO4.2H2O.
The composition of gypsum plasterboard consists of gypsum covered by two thin
layers of cardboard paper, about 0.3 mm, on either side of the face. In some special
cases, such as fire gypsum plasterboard, the gypsum core is reinforced with
fibreglass, vermiculite and clay. Fibreglass helps keep the mechanical stabilizer
while vermiculite and clay are added to help reduce the shrinkage of the plaster-
board when subjected to high temperatures [1]. The characteristics of gypsum
plasterboard under elevated temperature are described below:

• In the temperature range from 30 to 200 °C: When heating the whole face of the
panel, over 70 °C the water separation starts occurring and destroyed the crystal
lattice structure. At the temperature of approximately 200 °C, the chemical
water in the gypsum is completely separated. At the temperature of 200 °C, the
weight loss of sample is the largest (approximately 21%) due to the complete
dehydration of gypsum. The dehydration reactions follow Eqs. (1) and (2).
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CaSO4.2H2O→CaSO4.
1
2
H2O+

3
2
H2O, ð1Þ

CaSO4.
1
2
H2O→CaSO4 +

1
2
H2O. ð2Þ

• In the temperature range of 400–700 °C: Because in the previous period, the
panel has been completely dehydrated so at these temperatures the weight of the
sample does not change.

• From 900 °C: Chemical reaction will occur as follows in Eq. (3).

2CaSO4 → 2CaO+2SO2 +O2. ð3Þ

To determine the thermal conductivity coefficient of the gypsum plasterboard, in
the paper, the determination of the thermal conductivity coefficient was done by
heating on one side in an electric furnace. The temperature at hot side is heated (in
the furnace) as the heating curve in ISO 834 [2]. The experiment samples were
placed in front of the furnace and the inner side of the panel directly contacting the
heat source (hot side). This heat source can be adjusted to maintain a certain stable
heating temperature. The location of contact between the sample and the furnace
was inserted with a sealed insulation material, ensuring the heat in the furnace not to
escape. The heat transfer in the panel was assumed to be unidirectional, stable at the
cross section of the panel and considered as homogeneous isotropic material. The
temperature at the surface of the panel exposed to heat (the hot side) and the outer
surface (cold side) was measured with the temperature probes. Temperatures at the
cold side were monitored until stabilized and thereby determining the necessary
values and calculating the corresponding thermal conductivity coefficient as follows
in Eq. (4). Electric furnace was located in the air-conditioned room with temper-
ature outside the furnace kept stable. The thermal conductivity coefficient was
determined as the following formula:

λ=
U ⋅ I ⋅ δ

A ⋅ T1 −T2ð Þ ð4Þ

Of which:

I intensity of electricity provided for the furnace, A
U voltage provided for the furnace, V
A contact area of the sample with the furnace
δ Thickness of the sample, m
T1 temperature contacting heat, °C
T2 temperature contacting the environment, °C
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In the above formula, heat transferring from hot surface to cold surface was
assumed to be linear allocation based on the thickness of panels

2.1 Test Results for Thermal Conductivity

The values of the thermal conductivity coefficient calculated from the experimental
measurements of two types of Boral Firebloc and Gyproc gypsum plasterboard
were given in the following table: Tables 1 and 2

The comparisons of the thermal conductivity are presented in Fig. 1 (for Gyproc
gypsum plasterboard) and Fig. 2 (for Boral gypsum plasterboard). The comparisons
show that (1) from the heating degree to temperatures of 200 °C or higher, the value
of the thermal conductivity coefficient of two panels virtually unchanged and was
regarded as constant, (2) The law of the influence of the moisture loss to the thermal
conductivity coefficient as for two gypsum plasterboard with two different thick-
nesses was similar. At the same heat level, the value of the thermal conductivity

Table 1 Thermal conductivity of Gyproc (12.7 mm and 15.8 mm thickness)

12.7 mm Gyproc panel 15.8 mm Gyproc panel
Temperature
(°C)

Thermal conductivity
coefficient (W/m°C)

Temperature
(°C)

Thermal conductivity
coefficient (W/m°C)

50 0.41 50 0.53
100 0.28 100 0.35
120 0.24 120 0.29
200 0.19 200 0.25
400 0.18 400 0.22
600 0.18 600 0.21
800 0.19 800 0.21

1000 0.19 1000 0.23

Table 2 Thermal conductivity of Boral (12.5 mm and 15 mm thickness)

12.5 mm BORAL panel 15 mm BORAL panel
Temperature
(°C)

Thermal conductivity
coefficient (W/m°C)

Temperature
(°C)

Thermal conductivity
coefficient (W/m°C)

50 0.39 50 0.43
120 0.19 120 0.25
200 0.15 200 0.2
400 0.16 400 0.18
600 0.18 600 0.18
800 0.22 800 0.23

1000 0.22 1000 0.23
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coefficient of the thin panel is smaller than the thick one. This can be interpreted as
thinner gypsum plasterboard will dehydrate much more, and therefore, it has a
smaller thermal conductivity coefficient. Thus, with a certain thickness, the use of
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Fig. 1 Comparison of the thermal conductivity coefficient of the two types of Gyproc gypsum
plasterboard with the reference values [3–5]
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many thin panels will be more effective than the use of one panel with a thickness
equivalent.

2.2 Influence of Heating Rate

For each type of fires, heating rate usually follows a certain law. To examine the
impact of this parameter, the experiments to determine the thermal conductivity
coefficient were conducted in the condition that the furnace temperature was con-
tinuously increased as in three heating curves, at the rate of 20 °C/min, 10 °C/min
and 5 °C/min, respectively (Fig. 3). At each heating rate, three specimens were
taken.

The experimental results in Fig. 4 show that (1) effect of heating rate on the
thermal conductivity coefficient of thin panels was smaller than that of thicker ones;
(2) effect of heating rate on the thermal conductivity coefficient of the experimental
panels of different thickness mainly ranging from 30 to 200 °C, and within this
temperature range, high heating rate (20 °C/min) had a greater impact on the
thermal conductivity coefficient in comparison with lower heating rate; (3) with the
two experimental panels, the largest heating rate (20 °C/min) will give the largest
thermal conductivity coefficient.

The above results show the need to determine the thermal conductivity coeffi-
cient for each specific type of panel. In the case of safety, experiments can be
conducted for the largest panels and heat transfer 20 °C/min to obtain the thermal
conductivity and calculate the most unfavourable results.
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3 Full-Scale Fire Test of Steel Column Protected
and Unprotected by Gypsum Plasterboard

3.1 Test Description

The full-scale fire test was conducted at fire prevention laboratory—Vietnam
Institute for Building Science and Technology—IBST with four specimens of
2,4 m steel column H150 (one protected by gypsum plasterboard 12.7 mm, one
protected by gypsum plasterboard 15.8 mm, two unprotected). These specimens
were subjected to compression load (25 tons/column) and heated on one side
according to the standard fire curve ISO 834 [2]. The objective of the test was to
determine the two main parameters: (1) determining the temperature at different
points on the height of the steel columns (Figs. 5 and 6); (2) identifying the dis-
placement in two directions of x and y at 04 locations along the height of the steel
columns (Figs. 7 and 8).
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Fig. 5 Locations of
temperature probes in the
section of steel columns
protected by gypsum
plasterboard (9 points)
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a. Temperature:

For the temperature, temperature probes arranged at three longitudinal sections
along with the height of the columns.

b. Displacement:

Displacement measuring was set up at four locations along the height of the
columns. The following figures present some photograph of test specimen of steel
column protected by gypsum plasterboard.

Fig. 6 Locations of
temperature probes in the
section of steel columns
unprotected (8 points)

Fig. 7 02 steel column
protected by gypsum
plasterboard 12.7 and
15.8 mm
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3.2 Test Results

a. Temperature:

Measured temperatures for steel columns H150 protected by Gyproc plaster-
board 12.7 mm are shown in Figs. 9, 10, 11, 12 and 13. From the measured results,
temperature distribution of steel column H150 protected by gypsum plasterboard
can be characterized by:

• For the temperature in gypsum plasterboard exposed to fire: in the first 15 min,
the temperature in the gypsum plasterboard slowly increases in the vicinity of
100 °C. This is explained by the fact that dehydration reaction is occurring and
decreases the rate of thermal expansion in the gypsum plasterboard. From the

Fig. 8 02 steel column protected by gypsum plasterboard 12.7 and 15.8 mm (2)
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15th min onwards, the temperature in the gypsum plasterboard increased rapidly
and the plate lost its insulating capacity due to the dehydration of gypsum
plasterboard;
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• For the temperature in steel column: due to gypsum plasterboard, temperature in
steel increased slowly during the first 20 min. Then, the temperature of the steel
column increases rapidly due to the dehydration of gypsum plasterboard;

• For the temperature in the plasterboard exposed to the environment: the tem-
perature in the plate increased slowly in the first 25 min. This time is longer due
to the influence of gypsum plasterboard exposed to fire, which reduces the
overall temperature of the structural system. From the 25th min onwards, the
temperature increased with a constant rate to 45 min, and from the 45th min,
the plate’s temperature increased slowly until the end of the test;

From 60 min, temperatures in steel column were approximately 550 °C, the
integrity of gypsum plasterboard was preserved and the connect elements (screws,
bolts) remain in place. Thus, the fire resistance 60 min for steel column protected by
gypsum plasterboard is achieved.

b. Displacement:

The displacement measurements of the steel columns H150 protected by
12.7 mm and 15.8 mm gypsum plasterboards are shown in Figs. 14, 15 and 16.
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For the displacement measurement, the number of measurement points remains
active until the end of the test was not much, since the probes were separated during
the fire test.

3.3 Comparing with Calculation Results

ANSYS software was utilized in order to model the fire behaviour of steel column
protected by gypsum plasterboard. The first step was the development of a thermal
model in order to determine accurately the temperature distributions through the
section. These temperatures were used as input data for the thermo-mechanical
model. One assumed a weak coupling of the two models [6].

• Thermal analysis was conducted on a 2D model using 4-node linear elements.
The facings were subdivided into several layers depending on the thickness of
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the facing. The thermo-physical properties of steel are those given in Eurocode 3
(Part 1–2) [7], while those of the plasterboards were identified versus temper-
ature by a characterization programme and shown in Sect. 2 and reference [8].

• For the thermo-mechanical analysis, the gypsum plasterboard was assumed
negligible from the model and only the steel column was modelled by nonlinear
shell elements. The thermal expansion, geometric and material nonlinearity were
taken into account for all elements. The Eurocode 3 [7, 9] steel properties were
used.

The boundary conditions for thermal and thermo-mechanical analysis are pre-
sented in Figs. 17, 18, 19 and 20.

Fig. 17 Calculation model
and boundary conditions in
case the steel column
unprotected

Fig. 18 Calculation model
and boundary conditions in
case the steel column
protected by the gypsum
plasterboard
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The temperature comparisons in Figs. 20, 21, 22 and 23 show that the calcu-
lated temperature values from the model are relatively close to the experimental
results in the first 20–25 min. From the 25th min, the temperature curve derived
from the calculation has the same trend as the experimental temperature curve, but
the calculated value is less than the measured value from 30 to 100 °C.

For the displacement comparison, the results show that the horizontal dis-
placement curve of the calculated steel column is the same as the experimental
horizontal displacement curve. However, in terms of value, the measured value is
greater than the calculated value about 25%. This difference can be explained by a
number of boundary conditions such as the steel plates kept in oven, the influence
of insulating glass wool. These effects are not included in the calculation model.

PFig. 19 Boundary condition
for the thermo-mechanical
analysis
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Table 3 shows the comparisons of temperature, displacement and fire resistance
of the steel column between calculation and test. For the fire resistance, when the
temperature limit of the steel column is 550 °C, the comparison shows that the
predicted fire resistance by the model is close to the actual measured value with a
difference less than 5%.
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Figures 24, 25, 26 and 27 show the comparison of the temperature and dis-
placement values of the unprotected steel column between the calculated value and
the measured value. Table 4 shows the comparison of temperature, displacement
and fire resistance of the steel column unprotected between calculation and test. The
comparisons show that the calculated results are relatively close to the test results
for the first 15 min. For the fire resistance, when the temperature limit of the steel
column is 550 °C, the fire resistance of steel column is equivalent to 37 min. From
Table 4, it can be seen that the calculated fire resistance was relatively large
compared to the experimental value. This difference may be due to the influence of
insulating glass wool which affects the area exposed to the fire of the steel column,
and then the measured temperature of steel columns is smaller than calculated

Table 3 Comparing temperature, displacement and fire resistance of steel columns protected with
Gyproc 12.7 mm

Temperature of steel
column at 70 min (oC)

Maximum horizontal
displacement (mm)

Fire resistance (minutes)

Calculation Experiment Calculation Experiment Calculation Experiment

550 580 10 8 70 60

0

100

200

300

400

500

600

700

800

900

0 10 20 30 40 50 60 70

Te
m

pe
ra

tu
re

(C
)

Temps (min)

P 9 (1) P 1 (1) P 5 (1)

P 9 (2) Calcul

CH¸ Y

T

x

y

2 4

1 8 9
7

5

3 6

Fig. 24 Comparing
temperature of steel column
protected with gypsum panel
15.8 mm between calculation
and experiment

Fig. 25 Comparing
horizontal displacement of
steel column protected with
gypsum panel 15.8 mm
between calculation and
experiment

322 T. Nguyen-Vo et al.



value. Relative to the horizontal displacement of the column, comparing the
maximum horizontal displacement value in the middle of the column shows that the
calculated value is greater than the experimental value for the first 20 min. From
the 20th min, the experimental value diminishes while the calculated values remain
constant.

Fig. 26 Comparing
temperature of steel column
H150 unprotected between
calculation and experiment

Fig. 27 Comparing
horizontal displacement of
steel column unprotected with
gypsum panel 15.8 mm
between calculation and
experiment

Table 4 Comparing temperature, displacement and fire resistance of steel columns unprotected
between calculation and experimental value

Temperature of steel
column at 45 min (oC)

Maximum horizontal
displacement (mm)

Fire resistance (minutes)

Calculation Experiment Calculation Experiment Calculation Experiment

850 600 6,4 4 17 37
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4 Conclusion

This paper presents firstly an experimental identification of the thermal conductivity
of gypsum plasterboard used in Vietnam. The experimental procedure has been
developed to define the thermal conductivity coefficient of gypsum plasterboard
matching the hot and humid climate conditions of Vietnam and the actual impact of
the fire.

Then, a full-scale experimental investigation relative to the fire resistance of 04
steel columns protected and unprotected by gypsum plasterboard was conducted in
order to analyse the fire behaviour of steel column in temperature and displacement.
In parallel, a numerical model is also developed in order to simulate the thermal
transfer and mechanical behaviour of steel column protected by gypsum plaster-
board under fire conditions. This model uses the thermal conductivity obtained
from the experimental identification programme. Comparison between the experi-
mental results and the calculated results of displacements and temperature in steel
columns with some cases full of measurement results shows that the difference of
temperature and of fire resistance is more or less 5% while the displacement
deviation is relatively large, which is the basis to be able to apply thermal con-
ductivity coefficient by experimental and algorithms described in the paper when
designing the fire protection for steel structures.
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Part V
Composites and Hybrid Structures



Comparison Between Numerical and
Experimental Results of the Hybrid
Members Subjected to Bending and
Shear

T. V. Tran and H. Q. Nguyen

Abstract This paper presents experimental and numerical results of the hybrid

members with several encased steel profiles subjected to bending and shear. These

results are compared with each other on the load-bearing capacity, the strain distribu-

tion, the stress distribution, the slip distribution, the crack pattern, the failure modes.

These steel-concrete composite structural elements belong to the so-called “hybrid”

structures which are neither reinforced concrete structure in the sense of Eurocode 2,

nor steel-concrete composite structures in the sense of Eurocode 4. Currently, there

is no design calculation guide of the resistance for this type of structure in inter-

national standards. Therefore, the comparison between numerical and experimental

results is performed to point out the mechanism of the load transfer and failure tak-

ing place within the hybrid members subjected to bending and shear. It is the basis

for calibrating the proposed design method for hybrid members reinforced by sev-

eral steel profiles. The six hybrid member specimens were prepared and tested at

the Structures Laboratory of INSA Rennes, France. The structural response of all

hybrid members specimens were simulated by a full 3D finite element model using

the Abaqus software.
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1 Introduction

For many years, the traditionally reinforced concrete shear members have been used

as the primary lateral load-resisting system in multistory buildings. Although rein-

forced concrete shear members have many structural and economical advantages,

some disadvantages appear when using this structural system in buildings subjected

to seismic action. One of the main disadvantages is the development of tension cracks

in tension zones and compressive crushing in localized compression areas during

large cyclic excursions. Such cracks and crushing failures can result in splitting and

spalling failure of the member with serious deterioration of stiffness and reduction in

strength. Steel-concrete composite shear members can mitigate most disadvantages

of reinforced concrete (RC) shear members and take advantage of the best character-

istics the RC and the steel can. Today, reinforced concrete reinforced by more than

one steel profile is used extensively for high load-bearing structures, especially for

the rigid structures of high-rise buildings by their outstanding advantages. The RC

members reinforced by more than one steel profile, namely hybrid member, although

a number of researchers have focused on its various aspects, they are currently not

covered by standards because they are neither reinforced concrete structures in the

sense of Eurocode 2 [1] or ACI-318 [2]), nor composite steel-concrete structures in

the sense of Eurocode 4 [3] or AISC [4]. Gaps in knowledge are mostly related to

the problem of force transfer between concrete and embedded steel profiles, a situa-

tion in which it is neither known how to combine the resistances provided by bond,

by stud connectors, and by plate bearings, nor how to reinforce the transition zones

between classical reinforced concrete and concrete reinforced by steel profiles. This

paper is dedicated to present a tentative design model for hybrid members with sev-

eral embedded steel profiles subjected to combined axial force, bending, and shear.

This model is based principally on the design rules of Eurocode 2 [1] and Eurocode

4 [3]. Particular attention will be paid to shear (longitudinal and transversal) resis-

tances because preventing shear failure is one of the major concerns when designing

a composite structural member. Experiments conducted with steel-concrete com-

posite columns (simple encased steel profile) showed that the shear failure generally

involves two possible failure modes: (1) the diagonal shear failure, which closely

resembles the shear failure of an ordinary reinforced concrete structural member

and (2) the shear bond failure, which results in cracks along the interface of the steel

profile and concrete. For this reason, an experimental program was conducted on the

hybrid member with three steel profiles to evaluate the load-bearing capacity and the

maximum resistance values. Furthermore, the experimental program also shows the

diagonal shear failure and the shear bond failure principle. Simultaneously, a numer-

ical model was also performed to compare the results with the experimental results.

So that we have a basis for calibrating the proposed design method developed by

Nguyen et al. [5] and by Plumier et al. [6, 7] for estimating the transverse shear

resistance taking into account the contribution of the steel profiles of this type of

structure.
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2 Description of the Experimental Program on Hybrid
Members

The experimental program consists of six 2:3 scale member specimens which are

composite member with three encased steel profiles (hybrid member). All speci-

mens had the same size, geometry, and longitudinal reinforcing bar arrangements.

The primary differences between six specimens were the type of the structural steel-

concrete connection and the stirrup spacing. Details evaluated in the test include the

contributions of the steel profiles, shear studs, stiffeners, bond, and stirrup spacing

to the bending and shear resistance. Figure 1 shows the design details of all the six

specimens of hybrid members. Component size is selected at minimum in working

condition between concrete and reinforcement (minimum profile steel is HEB100).

All specimens consisted of RC member that had 5m length, 25 × 90 cm rectangular

cross section, and were reinforced with eight 20-mm-diameter vertical reinforcing

bars (Grade B). The horizontal reinforcement consisting of 14 and 6 mm reinforcing

bars was made in form of stirrups. The reinforcing bar arrangement is the same in

all specimens except the stirrup spacing which was 200 mm in BW, CW, and DW

2585025
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280280170 170

170280280170
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900

25 275 150 150 275 25

Vertical reinforcement ø20 @270

Horozontal reinforcement ø14
Horozontal reinforcement ø6

Steel encased profile HEB100

Stud Nelson H3L ø16 @200

Plate stiffners 80x40x10 @300

Fig. 1 Details of the test specimens
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Fig. 2 Test setup

specimens and 100 mm in BW-HC, CW-HC, and DW-HC specimens. Moreover,

they had additional three HEB100 which were totally encased into the concrete with

shear stud connectors between the concrete and the steel profiles for the CW and CW-

HC specimens (50 × 3 Nelson S3L16 − 75mm, 200 mm spacing), with stiff connec-

tors between the concrete and the steel profiles for the DW and DW-HC specimens

(30 × 3 plate stiffeners, 10 mm thickness, 300 mm spacing) and without connectors

for the BW and BW-HC specimens.

In the test, the solution of keeping the members in simple cantilever form is not

possible for the test setup to be shown in Fig. 2. The third-point flexural beam test

configuration was adopted to evaluate the resistance of specimens to combined bend-

ing and shear without axial force. Specimens were loaded at the mid-length by two

hydraulic actuators (1500 kN capacity each). The actuators were operated in dis-

placement control, with each actuator having the same displacement at any instant

of time. Pinned boundary conditions at each end of the specimens were simulated

by two supports. No restraint was provided against rotation along any axis.

Table 1 Structural and reinforcing steel strenghts

Item fy (MPa) fu (MPa)
fu
fy

E (GPa) Applying

HEB 100 462.7 583.5 1.26 214.45 Profiles, plate

stiffener

𝜙20mm bars 383.91 542.62 1.41 210.74 Longitudinal

rebar

𝜙14mm bars 633.26 656.34 1.04 207.46 Stirrups class,

shear stud
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Table 2 Concrete properties

Specimen No of sample fcm (MPa) E (cm)

A-RC 3 24.61 30179

BW 3 31.50 31341

BW-HC 3 26.04 30862

CW 3 32.00 31328

CW-HC 3 31.63 31194

DW 3 32.73 31563

DW-HC 3 31.30 31149

The designed material quality was C30 for the concrete, S500 for the reinforce-

ment, and S460 for the profile steel and the structural steel according to Eurocode 2.

The experimental results related to the steel properties are given in Table 1, and the

3

Inclinometer Displacement LVDT

Slip LVDT

21 4 5

1

6

7

2

1 2 3

4

5

P
1 2

Concrete strain gauge

Fig. 3 Detailed arrangement of measuring devices
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average cube strength and Young’s modulus of concrete at age of the tests had the

values presented in Table 2.

Several different instruments were used in the testing of the specimens. The

arrangement of the instrumentation is presented in Fig. 3. The data acquisition

devices include: Five LVDT placed along the specimen length (two at middle), mea-

suring the deflection shape, five LVDT measuring the slips at the interface concrete-

steel profile, two LVDT measuring the horizontal displacements at the specimen end,

two inclinometers (devices that measure changes in angle) measuring the rotations

at specimen’s ends, two concrete strain gauges pasted to the top concrete surface,

22 strain gauges pasted to the reinforcement steel, and nine strain gauge rosettes

0◦–45◦–90◦ pasted to steel profiles.

3 3D Finite Element Model Using the ABAQUS Software

The test hybrid member specimens are simulated by 3D finite element model in the

Abaqus software. Due to the symmetry of the specimen geometry and loading, in

order to save the calculation time, only half of the specimen was modeled as shown in

Fig. 4. Four components of specimen (concrete, rebars, steel profile, and connector)

are modeled separately and assembled to make a complete specimen model.

The hybrid members proposed for finite element modeling embody situations of

material discontinuity, yielding, stress concentration, contact, and composite behav-

ior. These complex 3D phenomena are reproduced by adopting hexahedra solid ele-

ments [8], which are used to model majority of the parts of the specimens. Excep-

tion is the ordinary reinforcement in the concrete members, where truss elements

are used. In ABAQUS, the finite elements C3D8 (eight nodes) and C3D20 (20

(a) Finite element modeling of structural concrete (b) Finite element modeling of structural steel

Fig. 4 Finite element type and mesh
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Table 3 Material parameter of concrete damage plasticity model for concrete of fcm = 30MPa

Density Parameters of concrete damaged plasticity model

P(tonne/mm
3
) 2.4 × 10−9 Dilation angle 38◦

Elasticity Eccentricity 0.1

E(MPa) 33346 fco∕fco 1.16

𝜈 0.2 K 0.67

Viscosity parameter 0.0001

Compressive behavior Tensile behavior

Yield stress (MPa) Inelastic strain Yield stress (MPa) Displacement (mm) Damage

12.80 0 2.870 0 0

19.40 0.00016 2.428 0.0225 0.492

24.37 0.00037 1.706 0.0662 0.802

28.86 0.00066 1.192 0.1084 0.904

30.00 0.00102

28.41 0.00156

23.77 0.00219

16.27 0.00291

nodes) are continuum stress/displacement 3D solid finite elements of first and sec-

ond order, respectively, either with reduced or full integration. The 8-node element

with reduced integration is chosen for the general numerical simulations. A sensi-

tivity analysis is performed with respect to the element type to check the required

mesh density for application. For this purpose, the second-order element (C3D20R)

with reduced integration is used to obtain the “correct” solution. The truss element

(T3D2) used to model the ordinary reinforcement is a two-node linear 3D truss ele-

ment that can only transmit axial forces.

Figure 4 shows the meshing of the FE model for the concrete member, rebar, steel

member, and headed studs. The element size is 0.025m for the elements of concrete

member, steel profiles, reinforcement bars, and shanks of the shear connectors, plate

stiffeners, and 0.005m for a head of the shear connectors. The head and the stud of

the connectors are approximated by a hexagon.

The stress–displacement curve is defined by Lubliner et al. (1989) and by Lee

and Fenves (1988) [8]. Finally, for the five constitutive parameters (𝜓—dilatation

angle; 𝜀—flow potential eccentricity; fbo∕fco ratio of initial equibiaxial compressive

yield stress to initial compressive yield stress; k—ratio of second stress invariant on

the tensile meridian; 𝜇—viscosity parameter) required to complete the definition of

the constitutive model, no information was available from the experimental tests and

therefore default values [8, 9] were used (see Table 3). Design concrete class is the

C30 [1, 3].
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To model the behavior of structural steel and reinforcement, the classical isotropic

material law that implements the von Mises plasticity model (isotropic yielding) is

used. For the generality of the steel parts, an elasto-plastic behavior with hardening is

assumed. For the steel profiles and rebars, the true stress–strain (𝜎true − 𝜀true) mate-

rial curve available from the experimental tests is considered. The latter properties

are calculated as expressed in Eqs. (1) and (2) [9, 10] using the nominal properties

(𝜀, 𝜎) obtained in the tests.

𝜎true = 𝜎(1 + 𝜀) (1)

𝜀true = ln(1 + 𝜀) (2)

The steel profile and the steel plate stiffener grade are S460. The steel longitudinal

rebar class, the steel stirrups class, and the steel shear stud class are S500B [1–4]. The

material behavior was considered as bilinear stress–strain diagram with hardening

until 𝜀lim = 0.05. And their detailed values are presented in Table 1.

In ABAQUS, the 3D modeling of reinforced concrete may be performed using

steel rebar (truss element (two nodes)), steel profile, steel shear stud, steel plate

stiffener (solid (continuum) element (eight nodes)) and all ordinary reinforcement

embedded or not in the concrete. Due to the importance of the steel profiles and con-

nectors reinforced in the hybrid member, they are modeled with 3D solid elements.

For this type of element, bond behavior may be defined to model the interaction with

the concrete, whereby the bond between concrete and steel profiles is modeled by

an approximation of the bond-slip response (this model proposed by Eligehausen et

al. [3, 11] and the typical traction-separation response available in ABAQUS [8].

Modeling the interaction with perfect bond leads to excessive stresses in concrete

and stiffer response of the reinforcement. Contact with cohesive behavior may be

considered to model the bond behavior in the reinforcement-concrete interface. The

contact and interface stresses are treated using the “hard” contact model with fric-

tional behavior.

For the application of the support conditions, all the nodes at the support location

(concrete reaction surface) in the opposite direction of loading are restricted from

moving in the Y direction to resist the flexion load. All the nodes of the concrete

member, steel profile flanges, and the rebar web, that lie on the opposite symmetry

surface are restricted due to symmetry from moving in the Z direction and rotating

in the Y and Z direction. All the concrete nodes and steel profile flange nodes that

lie perpendicular to symmetry surface are restricted from moving in the X direction

and rotating in the Y and Z direction.

A deformation-controlled load is applied at the mid-span of the hybrid member,

i.e., above the concrete load surface on the symmetrical surface (on the left side) as

shown in Fig. 4.
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4 Comparison Between Numerical and Experimental
Results

The simulation results are compared with the experimental results. The load-bearing

capacity, stress and strain analysis, and failure modes have been investigated.

4.1 Load-Deflection Response

The load-displacement curves obtained from the FE model for all test hybrid member

specimens are compared to the experimental ones in Fig. 5. It can be observed that

the numerical load-deflection behavior resembles the experimental behavior reason-

ably well. The numerical response is the load up to failure. It can be noticed that

the stiffness of the elements obtained in the numerical simulations is higher than

the stiffness obtained in the experimental tests. This difference appears firstly to

the different material pattern (homogeneous in case of numerical simulations and

inhomogeneous in the experimental tests) and secondly due to the different way in

simulating the connection between steel profiles and concrete surrounding.

(a) BW and BW-HC specimens (b) CW and CW-HC specimens

(c) DW and DW-HC specimens

Fig. 5 Numerical–experimental comparison of load-displacement curves
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Table 4 Comparative study of the load bearing capacity

Specimen ΔFs
(mm) Experimental

FExp
max (kN)

Numerical FNum
max

(kN)

FNum
Fs

FExp
Fs

BW 30.0 1613.4 1730.5 1.07

BW-HC 19.6 1567.5 1690.4 1.08

CW 57.2 1677.9 1780.8 1.06

CW-HC 76.6 1809.2 1870.7 1.03

DW 33.6 1767.6 1747.2 0.99

DW-HC 78.8 1774.2 1910.7 1.08

Fig. 6 General yielding

point method

Nevertheless, the values of the load-bearing capacities of the elements obtained

in the experimental tests [12] and those obtained in the numerical simulations are

very close (1 ÷ 8% difference). Table 4 shows the load-bearing capacities of the test

specimens predicted by the FE model in comparison with those from the experiment.

The load-bearing capacity is maximum load obtained in the experimental or is load

obtained in the numerical corresponding to the displacement of the experimental.

Likewise, the yielding point Fy is determined based on the general yielding

method developed by Li [13] as shown in Fig. 6 [13]. The specimen yielding points

Fy obtained in the experimental tests and obtained in the numerical simulations are

shown in Table 5. The load values at the yielding point Fy of the elements obtained in

the experimental tests and those obtained in the numerical simulations are also very

close (0 ÷ 9% difference) except for the BW-HC specimen because the compressive

strength values of the concrete are different (see the Table 2). These load values at

the yielding point Fy correspond to the displacement of the experimental.
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Table 5 Comparative study of the specimen yielding points Fy

Specimen Experimental Numerical

FNum
Fy

FExp
Fy

ΔExp
Fy

(mm) FExp
y (kN) ΔNum

Fy
(mm) FNum

y (kN)

BW 12.5 1241.2 12.5 1357.0 1.09

BW-HC 11.3 1173.6 11.3 1366.9 1.16

CW 16.4 1428.1 16.4 1509.2 1.06

CW-HC 14.6 1490.5 14.6 1485.2 1.00

DW 15.3 1466.6 15.3 1560.9 1.06

DW-HC 14.5 1458.8 14.5 1562.5 1.07

Fig. 7 Numerical–experimental comparison of strain at strain gauge J1 location versus applied

load

4.2 Strain Comparison

The strains of the longitudinal rebars versus applied load from the FE model for

six test hybrid member specimens are compared to the experimental ones in Fig. 7.

The strains of the steel profiles versus applied load from the FE model for six test

hybrid member specimens are compared to the experimental ones in Fig. 8. Good

agreement can be observed from the beginning of the test until the measurement of

the strain gauge is failed.

Figure 9 shows the numerical–experimental comparison of the strain in stirrup (at

strain gauge J14) versus applied load. It can be observed that for all specimens, there

is a good agreement at the beginning of loading (for instance, up to about 600 kN

for CW specimen). Then, the strains predicted by FE model are smaller than the

experimental ones. It can be explained by the fact that in the numerical model, the
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Fig. 8 Numerical–experimental comparison of strain at rosette R1 − 0◦ location versus applied

load (Note Rosette R1 of specimen BW-HC was failed from 1240 kN and Rosette R1 of specimen
CW-HC was failed from 580 kN)

Fig. 9 Numerical–experimental comparison of strain at strain gauge J14 location versus applied

load

concrete cracking is modeled by a continuous plasticity approach and the stirrup is

embedded in the concrete. Therefore, the obtained strains are more or less the mean

strains of certain region. However, the experimental tests the strain in stirrup depends

strongly on location of shear crack. After certain load level, shear crack appears in

the compression zone starting from the application load point. Indeed, the strains of

stirrup are maximums at the crack point and decrease at the other points by tension-

stiffening effect.



Comparison Between Numerical and Experimental Results . . . 339

4.3 Stress Comparison

The stresses of the longitudinal, vertical reinforcement, and the steel profile versus

applied load from the FE model for six test hybrid member specimens are compared

to the experimental ones in Figs. 10, 11 and 12. Good agreement between numerical

and experimental results can be observed. Again the fact that the reinforcement and

the steel profile are embedded in concrete (full interaction) in the FE model leads

to higher stresses in reinforcement compared to the experimental ones. This obser-

vation highlights indeed the tension stiffening-effect which takes place in reinforced

concrete elements in tension. As can be seen from the Figs. 10 and 11 for all spec-

imens, the first layer of longitudinal rebars and the first layer of steel profiles were

yielded. However, the stirrups are still in the elastic range as indicated in Fig. 12. As

a result, the load-bearing capacities of the specimens did not significantly improve

when a double number of stirrup were used. In other words, the specimens were

yielded first by flexion.

4.4 Crack Pattern

Figure 13 illustrates the tensile damage distribution in the concrete at deflection level

60 mm. Note that the concrete model adopted for FEM is a continuous model there-

fore the cracking cannot be reproduced in the discrete way as can be seen in the exper-

iment. However, by analyzing the distribution of the tensile damage variable, one can

have an idea about the crack pattern at different load level. It can be observed that

initial the specimens were principally damaged by flexion effect at mid-span region,

Fig. 10 Numerical–experimental comparison of stress at strain gauge J1 location versus applied

load
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Fig. 11 Numerical–experimental comparison of stress at rosette R1 location versus applied load

(note: Rosette R1 of specimen CW-HC was failed from 580 kN)

Fig. 12 Numerical–experimental comparison of stress at strain gauge J14 location versus applied

load

after that the concrete “struts” were formed in the regions in between steel profiles.

The concrete struts between upper and middle profiles were more pronounced in

BW and BW-HC specimens than the other specimens. It should be noted that in the

FE model of BW and BW-HC specimens, the steel profiles were embedded in con-

crete. That means the full interaction between steel profile and concrete was assumed.

Therefore, the slip is prevented in BW and BW-HC specimens and that explains why

the concrete between upper and middle profiles was more mobilized in tension. In

other words, by preventing the slip, the concrete struts are totally anchored there-

fore the shear effect is more active. It also explains the fact that in BW and BW-HC

specimens, the concrete region after the support is not damaged. In contrast, in other

specimens, the slip is not prevented therefore one can see the effect of the longitudi-
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Fig. 13 Comparative of crack pattern in the concrete at deflection level 60 mm

nal shear which is locally active at the connector location and that makes the concrete

region after the support damaged as can be seen in Fig. 13.
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It can be observed in the right part of Fig. 13 and that at 60 mm of deflection, the

concrete damaged by shear is more pronounced, especially in BW specimen. One

can see clearly the concrete struts in the region at the middle between load point and

support. By regarding the direction of the tensile-damaged zone, one can say that the

angle of the concrete struts is about 45◦. The cracking analysis pointed out that the

angle of concrete strut observed in the test was from 41
◦

to 51
◦
. It was also entirely

consistent with the experimental results.

The concrete confinement effect can be noticed by comparing the damage zone

of BW specimen with the one of BW-HC specimen. As can be seen, the concrete

is indeed less damaged in the specimens where a double number of stirrups were

placed to make the concrete confinement.

5 Conclusion

In this paper, the results obtained from the experimental and numerical modelings

on the static behavior of hybrid members subjected to combined shear and bending

have been compared with each other. The results of the numerical model show that

some main behaviors of the studied hybrid member specimens such as load-bearing

capacity, relation of load and displacement predicted by FE model are in good agree-

ment with test results.

The strain analysis has identified the yielding of the components as well as the

failure mode of each specimen. It has been found that for all specimens, the yielding

of the first longitudinal reinforcement and the yielding of the second longitudinal

reinforcement were reached first followed by the yielding of lower steel profile and

then by the concrete crushing by shear effect.

The angle of concrete strut between the profiles steel was 45
◦
. It was also entirely

consistent with the previous studies.

The developed FE model can be eventually used in the future works to perform

a parametric study or to calibrate the design method on hybrid members. So that it

is the basis for proposing a tentative design model for hybrid members with several

embedded steel profiles subjected to combined axial force, bending, and shear. This

model is based principally on the design rules of Eurocode 2 (Eurocode 2, 2004)

and Eurocode 4 (Eurocode 4, 2004). In addition, it is also the basis for calibrating

the strut-and-tie model developed to evaluate the transverse shear resistance taking

into account the contribution of the steel profile by authors themselves.
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Abstract Analytical behavior of rectangular plates with semi-rigid boundary
conditions under in-plane and lateral dynamic loads of constant thickness resting on
the Winkler foundation is analyzed using a modified Bolotin method. The pre-
sentation of the semi-rigid isotropic plate’s frequency in a form analogous to the
corresponding frequency of a simply supported plate is postulated, considering the
wave numbers as unknown quantities. These two equations are determined from a
system of two transcendental equations, obtained from the solution of two auxiliary
Levy-type problems. The method was shown to be remarkably accurate when used
to determine the natural frequencies of plates with non-simply supported boundary
conditions. A natural extension of this research is related to the buckling and lateral
vibration of isotropic plates subjected to in-plane forces which are time invariant
and constant over the area of the plate, with their principal directions parallel to the
plate edges and the dynamic lateral force. It is the purpose of this paper to illustrate
this extension and to demonstrate its applicability by the presentation of numerical
results for a particular plate.
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1 Introduction

The instability characteristics of isotropic rectangular concrete plate subjected to
in-plane and lateral loads are utilized in many areas including engineering design
and earthquake-resistant structures. Significant studies have been made by Vis-
wanathan et al. in 2006 on buckling analysis of rectangular plates with variable
thickness resting on elastic foundations [1]. The plate was homogeneous with the
plate thickness varying using spline function approximation techniques. The plate is
fully attached to the foundation. A pair of the rectangular plate’s opposite edges is
subjected to compressive uniform load. Two cases of boundary conditions are
considered for these edges: clamped–clamped and clamped–simply supported. The
deflection equation yields an eigenvalue problem solving in which the critical loads
and the mode shapes of buckling are obtained.

In the present work, the buckling of thin isotropic rectangular plates of constant
thickness resting on elastic foundation is studied. The boundary condition that is
considered for these edges is semi-rigid. The eigenvalue and eigenvector problems
are solved by using the modified Bolotin method. The mode shapes of buckling are
obtained from the transcendental equation.

Parametric studies of the variation of the critical load with respect to the aspect
ratio, foundation stiffness, and variation of thickness of the plate are made. Selected
mode shapes of buckling are also presented.

2 Formulation of the Problem

Consider a thin isotropic rectangular plate bounded by x = 0, x = a, y = 0, and
y = b as shown in Fig. 1. The isotropic plate is subjected to the in-plane forces Nx

and Ny acting on and normal to the edge x = 0; x = a; y = 0; and y = b. Its
transverse deflection w(x, y, t) by using the classical plate theory is governed by the
fourth-order partial differential equation as follows:

D
∂
4wðx, y, tÞ

∂x4
+ 2

∂
4wðx, y, tÞ
∂x2∂y2

+
∂
4wðx, y, tÞ

∂y4

� �
−Nx

∂
2wðx, y, tÞ

∂x2
−Ny

∂
2wðx, y, tÞ

∂y2

+ kf wðx, y, tÞ+ ρh
∂
2wðx, y, tÞ

∂t2
= pðx, y, tÞ

ð1Þ

where w(x, y, t) is the transverse displacement of the plate; D is the flexural rigidity
of the plate defined by
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D=
Eh3

12 1− ν2ð Þ , ð2Þ

E is Young’s modulus; h is the plate thickness; kf is the foundation stiffness; υ is
Poisson’s ratio; Nx and Ny are normal forces per unit length of plate in the x- and y-
directions, respectively, positive if in tension; and p(x, y, t) is the lateral dynamic
load. The forces per unit length are related to the in-plane stresses (σx, σy, τxy) by
Nx = σxh; Ny = σyh and Nxy = τxyh. Let us assume Ny = αNx and Nxy = 0 [2].

The isotropic plate is fully attached to the elastic foundation of elastic coefficient
kf. Let the edges x = 0; x = a; y = 0; and y = b be semi-rigid supported, then the
boundary conditions can be expressed as follows.

At x = 0 and x = a:

wðx, y, tÞ=0 andD
∂
2wðx, y, tÞ

∂x2
+ ν

∂
2wðx, y, tÞ

∂y2

� �
= k1

∂wðx, y, tÞ
∂x

ð3Þ

At y = 0 and y = b:

wðx, y, tÞ=0 andD
∂
2wðx, y, tÞ

∂y2
+ ν

∂
2wðx, y, tÞ

∂x2

� �
= k2

∂wðx, y, tÞ
∂y

ð4Þ

p la t e

S p r in g  la y e r

k1

k1

k2

k2

Ny

N y

Nx

Fig. 1 Isotropic rectangular plate of thin plate on elastic foundation subjected to the in-plane
forces

Analytical Behavior of Rectangular Plates Under … 347



Adopting the non-dimensional coordinates ξ = x/a; η = y/b, Eq. (1) becomes

∂
4w

∂ξ4
+ 2s2

∂
4w

∂ξ2∂η2
+ s4

∂
4w
∂η4

+
a4ρh
D

∂
2w
∂t2

+
a2Nx

D
∂
2w

∂ξ2
+ αs2

∂
2w
∂η2

� �
+

a4kf
D

w=0

ð5Þ

where s is the aspect ratio defined by a/b; α is the ratio between Nx/Ny.
A solution for the displacement w(ξ,η,t) can be expressed by:

wðξ, η, tÞ=Wmnðξ, ηÞ cos ωmntð Þ=XmðξÞYnðηÞ cos ωmntð Þ ð6Þ

where ωmn is the natural frequency of the plate and Wmn(ξ, η) is the function of
position coordinates determined for the mode numbers m and n in the ξ-direction
and η-direction, respectively, which can be determined from the first and second
auxiliary Levy-type problem [3].

3 Determination of the Eigenfrequencies

In order to solve the non-dimensional Eq. (5) of the problem, the free vibration
solution of the problem is set as shown in Eq. (6) above.

3.1 First Auxiliary Levy-Type Problem

Based on the modified Bolotin method, the solution of Eq. (5) for the first auxiliary
problem can be expressed in non-dimensional form as:

Wmnðξ, ηÞ= ∑
m

m=1
∑
n

n=1
XmnðξÞ sin πqηð Þ ð7Þ

Satisfying the semi-rigid boundary conditions along ξ = 0 and ξ = 1:

XmnðξÞ=0;
∂
2Wðξ, ηÞ
∂ξ2

+ υs2
∂
2Wðξ, ηÞ
∂η2

� �
= − k1s

∂Wðξ, ηÞ
∂ξ

ð8Þ

where k1 = k1b
D is the non-dimensional rotational stiffness coefficient that varies from

0 to 1.
Substituting Eq. (7) into Eq. (5) and satisfying the boundary conditions

according to Eq. (8), the non-dimensional eigenvector in ξ-direction can be
expressed as
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XmnðξÞ= ∑
m

m=1
∑
n

n=1
cos pπξð Þ+F1 sin pπξð Þ− coshðβπξÞ+F2 sinhðβπξÞ ð9Þ

where

β=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−

s2N0

π2
+ p2 + 2s2q2

r
ð10Þ

F1 = −
β cos pπð Þ

β sin pπð Þ− p sinh πβð Þ +
β cosh πβð Þ

β sin pπð Þ− p sinh πβð Þ

−
p2π sinh πβð Þ

sk1 β sin pπð Þ− p sinh πβð Þð Þ −
β2π sinh πβð Þ

sk1 β sin pπð Þ− p sinh πβð Þð Þ

ð11Þ

F2 =
p cos pπð Þ

β sin pπð Þ− p sinh πβð Þ −
p cosh πβð Þ

β sin pπð Þ− p sinh πβð Þ

+
p2π sin pπð Þ

sk1 β sin pπð Þ− p sinh πβð Þð Þ +
β2π sin pπð Þ

sk1 β sin pπð Þ− p sinh πβð Þð Þ

ð12Þ

N0 =
b2Nx

D
ð13Þ

3.2 Second Auxiliary Levy-Type Problem

The solution of Eq. (5) for the second auxiliary problem in non-dimensional form
can be expressed as:

Wmnðξ, ηÞ= ∑
m

m=1
∑
n

n=1
sin πpξð ÞYmnðηÞ ð14Þ

Satisfying the semi-rigid boundary conditions along η = 0 and η = 1:

YmnðηÞ=0;
∂
2Wðξ, ηÞ
∂η2

+
υ

s2
∂
2Wðξ, ηÞ
∂ξ2

� �
= −

k2
s
∂Wðξ, ηÞ

∂η
ð15Þ

where k2 = k2a
D is the non-dimensional rotational stiffness coefficient that its value

varies from 0 to 1.
Substituting Eq. (3) into Eq. (5) and satisfying the boundary conditions

according to Eq. (15), the non-dimensional eigenvector in η-direction can be
expressed as:
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YmnðηÞ= ∑
m

m=1
∑
n

n=1
cos qπηð Þ+F3 sin qπηð Þ− coshðθπηÞ+F4 sinhðθπηÞ ð16Þ

where

θ=
1
s

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2p2 + s2q2 −

s2N0α

π2

r
ð17Þ

F3 = −
k2θ cos πqð Þ− k2 cosh πθð Þ+ sπ q2 + θ2

� �
sinh πθð Þ

k2 θ sin πqð Þ− q sinh πθð Þð Þ ð18Þ

F4 =
k2q cos πqð Þ− k2 cosh πθð Þ+ sπ q2 + θ2

� �
sinh πqð Þ

k2 θ sin πqð Þ− q sinh πθð Þð Þ ð19Þ

The unknown quantities p and q which are the number of modes in the x- and y-
directions for non-simply supported conditions are calculated from the transcen-
dental equations:

− 2s2k
2
1pβ+2s2k

2
1pβ cos pπð Þ cosh πβð Þ

+ s2k
2
1 p2 − β2
� �

+ π2 p2 + β2
� �2� �

sin pπð Þ sinh πβð Þ=0
ð20Þ

− 2k
2
2qθ+2k

2
2qθ cos qπð Þ cosh πθð Þ

+ k
2
2 q2 − θ2
� �

+ s2π2 q2 + θ2
� �2� �

sin qπð Þ sinh πθð Þ=0
ð21Þ

Once the value of p and q are determined from Eqs. (20)–(21), the
non-dimensional critical in-plane stresses for statics condition and the eigenvalues
of the system can be expressed as

N0 =
p4π4 + 2s2p2π4q2 + s4 kf + π4q4

� �
s2π2 p2 + s2q2αð Þ ð22Þ

ωmn =
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p4π4 + s2p2π2 −N0 + 2π2q2ð Þ+ s4 kf + π4q4 −N0π2q2α

� �q
ð23Þ

where kf =
kf a4

π4D is non-dimensional Winkler foundation stiffness.
The eigenmodes of the system are determined as the product of Eqs. (9)–(16).
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3.3 Determination of the Time Function

The time function for the system can be solved by using the Duhamel integration. It
can be expressed as:

T ̈mnðtÞ+2ξωmnT ̇ðtÞ+ω2
mnTðtÞ=

Ra
0
XmnðxÞdx

Rb
0
YmnðyÞdy

ρhQmn
PðtÞδ x− x0 −ΔxH t− t0ð Þð Þ½ �δ y− y0½ �

ð24Þ

where Qmn is the normalization factor of the eigenmodes that can be expressed as:

Qmn =
Za

0

XmnðxÞð Þ2dx
Zb

0

YmnðyÞð Þ2dy ð25Þ

The lateral load, p(x, y, t), that moves suddenly from the initial position at x = x0
to the new position at x = x1 at time t = t0 can be expressed by using the Heaviside
unit step function, H[.] [4].

Finally, the generalized dynamic deflection of the system can be solved by
multiplying the spatial functions with the temporal function which is the solution of
Eq. (24).

4 Numerical Applications, Results, and Discussion

Using the procedure described above, the concrete plate on the Winkler foundation
subjected to the in-plane stresses in the x- and y-directions and the lateral load P
(t) is analyzed. The plate is suddenly moved from the initial position at x = x0 to the
new position at x = x1 at time t = t0. The structural properties of the plate are
a = 3 m; s = a/b is varied from 1 to 2; the thickness, h is 0.12 m. The physical
characteristics of the plate are ρ = 2400 kg/m3; E = 30.109 N/m2; υ = 0.3; kf = 1,
k1 = 0.5; and k2 = 0.5. The non-dimensional in-plane stresses in the x-direction,
N0 = 1; α = 1; the lateral load amplitude P0 = 105 Nm/m2. The initial position of
the load at x0 = 0.3a, y0 = b/2, and t0 = 2 s.

4.1 Variation of Aspect Ratio Versus the Critical in-Plane
Stress

Figure 2 shows the variation of aspect ratio as the function of the non-dimensional
in-plane stresses for the rectangular plate with semi-rigid conditions at all edges.
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A rectangular plate as shown in Fig. 1 is compressed by in-plane stresses N0 along
all of the four edges (α = 1). The smallest critical load is obtained for m = 1 and
n = 1. Results from Eq. (22) are shown in Fig. 2, which shows that N0 = 19.7176.

The buckling loads displayed in Fig. 2 are critical values. That is, they are the
lowest of the doubly infinite set of bucking eigenvalues that arise for each a/b. For
0.16 ≤ s ≤ 1, then m = 1; for 1 ≤ s ≤ 2, then m = 2; and for s > 2, then
m = 3. The critical loads listed in Fig. 2 are only for the range of plate aspect ratios
0.16 ≤ s ≤ 3.

Fig. 2 Non-dimensional critical buckling loads N0 = Nxb
2/D as a function of s = a/b for plate

with semi-rigid conditions, k1 = k2 = 0.5

Fig. 3 Non-dimensional value of N0 as a function of non-dimensional value of the foundation
stiffness kf for 2 values of s
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Increasing the aspect ratio s from s = 1 to s = 1.5 results in lowering the
non-dimensional value of N0 as shown in Fig. 3. The foundation stiffness also plays
a very important factor in increasing the value of the critical in-plane stresses.

4.2 Variation of Foundation Stiffness Versus the Maximum
Dynamic Deflection

Figure 4 shows the non-dimensional foundation stiffness coefficient versus the
maximum dynamic deflection computed using the value of N0 = 10 and ω = 10
and 20. It can be seen from Fig. 3 that by increasing the foundation stiffness
coefficient, the maximum dynamic deflection decreases for the value of load’s
frequency ω = 10; 20. It is also shown from Fig. 3 that the closer the value of
load’s frequency to the value of the first natural frequency of the system, the higher
the value of the maximum dynamic deflection.

4.3 Effect of in-Plane Stress and Lateral Load on Dynamic
Deflection

Figure 5 shows the response spectra of the plate subjected to in-plane stresses in x-
and y-directions and lateral load p(x, y, t). The lateral load is positioned initially at
x = x0 and at time t = t0 before suddenly moved into a new position at x = x2. It can

Fig. 4 Graph of non-dimensional foundation stiffness versus maximum dynamic deflection for
the value of s = 1; k1 = k2 = 0.5; N0 = 10
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be seen that the maximum dynamic deflection is influenced by the value of N0. When
the value of N0 approaches Ncr, the dynamic deflection will reach maximum value.

Figures 5 and 6 show the various dynamic response of the plate subjected to
in-plane stresses and lateral dynamic load that are suddenly moved to its new
position for two different values of N0. It can be seen that the dynamic response of
the system is higher when the N0 is close to the value of Ncr. By increasing the
value of in-plane stresses by 10 times for ω = 20, the dynamic response of the
system increased by 90.5% for the dynamic deflection. The dynamic response of
the system also increased drastically when the frequency of the lateral load
approaches the fundamental frequency of the system as shown in Fig. 4.

5 Conclusion

The foregoing work has shown how the modified Bolotin method is used to analyze
the buckling and the forced vibrations of rectangular plate sitting on the elastic
foundation having two opposite edges in semi-rigid conditions. The procedure may
be applied to all possible combination of fixed, simply supported, semi-rigid, or
free-edge conditions applied continuously along the edges of the plate.

Analytical solutions of the mode number in the x and in the y direction is solved
by using two transcendental equations. The whole formulation in this work is based
on the assumption that the boundary supports of the plate are semi-rigid with
rotational restraint. This is a very realistic assumption, particularly for concrete
plates, because one may find that rotational deformations exist along the joints.

Fig. 5 Response spectra of the plate subjected to in-plane stresses and lateral load
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Critical in-plane stresses for plates on the Winkler foundation increase linearly
with the value of foundation parameter kf. The load combination of the in-plane
compressive stresses in the x- and y-directions as well as the transversal load
drastically effects the maximum dynamic deflection of the system, especially when
the value of the in-plane stresses converges to the critical value and when the
frequency value of the load converges to the fundamental frequency of the system.

The stability and the dynamic analysis presented here would be quite useful for
plate structural elements such as concrete plate pavements.

Fig. 6 Various dynamic response of plate subjected to in-plane stresses and lateral load for the
value of s = 1; k1 = k2 = 0.5; α = 1 and kf = 1
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Static Analysis of FG-CNTRC Plates
Using C0-HSDT

T. Nguyen-Quoc, S. Nguyen-Hoai and D. Mai-Duc

Abstract Recently, an edge-based smoothed discrete shear gap method (ES-DSG)
based on the first-order shear deformation theory (FSDT) was developed to
investigate static and free vibration analyses of Reissner–Mindlin plates [1]. In this
paper, we extend ES-DSG to the C0-type higher-order shear deformation theory
(C0-HSDT) to study static analysis of functionally graded carbon nanoreinforced
composite (FG-CNTRC) plates. Four distributions of volume fractions of carbon
nanotubes (CNTs) including UD, FG-V, FG-O, FG-X are considered. The gov-
erning equations are approximated according to a combination between ES-DSG
and HSDT model. Hence, this does not require shear correction factors and
improves the accuracy of the present method. Numerical examples are performed to
show the reliability and accuracy of the present method.

Keywords FG-CNTRC ⋅ Carbon nanotubes (CNTs) ⋅ Higher-order
shear deformation theory (HSDT) ⋅ Static analysis

1 Introduction

Carbon nanotubes (CNTs) are considered “material for this century—twenty-first”
[2] that have attracted much attention of researchers, introduced by Iijima [3]. With
special properties, CNTs are considered as a potential material for reinforcement of
composites [4]. Zhu et al. [5] using FSDT and finite element method (FEM) re-
ported static and free vibration analyses of thick composite plates reinforced by
single-walled carbon nanotubes (SWCNTs). By using Ritz method, Ke et al. [6]
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examined nonlinear vibration of FG-CNTRC Timoshenko beams. Alibeigloo and
Liew [7] used elasticity theory to study thermo-elastic analysis of FG-CNTRC
plates. Nonlinear behavior of FG-CNTRC plates using analytical method and
asymptotic solutions was indicated by Shen [8]. Recently, Phung-Van et al. [9, 10]
used isogeometric approach (IGA) integrated with HSDT to examine behaviors of
FG-CNTRC plates [9] and nanoplates [10]. Further, the study of dynamic responses
of plate elements was performed in Refs. [11–14]. Available studies have con-
centrated on FG-CNTRC plates using mesh-free methods, FEM, IGA, or theory of
elasticity. In addition, we can see that the literature related to study responses of
FG-CNTRC plates based on C0-HSDT is somewhat limited. So, in this research,
we try to fill this gap by developing smoothed finite element method (S-FEM) using
a three-node triangular plate element.

S-FEM was introduced by Liu and Trung [15] which has combined the strain
smoothing technique [16] and FEM. Moreover, the S-FEM models have also been
studied and applied to many physical problems including plate and shell structures
[17–23], piezoelectricity [24], crack plates [25], and fluid–structure interaction [26–
28]. In S-FEM models, ES-FEM [29] shows good properties in structures/solid
mechanics. This paper develops combination between the advantages of ES-FEM
and discrete shear gap method (DSG) [30] using C0-HSDT for static analysis of
FG-CNTRC plates. Four distributions of the volume fraction of carbon nanotubes
including UD, FG-X, FG-O, FG-V are performed. According to a combination
between ES-DSG and HSDT model, governing equations are approximated. Hence,
this does not require shear correction factors and improves the accuracy of the
proposed method. Numerical results are investigated and verified to show the
reliability of the proposed method.

2 FG-CNTRC Plates

A FG-CNTRC plate with four distributions, shown in Fig. 1, is considered in this
research. Four distributions of CNTs are described as follows [8]

Fig. 1 Configuration of the FG-CNTRC plate
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VCNT =

V*
CNT ðUD)

ð1+ 2 zj j
h ÞV*

CNT ðFG−V)

2ð1− 2 zj j
h ÞV*

CNT ðFG−O)

2ð2 zj j
h ÞV*

CNT ðFG−X)

8>>><
>>>:

ð1Þ

By using rule of mixtures, material properties of FG-CNTRC are expressed

E11 = η1VCNTECNT
11 +VmEm;

η2
E22

=
VCNT

ECNT
22

+
Vm

Em ;
η3
G12

=
VCNT

GCNT
12

+
Vm

Gm ð2Þ

where Gm and Em are the shear modulus and Young’s modulus of the isotropic
matrix, respectively; GCNT

12 and ECNT
11 ,ECNT

22 are the shear and Young’s modulus of
CNT, respectively. η1, η2 and η3 were defined in Ref. [8].

3 Mathematical Equations

Based on C0-type HSDT model [31], the displacement fields of plates are defined

uðx, y, zÞ= u0 + z−
4z3

3t2

� �
βx −

4z3

3h2
ϕx − h ̸2≤ z≤ h ̸2ð Þ

vðx, y, zÞ= v0 + z−
4z3

3t2

� �
βy −

4z3

3h2
ϕy

wðx, yÞ=w0

ð3Þ

where β= βx βy
� �T are the rotations around y-axis and x-axis, respectively; h is

thickness of plate; w0 and u0 = u0 v0f gT are the transverse displacement and the

membrane displacements, respectively. ϕ= ϕx ϕy

� �T is warped function defined in
Ref. [32]

The in-plane strains are expressed as follows:

εp = ½εxx εyy γxy�T = ε0 + zκ1 + z3κ2 ð4Þ

where

ε0 =
∂u0
∂x

∂v0
∂y

∂u0
∂y

+ ∂v0
∂x

n oT
=∇su0; κ1 =

1
2

∇β+ ð∇βÞT� �

κ2 =
c
6

∇ϕ+ ð∇ϕÞT� �
+ ∇β+ ð∇βÞT� �� � ð5Þ

in which ∇= ∂ ̸∂x ∂ ̸∂y½ �T and shear strains are written
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γ= γxz
γyz

� 	
=

w, x + βx
w, y + βy

� 	
+ c

ϕx + βx
ϕy + βy

� 	
z2 = εs + z2κs ð6Þ

where c = -4/h. It can be seen that the shear strains in C0-HSDT shown in Eq. (6)
are quadratic functions, so the shear stress is represented parabolically. This
improves the accuracy of shear stresses when compared those in FSDT.

For static analysis, a weak form for FG-CNTRC plates under uniform loading q0
is written:

Z
Ω
δεTpD

*εpdΩ+
Z
Ω
δγTD*

SγdΩ=
Z
Ω
δwq0dΩ ð7Þ

and material constant matrices D* and D*
S have the forms of

D* =
A B E
B D F
E F H

2
4

3
5;D*

S =
AS BS

BS DS

� 	
ð8Þ

where

Aij,Bij,Dij,Eij,Fij,Hij
� �

=
Z h ̸2

− h ̸2
1, z, z2, z3, z4, z6
� �

Q ̄ijdz i, j=1, 2, 6

As
ij,B

s
ij,D

s
ij


 �
=

Z h ̸2

− h ̸2
1, z2, z4
� �

Qījdz i, j=4, 5

ð9Þ

where the material constants are given by

Q11 =
E11

1− ν12ν21
,Q12 =

ν12E22

1− ν12ν21
,Q22 =

E22

1− ν12ν21
Q66 =G12,Q55 =G13,Q44 =G23

ð10Þ

4 An ES-DSG Formulations for FG-CNTRC Plates

In ES-FEM [29], the 2D problem is discretized into a mesh of triangular elements.
The ES-FEM stiffness matrix is calculated according to the edge-based smoothing
domains. In this research, we apply ES-FEM [29] to discrete shear gap method
(DSG) [30], which is so-called ES-DSG. For triangular elements, by connecting
two end nodes of the edge to centroids of adjacent elements, the smoothing domain
associated with the edge k is created, as indicated in Fig. 2.
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Applying ES-FEM technique [29], the strains εh in Eqs. (4)–(6) are used to
create a smoothed strains εh̃ on the smoothing cell Ωs

k associated with the edge k,
such as:

ε ̃h =
Z
Ωs

k

εp γ
� TΦk xð ÞdΩ ð11Þ

where a smoothing function, Φk xð Þ, satisfies at least unity property and can be
expressed as

Φk xð Þ= 1 ̸Ak x ∈ Ωs
k

0 x 6 inΩs
k

�
ð12Þ

where the area, Ak , of the smoothing domain Ωs
k computed by

Ak =
Z
Ωs

k

dΩ=
1
3
∑
Nk
e

i=1
Ai ð13Þ

where Nk
e is the number of elements attached to the edge k Nk

e =1
�

for the boundary
edges and Nk

e =2 for inner edges as depicted in Fig. 2), and Ai is the area of the ith
element attached to the edge k.

Based on three-node triangular elements, the displacement field for FG-CNTRC
plates can be defined

Fig. 2 Smoothing cells Ωs
k
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ueðxÞ= ∑
3

i=1
diag Ne

i ðxÞ,Ne
i ðxÞ,Ne

i ðxÞ,Ne
i ðxÞ,Ne

i ðxÞ,Ne
i ðxÞ,Ne

i ðxÞ
� �

dei = ∑
3

i=1
Ne

i ðxÞdei
ð14Þ

The smoothed strains at edge k are defined:

ε ̃h = ∑
Nk
n

I =1
B̃IdI ð15Þ

where Nk
n is the number of nodes belonging to elements connected to edge

k Nk
n =3

�
for the boundary edges and Nk

n =4 for inner edges depicted in Fig. 2); B̃I

are given by

B̃k
I = B̃ S̃

� 
=

1
Ak ∑

Nk
e

i=1

1
3
AiBi ð16Þ

where Bi is obtained from

Bi = Bm
i

� �T Bb1
i

� �T
Bb2
i

� �T
Bs0
ið ÞT Bs1

ið ÞT
h i

ð17Þ

in which

Bm =
1
2Ae

b− c 0 0 0 0 0 0 c 0 0 0 0 0 0 − b 0 0 0 0 0 0
0 d− a 0 0 0 0 0 0 − d 0 0 0 0 0 0 a 0 0 0 0 0

d− 1 b− c 0 0 0 0 0 − d c 0 0 0 0 0 a − b 0 0 0 0 0

2
4

3
5

ð18Þ

Bb1 =
1
2Ae

0 0 0 b− c 0 0 0 0 0 0 c 0 0 0 0 0 0 − b 0 0 0
0 0 0 0 d− a 0 0 0 0 0 0 − d 0 0 0 0 0 0 a 0 0
0 0 0 d− a b− c 0 0 0 0 0 − d c 0 0 0 0 0 a − b 0 0

2
4

3
5

ð19Þ

Bb2 =
1
2Ae

000 b− c 0 b− c 0 000 c 0 c 0 000 − b 0 − b 0
000 0 d− a 0 d− a 000 0 − d 0 − d 000 0 a 0 a
000 d− a b− c d− a b− c 000 − d c − d c 000 a − b a − b

2
4

3
5

ð20Þ

Bso =
1
2Ae

00 b− c Ae 0 00 00 c ac ̸2 bc ̸2 00 00− b bd ̸2 − bc ̸2 00
00 d− a 0 Ae00 00− d − ad ̸2 − bd ̸2 00 00 a ad ̸2 ac ̸2 00

� 	

ð21Þ

Bs1 =
1
2Ae

0 0 0 1 0 1 0 0 0 0 1 0 1 0 0 0 0 1 0 1 0
0 0 0 0 1 0 1 0 0 0 0 1 0 1 0 0 0 0 1 0 1

� 	
ð22Þ
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here Ae is the area of the element; a, b, c, d are calculated as indicated in Fig. 3.
Hence, the stiffness of the ES-DSG element is expressed:

K̃=
Z
Ωs

k

B̃T
i D

*B̃jdΩ+
Z
Ωs

k

S̃Ti D
*
s S̃jdΩ

= B̃T
i D

*B̃jAe + S̃Ti D
*
s S̃jAe

ð23Þ

5 Numerical Results

In this study, some numerical examples are studied to show the accuracy and
stability of the present method. Material properties of matrix, PmPV, are given as
Em =2.1 GPa, ρm =1.16 g ̸cm2, νm =0.34 and material properties of the rein-
forcements, the (10, 10) SWCNTs, are ECNT

11 = 5.6466 ðTPa), ECNT
22 = 7.08 ðTPa),

GCNT
12 = 1.9445 ðTPa), αCNT11 = 3.4584 ð10− 6 ̸K), αCNT22 = 5.1682ð10− 6 ̸K). More-

over, we assume η3 = η2 and G23 =G13 =G12. The FG-CNTRC plate may have
clamped (C) edges or simply supported (S). The symbol, CCCC or SSSS, for
instance, indicates clamped or simply supported boundary conditions, respectively.

Now a square SSSS and CCCC FG-CNTRC plate under a uniform load
q = 0.1 MPa is considered. A deflection w̄=w ̸h is considered.

Firstly, UD plates with five meshes index n = 4, 8, 12, 16, 20 are analyzed. The
convergence of the deflection of the FG-CNTRC plate is plotted in Fig. 4. And the
reference solution was reported in Ref. [5]. We can observe that the ES-DSG is
much better than the DSG with the same degree of freedoms (DOFs). Next, Table 1
shows the effect of length-to-thickness ratios L/h on the central deflection of the
FG-CNTRC with V*

CNT =0.11 and meshing 8 × 8. We can see that the proposed
results are much better than the DSG and match very well with those of reference
solutions [5] with all ratios L/h = 10, 20, and 50. Besides, we recognize that the
central deflections of the FG-O and FG-V plate are larger than those of the UD and

Fig. 3 DSG triangular
element [30]
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FG-X plate. This means that distributions of CNTs effect on the stiffness of the
FG-CNTRC plate. And UD and FG-X plates depicted in Fig. 1 have more CNTs at
the bottom and the top layer and as a result the plate becomes stiffer.

Effects of the volume fractions V*
CNT =0.14 and V*

CNT =0.17 on the deflection for
the plate are listed in Tables 2 and 3, respectively. Again, it can be observed that the
results of the proposed method match well to those of Ref. [5] and are much better
than the DSG.

Fig. 4 Convergence of
results of the SSSS UD plate
with a/h = 10 and
V*
CNT =0.17

Table 1 Central deflection of the plate with V*
CNT =0.11

a/h Types SSSS CCCC
DSG ES-DSG Ref [4] DSG ES-DSG Ref [4]

10 UD 3.57E-03 3.68E-03 3.74E-03 2.05E-03 2.14E-03 2.23E-03
FG-V 4.24E-03 4.38E-03 4.46E-03 2.16E-03 2.27E-03 2.35E-03
FG-O 5.16E-03 5.33E-03 5.22E-03 2.48E-03 2.61E-03 2.51E-03
FG-X 3.03E-03 3.12E-03 3.18E-03 1.93E-03 2.02E-03 2.10E-03

20 UD 3.46E-02 3.56E-02 3.63E-02 1.26E-02 1.32E-02 1.34E-02
FG-V 4.61E-02 4.76E-02 4.88E-02 1.48E-02 1.57E-02 1.59E-02
FG-O 5.86E-02 6.07E-02 6.14E-02 1.80E-02 1.92E-02 1.86E-02
FG-X 2.59E-02 2.66E-02 2.70E-02 1.08E-02 1.13E-02 1.15E-02

50 UD 1.09 1.13 1.16 2.44E-01 2.62E-01 2.62E-01
FG-V 1.52 1.61 1.65 3.31E-01 3.60E-01 3.65E-01
FG-O 1.95 2.09 2.15 4.23E-01 4.68E-01 4.71E-01

FG-X 0.76 0.78 0.79 1.80E-01 1.90E-01 1.90E-01
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6 Conclusions

In this research, we reported a simple approach based on ES-DSG and C0-HSDT
for static analysis of FG-CNTRC plates. The stiffness formulation of the ES-DSG
based on C0-HSDT is performed by using the smoothing domains associated with
edges of elements. So, this does not require shear correction factors and can
improve the accuracy of the present method. The material properties of FG-CNTRC
are assumed to be graded through the thickness direction according to several
distributions of CNTs. The distributions of CNTs have a large impact on the

Table 2 Deflection of the plate with V*
CNT =0.14

a/h Types SSSS CCCC
DSG ES-DSG Ref [4] DSG ES-DSG Ref [4]

10 UD 3.14E-03 3.25E-03 3.306 e-3 1.91E-03 1.99E-03 2.09E-03
FG-V 3.70E-03 3.82E-03 3.894 e-3 2.00E-03 2.09E-03 2.18E-03
FG-O 4.46E-03 4.61E-03 4.525 e-3 2.26E-03 2.38E-03 2.31E-03
FG-X 2.73E-03 2.82E-03 2.842 e-3 1.81E-03 1.89E-03 1.98E-03

20 UD 2.86E-02 2.95E-02 3.00E-02 1.12E-02 1.17E-02 1.19E-02
FG-V 3.81E-02 3.93E-02 4.03E-02 1.30E-02 1.37E-02 1.39E-02
FG-O 4.84E-02 5.00E-02 5.07E-02 1.56E-02 1.65E-02 1.60E-02
FG-X 2.18E-02 2.23E-02 2.26E-02 9.81E-03 1.03E-02 1.04E-02

50 UD 0.87 0.90 0.918 2.01E-01 2.13E-01 2.13E-01
FG-V 1.23 1.29 1.326 2.71E-01 2.93E-01 2.96E-01
FG-O 1.59 1.69 1.738 3.47E-01 3.79E-01 3.80E-01
FG-X 0.60 0.62 0.628 1.50E-01 1.57E-01 1.57E-01

Table 3 Central deflection of the plate with V*
CNT =0.17

a/h Types SSSS CCCC
DSG ES-DSG Ref [4] DSG ES-DSG Ref [4]

10 UD 2.28E-03 2.36E-03 2.39E-03 1.30E-03 1.36E-03 1.41E-03
FG-V 2.73E-03 2.81E-03 2.86E-03 1.37E-03 1.44E-03 1.48E-03
FG-O 3.29E-03 3.40E-03 3.37E-03 1.55E-03 1.63E-03 1.59E-03
FG-X 1.95E-03 2.02E-03 2.01E-03 1.23E-03 1.29E-03 1.32E-03

20 UD 2.24E-02 2.30E-02 2.35E-02 8.04E-03 8.45E-03 8.56E-03
FG-V 3.00E-02 3.10E-02 3.17E-02 9.52E-03 1.01E-02 1.02E-02
FG-O 3.81E-02 3.95E-02 4.01E-02 1.15E-02 1.22E-02 1.20E-02
FG-X 1.68E-02 1.73E-02 1.74E-02 6.97E-03 7.31E-03 7.29E-03

50 UD 0.71 0.74 0.75 1.58E-01 1.70E-01 1.70E-01
FG-V 0.99 1.05 1.08 2.15E-01 2.35E-01 2.39E-01
FG-O 1.27 1.37 1.41 2.74E-01 3.05E-01 3.08E-01

FG-X 0.49 0.51 0.51 1.17E-01 1.24E-01 1.23E-01
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deflection of the plate. UD and FG-X plates become stiffer than those of FG-O and
FG-V. The numerical results displayed high accuracy of the ES-DSG for the thin to
thick plates.
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Finite Element Simulation
of the Strength of Corrugated Board
Boxes Under Impact Dynamics

V. Dung Luong, Fazilay Abbès, Boussad Abbès, P. T. Minh Duong,
Jean-Baptiste Nolot, Damien Erre and Ying-Qiao Guo

Abstract In this study, we propose a model based on the finite element method to
study the behavior of corrugated cardboard boxes subjected to shocks. To reduce
the preparation of the CAD model and the computational times, we have developed
an elastoplastic homogenization model for the corrugated cardboard. The homog-
enization consists in representing a corrugated cardboard panel by a homogeneous
plate. A through-thickness integration on a periodic unit cell containing a flute and
two flat linerboards is proposed. Each constituent is considered as an orthotropic
elastoplastic material with specific hypotheses for the corrugated medium. The
model was implemented in the finite element software ABAQUS. Damage
boundary curve (DBC) for corrugated cardboard boxes are defined by experimental
testing and finite element simulations using the proposed model. The numerical
results obtained are in good agreement with the experimental results.
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Impact dynamics

1 Introduction

Corrugated shipping containers are designed to protect the product from hazards of
the distribution, transportation, and storage environment so that the product can be
shipped to consumers without damage. Consumer products usually encounter
shocks in two conditions in the lifespan: One is bumps and bounces caused by
vehicle on bumpy roads during the transportation, and the other is drops caused by
human negligence in handling the goods. Mechanical shock test, which offers
prompt verification of structural strength in the product design stage for deciding
whether proper buffering is required in the packing design, is one of crucial items
for validating the design.

In recent years, many researchers used measurement method of the vibration
levels in truck shipments to study effects on the products. These studies measured
the vibration levels in two of the most commonly used truck types to ship packaged
goods as a function of road condition and vehicle speed [1–3]. Newton [4] used the
damage boundary curve to define the fragility of a product based on its sensitivity to
acceleration and the velocity change that occurs during impact. The theoretical
basis for the widely accepted damage boundary curve (DBC) approach to product
fragility and the applicability of its associated ASTM D3332 fragility assessment
test procedure is discussed by Burgess [5].

Using finite element simulations allows avoiding numerous experimental tests
and predicting possible failures during the early design stage. However, a
computer-aided design of corrugated cardboard box is fastidious, and its meshing
generates heavy models which increases CPU time. An alternative is to develop a
homogenization model for the corrugated cardboard. Some authors [6–10] have
developed analytical homogenization models for linear elastic behavior of corru-
gated cardboard. However, for corrugated cardboard undergoing large deforma-
tions, a nonlinear behavior is more suitable. Mäkelä and Östlund [11] proposed an
orthotropic elastoplastic model in plane stresses (IPE-Isotropic Plasticity Equivalent
model) to accurately describe the behavior of paperboard with only few parameters
that are easily determined from simple tensile tests. Based on this model, we have
developed an elastoplastic homogenization model for the corrugated cardboard. The
homogenization consists in representing a corrugated cardboard panel by a
homogeneous plate. A through-thickness integration on a periodic unit cell con-
taining a flute and two flat linerboards is proposed. Each constituent is considered
as an orthotropic elastoplastic material with specific hypotheses for the corrugated
medium. The model was implemented in the finite element software ABAQUS.
This model is then applied to define the damage boundary curve (DBC) to assess
the fragility of corrugated cardboard boxes. The proposed model was successfully
validated by comparing the experimental results with the simulation ones.
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2 Materials and Methods

2.1 Material

Corrugated cardboard is one of the most used packaging material to make boxes or
interlayers for goods transport. The manufacturing process gives three characteristic
directions: the machine direction (MD), the cross direction (CD), and the thickness
direction (ZD). In this study, we used corrugated cardboard with the properties
shown in Fig. 1 and given in Table 1.

2.2 Experiment

The test procedure requires the use of a programmable shock machine, such as the
one depicted in Fig. 2, which can vary the acceleration amplitude, duration, and

Fig. 1 Geometric structure and the directions of corrugated cardboard plate

Table 1 Properties of the
papers

Paperboard Grammage
(g/mm2)

Thickness
(mm)

1 140 0.208 ± 0.004
2 92 0.144 ± 0.008
3 140 0.208 ± 0.004
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velocity change parameters of repeated impacts. The acceleration and velocity
change are the two parameters recorded and plotted in the testing procedure.

In our study, all shock tests were carried out under standard conditions: 23 °C
and 50% relative humidity (RH). Cardboard boxes having the following dimensions
length = 222 mm, width = 185 mm, height = 295 mm were obtained using a
cutting table (ZÜND M-1600). Different masses are stacked on the top of the
packaging as shown in Fig. 2.

The damage boundary curve is generated by two steps: velocity step (short
impact) and acceleration step (long impact). The velocity step allows to define the
critical velocity change, ΔVC, for the critical component of the packaging.
Half-sine impact shock pulses are programmed for a short duration. The packaging
is attached to the shock machine carriage and dropped from a series of increasing
drop heights until the critical element is damaged. Every shock pulse is recorded
and plotted as acceleration, in g, versus velocity change. The point where damage
occurs ends the step velocity portion of the test. The critical velocity change is
defined by drawing a vertical line through the last point prior to damage.

Experimentally, the damage is performed by inspection of the box after com-
pletion of each impact test. No permanent deformation should be seen on the box.
The test continues with until the product is damaged.

The acceleration step allows to define the critical acceleration, AC, for the critical
component of the packaging. The shock machine programmer is set to produce a

Fig. 2 Shock machine and experimental setup
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trapezoidal shock pulse. The drop height is fixed and only the acceleration is
increased, in order to increase the severity of the series of impacts. As before, the
test continues until damage to the critical component is observed. A horizontal line
is drawn through the last point prior to damage. The final step in the development of
the damage boundary curve is to include the rounded corner. An ellipse is fitted
between the points (ΔVC, 2AC) and ((π/2)ΔVC, AC). An example of an experi-
mental damage boundary curve obtained for corrugated cardboard box preloaded
with 21.9 kg is shown in Fig. 3. In this figure, the diamonds represent the exper-
imentally undamaged boxes, while the squares represent the damaged ones. The
solid line represents the DBC obtained by the method aforementioned.

3 Finite Element Model

3.1 Anisotropic Elastoplastic Behavior Model
of Paperboard

Paperboard consists mainly of wood fibers with three components: cellulose,
hemicellulose, and lignin. Because of the continuous paper manufacturing process,
the wood fibers are oriented more in the machine direction. Paperboard is an
anisotropic material; it is two to four times stiffer in the machine direction
(MD) than the cross direction (CD).

Damage

No damage

No damage

ΔVC

AC

Fig. 3 Damage boundary curve obtained for corrugated cardboard box preloaded with
M = 21.9 kg
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The in-plane properties of paperboard are relatively easy to determine by tensile
tests. Due to its low thickness, out-of-plane properties are more difficult to obtain.
Stenberg [12] showed that the Young’s modulus along normal direction (ZD) is
about 200 times lower than that of MD. Stenberg et al. [13] observed that the
deformation in the plane is negligible during the compression according to the
thickness. The Poisson coefficients νxz and νyz consequently are close to zero.

In this study, we used the IPE model [11] to describe the behavior of corrugated
cardboard components. The orthotropic elasticity behavior in plane stresses is
defined by:

σf g=
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σxy
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The deviatoric stresses vector and the IPE plasticity criterion are given by:

sf g=
sx
sy
sz
sxy

8>><
>>:

9>>=
>>;

= L½ � σf g= 1
3

2A C−A−B 0
C−A−B 2B 0
B−C−A A−B−C 0

0 0 3D

2
664

3
775

σx
σy
σxy

8<
:

9=
; ð2Þ

f = σeq −Y =
3
2
⟨s⟩ sf g

� �1 ̸2

−E0 ε0 + εpeq

� �1 ̸n
=0 ð3Þ

where Y is the yield stress, A, B, C, D, E0, ε0, εpeq, n are the parameters of the IPE
model that can be determined using experimental tests.

3.2 Identification of the IPE Model

For each corrugated cardboard constituent (skins and flute), experimental tensile
tests were carried out for three directions (MD, CD, and 45°) at a crosshead speed
of 10 mm/min under standard conditions (23 °C and 50% relative humidity).
Table 2 summarizes the model parameters identified for the two skins and the flute.

3.3 Homogenization Method for Corrugated Cardboard

Using the full 3D model for corrugated cardboard boxes consumes a lot of time. To
reduce the preparation of the model and the computational times, we have devel-
oped a homogenization model for the corrugated cardboard. The homogenization
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consists in representing a sandwich panel by a homogeneous plate. We consider a
periodic unit cell in Fig. 4.

The plane strains are decomposed into membrane and bending parts as follows:

εf g= εmf g+ z κf g ð4Þ

where εmf g is the membrane strains vector and κf g is the curvatures vector.
The membrane forces, the bending, and torsion moments are obtained by inte-

grating the stresses through the thickness of the corrugated cardboard:

Nf g=
Zh

2

− h
2

σx
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σxy

2
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3
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2

− h
2

z
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2
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3
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For each layer of the corrugated cardboard (skins and flute), we use three
integration points through thickness. The plasticity algorithm is applied at each
integration point to determine the stress state and the elastoplasticity matrix in the
local coordinate system of each layer. It should be noted that the local coordinate
system of the flute is defined by the angle θ(x) (Fig. 4) as follows:

Table 2 Parameters of the IPE model for corrugated cardboard constituent

Skins (Ex, Ey, Gxy and E0 in MPa)

Ex Ey νxy Gxy E0 n A B C D ε0
2433.2 859.91 0.0829 1077.2 96.45 4.97 1.0 2.498 2.498 1.622 0.486E-3
Flute (Ex, Ey, Gxy and E0 in MPa)

Ex Ey νxy Gxy E0 n A B C D ε0
1130.4 625.85 0.0717 303.05 87.31 4.247 1.0 2.178 2.178 1.871 0.923E-3

P

e1

e2
e3

hc h(x)

x

z x’

z’

θ(x) 

Fig. 4 Periodic unit cell of a corrugated cardboard and numerical integration points through the
thickness
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θ xð Þ= tan− 1 dh xð Þ
dx

� �
; h xð Þ= hc

2
−

e2
2

� �
sin 2π

x
P

� �
ð6Þ

The stress vector and the elastoplasticity matrix of the flute are defined in the local
frame (x′, z′) and then transformed into the global frame (MD-x, CD-y, ZD-z) to
achieve the integration through the thickness of the corrugated cardboard. On the
other hand, the flute cannot support the normal stress along x-axis (Nx) and the
bending momentMx on MD-x section. This allows to neglect the normal stress along
the x-direction as well as the first line and the first column of the elastoplasticity
matrix.

Finally, the homogenized membrane forces, bending, and torsion moments for
the corrugated cardboard are given by the following expressions:

Nx =
e1
2

∑
3

i=1
σð1Þxi ωi +

e3
2

∑
3

i=1
σð3Þxi ωi

Ny =
e1
2

∑
3

i=1
σð1Þyi ωi +

e2
2 cos θð Þ ∑

3

i=1
σð2Þyi ωi +

e3
2

∑
3

i=1
σð3Þyi ωi

Nxy =
e1
2

∑
3

i=1
σð1Þxyiωi +

e2
2 cos θð Þ ∑

3

i=1
σð2Þxyiωi +

e3
2

∑
3

i=1
σð3Þxyiωi

8>>>>>>>><
>>>>>>>>:

ð7Þ

Mx =
e1
2

∑
3

i=1
σð1Þxi ziωi +

e3
2

∑
3

i=1
σð3Þxi ziωi

My =
e1
2

∑
3

i=1
σð1Þyi ziωi +

e2
2 cos θð Þ ∑

3

i=1
σð2Þyi ziωi +

e3
2

∑
3

i=1
σð3Þyi ziωi

Mxy =
e1
2

∑
3

i=1
σð1Þxyi ziωi +

e2
2 cos θð Þ ∑

3

i=1
σð2Þxyi ziωi +

e3
2

∑
3

i=1
σð3Þxyi ziωi

8>>>>>>>><
>>>>>>>>:

ð8Þ

where e1, e2, and e3 represent the thicknesses of the three layers, ωi represents the
numerical integration weight corresponding to the integration point i. The elasto-
plastic homogenization model was implemented in the finite element software
ABAQUS using UGENS user subroutine [14].

4 Results

4.1 Numerical Validation of the H-Model on the Impact
Test

To validate our elastoplastic H-model, impact tests finite element simulations are
run with the full 3D structure of the box and the homogenized 3D box (Fig. 5). The
dimensions of the box are similar to the experimental ones. The elastoplastic
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properties of the three layers are those given in Table 3. The full 3D corrugated
cardboard box and the homogenized one are meshed with reduced-integration four
node shell elements (S4R) with 10 mm element size. The box is placed between
two rigid plates which are tied to the latter. In the proposed example, a mass of 6 kg
is attached to the top plate. A trapezoidal shock pulse is applied to the bottom plate
for a short duration. The acceleration amplitude and the velocity change are
recorded on the top plate during the simulations.

Several simulations were carried out with different acceleration amplitudes and
durations. As an example, the results for an excitation with an amplitude A = 10 g
and a duration t = 14 ms are given in Table 3. This was the case in all the simu-
lations. The relative difference between the full 3D model and the H-model is less
than 10% for the acceleration and velocity difference responses. However, the CPU
time is reduced by more than 96% for all the simulations. Therefore, the H-model
can be used to determine quickly by finite element simulations the damage
boundary curves of corrugated cardboard boxes.

4.2 Evaluation of DBC Using H-Model Numerical
Simulations

This section is devoted to the evaluation of damage boundary curves by numerical
simulations using the developed H-model. As for the experimental tests, we run

Fig. 5 Full 3D and the homogenized box used for the simulations

Table 3 Comparison between 3D model and H-model

Model 3D model H-model Relative difference (%)

A excitation (g) 10 10 –

A response (g) 20.8 19.1 −8.2
ΔV response (m/s) 2.1 1.9 −9.0
CPU time (s) 14163 551 −96.1
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successive simulations for velocity step (half-sine impact shocks) and acceleration
step (trapezoidal impact shocks). For each simulation, the acceleration response
amplitude versus the velocity change is plotted. The step stops when the box
undergoes a damage. The box is considered damaged when the equivalent plastic
strain exceeds 5% at any point in the box. This value corresponds to the experi-
mental value beyond which the constituents of the corrugated cardboard are
damaged. Figure 6 shows the results obtained for a box preload with M = 16.9 kg.
In this figure, the diamonds and the squares represent the undamaged boxes for
experiments and simulations, respectively, while the bullets and the triangles rep-
resent the damaged ones for experiments and simulations, respectively. The solid
and dotted lines represent the experimental and numerical DBC, respectively. We
can notice that the experimental and numerical DBC are in good agreement. This is
confirmed by the results reported in Table 4, where the relative difference between
experimental and numerical for the critical AC and ΔVC is less than 6%. The critical
acceleration (AC) and velocity change (ΔVC) levels are very important for design
decisions [15].

Damage

ΔV
C

Fig. 6 Experimental and numerical DBC for a box preload with M = 16.9 kg

Table 4 Comparison of AC
and ΔVC between H-model
and experiment with preload
M = 16.9 kg

Simulation Experiment Relative difference
(%)

AC (g) 6.5 6.7 −3.1
ΔVC

(m/s)
0.85 0.9 −5.8
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5 Conclusion

In this paper, we have proposed a finite element methodology to define the damage
boundary curve (DBC) for corrugated cardboard boxes. To run the needed impact
dynamic simulations, we have developed an elastoplastic homogenization model
for the corrugated cardboard. We have shown that this model can reduce the
preparation of the CAD model and the computational time. The comparison of the
results obtained by the homogenization model simulations and by the experiments
has proved the precision and effectiveness of the model. By using our H-model, we
have defined DBC for a preloaded box with a good agreement with the experi-
mental results. The present model allows to predict the mechanical behavior of
corrugated cardboard boxes under impact dynamics in early stage of design
development. DBC can be applied to several distribution package development
decisions. One can use the critical acceleration level (AC) to assign a G fragility for
cushioning decisions and design. The damage is prevented if the critical G level is
not exceeded. An appropriate cushion design can then be determined by using
cushion performance information. The critical velocity change level (ΔVC) is also
used for package design decisions. The drop height of the packaged product is
strongly related to the velocity change that products will receive in transportation
and handling. Thus, if the package’s drop height is controlled, then damage can be
avoided.
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Static and Free Vibration Analysis
of Functionally Graded Shells Using
a Cell-Based Smoothed Discrete Shear
Gap Method and Triangular Elements

D. Le-Xuan, H. Pham-Quoc, V. Tran-The and N. Nguyen-Van

Abstract A cell-based smoothed discrete shear gap method (CS-DSG3) using
three-node triangular element was recently proposed to improve the effectiveness of
the discrete shear gap method (DSG3) for static and vibration analyses of isotropic
Mindlin plates and shells. In this study, the CS-DSG3 is further extended for static
and free vibration responses of functionally graded shells. In the present method,
the first-order shear deformation theory is used in the formulation owing to the
simplicity and computational efficiency. Several numerical examples are provided
to validate high reliability of the CS-DSG3 in comparison with other numerical
methods.

Keywords Cell-based smoothed discrete shear gap method (CS-DSG3)
Functionally graded shell ⋅ First-order shear deformation theory (FSDT)

1 Introduction

Functionally graded materials (FGMs) obtained significant consideration due to
outstanding properties, such as high stiffness and strength-to-weight ratios, light-
weight, heat-resisting material. On the other hand, FGMs shells have been widely
used in aerospace, defense, electronics and nuclear reactors. Therefore, the static
and free vibration analysis of FG shells has been receiving considerable concern by
researchers. Loy et al. [1] and Pradhan et al. [2] studied the vibration of FG
cylindrical shells using the Love’s shell theory. The eigenvalue governing equations
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are solved by using Rayleigh-Ritz method. However, as the Love’s shell theory
neglects the effects of transverse shear, this theory only provides good results for an
analysis of the thin shells case. To overcome the drawbacks, the first-order shear
deformation theory (FSDT), which accounts for the transverse shear effects, was
used to analyze FG shells. Aghdam et al. [3] proposed the extended Kantorovich
method (EKM) to solve bending of moderately thick doubly curved FG shells. In
this study, they used FSDT and five highly coupled partial differential equation to
obtain in term of five displacement components. Su et al. [4] investigated the free
vibration of FG cylindrical, conical shells with general boundary conditions using
Rayleigh-Ritz method. Using the element-free kp-Ritz method, Zhao et al. [5]
investigated the static and vibration of FG shells subjected to mechanical and
thermomechanical load based on Sander’s FSDT. Recently, in order to improve the
quality of the numerical results, various theories have been developed to analyze
FG shell such as the higher-order shear deformation theory (HSDT) [6], layer-wise
theory [7]. However, these theories have a high computationally cost which causes
the limit of their practical applications. Therefore, from the engineering point of
view, the FSDT is still the most attractive and widely used approach due to its
simplicity and computational efficiency.

For the purpose of improving the quality of numerical results, Liu and Nguyen
[8] proposed a smoothed finite element method (S-FEM), which is based on the
stabilized conforming nodal integration (SCNI) of mesh-free method, including the
cell-based smoothed finite element (CS-FEM) [9–13], the node-based smoothed
finite element [14–16], the edge-based smooth finite element method [17, 18] and
the face-based smoothed finite element [19]. Each of these S-FEM has different
properties and has been successfully introduced for the analysis of practical
mechanics problems, especially for various problems plates and shells [20–22].

Among these S-FEM models, the CS-FEM shows some interesting properties in
the solid mechanics problems. Extending the idea of the CS-FEM to plate struc-
tures, Nguyen-Thoi et al. [23] have recently formulated a cell-based smoothed
stabilized discrete shear gap element (CS-DSG3) for static and free vibration
analyses of isotropic shell structures by combining the CS-FEM with the original
DSG3 [24]. In the CS-DSG3, each triangular element will be divided into three
sub-triangles, and in each sub-triangle, the stabilized DSG3 is used to compute the
strains. Then the strain smoothing technique on whole triangular element is used to
smooth the strains on three sub-triangles. The numerical results showed that the
CS-DSG3 is free of shear locking and achieves a high accuracy compared with the
exact solutions. Recently, the CS-DSG3 has been extended to analyze various plate
and shell problems such as flat shells [23], stiffened plates [25], FGM plates [26],
piezoelectricity plates [27] and composite plates [28]. However, as far as authors
are aware, static and free vibration analysis of FG shells using a CS-DSG3 has not
been found yet. Therefore, this paper aims to extend further the CS-DSG3 to static
and free vibration analyses of FG shells based on FSDT. The accuracy and relia-
bility of the proposed method are verified by comparing its numerical solutions with
those of others available numerical results.
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2 Theoretical Formulation

2.1 Functionally Graded (FG) Shells

A FG shell made from a mixture of ceramic and metal is shown in Fig. 1. In this
study, the material properties are assumed to be graded through the thickness by the
power distribution given by

PðzÞ= ðPc −PmÞVc +Pm;Vc =
1
2
+

z
t

� �n

ðn≥ 0Þ ð1Þ

where P is the effective material properties, including the modulus of elasticity E,
density ρ, Poisson’s ratio ν. Pc and Pm are the properties of the ceramic and metal,
respectively; Vc is the volume fraction of the ceramic; t is the thickness of shell and
z is the distance from its middle surface; n is the volume fraction exponent which
controls the variation of volume fraction through the thickness shown in Fig. 1b.

2.2 Weak Form of FG Shell

According to the first-order shear deformation theory, the displacement field at any
point in the shell can be expressed as follows

uðx, y, zÞ= u0ðx, yÞ+ zθxðx, yÞ,
vðx, y, zÞ= v0ðx, yÞ+ zθyðx, yÞ
wðx, y, zÞ=w0ðx, yÞ,

8<
: , ð2Þ

(a) Geometry of FG doubly curved shell. (b) Volume fraction of Ceramic (Vc )
through the thickness.

Fig. 1 a Geometry of FG doubly curved shell. b Volume fraction of Ceramic (Vc) through the
thickness
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where u0, v0 and w0 are the displacements of the mid-plane of shell in x, y and
z directions, θx and θy donate the rotations around the y- and x-axes, respectively, as
shown in Fig. 1a. The generalized strains can be written in terms of the mid-plane
deformations, which give

ε= εxx, εyy, γxy, γxz, γyz
� �T =

εm
0

� �
+ z

κ
0

� �
+

0
γ

� �
, ð3Þ

where the membrane strain εm, bending strain κ and shear strain γ are, respectively,
given by

εm =
∂u0
∂x

,
∂v0
∂y

,
∂u0
∂y

+
∂v0
∂x

� �T

;κ=
∂θx
∂x

,
∂θy
∂y

,
∂θx
∂y

+
∂θy
∂x

� �T

; γ= γxz
γyz

� �
=

∂w
∂x

+ θx,
∂w
∂y

+ θy

� �T

.

ð4Þ

The linear stress–strain relations are expressed as

σxx
σyy
σxy

8<
:

9=
;=

Q11 Q12 0
Q21 Q22 0
0 0 Q66

2
4

3
5 εxx

εxx
γxy

8<
:

9=
;;

σxz
σyz

� �
=

Q55 0
0 Q44

� 	
γxz
γyz

� �
, ð5Þ

where

Q11ðzÞ=Q22ðzÞ= EðzÞ
1− νðzÞ2 ; Q12ðzÞ= νðzÞQ11ðzÞ; Q44ðzÞ=Q55ðzÞ=Q66ðzÞ= EðzÞ

2ð1+ νðzÞÞ .

ð6Þ

The standard Galerkin weak form of the static equilibrium equations for the
Reissner-Mindlin shell can be written follow as

Z
Ω
δ

εm
κ
γ

8<
:

9=
;

T A B 0
B D 0
0 0 Ds

2
4

3
5 ε0

κ
γ

8<
:

9=
; dΩ=

Z
Ω
δuTbdΩ, ð7Þ

where the matrices A,B,D and Ds are the extensional, coupling, bending and the
transverse shear stiffness, respectively, which are given by

Aij,Bij,Dij

 �

=
Z h ̸2

− h ̸2
ð1, z, z2ÞQijdz, ði, j=1, 2, 6Þ; Ds =

Z h ̸2

− h ̸2
Q*

ijdz, ði, j=4, 5Þ,

ð8Þ

And b= 0, 0, p x, y, zð Þ, 0, 0, 0f gT is the distributed load applied on the shell.
For the free vibration problems, the standard Galerkin weak form can be

expressed by
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Z
Ω
δ

εm
κ
γ

8<
:

9=
;

T A B 0
B D 0
0 0 Ds

2
4

3
5 ε0

κ
γ

8<
:

9=
; dΩ=

Z
Ω
δuTmu ̈dΩ, ð9Þ

where m is the mass matrix containing the mass density of the material ρ.

2.3 The General FEM Formulation of FG Shells

In FEM, the problem domain is discretized using a mesh of ne three-node finite
elements such that Ω=⋃ne

e=1Ω
e and Ωi ∩Ω j =∅ for i≠ j.

The finite element approximation uh = u, v,w, βx, βy, βz
� �T of a displacement

model for FG shell elements can be expressed as

uh = ∑
Nn

I =1
NI xð ÞI6dI = ∑

Nn

I =1
NIdI , ð10Þ

where I6 is the unit matrix of sixth rank; Nn is the total number of nodes of problem

domain discretized; dI = uI , vI ,wI , βxI , βyI , βzI
� �T denotes the displacement vector

of the nodal degrees of freedom of uh associated with the Ith node; NI xð Þ is the
shape function at the Ith node. According to Eq. (4), the approximation of the
membrane, bending and shear strains can be expressed in matrix forms as

ε0 = ∑
I
RIdI ;κ= ∑

I
BIdI ; γ= ∑

I
SIdI , ð11Þ

where

RI =

NI, x 0 0 0 0 0

0 NI, y 0 0 0 0

NI, y NI, x 0 0 0 0

2
64

3
75;BI =

0 0 0 NI, x 0 0

0 0 0 0 NI, y 0

0 0 0 NI, y NI, x 0

2
64

3
75;

SI =
0 0 NI, x NI 0 0

0 0 NI, y 0 NI 0

� 	
.

ð12Þ

The discretized system of equations of the FG shell for static analysis can be
given by

Kd=F, ð13Þ
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In which K is the global stiffness matrix which can be computed as

K=
Z
Ω

R
B
S

8<
:

9=
;

T A B 0
B D 0
0 0 Ds

2
4

3
5 R

B
S

8<
:

9=
;dΩ, ð14Þ

and F is the global load vector expressed by:

F=
Z
Ω
pNdΩ+ fb, ð14Þ

In which fb is the remaining term of F subjected to prescribed boundary loads.
For the free vibration analysis problem, we obtained

K−ω2M

 �

d= 0, ð15Þ

where ω is the natural frequency and M is the global mass matrix

M=
Z
Ω
NTmNdΩ. ð16Þ

2.4 Brief on the CS-DSG3 Formulation

In the DSG3 [24], the shear strain is linear interpolated based on the concept “shear
gap” of displacement along the sides of the elements by using the standard element
shape functions. Accordingly, the approximation uhe of a three-node triangular shell
element can be written as

uhe = ∑
3

I =1
NI xð ÞI6deI = ∑

3

I =1
NIdeI , ð17Þ

where dheI = uI , vI ,wI , βxI , βyI , βzI
� �T is the nodal degrees of freedom of uhe asso-

ciated with the Ith node and NI xð Þ is linear shape functions in a natural coordinate
defined by

N1 = 1− ξ− η;N2 = ξ;N3 = η. ð18Þ

Then, the membrane, bending and shear strains in the element are then obtained by

εh0 = R1,R2,R3½ �de =Rde;κh = B1,B2,B3½ �de =Rde; γh = S1, S2,S3½ �de =Sde,

ð19Þ
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where

R1 =

b− c 0 0000

0 d− a 0000

d− a b− c 0000

2
64

3
75;R2 =

c 0 0000

0 − d 0000

− d c 0000

2
64

3
75;

R3 =

− b 0 0000

0 a 0000

a − b 0000

2
64

3
75,

ð20Þ

B1 =

000 b− c 0 0

000 0 d− a 0

000 d− a b− c 0

2
64

3
75; B2 =

000 c 0 0

000 0 − d 0

000 − d c 0

2
64

3
75;

B3 =

000 − b 0 0

000 0 a 0

000 a − b 0

2
64

3
75,

ð21Þ

S1 =
1
2Ae

00 b− c Ae 0 0
00 d− a 0 Ae 0

� 	
; S2 =

1
2Ae

00 c ac ̸2 bc ̸2 0
00 − d − ad ̸2 − bd ̸2 0

� 	
;

S3 =
1
2Ae

00 − b − bd ̸2 − bc ̸2 0
00 a ad ̸2 ac ̸2 0

� 	
,

ð22Þ

In which a= x2 − x1, b= y2 − y1, c= y3 − y1, d= x3 − x1 with
xi = xi, yif g, i=1, 2, 3 are coordinates of three nodes in the local coordinate system,
respectively, as shown in Fig. 2a and Ae denote the area of the triangular element.
The global stiffness matrix in Eq. (14) now can be written by:

(a) Three-node triangular element
and local coordinates in the DSG3.

(b) Coordinate transformation in
the triangular shell elements. 

(c) Three sub-triangles created from
the triangle 1-2-3 in CS-DSG3. 

Fig. 2 a Three-node triangular element and local coordinates in the DSG3. b Coordinate
transformation in the triangular shell elements. c Three sub-triangles created from the triangle
1-2-3 in CS-DSG3
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KDSG3 = ∑
Nn

e=1
KDSG3

e ð23Þ

where KDSG3
e is the element stiffness matrix of the DSG3 element and is given by:

KDSG3
e =TT

Z
Ωe

R
B
S

8<
:

9=
;

T A B 0
B D 0
0 0 Ds

2
4

3
5 R

B
S

8<
:

9=
;dΩ

0
@

1
AT, ð24Þ

with T is the transformation matrix of coordinate from global coordinate xyz to the
local coordinate system x ̂y ̂z ̂ [29], as shown in Fig. 2b.

In the formulation of the CS-DSG3 [23, 30], each triangular element is further
divided into three sub-triangles by connecting the central point of the element to
three field nodes, as shown in Fig. 2c. Then, the displacement vector at central point
is assumed to be the simple average of three displacement vectors of three field
nodes. In each sub-triangles, the stabilized DSG3 has computed the strains and to
avoid the transverse shear locking. Accordingly, the smoothed element membrane
strain εm̃e , the smoothed element bending strain κ ̃ and the smoothed element shear
strain γ ̃ are written follow as

ε ̃me = R̃ede; κ̃e = B̃ede; γ ̃e = S̃ede ð26Þ

where R̃e, B̃e and S̃e are the smoothed membrane gradient matrix, smoothed
bending gradient matrix and smoothed shear gradient matrix, respectively, given by

R̃e =
1
Ae

∑
3

i=1
AΔiR

Δi
e ; B̃e =

1
Ae

∑
3

i=1
AΔiB

Δi
e ; S̃e =

1
Ae

∑
3

i=1
AΔiS

Δi
e , ð25Þ

where AΔi is the area of sub-triangle Δi; RΔi
e ,BΔi

e and SΔi
e are, respectively, the

membrane, bending and shear strain gradient matrices of sub-triangle Δi. Substi-
tuting matrix R̃e, B̃e and S̃e in Eq. (26) into Eq. (14), the global stiffness matrix of
CS-DSG3 element is obtained by

KCS−DSG3
e =TT

Z
Ωe

R̃e

B̃e

S̃e

8<
:

9=
;

T A B 0
B D 0
0 0 Ds

2
4

3
5 R̃e

B̃e

S̃e

8<
:

9=
;dΩ

0
@

1
AT, ð27Þ

From Eqs. (26) and (27), we can see that the values of element stiffness matrix at
the drilling degree of freedom βz equal zero which can cause the singularity in the
global stiffness matrix when all the element meeting at node are coplanar. To solve
this problem, the null values of the stiffness corresponding to the drilling degree of
freedom are replaced by approximate values. This approximate value is taken to be
equal to 10− 3 times the maximum diagonal value in the element stiffness matrix
[23].
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3 Numerical Results

In this section, various numerical examples are presented to show the accuracy and
stability of the CS-DSG3 for static and free vibration responses of FG shells. The
results are compared to the other existing numerical solutions. The central nor-
malized deflection and non-dimensional fundamental frequencies is given by

w̄=
Ech3

qa4
w;Ω=ωh

ffiffiffiffiffiffiffiffiffiffiffi
ρc ̸Ec

p
. ð26Þ

The first example, consider a fully clamped spherical FG shell under uniformly
distributed load. Geometrical parameters for spherical shell are:
a ̸b=1,Rx =Ry =R, length-to-thickness ratio a ̸h=10 and radius-to-length ratios
R ̸a=5, 10. Mechanical properties of metal (SUS-304): Em =207.79GPa,
νm =0.32 and ceramic (Si3N4): Ec =322.27GPa, νc =0.24. The volume fraction
exponent (n) is variable. The results of the central normalized deflection are pre-
sented and compared with Aghdam et al. [3]. It is found that the results presented in
Table 1 are in excellent agreement with above-published results.

This example is further extended for static analysis of FG spherical shell when
the change in volume fraction exponent and the radius-to-length ratios are shown in
Table 2.

The next example, consider a fully clamped cylindrical FG shell subjected to
uniformly distributed load. Geometrical parameters for cylindrical shell are: a/
b = 1, Rx = R, Ry =∞, radius-to-length ratio R ̸a=2 and length-to-thickness ratio
a ̸h=10 Mechanical properties are metal (Aluminum): Em =70GPa, νm =0.3 and
Ceramic (SiC): Ec =427GPa, νc =0.17. The volume fraction exponent n is equal to
2. The results for the central normalized deflection along the x-axis are shown in
Table 3 and compared with Aghdam et al. [3] and ABAQUS. The present results
are in close agreement with EKM and ABAQUS.

Table 1 Comparison of the
central normalized deflection
of FG spherical shell

R/a Method n

0 2 ∞
5 EKM [3] – 0.0204 –

Present (8 × 8) 0.0150 0.0194 0.0229
Present (12 × 12) 0.0156 0.0203 0.0239
Present (24 × 24) 0.0160 0.0208 0.0245

10 EKM [3] 0.0165 – 0.0248
Present (8 × 8) 0.0156 0.0203 0.0242
Present (12 × 12) 0.0164 0.0212 0.0254

Present (24 × 24) 0.0168 0.0217 0.0260
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Table 4 presents the responses of FG cylindrical shell with different volume
fraction exponent and radius-to-length ratios. From Tables 3 and 4, it is found that
the behavior of FG shallow shells become softening when the volume fraction
exponent (n) increase from ceramic to metal. Furthermore, the increase of curvature
ratio leads to increasing displacement of FG shallow shells.

Finally, the vibration of simply supported FG plate and three types of shallow
shell include spherical, cylindrical and hyperbolic paraboloid is investigated. Geo-
metrical parameters for plate are a ̸b=1, length-to-thickness ratio a ̸h=10 and
shallow shell are a ̸b=1, radius-to-length ratio R ̸a=2, length-to-thickness ratio
a ̸h=10. The volume fraction exponents n = 0, 0.5, 1, 4 and 10 are considered.
Mechanical properties are metal (Aluminum): Em =70GPa, νm =0.3,
ρ=2700 kg ̸m3 and Ceramic (Alumina): Ec =380GPa, νc =0.3, ρ=3800 kg ̸m3.
Table 5 shows results with coarse mesh size 8 × 8. It is found that numerical
results are in excellent agreement with results available of Alijani et al. [31], Mat-
sunaga [32] and Chorfi and Houmat [33].

Table 2 Central normalized deflections of FG spherical shell with various radius-to-length ratio
(R/a) and the volume fraction exponent (n)

R/a n

0 0.5 1 2 4 10

2 Present (8 × 8) 0.0110 0.0127 0.0135 0.0143 0.0150 0.0158
Present (12 × 12) 0.0114 0.0132 0.0140 0.0149 0.0156 0.0164
Present (20 × 20) 0.0116 0.0134 0.0143 0.0151 0.0159 0.0167

5 Present (8 × 8) 0.0150 0.0173 0.0185 0.0194 0.0202 0.0212
Present (12 × 12) 0.0156 0.0181 0.0193 0.0203 0.0211 0.0222
Present (20 × 20) 0.0160 0.0185 0.0197 0.0208 0.0216 0.0227

10 Present (8 × 8) 0.0156 0.0181 0.0193 0.0203 0.0211 0.0222
Present (12 × 12) 0.0164 0.0190 0.0202 0.0212 0.0221 0.0232
Present (20 × 20) 0.0168 0.0194 0.0207 0.0217 0.0226 0.0237

20 Present (8 × 8) 0.0158 0.0183 0.0195 0.0205 0.0213 0.0224
Present (12 × 12) 0.0166 0.0192 0.0204 0.0215 0.0223 0.0235
Present (20 × 20) 0.0170 0.0197 0.0209 0.0220 0.0228 0.0240

Table 3 Comparison of the
central normalized deflection
(27) of cylindrical FG shell
along x-axis

x/a Present EKM [3] ABAQUS

0 0 0 0
0.1 0.0628 0.0712 0.0783
0.2 0.1739 0.1795 0.1847
0.3 0.2789 0.2771 0.2799
0.4 0.3498 0.3414 0.3426

0.5 0.3746 0.3636 0.3643
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Table 4 Non-dimensional center deflections 10 of FG cylindrical shell with various
radius-to-length ratio (R/a) and the volume fraction exponent (n)

R/a n

0 0.5 1 2 4 10

2 Present (8 × 8) 0.1470 0.2213 0.2861 0.3746 0.4551 0.5484
Present (12 × 12) 0.1512 0.2269 0.2927 0.3827 0.4652 0.5618
Present (20 × 20) 0.1612 0.2399 0.3076 0.4001 0.4863 0.5907

5 Present (8 × 8) 0.1723 0.2636 0.3436 0.4495 0.5365 0.6324
Present (12 × 12) 0.1780 0.2717 0.3536 0.4619 0.5512 0.6509
Present (20 × 20) 0.1917 0.2911 0.3768 0.4895 0.5836 0.6920

10 Present (8 × 8) 0.1766 0.2709 0.3538 0.4627 0.5505 0.6466
Present (12 × 12) 0.1825 0.2796 0.3645 0.4761 0.5664 0.6662
Present (20 × 20) 0.1969 0.3005 0.3898 0.5065 0.6016 0.7101

20 Present (8 × 8) 0.1777 0.2729 0.3564 0.4661 0.5549 0.6503
Present (12 × 12) 0.1837 0.2817 0.3675 0.4799 0.5705 0.6703
Present (20 × 20) 0.1983 0.3031 0.3935 0.5113 0.6068 0.7152

Table 5 Non-dimensional fundamental frequencies of FG plate and three types FG shallow shells

n Present Alijani et al.
[31]

Chorfi and
Houmat [33]

Matsunaga
[32]

Plate 0 0.0591 0.0597 0.0577 0.0588
0.5 0.0506 0.0506 0.0490 0.0492
1 0.0462 0.0456 0.0442 0.043
4 0.0405 0.0396 0.0383 0.0381
10 0.0381 0.0380 0.0366 0.0364

Spherical shell 0 0.0779 0.0779 0.0762 0.0751
0.5 0.0670 0.0676 0.0664 0.0657
1 0.0611 0.0617 0.0607 0.0601
4 0.0514 0.0519 0.0509 0.0503
10 0.0475 0.0482 0.0471 0.0464

Cylindrical shell 0 0.0642 0.0648 0.0629 0.0622
0.5 0.0548 0.0553 0.0540 0.0535
1 0.0500 0.0501 0.0490 0.0485
4 0.0431 0.0430 0.0419 0.0413
10 0.0403 0.0408 0.0395 0.0390

Hyperbolic
paraboloid shell

0 0.0581 0.0597 0.0580 0.0563
0.5 0.0498 0.0506 0.0493 0.0479
1 0.0455 0.0456 0.0445 0.0432
4 0.0399 0.0396 0.0385 0.0372

10 0.0375 0.0380 0.0368 0.0355
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4 Conclusions

In the present study, a combination of the cell based on smoothed discrete shear gap
method with three-node triangular elements is proposed to investigate the static
responses and free vibration of FG shells include spherical, cylindrical and
hyperboloid paraboloid shells. The first-order shear deformation theory is used in
the formulation due to the simplicity and computational efficiency. The effects of
several parameters such as the radius-to-length ratios and the volume fraction
exponent are examined. Present results are in good agreement in most of the cases
which are compared with reference solutions.
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Optimal Volume Fraction
of Functionally Graded Beams
with Various Shear Deformation
Theories Using Social Group
Optimization

A. H. Pham, T. V. Vu and T. M. Tran

Abstract In this paper, the optimization of the volume fraction of functionally
graded (FG) beams for maximizing the first natural frequency is investigated.
Distribution laws using three, four and five parameters are used to describe volume
fraction. Navier-type solutions based on various shear deformation theories are
developed to compute the natural frequencies. A new metaheuristic algorithm
called Social Group Optimization (SGO) is employed for the first time to solve the
functionally graded beam optimization problem. Optimal volume fractions for
beams with different material properties are then obtained. It is found that the
five-parameter distributions give the highest first natural frequency for all cases.
Moreover, the results show the consistency of the optimal volume fractions
obtained by different shear deformation theories. It is also confirmed that SGO is an
efficient tool for this complicated optimization problem.

Keywords Functionally graded beam ⋅ Shear deformation theory
Volume fraction ⋅ Free vibration ⋅ Social Group Optimization

1 Introduction

Functionally graded (FG)materials are increasingly andwidely used in different fields
such as aerospace, marine, mechanical and structural engineering. FG materials are
made of two or more constituents that have a continuous and smooth variation of the
relative volume fraction and microstructure [1]. It is well known that the performance
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of a FG composite depends not only on the material properties and quantity of its
constituent materials but also on the distribution of these constituents. Often, the
volume fractions of the constituents are tailored to obtain an optimal material com-
position satisfying design needs. This paper focuses on tailoring the material distri-
bution to maximize the first natural frequency of FG beams. The maximization of
natural frequencies of structures is a common optimization objective since an increase
in fundamental frequencies can provide an improvement in structural stiffness [2].

The optimal design of volume fraction for maximizing the natural frequencies of
FG beams has been a research interest in recent years. Goupee and Vel [3] used the
two-dimensional spatial distribution of volume fractions represented by piecewise
cubic interpolation of volume fraction values determined at a finite number of grid
points to optimize the natural frequencies of functionally graded beams. In the work
by Yas et al. [4, 5] and Kamarian et al. [6], the volume fraction optimization in the
thickness direction of a FG beam resting on elastic foundation was studied using
three-parameter power law distribution. The three-parameter power law distribution
of volume fraction has been also employed in recent works by Roque and Martins
[7] and Roque et al. [8]. Some researchers tailored the material distribution through
the longitudinal direction for maximizing the fundamental frequency of
four-parameter or five-parameter FG beams [9] and arches [10].

On the other hand, the determination of the natural frequencies requires the
solution of the free vibration problem. There have been many published works on
the analysis of the free vibration of FG beams using different shear deformation
theories (e.g. see [11–15]). High-order shear deformation theories can be used to
obtain precise results in the case of thick beams. Nevertheless, the past works on
optimization of FG beams have mostly based on classical beam theory or first-order
shear deformation theory.

In this study, various shear deformation theories are employed in the free
vibration analysis of FG beams. Navier-type solution method is used to obtain the
natural frequencies. Four-parameter power law distribution and five-parameter
trigonometric distribution are introduced to describe the volume fraction in beam
thickness direction. These distribution formulations are supposed to permit more
diverse material distributions when compared with the simple power law or
three-parameter power law. The objective is to find optimal parameter values so as
the first natural frequency is maximized. Since the optimization problem is highly
nonlinear and complex that is not easily solved by traditional gradient-based
techniques, a novel population-based metaheuristic algorithm, called Social Group
Optimization (SGO), is applied for the first time to optimize the volume fraction of
FG beams. Beams with different material properties are examined.

2 Free Vibration of Functionally Graded Beam

Consider a functionally graded (FG) beam composed of two materials with length L
and rectangular cross section b× h, where b is the width and h is the height. The x, y
and z coordinates are taken along the length, width and height of the beam,
respectively. The study is limited to linear elastic material behaviour.
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2.1 Formulations of Volume Fraction

The material properties of a FG beam are assumed to vary continuously along the
thickness of the beam (in the z direction) and governed by the volume fraction of its
constituents according to the rule of mixtures:

PðzÞ=P1V1ðzÞ+P2V2ðzÞ; V2ðzÞ=1−V1ðzÞ ð1Þ

where P represents the effective material property such as Young’s modulus E and
mass density ρ; V is the volume fraction; subscripts 1 and 2 represent the con-
stituent 1 and constituent 2, respectively.

Possible distribution laws for volume fraction are the power law [16], the sig-
moid law [17], the exponential law [18] and the three-parameter law [19]. In this
study, to spatially tailor the material properties, it is proposed that the volume
fraction of constituent 1 follows four-parameter power law distribution formulations
or five-parameter trigonometric distribution as given in Table 1.

The parameters a, b, c, d and p are the control parameters, or the design variables
of the optimization problem. The proposed equations allow more diverse material
distributions when compared with the simple power law. As shown later in this
paper, these distributions are also more advantageous than the three-parameter
power law distribution (Eq. 2), which was used in the previous work by Roque and
Martins [7] to optimize the volume fraction of the same FG beams.

V1 =
1
2
+

z
h
+ b

1
2
−

z
h

� �c� �p
ð2Þ

2.2 Analytical Solution for Free Vibration of FG Beams

Based on the higher-order shear deformation theory, the displacement field for the
beam is assumed in the following form

uðx, z, tÞ= u0ðx, tÞ− z ∂wðx, z, tÞ
∂x + f ðzÞϕðx, tÞ

vðx, z, tÞ=0
wðx, z, tÞ=w0ðx, tÞ

ð3Þ

where u, v and w are the displacements at a point of the beam along x, y and z
directions; u0 and w0 are the axial and transverse displacement of a point on the

Table 1 Volume fraction of constituent 1

Four-parameter power law distribution Five-parameter trigonometric distribution

V1 = a 1
2 +

z
h + b 1

2 −
z
h

� �c� 	p V1 = a 1
2 −

b
2 sin cπ 1

2 −
z
h

� �
+ d

� �� 	p
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mid-surface, respectively; ϕ is the rotation of the cross section about the y-axis; and
f ðzÞ is a shape function characterizing the distribution of the transverse shear strain
and shear stress through the thickness of the beam.

With Eq. (3), different shear deformation theories can be introduced to obtain the
displacements of the beam by using different shape functions f ðzÞ. In this study, the
Euler–Bernoulli beam theory (CBT), the exponential beam theory (EBT) of Karama
et al. [20], the hyperbolic beam theory (HBT) of Soldatos [21], the sinusoidal beam
theory (SBT) of Touratier [22] and the third-order beam theory (TBT) of Reddy
[23] are employed with the corresponding shape functions f ðzÞ given in Table 2.
The Timoshenko beam theory (TMT) is not considered for the analysis since it has
been already used in [7].

The strain–displacement relationships are obtained from:

εx = ∂u
∂x =

∂u0
∂x − z ∂

2w
∂x2 + f ðzÞ ∂ϕ

∂x

γxz =
∂u
∂z +

∂w
∂x = f ′ðzÞϕ ð4Þ

The stresses are of the form:

σx =EðzÞεx
τxz =

EðzÞ
2ð1+ νÞ γxz =GðzÞγxz; GðzÞ= EðzÞ

2ð1+ νÞ
ð5Þ

Applying the principle of virtual work to the free vibration problem of the beam
leads to:

b
Z L

0

Z h ̸2

− h ̸2
ðσxδεx + τxzδγxzÞdzdx+ b

Z L

0

Z h ̸2

− h ̸2
ρðzÞð∂

2u
∂t2

δu+
∂
2w
∂t2

δwÞdzdx=0

ð6Þ

where the symbol δ denotes the variation operator. By substituting Eqs. (4) and (5)
into Eq. (6), integrating by parts and noting that the variation δu0, δw0 and δϕ can
be arbitrary, the following governing equations can be derived:

−A ∂
2u0
∂x2 +B ∂

3w0
∂x3 −C ∂

2ϕ
∂x2 + I1 ∂

2u0
∂t2 − I2 ∂

3w0
∂x∂t2 + I3

∂
2ϕ
∂t2 = 0

−B ∂
3u0
∂x3 +D ∂

4w0
∂x4 −F ∂

3ϕ
∂x3 + I2 ∂

3u0
∂x∂t2 − I4 ∂

4w0
∂x2∂t2 + I5

∂
3ϕ

∂x∂t2 + I1 ∂
2w0
∂t2 = 0

−C ∂
2u0
∂x2 +F ∂

3w0
∂x3 −G1

∂
2ϕ
∂x2 +H1ϕ+ I3 ∂

2u0
∂t2 − I5 ∂

3w0
∂x∂t2 + I6

∂
2ϕ
∂t2 = 0

ð7Þ

Table 2 Shape functions

Beam
theory

Euler–
Bernoulli
(CBT)

Karama
et al.
(EBT)

Soldatos (HBT) Touratier
(SBT)

Reddy
(TBT)

f ðzÞ 0 z exp− 2 z
hð Þ2 z cos h 1

2

� �
− h sin h z

h

� �
h
π sin

πz
h

� �
z 1− 4

3
z2
h2


 �
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where the coefficients A, B, C, D, F, G1, H1, I1, I2, I3, I4, I5 and I6 are given by:

ðA,B,C,D,F,G1Þ=
R h ̸2
− h ̸2 EðzÞð1, z, f , z2, zf , f 2Þdz;

H1 =
R h ̸2
− h ̸2 GðzÞ f ′

� �2dz
ðI1, I2, I3, I4, I5, I6Þ=

R h ̸2
− h ̸2 ρðzÞð1, z, f , z2, zf , f 2Þdz

ð8Þ

For simply supported beams with length L, the analytical solution can be derived
by considering the following expansions for displacements u0ðx, tÞ, w0ðx, tÞ and
ϕðx, tÞ:

u0ðx, tÞ= ∑
∞

m=1
um cos mπx

L

� �
sin ωmt

w0ðx, tÞ= ∑
∞

m=1
wm sin mπx

L

� �
sin ωmt

ϕðx, tÞ= ∑
∞

m=1
ϕm cos mπx

L

� �
sin ωmt

ð9Þ

where ωm is the mth natural frequency. In this study, only the first natural frequency
is optimized and therefore m = 1. Substituting Eq. (9) in Eq. (7), the following set
of equations is obtained:

A m2π2

L2


 �
um − B m3π3

L3


 �
wm + C m2π2

L2


 �
ϕm

h i
−ω2 I1um − I2 mπ

L wm + I3ϕm

� 	
=0

− Bm3π3

L3


 �
um + Dm4π4

L4


 �
wm − F m3π3

L3


 �
ϕm

h i
−ω2 − I2 mπ

L um + I1 + I4 m2π2

L2


 �
wm − I5 mπ

L ϕm

h i
=0

C m2π2

L2


 �
um − F m3π3

L3


 �
wm + H1 +G1

mπ
L

� �
ϕm

h i
−ω2 I3um − I5 mπ

L wm + I6ϕm

� 	
=0

ð10Þ

The system is an eigenproblem of type ½K −ω2M�fΔg= f0g, where ω is a
natural frequency.

3 Optimization Problem

The optimal design of a FG beam is based on the optimization of material distri-
bution throughout beam height, i.e. optimizing the volume fractions of the material
constituents. The optimization problem considered in this study is the maximization
of the fundamental frequency. The problem is formulated as Eq. (11).

Maximizeω ̄=
ωL2

h

ffiffiffiffiffi
ρ2
E2

r
ð11Þ
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Subject to 0≤V1 ≤ 1
amin ≤ a≤ amax

bmin ≤ b≤ bmax

cmin ≤ c≤ cmax

dmin ≤ d≤ dmax

pmin ≤ p≤ pmax

where ω ̄ is the normalized fundamental frequency, with ρ2 and E2 are the density
and modulus of elasticity of constituent 1, respectively.

In the above optimization problem, the design variables a, b, c, d and p are
subjected to bound constraints and they must be chosen such that the volume
fraction at any point along the height will stay within the permissible physical
limits, i.e. 0≤V1 ≤ 1. To assure that, a set of constraints is introduced as:

0≤V1, top,V1, bottom ≤ 1
0≤V1,min; V1,max ≤ 1

ð12Þ

where V1, top,V1, bottom are the volume fractions at the boundaries (at the top and the
bottom); and V1,min,V1,max are the minima and maxima within the structure domain.
The maxima/minima point zopt can be obtained by solving:

V ′

1ðzÞ=0 ð13Þ

For four-parameter power law distribution, we obtained:

zopt =
h
2

1− 2e
− log b½ �− log c½ �

c− 1


 �
ð14Þ

For five-parameter trigonometric distribution, we obtained:

zopt =

h 2d− π + cπð Þ
2cπ

h 2d+ π + cπð Þ
2cπ

h 2d+ cπ − 2 arcsin 1− 20
1

− 1+ p
b

h i
 �
2cπ

2
6664 ð15Þ

After solving for maxima or minima, then the values of the volume fraction at all
the points in the structure domain corresponding to these maxima or minima should
satisfy the permissible limits.
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4 Social Group Optimization

The SGO is one of the most recent optimization techniques, developed by Satap-
athy and Naik for global optimization [24]. SGO is based on the concept of social
behaviour of human towards solving a complex problem, i.e. a problem/task which
is too difficult to solve by a single person can be solved by a group of persons. It has
been shown in [24] that SGO outperforms several advanced optimization tech-
niques in solving different unconstrained benchmark functions. The technique is
quite simple and straightforward to implement. Details of the concept and the
mathematical formulation of SGO can be found in [24].

4.1 Basic Procedure of SGO

SGO is a population-based optimizer, where the population of candidate solutions
is considered as a group of N persons Xkðk=1, 2, . . . ,NÞ and each person is
defined by Xk = ðxk1, xk2, . . . , xkDÞ, where xkiði=1, 2, . . . ,DÞ is the traits (design
variables) assigned to a person and D is the dimension of the optimization problem.
Each person in the group gets knowledge and has a certain level of capacity for
solving the problem, which is corresponding to the ‘fitness’, fk . The best person
Xgbest is the one with best fitness. The best person intends to propagate knowledge
to the other person, which will improve the knowledge level of the whole group.

The procedure of SGO consists of two phases: the ‘improving phase’ and the
‘acquiring phase’. At the ‘improving phase’, each person is influenced by the best
person and his/her knowledge level is enhanced. At the ‘acquiring phase’, the
knowledge level of each person is improved through mutual interaction with
another person and the best person in the group at that time. The basic steps of SGO
are given in the following.

Initialization
An initial population is randomly sampled from the solution space as Eq. (16),

xki = xli + rand½0, 1�× ðxui − xliÞ, i=1, 2, . . . ,D ð16Þ

where xli and xui are the lower and the upper bounds of the ith design variable,
respectively; rand½0, 1� is a uniformly distributed random real value in the range [0,
1]. Then, calculate the fitness of each person in the population fk.

Improving Phase
In this phase, each person Xk acquires knowledge from the group’s best person
Xgbest. The updating of each person is given as follows:

Xnew
k = c *Xold

k + r * ðXgbest −Xold
k Þ, k=1, 2, . . . ,N ð17Þ
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where c is a self-introspection parameter and 0< c<1; r is a vector of D uniformly
distributed random numbers within the range [0, 1]. Accept Xnew

k if it provides a
better fitness than Xold

k does; otherwise, the Xold
k is retained in the group.

Acquiring phase
In this phase, each person interacts with other person of the group for acquiring
knowledge. The best knowledgeable person (here known as the person with the best
fitness at the end of the improving phase) has the greatest influence on others.
A person will also get new information from others if they have more knowledge
than he/she has. The updating of each person is as follows.

For each person Xk , randomly select another person in the current group Xr,
where r≠ k:

If Xk is better than Xr:

Xnew
k =Xold

k + r1 * ðXk −XrÞ+ r2 * ðXgbest −XkÞ ð18Þ

Otherwise,

Xnew
k =Xold

k + r1 * ðXr −XkÞ+ r2 * ðXgbest −XkÞ ð19Þ

where r1 and r1 are two vectors of D uniformly distributed random numbers in [0,
1]. Accept Xnew

k if it gives a better fitness than Xold
k does.

The improving and acquiring phases are repeated until a termination criterion is
reached.

4.2 Constraint Handling

The SGO has been developed originally for unconstrained optimization problem. In
order to adapt SGO to the optimization of FG beams discussed in Sect. 3, con-
strained handling is required. In the optimization of FG beams, there are two types
of constraints: bound constraints and inequality constraints.

Handling of bound constraints
If the value of a design variable xnewkj violates the bound(s) bj, its value is recom-
puted as:

xnewkj =
xoldkj + bj

2
ð20Þ

Handling of inequality constraints
Consider the inequality constraint of the form:

cjðXkÞ≤ 0, j=1, 2, . . . ,NC ð21Þ
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where NC is the number of constraints of the optimization problem; cjðXkÞ is the jth
constraint function. For the FG beam problem, the constraints are the requirement
on the volume fraction as given in Eq. (12).

The constraint violation of a solution Xk is then determined by:

Ck =max max
j
f0, cjðXkÞg

 �
, j=1, 2, . . . ,NC ð22Þ

Deb’s rules [25] are employed in this study to handle inequality constraints:

(1) A feasible solution is better than any infeasible one.
(2) Of two feasible solutions or two solutions with equal constraint violation, the

one with better fitness is the better.
(3) Of two infeasible solutions, the one with a smaller constraint violation is the

better.

Deb’s constraint rules have been successfully applied for genetic algorithm and
several metaheuristics.

5 Optimization Results

The FG beam considered in the optimization is composed of two materials. Material
properties for material 1, Young’s modulus and mass density are the same as those
of aluminium. Material properties for material 2 are obtained by considering dif-
ferent material property ratios s = E2/E1. The choice of these material properties is
purely for the illustration of the optimization problem. The properties of the FG
beam are the same as those in [7] and listed in Table 3.

Two optimization problems are considered. In the first problem (Problem 1),
volume fraction is followed by the four-parameter power law distribution, and in the
second problem (Problem 2), the five-parameter trigonometric distribution is
applied. For both problems, the fundamental natural frequencies are obtained for the
beam using the shear deformation theories mentioned in Sect. 2. The ranges of the
design variables for each problem are given in Table 4. These ranges are chosen
based on a preliminary investigation of the proposed models of volume fraction
given in Table 1, which ensure a wide range of possibilities for material distribution.

Table 3 Data for the FG beam

L h E1, ρ1 E2, ρ2 ν s

1 m 0.1 m 70 GPa; 2702 kg/m3 E2 = sE1; ρ2 = sρ1 0.3 (0.1, 0.2, 0.5, 0.8, 2, 5)

Table 4 Design variable
ranges

Design variable a b c d p

Problem 1 [0, 1] [0, 20] [0, 20] NA [0, 20]
Problem 2 [0, 1] [0, 1] [−2, 2] [−π, π] [0, 20]
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The parameter setting for SGO is the group size N = 50, the maximum iteration
Tmax = 300 and the self-introspection c = 0.2. The computation program is
implemented in MATLAB R2012a and executed on a personal computer with an

Table 5 Best optimization results with four-parameter volume fraction model

E2/E1 Method ω̄ a b c p

0.1 CBT 3.6676 1.0000 1.0000 2.1842 16.3418
EBT 3.5567 1.0000 1.0000 2.1598 17.1856
HBT 3.5571 1.0000 1.0000 2.1639 16.9524
SBT 3.5565 1.0000 1.0000 2.1619 17.0732
TBT 3.5570 1.0000 1.0000 2.1637 16.9624
TMT [7] 3.761 – 1 2.2 16.2

0.2 CBT 3.3958 1.0000 1.0000 2.3178 11.9999
EBT 3.3212 1.0000 1.0000 2.2993 12.3127
HBT 3.3212 1.0000 1.0000 2.3028 12.2362
SBT 3.3211 1.0000 1.0000 2.3012 12.2794
TBT 3.3212 1.0000 1.0000 2.3027 12.2397
TMT [7] 3.493 – 1 2.3 12.1

0.5 CBT 3.0572 1.0000 1.0000 2.6036 7.6126
EBT 3.0103 1.0000 1.0000 2.5929 7.7061
HBT 3.0101 1.0000 1.0000 2.5951 7.6820
SBT 3.0102 1.0000 1.0000 2.5939 7.6948
TBT 3.0101 1.0000 1.0000 2.5950 7.6831
TMT [7] 3.155 – 1 2.6 7.6

0.8 CBT 2.9041 1.0000 1.0000 2.8120 5.9198
EBT 2.8660 1.0000 1.0000 2.8053 5.9681
HBT 2.8658 1.0000 1.0000 2.8071 5.9549
SBT 2.8658 1.0000 1.0000 2.8062 5.9639
TBT 2.8658 1.0000 1.0000 2.8069 5.9558
TMT [7] 3.002 – 1 2.8 5.9

2 CBT 3.0877 0.0003523 1.3825 0.4749 19.7312
EBT 3.0354 0.0001241 1.4638 0.4332 19.4969
HBT 3.0358 0.0009587 1.3192 0.5106 19.5211
SBT 3.0363 0.0001419 1.4537 0.4464 19.7027
TBT 3.0362 0.0009676 1.3161 0.5113 19.5959
TMT [7] 2.963 – 0 0 0.2

5 CBT 3.3513 0.0006794 1.4369 0.4375 16.3266
EBT 3.2691 0.0014563 1.3211 0.5038 18.1318
HBT 3.2736 0.0028439 1.3018 0.5239 17.1733
SBT 3.2717 0.0095000 1.2608 0.5450 14.9335
TBT 3.2734 0.0064380 1.2827 0.5350 15.4265
TMT [7] 2.970 – 0 0 0.1
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Intel CPU Core i3 2.3 GHz and 2 GB RAM. For each case, the optimization is
performed with 25 independent runs.

For Problem 1, the best solutions for each ratio E2/E1 are presented in Table 5.
Optimization results show that the volume fraction can be tailored with respect to
the ratio E2/E1 in order to achieve maximum fundamental frequencies. It is found
that, for ratios E2/E1 < 1, the results obtained with different shear deformation
theories are quite consistent. The material profiles obtained by the proposed
four-parameter distribution model are similar to those given by the three-parameter
power law distribution in [7]. However, the maximum fundamental frequencies by
this study are slightly smaller than those obtained by Timoshenko beam theory in

Table 6 Best optimization results with five-parameter volume fraction model

E2/E1 Method ω̄ a b c d P

0.1 CBT 3.8488 1.0000 1.0000 −2.0000 −1.5708 10.1284
EBT 3.6925 1.0000 1.0000 −2.0000 −1.5708 13.0317
HBT 3.6942 1.0000 1.0000 −2.0000 −1.5708 12.0928
SBT 3.6927 1.0000 1.0000 −2.0000 −1.5708 12.6138
TBT 3.6940 1.0000 1.0000 −2.0000 −1.5708 12.1375

0.2 CBT 3.5690 1.0000 1.0000 2.0000 −1.5708 5.9319
EBT 3.4675 1.0000 1.0000 2.0000 −1.5708 6.6279
HBT 3.4689 1.0000 1.0000 2.0000 −1.5708 6.3766
SBT 3.4679 1.0000 1.0000 2.0000 −1.5708 6.5085
TBT 3.4688 1.0000 1.0000 −2.0000 −1.5708 6.3874

0.5 CBT 3.1572 1.0000 1.0000 −2.0000 −1.5708 3.0738
EBT 3.1018 1.0000 1.0000 −2.0000 −1.5708 3.1935
HBT 3.1020 1.0000 1.0000 2.0000 −1.5708 3.1508
SBT 3.1018 1.0000 1.0000 −2.0000 −1.5708 3.1727
TBT 3.1020 1.0000 1.0000 −2.0000 −1.5708 3.1526

0.8 CBT 2.9396 1.0000 1.0000 2.0000 −1.5708 2.2412
EBT 2.8991 1.0000 1.0000 −2.0000 −1.5708 2.2933
HBT 2.8990 1.0000 1.0000 2.0000 −1.5708 2.2754
SBT 2.8990 1.0000 1.0000 −2.0000 −1.5709 2.2849
TBT 2.8990 1.0000 1.0000 2.0000 −1.5708 2.2761

2 CBT 3.1140 1.0000 1.0000 −2.0000 1.5708 0.7186
EBT 3.0606 1.0000 1.0000 −2.0000 1.5708 0.7023
HBT 3.0613 1.0000 1.0000 −2.0000 1.5708 0.7080
SBT 3.0609 1.0000 1.0000 2.0000 1.5708 0.7051
TBT 3.0613 1.0000 1.0000 2.0000 1.5708 0.7078

5 CBT 3.4097 1.0000 1.0000 2.0000 1.5708 0.4391
EBT 3.3240 1.0000 1.0000 2.0000 1.5708 0.4211
HBT 3.3275 1.0000 1.0000 −2.0000 1.5708 0.4281
SBT 3.3255 1.0000 1.0000 2.0000 1.5708 0.4246
TBT 3.3273 1.0000 1.0000 −2.0000 1.5709 0.4278
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[7]. For ratios E2/E1 > 1, the optimal solutions given by different shear deformation
theories are slightly different from each other. The maximum fundamental fre-
quencies found in this study are higher than those in [7], which implies that the
optimal results of four-parameter distribution are better than those of the
three-parameter power law distribution.

For Problem 2, the best solutions for each ratio E2/E1 are presented in Table 6.
For all ratios E2/E1, the maximum fundamental frequencies are higher than the
corresponding results obtained in Problem 1, as shown in Table 6. That means the
proposed trigonometric volume fraction can provide better material distribution for
maximizing the natural frequencies of FG beams. In this problem, quite consistent
material profiles are obtained with different beam theories. It is found that the
parameters a and b become unity regardless of ratios E2/E1.

The material profiles, V1, along the beam thickness based on the third-order
beam theory (TBT) are shown in Fig. 1. The optimized profiles found for different
E2/E1 correspond to ‘a sandwich-structured composite, with a smooth transition
between face and core properties’. It is noted that these profiles are similar with the
finding in [7] for the case E2/E1 < 1. For E2/E1 > 1, optimal solutions found in [7]
using three-parameter volume fraction are closer to simple power law distribution.

6 Conclusion

In this study, the optimization of volume fraction for maximizing the fundamental
frequency of FG beam using various shear deformation theories and different dis-
tribution laws for volume fraction is investigated. Different ratios of material
properties were tested.
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Fig. 1 Best optimal material profiles, V1, after 25 runs
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For the cases considered, the optimized material profile was found quite con-
sistent for different shear deformation theories. Using the proposed four-parameter
and five-parameter formulations for volume fraction, it is able to tailor the material
distribution for different design of FG beam. For different ratios of material prop-
erties, the optimized solutions correspond to ‘a sandwich-structured composite,
with a smooth transition between face and core properties’. Moreover, the
five-parameter formulation for volume fraction can provide better material distri-
bution for maximizing the natural frequencies of FG beams.

The recent Social Group Optimization algorithm, which was originally devel-
oped for unconstrained optimization, has been adapted to effectively solve highly
nonlinear, complex constrained optimization problem like the FG beam design.
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A Node-Based MITC3 Element
for Analyses of Laminated Composite
Plates Using the Higher-Order Shear
Deformation Theory

T. Chau-Dinh, T. Truong-Duc, K. Nguyen-Trung and H. Nguyen-Van

Abstract In this paper, the node-based smoothed finite element method is devel-
oped for three-node triangular plate elements using the mixed interpolation of
tensorial components (MITC) technique to remove the shear locking. The C0-type
continuous plate elements represent the higher-order shear deformation theory of
laminated composite plates by adding two degree of freedoms related to derivatives
of deflection. Based on the MITC3 technique for three-node triangular degenerated
shell elements, an explicit formulation of gradients of the transverse shear strains is
derived. The constant strain fields within the C0-type continuous plate elements are
averaged over node-based domains defined by connecting the centroids and edges’
middle points of elements having common nodes. The proposed elements, namely
NS-MITC3, show good accuracy and convergence as compared to other plate
elements when employed to analyze laminated composite plates.
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1 Introduction

Behaviors of laminated composite plates currently attract many researches in
computational mechanics because the structures gain an increasing popularity
among many manufacturing industries. The behaviors of the laminated composite
plates can be analyzed by models of three dimensions, quasi-three dimensions,
layerwises, or equivalent single layer (ESL). In which, the ESL model is simple and
efficient due to low computational cost and high accuracy. Compared with the
classical plate theory or the first-order shear deformation theory, many higher-order
shear deformation theories (HSDT) have been suggested and successfully applied
to the ESL model to capture the behaviors of the laminated composite plate,
especially the stresses and strains through the thickness, with more accuracy [1].

The HSDT for the ESL model of the laminated composite plates can be solved
by analytical or numerical approaches. Under the circumstances of laminated
composite plates with arbitrary geometry, boundary, and loadings, the numerical
methods and particularly the finite element method (FEM) are preferred. The
simplest plate finite elements are three-node triangular elements using C0-
displacement approximation using the shear deformation theory or Mindlin plate
theory. However, these pure C0-displacement plate elements overestimate the
transverse shear strain energy when the plate thickness becomes thin. This phe-
nomenon is called the shear locking. To be used for analyzing both thin and thick
plates, or to overcome the shear locking, such approaches as reduced integration
(RI) [2], selective reduced integration (SRI) [3], or independent interpolation of the
transverse shear strains [4–8] are employed to the C0-displacement elements.
The RI and SRI methods are simple but make the elements have spurious
zero-energy modes. Therefore, the independent interpolations of the transverse
shear strains based on the assumed natural strains (ANS) [4], the enhanced assumed
strains (EAS) [5], the discrete shear gap (DSG) [6], or the mixed interpolation
tensorial components (MITC) [7, 8] have been developed and managed to remove
the shear locking and spurious zero modes. Among the shear locking removing
approaches, the MITC3 technique developed for three-node triangular continuum
mechanics-based shell finite elements also satisfies the spatially isotropic property
[8], meaning the behavior of the elements independent from the order of nodal
numbering. In addition, the conventional C0-displacement plate elements cannot
reasonably approximate the derivatives of deflection in the HSDT. However, the
drawback has been successfully solved by considering the derivatives of deflection
as independent variables named “warping” and approximated by standard C0-shape
functions [9, 10].

In an effort to improve accuracy of the three-node triangular plate finite ele-
ments, the smoothed FEM [11] have been developed for these elements using the
DSG3 technique for removing the shear locking. These smoothed DSG3 plate
elements gave the numerical results more accurately than those provided by the
standard DSG3 elements in cases of isotropic, laminated composite or functionally
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graded material plates using the first-order or higher-order shear deformation the-
ories [12–19], just cited some references. Similarly, the smoothed FEM have also
been used to enhance the plate finite elements attenuating the shear locking by the
MITC3 technique. To do this, the MITC3 technique developed for three-node
triangular degenerated shell elements [8] has been implicitly derived for the
transverse shear strains of the plates. Using only one Gaussian quadrature point, the
formulation of the gradient matrix related between the transverse shear strains and
the nodal displacements is dependent on the nodal coordinates or constant over the
elements. Therefore, the MITC3-type transverse shear strains are easily smoothed
over domains between elements defined by common the element edges or nodes
equivalent to edge-based smoothed (ES) or node-based smoothed (NS) methods
[11], respectively. Numerical results shown that the ES-MITC3 or NS-MITC3 plate
elements are good competitors as compared to other similar three-node plate ele-
ments when analyzing both thin and thick isotropic or laminated composite plates
using the first-order shear deformation theory [20, 21]. In this paper, the NS-MITC3
plate elements are extended to analyze the laminated composite plates using the
HSDT.

The paper is organized as follows. In the next section, the third-order shear
deformation theory [1] for the laminated composite plates is briefly presented, and
the corresponding NS-MITC3 plate elements are derived. Then, numerical results
of the popular laminated composite and sandwich plates are provided to compare
and discuss the accuracy of the present elements with other elements. In the last
section, some conclusions are summarized.

2 Formulation of NS-MITC3 Elements for HSDT-Type
Laminated Composite Plates

2.1 HSDT for the ESL Model of Laminated Composite
Plates

Give a laminated composite plate having n layers with total thickness h and sub-
jected to transverse loads p as shown in Fig. 1. The third-order shear deformation
theory [1] for the ESL model of the laminated composite plate defines the dis-
placements u, v, w, respectively, corresponding to x-, y-, z-directions as follows

u x, y, zð Þ= u0 + z−
4z3

3h2

� �
βx −

4z3

3h2
∂w
∂x

v x, y, zð Þ= v0 + z−
4z3

3h2

� �
βy −

4z3

3h2
∂w
∂y

.

w x, y, zð Þ=w0

ð1Þ

A Node-Based MITC3 Element for Analyses … 411



In which, u0, v0, w0 are the translational displacements of the middle plane in x-,
y-, z-directions, respectively; βx and βy are, respectively, the rotational displacements
of the middle plane about y- and x- axis with positive directions defined in Fig. 1.

To use C0-type approximations for the displacements of the HSDT given by
Eq. (1), the derivatives of deflection w with respect to x and y are replaced by
independent “warping” functions ϕx, ϕy [9, 10]. As a result, the displacement fields
in Eq. (1) can be rewritten as

u x, y, zð Þ= u0 + z−
4z3

3h2

� �
βx −

4z3

3h2
ϕx

v x, y, zð Þ= v0 + z−
4z3

3h2

� �
βy −

4z3

3h2
ϕy.

w x, y, zð Þ=w0

ð2Þ

From the displacement fields in Eq. (2), we obtain the in-plane and transverse
shear strain fields

εxx εyy γxy
� �T = ε0 + zκ1 + z3κ2 ð3Þ

γxz γyz
� �T = γs + z2κs ð4Þ

Here,

ε0 =
u0, x
v0, y

u0, y + v0, x

8<
:

9=
;; κ1 =

βx, x
βy, y

βx, y + βy, x

8<
:

9=
;; κ2 = −

4
3h2

βx, x +ϕx, x
βy, y +ϕy, y

βx, y +ϕx, y + βy, x +ϕy, x

8<
:

9=
;
ð5Þ

γs =
w0, x + βx
w0, y + βy

� �
; κs = −

4
h2

βx +ϕx
βy +ϕy

� �
ð6Þ

In these equations, the comma denotes derivatives.
Consider a layer k having the composite fibers inclined at an angle of θðkÞ to the

x-direction with positive definition shown in Fig. 2. The layer k is laid parallel to

Fig. 1 Laminated composite
plate and positive directions
of the displacements
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the Oxy plane at the elevation zk and zk+1 measured from its lower and upper

surfaces, respectively. The material properties are the Young’s moduli E kð Þ
1 ,E kð Þ

2 , the

shear moduli G kð Þ
12 ,G

kð Þ
23 ,G

kð Þ
13 , and the Poisson’s ratios ν kð Þ

21 = ν kð Þ
12 E kð Þ

1 ̸E kð Þ
2

� 	
, where

subscripts 1, 2, 3, respectively, describe the material properties in directions along
the composite fibers, perpendicular to the composite fibers and on the layer k and
normal to the layer k (see Fig. 2). The relationship between the stresses and strains
of the layer k is [1]

σx

σy

τxy

τxz

τyz

8>>>>>><
>>>>>>:

9>>>>>>=
>>>>>>;

ðkÞ

=

Q11 Q12 Q16 0 0
Q12 Q22 Q26 0 0
Q16 Q26 Q66 0 0
0 0 0 Q55 Q45
0 0 0 Q45 Q44

2
66664

3
77775

ðkÞ εx

εy

γxy

γxz
γyz

8>>>>>><
>>>>>>:

9>>>>>>=
>>>>>>;

ðkÞ

ð7Þ

In which,

Q11 =Q kð Þ
11 cos

4θ kð Þ +Q kð Þ
22 sin4 θ kð Þ +2ðQ kð Þ

12 + 2Q kð Þ
66 Þ sin2 θ kð Þcos2θ kð Þ

Q22 =Q kð Þ
11 sin4 θ kð Þ +Q kð Þ

22 cos
4θ kð Þ +2ðQ kð Þ

12 + 2Q kð Þ
66 Þ sin2 θ kð Þcos2θ kð Þ

Q66 = ðQ kð Þ
11 +Q kð Þ

22 − 2Q kð Þ
12 − 2Q kð Þ

66 Þ sin2 θ kð Þcos2θ kð Þ +Q kð Þ
66 ðsin4 θ kð Þ +cos4θ kð ÞÞ

Q12 = ðQ kð Þ
11 +Q kð Þ

22 − 4Q kð Þ
66 Þ sin2 θ kð Þcos2θ kð Þ +Q kð Þ

12 ðsin4 θ kð Þ + cos4θ kð ÞÞ
Q16 = ðQ kð Þ

11 −Q kð Þ
12 − 2Q kð Þ

66 Þ sin θ kð Þcos3θ kð Þ + ðQ kð Þ
12 −Q kð Þ

22 + 2Q kð Þ
66 Þ sin3 θ kð Þcosθ kð Þ

Q26 = ðQ kð Þ
11 −Q kð Þ

12 − 2Q kð Þ
66 Þ sin3 θ kð Þcosθ kð Þ + ðQ kð Þ

12 −Q kð Þ
22 + 2Q kð Þ

66 Þ sin θ kð Þcos3θ kð Þ

Q44 =Q kð Þ
44 cos

2θ kð Þ +Q kð Þ
55 sin2 θ kð Þ

Q55 =Q kð Þ
55 cos

2θ kð Þ +Q kð Þ
44 sin2 θ kð Þ

Q45 = ðQ kð Þ
55 −Q kð Þ

44 Þ sin θ kð Þcosθ kð Þ

ð8Þ

Fig. 2 Direction of
composite fibers in the layer k
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With

Q kð Þ
11 =

EðkÞ
1

1− νðkÞ12 ν
ðkÞ
21

; Q kð Þ
22 =

EðkÞ
2

1− νðkÞ12 ν
ðkÞ
21

; Q kð Þ
12 =

νðkÞ12 E
ðkÞ
2

1− νðkÞ12 ν
ðkÞ
21

; Q kð Þ
66 =GðkÞ

12 ; Q
kð Þ
44 =GðkÞ

23 ; Q
kð Þ
55 =GðkÞ

13

ð9Þ

Substituting the stresses computed from Eq. (7) into the weak form of the
laminated composite plate under the applied loads p and then integrating the
constitutive matrices through the thickness, the weak form written on the middle
plane Ω is Z

Ω

δεTD*
bεdΩ+

Z
Ω

δγTD*
sγdΩ+

Z
Ω

δuTmu ̈dΩ=
Z
Ω

δw0pdΩ ð10Þ

where u= u0 v0 w0 βx βy ϕx ϕy

� �T , ü= u ̈0 v0̈ ẅ0 β ̈x β ̈y ϕẍ ϕÿ

� �T , m is the lumped mass
matrix [16]

m=

I1 0 0 I2 0 − 4
3h2I4 0

0 I1 0 0 I2 0 − 4
3h2I4

0 0 I1 0 0 0 0
I2 0 0 I3 0 − 4

3h2I5 0
0 I2 0 0 I3 0 − 4

3h2I5
− 4
3h2I4 0 0 − 4

3h2I5 0 16
9h4I7 0

0 − 4
3h2I4 0 0 − 4

3h2I5 0 16
9h4I7

2
666666664

3
777777775

ð11Þ

with

ðI1, I2, I3, I4, I5, I7Þ=
Zh ̸2

− h ̸2

ρ 1, z, z2, z3, z4, z6

 �

dz, ð12Þ

where ρ is the mass density,

D*
b =

A B E
B D F
E F H

2
4

3
5; D*

s =
As Bs

Bs Ds

� 
ð13Þ

with

ðAij,Bij,Dij,Eij,Fij,HijÞ= ∑
n

k=1

Zzk+1

zk

ð1, z, z2, z3, z4, z6ÞQðkÞ
ij dz i, j=1, 2, 6 ð14Þ
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ðAs
ij,B

s
ij,D

s
ijÞ= ∑

n

k=1

Zzk+ 1

zk

ð1, z2, z4ÞQ̄ðkÞ
ij dz i, j=4, 5 ð15Þ

and

ε= εT0 κ
T
1 κ

T
2

� �T
; γ= γTs κ

T
s

� �T ð16Þ

2.2 Formulation of NS-MITC3 Elements
for the HSDT-Type Laminated Composite Plates

Discretize the middle plane of the laminated composite plate by three-node trian-
gular elements with the area Ωe. The displacements and warping functions of the
middle plane in Eq. (2) are approximated by the C0-shape functions and nodal
values as follows

u0 = ∑
3

I =1
NIuI ; v0 = ∑

3

I =1
NIvI ; w0 = ∑

3

I =1
NIwI ;

βx = ∑
3

I =1
NIθyI ; βy = − ∑

3

I =1
NIθxI ;ϕx = ∑

3

I =1
NIφyI ;ϕy = − ∑

3

I =1
NIφxI

ð17Þ

In which, uI, vI, wI, θxI, θyI, φxI, and φyI are the translational, rotational dis-
placements and warping of node I with definition of positive directions illustrated in
Fig. 3, and N1 = 1− ξ− η, N2 = ξ, N3 = η are the C0-shape functions in the natural
coordinates (ξ, η).

The approximations in Eq. (17) are substituted into Eqs. (5) and (6), and the
relationships between the strains and nodal displacements de are obtained as

ε0 =Bmde; κ1 =Bb1de; κ2 =Bb2de; κs =Bs1de ð18Þ

Fig. 3 A three-node
triangular plate element with
positive directions of nodal
values
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γs =Bsde ð19Þ

where de = u1 v1 w1 θx1 θy1 φx1 φy1 u2 v2 w2 θx2 θy2 φx2 φy2 u3 v3 w3 θx3 θy3 φx3 φy3

� �T
Bm =

1
2Ae

b− c 0
0 d− a

d− a b− c

0 0 0 0 0
0 0 0 0 0
0 0 0 0 0

c 0
0 − d
− d c

0 0 0 0 0
0 0 0 0 0
0 0 0 0 0

− b 0
0 a
a − b

0 0 0 0 0
0 0 0 0 0
0 0 0 0 0

2
4

3
5

ð20Þ

Bb1 =
1
2Ae

0 0 0
0 0 0
0 0 0

0 b− c
− d+ a 0
− b+ c d − a

0 0 0 0 0
0 0 0 0 0
0 0 0 0 0

0 c
d 0
− c − d

0 0 0 0 0
0 0 0 0 0
0 0 0 0 0

0 − b 0 0
− a 0 0 0
b a 0 0

2
4

3
5

ð21Þ

Bb2 = −
4
3h2

1
2Ae

0 0 0

0 0 0

0 0 0

0 b− c 0

− d+ a 0 − d+ a

− b+ c d− a − b+ c

0 0 0

0 0 0

0 0 0

c 0 c

0 d 0

− c − d − c

0 0 0

0 0 0

0 0 0

0 − b 0 − b

− a 0 − a 0

b a b a

2
64

3
75

ð22Þ

Bs1 = −
4
h2

1
2Ae

0 0 0
0 0 0

0 1
3 0 1

3
− 1

3 0 − 1
3 0

0 0 0
0 0 0

0 1
3 0 1

3
− 1

3 0 − 1
3 0

0 0 0
0 0 0

0 1
3 0 1

3
− 1

3 0 − 1
3 0

� 

ð23Þ

Bs =
0 0 b− c
0 0 d− a

0 N1

−N1 0
0 0 0 0
0 0 0 0

c 0 N2

− d −N2 0
0 0 0 0
0 0 0 0

− b 0
a −N3

N3 0 0
0 0 0

� 

ð24Þ

Here, a, b, c, and d are computed from nodal coordinates as defined in Fig. 4,
and Ae is the area of the element.

The transverse shear strains γs in Eq. (19) will not approach zero and overes-
timate the transverse shear energy when the plate thickness becomes thin. This
shear locking of the bending plate elements is removed by separately interpolating
the transverse shear strains through their values evaluated at the tying points. Lee
and Bathe [8] have derived the interpolation functions of the transverse shear strains
and the position of tying points in the natural coordinates, shown in Fig. 5, for
three-node triangular degenerated shell elements of isotropic materials, namely
MITC3. In this paper, these interpolations are explicitly formulated for the trans-
verse shear strains of the three-node plate elements in the Oxyz coordinates, which

Fig. 4 Nodal coordinates of
a three-node triangular plate
element
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are used for the HSDT-type laminated composite plates. The constant MITC3
transverse shear strains within the element are related to the nodal displacements by

γMITC3
s =BMITC3

s de ð25Þ

With

BMITC3
s =

1
2Ae

0 0 b− c b− cð Þ b+ cð Þ
6 Ae + d− að Þ b+ cð Þ

6 0 0 0 0 c − bc
2 + c b+ cð Þ

6
ac
2 − d b+ cð Þ

6 0 0

0 0 d− a −Ae − b− cð Þ a+ dð Þ
6 − d− að Þ a+ dð Þ

6 0 0 0 0 − d bd
2 − c a+ dð Þ

6 − ad
2 + d a+ dð Þ

6 0 0

"

0 0 − b bc
2 − b b+ cð Þ

6 − bd
2 + a b+ cð Þ

6 0 0

0 0 a − ac
2 + b a+ dð Þ

6
ad
2 − a a+ dð Þ

6 0 0

#

ð26Þ

To attenuate the stepped constant strains between elements, the node-based
smooth FEM [11, 16] is employed. Based on this approach, the strains are averaged
over domains Ω(ns) defined by segments connecting the centroid(s) and centers of
edges of element(s) around a common node as illustrated in Fig. 6. As a result, the
strains are smoothed

ε ̃0 =
1

A nsð Þ

Z
Ω nsð Þ

ε0dΩ; κ1̃ =
1

A nsð Þ

Z
Ω nsð Þ

κ1dΩ; κ2̃ =
1

A nsð Þ

Z
Ω nsð Þ

κ2dΩ ð27Þ

Fig. 5 Coordinates of the
tying points in the natural
coordinates

Fig. 6 Node-smoothed
domains of a plate discretized
by the three-node triangular
elements
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γ ̃MITC3
s =

1
A nsð Þ

Z
Ω nsð Þ

γMITC3
s dΩ; κ ̃s =

1
A nsð Þ

Z
Ω nsð Þ

κsdΩ ð28Þ

where A(ns) is the area of the node-based smooth domain Ω(ns).
Replacing the constant strains over elements given in Eqs. (18) and (25) into the

smoothed strains, we have

ε0̃ = B̃ nsð Þ
m d nsð Þ; κ1̃ = B̃ nsð Þ

b1 d nsð Þ; κ2̃ = B̃ nsð Þ
b2 d nsð Þ ð29Þ

γ ̃MITC3
s = B̃ nsð ÞMITC3

s d nsð Þ; κs̃ = B̃ nsð Þ
s1 d nsð Þ ð30Þ

Here, d(ns) is the nodal displacements of the domain Ω(ns) and

B̃ nsð Þ
m =

1
A nsð Þ ∑

N nsð Þ
e

e=1

Ae

3
Be
m; B̃

nsð Þ
b1 =

1
A nsð Þ ∑

N nsð Þ
e

e=1

Ae

3
Be
b1; B̃

nsð Þ
b2 =

1
A nsð Þ ∑

N nsð Þ
e

e=1

Ae

3
Be
b2 ð31Þ

B̃ nsð ÞMITC3
s =

1
A nsð Þ ∑

N nsð Þ
e

e=1

Ae

3
BMITC3, e
s ; B̃ nsð Þ

s1 =
1

A nsð Þ ∑
N nsð Þ
e

e=1

Ae

3
Be
s1 ð32Þ

In which, N nsð Þ
e is number of the elements e belonging to the node-based

smoothed domain Ω(ns), and Be
m,B

e
b1,B

e
b2,B

MITC3, e
s ,Be

s1 are, respectively, computed
from Eqs. (20), (21), (22), (26), and (23) for the element e.

Therefore, the weak form in Eq. (10) can be derived to discretized equilibrium
equations by the standard FEM as follows

Md ̈+Kd=F ð33Þ

where, d is the nodal displacements of the plate, K is the global stiffness matrix

assembled from stiffness matrices K̃ nsð Þ
of the node-based domains Ω(ns) given by

K̃ nsð Þ
=

B̃ nsð Þ
m

B̃ nsð Þ
b1

B̃ nsð Þ
b2

2
64

3
75
T

D*
b

B̃ nsð Þ
m

B̃ nsð Þ
b1

B̃ nsð Þ
b2

2
64

3
75A nsð Þ + B̃ nsð ÞMITC3

s

B̃ nsð Þ
s1

" #T

D*
s

B̃ nsð ÞMITC3
s

B̃ nsð Þ
s1

" #
A nsð Þ ð34Þ

F is the global force vector assembled from the element force vectors

Fe
I =

Z
Ωe

p 0 0NI 0 0 0 0½ �TdΩ ð35Þ
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and M is the global mass matrix assembled from the element mass matrices

Me
IJ =

Z
Ωe

NT
I mNJdΩ ð36Þ

with

NI =

NI 0 0 0 0 0 0
0 NI 0 0 0 0 0
0 0 NI 0 0 0 0
0 0 0 0 −NI 0 0
0 0 0 NI 0 0 0
0 0 0 0 0 0 −NI

0 0 0 0 0 NI 0

2
666666664

3
777777775

ð37Þ

We solve Kd = F for static analysis and determinant of (K—ωi
2M) equal to 0

for natural frequencies ωi.

3 Numerical Examples

3.1 Static Analysis of Laminated Composite Plates

In these examples, simply supported square laminated composite plates of the a-
length and the h-thickness are considered. The plates are subjected to uniformly
distributed load p in Fig. 7 or sinusoidal distributed load psin(πx/a)sin(πy/a) in

Fig. 7 The [0°/90°/90°/0°]
laminated composite plate
under uniformly distributed
load
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Fig. 8. The h-thick plate is made of layers that have the identical thicknesses. The
material properties of each layer are E2 = 1, E1 = 25E2, G12 = G13 = 0.5E2,
G23 = 0.2E2, and ν12 = 0.25.

To compare with other reference results, the behaviors of the plates are nor-
malized as follows

w̄= 100E2h3

pa4 w a
2 ,

a
2 , 0


 �
; σ ̄x = h2

pa2 σx
a
2 ,

a
2 ,

h
2


 �
; σ ̄y = h2

pa2 σy
a
2 ,

a
2 ,

h
4


 �
;

τx̄y = h2
pa2 τxy 0, 0, h

2


 �
; τ ̄xz = h

pa τxz 0, a
2 , 0


 �
; τ ̄yz = h

pa τyz
a
2 , 0, 0

 �

3.1.1 Four-Layer [0°/90°/90°/0°] Square Composite Plate Under
Uniform or Sinusoidal Load

Consider a four symmetric crossply layer [0°/90°/90°/0°] composite plate subjected
by the uniformly distributed load p or sinusoidal distributed load psin(πx/a)sin(πy/
a). The length-to-thickness ratio a/h is 5 or 20 for the uniform load case and 4, 20,
or 100 for the sinusoidal load case.

To investigate the convergent rate, the displacements at the center of the plate
under the sinusoidal load are computed by using variously regular mesh of N x N x
2 NS-MITC3 elements, in which N = 8, 12, 16, and 20 are the number of elements
on each edge of the plate. The reference value analytically solved by Reddy [22] is
chosen to calculate the relative errors of the central displacements given by the
NS-MITC3, NS-DSG3 [16], and ES-DSG3 [18]. Figure 9a, b shows the convergent
rates of the NS-MITC3, NS-DSG3, and ES-DSG3 in the case of a/h = 4 and

Fig. 8 The [0°/90°]
laminated composite plate
under sinusoidal distributed
load
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a/h = 100, respectively. In the both thick and thin plates, the convergent rate of
NS-MITC3 is similar to those of NS-DSG3 and ES-DSG3. In the thick plate, the
NS-MITC3 is more accurate than NS-DSG3 but less accurate than ES-DSG3. In
contrast, the NS-MITC3 is more accurate than ES-DSG3 but less accurate than
NS-DSG3 in the case of thin plate.

Due to the reasonable results provided by the mesh of 20 × 20 x 2 elements,
this mesh is employed to compute results of the NS-MITC3 elements in all
examples of this paper. Numerical results given by the NS-MITC3 elements are
shown in Table 1 for the uniform load and Table 2 for the sinusoidal load. Tables 1
and 2 also present reference results provided by the NS-DSG3 elements [16], the

(a) a/h = 4 (b) a/h = 100

Fig. 9 Convergent rates of the [0°/90°/90°/0°] square plate under sinusoidal load

Table 1 Normalized deflection and stresses of the four-layer composite plate under uniform load

a/h Method w̄ σx̄ σȳ τx̄y τx̄z τȳz

5 3D-FEM [23] 2.1044 0.8995 0.7386 0.0991 0.5340 0.4240
HSDT-MQ [23] 1.8736 0.8640 0.6720 0.0740 0.7320 0.6860
HSDT-NS-DSG3
[16]

2.1936 0.9202 0.8287 0.0900 0.5846 0.5086

HSDT-NS-MITC3 2.1932 0.9204 0.8310 0.0816 0.4376 0.5142
20 3D-FEM [23] 0.7794 0.8207 0.4870 0.0444 0.6040 0.4545

HSDT-MQ [23] 0.7538 0.8100 0.4750 0.0408 0.8250 0.6950
HSDT-NS-DSG3
[16]

0.7966 0.8251 0.4144 0.0469 0.6940 0.3934

HSDT-NS-MITC3 0.7982 0.8260 0.4151 0.0433 0.5812 0.3945
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meshless local Petrov–Galerkin method (MLPG) with the multiquadric (MQ) radial
basis functions [23], the FEM using 20-node brick elements of the commercial
package ABAQUS [23], the exact closed-form solutions of the three-dimensional
model of Pagano [24] and the HSDT of Reddy [22]. Compared to the
three-dimensional solutions, the NS-MITC3 elements can give more accurate
results of the deflection and stresses than those given by the MLPG and the
closed-form solutions suggested by Reddy in the cases of uniform or sinusoidal
loads. The similar results provided by the NS-MITC3 and NS-DSG3 elements show
that the NS-MITC3 elements are also reasonable competitor used for static analyses
of HSDT-type laminated composite plates.

The distributions of the normalized normal stress σ ̄x at point (a/2, a/2) and the
transverse shear strain τx̄z at point (0, a/2) through the thickness of the 4-layer
composite laminated plate under the uniform load are illustrated in Fig. 10 and
Fig. 11, respectively.

Table 2 Normalized deflection and stresses of the four-layer composite plate under sinusoidal
load

a/h Method w̄ σ ̄x σȳ τx̄y τx̄z τȳz

4 3D-Elasticity [24] 1.9540 0.7200 0.6660 0.0467 0.2700 –

HSDT-Elasticity
[22]

1.8937 0.6651 0.6322 0.0440 0.2064 0.2390

HSDT-ES-DSG3
[18]

1.9046 0.7005 0.6236 0.0476 0.2071 0.2387

HSDT-NS-DSG3
[16]

1.9266 0.7076 0.6303 0.0475 0.2084 0.2404

HSDT-NS-MITC3 1.9246 0.7076 0.6320 0.0449 0.2139 0.2461
20 3D-Elasticity [24] 0.5170 0.5430 0.3090 0.0230 0.3280 –

HSDT-Elasticity
[22]

0.5060 0.5393 0.3043 0.0228 0.2825 0.1230

HSDT-ES-DSG3
[18]

0.5047 0.5380 0.3019 0.0236 0.3033 0.1273

HSDT-NS-DSG3
[16]

0.5089 0.5433 0.3050 0.0234 0.3051 0.1266

HSDT-NS-MITC3 0.5099 0.5438 0.3055 0.0224 0.3069 0.1276
100 3D-Elasticity [24] 0.4347 0.5390 0.2710 0.0214 0.3390 –

HSDT-Elasticity
[22]

0.4343 0.5387 0.2708 0.0213 0.2897 0.139

HSDT-ES-DSG3
[18]

0.4310 0.5331 0.2680 0.0213 0.3222 0.1365

HSDT-NS-DSG3
[16]

0.4345 0.5384 0.2706 0.0211 0.3183 0.1183

HSDT-NS-MITC3 0.4355 0.5390 0.2710 0.0210 0.3167 0.1146
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3.1.2 Two-Layer [0°/90°] Square Composite Plate Under Sinusoidal
Load

Give an antisymmetric crossply laminated plate consisting of 0° and 90° layers. The
plate is applied a sinusoidal distributed load psin(πx/a)sin(πy/a). The length-to-
thickness ratio a/h is 4, 10, or 100.

Table 3 shows the normalized deflection and stresses provided by the
NS-MITC3 elements, the closed-form solutions of the three-dimensional elasticity
[24] and the HSDT elasticity [22, 25], and the FEM solutions using four-node
quadrilateral elements with reduced integration for the transverse shear strain
energy [26]. Except for the deflection of the thick laminated composite plate with
a/h = 4, the present elements, NS-MITC3, gave the numerical results in good
agreements with the closed-form solutions of three-dimensional elasticity [24] and
lightly better than those of the HSDT solutions [22] and even the four-node
quadrilateral elements [26].

Fig. 10 σ ̄x through the
thickness of the 4-layer plate
under the uniform load at
point (a/2, a/2) given by the
NS-MITC3 elements

Fig. 11 τ ̄xz through the
thickness of the 4-layer plate
under the uniform load at
point (0, a/2) given by the
NS-MITC3 elements
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Figure 12 and Fig. 13, respectively, show the distributions of σ ̄x at (a/2, a/2) and
τx̄z at (0, a/2) through the antisymmetric crossply laminated plate under the sinu-
soidal load for the length-to-thickness a/h = 4 and 100.

3.2 Static Analysis of Sandwich Plate

A square sandwich plate of length a and thickness h is made of 3 layers including a
core and 2 skins as shown in Fig. 14. The plate is simply supported and subjected to a
sinusoidal distributed load psin(πx/a)sin(πy/a). The thickness of core is 0.8 h, and the
thickness of each skin is 0.1 h. The material properties of the core are E1c = 0.04,
E2c = 0.04, G12c = 0.016, G13c = G23c = 0.06, ν12c = ν23c = ν13c = 0.25 and those

Table 3 Normalized deflection and stresses of the two-layer composite plate under sinusoidal
load

a/h Method w̄ σ ̄x τx̄y τx̄z

4 3D-Elasticity [24] 1.7287 −0.7807 −0.0591 0.1353
HSDT-Elasticity [22, 25] 1.6760 −0.8385 −0.0558 –

HSDT-RQ4 [26] 1.9563 −1.0181 −0.0600 0.1327
HSDT-NS-MITC3 2.0513 −0.8323 −0.0553 0.1163

10 3D-Elasticity [24] 1.2318 −0.7300 −0.0538 0.1250
HSDT-Elasticity [22, 25] 1.2161 −0.7468 −0.0533 –

HSDT-RQ4 [26] 1.2125 −0.7644 −0.0542 0.1324
HSDT-NS-MITC3 1.2249 −0.7368 −0.0525 0.1193

100 3D-Elasticity [24, 25] 1.0742 −0.7219 −0.0529 –

HSDT-Elasticity [22, 25] 1.0651 −0.7161 −0.0525 –

HSDT-RQ4 [26] 1.0656 −0.7229 −0.0530 0.1319
HSDT-NS-MITC3 1.0677 −0.7161 −0.0518 0.1205

Fig. 12 σ ̄x through the
thickness of the [0°/90°] plate
under the sinusoidal load at
point (a/2, a/2) given by the
NS-MITC3 elements
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of skins are E1s = 25, E2s = 1, G12s = 0.5, G13s = G23s = 0.2, ν12s = ν23s =
ν13s = 0.25.

For comparison, the following nondimensional deflection and stresses are used

w̄= 100h3
pa4 w a

2 ,
a
2 , 0


 �
; σ ̄x = h2

pa2 σx
a
2 ,

a
2 ,

h
2


 �
; σ ̄y = h2

pa2 σy
a
2 ,

a
2 ,

h
2


 �
;

τx̄z = h
pa τxz 0, a

2 , 0

 �

; τ ̄yz = h
pa τyz

a
2 , 0, 0

 �

The nondimensional deflection and stresses given by the NS-MITC3 elements
for different length-to-thickness ratio a/h = 4, 10, 20, 100 of the sandwich plate are
shown in Table 4. The results of the present elements are not as good as those of the
three-dimensional elasticity [24], the 9-node quadrilateral elements are based on
higher-order zigzag plate theory (HOZT) [27], and the ES-DSG3 elements are

Fig. 13 τ ̄xz through the
thickness of the [0°/90°] plate
under the sinusoidal load at
point (0, a/2) given by the
NS-MITC3 elements

Fig. 14 Simply supported
3-layer sandwich plate under
sinusoidal distributed load
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based on the first-order layerwise plate theory [28], especially in the cases of thick
sandwich plates. It can be explained by the ESL model used in this paper.

3.3 Frequency Analysis of Laminated Composite Plate

Consider a clamped [0°/90°/0°] square plate with the length-to-thickness ratios a/
h = 10 or 100, see Fig. 15. Each layer has the identical thickness and properties of

Table 4 Nondimensional deflection and stresses of the sandwich plate under sinusoidal load

a/h Method w̄ σ ̄x σȳ τx̄z τȳz

4 3D-Elasticity [24] 7.5962 1.5560 0.2595 0.2390 0.1072
HOZT-FEMQ9 [27] 7.5822 1.5306 0.2581 0.2436 0.1147
Layerwise-ES-DSG3 [28] 7.6613 1.4600 0.2477 0.2343 0.1021
HSDT-NS-MITC3 7.2323 1.5068 0.2395 0.2834 0.1172

10 3D-Elasticity [24] 2.2004 1.1153 0.1104 0.3000 0.0527
HOZT-FEMQ9 [27] 2.1775 1.1528 0.1143 0.3058 0.0575
Layerwise-ES-DSG3 [28] 2.1980 1.1378 0.1079 0.2957 0.0504
HSDT-NS-MITC3 2.0991 1.1500 0.1044 0.3504 0.0583

20 3D-Elasticity [24] 1.2264 1.1100 0.0700 0.3170 0.0361

HOZT-FEMQ9 [27] 1.2121 1.1103 0.0742 0.3272 0.0399
Layerwise-ES-DSG3 [28] 1.2212 1.0987 0.0690 0.3140 0.0352
HSDT-NS-MITC3 1.1990 1.1096 0.0683 0.3689 0.0413

100 3D-Elasticity [24] 0.8923 1.0980 0.0550 0.3240 0.0297
HOZT-FEMQ9 [27] 0.8814 1.0982 0.0592 0.3426 0.0322
Layerwise-ES-DSG3 [28] 0.8867 1.0872 0.0544 0.3244 0.0326
HSDT-NS-MITC3 0.8934 1.0980 0.0549 0.3764 0.0352

Fig. 15 Clamped [0°/90°/0°]
laminated composite plate for
frequency analysis
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E2 = 1, E1 = 40E2, G12 = G13 = 0.6E2, G23 = 0.5E2, ν12 = 0.25, and ρ = 1. In
order to easily compare with other references, the nondimensional natural frequency
ωī = ωia2 ̸π2ð Þ ffiffiffiffiffiffiffiffiffiffiffiffiffi

ρh ̸D0
p

with D0 =E2h3 ̸12 ̸ 1− ν12ν21ð Þ is used. The first 6
nondimensional frequencies given by the mesh of 20 × 20 × 2 NS-MITC3 ele-
ments are shown in Fig. 16a for a/h = 10 and Fig. 16b for a/h = 100 and similar to
those provided by p-Ritz solution [29], C1-type three-node triangular elements [30],
and smoothed FEM combined with DSG3 technique as NS-DSG3 [16], ES-DSG3
[18]. It can be commented that the NS-MITC3 elements are good competitor for the
analysis of free vibration.

4 Conclusions

The node-based smoothed three-node triangular plate elements, NS-MITC3, were
studied for static and frequency analyses of laminated composite plates using the
HSDT based on ESL model. Based on the MITC3 technique, the gradient trans-
verse shear strains are explicitly formulated to be dependent on nodal coordinates of
elements. All the constant strains within elements are averaged over the domains
defined by elements shearing common nodes. The numerical results given by the
present elements are in good agreements with the references in static analyses of
symmetric, antisymmetric laminated composite, and sandwich plates with various
thicknesses. The suggested elements also give reasonable natural frequencies of
thin and thick laminated composite plates. The NS-MITC3 elements are competitor
against other C0-type HSDT laminated plate elements.

(a) a/h = 10 (b) a/h = 100

Fig. 16 First 6 nondimensional frequencies of a clamped [0°/90°/0°] squared plate
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Equivalent Inclusion Approach and
Approximations for Thermal
Conductivity
of Composites with Fibrous Fillers

Nguyen Trung Kien, Nguyen Thi Hai Duyen and Pham Duc Chinh

Abstract Based on the polarization approximations, the expression for the thermal

conductivity of composites with randomly oriented inclusions of fiber forms is firstly

derived. Equivalent inclusion approach is then developed to account for possible

diversions such as non-idealistic geometric forms of the inhomogeneities, or the fact

that the conductivity of the fibers is unknown, using reference conductivity data.

Applications involving experimental data from the literature show the usefulness of

the approach.

Keywords Effective conductivity ⋅ Polarization approximations ⋅ Fibrous fillers

1 Introduction

A macroscopic transport property of many practical composites, such as the ther-

mal conductivity, is difficult to be determined analytically. Many effective medium

approximations (EMA) and micro-mechanic schemes have been developed to esti-

mate the effective properties [1–5]. Most effective medium approximations use ana-

lytical dilute solution results for an ellipsoidal inclusion embedded in an infinite

matrix as the references, and they converge at those dilute limits. Though in many

practical cases the inhomogeneities may have the forms close to the extreme spher-

ical, circular cylinder (fiber), platelet ones, they often do not have those exact ideal-
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istic forms. The sizes of the inhomogeneities may be down to the nanosizes (such as

nanotubes and nanoplates), and it may be not easy to give them the appropriate exact

conductivity values for use in calculating the conductivity of a composite. Instead,

empirical and semiempirical formulae are developed and used widely by the practi-

tioners in the field to estimate macroscopic conductivities of the composites over a

range of components’ proportions [6–11].

In [12], from the minimum energy principles, the polarization approximations

have been constructed for effective conductivity of isotropic multicomponent mate-

rials, which can use dilute solution reference or reference at components’ finite vol-

ume proportions, that always lie within Hashin–Shtrikman (HS) bounds over all

the ranges of volume proportions of the component materials. In the case of two-

component matrix composites with inclusions of ellipsoidal forms, the approxima-

tion using dilute solution reference coincides with the well-known Mori–Tanaka

approximation. In this paper, those approximations with equivalent inclusion

approach shall be used in conjunction with experimental data to estimate the effec-

tive conductivity of matrix composites from literature with fibrous fillers.

2 Polarization Approximation and Equivalent Inclusion
Approach

Let us consider an isotropic multicomponent material that consists of n compo-

nents of volume proportions vi having conductivities ci (i = 1, ..., n). The polariza-

tion approximation for the effective conductivity ceff
of the composite constructed

from the minimum energy principles, under condition of perfect contact between the

component materials, has the particular form [12]

ceff = Pc(c0) =
( n∑

i=1

vi

ci + 2c0

)−1

− 2c0 (1)

where the reference parameter c0 should be determined from a reference dilute solu-

tion result or reference effective conductivity of the composite at certain finite vol-

ume proportions of the components. Note that, function Pc(c0) has the remarkable

property that it is a positive monotonous-increasing function of the positive param-

eter c0. With the reference parameter c0 lying within the limits

cmin = min{c1,… , cn} ≤ c0 ≤ cmax = max{c1,… , cn} , (2)

the function Pc(c0) increases from Hashin–Shtrikmans lower (HSL) to upper (HSU)

bounds, which read

Pc(cmin) ≤ ceff
≤ Pc(cmax) (3)
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In the case of two-component matrix composites, Eq. (1) simplifies to

ceff = Pc(c0) =
(

vM

cM + 2c0
+

vI

cI + 2c0

)−1

− 2c0 , (4)

while the respective dilute solution result has the form

ceff = cM + vI(cI − cM)D(cI , cM) + O(v2I ) (5)

Equalizing (4) and (5) at vI ≪ 1, one finds

c0 =
D(cI , cM)cI − cM

2
(
1 − D(cI , cM)

) (6)

where D(cI , cM) is some inclusion function, which is specific for inclusion compo-

nent’s geometry. For the circular fiber inclusion, one has

D(cI , cM) =
cI + 5cM

3(cI + cM)
. (7)

Substituting (7) into (6), one obtains

c0 =
cI + 3cM

4
. (8)

The approximation from (4) and (8) for matrix composites with fibrous inclusions

is called the polarization approximation using fibrous inclusion dilute solution ref-

erence (FIPA). It satisfies HS bounds over all the ranges of volume proportion vI of

the inclusion phase.

In practice, the inhomogeneities may not have exact idealistic geometries but

those more or less close to them. Equivalent inclusion approach is a practical way

to modify the approximations. The idea of the equivalent inclusion is that one uses

a modified value cI in the place of the inclusion conductivity cI in the approxima-

tion formulae [13]. The equivalent inclusion conductivity value cI is derived from

the experimental value of the reference effective conductivity ceff
ref at some volume

proportion vref
I of the inclusion. For fiber inclusion composite, one uses the fibrous

inclusion polarization approximation from (4), (8)

ceff
ref =

( 2vref
I

3(cI + cM)
+

2vref
M

cI + 5cM

)−1

−
cI + 3cM

2
(9)

which yields
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cI =
1

2vref
I

{
ceff

ref (1 + 2vref
M ) − 3cM − 2vref

I cM +
[(

ceff
ref (1 + 2vref

M )

−3cM − 2vref
I cM

)2
− 4vref

I cM(3vref
M cM − 2vref

I ceff
ref − 3ceff

ref )
]1∕2}

. (10)

Then the fibrous equivalent inclusion polarization approximation (FEIPA) for the

effective conductivity of the composite would have the particular expression

ceff
FEIPA =

(
2vI

3(cI + cM)
+

2vM

cI + 5cM

)−1

−
cI + 3cM

2
(11)

in which, cI is determined from (10). A particular feature of equivalent inclusion

polarization approximations (10) and (11) is that the exact value cI of the inclu-

sions is not required, while the respective equivalent inclusion conductivity c̄I is

found from the reference experimental effective conductivity ceff
ref at vref

I , and then the

approximation is used to predict ceff
at a range of vI beyond vref

I . That is practical,

because in many practical cases involving nanosize inclusions such as nanotubes, the

information about exact conductivity values of those nanoparticles as well as contact

conditions with surrounding matrix may not be available and specified quantitatively.

Fig. 1 SEM image of silica–PVP nanofibers (Liyun Ren et al. [14])

Table 1 Experimental values from [14] on thermal conductivity of epoxy matrix composite filled

with silica fibers and polarization approximations

vI(%) EXP FEIPA0.005 FEIPA0.02 FEIPA0.03 FEIPA0.06 FEIPA0.09 FIPA

0.563 0.1982 0.1982 0.1966 0.1983 0.2019 0.2010 0.1933

1.704 0.21 0.2150 0.21 0.2153 0.2262 0.2235 0.2001

2.8 0.2319 0.2313 0.2231 0.2319 0.2499 0.2455 0.2067

5.704 0.3143 0.2757 0.2586 0.2769 0.3143 0.3052 0.2246

8.74 0.37 0.3239 0.2971 0.3257 0.3843 0.37 0.2438
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3 Experimental Reference and Results

Figure 1 presents the scanning electron microscope (SEM) image of the polymer

composite with randomly oriented silica nanofibers [14]. Conductivities of the

epoxy matrix and silica fibers are 0.19Wm
−1

K
−1

and 1.38Wm
−1

K
−1

, respectively.

The experimental measured values (EXP) of ceff
at different volume fractions of the

fillers and the polarization approximations are presented in Table 1. Figure 2 com-

pares the experimental data and fibrous equivalent inclusion polarization approxi-

mation (FEIPA) from (10) and (11). FEIPA (0.06) is constructed using the refer-

ence experimental conductivity at the concentration point close to vref
I ≈ 0.06. The

equivalent inclusion conductivity cI = 5.78Wm
−1

K
−1

is found according to (10)

while cI = 1.38Wm
−1

K
−1

according to the source. The fibrous inclusion polariza-

Fig. 2 Fibrous polarization approximation compared with experimental data: epoxy matrix (ther-

mal conductivity cM = 0.19Wm
−1

K
−1

) filled with silica nanofibers, FEIPA (0.06) uses the refer-

ence at vref
I ≈ 0.06 and FIPA without equivalent inclusion modification

Table 2 Experimental values from [15] on thermal conductivity of polytetrafluoroethylene matrix

composite filled with carbon nanotubes and polarization approximations

vI(%) EXP FEIPA0.05 FEIPA0.1 FEIPA0.2 FEIPA0.3

5 0.079 0.079 0.091 0.087 0.088

10 0.114 0.088 0.114 0.104 0.108

20 0.143 0.109 0.164 0.143 0.151

30 0.2 0.131 0.221 0.187 0.2
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Fig. 3 Fibrous polarization approximation compared with experimental data: polytetrafluoroethy-

lene matrix (thermal conductivity cM = 0.07Wm
−1

K
−1

) filled with carbon nanotubes, FEIPA (0.2)

uses the reference at vref
I = 0.2

tion approximation (FIPA) from (4) and (8) without equivalent inclusion is also

included for comparison which diverges from EXP and FEIPA.

Similarly, Table 2 presents the experimental thermal property measurements of

polytetrafluoroethylene (PTFE) as a base matrix (cM = 0.07Wm
−1

K
−1

) combined

with carbon nanotubes fillers (CNT) [15] and the results obtained from fibrous

equivalent inclusion polarization approximation. In Fig. 3, the experimental data

are plotted, FEIPA (0.2) is constructed using the reference experimental conduc-

tivity at the concentration point vref
I = 0.2. The equivalent inclusion conductivity

cI = 0.807Wm
−1

K
−1

is found while cI not yet known.

4 Conclusion

Equivalent inclusion polarization approximations have been proposed to estimate

the effective conductivity of isotropic matrix composites with randomly oriented

inclusions of close to fiber forms. The approximation from (4) and (8) for the cir-

cular cylinder fiber inclusion ones, which satisfies HS bounds over all the volume

proportions of the components, under perfect interface condition. To account for

possible non-idealistic forms of the inclusions and unspecified conductivity val-

ues of nanofillers, the equivalent inclusion polarization approximations using the

reference experimental macroscopic conductivity of the composite at certain vol-

ume proportion of component materials have been developed for fibrous filler like
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inclusion composites (9)–(11). In this approximation, the equivalent inclusion con-

ductivity is found from a reference experimental value of the macroscopic conduc-

tivity, not requiring knowledge about specific conductivity of the fillers—that is of

practical interest, especially for composites with fillers in nanoscales. Comparison

of the approximations with experimental data illustrates promising capacity of the

approach.
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Crack Detection in a Beam on Elastic
Foundation Using Differential
Quadrature Method and the Bees
Algorithm Optimization

R. Khademi Zahedi, P. Alimouri, Hung Nguyen-Xuan
and Timon Rabczuk

Abstract In the present contribution, a practical and non-destructive method for
the identification of a single crack in a beam resting on elastic foundation is pre-
sented. The beam is modelled by differential quadrature method, and the location
and depth of crack are predicted by bees algorithm. The crack is assumed to be open
and is simulated by torsional spring which divides all parts through cracked beam
into two segments. Then, the differential quadrature method is applied to the
governing differential equation of motion of each segment and the corresponding
boundary and continuity conditions. An eigenvalue analysis is performed on the
resulting system of algebraic equations to obtain the natural frequencies of the
cracked beam on elastic foundation. Then, the location and depth of cracks are

R. Khademi Zahedi (✉) ⋅ T. Rabczuk
Institute of Structural Mechanics, Bauhaus-Universität Weimar, Mariensrtaβe 15,
99423 Weimar, Germany
e-mail: reza.khademi.zahedi@nui-weimar.de

T. Rabczuk
e-mail: Timon.rabczuk@nui-weimar.de; timon.rabczuk@tdt.edu.vn

P. Alimouri
Department of Mechanical Engineering, Shahid Chamran University of Ahvaz, Blv.
Golestan, Ahvaz City, Iran
e-mail: alimouri_P@yahoo.com

H. Nguyen-Xuan
Center for Interdisciplinary Research in Technology, HUTECH University,
Ho Chi Minh City, Vietnam
e-mail: ngx.hung@hutech.edu.vn

H. Nguyen-Xuan
Department of Physical Therapy, Graduate Institute of Rehabilitation Science,
China Medical University, Taichung 40402, Taiwan

T. Rabczuk
Faculty of Civil Engineering, Ton Duc Thang University, Ho Chi Minh City, Vietnam

T. Rabczuk
Division of Computational mechanics, Ton Duc Thang University, Ho Chi Minh City,
Vietnam

© Springer Nature Singapore Pte Ltd. 2018
H. Nguyen-Xuan et al. (eds.), Proceedings of the International Conference
on Advances in Computational Mechanics 2017, Lecture Notes in Mechanical
Engineering, https://doi.org/10.1007/978-981-10-7149-2_30

439

http://crossmark.crossref.org/dialog/?doi=10.1007/978-981-10-7149-2_30&amp;domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-981-10-7149-2_30&amp;domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-981-10-7149-2_30&amp;domain=pdf


determined by bees algorithm optimization technique. The formulation of
thin-walled beams theory is used for the crack detection in this research. To insure
the integrity and robustness of the presented algorithm, the finite element analysis is
performed on the set of cantilever beams, with different crack lengths and locations.
The results show that the presented algorithm predicts location and depth of crack
well and can be effectively employed for crack detection in other structures.

Keywords Vibration analysis ⋅ Crack detection ⋅ Differential quadrature
method ⋅ Bees algorithm

1 Introduction

Industrial development can be achieved through the production of improved
machinery and equipment. One of the major goals that is often followed by man-
ufacturing and production industries is the reliability of their products [1]. The
existence of defects in some produced parts will cause the catastrophic failure of
whole structure which will result in loss of life and property. Crack is one of the
major defects which may appear in a structure.

As the final failure in parts and structures usually happens by the initiation and
propagation of the crack, the investigation and research in these fields will be
effective and appropriate [2]. The increasing daily need for the detection of flaws
and defects in overall parts of a complicated structure leads to the chasing of some
methods by researchers in which the variation in the specification of whole structure
to be investigated. The most applicable methods are the inspection based on the
vibration behaviour of the structure. The main idea behind these methods is the
investigation of the modal parameters before and after the occurrence of the defect
in structure. Swamidas et al. [3] used the energy approach to estimate bending
stiffness of the cracked beam, and by implementing it in the beam differential
equation, they estimated natural frequencies of the cracked beam with different
crack sizes and locations. Then, the crack size and location were investigated by
solving the inversed problem. Qian et al. [4] derived an element stiffness matrix of a
beam hoisting an open-edge crack by integrating over the stress intensity factors.
They established the finite element model of a cracked beam, and for a cantilever
cracked beam, they determined eigenfrequencies of different crack lengths and
locations. Narkis et al. [5] investigated the bending and axial vibrations of a cracked
simply supported uniform beam. By simulating the crack with an equivalent tor-
sional spring, they derived algebraic equations with respect to the natural fre-
quencies of the beam and crack length and location. Then, the inverse problem was
applied to identify the crack length and location. Nanthakumar et al. [6] presented
an iterative method to treat the inverse problem of detecting cracks and voids in
piezoelectric structures. Extended finite element was employed for solving forward
problem. Then, the minimization of cost function was performed by multilevel
coordinate search method. In addition, they [7] proposed a strategy to detect
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multiple voids in piezoelectric structures by using XFEM and combining shape
derivative and level sets as employed in structural optimization problems. Dems
and Meroz [8] utilized the difference between natural frequencies of intact and
cracked states of structures and applied the solution of the related constrained
optimization problem to investigate damage or fault in structure. The relation
between stiffness and frequency is defined as the problem constraint. Chang and
Chen [9] estimated the positions and depths of cracks in Timoshenko beam from
spatial wavelet transform-based method. First, they obtained the mode shapes of
free vibration and natural frequencies of the cracked beam by analytical method.
The crack was assumed to be open and was represented as a torsional spring. Then,
the mode shapes were analysed by wavelet transformation to get the positions of the
cracks, and natural frequencies were used to predict the depths of the cracks through
the characteristic equations.

In this research, the crack is modelled based on the presented method by Vakili
Baghmisheh [10], and then, the differential quadrature (DQ) method is employed to
compute the natural frequencies of the cracked beam. Finally, the weighted sum of
the squared errors between the measured and computed natural frequencies by finite
element analysis and DQ method, respectively, is used as the objective function and
minimized by the bees algorithm (BA) to predict the location and depth of the
crack. The formulation developed in this study is applied to the cracked cantilever
beams on elastic foundation, but it can be extended to other types of boundary
conditions.

2 Theory

2.1 Differential Quadrature Technique

Differential quadrature technique is based on the Gaussian differentiation of a
function to calculate function derivative which is based on the function values in
limited points of the domain. This approximate solution for estimating the
derivative of a function at a point located in the related domain is based on the
weighted linear sum of the function values at all discrete points chosen inside the
domain. The DQM first proposed in early seventies by Bellman [11]. The following
equation is the mathematical representation of the definition stated by Bellman for
the DQ expansion:

df
dx

����
x= xi

= ∑
N

j=1
C 1ð Þ
ij fj i, j=1, 2, . . . ,N ð1Þ

In this equation, N is the number of discrete sampling points, xi is the coordinate
of ith discrete sampling point in the computational domain, fj is the functional value
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at xj, and Cij
(l) is weighting coefficient related to the first-order derivative of the

function at point xi.

2.2 Modelling the Vibration Behaviour of the Damaged
Beam

Figure 1 shows an elastic cantilever beam of length L, height H and width b, having
an open-edge full width crack of depth a, perpendicular to the beam’s longitudinal
axis which is resting on the elastic foundation (LC).

To investigate the mechanical behaviour of the system, the elasticity of the
foundation is modelled by springs of kf spring stiffness. As the presence of the
crack in beam changes the beam stiffness at the crack location, the simplest cracked
beam modelling method is to model it as two separate uniform segments connected
with a torsional spring. Therefore, as shown in Fig. 2, the crack with finite length
divides the beam into two segments and the segments are connected with a massless
torsional spring. The spring stiffness, kt, used to model the crack can be calculated
from the following equation:

Fig. 1 Geometry of a cracked cantilever beam on elastic foundation

Fig. 2 Crack modelling in beam
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kt =
EI

6Hð1− ν2ÞQ a
H

� � ð2Þ

where EI, ν and a are the bending rigidity of the beam, the poisson’s ratio of the
beam material and the crack depth, respectively. The geometrical factor Q can be
expressed by [12, 13]:

f
a
H

� �
=1.8224

a
H

� �2
− 3.95

a
H

� �3
+ 16.375

a
H

� �4
− 37.226

a
H

� �5

+ 76.81
a
H

� �6
− 126.9

a
H

� �7
+ 172

a
H

� �8
− 143

a
H

� �9
+ 66.56

a
H

� �10
ð3Þ

The differential equation of motion is described for bending vibration of each
segment. These equations along with equations related to the boundary conditions
and compatibility equations of the cracked section are transformed to an eigenvalue
problem by means of differential quadrature method, which will be used to extract
the natural frequencies of the proposed system. Compatibility conditions consist of
the discontinuity of slope and continuity of deflection, bending moment and shear
force at the crack location. The mathematical model applied to describe the motion
of a beam with finite crack consists of two separate functions. These functions
W1(x, t) and W2(x, t) describe beam’s transverse vibration of the two segments
illustrated in Fig. 2. Equation of motion of a cracked beam can be stated as:

d4Wk

dx4
− α4Wk =0 k=1, 2 ð4Þ

In the above equation, k is the beam number. Also, α is the dimensionless
frequency of the beam which can be expressed by the following equation:

α4 =
− kf
EI

+
ω2

c2

� �
c=

ffiffiffiffi
EI
ρA

q
ð5Þ

where ω, ρ and A are natural frequency, density and cross-sectional area of the
beam, respectively. The beam considered here is a cantilever beam. The boundary
conditions of a cantilever beam are assumed to be as below:

W1 x=0j =0, dW1
dx x=0j =0 ð6Þ

due to the deflection and rotation both being zero at the clamped end. Also due to
the bending moment and shear force both vanishing at the beam-free end, these
boundary conditions can be stated as Eqs. (5) and (6):
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d2W2

dx2 x= lj =0 ð7Þ

d3W2

dx3 x= lj =0 ð8Þ

Besides, Eq. (9) satisfies the compatibility of the displacements, bending
moments and shear forces of two segments at the crack location:

W1 x= lcj =W2 x= lcj d2W1
dx2 x= lcj =

d2W2

dx2 x= lcj d3W1
dx3 x= lcj = d3W2

dx3 x= lcj d3W2
dx3 x= lj =0

ð9Þ

Subsequently, as shown in Eq. (10), the difference in the slopes of the two
segments at the crack location can be related to the bending moment exerted by the
torsional spring [12]:

dW1

dx
+

EI
kt

d2W2

dx2

� �
x= lcj

=
dW2

dx x= lcj
ð10Þ

The lengths of beam number 1 and 2 are specified by l1 and l2, respectively.
Using sampling point distribution equation, here each domain is divided into
N discrete points located at right and left side of the spring. By using the variable
change X = x

L and applying DQ on the beams differential equation, one can obtain:

1
l4k

∑
N

j=1
C 4ð Þ
ijk Wjk + α4 Wik =0 k=1, 2 ð11Þ

In the above equation, C 4ð Þ
ijk is the weighting coefficient of the fourth-order

derivative at the ith sampling point of the kth region of the beam, Wik is lateral
deflection at the ith point of the beam number k, and lk is the length of the beam
k. In each boundary node, located on X = 0 (x = 0) in Eq. 6 and X = 1 (x = L) in
Eqs. 7 and 8 are two boundary conditions and at X = lc/L (x = lc) at both sides of
spring, four compatibility conditions should be satisfied. Degree of freedom of each
node is assumed to be one, but the solution of the problem at the mentioned nodes
will lead to the increase of equations which are independent of unknown variables
defined at these nodes and also mathematical contradiction. As stated previously,
different solutions have been proposed to eliminate the mentioned problem which
will be discussed as below.
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2.3 The δ-Method

The δ-technique was proposed by Jang et al. [14, 15] to eliminate the difficulties in
implementing two conditions at a single boundary point. In this method, some
adjacent points located at very small distances δ from boundary point are chosen
(Fig. 3). One of the boundary conditions is applied at boundary point itself, and the
other boundary condition is applied at its adjacent point which is at the distance δ
which forms the boundary point. To obtain an accurate numerical solution, the
values of δ should be chosen to be very small and possibly not greater than 10−5

compared to unity. In this method, one of the boundary conditions is applied
correctly, while the other boundary condition is applied approximately.

W1 = 0 ; ∑
N

j=1
C 1ð Þ
2j1 Wj1 = 0 ð12Þ

WN1 =W12

1
l21

∑
N

j=1
C 2ð Þ
N − 1j1 Wj1 =

1
l22

∑
N

j=1
C 2ð Þ
1j2 Wj2

1
l31

∑
N

j=1
C 3ð Þ
Nj1 Wj1 =

1
l32

∑
N

j=1
C 3ð Þ
2j2 Wj2

1
l1

∑
N

j=1
C 1ð Þ
N − 1j1 Wj1 +

1
l22

EI
kt

∑
N

j=1
C 2ð Þ
2j2 Wj2 =

1
l2

∑
N

j=1
C 1ð Þ
2j2 Wj2

ð13Þ

1
l22

∑
N

j=1
C 2ð Þ
N − 1j2 Wj2 = 0 ;

1
l32

∑
N

j=1
C 3ð Þ
Nj2 Wj2 = 0 ð14Þ

Beam differential Eq. (14) is applied at internal points (3 ≤ i ≤ N − 2). The
combination of Eqs. (12)–(14) forms an eigenvalue problem with the dimension of
(2N) × (2N) which can be represented by a system of linear equations, as follows:

Abb½ � Abi½ �
Aib½ � Aii½ �


 �
Wb

Wi

� 
= λ

0 0
Bib Bii


 �
Wb

Wi

� 
ð15Þ

where the subscripts b and i denote for the boundary and interior points used for
writing the differential quadrature, respectively. The vectors {Wb} and {Wi} contain

Fig. 3 Representation of δ nodes in the beam problem
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the deflections corresponding to the boundary and interior points. Also in the above
equation, λ is a function of ω which is defined as below:

ω= cλ2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1+

kf
EIλ2

r
ð16Þ

Transforming Eq. (15) into a general eigenvalue form in terms of {Wi} results in
Eq. (17):

A*� �
Wif g= λ B*� �

Wif g ð17Þ

where

A*� �
= Aii −Aib.A− 1

bb .Abi
� �

B*� �
= Bii −Bib.A− 1

bb .Abi
� � ð18Þ

Solution of the above eigenvalue problem by a standard eigensolver provides the
natural frequencies of the cracked beam.

2.4 Crack Detection Procedure

In the previous section, the computation of beam natural frequencies with assumed
crack location and depth is investigated (direct method). In this section, the inverse
solution using finite element natural frequencies is applied to identify the location
and depth of the crack.

2.4.1 The Bees Algorithm

As specified earlier to locate the crack and simulate the crack depth, it is required
that the intelligent optimization algorithms to be used. For these purposes, the bees
algorithm has been employed. In the following, the bees algorithm will be discussed
briefly. Honey bees swarm optimization algorithm could be regarded as belonging
to the category of evolutionary algorithms. An organized social behaviour has been
observed in honey bee swarms which can be used for solving social optimization
problems. Each bees swarm has some scout bees that explore randomly for food
sources. When they return to the hive, those scout bees that found a patch which is
related above a certain quality threshold deposit their nectar or pollen and perform a
dance known as the “waggle dance” [16]. This mysterious dance is essential for
colony communication and contains three pieces of information regarding a flower
patch: the direction in which it will be found, its distance from the hive and its

446 R. Khademi Zahedi et al.



quality rating [16, 17]. In the next step, the follower bees fly to the located site of
flower patch. More follower bees are sent to more promising patches.

Among a set of random solutions Nt, a few solutions Nt1 with the highest fitness
values are chosen as the best ones. Among the best answers, Nt2 solutions with
highest reliability will be selected as elite solutions. In hope to find better solutions,
neighbourhood searching around the best and elite solutions is performed. Following
each iteration, the new population has two parts: representative from neighbourhood
searches having the best fitness value in their neighbourhood space and randomly
selected solutions. The iteration continues, and at the end, there are a series of
optimum fitness values; the best of them would represent the global optimum.

2.4.2 Crack Detection Using the Bees Algorithm Optimization
Problem

In this method, crack detection procedure is considered as an optimization problem
to find the optimum location and depth of the crack by error function minimization
which is based on the difference between natural frequencies obtained by finite
element solution and differential quadrature method. Optimization algorithm
defines an array of variables which must be optimized. In this research, these arrays
are dimensionless location and depth of the crack. The objective function, F, to be
minimized is defined as:

F = ∑
s

j=1
wj Ωm

j −Ωc
j

� �2
ð19Þ

In Eq. (19), s is the number of implemented natural frequencies, Ωc
j is the jth

numerical dimensionless bending natural frequency of the cracked beam calculated
by DQM, Ωm

j is the jth measured dimensionless bending natural frequency of the
cracked beam calculated with finite element method, and wj is the jth weighting
factor.

3 Results and Discussion

3.1 Accuracy of the Natural Frequencies Calculated by DQ
Solution

To insure for the appropriate modelling of supports and measurement accuracy, in
Table 2, corresponding numerical natural frequencies that are calculated by the DQ
method for an intact cantilever beam on an elastic foundation are compared to the
natural frequencies calculated by ANSYS. Also, the dimension and mechanical
properties of the mentioned beam are presented in Table 1.
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As can be observed from Table 2, the delivered errors from the results of DQ
method are very small compared to the ANSYS results. The maximum error value
is 0.1%. DQ method calculations have been performed repeatedly, and the results
were identical for each iteration. Based on the appropriate agreement between DQ
and ANSYS methods, it was implied that the modelling of cantilever beam on
elastic foundation has been performed properly.

3.2 The Effect of Various Sampling Points on Estimating
the Natural Frequencies

As stated, sampling points distribution relations play an important role in computing
natural frequencies. The curves on Fig. 4 represent the effect of various relations for
the choice of sampling points on the determination of the first natural frequency. In
the mentioned curves, equally spaced sampling points distribution, the roots of
Chebyshev sampling points determination, Gauss–Lobatto–Chebyshev and
Lagrange polynomials are used to evaluate the convergence of the first frequency. As
can be observed from the curves, the choice of sampling points based on Lagrange
polynomials delivers smaller errors and faster convergence in comparison with the
other sampling points. Therefore, in this research, the roots of Lagrange polynomials
have been chosen as sampling points. Please find the data in the below table.

Number of
sampling points

6 7 8 9 10 11 12 13 14 15 16

Gauss-Lobatto-
Chebyshev

8.43 8.49 8.91 9.38 9.93 9.94 9.94 9.94 9.94 9.94 9.94

Chebyshev 11.89 8.23 8.55 9.48 9.98 9.98 9.98 9.98 9.97 9.95 9.98

Legendre 8.91 11.31 8.99 9.96 9.96 9.96 9.96 9.96 9.95 9.96 9.96

Equal
displacement

6.23 7.23 7.98 8.03 9.89 9.87 9.87 9.77 9.87 10.07 9.87

Table 1 Dimensions and mechanical properties of the beam on elastic foundation

Spring
constant
N
M

Poisson’s
ratio

Young’s
modulus
(Gpa)

Density
(kg/m3)

Beam
thickness
(cm)

Beam
width
(cm)

Beam
length
(m)

100000 0.3 200 7800 2 2 1

Table 2 Natural frequencies of the intact beam on elastic foundation

Method ω1 (Hz) Error (%) ω2 (Hz) Error (%) ω3 (Hz) Error (%)

ANSYS 9.97 – 51.62 – 143.93 –

DQ 9.96 0.1 51.59 0.06 143.82 0.08
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As can be seen for each mentioned relationship choosing minimum number of 10
sampling points, delivers a good convergence for the first natural frequency and
also the same process occurs in higher natural frequencies. In the following, this
method is employed to calculate the frequencies of a beam on an elastic foundation.
Also, it is required to be mentioned that this method has the capability of producing
highly accurate solutions with implementing a limited number of points, when
compared to the other conventional numerical solution techniques such as finite
element and boundary value methods.

3.3 The Investigation of Convergence of DQ Method Using
Different Sampling Points

To assess the overall convergence efficiency of the DQ method in computing
natural frequencies of a beam on elastic foundation, the natural frequencies of the
cracked beam obtained by DQ are compared with the finite element results of
ANSYS commercial software. In this section, firstly the results obtained for the first
to the third natural frequencies at different crack locations and depths are compared.
The simulated cracks are considered to be perpendicular to the beam’s longitudinal
axis at different positions, namely Xc = (lc/L) = 0.25, 0.50, 0.75 from the clamped
edge. The Figs. 5, 6 and 7 represent relative errors of the first, second and third
natural frequencies compared to the results obtained by ANSYS. As illustrated,

7
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6 9 12 15 18

fr
eq
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y 
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Number of sampling points
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Fig. 4 Effect of sampling points relation on calculating the first frequency by delta method
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relative crack depth and relative crack location errors are calculated. In all cases, the
resulting errors are very small and sufficiently below 0.5%. Figures 5, 6 and 7 show
smaller errors in lower frequencies relative to higher ones. As the relative depth of
the crack increases, the error decreases.
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3.4 The Effect of Crack Depth on the Variation
of the Natural Frequencies

In this section, the effect of the crack depth on natural frequencies of cantilever
beam on the elastic foundation is investigated for different crack locations which are
based on the DQM results. The related curves are shown in Figs. 8, 9 and 10.
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As can be seen from the figures, increasing crack depth would result in a
decrease in the natural frequencies of the beam. Furthermore Eq. (10) shows that
increasing the crack depth would result in a decrease in the beam stiffness which
this issue will decrease natural frequencies of the beam on elastic foundation. As
there is a direct relation between natural frequencies and beam stiffness, the
reduction in stiffness will result in the reduction of natural frequencies. Figure 8
shows that as the crack position reaches the free end of the cracked beam on the
elastic foundation, the change in first natural frequency decreases. In fact, closed to
the free end of the beam, the crack losses influence on the value of the first natural
frequency of the beam on elastic foundation.
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3.5 The Effect of Crack Location on the Variation
of the Natural Frequencies

In Figs. 11, 12 and 13, the influence of relative location of the crack on natural
frequencies for different crack depths of a beam on elastic foundation is investi-
gated. As shown in figures, when the crack is placed at the beam modal nodes, there
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is no change in natural frequencies of the beam. These locations will change for
different boundary conditions and vibration modes. Moreover, the change in natural
frequencies is in direct relation with the beam modal curvature so that the maximum
changes in natural frequencies take place when the cracks are located in the places
with highest modal curvature.

It also can be stated from the figures that increasing crack depth would result in a
decrease in the natural frequencies of the beam. Moreover, Eq. (10) shows that
increasing the crack depth would result in an increase in the slope and cause a
reduction in the beam stiffness and subsequently natural frequencies of the beam on
elastic foundation.

3.6 Identification of the Location and Depth of the Crack

After investigating the effect of the location and the depth of the crack on changes
in the natural frequencies of a beam, in this section, natural frequencies for different
cracks are computed by DQ, finite element and bees algorithm methods. Finally, to
ensure the integrity and robustness of the presented method, estimated values of
crack location and depth are compared with finite element results. It is required to
note that in order to verify the effectiveness of the bees algorithm optimization, this
process will be done in four stages. In the first stage, the length and depth of the
cracks will be examined using the first three natural frequencies. In this stage, all
three frequencies have the same influence on estimating the location and the depth
of the crack. In the second stage, three natural frequencies will be used again, but
the lower frequencies have more effect and influence rather than higher frequencies.
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In the third stage, four first natural frequencies will be used to examine the length
and depth of the crack. Then, in the last stage same as the previous section, higher
values of weighting coefficients will be used for lower frequencies. In the fol-
lowing, the outcome of four above-mentioned methods is compared.

3.6.1 The Investigation of Bees Algorithm Optimization Control
Parameters

As stated in Sect. 2.4, the application of optimization techniques to minimize
function (19) will result in corresponding increase in the accuracy of the results for
the crack location and length. In relation (19), objective function is considered as
error function which is based on the difference between natural frequencies of the
cracked beam on the elastic foundation computed by finite element method and the
numerical results obtained by DQ method and should be minimized. As the con-
vergence in bees algorithm in this research, occurred after 40 iterations, for all cases
solved by bees algorithm, in this research, 40 iteration is chosen to proceed. To
consider the random nature effects of the bees algorithm optimization method, the
average of 15 run is accepted as the final result. The control parameters applied for
the bees algorithm in this research are presented in Table 3. These data have been
obtained based on a lot of experimental investigation.

3.6.2 The Results of the Crack Location and Depth Detection by Bees
Algorithm Optimization

The frequencies computed by differential quadrature numerical method for different
cracks are used to compute the location and depth of a crack by bees algorithm.
Table 4 represents the results obtained for different crack cases using the first three
natural frequencies with the same influence. Also to investigate the crack prediction
accuracy, the crack location and depth relative error are calculated, respectively.

le =
Δx
L

×100 ð20Þ

Se =
Δa
H

×100 ð21Þ

Table 3 Number of control parameters for the bees algorithm optimization

Number of calculated
functions

Negh m e Nsp Nep N Number of
iteration

12450 0.02 15 5 15 25 50 40
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As shown in this table, the minimum crack location error (le) is 2.3% for the case
study 4 and the maximum crack location error is 9.1%. With respect to the defined
error (le), the error value 9.1% means that the predicted crack (crack case 5) is
located 9.1 cm far from the exact position of the crack (the beam length is assumed
to be 100 cm). Also, Table 4 presents the errors in the crack depth prediction (se)
for different crack cases. As shown in this table, the maximum crack depth error is
9.2% (for the case study 10) and the minimum crack depth error is 1.1% (for the
case study 4). Regarding the defined errors (se), the error value 9.2% means that the
predicted crack depth (crack number 10) is 1.84 mm different from the exact depth
of the crack (the beam depth is assumed to be 20.2 mm).

As stated in the beginning of the Sect. 3.6, the second optimization case is
investigated for the first three natural frequencies by applying coefficients. In this
section, higher values of weighting coefficients will be used as the lower fre-
quencies are close to each other. For example, weighting coefficients 1, 0.5 and 0.33
are used for the first, second and third frequencies, respectively. In this section, the
control parameters will be same as the previous method. Table 5 presents the results
of the mentioned method. As can be concluded from Table 5, this method delivers
more accurate results compared to the previous method. The cause is that corre-
sponding errors in computing lower frequencies by both finite element method and
differential quadrature method are smaller. Therefore, as lower frequencies have
more influence on optimization method, obtained results will be more accurate.

To investigate the third case of optimization method, first four natural fre-
quencies without weighting coefficients are used. For this method also control
parameters of the previous method have been used. Table 6 represents the results of
this method.

Table 4 Prediction of crack results and accuracy investigation

Crack case number Exact value Predicted crack Prediction accuracy
(%)

Depth
a
H

� � Location
lc
L

� � Depth
a
H

� � Location
lc
L

� � Depth Location

1 0.25 0.2 0.241 0.209 4.1 4.0
2 0.4 0.25 0.439 0.213 3.9 3.7
3 0.6 0.25 0.632 0.219 3.2 3.1
4 0.8 0.25 0.789 0.227 1.1 2.3
5 0.2 0.50 0.166 0.409 3.4 9.1
6 0.4 0.50 0.323 0.421 7.7 7.9
7 0.6 0.50 0.539 0.428 6.1 7.2
8 0.8 0.50 0.756 0.439 4.4 6.1
9 0.2 0.75 0.146 0.681 5.4 6.9
10 0.4 0.75 0.308 0.693 9.2 5.7
11 0.6 0.75 0.543 0.710 5.7 4.0
12 0.8 0.75 0.732 0.722 6.8 2.8
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To investigate the last case of optimization method, first four natural frequencies
with weighting coefficients are used. Weighting coefficients 1, 0.5, 0.33 and 0.25
are used for the first, second third and fourth natural frequencies, respectively. For
this method also control parameters of the previous method have been used.
Table 7 presents the results of the mentioned method.

Table 6 Prediction of crack results and accuracy investigation

Crack case
number

Exact value Predicted crack Prediction
accuracy (%)

Depth
a
H

� � Location
lc
L

� � Depth
a
H

� � Location
lc
L

� � Depth Location

1 0.2 0.25 0.212 0.231 1.2 1.9
2 0.4 0.25 0.418 0.240 1.8 1.0
3 0.6 0.25 0.602 0.249 0.2 0.1
4 0.8 0.25 0.798 0.250 0.2 0.0
5 0.2 0.50 0.214 0.448 1.4 5.2
6 0.4 0.50 0.389 0.474 1.1 2.6
7 0.6 0.50 0.586 0.491 1.4 0.9
8 0.8 0.50 0.788 0.493 1.2 0.7
9 0.2 0.75 0.175 0.723 2.5 3.7
10 0.4 0.75 0.384 0.725 1.6 3.5
11 0.6 0.75 0.587 0.738 1.3 1.2

12 0.8 0.75 0.792 0.744 0.8 0.6

Table 5 Prediction of crack results and accuracy investigation

Crack case number Exact value Predicted crack Prediction
accuracy (%)

Depth
a
H

� � Location
lc
L

� � Depth
a
H

� � Location lc
L

� �
Depth Location

1 0.2 0.25 0.214 0.229 1.4 2.1
2 0.4 0.25 0.417 0.239 1.7 1.1
3 0.6 0.25 0.604 0.248 0.4 0.2
4 0.8 0.25 0.797 0.251 0.3 0.1
5 0.2 0.50 0.118 0.447 1.8 5.3
6 0.4 0.50 0.384 0.466 1.6 3.4
7 0.6 0.50 0.579 0.484 2.1 1.6
8 0.8 0.50 0.786 0.495 1.4 0.5
9 0.2 0.75 0.163 0.712 3.7 6.9
10 0.4 0.75 0.378 0.721 2.2 3.8
11 0.6 0.75 0.581 0.736 1.9 1.4
12 0.8 0.75 0.789 0.741 1.1 0.9
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3.6.3 The Results Verification

In Figs. 14 and 15, all the charts of the four mentioned stages are plotted together.
As can be seen, the error values in the fourth case are less than the other cases. But
the time consumed in this case is more that the other cases.

In order to evaluate the solution quality of the random bees algorithm, a practical
reliability indicator is defined as the possibility of the solutions to reach a practical
optimum. It should be noted that a practical optimum is defined as an optimum
solution within 0.1% of the global optimum [18]. In this study, the best solution for

Table 7 Prediction of crack results and accuracy investigation

Crack case
number

Exact value Predicted crack Prediction
accuracy (%)

Depth
a
H

� � Location
lc
L

� � Depth
a
H

� � Location
lc
L

� � Depth Location

1 0.2 0.25 0.209 0.234 0.9 1.6
2 0.4 0.25 0.413 0.243 1.3 0.7
3 0.6 0.25 0.601 0.250 0.1 0.0
4 0.8 0.25 0.800 0.250 0.0 0.0
5 0.2 0.50 0.213 0.455 1.3 4.5
6 0.4 0.50 0.393 0.479 0.7 2.1
7 0.6 0.50 0.591 0.495 0.9 0.5
8 0.8 0.50 0.792 0.494 0.8 0.6
9 0.2 0.75 0.179 0.731 2.1 1.9
10 0.4 0.75 0.388 0.739 1.2 1.1
11 0.6 0.75 0.591 0.742 0.9 0.8
12 0.8 0.75 0.795 0.747 0.5 0.3
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Fig. 14 Comparison of the mean error values at different crack locations by four mentioned
optimization method
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objective function was found after 100 iterations. Therefore, this value is used to
define the practical reliability. Another indicator which has been used in this
research is called normalized price and is defined as the average number of the
function evaluations by the practical reliability. In this section, 4 cases have been
chosen from Table 5, and normalized prices and practical reliabilities of these cases
are presented in Table 8. It is necessary to mention that the values presented in this
table validate the effectiveness of the bees algorithm results.

As can be seen from Table 8, the lowest normalized price belongs to crack case
2 and it shows that an acceptable result has been obtained with the minimum cost.

4 Conclusions

In this study, the crack identification problem of a beam on elastic foundation was
investigated by applying a non-destructive method. After modelling the crack with
torsional spring and performing DQmethod on the differential equation of a beam on
elastic foundation and applying continuity equations and boundary conditions, natural
frequencies of a cracked beam were obtained. The computed numerical natural fre-
quencies byDQwere in good agreement with those offinite element analysis. Also, in
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Fig. 15 Comparison of the mean error values at different crack depths by four mentioned
optimization method

Table 8 Effectiveness of the bees algorithm optimization method

Practical
reliability

Objective function
average

Normalized
price

The best objective function
value

0.8 1.345 × 10−3 15562.5 0.136 × 10−4

0.9 1.212 × 10−3 13833.33 7.809 × 10−4

0.6 4.231 × 10−3 20750 6.641 × 10−3

0.7 6.264 × 10−3 17785.71 9.864 × 10−3
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this study, bees algorithm has been applied to the inverse solution. Therefore, the
cracks with different depths and locations were created in a beam on elastic founda-
tion, and the related natural frequencies were calculated for each case of beam on the
elastic foundation. Then, computed natural frequencies of a beam on elastic foun-
dation by finite element analysis were considered as the input data for the crack
identification algorithm, and also the depths and locations of the cracks were deter-
mined. The proposed method predicted crack depths and locations with a very good
accuracy so that the maximum error was under 10%. The worst cases were corre-
sponding to the cracks with small depths which were near the free end of the beam.
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Nonlinear Static Bending Analysis
of Functionally Graded Plates Using
MISQ24 Elements with Drilling
Rotations

H. Nguyen-Van, H. L. Ton-That, T. Chau-Dinh and N. D. Dao

Abstract This paper develops a computational model for nonlinear static bending
analysis of functionally graded (FG) plates using a smoothed four-node quadrilat-
eral element MISQ24 [1, 2] within the context of the first-order shear deformation
theory (FSDT). In particular, the construction of the nonlinear geometric equations
is based on Total Lagrangian approach in which motion at the present state com-
pared with the initial state is considered large. Small strain–large displacement
theory of von Karman will be used in nonlinear formulations of the smoothed
quadrilateral element MISQ24 with drilling rotations. The drilling rotations are
introduced to improve the coarse mesh accuracy of the MISQ24 element. The
solution of the nonlinear equilibrium equations is obtained by the iterative method
of Newton–Raphson with the appropriate convergence criteria. The present
numerical results are compared with the other numerical results available in the
literature in order to demonstrate the effectiveness of the developed element. These
results also contribute a better knowledge and understanding of nonlinear bending
behaviors of these structures.
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1 Introduction

To date, composite materials play an important role in many manufacturing
industries such as space shuttles, airplanes, ships, and cars because of their high
strength-to-weight, stiffness-to-weight ratios, excellent resistance to corrosive
substances, and potentially high overall durability. Laminated composite materials,
however, often suffer from the delaminated phenomenon that occurs due to the
weak bonds and stress concentration between laminas and causes to reduce lifetime
of the materials. To overcome the delamination, the concept of functionally graded
materials (FGMs) was firstly proposed by Japanese scholars in 1984 [3]. The FGMs
are constituted by two different materials, which are usually ceramic and metal,
with the material properties continuously changed in one direction. This makes the
FGMs free-stress concentration, toughness, and high-temperature resistance and be
widely applied in many structures.

The rapid growth of FGM structures has required deep research on behavior of
these structures, especially FGM plates. Many analytical and numerical methods
have been developed to simulate and analyze the behavior of FGM plates under
various loading conditions. The analytical methods [4–8] limit on the FGM plates
with simple geometry and boundary conditions. In contrast, the numerical methods
such as finite element methods, mesh-free methods, and isogeometric methods [9–
13] can effectively compute the behavior of the FGM plates having arbitrary shape,
loadings, and boundaries. More researches on the analysis of FGM plates can be
found in a recent critical review of Jha et al. [14].

Within these above numerical methods, the finite element methods (FEMs)
employed for FGM plates using the first-order shear deformation theory (FSDT)
give reasonable results and easy implementation in the standard FEM codes.
Although triangular finite elements are most efficient for discretizing arbitrary shell
geometries, quadrilateral elements are usually used owing to their better perfor-
mance with respect to convergence rates than that of triangular elements. The
difficulty in the development of the four-node element is that such elements are too
stiff when simulating thin plates. This phenomenon is called shear locking and can
be treated by many techniques such as assumed natural strain (ANS), enhanced
assumed strain (EAS), mixed interpolation of tensorial components (MITC), or
discrete shear gap (DSG). Recently, modification of the standard FEM, the
so-called smoothed FEM (SFEM), has been suggested by Liu et al. [15], and given
excellent results when applied to different types of plate problems made of lami-
nated composite [16–18] or FG materials [19, 20]. Some latest numerical methods
such as isogeometric methods have been also developed for composite and FG
materials [21–23].

The main objective of this work is to further develop the flat four-node MISQ24
element (Mixed Interpolation Smoothing Quadrilateral element with 24 DOFs),
whose performances in linear analysis have already been verified and demonstrated
in References [1, 2] for geometric nonlinear bending analysis of functionally graded
plates. The von Karman’s large deflection theory and the Total Lagrangian
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(TL) approach are utilized in the small strain–large deformation formulation, and
then, the solution of nonlinear equilibrium equations is obtained by the Newton–
Raphson method with the automatic incremental algorithm. With the aid of the
assumed strain smoothing technique, the evaluations of the membrane, bending,
and geometric stiffness matrices are built by the integration on smoothing cells’
boundaries. This technique incorporated with the drilling degrees of freedom
contributes to the high accuracy of the proposed method using the MISQ24 element
even with coarse meshes.

In the next section, a brief review of the FSDT finite element formulations for
geometrically nonlinear analysis of FGM plates is first introduced. Then, the
description of assumed strain smoothing approach for the generalized strain and the
tangent stiffness matrix of the MISQ24 element are developed. Numerical examples
of FGM plates are analyzed to verify the robustness and accuracy of the MISQ24
elements. Finally, some concluding remarks are withdrawn.

2 Nonlinear Bending Formulation of the MISQ24 Element

2.1 The First-Order Shear Deformation Theory (FSDT)
for Geometric Nonlinear Bending Analysis

Consider an FGM plate made of metal and ceramic constituents as shown in Fig. 1.
The FGM material continuously changes through the plate thickness h from the
metal at the bottom to the ceramic at the top of the plate. Assume that through the
FGM plate thickness, the Poisson’s ratio ν(z) and the Young’s modulus E(z) are
characterized by the following power law

E zð Þ= Ec −Emð Þ 1
2
+

z
h

� �n

+Em ð1Þ

ν zð Þ= νc − νmð Þ 1
2
+

z
h

� �n

+ νm ð2Þ

Fig. 1 Functionally graded plate and positive definition of displacements, rotations
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in which Ec, νc and Em, νm are Young’s moduli and Poisson’s ratios of the ceramic
and metal constituents, respectively; n ≥ 0 is the power law index; and z is the
coordinates in the direction normal to the middle plane Oxy of the plate (see Fig. 1).

When the FGM plate is applied by loads p normal to the top, displacements in
the plate can be expressed by the first-order shear deformation theory [24] as
follows

u x, y, zð Þ= u0 + zβx
v x, y, zð Þ= v0 + zβy
w x, y, zð Þ=w0

ð3Þ

Here u, v, and w are the translational displacements in the x-, y-, and z-directions,
respectively; u0, v0, and w0 correspond to the displacements of the middle plane;
and βx and βy are, respectively, the rotation of the mid-plane about y- and x-axis
with positive directions defined in Fig. 1.

For large deformation analysis, the in-plane vector of Green-Lagrangian strain in
a plate element is

ε=
εx

εy

εxy

8><
>:

9>=
>;=

u, x +
1
2

u2, x + v2, x +w2
, x

� �
v, y +

1
2

u2, y + v2, y +w2
, y

� �
u, y + v, x + u, xu, y + v, xv, y +w, xw, y

� �

8>>>><
>>>>:

9>>>>=
>>>>;

ð4Þ

Substituting Eq. (3) into Eq. (4) and considering the von Karman’s large
deflection assumption, the in-plane strain vector can be rewritten as

ε= εm + zεb ð5Þ

in which

εm =
u0, x + 1

2w
2
, x

v0, y + 1
2w

2
, y

u0, y + v0, x +w, xw, y

8<
:

9=
;=

u0, x
v0, y

u0, y + v0, x

8<
:

9=
;|fflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflffl}

linearpart

+

1
2w

2
, x

1
2w

2
, y

w, xw, y

8<
:

9=
;|fflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflffl}

nonlinearpart

= εLm + εNLm ð6Þ

εb =
βx, x
βy, y

βx, y + βy, x

8<
:

9=
; ð7Þ

The transverse shear strain vector is given as
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γ= γxz
γyz

	 

=

βx −w, x

βy −w, y

	 

ð8Þ

The constitutive relationship of the FGM plate can be expressed as

σ* =D*ε* ð9Þ

where

σ* =
N
M
T

2
4

3
5, ε* = εm

εb
γ

2
4

3
5, D* =

A B 0
B D 0
0 0 C

2
4

3
5 ð10Þ

and N = [Nx Ny Nxy] is the in-plane traction resultant, T = [Qx Qy] is the
out-of-plane traction resultant and M = [Mx My Mxy] is the out-of-plane moment
resultant. A, B, D, and C are the material constant matrices which are given as
follow

A,B,Dð Þ=
Z h ̸2

− h ̸2
1, z, z2
� �

QðzÞdz

C=
Z h ̸2

− h ̸2
SðzÞdz

ð11Þ

with

QðzÞ= E zð Þ
1− νðzÞ2

1 νðzÞ 0
νðzÞ 1 0
0 0 1− νðzÞð Þ ̸2

2
4

3
5; SðzÞ= E zð Þ

2 1+ νðzÞð Þ
1 0
0 1

� �
ð12Þ

2.2 Strain Smoothing Formulations of MISQ24 Element
for Geometric Nonlinear Analysis

As shown in Fig. 2, a quadrilateral element domain ΩC is further divided into nc
smoothing cells. The generalized strain field is smoothed by a weighted average of
the original generalized strains using the strain smoothing operation for each
smoothing cell as follows.

ε ̃Lm =
1
Ac

Z
Ωc

εLm xð ÞdΩ ð13Þ
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ε ̃NLm =
1
Ac

Z
Ωc

εNLm xð ÞdΩ ð14Þ

ε ̃b =
1
Ac

Z
Ωc

εb xð ÞdΩ ð15Þ

where εL̃m, ε
ÑL
m , εb̃ are the smoothed strains, and Ac is the area of the smoothing cell

ΩC.
Introducing the approximation of the linear membrane strain by the quadrilateral

finite element using Allman-type interpolation functions with drilling degrees of
freedom [25] and applying the divergence theorem, the smoothed membrane strain
can be obtained as

ε ̃Lm =
1
Ac

Z
Γc

n xð Þu xð ÞdΓ =
1
Ac

Z
Γc

∑
4

i=1
n xð ÞNi xð ÞqidΓ = ∑

4

i=1
B̃L
miqi ð16Þ

where

B̃mi xCð Þ= 1
AC

Z
ΓC

Ninx 0 0 0 0 Nxinx
0 Niny 0 0 0 Nyiny

Niny Ninx 0 0 0 Nxiny +Nyinx

0
@

1
AdΓ ð17Þ

in which qi = [ui vi wi βxi βyi βzi] is the nodal displacement vector; Nxi and Nyi are
Allman’s incompatible shape functions defined in [22], and nx and ny are the
components of the outward unit vector n normal to the boundary ΓC.

Applying Gauss integration along with four segments of the boundary ΓC of the
smoothing domain ΩC, the above equation can be rewritten in algebraic form as

Fig. 2 Subdivision of an element into nc smoothing cells and the values of shape functions at
nodes in the format (N1, N2, N3, N4)
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B̃mi xCð Þ= 1
AC

∑
4

b=1

∑
nG

n=1
wnNi xbnð Þnx 0 0 0 0 0

0 ∑
nG

n=1
wnNi xbnð Þny 0 0 0 0

∑
nG

n=1
wnNi xbnð Þny ∑

nG

n=1
wnNi xbnð Þnx 0 0 0 0

0
BBBBBBBB@

1
CCCCCCCCA

+
1
AC

∑
4

b=1

0 0 0 0 0 ∑
nG

n=1
wnNxi xbnð Þnx

0 0 0 0 0 ∑
nG

n=1
wnNyi xbnð Þny

0 0 0 0 0 ∑
nG

n=1
wnNxi xbnð Þny + ∑

nG

n=1
wnNyi xbnð Þnx

0
BBBBBBBB@

1
CCCCCCCCA

ð18Þ

where nG is the number of Gauss integration points, xbn is the Gauss point and wn is
the corresponding weighting coefficients. The first term in Eq. (18), which relates to
the in-plane translations (approximated by bilinear shape functions), is evaluated by
one Gauss point nG=1ð Þ. The second term, associated with the in-plane rotations
(approximated by quadratic shape functions), is computed using two Gauss points
nG=2ð Þ.
In a similar way, the smoothed nonlinear membrane strain over the element

domain ΩC can be written as

ε ̃NLm = ∑
4

i=1
B̃NL
mi qi ð19Þ

where B̃NL
mi is the smoothed nonlinear gradient matrix in the smoothing cell given as

B̃NL
mi =H ̃G ̃i ð20Þ

in which

G̃i =
1
Ac

∑
4

g=1

0 0 NiðxGg Þnx 0 0 0
0 0 NiðxGg Þny 0 0 0

� �
lcg, ð21Þ
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H̃= ∑
4

i=1

1
Ac

∑
4

j=1
Ni xGj
� �

nxlcj w0i 0

0 1
Ac

∑
4

j=1
Ni xGj
� �

nylcj w0i

1
Ac

∑
4

j=1
Ni xGj
� �

nylcj w0i
1
Ac

∑
4

j=1
Ni xGj
� �

nxlcj w0i

0
BBBBBBBB@

1
CCCCCCCCA

ð22Þ

and w0i is the deflection at the node i of the element.
The smoothed bending strain over the element domain ΩC is expressed as

εb̃ = ∑
4

i=1
B̃biqi ð23Þ

where

B̃bi =
1
Ac

∑
4

b=1

0 0 0 NiðxGb Þnx 0
0 0 0 0 NiðxGb Þny
0 0 0 NiðxGb Þny NiðxGb Þnx

0
0
0

0
@

1
Alb ð24Þ

The shear strain is expressed by independent interpolation fields in the natural
coordinate systems as [26]

γx
γy

� �
= J− 1

1
2 1− ξð Þ 0 1

2 1+ ξð Þ 0
0 1

2 1− ηð Þ 0 1
2 1+ ηð Þ

� � γAη
γBξ
γCη
γDξ

2
6664

3
7775 ð25Þ

where J is the Jacobian matrix and the midside nodes A, B, C, and D are shown in
Fig. 2.

Expressing γAη , γ
C
η and γBξ , γ

D
ξ in terms of the discretized field q, we obtain the

shear gradient matrix

B̄si = J− 1 0 0 Ni, ξ b11i Ni, ξ b12i Ni, ξ 0
0 0 Ni, η b21i Ni, η b22i Ni, η 0

� �
, ð26Þ

where

b11i = ξix
M
, ξ, b12i = ξiy

M
, ξ, b21i = ηix

L
, η, b22i = ηiy

L
, η ð27Þ

in which ξi ∈ − 1, 1, 1, − 1f g, ηi ∈ − 1, − 1, 1, 1f g, and ði,M,LÞ∈ fð1,B,AÞ;
ð2,B,CÞ; ð3,D,CÞ; ð4,D,AÞg
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Finally, the element tangent stiffness matrix is modified as

K̃T = K̃L + K̃NL + K̃g ð28Þ

where

K̃L = ∑
nc

i=1
B̃T
LiD

*B̃LiAi + γ

Z
Ω
bTbdΩ ð29Þ

K̃NL = ∑
nc

i=1
B̃T
NLiD

*B̃NLiAi ð30Þ

K̃g = ∑
nc

i=1
G̃T

i N̂G ̃
iAi ð31Þ

B̃L =
B̃L
m

B̃b
B̄s

2
4

3
5, B̃NL =

B̃NL
m
0
0

2
4

3
5, N̂=

Nx Nxy
Nxy Ny

� �
, bi =

− 1
2Ni, y

− 1
2Ni, x

− 1
2 Nxi, y +Nyi, x
� �

−Ni

2
4

3
5

ð32Þ

and the positive penalty parameter γ =G and the number of smoothing cells nc = 2
are chosen in this study. The penalty matrix, the second term in Eq. (29), is inte-
grated using one point Gauss quadrature to suppress a spurious, zero-energy mode
associated with the drilling rotation.

The internal forces at the time t computed from the stress state in the structures
are rewritten as

tF̃=
Z
Ω

B̃L + B̃NL
� �tσ*dΩ ð33Þ

in which the stress resultant after the ith iteration is

tσ*
i+1 =

tσ*
i +

tΔσ* ð34Þ

Finally, the nonlinear equations can be rewritten as

tK̃TΔq= t+ΔtP − tF̃ ð35Þ

where t+ΔtP is the element external force at time t + Δt.
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3 Numerical Results and Discussions

In this section, we will test and assess the MISQ24 element through numerical
examples. In all examples, the Newton–Raphson method and automatic incremental
algorithm are used to solve the nonlinear finite element Eq. (35). The convergence
tolerance of displacement is taken to be 0.001. Unless other specified, the shear
correction factors are equal to 5/6, and SI units are used. Material properties of the
FGM plates used in numerical simulations are: Aluminum (Al) with E = 70 GPa;
ν = 0.3 and Zirconia (ZrO2−2) with E = 151 GPa; ν = 0.3.

3.1 A Simply Supported Skew FGM Plate

The bending behavior of a skew plate is often considered as a corner stress con-
centration problem due to a strong singularity in bending moments at the obtuse
vertex. It is often avoided for nonlinear analyses of plate bending problems.
Therefore, this section deal with the nonlinear bending analysis of clamped skew
plates with three skew angles, namely α = 0°, 30°, 60° under a uniform load q. The
studied plate have a side length 2a = 2b = 0.2 m and thickness h = 0.01 m. The
full plate is modeled using 8 × 8 elements as shown in Fig. 3. The normalized
parameters of the present results are the central deflection w* = w/h and the load
parameter P = q(2a)4/(EAlh

4).
First, the convergence and accuracy of the present solutions are investigated for

a square plate (skew angle α = 00). Table 1 shows the convergence study of the
normalized central deflection of the FGM plate with the volume fraction exponent
n = 2.0. It can be seen that the present method is convergent with mesh refinement
only with an 8 × 8 mesh. The load-deflection curves obtained by the present
results with 8 × 8 elements are also plotted and compared with numerical solutions
of Praveen and Reddy [8] using 16 × 16 isoparametric four-node elements based
on the third-order shear deformation theory (TSDT) as shown in Fig. 4a. It is
investigated that the present results are in good agreement with those from the

(a)
(b) (c) (d)

Fig. 3 A simply supported skew plate: a geometry, b a mesh with α = 0°, c a mesh with α = 30°,
d a mesh with α = 60°
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TSDT. This confirms the accuracy of the present MISQ24 element based on FSDT
even with a coarse mesh 8 × 8 elements.

Table 1 Convergence study of an FGM square plate with the volume fraction exponent n = 2.0

Load parameter
P = q(2a)4/(EAlh

4)
Normalized central deflection w* = w/h

Mesh 4 × 4 Mesh 6 × 6 Mesh 8 × 8 Mesh 10 × 10

1.143 0.035 0.035 0.035 0.035
2.286 0.070 0.070 0.070 0.070
3.428 0.104 0.104 0.104 0.104
4.571 0.138 0.138 0.137 0.137
5.714 0.171 0.170 0.169 0.169
6.857 0.203 0.202 0.201 0.201
8.000 0.234 0.232 0.23 0.23
9.143 0.264 0.261 0.259 0.259
10.286 0.293 0.289 0.286 0.286
11.428 0.321 0.315 0.313 0.312

(a) (b) 

(c) (d) 

Fig. 4 Load-deflection curves of the skew plate: a, b nonlinear behavior with α = 0°, c nonlinear
behavior with α = 30°, d nonlinear behavior with α = 60°
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Next, the effect of skew angle α on the normalized central deflection is studied
with the load parameter P increasing from 0 to 140. It is followed from Fig. 4b-d
that the maximum central deflection decreases as the skew angle of the plate
increases with the increase in load for any gradient index. It is also observed that the
load-deflection curves for α = 0° and 30° are obviously nonlinear while the curve
for α = 60° is almost linear. The normalized central deflections also increase with
the increase of the gradient index under the same load. Based on these results, the
rigidity of skew plates can be improved by increasing the skew angles or decreasing
the gradient index.

3.2 A Clamped Circular FGM Plate

The large deformation analysis of a clamped circular FGM plate under uniform
pressure q is considered in this section. The plate has the radius R = 1 m and the
thickness h = 0.1 m. Owing to symmetry, a quadrant of the plate is modeled with a
27-element mesh as shown in Fig. 5.

The computed normalized central deflection w/h versus the normalized load
parameter P = qR4/(EAlh

4) of the present analysis using MISQ24 element together
with the solution by the FSDT-based isogeometric analysis [13] are displayed in
Fig. 6. It is interesting to note that the obtained numerical results match very well
with those plotted here.

The effect of span-to-thickness (R/h) ratios on the nonlinear bending behavior of
the above clamped circular plate is also studied for three values, namely R/h = 10,
100, 1000 with the volume fraction exponent n = 0, 0.5, and 2. Figure 6b illustrates
the load-deflection curves for different R/h ratios. From Fig. 6b, it is concluded that
the effect of the span-to-thickness (R/h) ratio on the normalized central deflections
has no influence for thin circular plates with R/h > 100. It is also noted that the
shear locking phenomenon is free in this example.

Fig. 5 A mesh of a quadrant
of the clamped circular FGM
plate
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4 Conclusion

In this paper, the MISQ24 element is further developed and successfully applied to
geometrically nonlinear analysis of functionally graded plate structures in the
framework of the FSDT. Numerical examples have been carried out, and the pre-
sent element is found to yield satisfactory results in comparison with other available
numerical results using finite element as well as isogeometric methods. It is
observed that the present approach remains accurate for nonlinear analysis of both
moderately thin and thick plates even with coarse meshes. In addition, the present
element has the advantage of being simple in formulation and ready for use in
analysis of both plate and shell structures with a minimal amount of effort to
implement. The success of the present flat element provides a further demonstration
of efficient flat quadrilateral elements for nonlinear analysis.
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A Pull-Out Test to Characterize the
Fiber/Matrix Interfaces Aging of Hemp
Fiber Reinforced Polypropylene
Composites

C. Nguyen-Duy, A. Makke and G. Montay

Abstract The fiber/matrix interface of natural fibers reinforced polymer composites

is the weak zone that limits their use in some applications. The existing methods of

fiber/matrix interface characterization are usually expensive and complexes. Also,

the ‘real’ properties of the interface have not been well taken in the Interfacial Shear

Strength (IFSS) calculation. Therefore, a pull-out test has been developed recently

in our laboratory to limit these shortcomings. Moreover, the interface aging by envi-

ronmental factors like relative humidity (RH) is still not clearly characterized. The

developed method was then applied to investigate the interface deteriorations of the

hemp fibers reinforced polypropylene composites due to moisture accelerated aging.

By this way, fifty single fiber micro-composite specimens were tested after one week.

The pull-out test was realized using an in situ micro-tensile machine. The IFSS was

then determined considering the non-regular geometry and the non-constant of the

fiber cross section. The results show that the humidity exposition weakens severely

the fiber–matrix adhesion, and then the fibers were pulled out effortlessly from the

matrix. Furthermore, qualitative deteriorations of the fiber and the interface were

noted by optical observations. The IFSS was also severely reduced to 42.97% after

one week. The qualitative deteriorations and the reduction of the mechanical proper-

ties of the interface were explicated by the occurrence of several of physicochemical

phenomena during the aging.
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1 Introduction

The natural fibers reinforced polymers composites (agro-composites) have been

studied and developed for the purpose of industrial applications thanks to its good

mechanical properties and its low environmental impacts due to their vegetal origin

[1–4]. However, in such a composite, the weak fiber/matrix interface limits their use

in some applications. Though, existing methods of fiber/matrix interface character-

ization like pull-out test, micro-bond test, fragmentation test, push-out, or micro-

indentation test are usually expensive and complexes [5–12]. Also, the ‘real’ geom-

etry of the fiber/matrix interface has not been well taken in the InterFacial Shear

Strength (IFSS) calculation. Therefore, to limit these shortcomings, a pull-out test

has been recently developed in our laboratory (LASMIS-UTT-France) based on its

simplest principle, by the accurate measurement of the displacement and of the force

and carried out the limitations of the method [13]. By this method, a tomography

inspired method recently developed in our laboratory [14] will be applied in the

interfacial shear stress calculations. Indeed, the consideration of the ‘real’ geometry

of the fiber and of the interface was better taken.

In other hand, the aging in environmental conditions is another shortcoming of

agro-composites. Indeed, many works in the literature have proved that the inter-

face aging can be produced when these materials exposed in environmental con-

ditions. However, few researchers have studied the deteriorations of the interface

and the reduction of the IFSS during aging conditions. Furthermore, in the previ-

ous works [15–17], the authors usually orientated their studies to the aging of the

interface through the water immersion, it is about an extreme condition that does

not well described the environment aging in reality. In this case, the simulation of

the natural climate is particularly interested to study the aging of interface and of

agro-composites. In fact, Jin et al. [18] have studied the influence of the accelerated

moisture aging in a climate room simulating the weather of the Paris city in France

on the properties of hemp fiber/polypropylene (PP) composites. In this work, the

developed pull-out test above will be applied to study the deteriorations of hemp

fiber/polypropylene interface after one week of accelerated moisture aging.

2 Materials and Method

Hemp fibers extracted from hemp stalks of nuance E40 (cultivated in Champagne-

Ardennes region in France) before being mounted on a carton support. The carton

support and its gap dimensions allow the specimens to have 2 mm of the free part

length of the fiber. The molding has realized with aid of an oven using a multi-

fabrication mold. The molding conditions were 18 min of increasing from initial

temperature (about 20 ◦
C) to 173 ◦

C then maintain at this temperature during 42 min.

After the cooling and the unmolding at room conditions, the embedded part length
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(a) Photos of hemp/polypropylene
single fiber micro-composite after
molding and before testing (pull-out
test)

(b) Climate room ATLAS SUNTEST
XXL/XXL+ posed samples using for moisture
accelerated aging test

Fig. 1 Sample photos after molding and before testing and climate room using for moisture accel-

erated aging test

of the fiber was then fixed at 1 mm. All details of the sample preparation steps were

described in the previous work of Nguyen et al. [13].

By this way, fifty hemp fiber/polypropylene micro-composite samples were pre-

pared for the purpose of studying the accelerated moisture aging of the interface

(Fig. 1a). The specimens were then posed in climate room ATLAS SUNTEST

XXL/XXL+ as shown in Fig. 1b. The room conditions were fixed at relative humid-

ity (RH) of 80% and at temperature (T) of 20 ◦
C without lighting. The moisture aging

conditions were simulated by cycles of 02 h including 102 min exploring in humidity

then 18 min exploring in watering corresponding to the Norm ISO 4892-2 [19]. The

duration of this accelerated moisture aging test was one week with 84 aging cycles

in total were realized.

After the above time, aged samples were taken off the climate room for drying

at room conditions during 24 h before testing. The pull-out tests were then realized

thanks an in situ tensile micro-machine. The force cell was 100 N with the precision

of 0.001 N and the load speed was 1 µm/s. The pull-out test was monitored through

a numerical microscope until the fiber is totally pulled out from the matrix. The force

and the displacement of the fiber were acquired by an test control software during the

test. The initial free part of the fiber and its final length were also measured on this

numerical microscope in order to determine the ‘real’ embedded part length le of the
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Fig. 2 Typical

force–displacement curve of

aged samples (N◦389, HR

aging, T = 1 week)

Table 1 Average of fiber diameters d, the surface of contact Sint, and the maximum force Fmax
after one week of HR aging and compared to nonaged samples

Aged time d (µm) Sint (mm
2
) Fmax (N)

Nonaged 58.26 ± 13.5 1.93 ∗ 10−1 ± 6.99 ∗
10−2

0.62 ± 0.35

1 week 56.63 ± 15.91 1.90 ∗ 10−1 ± 5.58 ∗
10−2

0.35 ± 0.35

fiber [13]. The fiber diameters d and the contact area between the fiber and the matrix

Sint were determined at the end of the test with aid of a tomography inspired method

[13, 14]. In this work, we used the polygonal approach of the cross section of the

hemp fiber which describes better the geometry of the fiber and its interface formed

with the polypropylene matrix. In effect, the contact surface at the fiber/matrix inter-

face Sint was calculated more accurate by this approach [13]. Finally, the apparent

debonding shear stress was then determined to follow the formula:

𝜏app =
Fmax

Sint
(1)

where Fmax is the maximum measured force corresponding to the total interfacial

debonding and Sint is the contact area at the fiber/matrix interface. The Interfacial

Shear Strength ‘IFSS’ is the average of all calculated 𝜏app.

3 Results and Discussions

After one week of exploring on the accelerated moisture aging, we noted that the

humidity and the cycles of watering weaken the interfacial bonding between the

hemp fiber and the polypropylene matrix. There were particularly a total debonding

of the fiber from the matrix in some cases. Other fibers retaining their bonding with

the matrix are used for the pull-out test to determine the maximum shear stress at
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(a) Distribution of maximum pull-out force Fmax in function of fiber diameter  d

(b) Distribution of maximum pull-out force Fmax in function of surface of con-
tact Sint of hemp fiber/polypropylene interface

Fig. 3 The pull-out test results of aged specimens through the accelerated moisture aging (T =

1 week)

the interface 𝜏app. By consequent, 31 fibers were successfully carried out from the

matrix bloc among fifty-aged samples. The force–displacement curve of each test

is also traced as shown in Fig. 2. The nomenclature of the maximum pull-out force,

Fmax, of the fiber diameter d and of the surface of contact Sint are presented in Table 1.

The Fig. 3 represents the distribution of the maximum pull-out force depending

on the contact area Sint.
By results, we first noted that the maximum pull-out force Fmax increased with the

fiber diameter (Fig. 3a). The evolution of the maximum pull-out force in function of
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Fig. 4 Fiber detachment

observed on free part (arrow

1) and on embedded part

(arrow 2) of the fiber

(N◦370, HR aging, T =

1 week)

Table 2 IFSS of nonaged

samples compared to aged

specimens (T = 1 week)

Aged time IFSS (Mpa)

Nonaged 3.09 ± 1.11
1 week 1.76 ± 1.34

the fiber diameters was also observed with nonaged specimens in the work of Nguyen

et al. [13].

Secondly, we observed that the hemp fiber was retired from the polypropylene

more easier in the case of aged samples compared than nonaged samples. Indeed,

the average of the pull-out force maximum Fmax was reduced significantly to 0.35 ±
0.35N compared to 0.62 ± 0.35N [13] (−43.55%) in the case of nonaged specimens.

The InterFacial Shear Strength—‘IFSS’ was then determined equals to 1.76 ± 1.34
MPa. The results have shown that the IFSS was reduced upto 43.04% the initial

value tested with nonaged specimens that was 3.09 ± 1.11 MPa [13]. All test results

described above are presented in Table 1.

The reduction of the pull-out force maximum Fmax and of the InterFacial Shear

Strength can be the result of several chemico-physical phenomena. In this first study,

we suppose that the reduction of interface properties was caused by the plasticization

effects due to water absorptions in the fiber and in the fiber/matrix interface [20–22].

Indeed, the absorbed water lead destructions of chemical liaisons at the interface.

Furthermore, the cycles of watering can cause the material corrosion at the interface

by water fluid during the aging process. The coupling of above reasons results in the

deteriorations of hemp fiber/polypropylene interface. By consequent, the quality and

also the mechanical properties of the interface were significantly reduced. Figure 4

shows an example of physical degradation of the fiber and of the interface where the

fiber detachment was observed (Table 2).

4 Conclusions

A recently developed pull-out test was applied successfully to characterize the mois-

ture (RH) aging of hemp fiber/polypropylene interface. Fifty specimens were fabri-

cated and submitted to the moisture accelerated aging during one week. The behav-

ior of accelerated moisture aged interfaces after one week has been investigated. The

results have shown that the both the pull-out forces maximum—Fmax and the Inter-

Facial Shear Strength—‘IFSS’ have greatly reduced. The decrease of Fmax and of

‘IFSS’ has explained relating to the plasticization effects due to water absorptions



A Pull-Out Test to Characterize the Fiber/Matrix Interfaces Aging . . . 483

in the fiber and also in the fiber/matrix interface. These effects will be interesting to

investigate during longer aging time (two weeks, three weeks, four weeks). More-

over, from the test results, the interfacial shear modulus and the strain shear rupture

of the interface are interesting to study in order to better evaluate the effects of water

absorption on the fiber/matrix interface. These studies will be presented in a future

paper.
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A Modified Moving Kriging
Interpolation-Based Meshfree Method
with Refined Sinusoidal Shear
Deformation Theory for Analysis
of Functionally Graded Plates

V. Vu-Tan and S. Phan-Van

Abstract This paper presents an efficient approach based on a modified Moving
Kriging–interpolation meshfree method integrated with the refined sinusoidal shear
deformation plate theory to analyze static bending and free vibration of functionally
graded plates. Unlike traditional higher order shear deformation plate theories, this
theory presented retains only four governing equations, accounts for a sinusoidal
distribution of the transverse shear strains through the thickness of the plate, and
satisfies the zero traction boundary conditions on the top and bottom surfaces of the
plate without using shear correction factor. A new modified Gaussian correlation
function to construct MK interpolation shape functions is presented. We first pro-
pose the formulation and then provide comparison studies via numerical examples,
which are performed to confirm the accuracy and reliability of the proposed
method.

Keywords Functionally graded material ⋅ Meshfree methods
Sinusoidal shear deformation theory ⋅ Moving Kriging interpolation

1 Introduction

Functionally graded material (FGM) also known as a multi-phase composite
material which has a smooth and continuous variation of material properties along
the certain directions. Due to own properties that vary gradually with respect to
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spatial coordinates, FGM can prevent the interface cracking, debonding and residual
stresses and thus maintain structural integrity to a desired degree. At present, FGM
structures are primarily used as thermal barrier, wear coating, and corrosion resistant
coating in many engineering fields such as biomechanical, automotive, electronic,
mechanical, civil, and shipbuilding industries. With such its widely applications,
understanding their structure responses under various loading becomes an essential
task. It is well recognized that transverse shear deformation effect can be more
significant in thick or FGM plates than in isotropic, homogeneous plates. Hence, the
shear deformation theories were developed to predict of the responses of FGMs
plates. The first plate model was proposed by Kirchhoff and Love [1] and is mostly
known as the classical plate theory (CPT). This model is well capable of predicting
the behavior of thin plates. However, since the CPT neglects the transverse shear
deformation, this leads to an overestimation of vibrational frequencies and under-
estimation of defections for the analysis of thick and moderately thick plate struc-
tures. The theory of moderately thick plates, known as the first-order shear
deformation plate theory (FSDT) was introduced by Reissner [2] and Mindlin [3]
was a first attempt to consider the effect of transverse shear deformation. The FSDT
assumed that transverse planes remain plane but not necessarily perpendicular to the
mid-surface of the plate; hence, it suffers from the unrealistic distribution of shear
stresses and strains across the plate thickness and therefore requires shear correction
factor to precise determination of transverse shear strain. However, this factor value
depends on the geometry of the plate, the variation of Poisson’s ratio through the
thickness, the applied loading and the boundary conditions of the plate. To overcome
this drawback, new mathematical models were developed to better capture static and
dynamic responds of plates with considering the distribution of the transverse shear
deformation and normal stress in its thickness direction. To address this challenging,
several higher order plate theories (HSDTs) have been developed by various
researchers. Among them, the plate model proposed by Reddy [4], Soldatos [5] and
Shi [6] which considers cosine shear stress distribution, the hyperbolic and
third-order shear deformable, respectively, are the most common ones. Although the
existing HSDTs do not require the shear correction factor, its equilibrium equations
involving in many unknowns, hence are more complicated than those of the FSDT.
In order to reduce computational cost, a class of HSDTs which employed higher
order distribution of the in-plane displacement field and constant transverse
deflection through the plate thickness is developed. These theories are commonly
referred to as simple higher order shear deformation theories (SHSDTs) and have the
same number of unknowns as the FSDT. The works of Ambartsumain [7] and
Karama et al. [8] are among the most notable investigations in this context.

In this paper, a refined sinusoidal shear deformation plate theory (R-SSDT)
developed by Touratier [9] is used along with the Moving Kriging interpolation
(MKI) meshless method for the first time. A new correlation function used for
construction of the MKI shape functions which is depended only on the distance
between the source point and the target point is also presented. The developed
method is then employed for the investigation of the static deflection and free
vibration of thin to thick FGM plates. The results of several examples problems
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analyzed in this work are compared to other results found in literature. The rest of
the paper is structured as follows. A brief review of the FGM plates is given in
Sect. 2, MKI meshfree formulation integrated with the R-SSDT for bending and
free vibration analyzes of FGM plates is presented in Sect. 3. Numerical validations
and discussions are presented in Sect. 4. Finally, some conclusions drawn from the
study are given in Sect. 5.

2 Functionally Graded Plates

Consider a FGM plate made from a mixture of metal and ceramic material with
thickness h as shown in Fig. 1. The bottom and top faces of the plate are assumed to
be fully metallic and ceramic, respectively [7].

In this study, the Poisson’s ratio ν is assumed to be constant for simplicity,
whereas the young’s modulus and the density are assumed to vary continuously
through the thickness. The effective material properties are computed by a power
law distribution with Voigh’s rule of mixtures. The young’s modulus E zð Þ and mass
density ρ zð Þ are hence given by

EðzÞ=Em + ðEc −EmÞVc ð1Þ

ρðzÞ= ρm + ðρc − ρmÞVc ð2Þ

where the subscripts m and c represent the metallic and ceramic constituents,
respectively; Vc = 0.5 + z ̸hð Þn is the volume fraction of the ceramic; n is the gra-
dient index, which governs the volume fraction gradation. Figure 2 shows the
variation in the ceramic volume Vc with respect to the thickness ratio z ̸h for
different values of the index n [1].

Fig. 1 Geometry notation and coordinates of an FGM plate
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3 Formulation of the Refined Sinusoidal Shear
Deformation Theory

Let Ω be the domain in ℝ2 occupied by the mid-plane of the plate. The displace-
ments of the plate in the x, y and z directions are denoted as u x, y, zð Þ, v x, y, zð Þ and
w x, y, zð Þ, respectively. According to the refined plate theory [7], the displacement
field of the plate can be expressed in terms of four unknown variables as follows,

uðx, y, zÞ= u0ðx, yÞ− z
∂wbðx, yÞ

∂x
+ g zð Þ ∂wsðx, yÞ

∂x
ð3Þ

vðx, y, zÞ= v0ðx, yÞ− z
∂wbðx, yÞ

∂y
+ g zð Þ ∂wsðx, yÞ

∂y
ð4Þ

wðx, y, zÞ=wbðx, yÞ+wsðx, yÞ ð5Þ

where u0 x, yð Þ, v0 x, yð Þ are the displacements on the middle surface z=0ð Þ in the
x, y directions, respectively; wb x, yð Þ and ws x, yð Þ are the bending and shear com-
ponents of the transverse displacement; g zð Þ represents shape function defining the
distribution of the transverse shear strains and stresses along the plate thickness and
is chosen as g zð Þ= f zð Þ− z such that the tangential value of the effective function
f zð Þ at z=±h ̸2 are equal to zeros satisfying the boundary conditions γxz = γyz =0
on the top and bottom surfaces. Some effective functions across the plate thickness
have been proposed, see Table 1.

Fig. 2 Variation of ceramic volume fraction Vc with respect to the thickness ratio z ̸h for different
values of the index n
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In this paper, we employed the distribution function introduced in [9]
f zð Þ= h

π sin
πz
h

� �
. This plate model is variationally consistent, does not require shear

correction factor, and accounts for the parabolic distribution of transverse shear
strain which is not vanished through the thickness, satisfying shear stress free
surface conditions. By using the usual small strain assumptions, the strain–dis-
placement relations can be expressed as follow,

εx
εy
γxy
γxz
γyz

8>>>><
>>>>:

9>>>>=
>>>>;

=

∂u0 x, yð Þ
∂x − z ∂

2wb x, yð Þ
∂x2 + g zð Þ ∂2ws x, yð Þ

∂x2
∂v0 x, yð Þ

∂x − z ∂
2wb x, yð Þ
∂y2 + g zð Þ ∂2ws x, yð Þ

∂y2

∂u0 x, yð Þ
∂y + ∂v0 x, yð Þ

∂x − 2z ∂
2wb x, yð Þ
∂x∂y +2g zð Þ ∂2ws x, yð Þ

∂x∂y

f ′ zð Þ ∂ws x, yð Þ
∂x

f ′ zð Þ ∂ws x, yð Þ
∂y

8>>>>>>><
>>>>>>>:

9>>>>>>>=
>>>>>>>;

ð6Þ

or in matrix form

ε= ε0
0

� �
+ zκb + g zð Þκs

f ′ zð Þγ
� �

ð7Þ

with

ε0 =

∂u0 x, yð Þ
∂x

∂v0 x, yð Þ
∂y

∂u0 x, yð Þ
∂y + ∂v0 x, yð Þ

∂x

8><
>:

9>=
>; , κb =

− ∂
2wb x, yð Þ
∂x2

− ∂
2wb x, yð Þ
∂y2

− 2 ∂
2wb x, yð Þ
∂x∂y

8>><
>>:

9>>=
>>;

ð8a; bÞ

κs =

∂
2ws x, yð Þ
∂x2

∂
2ws x, yð Þ
∂y2

2 ∂
2ws x, yð Þ
∂x∂y

8>><
>>:

9>>=
>>;

, γ =
∂ws x, yð Þ

∂x
∂ws x, yð Þ

∂y

( )
ð9a; bÞ

Table 1 Two distribution functions and their derivatives

Model f zð Þ f ′ zð Þ
Ambartsumain (PSDPT) [7] zh2 ̸8− z3 ̸6 h2 ̸8− z2 ̸2
Karama (ESDT) [8] ze− 2 z ̸hð Þ2 ze− 2 z ̸hð Þ2 1− 2z ̸hð Þ2

h i
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4 MKI Meshless Formulation for Bending and Free
Vibration of FGM Plates

4.1 The Moving Kriging (MK) Shape Function

The shape function of the MKI technique and its derivatives are briefly introduced
in this subsection. For completed description of the method and its mathematical
properties one can be found at Ref. [10, 11]. Assuming that a distribution function
u xið Þ in a sub-domain Ωx Ωx ⊆Ωð Þ with its values can be interpolated based on the
nodal values xi i∈ 1, nΩx½ �ð Þ, wherein nΩx is the total number of the nodes in Ωx, the
approximated function uh xð Þ can be calculated by

uhðxÞ= pTðxÞA+ rTðxÞB� �
uðxÞ or uhðxÞ= ∑

nΩx

I =1
ϕIðxÞuI ð10Þ

where ϕIðxÞ are the MK shape functions defined by

ϕIðxÞ= ∑
mΩx

j=1
pjðxÞAjI + ∑

nΩx

k=1
rkðxÞBkI ð11Þ

and matrixes A and B are expressed as follows

A= PTR− 1P
� �− 1

PTR− 1, B=R− 1ðI−PAÞ ð12a; bÞ

where I is the unit matrix, and the vector p xð Þ in Eq. (10) is the polynomial with
mΩx basis functions can be calculated by

pTðxÞ= p1ðxÞ, p2ðxÞ, p3ðxÞ . . . , pmΩx
ðxÞ� � ð13Þ

The matrix P(nΩx ×mΩx ) is collected values of the polynomial basis functions

P=

p1ðx1Þ p2ðx1Þ ⋯ pmΩx
ðx1Þ

p1ðx2Þ p2ðx2Þ ⋯ pmΩx
ðx2Þ

⋮ ⋮ ⋱ ⋮
p1ðxnΩx Þ p2ðxnΩx

Þ ⋯ pmΩx
ðxnΩx Þ

2
664

3
775 ð14Þ

and the term r xð Þ in Eq. (10) is given by

rTðxÞ= Rðx1, xÞ,R x2, xð Þ, . . .R xnΩx , x
� �� � ð15Þ

where Rðxi, xjÞ is the correlation function between pairs of the nodes xi and xj, it is
the covariance of the value u xð Þ which expressed as Rðxi, xjÞ= cov uðxiÞ, uðxjÞ

� �
and Rðxi, xÞ= cov uðxiÞ, uðxÞ½ �. In this paper, we present new modified Gaussian
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correlation functions which depend only on the distance between the source and
target point as follows:

Rðxi, xjÞ= e− 0.5 rij ̸lcð Þ2 ð16Þ

where lc is the internal length factor of the model, which can be taken as the average
distance between nodes in the model. It is obvious that the correlation function no
longer depends on the correlation parameter θ, which is known that strong effect on
the solution [11]. Hence, the quality of the MK interpolation shape function
depends only on the scaling factor. We will discuss its effect on the accuracy of
solutions by numerical example in Sect. 4.1. The quadratic basic
pT xð Þ= 1 x y x2 y2 xy

� �
is employed for the numerical analysis. The

correlation matrix R Rðxi, xjÞ
� �

nΩx × nΩx
is given by

R Rðxi, xjÞ
� �

=

1 Rðx1, x2Þ ⋯ Rðx1, xnΩx Þ
Rðx2, x1Þ 1 ⋯ Rðx2, xnΩx Þ

⋮ ⋮ ⋱ ⋮
RðxnΩx , x1Þ RðxnΩx , x2Þ ⋯ 1

2
664

3
775 ð17Þ

For thin plate problems, not only the first-order derivatives of shape functions
are required, but also the second-order derivatives are needed to be computed, these
derivates are obtained by direct differentiation of Eq. (11), as follows:

ϕI.iðxÞ= ∑
mΩx

j=1
pj, iðxÞAjI + ∑

nΩx

k=1
rk, iðxÞBkI , ϕI, iiðxÞ= ∑

mΩx

j=1
pj, iiðxÞAjI + ∑

nΩx

k=1
rk, iiðxÞBkI

ð18a; bÞ

In meshfree approaches [10], the influence domain is usually a circle or sphere,
defined by a radius and centered at the point of interest. This domain is used to
determine the scattered nodes which are used for interpolation. The size of the
support domain can be calculated by

dmΩx
= αdc ð19Þ

where dc defines the characteristic length relative to the nodal spacing near the point
of interest, and α is a scaling factor. It should be noted that the shape function ϕIðxjÞ
at node xj for the interpolation node xj possesses the delta function property.

ϕI xj
� �

= δIj =
1 for I = j
0 for I ≠ j

�
ð20Þ
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4.2 Discrete Governing Equations

In the parametric domain in terms of meshfree method, the generalized displace-
ments in the middle surface of the plate are approximated by Eq. (10), in which

uh = uh vh wh
b wh

s

� �T , uI = uI vI wbI wsI½ �T ð21a; bÞ

By substituting Eq. (10) into Eqs. (8a, b), (9a, b), one can obtain:

ε0 = ∑
nΩx

I =1
Bm
I uI , κb = ∑

nΩx

I =1
Bb1
I uI , κs = ∑

nΩx

I =1
Bb2
I uI , γ= ∑

nΩx

I =1
Bs
IuI ð22a; b; cÞ

with

Bm
I =

ϕI, x 0 0 0
0 ϕI, y 0 0

ϕI, y ϕI, x 0 0

2
4

3
5,Bb1

I =
0 0 −ϕI, xx 0
0 0 −ϕI, yy 0
0 0 − 2ϕI, xy 0

2
4

3
5, ð23a; bÞ

Bb2
I =

0 0 0 ϕI, xx
0 0 0 ϕI, yy
0 0 0 2ϕI, xy

2
4

3
5,Bs

I =
0 0 0 ϕI, x
0 0 0 ϕI, y

� 	
ð24a; bÞ

For the static problem, the weak form can be expressed as follows:

Z
Ω

δεTDεεdΩ+
Z
Ω

δγTDsγdΩ=
Z
Ω

δ wb +wsð Þq0dΩ ð25Þ

where q0 is the transverse loading per unit area and

ε= ε0 κb κs

 �T , Dε =

A B E
B C Kε

E Kε H

2
4

3
5, Ds =

Zh ̸2

− h ̸2

DsðzÞdz ð26a; b; cÞ

Aij,Bij,Cij,Eij,Kε
ij,Hij =

Zh ̸2

− h ̸2

1, z, z2, g zð Þ, zg zð Þ, g2 zð Þ� �
Qijdz,

Ds
ij =

Zh ̸2

− h ̸2

f ′ zð Þ� �2
Gijdz

ð27a; bÞ
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wherein the material matrices are

Q=
E zð Þ
1− υ2

1 υ 0
υ 1 0
0 0 1− υð Þ ̸2

2
4

3
5, G=

E zð Þ
2 1+ υð Þ

1 0
0 1

� 	
ð28a; bÞ

For the free vibration, the weak form can be expressed:

Z
Ω

δεTDεεdΩ+
Z
Ω

δγTDsγdΩ=
Z
Ω

δuTmu ̈dΩ ð29Þ

where

m=
I0 I1 I3
I1 I2 I4
I3 I4 I5

2
4

3
5, I0, I1, I2, I3, I4, I5ð Þ=

Zh ̸2

− h ̸2

ρ zð Þ 1, z, z2, g zð Þ, zg zð Þ, g2 zð Þ� �
dz

ð30a; bÞ

and u= u0 ub usf gT can be expressed as

u0 =
uh

vh

wh
b +wh

s

8<
:

9=
;= ∑

n

I =1
N1

I uI , ub =
− ∂wh

b ̸∂x
− ∂wh

b ̸∂y
0

8<
:

9=
;= ∑

n

I =1
N2

I uI ,

us =
∂wh

s ̸∂x
∂wh

s ̸∂y
0

8<
:

9=
;= ∑

n

I =1
N3

I uI

ð31a; b; cÞ

and

N1
I =

ϕI 0 0 0
0 ϕI 0 0
0 0 ϕI ϕI

2
4

3
5, N2

I =
0 0 −ϕI, x 0
0 0 −ϕI, y 0
0 0 0 0

2
4

3
5,

N3
I =

0 0 0 ϕI, x
0 0 0 ϕI, y
0 0 0 0

2
4

3
5

ð32a; b; cÞ

By substituting Eqs. (22–24) into Eqs. (25) and (29) the formulations of the
static, free vibration are rewritten in the following form:

Ku=F, K−ω2M
� �

u= 0 ð33a; bÞ
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where the global stiffness matrix K is computed through

K=
Z
Ω

Bm

Bb1

Bb2

8<
:

9=
;

T A B E
B C Kε

E Kε H

2
4

3
5 Bm

Bb1

Bb2

8<
:

9=
;dΩ+

Z
Ω

Bsð ÞTDsBsdΩ ð34Þ

The load vector F is computed as follows:

F=
Z
Ω

q0NdΩ where NI = 0 0 ϕI ϕI½ �T ð35Þ

The global mass matrix M is expressed as

M=
Z
Ω

N1

N2

N3

8<
:

9=
;

T I0 I1 I3
I1 I2 I4
I3 I4 I5

2
4

3
5 N1

N2

N3

8<
:

9=
;dΩ ð36Þ

5 Numerical Validations

In this section, we investigate the accuracy of the present approach in predicting the
static bending and free vibration responses of homogeneous and FGM plates with
square shape. For convenience, the boundaries of these plates are denoted as fol-
lows: completely free (F), simply supported (S), or fully clamped (C) edges. It is
worth noting that these boundary conditions can be enforced by employing the
simple rotation-free technique addressed in meshfree analysis [12].

5.1 Effect of the Scaling Factor on the Solution Accuracy

Consider a simply supported square plate with the length a=1, the thickness h, the
simply supported boundary condition (SSSS), the uniform transverse load q0 = 1.
The following parameters are assumed as the length-to-thickness ratio a ̸h=5,
young’s modulus E=1.0 × 107, poisson’s ratio υ=0.3. The normalized displace-
ments at the center of the plate are defined as w̄= Eh3wc

q0a4
. To study the effect of the

influence of scaling factor α to solutions, the normalized displacement w̄ of the plate
is calculated using different sets of 17 × 17, 21 × 21, 25 × 25, 29 × 29, 33 × 33, and
37× 37. Figure 3 shows the convergence of the dimensionless displacements for
various values of the scaling factor parameter varied within a specified wide range
from 2.0 to 3.5 using the proposed correlation function. Table 2 shows the results
for various values of correlation parameter using the proposed correlation functions.
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It can be concluded that obtained dimensionless displacements from present method
which converges to exact solution [13] when increasing the sets of nodes per edge
and decreasing the scaling factor parameter as expected. Howerver, the proposed
correlation model show convergence for solutions of the normalized displacement
as the scaling factors α>2.0. Hence, we decide to use α=2.1 throughout the study
if not specified otherwise.

Furthermore, Table 2 shows that good results are obtained with the mesh 25 × 25
nodes (error 1.69%), and therefore this level mesh of nodes can be used for all next
examples.

5.2 Static Bending Analysis

Next example deals with an Al ̸ZrO2 square plate subjected to a uniform load
q0 = 1. The material property of FGM plates is listed in Table 3. The young’s
modulus and mass density are evaluated using Voigt’s rule of mixtures, see Eqs. (1)
and (2).

Different boundary conditions such as SSSS, SFSF, various values of the
length-to-thickness ratios a ̸h=5, 100, and different values of the gradient index
n=0, 0.5, 1.0 and 2.0 are examined. The normalized central deflection of the plate
w̄= 100wcEmh3

12 1− υ2mð Þq0a4 is used to study the accuracy of the obtained results. Table 4

reports the normalized central deflections, where the obtained results are compared

Fig. 3 Convergence of displacements w̄num ̸w̄exact of the SSSS square plate a ̸h=5ð Þ
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with the third-order (TSDT), higher order shear plate theory (HOSNDPT) [12],
S-FSDT-based isogeometric analysis (IGA) [14], and MK [15] method for different
values of the gradient indies. It is clear that the results obtained by the present
method are accurate when compared with those obtained by the reference methods.

Table 3 Material properties of the FGM plates used for the analysis

Properties Aluminum (Al) Ceramic
Alumina (Al2O3) Zirconia (ZrO2)

E GPað Þ 70 380 200
υ 0.3 0.3 0.3

ρ kg ̸m3ð Þ 2707 3800 5700

Table 4 Normalized deflection of an Al ̸ZrO2 square plate with different length-to-thickness ratio
a ̸h, gradient indices n, and boundary conditions

Boundary
condition

a ̸h Method n=0 n=0.5 n=1.0 n=2.0

SSSS 5 TSDT-MK [12] 0.1712 0.2549 0.2949 0.3326
HOSNDPT [12] 0.1671 0.2505 0.2905 0.3280
S-FSDT based IGA [14] 0.1717 0.2324 0.2719 0.3115
S-FSDT-MK [15] 0.1723 0.2331 0.2723 0.3116
ESDT [7] -MK 0.1773 0.2397 0.2810 0.3239
PSDPT [8] -MK 0.1775 0.2400 0.2813 0.3241
Present 0.1775 0.2399 0.2812 0.3241

100 S-FSDT based IGA [14] 0.1423 0.1949 0.2284 0.2597
S-FSDT-MK [15] 0.1432 0.1960 0.2292 0.2603
ESDT [7] -MK 0.1483 0.2031 0.2379 0.2705
PSDPT [8] -MK 0.1483 0.2031 0.2379 0.2705
Present 0.1483 0.2031 0.2379 0.2705

SFSF 5 TSDT-MK [12] 0.5098 0.7621 0.8793 0.9846
HOSNDPT [12] 0.5019 0.7543 0.8708 0.9744
S-FSDT based IGA [14] 0.5083 0.6918 0.8099 0.9247
S-FSDT-MK [15] 0.5053 0.6874 0.8042 0.9177
ESDT [7] -MK 0.5121 0.6963 0.8160 0.9354
PSDPT [8] -MK 0.5125 0.6967 0.8165 0.9357
Present 0.5124 0.6966 0.8164 0.9357

100 S-FSDT based IGA [14] 0.4584 0.6281 0.7360 0.8367
S-FSDT-MK [15] 0.4566 0.6251 0.7319 0.8316
ESDT [7] -MK 0.4627 0.6339 0.7427 0.8443
PSDPT [8] -MK 0.4627 0.6339 0.7427 0.8443
Present 0.4627 0.6339 0.7427 0.8443
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5.3 Free Vibration Analysis

To further investigate the effects of the boundary conditions on the natural fre-
quency, a Al ̸Al2O3 square thin plate with a length-to-thickness ratio of a ̸h=100
under different boundary conditions and gradient indices is analyzed. The first five
modes normalized natural frequencies ω* =ωπ2 a2 ̸hð Þ ffiffiffiffiffiffiffiffiffiffiffiffiffi

ρm ̸Em
p

obtained with dif-
ferent methods are listed in Table 5.

It can be seen that the results obtained by the present method are in a remarkable
agreement with the results obtained by the S-FSDT-based IGA [14], S-FSDT-based
MK [15], and analytical solutions [16]. It is clear that, as the boundary conditions
change from SCSC to CCCC, the values of the natural frequency gradually

Table 5 The first five mode normalized natural frequencies of an Al ̸Al2O3 thin plate with
different boundary conditions and gradient indices

n Method Mode 1 Mode 2 Mode 3 Mode 4 Mode 5

(a) SCSC

1 S-FSDT based IGA
[14]

129.6605 245.0927 310.2664 423.1599 457.3585

S-FSDT-MK [15] 129.9227 246.0544 311.5795 429.6741 456.0445

Exact [16] 129.6496 245.1310 - 423.6904 -
ESDT [7] -MK 129.0710 239.6964 306.5713 408.7160 441.1219
PSDPT [8] -MK 129.0706 239.6954 306.5693 408.7131 441.1188
Present 129.0707 239.6956 306.5698 408.7138 441.1195

2 S-FSDT based IGA
[14]

117.8818 222.8238 282.0750 384.7018 415.7952

S-FSDT-MK [15] 117.9340 223.2098 279.5867 389.7883 412.6522
Exact [16] 117.8104 222.8111 - 385.0672 -
ESDT [7] -MK 117.4276 218.1388 278.9060 372.3346 401.4844
PSDPT [8] -MK 117.4275 218.1386 278.9057 372.3341 401.4839
Present 117.4275 218.1384 278.9053 372.3335 401.4833

(b) CCCC

1 S-FSDT based IGA
[14]

161.1242 328.4308 328.4308 483.9866 588.3962

S-FSDT-MK [15] 161.0227 328.6780 328.6780 488.7393 591.5320
ESDT [7] -MK 161.3034 325.3422 325.3422 471.7727 574.0112
PSDPT [8] -MK 161.3027 325.3400 325.3400 471.7684 574.0048
Present 161.3029 325.3405 325.3405 471.7694 574.0063

2 S-FSDT based IGA
[14]

146.4868 298.5884 298.5884 439.9988 534.9293

S-FSDT-MK [15] 146.9611 297.6900 297.6900 441.7803 531.8659
ESDT [7] -MK 146.7832 296.1097 296.1097 430.0749 522.4546
PSDPT [8] -MK 146.7831 296.1094 296.1094 430.0743 522.4536
Present 146.7829 296.1089 296.1089 430.0734 522.4523
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increase. Furthermore, values of the natural frequency increase as the gradient index
decreases.

In the last example for natural frequency analysis, a Al ̸ZrO2 square thick plate
with simply supported boundary condition, the gradient index n=1, and ratio of
a ̸h=20 are considered. In Table 6, the first five modes normalized natural

Table 6 The first five mode normalized natural frequencies of an Al ̸ZrO2 SSSS thick plate
gradient index n=1

Model Mode 1 Mode 2 Mode 3 Mode 4 Mode 5

S-FSDT-MK [15] 0.0153 0.0378 0.0378 0.0586 0.0721
TSDT-based Meshless [17] 0.0149 0.0378 0.0378 0.0595 0.0749
HSDT-based Meshless [18] 0.0149 0.0377 0.0377 0.0593 0.0747
3D-SSDT-based Meshless [19] 0.0153 0.0377 0.0377 0.0596 0.0739
3D-HSDT-based Meshless [20] 0.0153 0.0377 0.0377 0.0596 0.0739
ESDT [7] -MK 0.0157 0.0384 0.0384 0.0597 0.0747
PSDPT [8] -MK 0.0157 0.0384 0.0384 0.0597 0.0746
Present 0.0157 0.0384 0.0384 0.0597 0.0747

(a) (b)

(c) (d)

Fig. 4 The first five mode shapes of a simply supported Al ̸ZrO2 thick plate with a ̸h=20 and
n=1: a mode 1, b mode 2–3, c mode 4, and d mode 5
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frequencies ω* =ωh
ffiffiffiffiffiffiffiffiffiffiffiffiffi
ρm ̸Em

p
calculated by the present method are compared with

those obtained by the TSDT-based meshless of Ferreira.et al. [17], HSDT
meshless-based Petrov-Galerkin of Qian et al. [18], and the quasi-3DSSDT-,
HSDT-based meshless of Neves et al. [18, 19]. It is observed that the present
method provides acceptable results when compared with the reference ones. The
first five eigenmodes of the thick plate are visualized in Fig. 4.

6 Conclusions

In the present work, the modified Moving Kriging–interpolation meshfree method
based on the existing refined sinusoidal shear deformation theory for the analysis of
static deflection and free vibration of FGM plate was developed. This plate model
only uses four variables per each node, thus no high computational cost is required
while the parabolic variations of the shear stresses are retained. Also, the chosen
displacement field also satisfies the vanishing of the shear stresses on the free
surfaces of the FGM plate while the shear correction factor is negligible. A re-
markable point is that the modified Gaussian exponential correlation function is
integrated into the MK interpolation function. As a result, the obtained solutions by
proposed method are stable than those obtained by the traditional MK meshfree
method. Thorough the numerical validations, it was proved that the proposed
meshfree method is capable of accurately predicting the static and dynamic
behavior of FGM thin to thick plates with different boundary conditions and the
gradient index, length-to-thickness ratios.
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Bending Analysis of Laminated
Composite Beams Using Hybrid Shape
Functions

Ngoc-Duong Nguyen, Trung-Kien Nguyen, Thien-Nhan Nguyen
and Thuc P. Vo

Abstract Bending behaviours of laminated composite beams are presented in this
study. The present theory is based on a higher-order shear deformation beam the-
ory. The governing equations are derived from Lagrange’s equations. Ritz method
is applied in which new hybrid shape functions are proposed for analysis of lam-
inated composite beams with various boundary conditions. Numerical results are
presented and compared with those from earlier works to validate the accuracy of
the proposed solutions and to investigate effects of the span-to-height ratio,
boundary conditions, fibre orientation and material anisotropy on the displacement
and stresses.

Keywords Composite beams ⋅ Ritz method ⋅ Shape function
Bending

1 Introduction

In the recent years, laminated composite beams have been used commonly in many
engineering fields due to their high specific stiffness and strength-to-weight ratios,
and the bending behaviours are one of the interest and importance to the perfor-
mance of beams. A large number of researches have been conducted for flexural
behaviours of laminated composite beams. Many theories have been considered
such as layer-wise theories (LWT), equivalent single-layer theories (ESLT), zigzag
theories (ZZT), Carrera’s Unified Formulation (CUF)… in which the ESLT are
widely used owing to its simplicity in formulation as well as programming. ESLT
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can be classified as classical beam theory (CBT), first-order beam theory (FOBT)
and higher-order beam theory (HOBT). General reviews on analysis of laminated
composite beams can be found in [1, 2]. For computational methods, many
numerical and analytical approaches have been presented to analyse behaviours of
laminated composite beams and only some of them are mentioned here. Finite
element method (FEM) has been mostly used for analysis of composite beams in
which different finite element models based on various beam theories have been
proposed. Han and Hoa [3] developed a three-dimensional multilayer composite
finite element for stress analysis of composite beams. Based on FOBT and HOBT,
Maiti and Sinha [4] used FEM to predict vibration and static behaviour of laminated
composite beams. Subramanian [5] introduced a two-node C1-finite element for
flexural analysis of symmetric laminated composite beams with simply-supported
boundary condition. Murthy et al. [6] studied static and free vibration analysis of
un-symmetric composite beams. In this study, HOBT and a two-node beam element
was presented. Vidal and Polit [7] proposed a new three-node beam finite element
for dynamic and static analysis of composite beams. Lezgy et al. [8] developed a
refined higher-order global-local beam theory and used FEM to derive natural
frequency, displacement and stress of composite and sandwich beams. A two-node
C1-finite element with six degree-of-freedom per node is developed by Vo et al. [9]
for static analysis of composite beams. Mantari and Canals [10] also used FEM to
determine displacement and stress of laminated composite beams. For analytical
approaches, Navier’s solution known as the simplest one for simply-supported
beams has been used by many researchers [11–16]. Ritz method has been also
interested and developed for analysing composite beams. Based on this approach
with a polynomial shape function, Nguyen et al. [17] presented vibration and
buckling analysis of functionally graded sandwich beams by using new
higher-order shear deformation theory with various boundary conditions. By using
the same shape functions as [17], Nguyen et al. [18] investigated the hygro-thermal
effects on vibration and thermal buckling responses of functionally graded beams.
Aydogdu introduced a Ritz solution method for vibration [19] and buckling [20]
analysis of cross-ply laminated beams in which the orthogonal approximative
polynomials for the displacement field have been used. Mantari and Canales [21]
studied vibration and buckling behaviours of composite beams by using polynomial
series and hybrid polynomial–trigonometric series. Recently, Nguyen et al. [22]
proposed a Ritz solution for vibration, buckling and bending analysis of laminated
composite beams by using trigonometric shape functions and HOBT. Other ana-
lytical methods can be also found in the works of Kant et al. [23], Apetre et al. [24],
Khdeir and Reddy [25]. Although the Ritz method is efficient to analyse behaviours
of composite beams with various boundary conditions, the available literature
shows that the number of researches used the Ritz method for static analysis of
laminated composite beams is still limited. Moreover, the accuracy and efficiency of
this approach strictly depend on a choice of approximative shape functions for the
field variables. Therefore, this problem needs for further studies.
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The objective of this paper is to develop new approximative shape functions for
bending analysis of laminated composite beams. The HOBT is used to describe the
displacement field. The governing equations are derived by using Lagrange’s
equations. The convergence and verification studies are carried out to demonstrate
the accuracy of the present study. Numerical results are presented to investigate the
effects of span-to-height ratio, boundary conditions and material anisotropy on the
displacement and stresses of laminated composite and sandwich beams.

2 Strain and Stress Relation

Consider a laminated composite beam with length L and rectangular section ðb× hÞ
as shown in Fig. 1. It includes n plies of orthotropic materials in different fibre
angles θ with respect to the x-axis.

The elastic strain and stress relation of kth-layer in global coordinate are given
by [26]:

σðkÞx

σðkÞxz

� �
= Q ̄ðkÞ11 0

0 Qð̄kÞ
55

 !
εðkÞx

γðkÞxz

� �
ð1Þ

where the Q̄ðkÞ
11 and Qð̄kÞ

55 are reduced stiffness constants of kth-layer in global
coordinates and determined as follows [26]:

Q̄ðkÞ
11 =QðkÞ

11 cos4 θ+2ðQðkÞ
12 + 2QðkÞ

66 Þ sin2 θ cos2 θ+QðkÞ
22 sin4 θ ð2aÞ

Qð̄kÞ
55 =QðkÞ

55 cos2 θ+QðkÞ
44 sin2 θ ð2bÞ

b

L

h

x

z

y

Fig. 1 Geometry of a
laminated composite beam
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QðkÞ
11 =

EðkÞ
1

1− νðkÞ12 ν
ðkÞ
21

,QðkÞ
12 =

νðkÞ12 E
ðkÞ
2

1− νðkÞ12 ν
ðkÞ
21

,QðkÞ
22 =

EðkÞ
2

1− νðkÞ12 ν
ðkÞ
21

ð2cÞ

QðkÞ
44 =GðkÞ

23 ,Q
ðkÞ
55 =GðkÞ

13 ,Q
ðkÞ
66 =GðkÞ

12 ð2dÞ

with EðkÞ
1 ,EðkÞ

2 ,GðkÞ
12 ,G

ðkÞ
13 ,G

ðkÞ
23 are orthotropic elastic constants; νðkÞ12 , ν

ðkÞ
21 are

Poisson’s ratios.

3 Variational Formulation

3.1 Displacement Field

The displacement field of laminated composite beams is given by [26, 27]:

u1ðx, zÞ= uðxÞ− z
∂wðxÞ
∂x

+
5z
4

−
5z3

3h2

� �
ψðxÞ= uðxÞ− zw, x +ΩðzÞψðxÞ ð3aÞ

u3ðx, zÞ=wðxÞ ð3bÞ

where u and w are the axial and transverse displacements of mid-plan of the beams,
respectively; ψ is the rotation of a transverse normal about the y-axis; Ω represents
the higher-order variation of axial displacement; the comma indicates partial
differentiation with respect to the coordinate subscript that follows.

The strain field of beams is given by:

εx = u1, x = u, x − zw, xx +Ωψ , x ð4aÞ

γxz = u1, z + u3, x =ψΩ, z ð4bÞ

3.2 Variational Formulation

The strain energy U of system is given by:

U =
1
2

Z
V

σxεx + σxzγxz
� �

dV

=
1
2

ZL

0

Aðu, xÞ2 − 2Bu, xw, xx +Dðw, xxÞ2 + 2Bsu, xψ , x − 2Dsw, xxψ , x +Hsðψ , xÞ2 +AsðψÞ2
h i

dx

ð5Þ
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where the stiffness coefficients A,B,D,Bs,Ds,Hs of the beam are determined as
follows:

A,B,D,Bs,Ds,Hsð Þ= ∑
n

k=1

Zzk+1

zk

Q ̄ ðkÞ11 1, z, z2,Ω, zΩ,Ω2� �
bdz ð6aÞ

As = ∑
n

k=1

Zzk+1

zk

Q ̄ðkÞ55 Ω, zð Þ2bdz ð6bÞ

The work done V by transverse load q can be written in the following form:

V = −
ZL

0

qwbdx ð7Þ

The total potential energy of system is expressed by:

Π=U +V

Π=
1
2

ZL

0

Aðu, xÞ2 − 2Bu, xw, xx +Dðw, xxÞ2 + 2Bsu, xψ , x

h

− 2Dsw, xxψ , x +Hsðψ , xÞ2 +AsðψÞ2
i
dx−

ZL

0

qwbdx

ð8Þ

4 Ritz Solutions

Based on Ritz method, the mid-plan displacements in Eq. (8) are approximated in
the following forms:

uðxÞ,wðxÞ,ψðxÞf g= ∑
m

j=1
φj, xðxÞaj,φjðxÞbj,φj, xðxÞcj
� 	 ð9Þ
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where aj, bj, cj are unknown values to be determined; φjðxÞ are the approximative
shape functions which impact on the accuracy and efficiency of solutions. In the
present study, the following hybrid shape functions are proposed for
simply-supported (S-S), clamped-free (C-F) and clamped-clamped (C-C) boundary
conditions (BCs):

S-S:φjðxÞ= xðL− xÞex ̸jL ð10aÞ

C-F:φjðxÞ= x2ex ̸jL ð10bÞ

C-C:φjðxÞ= x2ðL− xÞ2ex ̸jL ð10cÞ

It is known that the accuracy and efficiency of the Ritz method strictly depend on
a choice of approximative shape functions for the field variables, and the inap-
propriate shape functions may cause slow convergence rates and numerical insta-
bilities [19, 20]. For the functions which do not satisfy the boundary conditions,
Lagrangian multipliers method can be used to impose the boundary conditions
[17, 18]. The proposed hybrid functions in Eqs. (10a–10c) are combinations of
exponential and admissible functions which meet properties of approximative shape
functions of the Ritz method [26] and satisfy essential boundary conditions given in
Table 1.

Substituting Eqs. (10a–10c) into Eq. (9) and using Lagrange’ equations for
static analysis, Π, qj =0 with qj representing the values of (aj, bj, cj), the governing
equations are obtained as follows:

K11 K12 K13

TK12 K22 K23

TK13 TK23 K33

2
4

3
5 a

b
c

8<
:

9=
;=

0
F
0

8<
:

9=
; ð11Þ

Table 1 Kinematic
boundary conditions of beams

BCs Position Value

S-S x = 0 w=0
x = L w=0

C-F x = 0 u=0, w=0, w, x =0, ψ =0
x = L –

C-C x = 0 u=0, w=0, w, x =0, ψ =0
x = L u=0, w=0, w, x =0, ψ =0
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where the components of stiffness matrix K are given by:

K11
ij =A

ZL

0

φi, xxφj, xxdx, K
12
ij = −B

ZL

0

φi, xxφj, xxdx,

K13
ij =Bs

ZL

0

φi, xxφj, xxdx, K22
ij =D

ZL

0

φi, xxφj, xxdx

K23
ij = −Ds

ZL

0

φi, xxφj, xxdx, K33
ij =Hs

ZL

0

φi, xxφj, xxdx+As
ZL

0

φi, xφj, xdx,

Fi =
ZL

0

qφidx

ð12Þ

5 Numerical Examples

In this section, a number of numerical examples are carried out to demonstrate the
accuracy of the present solution and to investigate effects of the span-to-height
ratio, boundary conditions, fibre orientation and material anisotropy on the dis-
placement and stresses of laminated composite and sandwich beams. The beam is
supposed to be subjected to a uniformly distributed load q. Unless other states,
laminates have the same thickness. The material (MAT) properties throughout
numerical examples are given as follows:

• MAT I [28]: E1 ̸E2 = 25, G12 =G13 = 0.5E2, G23 = 0.2E2, υ12 = 0.25.
• MAT II [15]: MAT I for faces, and E1 ̸E2 = 1, G13 =G23 = 1.5E2, G12 = 0.4E2,

υ12 = 0.25 for core.

For convenience, the following non-dimensional terms are used:

w̄=
102wE2bh3

qL4
, σ ̄x =

bh2

qL2
σx

L
2
,
h
2

� �
, σx̄z =

bh
qL

σxz 0, 0ð Þ ð13Þ

To study convergence of the proposed solution, (0°/90°/0°) composite beams
(MAT I, L ̸h=5) are considered. The variation of non-dimensional mid-span
displacement with respect to the series number m of the beams with different
boundary conditions is presented in Table 2. It can be seen that m=12 is the
convergence point for all BCs. So, this number of series terms will be used in the
examples. In comparison, the convergence obtained from the present solution is
faster than that from Nguyen et al. [22].
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5.1 Laminated Beams

In order to validate the accuracy of the present solution on displacement responses,
symmetric (0°/90°/0°) and un-symmetric (0°/90°) composite beams (MAT I) with
different BCs and subjected to uniformly distributed load are considered. The
results are calculated with three ratios of span-to-height L ̸h=5, 10, 50 and
reported in Table 3. The non-dimensional transverse displacements are compared
with those obtained from Khdeir and Reddy [25], Zenkour [15], Murthy et al. [6],
Nguyen et al. [22] and Vo et al. [9], which are based on the HOBTs. It can be seen
that the present solutions are in good agreements with those from previous studies,
and the non-dimensional mid-span transverse displacements decrease with increase

Table 2 Convergence of non-dimensional mid-span displacements of (0°/90°/0°) composite
beams (MAT I, L ̸h=5)

BCs m

2 4 6 8 10 12 14 16

S-S 2.3507 2.4210 2.4103 2.4127 2.4123 2.4124 2.4124 2.4124
C-F 3.9694 6.7575 6.7829 6.8272 6.8234 6.8240 6.8239 6.8239
C-C 1.5211 1.5084 1.5396 1.5366 1.5370 1.5369 1.5369 1.5369

Table 3 Non-dimensional mid-span displacement of (0°/90°/0°) and (0°/90°) composite beams
under uniformly distributed load (MAT I)

BCs Reference Symmetric (0°/90°/0°) Un-symmetric (0°/90°)
L/h = 5 10 50 L/h = 5 10 50

S-S Present 2.4124 1.0963 0.6645 4.7768 3.6883 3.3363
Khdeir and Reddy [25] 2.4120 1.0960 0.6650 4.7770 3.6880 3.3360
Zenkour [15] 2.4141 1.0800 0.6650 4.7879 3.6973 3.3447
Murthy et al. [6] 2.3980 1.0900 0.6610 4.7500 3.6680 3.3180
Nguyen et al. [22] 2.4120 1.0960 0.6650 4.7770 3.6880 3.3360
Vo et al. [9] 2.4141 1.0980 0.6662 4.7845 3.6958 3.3437

C-F Present 6.8240 3.4554 2.2511 15.2791 12.3435 11.3368
Khdeir and Reddy [25] 6.8240 3.4550 2.2510 15.2790 12.3430 11.3370
Murthy et al. [6] 6.8360 3.4660 2.2620 15.3340 12.3980 11.3920

Nguyen et al. [22] 6.8130 3.4470 2.2500 15.2600 12.3300 11.3350
Vo et al. [9] 6.8304 3.4607 2.2568 15.3050 12.3690 11.3630

C-C Present 1.5369 0.5315 0.1468 1.9216 1.0051 0.6786
Khdeir and Reddy [25] 1.5370 0.5320 0.1470 1.9220 1.0050 0.6790
Murthy et al. [6] 1.5380 0.5320 0.1470 1.9240 1.0070 0.6810
Nguyen et al. [22] 1.5360 0.5310 0.1470 1.9200 1.0040 0.6790
Vo et al. [9] 1.5378 0.5320 0.1473 1.9227 1.0062 0.6796
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of L ̸h, the maximum and minimum values are obtained from C-F and C-C
boundary conditions, respectively. Figure 2a and b display the variation of
non-dimensional transverse displacements in the x-direction of beams with S-S and
C-C BCs. Obviously, owing to the symmetry of load and BCs, the displacements
are symmetric with respect to the mid-point of the beams. Table 4 presents the
non-dimensional axial and transverse shear stresses of (0°/90°/0°) and (0°/90°)
simply-supported composite beams (MAT I). The obtained results are compared to
those derived from Zenkour [15], Nguyen et al. [22] and Vo et al. [9]. Good
agreements between the theories are again found. The variations of
non-dimensional axial and transverse shear stresses through the beam thickness of
(0°/90°/0°) and (0°/90°) composite beams (MAT I, L ̸h=5) are also plotted in
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Fig. 2 Non-dimensional transverse displacement ðw̄Þ in x-direction (MAT I, L ̸h=5)

Table 4 Non-dimensional axial and shear stresses of (0°/90°/0°) and (0°/90°) simply-supported
laminated beams under uniformly distributed load (MAT I)

Reference Symmetric (0°/90°/0°) Un-symmetric (0°/90°)
L/h = 5 10 50 L/h = 5 10 50

a. Normal stress ðσ ̄xÞ
Present 1.0677 0.8503 0.7806 0.2361 0.2342 0.2336
Zenkour [15] 1.0669 0.8500 0.7805 0.2362 0.2343 0.2336
Nguyen et al. [22] 1.0696 0.8516 – 0.2362 0.2343 –

Vo et al. [9] 1.0670 0.8503 0.7809 0.2361 0.2342 0.2336
b. Shear stress ðσx̄zÞ
Present 0.4056 0.4311 0.4529 0.9204 0.9567 0.9888
Zenkour [15] 0.4057 0.4311 0.4514 0.9211 0.9572 0.9860
Nguyen et al. [22] 0.4050 0.4289 – 0.9174 0.9483 –

Vo et al. [9] 0.4057 0.4311 0.4518 0.9187 0.9484 0.8445
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Figs. 3 and 4 in which the nonlinear variations of the stresses and traction-free
boundary conditions on the top and bottom surfaces of the beams are observed.

The next example aims to investigate the effects of material anisotropy and fibre
orientation on displacements of laminated composite beams. Figure 5 displays
variations of the non-dimensional mid-span transverse displacements with respect
to E1 ̸E2 of (0°/90°/0°) and (0°/90°) composite beams (MAT I, L ̸h=5) with
different boundary conditions. It can be seen that the displacements decrease with
the increase of E1 ̸E2, and this effect is the most significant for beams with C-F
boundary condition. Moreover, the effect of fibre orientation on the displacement of
θ◦ ̸− θ◦ð Þs laminated beams (MAT I, L ̸h=5) is shown in Fig. 6 from which it is
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observed that the non-dimensional mid-span displacements increase with the
increase of θ◦ for all BCs.

5.2 Sandwich Beams

In this section, symmetric sandwich beams are considered in which the thicknesses
of face layers and core layer are h1 and h2, respectively. For comparison purposes,
0°/90°/0° sandwich beams (MAT II) with core-to-face thickness ratio h2 ̸h1 = 3
and 8 are investigated. Tables 5 and 6 present the non-dimensional mid-span dis-
placements and stresses of sandwich beams, which are calculated with different
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composite beams (MAT I,
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boundary conditions and span-to-height ratios (L ̸h = 5, 10, 50) and compared with
previous works based on the HOBTs of Zenkour [15] and Vo et al. [9]. It can be
seen that the present results are in excellent agreements with those from earlier
studies. In addition, the effect of thickness ratio of core-to-face h2 ̸h1 on the
transverse displacement of 0°/90°/0° sandwich beams is also plotted in Fig. 7. It is
interesting to observe that the displacements vary with respect to L ̸h, h2 ̸h1 and
boundary conditions. For S-S beams with L ̸h=50, the non-dimensional dis-
placement increases monotonically with the increase of h2 ̸h1, whereas for L ̸h = 5
and 10, it decreases to a minimum value and then increases with respect to h2 ̸h1.

Table 5 Non-dimensional mid-span displacement of (0°/90°/0°) sandwich beams under
uniformly distributed load (MAT II)

BCs Reference h2 ̸h1 = 3 h2 ̸h1 = 8
L/h = 5 10 50 L/h = 5 10 50

S-S Present 1.1829 0.8854 0.7900 1.5603 1.3073 1.2263
Zenkour [15] 1.1853 0.8879 0.7925 1.5661 1.3135 1.2325
Vo et al. [9] 1.1853 0.8879 0.7925 1.5661 1.3135 1.2325

C-F Present 3.8069 2.9631 2.6841 5.1412 4.4065 4.1679
Vo et al. [9] 3.8148 2.9717 2.6927 5.1619 4.4281 4.1892

C-C Present 0.5250 0.2526 0.1611 0.5667 0.3265 0.2479
Vo et al. [9] 0.5257 0.2534 0.1616 0.5257 0.2534 0.1616

Table 6 Non-dimensional axial and shear stresses of (0°/90°/0°) of simply-supported sandwich
beams under uniformly distributed load (MAT II)

Reference h2 ̸h1 = 3 h2 ̸h1 = 8
L/h = 5 10 50 L/h = 5 10 50

a. Normal stress ðσx̄Þ
Present 0.9978 0.9586 0.9461 1.5010 1.4786 1.4715
Zenkour [15] 0.9980 0.9592 0.9467 1.5044 1.4823 1.4753
Vo et al. [9] 0.9984 0.9596 0.9471 1.5050 1.4830 1.4760
b. Shear stress ðσx̄zÞ
Present 0.7497 0.7657 0.7780 0.6791 0.6879 0.6928
Zenkour [15] 0.7495 0.7641 0.7755 0.6779 0.6852 0.6906
Vo et al. [9] 0.7495 0.7644 0.7771 0.6781 0.6860 0.6922
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6 Conclusion

Static behaviours of laminated composite beams are presented in this paper. The
displacement field of present theory is based on the HOBT which accounts for a
higher-order variation of axial displacement. Ritz method is applied in which hybrid
shape functions are proposed for analysis of composite beams with various
boundary conditions. Numerical results are obtained to compare with previous
studies and investigate effects of material anisotropy, span-to-height ratio and fibre
orientation on the stresses and displacement of laminated composite and sandwich
beams. The numerical examples showed that the proposed solution is simple and
efficient for static analysis of composite beams.
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Numerical Analysis of Hybrid Members
Using FEM

T. V. Tran

Abstract The paper presents the numerical study dealing with the behavior and

the real load-bearing capacity of hybrid members by Abaqus software. Especially

identify the behavior of the composite steel-concrete members with several fully

encased steel profiles (hybrid members) while the materials were yielded until fail-

ure. Structural hybrid members, material constitutive law for steel and concrete, load

schematic, element types, numerical solution controls, interactions, steel-concrete

bond and mechanical contact, . . .will be described in detail. It is expected that nonlin-

ear FEM analysis can give more details on behavior as well as on shear and bending

resistance mechanisms until failure of the hybrid members. The nonlinear FEM anal-

ysis will be able to predict specimen strength, maximum displacement, strains and

stress distribution, crack pattern, and failure modes. The reliability of this method

was evaluated by comparing the analysis results with a part of the experimental

results.

Keywords Numerical analysis ⋅ Hybrid member ⋅ Profile ⋅ Connection

Simple bending ⋅ Failure

1 Introduction

Nowadays, finite element method (FEM) is widely adopted as a potential numerical

method to investigate the behavior of composite steel-concrete structures because of

many achieved advances in numerical techniques, material models, and computer

performance. Especially, some various concrete models and sophisticated contact

elements have been implemented in commercial FEM packages that make modeling

and analysis become much easier.

One of the most FEM software used nowadays is ABAQUS software. Abaqus has

several built-in models to predict the behavior of materials as well as the provision
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to add user-defined models. The program offers a wide range of options regarding

element types, material behavior, and numerical solution controls, as well as graphic

user interfaces, auto-meshes, sophisticated post-processors, and graphics to speed

the analyses [1].

In this paper, this commercial software is employed to develop reliable three-

dimensional finite element model for estimating the bearing capacity of the hybrid

steel-concrete member specimens. It is expected that nonlinear FEM analysis can

give more details on behavior as well as on shear and bending resistance mechanisms

until failure of test specimens in our experimental program. The nonlinear FEM

analysis will be able to predict specimen strength, maximum displacement, strain

and stress distribution, slip distribution, crack pattern, and failure modes.

2 Description of Hybrid Member Specimens

The research program consists of six member specimens which are composite mem-

ber with three-encased steel profiles (hybrid member). All specimens had the same

size, geometry, and longitudinal reinforcing bar arrangements. The primary differ-

ences between six specimens were the type of the structural steel-concrete connec-

tion and the stirrup spacing. Details evaluated in the test include the contributions of

the steel profiles, shear studs, stiffeners, bond and stirrup spacing to the bending, and

250

280280170 170

170280280170

250
250

900

25 275 150 150 275 25

Steel encased profile HEB100

Stud Nelson H3L ø16 @200

Plate stiffners 80x40x10 @300

Fig. 1 Details of the hybrid member specimens
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Fig. 2 Typical model for hybrid member specimen bending and shear analysis

shear resistance. Figure 1 shows the design details of all the six specimens of hybrid

members. All specimens consisted of RC member that had 5m length, 25 × 90 cm

rectangular cross section and were reinforced with eight 20mm diameter vertical

reinforcing bars (Grade B). The horizontal reinforcement consisting of 14 and 6mm

reinforcing bars was made in form of stirrups. The reinforcing bar arrangement is

the same in all specimens except the stirrup spacing which was 200mm in BW, CW,

and DW specimens and 100mm in BW-HC, CW-HC, and DW-HC specimens. More-

over, they had additional three HEB 100 which were totally encased in the concrete

with shear stud connectors between the concrete and the steel profiles for the CW and

CW-HC specimens (50 × 3 Nelson S3L16 − 75, 200mm spacing), with stiff connec-

tors between the concrete and the steel profiles for the DW and DW-HC specimens

(30 × 3 plate stiffeners, 10mm thickness, 300mm spacing) and without connectors

for the BW and BW-HC specimens.

In the model, the solution of third-point flexural member specimens configura-

tion was adopted to evaluate the resistance of specimens to combined bending and

shear without axial force in Fig. 2. Specimens were loaded at the mid-length by ver-

tical displacement. Pinned boundary conditions at each end of the specimens were

simulated by two supports. No restraint was provided against rotation along any axis.

3 Finite Element Model

We have simulated 3D models for 6 hybrid members (namely BW, BW-HC, CW,

CW-HC, DW, DW-HC as described above) in the Abaqus software. Due to the sym-

metry of the specimen geometry and loading, in order to save the calculation time,

only half of the specimen was modeled as shown in Fig. 3. Four components of
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Fig. 3 Model of a half hybrid member specimens

specimen (concrete, rebars, steel profile, and connector) are modeled separately and

assembled to make a complete specimen model.

3.1 Type of Finite Elements

The hybrid members proposed for finite element modeling embody situations of

material discontinuity, yielding, stress concentration, contact, and composite behav-

ior. These complex 3D phenomena are reproduced by adopting hexahedra solid

elements [1], which are used to model majority of the parts of the specimens.

Exception is the ordinary reinforcement in the concrete members, where truss ele-

ments are used. In ABAQUS, the finite elements C3D8 (8 nodes) and C3D20 (20

nodes) are continuum stress/displacement 3D solid finite elements of first and sec-

ond order, respectively, either with reduced or full integration. The 8-node element

with reduced integration is chosen for the general numerical simulations. A sensi-

tivity analysis is performed with respect to the element type to check the required

mesh density for application. For this purpose, the second-order element (C3D20R)

with reduced integration is used to obtain the “correct” solution. The truss element

(T3D2) used to model the ordinary reinforcement is a 2-node linear 3D truss element

that can only transmit axial forces.
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(a) Finite element modeling of structural concrete (b) Finite element modeling of structural steel

Fig. 4 Finite element type and mesh

3.2 Finite Element Mesh

Figure 4 shows the meshing of the FE model for the concrete member, rebar, steel

member, and headed studs. The element size is 0.025m for the elements of concrete

member, steel profiles, reinforcement bars and shanks of the shear connectors, plate

stiffeners and 0.005m for a head of the shear connectors. The head and the stud of

the connectors are approximated by a hexagon.

3.3 Constitutive Laws and Mechanical Properties

The constitutive laws used to model the mechanical behavior of the different materi-

als and interactions considered include five types: Concrete Damage Plasticity for the

concrete slab and Isotropic Material for the structural steel, the rebars, and connec-

tors. The Concrete Damage Plasticity was chosen because it is simpler to model and

more stable for the numeric calculation. The Concrete Damage Plasticity constitu-

tive model is defined by a uni-axial compression and tension response (Fig. 5), where

five constitutive parameters are needed to identify the shape of the flow potential

surface and the yield surface [2, 3]. In this constitutive model, a nonlinear stress–

strain relation is assumed for compression. As the entire stress–strain curve is not

available from the test reports and only the usual parameters are reported (compres-

sion strength and Young’s modulus), the concrete uni-axial compressive behavior is

obtained by applying Eq. (1), as specified in Eurocode 2 [4] for nonlinear analysis.

𝜎c =
k𝜂 − 𝜂

2

1 + (k − 2)𝜂
fcm (1)
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Table 1 Material parameter of concrete damage plasticity model for concrete of fcm = 30MPa

Density Parameters of concrete damaged plasticity model

P(tonne/mm
3) 2.4 × 10−9 Dilation angle 38◦

Elasticity Eccentricity 0.1

E(MPa) 33346 fco∕fco 1.16

𝜈 0.2 K 0.67

Viscosity

parameter

0.0001

Compressive behavior Tensile behavior

Yield stress

(MPa)

Inelastic strain Yield stress

(MPa)

Displacement

(mm)

Damage

12.80 0 2.870 0 0

19.40 0.00016 2.428 0.0225 0.492

24.37 0.00037 1.706 0.0662 0.802

28.86 0.00066 1.192 0.1084 0.904

30.00 0.00102

28.41 0.00156

23.77 0.00219

16.27 0.00291

In Eq. 1, 𝜎c is the concrete stress, f is the mean concrete cylinder compressive

strength, k and 𝜂 are two factors determined according to Eqs. (2) and (3), Ecm is

the secant modulus of elasticity of concrete, 𝜀c is the concrete strain, 𝜀 is the com-

pressive strain at the peak stress fcm and 𝜀cu1 is the ultimate compressive strain in the

concrete.

𝜂 =
𝜀c

𝜀c1
(2)

k = 1.05
Ecm|𝜀c1|

fcm
(3)

In tension, the behavior is assumed elastic up to the onset of cracking and then

followed by tension softening. In the absence of experimental information to charac-

terize the strain softening response of the concrete in tension, the concept of stress–

displacement curve was used in the model. The stress–displacement curve is defined

by Lubliner et al. (1989) and by Lee and Fenves (1988) according to David et al. [1].

Finally, for the five constitutive parameters (𝜓—dilatation angle; 𝜀—flow potential

eccentricity; fbo∕fco—ratio of initial equibiaxial compressive yield stress to initial

compressive yield stress; k—ratio of second stress invariant on the tensile merid-

ian; 𝜇—viscosity parameter) required to complete the definition of the constitu-

tive model, no information was available from the experimental tests and therefore

default values [1, 5] were used (see Table 1). Design concrete class is the C30 [4, 6].
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(a) Concrete uni-axial stress-strain response in compression and tension (b) Stress-strain relationship for steel

Fig. 5 Stress–strain material laws

3.4 Relation for Steel Profiles and Rebars and Connectors
Behavior

To model the behavior of structural steel and reinforcement, the classical isotropic

material law that implements the von Mises plasticity model (isotropic yielding) is

used. For the generality of the steel parts, an elasto-plastic behavior with hardening

is assumed (see Fig. 5). For the steel profiles and rebars, the true stress–strain (𝜎true −
𝜀true) material curve available from the experimental tests is considered. The latter

properties are calculated as expressed in Eqs. (4) and (5) [5, 7] using the nominal

properties (𝜀, 𝜎) obtained in the tests.

𝜎true = 𝜎(1 + 𝜀) (4)

𝜀true = ln(1 + 𝜀) (5)

The steel profile and the steel plate stiffener grade are S460. The steel longitudinal

rebar class, the steel stirrups class, and the steel shear stud class are S500B [4, 6,

8, 9]. The material behavior was considered as bilinear stress–strain diagram with

hardening until 𝜀lim = 0.05. And their detailed values are presented in Table 2.

3.5 Steel Reinforcement-Concrete Interaction

In ABAQUS, the 3D modeling of reinforced concrete may be performed using steel

rebars (truss element (2-nodes)), steel profiles, steel shear studs, steel plate stiffeners
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Table 2 Structural and reinforcing steel strengths

Item fy (MPa) fu (MPa)
fu
fy

E (GPa) Applying

HEB 100 462.7 583.5 1.26 214.45 Profiles, plate

stiffener

𝜙20mm bars 383.91 542.62 1.41 210.74 Longitudinal

rebar

𝜙14mm bars 633.26 656.34 1.04 207.46 Stirrups class,

shear stud

(solid (continuum) element (8-nodes)), and all ordinary reinforcement embedded

or not in the concrete. Due to the importance of the steel profiles and connectors

reinforced in the hybrid member, they are modeled with 3D solid elements. For this

type of element, bond behavior may be defined to model the interaction between the

steel profiles and the concrete, whereby it is modeled by an approximation of the

bond-slip response (this model proposed by Eligehausen et al. (1983) [6] and the

typical traction-separation response available in ABAQUS [1]. The first technique

consists of physically superposing the two parts. It is based on master and slave

regions, where the nodes of the embedded region (slave, the steel profiles) displace

by the same amount as the closest node of the host region (master, the concrete).

Such type of modeling enforces a perfect bond between master and slave. However,

it is only valid when stress transfer is medium-low. For highly stressed regions, e.g.,

near cracks, there are different strains in the concrete and in the reinforcement, as

slip occurs due to the loss of bond. Therefore, modeling the interaction with perfect

bond leads to excessive stresses in concrete and stiffer response of the reinforcement.

Contact with cohesive behavior may be considered to model the bond behavior in

the reinforcement-concrete interface. The contact and interface stresses are treated

using the “hard” contact model with frictional behavior. In the “hard” contact: (i)

pressure is transmitted when nodes of slave surface contact the master surface; (ii)

no penetration is allowed; (iii) no limit to the pressure is assumed when the surfaces

are in contact. The frictional behavior is guaranteed by the stiffness (penalty) method,

and the sliding conditions between bodies are reproduced with the classical isotropic

Coulomb friction model. For more detailed information, reference is given to [1, 5].

In order to reduce the modeling time, the “real” bond behavior is only applied

in regions around the steel profiles-concrete slab interface with the coefficient of

friction between the steel and the concrete is assumed to be 0.45. The test BW and

BW-HC specimens were carried out without shear connectors welded to the encased

steel profiles allowing, however, achieving the full bending resistance of the element

without any apparent problem related to longitudinal shear, like slippage between

concrete and steel profile. Particularly in the stage after cracking formation, the bond

behavior still is only 0.45 of friction coefficient be applied in regions between the

steel profiles with the concrete surround. Therefore, the perfect bond is simulated
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for these 2 specimens. Moreover, the perfect bond model is applied in all the other

parts of these reinforcement bars and for all ordinary reinforcement.

3.6 Boundary Conditions

For the application of the support conditions, all the nodes at the support location

(concrete reaction surface) in the opposite direction of loading are restricted from

moving in the Y direction to resist the flexion load. All the nodes of the concrete

member, steel profile flanges, and the rebar web that lie on the opposite symmetry

surface are restricted due to symmetry from moving in the Z direction and rotating

in the Y and Z direction. All the concrete nodes and steel profile flange nodes that

lie on the perpendicular to symmetry surface are restricted from moving in the X

direction and rotating in the Y and Z direction.

3.7 Application of the Load

A deformation controlled load is applied at the mid-span of the hybrid member, i.e.,

above the concrete load surface on the symmetrical surface as shown in Fig. 3. Load

can be applied using the arc length method. An initial increment of displacement is

given on the data line, and the initial load proportionality factor is assigned to this

initial increment using the automatic incremental scheme.

4 Results of Numerical Analysis

The analysis results are compared with the experimental results. The load-bearing

capacity, stress and strain analysis, and failure modes have been investigated.

4.1 Load-Deflection Response

The load-displacement curves obtained from the FE model for all test specimens are

compared to the experimental ones in Fig. 6. It can be observed that the numerical

load-deflection behavior resembles the experimental behavior reasonably well. The

numerical response is the load up to failure. It can be noticed that the stiffness of

the elements obtained in the numerical analysis is higher than the stiffness obtained

in the experimental tests. This difference appears firstly due to the different mate-

rial pattern (homogeneous in case of numerical analysis and in-homogeneous in the
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(a) BW and BW-HC specimens (b) CW and CW-HC specimens

(c) DW and DW-HC specimens

Fig. 6 Numerical–experimental comparison of load-displacement curves

Table 3 Comparative study of the load-bearing capacity

Specimen ΔFs
(mm) Experimental

FExp
max (kN)

Numerical FNum
max

(kN)

FNum
Fs

FExp
Fs

BW 30.0 1613.4 1730.5 1.07

BW-HC 19.6 1567.5 1690.4 1.08

CW 57.2 1677.9 1780.8 1.06

CW-HC 76.6 1809.2 1870.7 1.03

DW 33.6 1767.6 1747.2 0.99

DW-HC 78.8 1774.2 1910.7 1.08

experimental tests) and secondly due to the different way in simulating the connec-

tion between steel profiles and concrete surrounding.

Nevertheless, the values of the load-bearing capacities of the elements obtained

in the experimental tests [10] and those obtained in the numerical analysis are very

close (1 ÷ 8% difference). Table 3 shows the load-bearing capacities of the test spec-

imens predicted by the FE model in comparison with those from the experiment

(The load-bearing capacity is maximum load obtained in the experimental or in the

numerical corresponding to the displacement of the experimental).
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4.2 Stress Comparison

The stresses of the longitudinal and the steel profile versus applied load from the

FE model for six hybrid test specimens are compared to the experimental ones in

Figs. 8 and 9. Good agreement between numerical and experimental results can be

observed. Again the fact that the reinforcement and the steel profile are embedded in

concrete (full interaction) in the FE model leads to higher stresses in reinforcement

compared to the experimental ones. This observation highlights indeed the tension

stiffening effect which takes place in reinforced concrete elements in tension. As

can be seen from the Fig. 8 for all specimens the bottom layer of longitudinal rebars

(J1 strain gauges pasted at the middle bottom layer of longitudinal rebars) and the

bottom layer of steel profiles were yielded (R1 strain gauge rosettes pasted at the

middle bottom layer of steel profiles). As a result, the load-bearing capacities of the

specimens did not significantly improve when a double number of stirrup were used.

In other words, the specimens were yielded first by flexion (Fig. 7).

For all specimens, the yielding Von Mises stress in the bottom steel encased pro-

file layer was attained at a load of (1400–1500) kN after the yielding stress in the bot-

tom horizontal reinforcement layer attained at a load of (850–1050) kN. The yielding

shear stresses in the bottom steel encased profile layer were attained at total loads

from 1350 to 1450 kN for the BW, CW, DW specimens, the yielding shear stress was

not reached the bottom steel encased profile of the other specimens.

It should be noted that during the experimental tests, the strains at different point

on rebars, on steel profiles, and on concrete were measured using strain gauges and

rosettes. From there, stresses at the locations of the strain gauges are calculated as

follows:

∙ Regarding the strain gauges attached on the rebars, the axial stresses are computed

by the following expressions:

fyk =
{

𝜀Es if 𝜀Es ≤ fy
fy + k(𝜀 − 𝜀c1) if 𝜀Es > fy

with k =
fu − fy

𝜀cu1 − 𝜀c1
(6)

Fig. 7 Rosette description
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Fig. 8 Numerical—experimental comparison of stress at strain gauge J1 location versus applied

load

Fig. 9 Numerical—experimental comparison of stress at rosette R1 location versus applied load

(note: Rosette R1 of specimen CW-HC was failed from 580 kN)

∙ Regarding the rosettes attached on the steel profiles, the principal strains and

stresses are computed by the following expressions:

Maximum principal strain:

𝜀max =
1
2

[

𝜀1 + 𝜀2 +
√

2
{
(𝜀1 − 𝜀3)2 + (𝜀2 − 𝜀3)2

}
]

(7)

Minimum principal strain:

𝜀min =
1
2

[

𝜀1 + 𝜀2 −
√

2
{
(𝜀1 − 𝜀3)2 + (𝜀2 − 𝜀3)2

}
]

(8)



Numerical Analysis of Hybrid Members Using FEM 533

Maximum shear strain:

𝛾max =
√

2
{
(𝜀1 − 𝜀2)2 + (𝜀2 − 𝜀3)2

}
(9)

Maximum principal stress:

𝜎max =
E

1 − 𝜈
2 (𝜀max + 𝜈𝜀min) (10)

Minimum principal stress:

𝜎min =
E

1 − 𝜈
2 (𝜈𝜀max + 𝜀min) (11)

Maximum shear stress:

𝜏max =
E

2(1 + 𝜈)
𝛾max (12)

where: E: Elastic modulus (Young’s modulus); 𝜈: Poisson’s ratio; 𝜀1, 𝜀2, 𝜀3: 1st

strain axis, 2nd strain axis, 3rd strain axis (see Fig. 7). So, Von Mises stress

criterion:

𝜎v =
√

𝜎
2
max + 𝜎

2
min − 𝜎1𝜎2 =

{
𝜎v if 𝜎v ≤ fy
fy if 𝜎v > fy

(13)

∙ The concrete stresses are computed the strains obtained on the strain gauges

attached on surfaces of the concrete specimens by the expressions (1), (2) and

(3) with: Ecm = 22
(
fcm
10

)0.3

.

The yield stress was not reached in the stirrups of the others specimens. This is due

to the fact that a part of the shear force carried by RC wall is transferred to the steel

profile after the concrete cracking. It can be observed that the stresses increased due

to the development of diagonal cracks in the specimens, which intersect the stirrups.

It should be noted that the strain measured in stirrup depends strongly on the crack

pattern. Indeed, if there is a shear crack that goes through the strain gauge position,

the measured strain in this case is much greater than the case without cracks.

4.3 Crack Pattern

Figure 10 illustrates the tensile damage distribution in the concrete at deflection level

60mm. Note that the concrete model adopted for FEM is a continuous model, there-

fore, the cracking cannot be reproduced in the discrete way as can be seen in the

experiment. However, by analyzing the distribution of the tensile damage variable

one can have an idea about the crack pattern at different load level. It can be observed
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Fig. 10 Comparative of crack pattern in the concrete at deflection level 60mm
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that initially the specimens were principally damaged by flexion effect at mid-span

region, after that the concrete “struts” were formed in the regions in between steel

profiles. The concrete struts between upper and middle profiles were more pro-

nounced in BW and BW-HC specimens than the other specimens. It should be noted

that in the FE model of BW and BW-HC specimens the steel profiles were embed-

ded in concrete. That means that full interaction between steel profile and concrete

was assumed. Therefore, the slip is prevented in BW and BW-HC specimens and

that explains why the concrete between upper and middle profiles was more mobi-

lized in tension. In other words, by preventing the slip, the concrete struts are totally

anchored, therefore, the shear effect is more active. It also explains the fact that in

BW and BW-HC specimens the concrete region after the support is not damaged.

In contrast, in other specimens the slip is not prevented, therefore, one can see the

effect of the longitudinal shear which is locally active at the connector location and

that makes the concrete region after the support damaged as can be seen in Fig. 10.

It can be observed in the right part of Fig. 10 and that at 60mm of deflection the

concrete damaged by shear is more pronounced, especially in BW specimen. One

can see clearly the concrete struts in the region at the middle between load point and

support. By regarding the direction of the tensile damaged zone one can say that the

angle of the concrete struts is about 45◦. This numerical observation confirms what

has been observed in the experiment.

The concrete confinement effect can be noticed by comparing the damage zone

of BW specimen with the one of BW-HC specimen. As can be seen, the concrete

is indeed less damaged in the specimens where a double number of stirrups were

placed to make the concrete confinement.

5 Conclusion

A 3D FE model has been developed in Abaqus Software to investigate the nonlin-

ear behavior of hybrid member. The results of the numerical analysis show that some

main behaviors of the studied hybrid member specimens such as load-bearing capac-

ity, relation of load and displacement, strains and stress distribution, crack pattern,

and failure modes predicted by FE model are in good agreement with test results.

The numerical analysis using FEM method by Abaqus software identified the

behavior of the hybrid members while the materials were yielded until failure.

The developed FE model can be eventually used in the future works to perform a

parametric study or to propose a design method on hybrid members.
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Effect of Hyper-Parameters on Deep
Learning Networks in Structural
Engineering

Seunghye Lee, Mehriniso Zokhirova, Tan Tien Nguyen and Jaehong Lee

Abstract Since the first journal article on structural engineering applications of

neural networks (NN) was published, a large number of articles about structural

engineering have been published on these fields. However, over the last decade,

researchers who attempt to apply the neural network concept to structural analy-

sis problems have reduced significantly because of a fundamental limitation. At the

beginning of the new millennium, in a deep learning field, newer methods have been

proposed by using new activation functions, loss functions, alleviating overfitting

methods with hyper-parameters, and other effective methods. Recent advances in

deep learning techniques can provide a more suitable solution to the problem. The

aim of our study is to show effects and differences of newer deep learning techniques

on neural networks of structural analysis topics. A well-known 10-bar truss example

is presented to show condition for neural networks and role of hyper-parameters in

the structures.

Keywords Deep learning ⋅ Structural analysis ⋅ Feedforward neural network

Hyper-parameter

1 Introduction

Deep learning methods are representation-learning methods with multiple process-

ing layers composed of linear and nonlinear transformations [1]. The multiple

processing has a neural network with several layers of nodes between input and

output. While the neural network is a biologically inspired programming paradigm

which enables a computer to learn from observational data, the deep learning is a
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powerful set of techniques for learning in the neural networks. An artificial intel-

ligence (AI), machine learning (ML), and the deep learning (DL) are terms that

are often used interchangeably. The machine learning is often described as a sub-

discipline of the artificial intelligence; the deep learning is a subfield of the machine

learning category.

In the first decades of the twenty-first century, some researchers have made some

fundamental conceptual breakthroughs called the deep learning technique, namely,

a deep belief network (DBN) [2], rectified linear unit (ReLU) [3], and dropout algo-

rithm [4]. Because the deep learning has turned out to be very good at discovering

intricate structures in high-dimensional data, it has resisted the best attempts of the

artificial intelligence community for many years. However, in spite of the fact that

the neural modeling paradigm has been improved to the deep learning by innova-

tive methods, there have been few applications of newer algorithms in the structural

analysis since the first journal article on structural engineering applications of neural

networks (NN) was published [5, 6].

The purpose of our study was to show effects of hyper-parameters on deep learn-

ing networks in structural analysis problems. The state-of-the-art deep learning tech-

niques have been then used to solve a 10-bar planar truss problem. Prior to the analy-

sis, training and test sets are needed for making input and output layers. After fixing

the neural network structures using obtained weight function of each layer, we can

predict the result of specific test sets. The main contribution of this paper is to serve

to lower barriers to apply deep learning techniques in structural engineering topics.

2 Neural Network Architectures

The well-known 10-bar planar truss shown in Fig. 1 is considered to build neural

network architectures [7]. This particular truss problem has been used extensively

in the literature to evaluate optimization algorithms. The objective of the 10-bar

truss problem is to minimize the total weight of the structure while meeting some

constraints. Generally, axial stresses of ten elements and maximum displacements

of node numbers 1 to 4 are used as the constraints for static analysis. The material

density and the modulus of elasticity are 0.1 lb/in
3

(2768.0 kg/m
3
) and 10, 000 ksi

(68, 950 MPa), respectively.

In this study, the cross-sectional areas are used as input of the neural network

architectures and the constraints, namely, axial stresses and nodal displacements are

used for the output layer. Their relationship between design variable and numeri-

cal results can be clarified by using the neural network architecture. After obtaining

their weight functions of the fully connected neural network, we can predict numer-

ical results from specific cross-sectional areas. The training sets generated by a ran-

dom distribution of cross-sectional area design variables ranging from 0.1 to 35.0
in

2
(from 0.6 to 225.8 cm

2
) were used to train the neural network. Note that all of

input data are normalized with respect to the maximum cross-sectional area 35.0 for
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Fig. 1 A 10-bar truss example

regularization. We used 500 training sets randomly; 20% of these sets are used for

test sets.

Figure 2 shows the fully connected neural network architectures for the 10-bar

truss. The ten cross-sectional areas are used in the input layer units. In this example,

only one hidden layer using 20 units is used for two different conditions; one of

them is (10-20-2) architecture, and the other is (10-20-18) architecture. While the

(10-20-2) architecture used two units in the output layer, namely, maximum vertical

displacements of node numbers 1 and 2 (d2 and d4), the whole displacement (four

horizontal and four vertical displacements (d1 to d8)) and stress of each element are

used as output units in the (10-20-18) architecture.

3 Deep Learning Techniques

(1) Activation function

In computational networks, activation or transfer functions establish bounds for the

output of neurons. Many different activation functions have been presented for better

accuracy. Because the activation function can affect the neural networks, choosing

an activation function is an important consideration. Table 1 shows the most com-
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Fig. 2 Neural network architectures for the 10-bar truss problem

Table 1 Various activation functions

Activation function Equation

Logistic (Sigmoid) f (u) = 1
1 + e−u

Hyperbolic tangent (Tanh) f (u) = tanh(u) = eu − e−u
eu + e−u

Softplus f (u) = ln(1 + eu)

Rectified linear units (ReLU) f (u) =

{
0 for u < 0
u for u ≥ 0

mon activation functions and their equations. More recently, the rectified linear unit

(ReLU) [3] or the softplus activation [8] are preferred activation functions.

An appropriate error function should be chosen for each problem type. Table 2

shows the activation and error functions according to the problem types. Because

the 10-bar truss is a simple regression problem, the identity mapping type and the

norm calculation type are pertinent for the activation and error, respectively. In this

study, a mean square error (MSE) function EMSE is used as follows.
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Table 2 Activation and error function types according to problem definitions

Problem type Activation function Error function

Regression Identity mapping Norm

Binary classification Logistic function Maximum likelihood

Multiple category

classification

Softmax function Negative log likelihood

Fig. 3 Training mean

square error for (10−20−2

architecture): comparisons

among various activation

functions. The stochastic

gradient descent (SGD)

(𝜖 = 0.01 and 𝜂 = 0.9) and

500 input sets are used for

the basic neural network

structure. Log scale

EMSE = 1
n

n∑
k

(
yk − tk

)2
(1)

where n contains the number of training elements multiplied by number of output

neurons.

Figure 3 indicates graph of training mean square errors for (10−20−2 architecture)

during comparisons among various activation functions. We trained the basic model

using the logistic sigmoid, hyperbolic tangent (tanh), softplus, and rectified linear

unit (ReLU) functions for 10,000 epochs. According to Fig. 2, the ReLU activa-

tion function outperforms all other functions and achieves the lowest training mean

square loss after 10,000 epochs as shown in Table 1.

(2) Optimizer

Several state-of-the-art algorithms for optimizing deep learning models have been

evolved. In machine learning processes, the learning rate value (𝜖) is an important

factor; when the learning rate is too small, the learning algorithm converges very

slowly, on the contrary, if the value is too large, the network behaves chaotically

and fails to converge. An effective way to determine an optimum learning rate is a

learning rate decay. By using this method, lower learning rate is calculated as the

training progresses.
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Fig. 4 Mean square error

for training set with

(10−20−18) architecture

after 10,000 epochs:

comparisons among various

gradient descent

optimization algorithms in

combination with the

softplus activation function.

Log scale

AdaGrad (adaptive gradient algorithm) [9] stems from this paradigm in stochastic

optimization; that is a learning-theoretic technique for learning rate adaptation which

is given by the square root of sum of squares of the historical, component-wise gradi-

ent. Adadelta [10] is an extension of the AdaGrad that can improve upon the contin-

ual decay of learning rates throughout training and the need for a manually selected

global learning rate. RMSProp [11] is another extension of the AdaGrad in which

the learning rate is adapted for each of the parameters. In this method, the learning

rate is divided by an exponentially decaying average of squared gradients. Adam

(adaptive moment estimation) is a method for efficient stochastic optimization that

only requires first-order gradients with less memory requirement [12]. This method

is designed to combine the advantages of AdaGrad and RMSProp.

Figure 4 shows mean square error tendencies for training set with (10−20−18)

architecture after 10,000 epochs. The softplus activation function is then used.

Throughout the comparison of use of various optimizers, the convergence of the case

which uses the Adam algorithm based on the softplus activation function shows the

minimum loss. After the 4,000th epoch, the combination converges rapidly toward

zero. The Adam might be the best overall choice; however, there is no most effi-

cient method among gradient descent optimization algorithms. Because it depends

on problems and conditions, various optimizers can be selected to obtain the opti-

mum solution.

4 Multilayer Neural Network

So far, we simulated the numerical example of single-layer network. The size and

complexity of a neural network depend on both the total number of neurons and

the number of hidden layers. More layers can handle complex decision and multiple
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Fig. 5 Mean square error

for training set with

(10−20−18),

(10−20−20−18), and

(10−20−20−20−18)

architectures after 10,000

epochs: comparisons among

various number of hidden

layers in combination with

the softplus activation

function and Adam

optimization. Log scale

interactions between parameters. However, because implementations of multilayer

neural networks will demand huge resource, it might not converge toward a feasible

solution. In Fig. 5, the results of mean square error for training set are presented to

compare effects of number of hidden layers. On this occasion, the softplus activation

function and Adam optimization were used; other conditions are same as the previ-

ous examples. We note that the case of two hidden layers, namely, (10−20−20−18)

architecture, achieves the competitive convergence performance.

5 Conclusion

There are many deep learning techniques that are currently in development. How-

ever, the innovative methods have not been used to structural analysis research topics.

This article introduced some deep learning techniques which can directly help guide

structural engineers. We conducted experiments to compare the results of conditions

using various activation functions and optimizers for the networks. For the 10-bar

truss example, the softplus activation function and Adam optimization are effective

in (10-20-18) architecture. Nevertheless, it depends on architectures or complexity

of the examples, hence, the information can be extended to find more effective meth-

ods or conditions for the structures. After fixing the neural network structures using

obtained weight function of each layer, we can predict the result of specific test sets.

The main contribution of this paper is to present some methods for automatically

leading to structural analysis results without any traditional programs.
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DOF Condensation of Thick Curved Beam
Element Formulated by Isogeometric
Approach

Buntara S. Gan, Dinh-Kien Nguyen, Aylie Han
and Sofia W. Alisjahbana

Abstract The study of a thick in-plane curved beam is more complex than that of
the straight beam because the structural deformations of the curved beam depend
not only on the rotation and transverse displacement but also on the coupled tan-
gential displacement caused by the curvature of the structure. The Isogeometric
approach is a computational geometry based on a piecewise ratio function
(Non-Uniform Rational B-Spline (NURBS)) used to represent the exact geometry.
In the Isogeometric approach, the free curvature geometry of the beam element can
be represented exactly. A thick two-node curved beam element can be developed by
using the Isogeometric approach based on Timoshenko beam theory, which allows
the transverse shear deformation and rotatory inertia effects. The natural shape of
the beam curvature and the shape functions formulation of the element can be
formulated by using the Isogeometric approach. However, in the Isogeometric
approach, the number of equations will increase according to the number of degree
of the polynomial and its control points. A novel technique is been proposed to
condense the number of equations of the DOFs at control points so that it is equal to
the standard two-node six DOFs beam element. This paper highlights the appli-
cation of the NURBS for a curved Timoshenko beam element in the context of
finite element analysis and proposes a new condensation method to eliminate the
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drawbacks raised from the Isogeometric approach. Examples are given to verify the
effectiveness of the condensation method in static and free vibration problems.

Keywords Thick curved beam ⋅ Isogeometric approach ⋅ Condensation
Finite element analysis

1 Introduction

For centuries in history, human being has been using the curved-like beams in
sculptures, wheeled vehicles, buildings, bridges, and mechanical tools to obtain
both combinations of strength and artistic aspects. Along with the rapid growth of
the computing technologies, vast element models for the analyses of the thick
curved beam have been proposed by many researchers. Yamada and Ezawa [1]
have compiled a comprehensive study of literatures on the computation methods of
the thick curved beam element. Ashwell and Sabir [2, 3], Babu and Prathap [4], and
Stolarski and Chiang [5] have conducted studies to make a proper choice of element
models for the analysis of the thick curved beam problems.

Recent progress in modeling and design is the integration of the CAD-based
Isogeometric approach into the finite element method which has been brought up by
several authors [6, 7]. The integration of the Isogeometric approach with the finite
element method in the broad range of modeling contexts has become a trendy
subject of numerous papers and many authors have devoted their works to it. Luu
et al. [8] formulated the finite free-form Timoshenko curved beam element. Huynh
et al. [9] analyzed the bending, buckling and free vibration of functionally graded
curved beams with variable curvatures using Isogeometric approach. This paper
implemented the Isogeometric approach in the finite element for solving the thick
curved beam problems.

In the Isogeometric approach, the convergence is usually achieved by using
some refinement strategies such as adaptive, h-, p-, and k-refinements [10] as the
state of the art. We observed that most of the authors who use the Isogeometric
approach, do not have many concerns regarding the increasing number of DOFs at
the control points due to the refinements strategies adopted. Instead of using
refinements strategies, this paper attempted to apply the substructuring method for
reducing the DOF at the control points.

In the finite element analysis, substructuring method has been used to carry out
condensation of complex model such as a complete airplanes, ships, or vehicles.
The traditional static condensation and dynamic condensation is known to be
effective in reducing the DOFs of a beam which has more than two nodes. The
amounts of DOFs of the mid-nodes are “hidden” so that only the DOFs at both ends
of the beam still retained [11–13]. Condensing numerous DOFs to the standard
two-node six DOFs beam element has a lot of benefits for real practices. After the
condensation, the DOFs can be plugged seamlessly into the existing beam finite
element codes.
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In this context, we introduce a combination of static and modified dynamic
condensation methods which can reduce the DOF of the control points to the
standard two-node six DOF thick curved beam element accurately. The validity of
this new condensation technique is demonstrated. Various types of thick curved
beam elements in static and free vibration problems are solved to show the
robustness of the present method.

2 Governing Equations of Thick Beam Element

The horizontal (uP) and vertical (vP) displacements of an arbitrary point P at the
beam cross section can be expressed as

uP = u− rθ− vdφ, vP = v− udφ ð1Þ

where u, v, r, θ, and φ are the respective point P tangential displacement, radial
displacement, radial coordinate, rotation of cross section, and curve angle.

From the theory of elasticity, we can obtain the strain components as

εs =
du
ds

− r
dθ
ds

+
v

RðsÞ , γsr =
dv
ds

− θ+
u

RðsÞ ð2Þ

where s is the tangential coordinate, and 1 ̸RðsÞ is the curvature of the beam
element.

The stress components, then take the form

σs =Eεs =E
du
ds

− r
dθ
ds

+
v

RðsÞ
� �

, τrs =Gγrs =G
dv
ds

− θ+
u

RðsÞ
� �

ð3Þ

where G is the elastic shear modulus of the beam.
The equation of motion is then derived via Hamilton’s principle as follow

δH =
Z t2

t1
δSE − δKE − δWEð Þdt=0 ð4Þ

where δH, δSE, δKE and δWE are the variation of total energy, strain energy,
kinetic energy, and external work of the beam, respectively.

3 NURBS for Thick Beam Element

The geometry of the center line of the thick curved beam elements is constructed by
the x and y coordinates on a plane, by using the NURBS curvature functions. The
path of the curve is measured as the local coordinate ξ. In the Isogeometric
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approach, the coordinate of the geometry of the beam can be represented by using
the NURBS curves as follow,

x= ∑
n

i=0
Si, pðξÞCPxi, y= ∑

n

i=0
Si, pðξÞCPyi, − 1≤ ξ≤ 1 ð5Þ

where

Si, pðξÞ= Ni, pðξÞwi

∑n
j=0 Nj, pðξÞwj

, wi >0

where Ni, pðξÞ, wi, Si, pðξÞ, and CPx ̸y− i are the ith of the pth-order B-Spline basis
functions, weight, the NURBS basis functions, and the associated control points in
x and y coordinates, respectively.

The displacements (u, v) and rotation (θ) of any arbitrary point along the beam
can be calculated from the general nodal displacements of the beam element by
using the NURBS basis functions which are given by

u= ∑
nu

i=0
Si, puðξÞui; v= ∑

nv

i=0
Si, pvðξÞvi; θ= ∑

nθ

i=0
Si, pθðξÞθi ð6Þ

It is worth to be noted that in Isogeometric approach, the nodal displacements
and rotations are treated independently by using each NURBS basis functions.
Thus, they are not coupled in the formulation.

Depending on the degree of polynomial and knot vector (Ξ) being selected, we
need to prepare the corresponding number of control points (CP) required. The
increasing of control points being used to construct the NURBS curve will increase
the number DOFs of the beam as illustrated in Fig. 1. The figure shows the illus-
tration of a three general degree-of-freedom (horizontal, vertical, and rotation) at
each control point between both end nodes of the beam.

The undamped equilibrium equation is obtained by substituting Eq. (6) into the
variational equations of Eq. (4), which results in

Kd−Md ̈− f = 0 ð7Þ

Isogeometric approach DOFs

1pθ +
1pu +

1pv +

2θ 2u

2v

3θ 3u

pθ
pu

pv

1pθ −

1pu −

1pv −

0CP

1CP
2CP

2pCP −

1pCP −

pCP

1θ
1u

1v

3v

2θ 2u
2v

1 2

1θ
1u

1v

Two-node six DOFs

Fig. 1 Schematic illustration of the DOF condensation of thick curved beam element
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where K, M, f, d, and d ̈ are the stiffness matrix, mass matrix, loading vector,
general displacement vector, and general acceleration vector, respectively.

The stiffness matrix is given by

K=

k11 k12 k13
k21 k22 k23
k31 k32 k33

2
64

3
75, where

k11 = ∑
ngu

j=1

EA
J2j

∑
nu

i=0
S1i, puðξjÞ

� �T

∑
nu

i=0
S1i, puðξjÞ

� �

+
κGA

RðξjÞ2
∑
nv

i=0
Si, pvðξjÞ

� �T

∑
nv

i=0
Si, pvðξjÞ

� �
2
66664

3
77775DetðJjÞwj

k12 = k21 = ∑
ngu

j=1

EA
RðξjÞ Jj

∑
nu

i=0
S1i, puðξjÞ

� �T

∑
nv

i=0
Si, pvðξjÞ

� �

−
κGA

RðξjÞ Jj
∑
nu

i=0
Si, puðξjÞ

� �T

∑
nv

i=0
S1i, pvðξjÞ

� �
2
66664

3
77775DetðJjÞwj

k13 = k31 = ∑
ngu

j=1

κGA
RðξjÞ

∑
nu

i=0
Si, puðξjÞ

� �T

∑
nθ

i=0
Si, pθðξjÞ

� �" #
DetðJjÞwj

k22 = ∑
ngv

j=1

κGA
J2j

∑
nv

i=0
S1i, pvðξjÞ

� �T

∑
nv

i=0
S1i, pvðξjÞ

� �

+
EA

RðξjÞ2
∑
nv

i=0
Si, pvðξjÞ

� �T

∑
nv

i=0
Si, pvðξjÞ

� �
2
66664

3
77775DetðJjÞwj

k23 = k32 = ∑
ngv

j=1

κGA
Jj

∑
nv

i=0
S1i, pvðξjÞ

� �T

∑
nθ

i=0
Si, pθðξjÞ

� �" #
DetðJjÞwj

k33 = ∑
ngθ

j=1

EI
J2j

∑
nθ

i=0
S1i, pθðξjÞ

� �T

∑
nθ

i=0
S1i, pθðξjÞ

� �

+ κGA ∑
nθ

i=0
Si, pθðξjÞ

� �T

∑
nθ

i=0
Si, pθðξjÞ

� �
2
66664

3
77775DetðJjÞwj

ð8Þ

where the term S1i, pv shows the first derivative of the NURBS basis function Si, pv
with respect to the ξ coordinate. The parameters C(ξj), Ji, and 1/R(ξj) are the
respective length of segment, Jacobian operator, and the curvature of the ith
NURBS basis functions at the quadrature point j which are given by,
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C ξð Þ=
Zξt = ξ

ξt = − 1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
dx
dξt

� �2

+
dy
dξt

� �2
s

dξt

J =
dC ξð Þ
dξ

=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
dx
dξ

� �2

+
dy
dξ

� �2
s

;
1

R ξð Þ =
dx
dξ

d2y
dξ2

− dy
dξ

d2x
dξ2

��� ���
J3

The mass matrix is given by

M =

m11 0 0

0 m22 0

0 0 m33

2
64

3
75,where

m11 = ∑
ngu

j=1
ρA ∑

nu

i=0
Si, puðξjÞ

� �T

∑
nu

i=0
Si, puðξjÞ

� �" #
DetðJjÞ

m22 = ∑
ngv

j=1
ρA ∑

nv

i=0
Si, pvðξjÞ

� �T

∑
nv

i=0
Si, pvðξjÞ

� �" #
DetðJjÞwj

m33 = ∑
ngθ

j=1
ρI ∑

nθ

i=0
Si, pθðξjÞ

� �T

∑
nθ

i=0
Si, pθðξjÞ

� �" #
DetðJjÞwj

ð9Þ

The loading vector is given by

f =
P
Q
M

8<
:

9=
;+

∑
ngu

j=1
∑
nu

i=0
Si, puðξjÞ

� �
p

� �
DetðJjÞwj

∑
ngv

j=1
∑
nv

i=0
Si, pvðξjÞ

� �
q

� �
DetðJjÞwj

∑
ngθ

j=1
∑
nθ

i=0
Si, pθðξjÞ

� �
m

� �
DetðJjÞwj

8>>>>>>><
>>>>>>>:

9>>>>>>>=
>>>>>>>;

ð10Þ

4 DOF Condensation

The traditional static condensation and dynamic condensation are known to be
effective in reducing the DOFs of a beam which has more than two nodes. The
amounts of DOFs of the mid-nodes are “hidden” so that only the DOFs at both ends
of the beam still retained [11–13].

Although the importance of condensation is not significant in beam problems
because the amounts of DOFs are not vast, condensing DOFs to the standard
two-node six DOFs beam element (Fig. 1) will bring benefits in real practices. First,
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the introduction of NURBS into the design practice will hinder some design
practitioners that are not familiar with the new concept. Second, the condensed
NURBS element codes can be integrated seamlessly into the existing beam finite
element codes.

In the conventional static and dynamic condensation methods, the beam element
matrix is usually partitioned into two sub-matrices consisted of retained and con-
densed parts. Therefore, there are only two simultaneous equations to solve that is a
linear relationship of two unknowns. From where the condensed part will be
eliminated from the equations, hence the modified retained part is used to solve the
beam problems. This concept is very suitable for the NURBS functions where the
DOFs of the mid-nodes are increased when using higher degree of the polynomial.

4.1 Proposed Condensation Method

In present proposed condensation method, the element matrices are breakdown to
three sub-matrix simultaneous equations, where the mid-nodes DOFs are subjected
to condensation. The conventional dynamic condensation is then extended further
by taking the twice derivatives to the free vibration equilibrium equations respected
to time t. Then, we can obtain a relationship between the stiffness matrix k and the
acceleration vector d.̈

4.2 Static Condensation

A static equilibrium of the beam element can be expressed by three simultaneous
equations which is represented in the following matrix form,

k11 k12 k13
k21 k22 k23
k31 k32 k33

2
4

3
5 d1

d2
d3

8<
:

9=
;=

f1
f2
f3

8<
:

9=
; ð11Þ

From Eq. (11), the second equation is solved for d2 as

d2 =k− 1
22 f2 − k21d1 −k23d3ð Þ ð12Þ

Substituting Eq. (12) into the first and third simultaneous equations results in,

k̄11 k̄13
k̄31 k̄33

� �
d1
d3

� 	
= f 1̄

f 3̄

� 	
ð13Þ
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where

k̄11 =k11 −k12k− 1
22 k21; k̄13 = k13 − k12k− 1

22 k23; f 1̄ = f1 −k12k− 1
22 f2

k̄31 =k31 −k32k− 1
22 k21; k̄33 = k33 − k32k− 1

22 k23; f 3̄ = f3 −k32k− 1
22 f2.

4.3 Modified Dynamic Condensation

Similarly, an undamped dynamic equilibrium of the beam element can be expressed
by three simultaneous equations which is represented in the following matrix form,

k11 k12 k13
k21 k22 k23
k31 k32 k33

2
4

3
5 d1

d2
d3

8<
:

9=
;+

m11 m12 m13

m21 m22 m23

m31 m32 m33

2
4

3
5 d1̈

d2̈
d3̈

8<
:

9=
;=

0
0
0

8<
:

9=
; ð14Þ

To relate the displacement d and acceleration d,̈ Eq. (14) is derived two times
with respect to time t, which results in,

k11 k12 k13
k21 k22 k23
k31 k32 k33

2
4

3
5 d1̈

d2̈
d3̈

8<
:

9=
;+

m11 m12 m13

m21 m22 m23

m31 m32 m33

2
4

3
5 ⃜d1

⃜d2
⃜d3

8<
:

9=
;=

0
0
0

8<
:

9=
; ð15Þ

Neglecting the fourth-order derivative terms and solving for d ̈ from the second
matrix equation yield to the following relationship,

d2̈ =k− 1
22 − k21d1̈ − k23d3̈


 � ð16Þ

Substituting Eq. (16) into the second equation of Eq. (14) and solving for d2
result in

d2 = −k− 1
22 k21d1 −k− 1

22 k23d3 − k− 1
22 m21d1̈ −k− 1

22 m23d3̈ ð17Þ

Substituting back Eq. (17) into the first and third equations of Eq. (14) yields to
the following condensed matrix equation,

k̄11 k̄13
k̄31 k̄33

� �
d1
d3

� 	
+

m11 m13

m31 m33

� �
d1̈
d3̈

� 	
=

0
0

� 	
ð18Þ
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where,

m11 =m11 −m12k− 1
22 k21 − k12k− 1

22 m21; m13 =m13 −m12k− 1
22 k23 − k12k− 1

22 m23

m31 =m31 −m32k− 1
22 k21 − k32k− 1

22 m21; m33 =m33 −m32k− 1
22 k23 − k32k− 1

22 m23

m21 =m21 −m22k− 1
22 k21; m23 =m23 −m22k− 1

22 k23.

5 Numerical Examples

In this section, illustrative examples are presented to demonstrate the validity and
novelty of the proposed condensation method. Comparison of the present numerical
results with other works is shown.

5.1 Circular Arch Beam Example

Consider 90° circular thick arch beams with different supports and material prop-
erties as shown in Fig. 2. For solving free vibration problems, we need to divide the
beam element into sub-elements to get several mode shapes and frequencies (ω) of
the vibration.

The degree of polynomial used for the NURBS functions is pu = 3, pv = 3, and
pθ = 3. The constructed twelve DOFs are condensed to the six DOFs beam ele-
ment. Four Gauss integration points are required to integrate the mass matrix.

2

4

 = 4 m
 = 0.01 m
A

I

0.6366 m

R
=

0.6
36

6 m

R
=

0.75 m

R
=

90α = ° 0.7
5 m

R
=

3

70 GPa
= 5/12
= 0.85

 = 2777 kg/m

E
ν
κ
ρ

=

(a) (b)

90

2

4

 = 1 m
 = 0.0016 m
A

I

α = °

Fig. 2 Circular arch beam examples: a Pinned–pinned; b Clamped–clamped supports
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In Fig. 2, a pinned–pinned circular arch beam and a clamped–clamped circular
arch beam are considered. The results of the first ten non-dimensionalized λi are
listed in Tables 1 and 2, respectively. We can observe the very close agreements
between the present approach by using proposed condensation method and those
reported in the references.

Table 1 Non-dimensional frequencies of a pinned–pinned circular curved beam

Mode
i

Non-dimensional frequency λi =ωi αRð Þ2
ffiffiffiffi
ρA
EI

q
Eisenberger and
Efraim [14]

Veletsos and
Austin [15]

Sedaghati and
Esmailzadeh [16]

Present

1 29.280 29.61 29.306 29.280
2 33.305 33.01 33.243 33.306
3 67.124 67.24 67.123 67.131
4 79.971 79.60 79.950 79.977
5 107.851 107.7 107.844 107.880
6 143.618 144.5 143.679 143.670
7 156.666 155.2 156.629 156.720
8 190.477 191.3 190.596 190.635
9 225.361 223.7 225.349 225.460
10 234.524 235.3 234.809 234.825

Table 2 Non-dimensional frequencies of a clamped–clamped circular curved beam

Mode
i

Non-dimensional frequency λi =ωi αRð Þ2
ffiffiffiffi
ρA
EI

q
Eisenberger and
Efraim [14]

Veletsos and
Austin [15]

Sedaghati and
Esmailzadeh [16]

Present

1 36.703 36.81 36.657 36.703
2 42.264 42.44 42.289 42.264
3 82.233 82.50 82.228 82.243
4 84.491 84.30 84.471 84.495
5 122.305 122.5 122.298 122.341
6 154.945 155.1 154.998 154.990
7 168.203 167.7 168.174 168.271
8 204.472 – 204.599 204.642
9 238.992 – 238.973 239.088
10 249.011 249.6 249.320 249.326
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5.2 Typical Curved Beam Example

Consider typical parabolic with pinned–pinned supports, elliptic with pinned–
clamped and sinusoidal with clamped–clamped curved beams and their material
properties as shown in Fig. 3 for free vibration examples.

The non-dimensional equation of the typical curved beams is given as

Parabolic curve y= h 1+ ξð Þð1− ξÞ, − 1≤ ξ≤ +1

where, ξ=2x ̸L− 1

Elliptical curve y= b2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1− 1−

ξ+1− b1Cos að Þ½ �
4b1

� 	2
s

− b2Sin að Þ, − 1≤ ξ≤ +1

where, ξ= 2x ̸L− 1ð Þ, b1 = ε+0.5, a= π −Cos− 1 0.5 ̸b1ð Þ, b2 = h ̸ 1− SinðaÞ½ �

Sinusoidal curve y= h− c1 + c1Sin c2
ξ+1
4

� �
+ εc2

� �
, − 1≤ ξ≤ +1

where, ξ= 2x ̸L− 1ð Þ, c2 =
π

1+ 2ε
, c1 =

h
1− Sin εc2ð Þ½ �

The beam is divided into twenty sub-elements to get several mode shapes and
frequencies (ω) of the vibration. Four Gauss integration points are necessary to
integrate the mass matrix. The degree of polynomial used in the NURBS functions is
pu = 3, pv = 3, and pθ = 3. The constructed twelve DOFs are condensed to the six
DOFs beam element. The arch rise to the span length ratio is defined by f = h/L. The
slenderness ratio is defined as SR =L ̸

ffiffiffiffiffiffiffiffi
A ̸I

p
.

For the parabolic curved beam free vibration analysis, f = 0.3, SR = 75, and
κG/E = 0.3 are defined. For the elliptic curved beam free vibration analysis,
f = 0.2, SR = 50, ε = 0.5, and κG/E = 0.3 are defined. For the elliptic curved beam
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Fig. 3 Typical curved beam examples: parabolic, elliptic, and sinusoid
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free vibration analysis, f = 0.1, SR = 100, ε = 0.5, and κG/E = 0.3 are defined.
The results of the first ten non-dimensionalized λi are listed in Tables 3, 4, and 5,
respectively. As an overall remark, we can observe very close agreements between
the present proposed method and those reported in the references.

5.3 Free Curved Beam Example

Consider a spring-shape curved cantilever beam subjected to horizontal loading
P = 15 kN at the free end of the structure (Fig. 4). The material properties of the
beam are shown in the figure. The static and free vibration analyses were
conducted.

Table 3 Non-dimensional frequencies of parabolic curved beam

Mode i λi
Veletsos and Austin [15] Yang et al. [16] Luu et al. [8] Present

1 21.83 21.759 21.759 21.758
2 56.00 55.493 55.493 55.501
3 102.3 100.701 100.701 100.788
4 113.4 113.302 113.302 113.414
5 – – 157.168 157.539
6 – – 208.969 209.360
7 – – 224.470 225.469
8 – – 294.916 297.429
9 – – 375.630 380.817
10 – – 411.114 413.366

Table 4 Non-dimensional frequencies of elliptic curved beam

Mode i λi
Veletsos and Austin [15] Yang et al. [16] Luu et al. [8] Present

1 35.25 34.892 34.900 34.896
2 57.11 56.766 56.778 56.780
3 83.00 81.420 81.513 81.498
4 128.2 124.288 124.898 124.565
5 – – 155.629 155.720
6 – – 189.888 187.349
7 – – 264.924 254.530
8 – – 291.999 292.712
9 – – 364.547 328.191
10 – – 432.310 404.479
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Four Gauss integration points are used to integrate the stiffness and mass
matrices. The degree of polynomial used in the NURBS functions is pu = 3,
pv = 3, and pθ = 3. The beam is modeled by using only one element. The con-
structed twelve DOFs are condensed to the six DOFs beam element. The knot
vector is given as Ξ= − 1 − 1 − 1 − 1 1 1 1 1½ �.

The control points and their corresponding weight are given in Table 6. The
results of computed vertical displacement and the first three natural frequencies are
given in Table 7. The present numerical results solutions are provided as a
benchmark for future reference solution, since no other reported works available for
comparison.

15 kN
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4 4
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=

×

3mL =

m
ax
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91
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2m
H

=

: Beam line

Fig. 4 Spring-shape curved cantilever beam example

Table 5 Non-dimensional frequencies of sinusoidal curved beam

Mode i λi
Veletsos and Austin [15] Yang et al. [16] Present

1 56.30 56.083 56.088
2 66.14 66.047 66.068
3 114.3 113.406 113.464
4 181.7 179.264 179.490
5 – – 264.874
6 – – 311.424
7 – – 363.879
8 – – 473.102
9 – – 595.667
10 – – 619.024
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6 Concluding Remarks

A thick curved beam element condensed DOF formulation is developed by using
the Isogeometric approach and used to evaluate the vibration behaviors of various
curved beam structures. The efficiency and accuracy of the proposed modified
condensation method are verified by numerical examples. From the numerical
results, the following concluding remarks can be drawn,

a. The present proposed condensation method yields to accurate natural frequen-
cies of the thick curved beam elements, accordingly perfect stiffness and mass
matrices of a two-node six-DOF beam element. Therefore, the condensed
matrices can be used for dynamic problems absolutely.

b. No refinement strategies in the Isogeometric approach are necessary to be
adopted. The conventional sub-division element procedure can be applied, since
the beam DOF has been condensed to the two-node six-DOF beam element.

c. The “hidden” DOF after being condensed can be retrieved back completely by
using Eq. (12) for the static problems and Eqs. (16) and (17) for the free
vibration and dynamic problems.

Table 6 Input data for the
spring-shape curved
cantilever beam

CPxi CPyi wi

0.00 0.00 1
1.50 0.00 1
1.50 2.00 1
0.50 2.00 1
0.50 0.00 1
2.50 0.00 1
2.50 2.00 1
1.50 2.00 1
1.50 0.00 1
3.00 0.00 1

Table 7 Result of static and
free vibration analyses of a
spring-shape curved beam

Static analysis Horizontal displacement at the free
end u = 1.0554 mm, Vertical
displacement at the free end
v = −0.2877 mm, Rotational
displacement at the free end
θ = 0.0011 radians

Free vibration mode i 1 2 3
ωi (rad/s) 234.6 1186.9 5438.2
Eigenvector 0.9774 0.2785 −0.0494

−0.2422 −0.7568 0.1717
1.0000 1.0000 −1.0000
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d. This new condensation technique is bridging the curves created by CAD, then
solved by the state-of-the-art finite element analysis software, because the
condensed Isogeometric DOFs beam element yields to the conventional
two-node six-DOF beam element library.
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Airline Company’s Cost Subjected
to Passengers’ Demand: Formulation
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V. H. Nguyen, M. Ehsaei, J. Creedon, G. Sanjabi and D. T. Nguyen

Abstract A new formulation which addresses a new/specific/practical problem
facing the airline industry, such as “Optimal Airplanes’ Paths For Minimizing
Airline Company’s Cost Subjected to Passengers’ Demand”, is presented in this
paper. If the flying paths are explicitly used as unknown variables, then one has to
deal with a very large number of unknown variables. To avoid such bottlenecks, our
proposed approach consists of finding which city-pair flight legs are flown and how
many times the optimum flight paths will use these flight legs. With this obtained
information, the optimum flight paths can be obtained by a post-processing phase!
The mentioned “Optimal Airplanes’ Paths” problem can be formulated as a
nonlinear integer programming (NLIP) problem. Numerical results are also
included in this paper to validate the proposed NLIP formulation.
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1 Introduction

Air transportation plays an essential role in transportation and economic develop-
ment. Despite the steadily growing in passenger demands, airline companies have
been faced with thin profit margins, especially after the United States Airline
Deregulation Act in 1978 which allows airlines to select their network, choose
which markets (origin and destination pairs) to serve, determine the frequency of
service to provide in each market as well as their fare [1]. To be profitable in the
extremely competitive environment, airline companies have to efficiently develop
their operations planning which includes schedule design, fleet assignment, aircraft
routing, and crew scheduling. In schedule design, the target is to generate an
efficient schedule which offers the high potential revenue. To do that, the airline
company must determine their set of flights, which should be operated, the specific
origin and destination cities as well as departure and arrival times. The schedule
design is based on the market demand forecasts, available aircraft operating char-
acteristics, available workforce, regulations, and the behavior of competing airlines.
Following the schedule design, the fleet assignment is the next step to determine
right fleet to support the scheduled flights. Based on fleet capabilities, availabilities,
operational costs, and potential revenues, aircraft is assigned to flight segments in a
schedule to optimize some objective function and meet various operation con-
straints [2]. Then, the aircraft routing assigns each individual aircraft within each
fleet to flight legs to maximize the revenue or minimizing operating cost while
satisfying maintenance requirements. Finally, the crew scheduling problem, like
aircraft routing, is normally performed after the fleet assignment process to con-
struct a minimum cost set of crew rotations or pairings [3]. In recognition of the
importance of airline operation planning to minimize the operation cost and max-
imizing profits, many researchers in both air industry and academics have already
been seriously working on this problem.

Abara [2] formulated an integer linear programming model to solve the fleet
assignment problem. Sherali et al. [4] presented a tutorial on the basic and enhanced
models and approaches that have been developed for the fleet assignment problem.
Bartholomew-Biggs et al. [5] described a global optimization problem which arises
in the calculation of flight paths and discussed the performance of a number of
recently proposed solution algorithms when applied to some demonstration exam-
ples. Papadakos [6] presented several integrated models for the optimization of
airline scheduling and solved them by applying an enhanced Benders decomposition
method combined with accelerated column generation. Belanger et al. [7] proposed a
nonlinear integer model for the periodic fleet assignment problem with time windows
in which departure times are also determined and developed new branch-and-bound
strategies which are embedded in their branch-and-price solution strategy.

In this paper, different issues and practical constraints that need to be addressed by
airline companies are discussed and formulated as a nonlinear integer programming
(NLIP) problem. Section 2 presents a new integrated model for the optimization of
airline scheduling. Each airline company has the set of potential markets
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(origin-destination pairs of cities) to operate. The target of this section is to assign
aircrafts to serve for one or several markets and choose their original departure city as
well as optimal route [8, 9]. While determining which aircraft departs in which city
and serves which market, the flight path of the aircraft is also optimized to minimize
the total operation cost and to satisfy the customer demand and airline constraints
(e.g. aircraft need to return to the city that it departed at the end of day to be
maintained overnight and to repeat its same operations on the next day). In Sect. 3,
definitions of some known (and unknown) variables are given. A mixed NLIP
mathematical formulation with the objective and constraint functions is explained in
Sect. 4. Due to the complexity of the investigated problem [10, 11, 12], a small-scale
example is used in Sect. 5. This example validates our proposed formulation to make
sure that the proposed formulation provides the correct optimal solution or at least the
near-optimal solution. This can be further verified by “eyes-observation” solution.
Conclusion and future works are summarized in Sect. 6.

2 Problem Definition

Specifically, this investigation will address the issues that commonly faced by the
commercial aircraft industry, which can be described as following:

“Knowing a particular airline company’s total number of available airplanes and
the passengers’ travel demand matrix” from certain ith original cities to other
certain jth destination cities, how can we make decisions on:

• Which aircraft (AC) and what type of AC should be originally parked at which
city airport?

• How to compute the optimal (or near-optimal) path for each aircraft for mini-
mizing the airline company’s cost, subject to realistic constraints, such as sat-
isfying passengers’ travel demand matrix, and every AC must return to the same
city airport (where it was originally parked) within 24 h, so that the AC oper-
ations can be repeated on the next day?

To facilitate the discussion (formulation and solution) for the remaining of this
study, the following specific data/example is used (say, for 6 city-airports), as
shown in Table 1:

Table 1 Passengers’ demand matrix data

C1 = ATL C2 = ORD C3 = LAX C4 = DFW C5 = PHX C6 = DEN

C1 = ATL 0 600 persons 800 0 700 persons 0

C2 = ORD 600 0 0 1100 0 800

C3 = LAX 800 0 0 0 600 1200

C4 = DFW 0 1100 0 0 900 0

C5 = PHX 700 0 600 900 0 800

C6 = DEN 0 800 1200 0 800 0
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To simplify the discussion, we assume all cities’ airports have the earliest flight
started at 6:00 am (say, Eastern Time). The distances between each city-pair are
known, as shown in Table 2.

We assume two types of AC are available: AC type I and AC type II. Each of
these AC types has known attributes, such as:

(a) Number of passenger seats available
(b) Maximum operational range (the longest distance it can fly without refueling

gasoline)
(c) Cost/hour to operate, AC operation cost $/hr per AC
(d) Cost per day to pay off the purchase price
(e) Cruise velocity (in miles/hours)
(f) Kg fuel/hour used while in flight
(g) It is assumed that the turn-around (waiting) time at any airport and for any AC

type is 1 h (time between arriving and leaving on a subsequent flight).

For the above-given data, shown in Tables 1 and 2 (including the known
attributes for two different AC types), one would like to find the “optimal airline
paths for minimizing airline company’s cost subject to passengers’ (and other
realistic) constraints”. Although both formulation and numerical examples are
discussed/presented in this study, the focus of this research has been placed on the
formulation itself.

Table 2 Distances between six cities (miles) [13]

C1 = ATL C2 = ORD C3 = LAX C4 = DFW C5 = PHX C6 = DEN

C1 = ATL 0 607 1944 731 1586 1198

C2 = ORD 0 1743 803 1439 887

C3 = LAX 0 1234 370 862

C4 = DFW 0 867 642

C5 = PHX 0 602

C6 = DEN 0

Table 3 Aircraft attributes/features

Number
of seats
(two
classes)

Empty
weight
(lb)

Maximum
take-off
weight (lb)

Maximum
range of
operation
(miles)

Fuel can
take
(gallons)

Fuel
cost
(US $)

Fuel
consumption
per flying
hour (kg/hr)

Average
Burn
rate ($
per hr)

Cruise
velocity
(mile/hr)
(km/hr)

Boeing
747
(747–
400)

524 372,250 870,000 8,350 53,765 59,142 14400 13,380 570
(920)
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3 Definitions of Notations and Variables
Used in this Study

The following variables and remarks are defined/provided:

(a) M is the set of markets—origin–destination pairs of cities which have pas-
senger’s demands larger than zero.

(b) J is set of flight legs. A flight leg is basically a direct flight from one city to
another city.

(c) Remarks:

• The # legs are always greater than (or equal to) the # markets.
• For a 6 city-airports Point-to-Point network example (Table 2) with every

city connected to all remaining cities (hence number of legs = 30), we may
have only 18 markets (Table 1), and 18 origin–destination pairs of cities
have the number of passenger’s demand larger than zero.

(d) Nm is the number of passengers in market m

• For example: City 1 → city 3 is a market, and Nm = 800 passengers’
demand to travel from city 1 to city 3 [see Table 1].

(e) Cin (c) is the set of flight legs go into city c.
(f) Cout (c) is the set of flight legs go out from city c

• c = 1, …, number of cities.

(g) Cai is the capacity of aircraft i.
(h) Integer variable Xij represents AC # i, flies over leg # j. Value for Xij = 0, 1, 2,

3, etc.

• 0 means AC # i does not fly over leg # j
• 1 means AC # i does fly over leg # j ONCE
• …

• 5 means AC # i does fly over leg # j FIVE TIMES

(i) Ri is the range of aircraft i.
(j) Lj is distance of leg j.
(k) Integer variable Pamij: the number of passengers from market m using the

aircraft i on flight leg j, the value of Pamij ε [0; Nm].
(l) Yip is a binary variable, has the value 1 if aircraft i originally parks at city p and

0 otherwise.
(m) Integer variable Zijk shows the number of passengers using the aircraft i over

leg j at time flight number k, the value of Zijkε ½0;Cai�. K ε [0; K], K is the
maximum number of times AC i flies over leg j.
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4 Objective and Constraint Functions

The objective function is to minimize the total operation cost, which can be defined
as:

Total operation cost = ∑I
i=1 ½∑J

j=1 fXij * (time = length of leg j
velocity of AC i) * (ACi operation

cost/hour + fuel consumption cost/hour)} + waiting cost at each stop *

∑J
j=1 Xij

n o
− 1

� �
].

There are several constraints that need to be properly applied on the proposed
formulation, which are defined in the next sections.

4.1 Constraints to Show the Relationship Between
Cities and Flight Legs

∑
j∈CinðcÞ

Xij = ∑
j∈CoutðcÞ

Xij ð1Þ

Constraint (1) is the balance constraint:
The number of flight legs into city number c equals to the number of flight legs

out from city number c.
where

• i = 1, …, I: AC number
• j is the flight leg j
• c represents the city # (could be any number between 1 – # cities) (Fig. 1).

C2

C1

C5

C3

C6

C4

7
th

1
st

4
th

5
th

2
nd

3
rd

6
th

Fig. 1 A possible optimal flight path for AC i, originally parked at airport-city 1
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4.2 Constraint for the Total Time Flights

∑
J

j=1
Xij*

length of leg j
velocity of i

� �� �
+ ∑

J

j=1
Xij

" #
− 1

 !
*waiting time at airport≤ 24 hrs

ð2Þ

Notes: Xij = # of times AC # i flies over leg # j, and Xij may have any of the
following values

Xij = 0, 1, 2, 3, 4, 5

4.3 Constraint for Customers’ Travel Demand

Pamij ≤Nm ∀m∈M; j=1, .., J; i=1, .., I ð3Þ

Constraint 3 presents that the number of passengers in market “m”, using AC “i”,
and flies over leg “j” must smaller or equal the total number of passenger in market
m. In the definition, market m is an origin–destination pair (O-D).

4.4 Constraints on Number of Passengers Flying
into (Out from) the Original City

∑
j∈CoutðOÞ

∑
I

i=1
Pamij = Nm ð4Þ

∑
j∈CinðOÞ

∑
I

i=1
Pamij = 0 ð5Þ

Constraints (4) and (5) state that the total number of customer in an individual
market m using the aircrafts that fly on the legs out from O, the original city of
market m, must equal the total customer demand of market m. Because the cus-
tomers in market m want to fly from the city O to the city D, the total number of
customers in an individual market m using the aircrafts that fly on the legs into O
must be equal 0.
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4.5 Constraints on Number of Passengers Flying
into (Out from) the Destination City

∑
j∈CinðDÞ

∑
I

i=1
Pamij = Nm ð6Þ

∑
j∈CoutðDÞ

∑
I

i=1
Pamij = 0 ð7Þ

Constraints (6) and (7) show that the total number of customers in individual
market m using the aircrafts that fly on the legs into D, the destination city of market
m, must be equal the total customer demand of market m. When the customers in
market m reach the destination (D), they do not need to use the services anymore;
therefore, the total number of customers in individual market m using the aircrafts
that fly on the legs out from D must be equal 0.

Figure 2 is an example to illustrate how to apply Eqs. (4)–(7):

Nm = Passengers in market “m” = say, 700 passengers corresponding to O-D pair
of cities c1 − c5
O = city 1; D = city 5; c = any “intermediate” city, EXCEPT city 1 & city

∑j∈CoutðC1Þ ∑
I
i=1 Pamij =Nm ⇒Pam11 +Pam32 +Pam24 +Pam55 = 700

∑j∈CinðC1Þ ∑
I
i=1 Pamij =0 ⇒ Pam36 = 0

∑j∈CinðC5Þ ∑
I
i=1 PamijjXij ≠ 0 =Nm = say 700 passengers arrive “in” to destination

city

∑j∈CoutðC5Þ ∑
I
i=1 ∑Pamij =0 ⇒ no passenger comes “out” after all 700 pas-

sengers arrived at their destination city!

City 
#... 

City 
#... 

Origin 
City #1 

City 
#... 

City 
#... 

City 
#... 

Destination 
City #5 

City 
#... 

City 
#... 

m, ,  represent different markets 

Fig. 2 Number of passengers flying into (out from) the original city
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4.6 Constraints on Number of Passengers Flying
into (Out from) the “Intermediate” City

∑
j∈CoutðcÞ

∑
I

i=1
Pamij = ∑

j∈CinðcÞ
∑
I

i=1
Pamij ð8Þ

∑
j∈CoutðcÞ

∑
I

i=1
Pamij ≤ Nm ð9Þ

where c are “intermediate” cities, the cities that are different with origin–desti-
nation (O-D) of market m.

Constraint (8) is the customer balance constraint for intermediate cities c: The
total of customers in market m using the aircrafts that fly on the legs out from
c must be equal the total of customers in market m using the aircrafts that fly on the
legs into c.

Constraint (9) states that the total number of passengers in market m using ACs
that fly over legs that are out from c must be smaller or equal the total number of
passenger demand of market m.

In Fig. 3, we define:
c = any “intermediate” city, EXCEPT the original and destination cities

(corresponding to the market m).
Using a 6 city-airports example, assuming a particular market “m” (that has, say

800 passengers who want to fly from city # 1 to city # 3). Thus, in this case, original
city = city # 1 and destination city = city # 3. Also assuming a portion of the
(optimum) fly path is C1-C5-C4-C3 (where C1-C5 = say, leg # j = 1;
C5-C4 = say, leg # j = 7; C6-C5 = say, leg # j = 6; etc.). Thus, c = C5, C4.
Then, at city “c” = C5, we may have:

Pa(m, i = 2, j = 7) = say, 800 passengers “out” from city # 5, and
Pa(m, i = 1, j = 1) = 500 + Pa(m, i = 3, j = 6) = 300passengers “in” to city # 5.

City 1 = 
Origin 

City 6 

City 5 

City 3 = 
Destination  

City 4 

City 2 
Pa(m,1,1) 
= 500 

Pa(m,3,6) 
= 300

Pa(m,2,7) = 800 ≤  Nm
If Nm = 800  :  OK
If Nm = 700  : not OK  
[see constraint (9)]

Fig. 3 Number of passengers flying into (out from) an “intermediate” city
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4.7 Constraint on Aircraft Capacity

∑
M

m=1
Pamij ≤Xij*Cai i=1, .., I; j=1, .., J ð10Þ

The number of passengers from ALL markets, on AC # i, flights over leg #
j (could be multiple times over leg # j) should not exceed (capacity of AC # i)*(#
times fly over leg # j).

As an example, AC # i’s capacity = 300 passenger seats, flying over leg #
j THREE times [hence X(i, j) = 3] from all markets M. There were 100, 300, and
250 passengers fly over leg # j in the first, second, and third time, respectively.
Then, the above (capacity) constraint is (CORRECTLY) satisfied, because:
(100 + 300 + 250 = 650) ≤ (3 * 300 = 900)

However, if there were 100, 350, and 250 passengers fly over leg # j in the 1-st,
2-nd, and 3-rd time, respectively. Then, the above (capacity) constraint is
(WRONGLY) satisfied, because (100+350+250=700) ≤ (3 * 300=900), because
for the 2-nd time fly over leg # j, there were 350 passengers, which is EXCEEDING
the AC’s seat capacity of 300 passengers. This (potential) problem can be resolved
by introducing the new variables Zijk and the associated constraints # 15-# 17!

4.8 Constraints to Show the Relationship Between
Variables Xij and Pamij

1−Xij
� 	

*Pamij ≤ 0 ð11Þ

This constraint indicates that:
If aircraft i flies over leg j or Xij ≠ 0, then the number of passengers of market m

using the aircraft i on flight leg j, Pamij‚ can be 0 or non-zero. In other words,
aircraft i may or may not carry customers of market m when it flies over flight leg j.

If Xij =0, then the above constraint becomes Pamij ≤ 0; since Pamij cannot be
NEGATIVE, therefore, Pamij =0 or if aircraft i not fly over leg j, it obviously
cannot carry any customer of market m on flight leg j.

Say Nm =800=N1 =N2

If Xij ≠ 0 ⇔ AC i flies over leg j ⇒ (1 – Xij) * Pamij ≤ 0 will be always
satisfied

1−X11ð Þ Pa211 = 800ð Þ≤ 0 will be satisfied
If Xij =0 and Pa211 = 800 ⇒ 1−Xij

� 	
* Pamij XXXX 0 ⇒ This case makes no

sense. Thus, this constraint prevents this nonsense case from happening.

1− 0ð Þ Pa211 = 800ð Þ≤ 0 will not be satisfied.
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4.9 Constraint on Aircraft Operational Range

Xij* Lj −Ri
� 	

≤ 0 ð12Þ

The above linear constraint indicates that:

• If Xij =0 (the AC # i not flying on leg # j), then the range (Ri) of ACi can be
either larger than or smaller than the distance of leg # j.

• If Xij ≠ 0 (such as Xij = 1, 2, 3, 4, or 5), then the AC # i flying on leg # j, then the
range (Ri) of ACi must be larger than the distance of leg # j.

4.10 Constraint on Variable Yip

Yip 1− ∑j∈Cout originally parking cityð Þ Xij

� �
≤ 0 ð13Þ

Constraint (13) shows the relationship between original parking city and its
out-going flight legs: The above constraint is always satisfied when Yip = 0 = AC
i, originally not parked at city # p (see Fig. 4).

If Yip =1, then the above constraint is only true when:

• ∑j∈CoutðoriginallyparkingcityÞ Xij ≥ 1
• X11 +X12 +X13 ≥ 1
• ð0→ 5Þ+ ð0→ 5Þ+ ð0→ 5Þ≥ 1

This constraint prevents nonsense case where X11 =X12 =X13 = 0
Notes:

• Xij = # times AC # “i” flies over leg “j”
• =1, 2, 3, 4, 5; if flying over leg “j” once (or more time)
• = 0; if not flying over leg “j” (Fig. 4).

∑
#of cities

p=1
Yip =1 ð14Þ

Original 
Parking City 
for AC # i=1

City 2

City 3

City 4

Leg j=1, 

Leg j=2, 

Leg j=3, 

Fig. 4 Relationship between
original parking city and its
out-going flight legs

Optimal Airplanes’ Paths For Minimizing Airline Company’s … 571



Constraint (14) show that each aircraft originally can only park at one city. The
above constraint will make sure that the same AC # i cannot originally park in more
than one cities!

4.11 Constraints Show the Relationship Between
Variables Z and Ca

Zijk ≤Cai ð15Þ

Constraint (15) makes sure that the total number of passengers using the aircraft
i fly over leg j at time flight number k always is smaller than or equal to that
capacity of aircraft i.

4.12 Constraints Show the Relationship Between
Variables Pa and Z

∑
M

m=1
Pamij = ∑

K

k=1
Zijk ð16Þ

The total number of customers from all markets using aircraft i that fly over leg
j always equal the number of passenger that the aircraft i carries over leg j at total
time flight number k

For example:
Aircraft i fly over legs j and carries 200 customers of market m, 300 customers of

market m’, and 500 customers of market m: Pamij =200, Pam0ij =300, Pamij =500
Aircraft i flies over leg j three times (k = 1, 2, 3): Zij1, Zij2, Zij3
Then Eq. (16) is written as Pamij +Pam0ij +Pamij = Zij1 + Zij2 + Zij3

4.13 Constraint to Show the Relationship Between
Variables Z and X

k−Xij
� 	

*Zijk ≤ 0 k= 1, 2, . . . , K ð17Þ

If Xij = 0, then Zijk = 0, or if aircraft i does not fly over leg j, the number of
passenger using the aircraft i over leg j at time flight number k (k = 1, 2, …, K)
obviously must be 0.

If Xij ≠ 0 && k ≤ Xij, Zijk can be 0 or ≠ 0, and if aircraft i flies over leg j and
the time flight number k smaller than the total number time AC i flies over leg j,
then the number of passengers using the aircraft i over leg j at time flight number k
(k = 1, 2, …, K) can be larger than or equal to 0.
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If Xij ≠ 0 && k > Xij, Zijk = 0 or if aircraft i fly over leg j, at the time flight
number k that is bigger than the total number time AC i fly over leg j, the number of
passenger using the aircraft i equal to 0.

5 Numerical Verification by Numerical Example

The formulation presented in Sect. 4 can be solved by general purpose NLP
(nonlinear programming) algorithm/solver, with INTEGER variables.
Since MATLAB built-in functions for handling NLIP problems are not robust/
reliable, a differential evolution (DE) optimization code has also been developed
based on the presented formulation. It should be noted here that NLIP solvers are
not the focus of this study. To verify the correctness of the formulation that has
been explained in the previews sections, a small example whose optimal solution
can be obtained by “eye-observation” can also be found by the DE code.

Problem statement is presented in Table 4. Even though this example has only
three cities and six legs, it contains 63 variables and 193 constraints. Only one
aircraft has been considered for this example. To be realistic, Boeing 747 (747–400)
data has been used for this example. The related data is shown in Table 3.

It has been estimated that the total cost, which includes fuel cost, operating cost,
crew cost, and other expenses, for Boeing 747 (747–400) [14] is 25,500 dollars per
hour of operation, which is considered in the following examples. Also, it has been
assumed that the waiting cost of the aircraft in each transshipment city is $30.

5.1 Numerical Example/Solution Obtained
by “Eye-Observation”

A feasible solution by “eye-observation” is shown in Fig. 5.
Notation: (f) Market m means f-th flight, transport customers of market m

Table 4 Example input data

Origin Destination Leg # Distance (miles) Market ID Demand

1 2 1 300 1 300
2 1 2 300 2 150
2 3 3 500 3 300
3 2 4 500 4 400
3 1 5 450 5 200
1 3 6 450 6 300
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Y11 = 1=Air−Craft 1 originally parked inAirport−City 1, Y12 = 0, Y13 = 0
Pa111 = 300, Pa212 = 150, Pa611 = 200, Pa313 = 300
Pa515 = 100, Pa616 = 100, Pa414 = 400, Pa514 = 100
Pa512 = 100, Pa613 = 200
X11 = 2, X12 = 2, X13 = 1, X14 = 1, X15 = 1, X16 = 1

Objective function = Cost = $138,894.21
An optimal feasible solution by “eye-observation” is shown in Fig. 6.

Y11 = 1, Y12 = 0, Y13 = 0,
Pa111 = 300, Pa611 = 200, Pa613 = 200, Pa313 = 300
Pa414 = 400, Pa212 = 150, Pa616 = 100, Pa515 = 200
X11 = 1, X12 = 1, X13 = 1, X14 = 1, X15 = 1, X16 = 1

Optimal Objective function = Cost = $111,992.11

City 1
City 2

City 3

(1) Market 1

(2) Market 2

(3) Market 6

(8) Market 5

Fig. 5 Feasible solution by eye-observation

City 1

City 3

City 2
(1) Market 1, 6

(4) Market 2

Fig. 6 Optimum solution by eye-observation
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5.2 Numerical Example/Solution Obtained by the DE Code

The authors have initially attempted to solve the formulated NLIP problem, using
MATLAB built-in NLIP solvers. These initial efforts have failed, due to the
un-reliable (non-robust) MATLAB NLIP solvers. Using the authors’ self-developed
DE optimizer, with “randomly” generated the initial populations, the same optimal
objective function (as compared to optimal solution by “eye-observation”) can
be observed in all four computer runs, as shown below:

1st Computer Run
Objective function = 1.1199e + 05

Pa111 = 296, Pa114 = 4, Pa116 = 4
Pa212 = 119, Pa213 = 31, Pa215 = 31
Pa313 = 300, Pa414 = 400
Pa512 = 58, Pa514 = 58, Pa515 = 142
Pa611 = 3, Pa613 = 3, Pa616 = 297,
X11 = 1, X12 = 1, X13 = 1, X14 = 1, X15 = 1, X16 = 1,
Y11 = 1
Z111 = 299, Z121 = 177, Z131 = 334, Z141 = 462, Z151 = 173, Z161 = 301

2nd Computer Run
Objective function = 1.1199e + 05

Pa111 = 227, Pa114 = 73, Pa116 = 73
Pa212 = 120, Pa213 = 30, Pa215 = 30,
Pa312 = 25, Pa313 = 275, Pa316 = 25,
Pa411 = 88, Pa414 = 312, Pa415 = 88
Pa515 = 200, Pa616 = 300
X11 = 1,X12 = 1,X13 = 1,X14 = 1,X15 = 1,X16 = 1,
Y11 = 1
Z111 = 315, Z121 = 145, Z131 = 305, Z141 = 385, Z151 = 318, Z161 = 398

3rd Computer Run
Objective function = 1.1199e + 05

Pa111 = 300,Pa212 = 150,Pa313 = 300
Pa414 = 400,Pa515 = 200
Pa611 = 200,Pa613 = 200,Pa616 = 100
X11 = 1,X12 = 1,X13 = 1,X14 = 1,X15 = 1,X16 = 1,
Y11 = 1
Z111 = 500, Z121 = 150, Z131 = 500, Z141 = 400, Z151 = 200, Z161 = 100

4th Computer Run
Objective function = 1.1199e + 05
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Pa111 = 300,Pa212 = 150,Pa313 = 300,
Pa414 = 400,Pa515 = 200, Pa616 = 300
X11 = 1,X12 = 1,X13 = 1,X14 = 1,X15 = 1,X16 = 1,
Y13 = 1
Z111 = 300, Z121 = 150, Z131 = 300, Z141 = 400, Z151 = 200, Z161 = 300

6 Conclusion and Future Works

In this paper, we have investigated and built a new integrated model for the opti-
mization of airline scheduling which includes aircraft assignment and optimal
aircraft’s path to minimize the total operation cost. The main contribution of this
paper is the development of a mathematical formulation for effective modeling of
airplane’s optimal path/scheduling. A comparison of optimal results obtained by
“eyes-observation” and DE programming based on a case study indicates that our
mathematical model provides an efficient solution for airline scheduling problem.

Further research work is needed to apply this approach to large-scale airline
scheduling applications. It can include the development of algorithms for the effi-
cient solution of difficult mixed integer nonlinear programming (MINLP) model
and increasing its application to more challenging airline scheduling problems.
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A New Beam Theory Considering
Horizontal Shear Strain

T. Vu-Thanh

Abstract Methods of setting up and solving problems of flexural members, con-
sidering the horizontal shear strain, have been studied since the 1970s but there has
not been any complete theory. When considering the influence of horizontal shear
strain, with the horizontal shear strain approaching zero (when shear elastic mod-
ulus G→∞ or the ratio h/l is very small), the presented solutions do not converge
to the case of zero horizontal shear strain, due to the shear locking phenomenon.
Many authors have conducted studies to overcome this problem. Although they
have achieved acceptable solutions, theoretical mistakes are unavoidable. In this
article, the author will present a new method, in which the displacement and shear
force functions are considered as functions that need to be determined to set up a
new Beam Theory Considering Horizontal Shear Strain. To develop beam problems
based on the Method of Gauss’s Principle of Least Constraint, the author uses the
calculus of variations and partial integral to establish two differential equations to
determine two unknown functions and beams’ boundary conditions. The beam
theory (not considering the horizontal shear strain) is a separated condition of this
theory. Using this theory in calculating beams and frames does not encounter shear
locking phenomenon. The author will present equations of elastic line; analytic
formulas determining deflection, angle of rotation, moment and shear force of
beams, with different supports and static loads. When considering horizontal shear
strain, changes occur in both the displacement and internal forces of beams and
frames. However, while the displacement increases considerably, the redistribution
of internal forces is quite insignificant.
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1 Current Methods Considering Shear Strain

The Euler-Bernoulli Beam Theory is satisfied when the height/span ratio is negli-
gible (hl ≤

1
8 ÷

1
10). Recently, with the increasing popularity of structures with high

shear deformation such as deep beams and transfer beams in high-rise buildings,
foundation beams, short cantilevers, structures with suddenly changed cross-section
and concentrated forces, taking horizontal shear strain into account becomes
necessary.

Timoshenko is the first to present the idea of considering the horizontal shear
strain by considering the shear angle caused by the shear force Q placed at the beam
or plate axis. According to Timoshenko, the shear force Q causes shearing at the
cross section of the beam or plate, making the cross section no longer perpendicular
to the beam axis. This shear angle is calculated as:

γ = k
Q
GA

ð1Þ

In formula (1):

Q is the shear force at the section being considered;
A is the cross-sectional area of the beam or plate;
G is the elastic shear modulus, G= E

2ð1+ μÞ;
M is Poisson’s ratio;
k is the shear stress concentration factor, considering the non-uniform distribu-

tion of cross-sectional shear stress with non-negligible shear strain
(Timoshenko shear coefficient). The factor K is determined based on the
principle of energy balance [1, 2]. k = 1.2 in beams with solid rectangular cross
section, and k = 1.11 in beams with solid circular cross section.

Under this condition, the displacement of flexural structures depends on two
factors: flexural strain due to moment and shear strain due to shear force:

dy
dx

= β+ γ ð2Þ

In which:

y is displacement function;
β is angle of rotation due to moment.

From expression (2), there are three quantities needed to be determined: y, β, γ.
Hence, we need to choose two from these three quantities to be independent
variable.

After Timoshenko, many studies started to focus on analyzing flexural structures
with considerable shear strain. Today’s common theories of analyzing flexural
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beams with considerable shear strain are based on Timoshenko’s theory, using the
unknowns y and β as variables [1, 3–7]. These studies also assume that the con-
tinuity conditions are the conditions of displacement y and rotational angle β.

When considering shear strain, moment and shear force in flexural beams are
determined by the following formula (Zienkiewicz and Taylor [7]):

Mz = − Eh3
12 .

dβ
dx að Þ

Qy = k.Gh − β+ dy
dx

� �
bð Þ

)
ð3Þ

Based on the beam theories that consider shear strain, the authors of the Finite
Element Methods used two independent elements to describe the flexural structure:
one with only displacement and one with only angle of rotation due to moment, to
set up and solve the beam problem with considerable horizontal shear strain [1, 3,
5–8].

However, when shear strain approaches zero, the beam theory considering the
shear strain using two unknowns y and β did not converge to Euler-Bernoulli beam
theory. When not considering the horizontal shear strain or when horizontal shear
strain approaches 0, γ = − β+ dy

dx

� �
→ 0, Q from Eq. (3b) is 0. Numerical solutions

also encounter this phenomenon when horizontal shear strain are infinitesimal,
corresponding to the ratio h/l < 1/100. This phenomenon is called shear locking
[6, 8].

Since 1971, there have been many solutions proposed to counter Shear locking
when analyzing the structures considering shear strain. These solutions usually fall
into either of the two categories:

• Using incompatible (inappropriate) low-degree elements; using polynomials of
low degree to present interpolation functions. The most common one is Hught
element with interpolation functions being linear polynomials [3, 5, 6]. This is
achieved by using reduced Gaussian integrals instead of the original [7].

• Adding secondary points and conditions of the shear force Q as well as static
shear strain in a specific direction for specific cases. However, these conditions
are complicated and lacking in generalization [7, 8] (Fig. 1).

When incompatible elements were introduced in 1971, mathematics professor
Strang of MIT stated “Two Wrongs Make a Right.” The two theoretical crimes were
that displacement compatibility was violated and the method was not verified with
examples using non-rectangular elements [9].

A new method using horizontal displacement function which is polynomials of
high degree and static shear force condition (Q = const) on the element length has
been adopted by the finite element software SAP 2000 [8].

In recent studies considering shear strain, authors are still applying the afore-
mentioned method to their work [10–14].
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2 A New Beam Theory Considering Horizontal
Shear Strain

2.1 Theoretical Base

According to the author, the fact that beam theories considering shear strain being
used today do not converge to Euler-Bernoulli beam theory when shear strain
approaches zero. It is due to the incorrect selection of unknowns (displacement y
and angle of rotation β) when constructing the problem. Such condition can only

Fig. 1 Performance of a quadratic serendipity (QS) and b Lagrangian (QL) element with varying
span-to-thickness L/t, ratios, uniform load on a square plate with 4 × 4 normal subdivision in a
quarter. R is reduced 2 × 2 quadrature and N is normal 3 × 3 quadrature [7]
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distinguish the two cases: γ =0 and γ ≠ 0, but cannot distinguish the case
γ =0
Q=0

�

(pure bending) from
γ =0
Q≠ 0

�
(ordinary bending does not consider shear strain).

Based on the idea of considering shear strain by Timoshenko, the author pro-
poses a new theory with the use of two functions: displacement y and shear force Q
as the independent variables to develop and solve the problem of flexural beams
considering horizontal shear strain.

The remaining quantities, such as the shear angle γ due to shear force, angle of
rotation β due to moment, flexural moment M and flexural deformation χ are
determined via y and Q:

β=
dy
dx

−
kQ
GA

ð4Þ

M =EI −
d2y
dx2

+
d
dx

kQ
GA

� �� �
ð5Þ

χ =
M
EI

= −
dβ
dx

= −
d2y
dx2

+
d
dx

kQ
GA

� �� �
ð6Þ

2.2 Construction of the System of Two Differential
Equations for the Equilibrium of the Beam

From the equations of balanced force factors:

d2M
dx2 + q=0 að Þ
− dM

dx +Q=0 bð Þ
	

ð7Þ

By using (4)–(6):

EI d4y
dx4 −

d3
dx3

kQ
GA

� �h i
= q

EI − d3y
dx3 +

d2
dx2

kQ
GA

� �h i
=Q

9=
; ð8Þ

If shear strain (corresponding to the case that shear modulus G approaches
infinity and/or the ratio h/l is infinitesimal) is not considered, the above quotations
converge to the form of differential equations of Euler-Bernoulli beam:
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EI d
4y

dx4 = q

−EI d
3y

dx3 =Q

)
ð9Þ

Theoretically, the method considering horizontal shear strain proposed by the
author does not encounter the shear locking phenomenon.

2.3 Construction of Boundary Conditions

The boundary conditions are often presented in Strength of Materials documents as
apparent factors without being proven.

According to the Gauss’s principle of least constraint [15], the equation of the
beam problem when the effects of flexural deformation χ due to shearing moment
and shear strain γ due to shear force are fully considered can be expressed as:

Z =
Z
l

M χ½ �dx+
Z
l

Q γ½ �dx−
Z
l

q y½ �dx→min ð10Þ

According to the Gauss’s principle of least constraint, the displacements and
strains are considered as virtual quantities. Therefore, we need to assume the
internal force M to be independent from the strain χ, the shear force Q to be
independent from the strain γ, and the load q to be independent from the dis-
placement y. Under these conditions, the extremum condition of function Z is
written as follows:

δZ =
Z
l

M.δ χ½ �dx+
Z
l

Q.δ γ½ �dx−
Z
l

q.δ y½ �dx=0 ð11Þ

Rewriting the above expression to variable y and Q gives us:

δZ =
Z
l

M.δ −
d2y
dx2

+
d
dx

kQ
GA

� �� �
dx+

Z
l

Q.δ
kQ
GA

� �
dx−

Z
l

q.δ y½ �dx=0 ð12Þ

Calculating the partial integral in the first element of expression (12) for the
beam with the length limited by boundaries [0; l]:
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Z l

0

M.δ −
d2y
dx2

+
d
dx

kQ
GA

� �� �
.dx=

Z l

0

M.d δ −
dy
dx

+
kQ
GA

� �� �

=M.δ −
dy
dx

+
kQ
GA

� �




l

0
−

Z l

0

δ −
dy
dx

+
kQ
GA

� �
.dM

=M.δ −
dy
dx

+
kQ
GA

� �




l

0
+

Z l

0

δ
dy
dx

� �
.
dM
dx

dx−
Z l

0

δ
kQ
GA

� �
.
dM
dx

dx

=M.δ −
dy
dx

+
kQ
GA

� �




l

0
+

Z l

0

dM
dx

d δy½ �−
Z l

0

δ
kQ
GA

� �
.
dM
dx

dx

=M.δ −
dy
dx

+
kQ
GA

� �




l

0
+

dM
dx

δy½ �jl0 −
Z l

0

δy½ �. d
2M
dx2

dx−
Z l

0

δ
kQ
GA

� �
.
dM
dx

dx

Replacing the above result into expression (12), we have the following equation:

−M.δ β½ �jl0 +
dM
dx

δy½ �jl0 −
Z l

0

d2M
dx2

+ q
� �

δy½ �.dx−
Z l

0

dM
dx

−Q
� �

.δ γ½ �dx=0 ð13Þ

Because the variation quantities δ y½ �, δ β½ � and δ γ½ � are infinitesimal and random,
so formula (13) can be split as followed:

M.δ β½ �jl0 = 0 að Þ
Q.δ y½ �jl0 = 0 bð Þ
d2M
dx2 + q=0 cð Þ
− dM

dx +Q=0 dð Þ

9>>>=
>>>;

ð14Þ

in which:

• Expressions (14c) và (14d) are force equilibrium equations, presenting expres-
sions (14c) and (14d) by the variables y và Q, giving us the system of differ-
ential Eq. (8).

• The expressions (14a) and (14b) present boundary conditions or continuity
condition. Hence, we have the conditions of deformation and displacement at
boundaries 0 and l as followed:

– Condition of angle of rotation:

β≠ 0→M =0→ simple support or free end

β=0→M ≠ 0→ clamped connection
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– Condition of displacement:

y≠ 0→Q=0→Without support

y=0→Q≠ 0→With clamped or hinge support

The above expressions have shown that boundary conditions or continuous
conditions are those of displacement y and angle of rotation β due to moment.
Boundary conditions of displacement y and angle of rotation β due to moment are
always true in both cases: with and without the effects of shear strain. When the
effects of shear strain is not considered, angle of rotation due to moment is: β= dy

dx,

when the shear strain is taken into account, it becomes: β= dy
dx −

KQ
GA

� �
.

3 Application

The author applies the new Beam Theory Considering Horizontal Shear Strain with
two unknowns y and Q to set up the problem of flexural beams considering shear
strain and gives mathematical analytics solutions for beam problem. Tables 1 and 2
only present the displacement results, deformation and internal forces of a beam
with rectangular cross section, having one clamped and one hinge support subjected
to uniform load and a beam with both clamped supports subjected to a concentrated
load at the middle of the beam when considering and not considering shear strain.

Table 1 Displacement and interior forces of the beam with rectangular cross section having
clamped-hinge supports subjected to uniform load when considering and not considering shear
strain

Displacement and interior
forces

Beam not
considering
shear strain

Beam considering shear strain

Displacement at the middle of
the beam

y= ql4

192EI y= ql4

192EI 1+ 3
10

95+ 48 h
lð Þ2ð1+ μÞ

5+ 3 h
lð Þ2ð1+ μÞ

h
l

� �2ð1+ μÞ
� �

Angle of rotation at the cross
section next to the clamped
support

dy
dx = β=0 dy

dx =
ql3

40EI
25+ 12 h

lð Þ2ð1+ μÞ
5+ 3 h

lð Þ2ð1+ μÞ

� �
h
l

� �2ð1+ μÞ

Moment at the cross section
next to the clamped support

− ql2

8 − ql2

8 1− 3 h
lð Þ2ð1+ μÞ

5+ 3 h
lð Þ2ð1+ μÞ

� �

Moment at the middle of the
beam

ql2

16 ql2

16 1 +
6 h

lð Þ2ð1+ μÞ
5+ 3 h

lð Þ2ð1+ μÞ

� �

Shear force at the cross section
next to the clamped support

5ql
8 5ql

8 1−
3
5.

h
lð Þ2ð1+ μÞ

5+ 3 h
lð Þ2ð1+ μÞ

� �

Shear force at cross section
next to the hinge support

− 3ql
8 − 3ql

8 1 +
h
lð Þ2ð1+ μÞ

5+ 3 h
lð Þ2ð1+ μÞ

� �
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The changes of displacement and internal forces of the beam with considering shear
strain compared to the beam without considering shear strain in case K = 1.2 and
μ=0→G=E ̸2 are presented in Table 3.

The calculation results of the beam considering shear strain in case K = 1.2 and
G=E ̸2 are also presented under the form of chart in Figs. 2 and 3.

When considering horizontal shear strain, in many cases, the displacement of
beam increases significantly compared to the case of not considering shear strain.
When considering shear strain, although the change is not considerable, there is a
redistribution of internal forces within the beam. When considering horizontal shear
strain, the total angle of rotation at clamped supports has nonzero value. At the
position of the concentrated force, there is an interruption of the first-order
derivation of elastic line or there is a total angle of chamfer’s jump of elastic line’s
tangent (not in the case of considering the shear strain). As for symmetrical

Table 2 Displacement and interior force of the beam with rectangular cross section having both
clamped supports subjected to a concentrated load at the middle of the beam when considering and
not considering shear strain

Displacement and interior force Beam not
considering shear
strain

Beam considering shear strain

Displacement at the middle of the
beam

ymax = Pl3
192EI ymax = Pl3

192EI 1+ 48
5EI

h
l

� �2ð1+ μÞ
� �

Angle of rotation at the cross
section next to the clamped support

dy
dx = β=0 dy

dx =
Pl2
10EI

h
l

� �2ð1+ μÞ

Jump of angle of rotation at the site
of concentrated force

Δ dy
dx

� �
=0 Δ dy

dx

� �
= Pl2

5EI
h
l

� �2ð1+ μÞ

M, Q No change when considering and not considering shear
strain

Table 3 Change of displacement and internal force of beam with shear strain compared to beam
without shear strain in case K = 1.2 and G=E ̸2

Ratio
h ̸l

Beam with both
the clamped
supports

Beam with one the clamped and one hinge support

Difference of
displacement at
the middle of the
beam (%)

Difference of
displacement at
the middle of the
beam (%)

Difference of
moment next to
the clamped
support (%)

Difference of
shear force next
to the clamped
support (%)

1/
1000

0.00096 0.00057 −0.00006 −0.000012

1/100 0.096 0.057 −0.006 −0.0012
1/10 9.60 5.695 −0.596 −0.1193
1/8 15.0 8.893 −0.929 −0.1858
1/5 38.4 22.72 −2.344 −0.4686
1/3 106.67 62.71 −6.25 −1.25
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structures, considering shear strain only affects the result of displacement and strain;
the internal forces remain unchanged compared to the case of not considering shear
strain.

When shear strain approaches zero, the results converge to the Bernoulli’s beam
theory without the effect of shear strain. Shear locking phenomenon does not occur
when the h/l ratio is infinitesimal (h/l = 1/100 ÷ 1/1000).
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Fig. 2 Chart presents the deflection at the middle of the beam with clamped-hinge supports
subjected to a uniform load when l/h varies
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Fig. 3 Chart presents the deflection at the middle of the beam with both clamped supports
subjected to a concentrated load at the middle of the beam when l/h varies
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4 Conclusion

• The use of unknowns such as displacement y and shear force Q to construct and
solve beam problems considering the shear strain has overcome the drawbacks
of the current theories in similar area.

• By applying the variational calculus and partial integration, beam’s boundary
conditions in case of considering and not considering shear strain are also
mathematically presented. These expressions conform that: Boundary condition
of hinge support is not dy

dx =0, instead, the angle of rotation due to moment

equals zero: β= dy
dx − k Q

GA

� �
=0. Hinge support can only constrain the angle of

rotation due to moment, but cannot constrain the shear angle due to shear force.
• The new calculating beam theory with shear strain proposed by the author with

differential equations and boundary conditions is a holistic beam theory, in
which the case with negligible shear strain is a specific case.
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Analytical Study on In-plane
and Out-of-plane Responses of a Curved
Floating Bridge

B. K. Lim, J. Dai, K. K. Ang and G. C. Yap

Abstract The in-plane and out-of-plane responses of a curved floating bridge that
is vertically supported by pontoons and laterally held by shore abutments at two
ends are studied analytically. The in-plane solution is derived based on strain
compatibility. An Euler curved beam model is used to develop the solution to the
out-of-plane response of the bridge. Trigonometric trial functions are adopted to
approximate the vertical displacement and the torsional rotation of the curved beam.
Both solutions are verified against FE analysis results and good agreement is found
between the results. The studies will focus on the effect of end support stiffness on
the in-plane response of the bridge and the out-of-plane response of the bridge
subject to tidal variation.

Keywords Floating bridge ⋅ Pontoon bridge ⋅ Curved bridge
Strain compatibility ⋅ Euler beam

1 Introduction

The use of floating bridge has served human civilization for a long time and can be
traced back to 4000 years ago where a boat-floating bridge was used by Persian
King Xerxes to move his troops to Europe at Hellespont (See Fig. 1) [1]. These
days, floating bridges remained as one of the popular methods to cross waterbodies
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and connect people from different regions. When the water depth is deep or soil
condition is soft, conventional pile-founded bridge faces challenges including
expensive pile installation and difficult marine operation. Under the conditions,
floating bridge becomes an attractive alternative that is cost effective and easier to
construct. Floating bridge, in general, will be vertically supported by floaters
through buoyancy in various forms (semi-submergible, pontoon, pontoon girder,
etc.). The design of these floaters is usually governed by the bridge’s superstructure
and independent of the water depth. In addition, the construction of floating bridge
can be carried out off-site in segments which can then be towed to the site for
assembly. As such, marine operations required for constructing floating bridge is
greatly reduced and the construction quality can be better assured.

As shown in Fig. 2, a horizontally curved floating bridge that is vertically
supported by pontoons along its length without side moorings and held in position

Fig. 1 King Xerxes’ floating
boat bridge across the
Hellespont

Fig. 2 Plan view of horizontally arch floating bridge
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only at the ends by the shore abutment that sits on soft ground is proposed. The arch
configuration is adopted to efficiently carry the environmental loads (wave/current
and wind) through in-plane membrane actions to achieve economical design.
However, such force transfer mechanism requires the end supports to be rigid.
Therefore, the effect of end support stiffness on the internal member forces needs to
be investigated to ensure the curved bridge remains structurally effective.

The proposed bridge model shall also take into account of daily water surface
variation due to the tide. It is crucial to adopt an appropriate bridge structure
stiffness that is able to resist the design loads but with sufficient flexibility to
account for the vertical tidal motion effects.

This paper presents the analytical solutions to both in-plane and out-of-plane
responses of a horizontally arch floating pontoon bridge. The accuracy of results
from both solutions is verified against FE analysis results. The solutions will be
used to investigate the effect of end support stiffness and tidal motion.

2 Methodology

Figure 3 presents the beam model of the bridge with subtended angle θ, length L,
radius R. In the global Y-direction, the beam is discretely supported by pontoons
which are represented by linear springs, ky′k and torsional springs, ktk. Additionally,
translational and torsional restraints are provided at the ends to prevent the beam
from displacing in global Y-direction as well as rotating about its local z′-axis. In
global X-direction, linear springs, kx are added at both ends to represent the effect
of soft soil foundation. Similar boundary conditions should also be applied to the
beam in global Z-direction. However, the beam is assumed to be simply supported
at two ends instead. This is because the reaction forces in Z-direction are always

Fig. 3 Coordination and boundary conditions of curved beam
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statically determinate and have no effect on the internal forces. Therefore, it is
reasonable to adopt this simplification. The movement of the abutment in global
Z-direction is a rigid body motion which can be easily computed once the foun-
dation stiffness is known.

It was revealed in [2] that the in-plane response of curved beam is decoupled
from its out-of-plane response. Hence, the solutions to the responses can be
developed individually.

2.1 In-plane Response

Consider a simplified beam model for the study of the in-plane response. The wave/
current force will be acting as concentrated loads and the spring deformations at the
ends are denoted as δH (see Fig. 4).

Young and Budynas [3] studied arches of various boundary and loads condi-
tions. Two cases, as shown in Fig. 5, which are the roller-pinned arches subjected
to (a) a vertical concentrated along the beam or (b) a horizontal concentrated load
acting at roller end, respectively, are used in this study.

The horizontal deformation at beam end for case (a) is given below

δHa, i = −
R3

EIy0
LPHað Þ ð1aÞ

where LPHa is the loading terms which takes into account of the geometry and
properties of the beam, as well as the location and magnitude of applied load, which
can be written as

Fig. 4 Curved beam under
in-plane actions
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LPHa = fi
θ

2
sin

θ

2
cos

θ

2
−ϕ sin ϕ cos

θ

2
+

k1
2

cos2
θ

2
− cos2 ϕ

� �
+ k2 cos

θ

2
cos

θ

2
− cos ϕ

� �� �

ð1bÞ

where fi is the load applied. θ and ϕ is the subtended angle of the arch and the angle
measured counter clockwise from the midspan of the arch to the position of load,
respectively. k1 and k2 are the correction factors for shear and hoop stress,
respectively.

Similarly, for case (b), the movement of the roller support can be computed from

δHb, i = −
R3

EIy0
LPHbð Þ ð2aÞ

where

LPHb = fHb, i θ cos2
θ

2
+

k1
2

θ− sin θð Þ− k2 sin θ
� �

ð2bÞ

It is clear from Eqs. (2a) and (2b) that fHb,i can be used to represent the reaction
force of spring shown in Fig. 3. A strain compatibility relationship can be employed
to obtain the actual spring deformation due to the ith concentrated load.

δH, i =
kx
2
ðδHa, i + δHb, iÞ ð3aÞ

Hence, the total spring deformation can be calculated from

δH = ∑
n

i=1
δH, i ð3bÞ

The internal member forces can then be evaluated from equilibrium equations
upon obtaining the total spring deformation.

Fig. 5 Pinned-roller arches subjected to a vertical and b horizontal point load
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2.2 Out-of-plane Response

A simplified curved beam model, as shown in Fig. 6, is considered. The motion
equation for curved beam resting on continuous foundation employed in [2] can be
extended to develop the solution for this case.

For static problem, the motion equation for curved beam resting on discrete
supports can be simplified as

EIx0
∂
4v

∂z04
−

1
R
∂
2β

∂z02

� �
−

GJ
R

1
R
∂
2v

∂z02
+

∂
2β

∂z02

� �
+ ∑

Np

k=1
ky0kvδ z− zkð Þ= ρAg ð4aÞ

EIx0
R

β

R
−

∂
2v

∂z02

� �
−GJ

∂
2β

∂z02
+

1
R
∂
2v

∂z02

� �
+ ∑

Np

k=1
ktkβδ z− zkð Þ=0 ð4bÞ

where EIx′ is the flexural rigidity. v and β are the vertical displacement and torsional
deformation, respectively. ky′k and ktk are, respectively, the vertical and torsional
hydrostatic stiffness provided by pontoon. Np refers to the number of pontoons.

Given that the beam is restrained at both ends in torsion and translation. v and β
can then be approximated by a summation of series of sinusoidal functions

v= ∑
n

i=1
qvi sin

iπz
L

ð5aÞ

β= ∑
n

i=1
qβi sin

iπz
L

ð5bÞ

where qvi and qβi denote the generalized coordinates of ith mode. n is the number of
modes. The motion equations can be solved by formulating the weighted residual
forms using Galerkin’s approach, this gives

Fig. 6 Curved beam model
for out-of-plane response
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v and β can be obtained by solving Eqs. (6a)–(6d) in a 2Nm x 2Nm matrix, where
Nm refers to the total number of modes considered. Equations (7a) and (7b) shows
the general formulation of the matrix.

a11 a12 ⋯ a1 Nm− 1ð Þ a1Nm b1 0 ⋯ 0 0
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where fi is given as

si =
2g
iπ 1− cos iπð Þ, for i≤Nm

0, Nm < i≤ 2Nm



ð7bÞ

3 Results Verification

Two models were set up using commercial FE analysis software, ETABS, to verify
the accuracy of the proposed solutions.

3.1 In-plane Response

Consider a curved bridge subjected to four concentrated loads applied at a constant
interval. Figure 7 shows the FE model. The bridge parameters are given in Table 1.

Figure 8 compares the moment outputs between the proposed solution and the
ETABS. Excellent agreement is found between the two results, and hence, the
accuracy of proposed solution is verified.

Fig. 7 FE model of curved
beam (in-plane response)

Table 1 Curved bridge
properties I

Parameter Value

L 523.6 m
R 500 m
A 5 m2

Iy′ 10 m4

E 2 × 1011 N/m2

θ 60o

kx 5 × 106 N/m
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3.2 Out-of-plane Response

A curved bridge supported by four pontoons at a constant interval is analyzed (see
Table 2 for the bridge parameters). The buoyancies provided by the pontoons are
assumed to be zero initially (when the tide level = 0). Figure 9 shows the vertical
displacements reported by the current solution and ETABS when the bridge is
subjected to high sea level of +2 m. The analytical result matches the FE output well.

4 Results and Discussion

4.1 Effect of Soft Foundation on In-plane Response

It is observed that the in-plane response of the bridge will only be affected only by
the stiffness ratio of the bridge’s flexural rigidity, EIy/L

3 to the foundation stiffness
at bridge ends, kx.

The investigation is carried out by conducting a series of parametric studies on
bridges with different relative stiffness. Table 3 summarizes the bridge properties
used in these studies. For ease of comparison, all the parameters including the
foundation stiffness will be kept at constant whilst the second moment of inertia

Fig. 8 Numerical
verification—in-plane
moment

Table 2 Curved bridge
properties II

Parameter Value Parameter Value

L 523.6 m Ix′ 50 m4

R 500 m J 130 m4

A 5 m2 v 0.3
E 2 × 1011 N/

m2
θ 60o

ρ 11734.2 kg/
m3

ky′k 1.04 × 107 N/
m
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varies from 1 to 100 m4. The number and distribution of the concentrated loads are
identical to those shown in Fig. 7 but the load magnitude of 2000 kN is used
instead.

Figure 10 compares the internal forces of a curved bridge subjected to soft soil
foundation (kx = 5 × 106 N/m) to a bridge that is rigidly held in place. Both
bridges have the same second moment of inertia of 104 m. It can be seen that the
softening of the foundation will result in the reduction of membrane forces. Fur-
thermore, more loadings will be carried by bending action which leads to significant
increase in shear and moment. For this particular case, a 1/3 reduction in axial force
could result in 86% increment in shear and 820% increment in bending moment. It
is clear that the membrane arch action becomes ineffective due to the present soft
soil foundation.

Figure 11 provides the loss/gain (with respect to rigid arch) in maximum
responses of arch with soft boundaries with respect to the stiffness ratio of bridge’s
flexural rigidity to its foundation stiffness.

It can be seen that for this particular load arrangement, the reduction in axial
force can be up to 70% which amplifies the bending moment by 18 times as the
foundation stiffness reduced. Hence, it is crucial to maintaining sufficient rigidity to
ensure that the arch can act effectively with high membrane action. For example, a
maximum stiffness ratio of 1 × 10−4 is required in order to maintain at least 85%
of the axial force accompanied by 467% increment in bending moment.

Fig. 9 Numerical
verification of vertical
displacement

Table 3 Curved bridge
properties III

Parameter Value

L 523.6 m
R 500 m
A 5 m2

Iy′ 1–100 m4

E 2 × 1011 N/m2

θ 60o

kx 5 × 106 N/m
fi 2000 kN
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Fig. 10 Comparison of a axial, b shear and c moment of curved bridges (Iy′ = 104 m)

Fig. 11 Summary of in-plane response a axial force b bending moment and c shear force
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4.2 Effect of Tidal Variation on Out-of-plane Response

The responses for a set of bridges (design parameters to refer Table 4) of different
flexural rigidity are computed. Note that the second moment of inertia, Ix, ranging
from 1 to 30 m4 is selected to investigate the behavior response due to tide.

Vertical displacements (v) and rotation (θ) of the bridges at low tide of −2 m are
shown in Fig. 12.

Table 4 Curved bridge properties IV

Parameter Value Parameter Value

L 523.6 m Ix′ 1–30 m4

R 500 m v 0.3
A 5 m2 θ 60o

E 2 × 1011 N/m2 ky′k 1.09 × 107 N/m
ρ 11734.2 kg/m3 ktk 1.94 × 109 Nm/rad

Fig. 12 Curved bridge subjected to tidal variations: a vertical deformation and b rotation
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It is observed that for bridges with second moment equal to 1 and 5 m4, both the
vertical deformation and rotation angle are fluctuating, which creates unevenness to
the road surfaces. Such unevenness will need to be evaluated further to ensure that
the rideability of the road is not compromised.

On the other hand, bridges with second moment of inertia higher than or equal to
10 m4 are found to have their responses to be similar and start converging. Given
that the tide-induced moment (see Fig. 13 and Table 5) is lower for the bridge with
smaller flexural rigidity. It is hence reasonable and economical to adopt a bridge
with slightly lower flexural rigidity provided that the bridge has fulfilled all other
strength and serviceability requirements. For example, in this case, by adopting
bridge with second moment of inertia of 10 m4, the tide-induced bending moment
can be lowered by 14.9% as compared to the bridge of 30 m4 (see Table 5). Note
that even though the maximum rotation angle (maximum slope) in this case is
increased from 1.03o to 1.43o (39% increment), it is deemed to be acceptable as the
deformed bridge profile is still gentle and close to the one with the highest second
moment of inertia.

Fig. 13 Tide-induced bending moment

Table 5 Comparison of bending moments and rotation angles of curved bridges

Second moment of
inertia (m4)

Maximum
moment (Nm)

Reduction in
moment (%)

Maximum
rotation (o)

Increment in
rotation (%)

1 5.31 × 108 25.4 5.77 460.6
5 5.71 × 108 19.8 1.96 90.5
10 6.06 × 108 14.9 1.43 39.2
20 6.61 × 108 7.2 1.14 10.8
30 7.12 × 108 1.03
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5 Results and Discussion

Presented in this paper are the analytical solutions to both in-plane and out-of-plane
curved bridge. Both solutions are validated with the commercial FE analysis
software, ETABS and the results match well.

The proposed solutions are used to investigate the effect of soft foundation and
tidal variation, on in-plane and out-of-plane response, respectively. For study in the
effect of the soft soil foundation on in-plane response, it is found that with lower
foundation stiffness, the bridge will tend to carry the loading through beam action,
which results in a significant reduction in membrane force. A maximum stiffness
ratio of 1 × 10−4 is recommended to ensure the loss in membrane action is kept
within 15%.

In the study on the out-of-plane response, the bridges can be divided into two
groups according to their second moment of inertia. Those bridges with second
moment of inertia less than 5 m4, the deformed road profiles are found to be highly
uneven. This phenomenon is not favorable as it will affect the rideability of the road
and endanger the road users. For the second group, no significant differences are
found between the deformed bridge profiles. Hence, with the premise that all other
strength and serviceability requirements can be fulfilled, it is recommended to adopt
a bridge that has slightly lower flexural rigidity in order to enjoy the advantage of
smaller tide-induced bending moment to yield economical design.
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Establishment of Artificial Accelerogram
for Shaking Table Test

T. Nguyen-Vo, T. Do-Tien and K. Nguyen-Trung

Abstract In order to evaluate behavior of building and other structures under
seismic action, one of the methods is testing the specimen on the shaking table. This
paper presents the establishment of artificial accelerogram for testing of
semi-precast specimen on the shaking table by using similitude theory to convert
the artificial accelerogram of the prototype building to artificial accelerogram of the
small-scale specimen and compare the test result and analysis result.

Keywords Testing specimen ⋅ Artificial accelerogram ⋅ Shaking table test

1 Introduction

I the present, shaking table test for small-scale specimen is one of the common
methods to study the behavior of the building structures under seismic action. From
the shaking table test, it can determine the failure mode, seismic performance, and
distribution of seismic force along the height of the specimen, local damage. From
the test results, lessons can be withdrawn for seismic design of the building
structures.

On the world, countries such as USA, Taiwan, Japan, China [1, 2]… have
established artificial accelerogram for their own territory. In Vietnam, up to now,
there is no official artificial accelerogram that corresponded to the soil condition and
seismic characteristic of Vietnam as well as shaking table available in Vietnam.

This paper presents the theory and method to establish artificial accelerogram for
shaking table test of structures in Vietnam and applied for testing a 12-story
semi-precast concrete building prototype in Vietnam.
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2 Similitude Theory for Seismic Testing of Structures

In order to design specimens for dynamic testing, it can use one type or combi-
nation of some type of model such as: strength model, artificial mass model,
ignoring gravity model, and strain fuzzy model. For strength model of structure
under seismic action, physical parameters of the prototype and model were
expressed by the dimension of fundamental parameters [3, 4]: mass [M], length [L],
and time [T], as follows:
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where L—length; E—Young modulus; F—force; and T—time.
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3 Establishment of Specimen for Shaking Table Test

With the prototype in this study, in order to be suitable with the capacity of the
shaking table at the laboratory of Vietnam Institute for Building Science and
Technology, the length scale factor sL was selected as 1/12. Other scale factors were
calculated follow sL and sE and are shown in Table 1. The testing specimen was
designed and constructed as shown in Fig. 1.

4 Establishment of Accelerogram for Shaking Table Test

The prototype building located at Dong Anh, Hanoi, soil type D with shear wave
velocity <180 m/s. According to Appendix H of TCVN 9386:2012 [5], for this
location, the reference PGA agr is 0, 1 g. Establishment of artificial accelerogram in
Vietnam was conducted based on the information provided by the Institute of
Geophysics such as: magnitude, location of epicenter, and source of earthquake.
Using elastic response spectrum provided in TCVN 9386:2012, the authors created
eight artificial accelerograms with PGA value, time steps, and time duration so that
suitable with the capacity of the shaking table. The steps for establishing of the
accelerograms are shown in Fig. 2. Each accelerogram has the relationship between
power spectrum density and frequency. Accelerograms were created by using
Seismo Artif and Seismo Signal software.

Table 1 Scale factors of fundamental and dependent dimensions

Dimensions Name and notation Similitude equation Scale factors

Geometry Length, L sL = sL
* sL

* = 12

Displacement, δ sδ
s*L
=1 sL = 12

Material Young modulus, E sE = s*E sE
* = 2.4

Density, ρ sρ = sρ sρ = 1

Strain, ε sε =1 sε =1
Force Force, F sF

s*E .s
*2
L
=1 sF = 345.6

Stress, σ sσ
s*E
=1 s = 2.4

Other dimensions Acceleration, a sρsas*L
s*E

=1 sa = 1/5

Time, T sT
s*L

s*E
sρ

� �1
2
= 1

sT = 7.747

Velocity, v sv .sT
s*L

=1 sv = 1.549

Frequency, f sf .sT =1 sf = 0.129

Energy, En sðEnÞ
s*E .s

*3
L
=1 s(En) = 4.147 × 103
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Artificial accelerogram was established for shaking table test with return periods
of 95 year, 475 year, 2475 year, and the power spectrum density was shown in
Figs. 3, 4 and 5.

5 Testing Results

Comparing the recorded displacements, accelerations at floor levels from the testing
with analysis results of prototype building for three input motions: El Centro
accelerogram, 95 years return period artificial accelerogram, and 475 years return
period artificial accelerogram, it can be seen that the recoded and analysis values are
very similar as shown in Figs. 6‚ 7‚ 8 and Table 2.

Fig. 1 Testing specimen
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Fig. 2 Block diagram for creating artificial accelerogram
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Fig. 3 Accelerogram and power spectrum density, return period 95 year
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Notes:

• Analysis displacement (acceleration): displacement (acceleration) received from
analysis by Etabs with small-scale specimen.

• Experimental displacement (acceleration): displacement (acceleration) recorded
from shaking table test of the specimen.

• Equivalent displacement (acceleration): displacement (acceleration) of the pro-
totype that was converted from small-scale specimen by using scale factors
corresponded with each artificial accelerogram.

The testing results show that the errors between recorded results of the
small-scale specimen and analytical results of the prototype building are small (see
Table 2).

Fig. 7 Compare displacement, acceleration result recorded from testing and analysis results with
artificial accelerogram, return period 95 year
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6 Conclusions

On the basis data of geometry and mechanical properties of the prototype building,
soil condition and source of earthquake, and Vietnamese seismic design code
TCVN 9386:2012, the authors have established the artificial accelerograms for
testing of building structures on shaking table in Vietnam.

The authors have established the procedure for creating the artificial accelero-
grams that are suitable with Vietnam condition. The authors have established the
procedure to create artificial accelerograms that are suitable with Vietnam’s seismic
and equipment condition.

Fig. 8 Compare displacement, acceleration result recorded from testing and analysis results with
artificial accelerogram, return period 475 year

Table 2 Error between displacement, acceleration at roof of prototype converted by scale factors
(1) with recorded result from shaking table testing (2) and analysis result of small-scale specimen
by Etabs software (3)

Elcentro 1940 Return period 95 year Return period
475 year

[(3)-(1)]/
(1) (%)

[(2)-(1)]/
(1) (%)

[(3)-(1)]/
(1) (%)

[(2)-(1)]/
(1) (%)

[(3)-(1)]/
(1) (%)

[(2)-(1)]/
(1) (%)

Displacement 12.52 9.5 12.82 7.53 15.14 9.66
Acceleration 9.52 2.68 13.24 15.93 19.42 15.09
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The testing results from specimen such as displacement and acceleration were
well suitable with the analysis result by ETABS software, on prototype and on
small-scale specimen.
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A Naturally Stabilized Nodal Integration
Meshfree Formulation
for Thermo-Mechanical Analysis
of Functionally Graded Material Plates

Chien H. Thai, Dung T. Tran and Hung Nguyen-Xuan

Abstract This chapter presents naturally stabilized nodal integration (NSNI)
meshfree formulations for thermo-mechanical analysis of functionally graded
material (FGM) plates. The effective material properties of FGM plates are
homogenized by a rule of mixture. Gradient strains from the present approach are
directly computed at nodes, the same as the direct nodal integration (DNI). The
current approach is to alleviate the instability of solutions in the DNI and to sig-
nificantly decrease computational cost when compared to the high-order Gauss
quadrature scheme. The enforcement of essential boundary conditions is completely
similar to the finite element method (FEM) due to satisfying the Kronecker delta
function property of moving Kriging integration shape functions. Numerical vali-
dations are given to show the efficiency of the present approach.
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1 Introduction

Thanks to outstanding properties such as high stiffness and strength-to-weight
ratios, long fatigue life, wear resistance, lightweight, and composite materials have
attracted considerations in many researches. These materials are not capable to
perform well when subjected to high-temperature environments and suffer the
delamination phenomena due to the reduction in the inter-laminar stresses [1].
Advanced composite materials, namely functionally graded materials (FGMs), were
proposed by materials scientists in the Sendai area of Japan in 1984 [2] to remedy
these drawbacks of composite materials. FGMs are usually made from a mixture of
ceramic and metal, and they vary continuously across the thickness direction which
is to overcome the phenomenon of reduced material strength in high-temperature
environments and low toughness of the ceramic in many applications. Thanks to
these characteristics, FGMs are appropriate for design in various industrial fields.

Generally, there are two theories used for computations of FGM plate structures:
the three-dimensional (3D) elasticity theory and two-dimensional (2D) elasticity
theory. The 3D elasticity requires very long computational times due to being
considered full 3D solid, and the actual behavior of plates can be predicted. It is
suitable for solving problems with simple geometries and boundary conditions. For
arbitrary problems, the 2D plate theory is an appropriate choice. This theory
includes the classical plate theory (CPT), the first-order shear deformation theory
(FSDT), and the higher order shear deformation theory (HSDT). The first one [3] is
only suitable for thin plates due to ignoring the effects of transverse shear strains.
The second is coincided for both thin and moderately thick plates, but an addi-
tionally shear correction factor is needed in the shear term to match the strain
energy obtained from the 3D elasticity solution with those from FSDT solution.
The HSDT includes the third-order shear deformation theory (TSDT) [4], the
fifth-order shear deformation theory (FiSDT) [5], the seventh-order shear defor-
mation theory [6], the trigonometric shear deformation theory [7], the inverse
trigonometric shear deformation theory [8, 9], the exponential shear deformation
theory (ESDT) [10], and so on. In this chapter, we present the higher order shear
deformation theory for thermo-mechanical analysis of FGM plates.

Meshfree methods based on the Galerkin weak form have been applied and
developed for analysis of FGM plates. It needs background cells similar to FEM to
compute the integration for the Galerkin weak form. To get stable and accurate
solutions, the high-order Gauss quadrature scheme is used due to the rational shape
functions in meshfree methods, but it takes very long computational times. On the
other hand, solutions may not be converged and stabilized [11] when using the
lower-order Gauss quadrature. To achieve both, the nodal integration scheme
should be chosen. However, the direct nodal integration scheme is usually an
instable solution due to rank deficiency in computational formulations. To reduce
instable solutions, several nodal integration schemes are introduced as a stabilized
conforming nodal integration (SCNI) by Chen et al. [11]: a modified SCNI by
Hillman et al. [12], a least-squares method by Beissel and Belytschko [13], a Taylor

616 C. H. Thai et al.



series expansion of the displacement fields by Nagashima [14] and Liu et al. [15], a
Taylor expansion combined with displacement smoothing by Wu and Koishi [16],
the naturally implicit gradient expansion by Hillman and Chen [17], and so on. In
this study, the nodal integration scheme proposed by Hillman and Chen [17] is
applied for MKI shape functions to investigate thermo-mechanical behavior of
FGM plates.

2 Basic Equations

2.1 Problem Description

FGM is made from an isotropic homogeneous material by mixing ceramic and
metal, in which ceramic-rich and metal-rich surfaces are distributed at the top and
bottom, respectively. Material properties vary continuously across the thickness
direction due to their behavior which is similar to isotropic material. In this chapter,
effective material properties including Young’s modulus and Poisson’s ratio are
homogenized by the rule of mixture, in which the volume fraction of the ceramic
and metal phases are assumed to have continuous variation through thickness by
Reddy [4]:

VcðzÞ= 1
2
+

z
h

� �n

, z∈ −
h
2
,
h
2

� �
; Vm =1−Vc ð1Þ

where the metal and ceramic are expressed using the symbols m and c,
respectively. The parameter n defines a power index corresponding to the volume
fraction variation in the thickness direction. Based on the rule of mixture according
to Eq. (1), effective material properties are expressed as follows:

Eeff =EcVcðzÞ+EmVmðzÞ; veff = vcVcðzÞ+ vmVmðzÞ ð2Þ

2.2 Kinematics of FGM Plate

Let us consider a plate carrying a domain V= Ω× − h ̸2, h ̸2ð Þ, where Ω∈ℝ2 and
h are the middle surface and the thickness of the plate, respectively. The dis-
placement field of any points in the plate according to the generally higher order
shear deformation theory is written as follows:

uðx, y, zÞ= u0ðx, yÞ+ zu1ðx, yÞ+ f ðzÞu2ðx, yÞ ð3Þ
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where

u=
u
v
w

8<
:

9=
;; u0 =

u0
v0
w0

8<
:

9=
;; u1 = −

w0, x

w0, y

0

8<
:

9=
;; u2 =

θx
θy
0

8<
:

9=
; ð4Þ

in which u0, vo, w0, θx, and θy are the in-plane, transverse displacements and the
rotation components in the y − z and x − z planes, respectively; and symbols ‘0, x’
and ‘0, y’ denote the derivative of any function following x and y directions,
respectively, while f(z) is any function in the z-coordinate direction.

From Eqs. (3) and (4), the slope components are not defined as the approxi-
mation variables; thus, it is very difficult to enforce boundary conditions corre-
sponding to them. To alleviate the above mentioned disadvantages, the following
additional assumptions are made:

w0, x = βx andw0, y = βy ð5Þ

Substituting Eq. (5) into Eq. (4), yields:

u0 = u0 v0 w0f gT ; u1 = − βx βy 0
� �T ; u2 = θx θy 0

� �T ð6Þ

Hence, the compatible strain fields obtained from Eq. (6) only request C0 con-
tinuity. Bending and shear strains corresponding to C0-type higher order shear
deformation theory are described as:

ε= εxx εyy γxy
� �T = ε0 + zε1 + f ðzÞε2 − εth and γ = γxz γyz

� �T = εs0 + f
0 ðzÞεs1

ð7Þ

where

ε0 =
u0, x
v0, y

u0, y + v0, x

8<
:

9=
;; ε1 = −

βx, x
βy, y

βx, y + βy, x

8<
:

9=
;; ε2 =

θx, x
θy, y

θx, y + θy, x

8<
:

9=
;; εth = αðzÞΔT

1
1
0

8<
:

9=
;

εs0 = w0, x − βx
w0, y − βy

� 	
; εs1 = θx

θy

� 	
;

ð8Þ

where αðzÞ and f ′ðzÞ are the coefficient of thermal expansion and the derivation
of the function f zð Þ, respectively. In this study, the cubic function f zð Þ= z− 4z3

3h2

proposed by Reddy [4] is used.
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Using Hooke’s law, the linear constitutive relations are written as:

σxx
σyy
τxy
τxz
τyz

8>>>><
>>>>:

9>>>>=
>>>>;

=

Q11 Q12 0 0 0
Q21 Q22 0 0 0
0 0 Q66 0 0
0 0 0 Q55 0
0 0 0 0 Q44

2
66664

3
77775

εxx
εyy
γxy
γxz
γyz

8>>>><
>>>>:

9>>>>=
>>>>;

ð9Þ

where

Q11 =Q22 =
Eeff

1− v2eff
,Q12 =

veff Eeff

1− v2eff
,Q66 =Q55 =Q44 =

Eeff

2ð1+ veff Þ ð10Þ

where Eeff and veff are the effective Young module and Poisson’s ratio according
to Eq. (2), respectively.

The discrete Galerkin weak form for essential equations of the FGM plate under
all transverse loading q0 and the thermal effect are described by

∫ Ωδ
ε0
ε1
ε2

8<
:

9=
;

T
Ab Bb E
Bb Db F1
E F1 H

2
4

3
5 ε0

ε1
ε2

8<
:

9=
;dΩ+ ∫ Ωδ

εs0
εs1

� 	T As Bs

Bs Ds

� �
εs0
εs1

� 	
dΩ−∫ Ωδ

ε0
ε1
ε2

8<
:

9=
;

Ith
Jth
Sth

8<
:

9=
;dΩ= ∫ Ωδw0q0dΩ

ð11Þ

where

Ab
ij,B

b
ij,D

b
ij,Eij,F1ij,Hij


 � kð Þ
= ∫

h ̸2

− h ̸2
1, z, z2, f zð Þ, zf zð Þ, f 2 zð Þ� 

Qk
ijdzwhere i, j=1, 2, 6ð Þ

As
ij,B

s
ij,D

s
ij


 � kð Þ
= ∫

h ̸2

− h ̸2
1, f

0
zð Þ, f 02 zð Þ


 �
Qk

ijdzwhere i, j=4, 5ð Þ

Ith Jth Sthf g= ∫
h ̸2

− h ̸2
Q αx αy αxy
� �T 1 z f zð Þf gΔTdz

ð12Þ
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2.3 Moving Kriging Interpolation Shape Functions

The moving Kriging interpolation shape functions are chosen to interpolate kine-
matic variables in FGM plates. The domain Ω is discretized by a set of nodes
xI (I = 1, …, NP), in which NP is the quantity of the nodes. The moving Kriging
interpolation of a variable u xð Þ, defined by uh xð Þ, can be written as follows:

uh xð Þ= ∑
NP

I =1
ϕI xð ÞuI ð13Þ

where ϕI and uI are the shape function and the unknown coefficient associated
with node I, and

ϕI xð Þ= ∑
m

j=1
pj xð ÞAjI + ∑

n

k=1
rk xð ÞBkI or ϕI xð Þ= pT xð ÞA+ rT xð ÞB ð14Þ

in which n and m are number of nodes in a support domain Ωx ∈Ω (see Fig. 1) and
the order of polynomial basis function, respectively. Four terms of A, B, P xð Þ, and
r xð Þ are defined as follows:

A= PTR− 1P
� − 1

PTR− 1,B=R− 1 I−PAð Þ ð15Þ

p xð Þ= 1 x y x2 xy y2 . . .
� �T and

r xð Þ= R x1, xð Þ R x2, xð Þ . . . R xn, xð Þ½ �T

where I is a unit matrix with the size n× n.
For two-dimensional problem, the polynomial basis function of quadratic form is

chosen as:

p xð Þ= 1 x y x2 xy y2 . . .
� �T m=6ð Þ ð16Þ

Fig. 1 Domain
representation and support
domain of 2D model
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In addition, two matrices P and R are expressed by:

p=
p1 x1ð Þ . . . pm x1ð Þ
. . . . . . . . .

p1 xnð Þ . . . pm xnð Þ

2
4

3
5 andR=

R x1, x1ð Þ . . . R x1, xnð Þ
. . . . . . . . .

R xn, x1ð Þ . . . R xn, xnð Þ

2
4

3
5 ð17Þ

where R xI , xJð Þ is a correlation function and is defined by:

R xI , xJð Þ= 1
2
E uh xIð Þ− uh xJð Þ� 2h i

ð18Þ

in which E defines an expected value of a random function.
The correlation function R xI , xJð Þ, which can be multi-quadrics, thin plate

splines, Gaussian, etc., can be chosen to build MKI shape function. In this chapter,
we use the Gaussian function described by:

R xI , xJð Þ= e−
βrIJ
a0

� �2

ð19Þ

where rIJ = xI − xJkk ; the correlation parameter β is related to the variance σ2 of the
normal distribution function β2 = 1 ̸2σ2, and a0 is the scale factor used to normalize
the distance. The maximum distance between a pair of nodes in the support domain
is chosen for this value. In addition, the correlation parameter is fixed to be equal to
1 β=1ð Þ.

The first-order derivative of the MKI shape functions is written as follows:

ϕI xð Þ= ∑
m

j=1
pj, x xð ÞAjI + ∑

n

k=1
rk, x xð ÞBkI andϕI, y xð Þ= ∑

m

j=1
pj, y xð ÞAjI + ∑

n

k =1
rk, y xð ÞBkI

ð20Þ

Generally speaking, to construct the shape functions for meshfree methods, a
support domain (influence domain) of nodes is needed. For this reason, a circular
influence domain with a support size is defined as:

dm = αdc ð21Þ

where dc describes an average distance between nodes, and α stands for a scale
factor. In the numerical computation, the radius of influence domain is large enough
to support a sufficient number of nodes to construct shape functions. In this study, a
circular support domain with a radius fixed at 2.4 times nodal spacing α=2.4ð Þ is
used in the numerical computation.
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2.4 Nodal Integration Formulations for FGM Plates
Based on the C0-Type HSDT

Generally, there are two types of integration for the Galerkin weak form in Eq. (11),
including the Gauss quadrature and nodal integration. As presented in the intro-
duction section, the nodal integration has more advantages than the Gauss inte-
gration. To apply nodal integration scheme, the problem domain Ω is needed to be
divided into a set of non-overlapping sub-domains ΩI (I = 1, 2, …, NP), where

each of which includes a node (Ω= ∑
NP

I =1
ΩI), as shown in Fig. 2. For any distributed

nodes according to Fig. 2, a Voronoi diagram can always be generated automati-
cally. Based on this Voronoi geometry, the weak form for thermo-mechanical
analysis can be directly computed at the nodes as follows:

∑
NP

I =1

Z
ΩI

δ

ε0

ε1

ε2

8><
>:

9>=
>;

T
Ab Bb E
Bb Db F1
E F1 H

2
64

3
75

ε0

ε1

ε2

8><
>:

9>=
>;dΩI + ∑

NP

I =1
∫ ΩI

δ
εs0

εs1

� 	T As Bs

Bs Ds

� �
εs0

εs1

� 	
dΩI

− ∑
NP

I =1

Z
ΩI

δ

ε0

ε1

ε2

8><
>:

9>=
>;

Ith
Jth
Sth

8><
>:

9>=
>;dΩI = ∑

NP

I =1

Z
ΩI

δw0Iq0dΩI

ð22Þ

3 Naturally Stabilized Nodal Integration

The naturally stabilized nodal integration scheme, which is a naturally implicit
gradient expansion of the displacements field in Eq. (13), was proposed by Hillman
and Chen [17] for the two-dimensional problem. Moreover, it is also extended for
the laminated composite plate by Thai et al. [18] as follows:

MKI node               Voronoi domain

Fig. 2 Geometry of a
representative node domain
and its Voronoi domain
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uh xð Þ≈∑
NP

I
ϕI xð ÞqI + ∑

NP

I
∇ϕI xð Þ x− xð ÞqI ð23Þ

where ‘.’ defines an inner product, and ∇ϕ1 xð Þ is the derivation of shape
function ϕ1 xð Þ. To reduce the order of high-order derivations in the approximation
formulation, a new shape function ϕI is constructed so that the following condition
is satisfied:

∑
NP

I
ϕI xð ÞqI + ∑

NP

I
∇ϕI xð ÞqI =ûh xð Þ ð24Þ

The condition in Eq. (24) is easily obtained in the MKI as

ϕI xð Þ= ∑
m

j=1
pj, x xð ÞAjI + ∑

n

k=1
rk, x xð ÞBkI ; ϕIy xð Þ= ∑

m

j=1
pj, y xð ÞAjI + ∑

n

k=1
rk, y xð ÞBkI

ð25Þ

The implicit gradient expansion in Eq. (23) naturally leads to the stabilized
integration scheme while computing the displacements and strains at each node.
Inserting Eq. (23) into Eq. (8), the bending and shear strains with nodal integration
zones at x= xI are described as:

ε0I uh xð Þ� 
≈ε0I uh xIð Þ� 

+ x− xIð Þε0xI u ̂hx xIð Þ� 
+ y− yIð Þε0yI ûhy xIð Þ


 �
;

ε1I uh xð Þ� 
≈ε1I uh xIð Þ� 

+ x− xIð Þε1xI u ̂hx xIð Þ� 
+ y− yIð Þε1yI ûhy xIð Þ


 �
;

ε2I uh xð Þ� 
≈ε2I uh xIð Þ� 

+ x− xIð Þε2xI u ̂hx xIð Þ� 
+ y− yIð Þε2yI ûhy xIð Þ


 �
;

εs0I uh xð Þ� 
≈εs0I uh xIð Þ� 

+ x− xIð Þεs0xI ûhx xIð Þ� 
+ y− yIð Þεs0yI ûhy xIð Þ


 �
;

εs1I uh xð Þ� 
≈εs1I uh xIð Þ� 

+ x− xIð Þεs1xI ûhx xIð Þ� 
+ y− yIð Þεs1yI ûhy xIð Þ


 �
ð26Þ

where

uh xIð Þ= ∑
NP

I
ϕI xð ÞqI ; ûhx xIð Þ∑

NP

I
ϕIx xIð ÞqI ; u ̂hx xIð Þ∑

NP

I
ϕIy xIð ÞqI ð27Þ

A compact form of the bending and shear strains can be rewritten as:

ε0I≈B
0
I qI + x− xIð ÞB0

IxqI + y− yIð ÞB0
IyqI ; ε

1
I≈B

1
I qI + x− xIð ÞB1

IxqI + y− yIð ÞB1
IyqI ;

ε2I≈B
2
I qI + x− xIð ÞB2

IxqI + y− yIð ÞB2
IyqI ; ε

s0
I ≈B

s0
I qI + x− xIð ÞBs0

IxqI + y− yIð ÞBs0
IyqI ;

εs1I ≈B
s1
I qI + x− xIð ÞBs1

IxqI + y− yIð ÞBs1
IyqI

ð28Þ
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where

B0
I =

ϕI, x 0 0 0 0 0 0
0 ϕI, y 0 0 0 0 0
ϕI, y ϕI, x 0 0 0 0 0

2
4

3
5;B0

Ix =
ϕIx, x 0 0 0 0 0 0
0 ϕI, y 0 0 0 0 0
ϕI, y ϕI, x 0 0 0 0 0

2
4

3
5
ð29Þ

B0
Iy =

ϕIx, x 0 0 0 0 0 0

0 ϕI, y 0 0 0 0 0

ϕI, y ϕI, x 0 0 0 0 0

2
64

3
75;B1

I = −
0 0 0 0 0 ϕI, x 0

0 0 0 0 0 0 ϕI, y

0 0 0 0 0 ϕI, y ϕI, x

2
64

3
75;

B1
Ix = −

0 0 0 0 0 ϕIx, x 0

0 0 0 0 0 0 ϕIx, y

0 0 0 0 0 ϕIx, y ϕIx, x

2
64

3
75;B1

Iy = −
0 0 0 0 0 ϕIy, x 0

0 0 0 0 0 0 ϕIy, y

0 0 0 0 0 ϕIy, y ϕIy, x

2
64

3
75;

B2
I = −

0 0 0 ϕI, x 0 0 0

0 0 0 0 ϕI, y 0 0

0 0 0 ϕI, y ϕI, x 0 0

2
64

3
75;B2

Ix = −
0 0 0 ϕIx, x 0 0 0

0 0 0 0 ϕIx, y 0 0

0 0 0 ϕIx, y ϕIx, x 0 0

2
64

3
75;

B2
Iy = −

0 0 0 ϕIy, x 0 0 0

0 0 0 0 ϕIy, y 0 0

0 0 0 ϕIy, y ϕIy, x 0 0

2
64

3
75;Bs0

I =
0 0 ϕI, x 0 0 −ϕI 0

0 0 ϕI, y 0 0 0 −ϕI

" #
;

Bs0
Ix =

0 0 ϕIx, x 0 0 −ϕIx 0

0 0 ϕIx, y 0 0 0 −ϕIx

" #
;Bs0

Iy =
0 0 ϕIy, x 0 0 −ϕIx 0

0 0 ϕIy, y 0 0 0 −ϕIy

" #
;

Bs1
I =

0 0 0 ϕI, x 0 0 0

0 0 0 0 0 ϕI, y 0

" #
;Bs1

Ix =
0 0 0 ϕIx, x 0 0 0

0 0 0 0 −ϕIx, y 0 0

" #
;

Bs1
Iy =

0 0 0 −ϕIy, x 0 0 0
0 0 0 0 −ϕIy, y 0 0

� �
;

Substituting the expansions in Eq. (28) into Eq. (22) and ignoring the zero terms
(
R
ΩI

x− xIð ÞdΩI =
R
ΩI

y− yIð ÞdΩI =0), the weak form for bending

thermo-mechanical analysis with naturally stabilized nodal integration is rewritten
in the compact form of equation:

Kq=F+Fth ð30Þ

where K, F, and Fth are the global stiffness matrix, force vector, and thermal
load vector, respectively, in which:
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K=K0 +Ks +Ky ð31Þ

and
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ð32Þ

F= ∑
NP

I =1
q0 0 0 w0I 0 0 0 0f gTWI ;

Fth = ∑
NP

I =1
B0
I

� T
Ith + B1

I

� T
Jth + B2

I

� T
Sth

n o
WI

in which WI =
R
ΩI

dΩI,MIx =
R
ΩI

x− xIð Þ2dΩI, and MIy =
R
ΩI

y− yIð Þ2dΩI in

Eq. (32) are the area and the second moments of inertia of each nodal domain,
respectively.

4 Numerical Examples and Discussions

4.1 FGM Circular Plate Subjected to the Mechanical
Loading

Firstly, an FGM circular plate with a radius R and thickness h under a uniform
transverse loading q0 is studied. We consider two different types of boundary
conditions as simply supported and fully clamped. Figure 3 shows the geometry
and distributed node (567 nodes) of the circular plate, respectively. The plate is
made from Ti/ZrO2-1, as shown in Table 1. The material properties are homoge-
nized following the rule of mixture:

A Naturally Stabilized Nodal Integration Meshfree Formulation … 625



Eeff =EcVcðzÞ+EmVmðzÞ; veff = vcVcðzÞ+ vmVmðzÞ;VmðzÞ= 1
2
−

z
h

� �n

;Vc =1−Vm

ð33Þ

Various radius-to-thickness ratios and power index values are investigated. The

central displacement is normalized by w̄=w Ech3

12ð1− ν2c Þ ×
64
q0R4, where Ec and νc are

Young’s modulus and Poison’s ratio of the ceramic, respectively. Figure 4 plots the

(a) Simple supported (b) Fully clamped               (c) Distributed nodes

y

x
R

y

x
R

Fig. 3 Circular plates

Table 1 Material properties Al Ti ZrO2-1 ZrO2-2

E (GPa) 70 278.41 110.25 151
ν 0.3 0.288 0.288 0.3
k (W/mK) 204 – – 2.09
α (°C) 23 × 10−6 – – 10 × 10−6

Fig. 4 Normalized central displacement of circular plates: a simply supported; b fully clamped
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normalized central displacement of the present solution, an exact solution based on
3D elasticity theory [19] and an isogeometric analysis (IGA) based on 3D elasticity
theory [20] corresponding with two boundary conditions. It can be seen that the
present solution matches well with the exact solution [19] for the simply supported
case, while it is between the exact solution [19] and the IGA solution for fully
clamped case. It can be also observed that the normalized central displacement is
decreased by increasing the radius-to-thickness ratios and power index values. In
addition, the normalized central displacement is decreased when increasing the
radius/thickness ratio.

4.2 FGM Square Plate Subjected to Thermo-Mechanical
Loading

We consider an Al/ZrO2-2 FGM simply supported square plate subjected to
thermo-mechanical loading. The properties for Al/ZrO2-2 materials are listed in
Table 1 and are homogenized following the rule of mixture by Eq. (1). The
length-to-thickness ratio is taken equal to 20. The central displacement and load

parameter are normalized as: w̄= w
h and P̄= q0a4

Emh4
, respectively, in which Em is the

Young module of metal.
The FGM square plate subjected to temperature field is firstly studied corre-

sponding to various values of power index n. The temperature at the top (ceramic)
surface is changed from 0 to 600 °C, while the bottom (metal) surface is fixed to
20 °C. The normalized central displacements of FGM plate under a thermal loading
corresponding with various index values is shown in Fig. 5a. We observe that the
maximum displacement is the metal surface (bottom surface), which is very sen-
sitive to temperature. Moreover, the obtained displacement of isotropic plates, e.g.,

Fig. 5 Normalized central displacement for various values of volume fraction exponent: a thermal
load; b thermo-mechanical load
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fully ceramic (n = 0) or fully metal n=∞ð Þ plates, are always much higher than
those of FGM plates. It is concluded that the FGM plate is capable of performing
well under the high-temperature environments.

Next, thermo-mechanical effect is considered for the FGM square plate. The
temperature at the bottom (metal) and the top (ceramic) surfaces is fixed at 20 °C
and 300 °C, respectively. The uniform load parameter P changes from 0 to 30.
Again, the normalized central displacement of FGM square plate with various load
parameters is plotted in Fig. 5b. The FGM plate is only subjected to thermal load or
the load parameter P = 0, and the displacement amplitude is positive, as shown in
Fig. 5b. In addition, the displacement amplitude of the plates varies from positive
value to negative values corresponding with increasing the mechanical loading, in
which the fully ceramic plate has the smallest displacement amplitude. The
obtained results from Fig. 5 are similar to those results given in [21] by Aliaga and
Reddy.
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Nondestructive Vibrational Tests
and Analytical Solutions to Determine
the Young’s Modulus of Rammed Earth
Material

Quoc-Bao Bui

Abstract Rammed earth (RE) is a construction material which is manufactured
from the soil. The soil is dynamically compacted at its optimum water content,
inside a formwork to build a monolithic wall. The RE wall is composed of several
layers, about 10–12 cm thick. In the last decades, RE material has been the focus of
numerous scientific researches because of sustainable properties of this material:
low embodied energy, positive hygrothermal behavior and a particular esthetic
aspect. In several situations, nondestructive methods are needed to assess the
mechanical characteristics of RE material, for both old and new RE constructions.
This paper presents how in situ vibrational measurements can be used to identify
the dynamic behavior of RE walls and to determine the Young’s modulus of the RE
walls measured. To determine Young’s modulus from the dynamic characteristics,
an analytical model based on Timoshenko’s beam theory is presented, both for
flexural and torsional modes. Then, the proposed analytical model is verified with
measurements on several walls having different cross-sectional forms: rectangle and
L-shape. The walls’ natural frequencies were identified from the dynamic mea-
surements by using the Frequency Domain Decomposition method. In parallel, for
comparison, the Young’s modulus of the RE material studied was also determined
by classical static measurements (on the walls, prismatic and cylindrical speci-
mens). The displacements were measured by using the Image Correlation tech-
nique. The comparisons showed that the results from the proposed analytical
method provided high accuracies and better than that obtained by measurements on
the usual specimens (prismatic and cylindrical).
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1 Introduction

Rammed earth (RE) is a construction material which is manufactured from the soil.
The materials are sandy-clayey gravel soils that are compacted inside a formwork to
build a monolithic wall. The soil composition varies greatly but should not include
any organic components. The soil is compacted at its optimum water content, which
provides the highest dry density for the given compaction energy [1]. The RE wall
is composed of several layers. For each layer, the soil is put about 15 cm thick into
a formwork and then rammed with a rammer (manual or pneumatic). After com-
paction, the thickness of each layer is typically about 10–12 cm. The procedure is
repeated until the wall is completed. Figure 1 presents example of a school built
with RE in France.

Recent scientific researches have focused on RE for three main reasons. First, the
earthen construction is sustainable because it uses a natural and local material [2].
Second, the earth material can act as a natural moisture buffering for indoor
environments [3]. Finally, the number of historic RE buildings in Europe and in the
world remains high; maintaining this heritage requires scientific knowledge to have
appropriate renovations [4].

Several research investigations have recently been conducted to study the
properties of RE: durability, mechanical characteristics, and hygrothermal behavior.
The in situ mechanical characteristics of RE walls now need to be determined using
nondestructive or minor-destructive tests. Lombillo et al. [5] used minor-destructive
techniques such as flat jack, hole-drilling, and mini-pressure meter.

In the present paper, the nondestructive technique using vibrational measure-
ments (with accelerometers or velocimeters) to identify the dynamic characteristics
(natural frequencies, mode shapes) will be investigated. From these dynamic
characteristics, Young’s modulus can be determined using a model. This technique
has already been investigated for conventional materials [6, 7]. The application of
this technique for nonconventional materials is also promising. In a previous study,
Bui et al. [1] successfully applied this strategy to RE walls. In that study, the
authors used a finite element model, and Young’s modulus was determined by
searching the best value giving the nearest natural frequencies in comparison with
experimental values.

The present paper investigates an analytical method to provide the natural fre-
quencies of RE walls. If this approach is validated, it can considerably reduce

Fig. 1 A school with walls in RE constructed recently in France, Architect: V. Rigassi
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computer time and can be widely used, obviating the user’s need for special skills
on finite element modeling. Indeed, although the analytical solutions for transla-
tional modes have been reported in the literature for conventional materials, to our
knowledge, the analytical approach for torsional modes remains to be investigated
and validated, most particularly for RE walls where an apparent inhomogeneity can
be observed.

2 Analytical Model for Dynamic Behavior

RE wall is composed by different earthen layers, but it was showed that under small
deformations, a homogeneous and isotropic model can be acceptable for RE
material [1, 8]. During a nondestructive test by vibrational measurements, RE wall
is still under small deformation. That is why RE wall is assumed to be homoge-
neous and isotropic in the analytical model.
Translational modes. Among many possible beam models for translational modes
(flexural, shear, and Timoshenko’s beam), it is well known that the most robust
model is Timoshenko, which can simultaneously take into account bending and
shear behaviors [7]:

• the bending motion characterized by the bending parameter EI, where E and
I are Young’s modulus and the flexural inertia moment, respectively.

• the shear motion characterized by the shear parameter GSc, where G is the shear
modulus (G = E/[2(1 + ν)], with ν representing Poisson’s ratio) and Sc is the
shear cross section for Timoshenko’s beam: Sc = 5/6 S, with S the beam’s cross
section.

It is well known in dynamic of structures that the horizontal translational motion
of the section u(x), where x is the position along the beam, is governed by:

EI
∂
4u
∂x4

+
EI
GSc

λω2 ∂
2u
∂x2

− λω2u=0 ð1Þ

where ω is the angular frequency. The usual modal analysis applied to this
Timoshenko beam, clamped at the base and free at the top, gives the kth eigen
frequency [7]:

ω2
k =

δ4k
λH4

EI + λH2

GSc
δ2k

ð2Þ
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where H is the beam’s height, λ is the linear density; δk can be determined by
solving a system of two equations or can be taken as δk ≈ 2k + 1.
Torsional modes. The analytical solutions for torsional modes are less well
reported in the literature than for translational modes. The demonstration will be
detailed here.

Following the Strength of Materials theory:

ρ ⋅ J ⋅ θ ̇=
∂Mt

∂x
ð3Þ

where Mt is the moment of torsion, ρ is the beam’s density; J is the polar inertia
moment of the section,

J =
ZZ

S
r2dS=

a3b
12

+
b3a
12

a and b: the edges of the sectionð Þ ð4Þ

On the other hand, following the theory of a Timoshenko’s beam in torsion:

dθ
dx

=
Mt

G ⋅ JP
⇒Mt =G ⋅ JP ⋅

dθ
dx

ð5Þ

where JP is the torsional stiffness of the section:

JP = β ⋅ b ⋅ a3 ð6Þ

with β is the torsional constant depending on the cross-sectional dimensions (a and b).
For example, for a rectangle section: β= 1

3 ð1− 0.63 a
bÞ.

θ is the angular rotation, in the harmonic regime:

θ=ϕðxÞ ⋅ eiωt ð7Þ

From the above equations, the main equation of vibration can be obtained:

ϕ′′ðxÞ+ ρ ⋅ J ⋅ ω2

G ⋅ JP
ϕðxÞ=0 ð8Þ

The general solution of this equation: ϕðxÞ= eiδt and by replacing in the above
equation, we have:

ϕðxÞ=A cos δx+B sin δx ðA andB are constantÞ ð9Þ
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with

δ=±

ffiffiffiffiffiffiffiffiffiffiffiffiffi
ρ ⋅ J
G ⋅ JP

r
⋅ ω ð10Þ

Using the limit conditions for a beam clamped at the base and free at the top:

ϕ 0ð Þ=0; Mt Hð Þ=0

we can determine constants A and B, so results of the Eigen frequencies can be
obtained:

ω=

ffiffiffiffiffiffiffiffiffiffiffiffiffi
G ⋅ JP
ρ ⋅ J

s
⋅

π

2H
; ωk = ð2k− 1Þω1 ð11Þ

Inputs for the analytical model. From Eq. (2) for translational modes and Eq. (11)
for torsional modes, the analytical models need the inputs: Young’s modulus E;
shear modulus G or Poisson’s ratio ν to calculate G from E; the density ρ; the wall
dimensions: the height H and the cross section to calculate I, Jp, and J.

3 Assessing the Method on Rectangular
Cross-Sectional Walls

Walls manufacturing. The earth used was provided by a RE company. The clay
content in the soil used was approximately 19%. Water was added to the earth to
obtain the optimum manufacturing water content [1], approximately 12% by weight
in this case. The mixture was then compacted in layers into a formwork by using a
pneumatic rammer. Each wall was built on a 0.25 m × 0.25 m × 1.8 m-long
concrete beam (Fig. 2). The wall’s dimensions were (1.5 m high × 1.5 m wide
0.25 m thick). Two walls (called A and B) were investigated in the present study.
The wall was unmolded from its formwork after the manufacturing and then

cured at laboratory ambient conditions (20 °C and 60% relative humidity, RH) for
2 months. This is the time necessary to obtain quasi-dry specimens [1]. The
moisture contents of the walls after 2 months were approximately 3% (determined
after the tests). When an RE wall has been built, a 0.25 m × 0.25 m × 1.8 m
concrete beam was placed on top of the wall (Fig. 2, on the left). This beam enabled
the loading system to distribute the vertical loads uniformly from two vertical
actuators on the top of the wall. Before installing the concrete beam, a thin lime
mortar layer was added on the top surface of the wall to increase the bonding
between the wall and the beam.
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Vibrational measurements. The sensors used were triaxial accelerometers that
could measure accelerations in three perpendicular directions at the same time. For
a measurement, three accelerometers were used (Fig. 2 on the right): accelerometer
1 was placed at the bottom of the RE wall, on the lower concrete beam; this
accelerometer was used as a reference point to measure the movements of the wall’s
base. Accelerometers 2 and 3 were placed on the upper concrete beam to measure
the vibration of the wall. Accelerometer 3, near the end of the beam, could capture
torsional movements. The frequency of the data acquisition was 2048 Hz. For each
wall, twelve measurements were carried out and for each measurement, the wall
vibration was recorded for 10 min.
Dynamic data processing. The FDD method (Frequency Domain Decomposition
[9]) was used to determine the natural frequencies and mode shapes from the
dynamic measurements. Any displacement vector v (static or dynamic) of a
structure can be developed by superposing suitable amplitudes of the normal
modes:

v tð Þ=Φ1q1 tð Þ+Φ2q2 tð Þ+⋯+ΦNqN tð Þ=Φq tð Þ ð12Þ

In time domain, the covariance matrix of the responses:

RvvðτÞ=Efvðt + τÞv tð ÞTg ð13Þ

⇒RvvðτÞ=EfΦ qðt + τÞq tð ÞHΦHg=ΦCqqðτÞΦH ð14Þ

Fig. 2 Left: compression test setup on a RE wall. Right: dynamic test setup with accelerometers
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H is the Hermitian transposed operator. The equivalent relation in the frequency
domain is obtained by using the Fourier transform:

SvvðωÞ=Φ SqqðτÞΦH ð15Þ

If the modal coordinates (q1, q2, …) are uncorrelated, then the power spectral
density (PSD) matrix Sqq(ω) is diagonal. And if the mode shapes are orthogonal,
then the above equation is a singular value decomposition (SVD) of the response
matrix Svv(ω).

Therefore, FDD is based on taking the SVD of the spectral density matrix:

SvvðωÞ=UðωÞ½si�ΦðωÞH ð16Þ

The matrix U(ω) is a matrix of singular vectors, and the matrix [si] is a diagonal
matrix of singular values. As it appears from this explanation, plotting the singular
values of the spectral density matrix will provide an overlaid plot of the auto
spectral densities of the modal coordinates. Note that here the singular matrix U(ω)
is a function of frequency because of the sorting process that is taking place as a part
of the SVD algorithm.
Dynamic experimental results. Table 1, in the second column, presents the
experimental natural frequencies obtained from the dynamic measurements on
Wall A.
Analytical results. The density of the tested wall was estimated by measuring the
density of similar specimens (presented in the next section), which gave a density of
1860 kg/m3; Poisson’s ratio was 0.22 [10]. It was observed that the dynamic
behavior of RE walls was dominated by shear modes [11]; so the Poisson’s ratio
(relative to bending modes) does not play an important role in this case.

Using equations in the previous section (Eq. (2) for translational modes and
Eq. (11) for torsional modes) and by varying Young’s modulus E, the best-adapted
value of E was determined. The “best” E was chosen as that the value which gave a
minimum difference between first three modes of experiment and analytic. Only the
first three modes were considered because they were the most important which were
the first modes in each direction: vibrations in the transversal, longitudinal, and
torsional directions. That means the minimum of a function g was sought with
g= f1, a − f1, eð Þ2 + f2, a − f2, eð Þ2 + f3, a − f3, eð Þ2.

Table 1 Results from the dynamic tests and the analytical model, for Wall A

Mode Experiment, fe (Hz) Analytic, with E = 390 MPa, fa (Hz) Mode shape fa/fe
Mode 1 6.0 ± 0.2 5.9 1st transversal 0.99
Mode 2 12.5 ± 0.3 12.7 1st torsion 1.01
Mode 3 30.3 ± 0.6 27.8 1st longitudinal 0.92
Mode 4 35.5 ± 0.9 35.9 2nd transversal 1.01
Mode 5 45.1 ± 2.2 39.2 2nd torsion 1.15
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For Wall A, the results showed that the best Young’s modulus of the measured
wall was of 390 MPa. The corresponding frequencies are presented in the third
column of Table 1, which shows a high accuracy for the first four modes (1–8%
difference). The fifth mode (corresponding to the second torsional mode) showed a
greater difference (15%), which may be influenced by the accuracy during the
identification of the higher modes as mentioned above. The mode shapes of the
analytical model were also checked, which corresponded to the experimental
results.

In the same way, the Young’s modulus of the Wall B was determined of
420 MPa.

4 Static Measurements

Devices: The experimental device consists of a steel loading frame having HEB400
cross sections. The bottom concrete beam was attached to the steel frame using four
steel brackets that can be mechanically adjusted to provide satisfactory embedment
(Fig. 1, left). To determine Young’s modulus, the strain of the wall should be
measured in the part corresponding to about 20% of the maximum stress [10]. For
the tested wall, Young’s modulus was calculated with the strains between 0 and
0.3 MPa because the mean compressive strengths obtained on cylindrical and
prismatic specimens were about 1.5 MPa (see in the next section). Two electrical
actuators were used to apply these vertical loads, at a rate of 1 kN/s, up to a normal
stress of 0.3 MPa in the wall. The wall was not tested up to failure, because only
Young’s modulus was measured.

The DIC technique (digital image correlation) was used to measure the dis-
placements of the walls during the test [12]. Before the test, one face of the wall was
speckled to facilitate the DIC data processing after the test. The displacements at
every point on this face were recorded during the test using a high-resolution
camera (16 Mpixels). The images were recorded every 2 s. The displacement fields
were determined by comparing the images taken after and before loading (reference
image). The DIC data were processed with the 7D software.

To determine Young’s modulus, the strains were calculated from the displace-
ments of the middle part (following the height) of the wall (Fig. 3). The mean strain
was the average of 5 values taken in this zone (an example can be found in Fig. 4).
The mean Young’s moduli obtained for walls A and B were of 391 ± 30 and
435 ± 25 MPa, respectively. It is worth noting that the variation was relatively
important (about ±8%) in the same zone. This can be explained by a
non-homogeneity of the material studied. Table 2 illustrates the Young’s moduli
determined from the experimental and analytical approaches which shows the
relevance of the results obtained by the analytical model. The differences between
the analytical solutions and the experiments are less than 4%.
Tests on cylindrical and prismatic specimens. In practice, the mechanical char-
acteristics of a material are usually measured on “standard” specimens:
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Fig. 3 Displacement vectors of the wall under the static loading

Table 2 Comparison of
Young’s moduli determined
by two approaches

Wall number Eexperimental (MPa) Eanalytical (MPa)

A 391 ± 30 390
B 435 ± 25 420

Fig. 4 Vertical strains at the end of the preloading phase of wall A determined from DIC
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representative element volumes (REVs) following the classical theory of Contin-
uum Mechanics. For example, for the concrete in France, the current type is the
cylindrical specimens with 16 cm in diameter and 32 cm high. For RE, several
studies also used this type of specimen, although their representativeness remains
questionable [1]. To assess the relevance of these specimens, small specimens were
also manufactured and tested in uniaxial compression. Two types of specimen were
studied: cylindrical and prismatic. Three cylindrical specimens (20 cm in diameter
and 40 cm high), and three prismatic specimens (measured 25 cm × 25 cm
50 cm high) were manufactured. The dimensions of these specimens were chosen
to be able to reproduce the compaction energy applied to the walls during manu-
facturing (which has already been discussed in Bui et al. [1]). The specimens were
compacted with the same soil, water content, and layer thickness of the walls. For
the cylindrical specimens, a circular piston was used for the pneumatic rammer to
facilitate the ramming on a circular section. The prismatic and cylindrical speci-
mens were also unmolded after the manufacturing and were cured in laboratory
ambient conditions (20 °C and 60% RH) for 2 months.

Prior to the unconfined compression tests, the specimens were surfaced with a
lime mortar to obtain a plane surface (Fig. 5). The strains were also measured for
the central zone of specimens, as the case of the wall, and the mean values were
calculated from three values in the central zone [13]. Results obtained from
unconfined compression tests are presented in Table 3.

Fig. 5 Left: prismatic specimens. Right: cylindrical specimen

Table 3 Results of unconfined compression tests

Specimens Compressive strength (MPa) Young’s modulus (MPa)

Prisms (25 × 25 × 50 cm3) 1.15 ± 0.10 365 ± 65

Cylinders (20 cm ⋅ D × 40 cm ⋅ H) 2.00 ± 0.19 763 ± 54

640 Q.-B. Bui



Discussion. Different results were obtained in four different ways: by dynamic and
static measurements on the wall, as well as static measurements on the prismatic
and cylindrical specimens; the dynamic and static measurements on the wall gave
the same Young’s modulus (about 400 MPa). This result confirms the relevancy of
the approach proposed, which uses the dynamic tests to determine Young’s mod-
ulus, and also confirms the robustness of the analytical method used.

A substantial difference in the results of the cylindrical specimens (E = 763
MPa) and prismatic specimens (365 MPa) from that of the walls (about 400 MPa
for both walls) can be observed. This difference shows that the current way of using
the usual specimens, which works for conventional materials (e.g., concrete) may
differ for RE. Indeed, the overestimation of the results obtained on cylindrical
specimens has already been noted in previous studies in the literature [1]. The
friction during ramming—between the RE and the formwork—was greater in the
prismatic specimens and the wall than in the cylindrical specimens, especially in the
corners. Consequently, cylindrical specimens were better compacted and had better
mechanical characteristics. This is why Young’s moduli were in the order:
cylindrical > wall > prismatic.

5 Assessing the Method on in situ Walls with L-Section

In order to verify the robustness of the method proposed on in situ walls and with
more complex cross sections, rammed earth walls under construction of an RE
house in France were chosen for the present study (Figs. 6 and 7). The rammed
earth walls 2.3 m in height were built on 0.3 m of concrete base paved with stones.
Dynamic measurements were taken by accelerometers placed on the top and at the
base of the walls, similar to the case of rectangular cross-sectional walls mentioned
above. The walls were investigated in a previous study [1] for the dynamic mea-
surements and the modeling by using the Finite Element Modeling (FEM). The
procedure (dynamic measurements and data processing) was the same as for the

Fig. 6 In situ RE walls
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walls presented in the previous section. The Young’s modulus was determined from
FEM by varying the Young’s modulus and search the most adapted value. The
results are summarized in Table 4.

The Young’s modulus presented in Table 4 is the values determined by using
FEM. The results show that, between the analytical results and that obtained from
the experiments, the difference is low for the translational modes (≤ 6%, last col-
umn of Table 4); the differences for torsional modes are higher, but still less than
10%. This confirms the robustness of the analytical method.

Table 4 Natural frequencies obtained from three different approaches

Wall Mode fexp (Hz) fana (Hz) fFEM (Hz) Mode shape fana/fexp
1 (E = 470 MPa) 1 10.75 11.10 10.77 1st translation 1.03

2 18.20 16.51 17.45 Torsion 0.91
3 24.00 23.67 24.01 2nd translation 0.99

2 (E = 470 MPa) 1 11.30 12.02 11.17 1st translation 1.06
2 17.10 16.01 16.83 Torsion 0.94
3 23.25 22.39 23.08 2nd translation 0.96

3 (E = 465 MPa) 1 13.87 13.49 13.88 1st translation 0.97
2 15.10 15.72 15.00 Torsion 1.04
3 25.25 24.96 24.34 2nd translation 0.99

Fig. 7 Plan of the RE house studied (dimensions are in cm)
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6 Conclusion and Prospect

In this paper, the strategy using vibrational measurements to assess the mechanical
characteristics of the in situ walls was presented. From the vibrations measured, the
natural frequencies and the mode shapes of the walls could be determined. These
dynamic characteristics are a function of the wall’s Young modulus. This paper
proposed an inverse method using Timoshenko’s theory to rapidly determine the
wall’s Young modulus from natural frequencies. The formula presented here is
particularly useful for nondestructive verification of the elements tested in labora-
tory and also interesting for the seismic assessment of existing RE buildings [7, 11].

The method proposed was verified firstly by experiments on two RE walls
manufactured in laboratory. The results showed that the proposed method was
robust by providing satisfying analytical results. The paper also showed that the
current testing method using usual specimens (cylindrical and prismatic) was less
effective than that of the proposed analytical method.

In the near future, an empirical relationship between Young’s modulus and the
compressive strength of RE material will be investigated, as the case of concrete
material [14]. If this relationship is determined, the compressive strength of the
in situ walls can be directly determined by using vibrational measurements. This
will be an advantageous nondestructive testing method.

The proposed method was applied in this paper for RE material, but the
approach can also be used for other nonconventional materials.
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Investigation of A5052 Aluminum Alloy
to SS400 Steel by MIG Welding Process

Quoc Manh Nguyen, Huong Thao Dang Thi, Van Thinh Nguyen,
Minh Hue Pham Thi, Khac Thong Nguyen, Shyh-Chour Huang
and Van Nhat Nguyen

Abstract This paper aims to investigate the simulation and experiment of the
welding of butt joint 5052 aluminum alloy to SS400 steel by SYSWELD software
and metal inert gas (MIG) welding process with AR4043 welding wire. Welding
seams were evaluated by mechanical testing and metallurgical analysis, and surface
morphology welding seam and other welding defects were investigated. The
microstructure of intermetallic layer has been observed using microhardness testing
and scanning electron microscopy (SEM). A without intermetallic layer and
intermetallic layer joint between welding seam and SS400 steel at fusion area
appeared after the welding process. To improve the quality of welds, the best
thickness of the intermetallic (IMC) layer was from 3 µm to 7 µm. The fracture
tensile inspection results of welding seam achieved at 230 MPa and the fracture
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occurred at the IMC layer, the average microstructure hardness of IMC layer zone is
346.3 HV and without IMC layer zone is 117.85 HV. The intermetallic layer was at
the minimum to improve the quality of welds.

Keywords MIG welding process ⋅ Butt joint ⋅ IMC layer ⋅ A5052 alloys
SS400 steel ⋅ SYSWELD software

1 Introduction

Aluminum alloys have been extensively applied in the aerospace, automotive
industry, industrial defense, and many other areas with its superior features [1–5].
SS400 steel plate is used in the most manufacturing industries with its superior
advantages [6–9]. Joining dissimilar materials is a great technological and engi-
neering challenge, and the need for joining dissimilar materials often arises in
industrial applications of complex function. The combination of steel with alu-
minum alloys is to reduce fuel consumption because it saves the material weight but
still ensures the stability and reliability of the operated texture. Welding aluminum
to steel is extremely difficult because of the mutual solubility, thermal conductiv-
ities, and differences in melting temperatures [9–12]. So many welding methods
have been used to achieve optimal results between these materials such as friction
stir welding [6], laser welding [4], metal inert gas welding [13], resistance spot
welding [14], diffusion bonding [15], magnetic pressure seam welding [16], and
ultrasonic welding [17]. The welding seam of these materials will bring many
outstanding advantages over their own benefits and reduce the manufacturing cost
significantly. The welding seam of the aluminum and steel was only found during
the phase transformation at the weld which caused negative effect to the weld.
Metal inert gas (MIG) welding is used as welding heat source to weld steels and
aluminums, and welding wire is provided semiautomatically throughout the process
to fill the weld. The heat source causes highly non-uniform temperature distribu-
tions across the welding seam and the base metals. Types of joining such as butt,
tee, corner, lap, and edge are employed for various applications in training and
industry, e.g., ship building, pressure vessel, structure manufacturing [18–20]. Butt
joint research is one of the complex problems of welding process, in heat affected
area (HAZ) bearing capacity and reduced quality due to the stress and distortion
always exists after welding. FEM has been widely used in researching, designing,
and analyzing welding structures. It is one of the most useful and important
methods in predicting stress and distortion due to the heat generation when welding
at the first phase in the process of product design and the development of welding
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process. The aim of the paper is feasible for the simulation and experimental
welding for A5052 and SS400 steel with sizes 200 × 70 × 5 mm.

2 Welding Simulation

Materials are set up in a virtual environment with the same experimental materials.
The properties of the materials such as thermal and metallurgic properties and
mechanical properties in simulation process are taken directly from the database of
SYSWELD software.

A schematic illustration of finite element models of butt joint is shown in
Fig. 1a. It includes two symmetrical plates: A5052 aluminum alloys and SS400
steel with the same size 200 × 70 × 5 mm. A weld line and reference line are
designed in the model. The conditions of the clamping are applied in simulations
and experimental welding process as shown in Fig. 1b.

Goldak et al. proposed a double-ellipsoidal heat source model as shown in
Fig. 2, which has the capability of analyzing the thermal fields of deep penetration
welds. It describes the welding seam and distribution of thermal energy between
two different ellipses. The capacity density of the two ellipsoid heat flux
qðv, f Þðx, y, zÞ and qðv, rÞðx, y, zÞ describes the distribution of heat flux inside the
quadrant of the front and rear heat source and is calculated by the equation [21]:

qv, f ðx, y, zÞ= 6
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Fig. 1 a Finite element models and b meshing of butt joint models
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where ff and fr are the fractional factors of the heat deposited in the front and rear
quadrant, which can be determined by ff + fr =2. Constants, a, b, and are heat
source parameters that define the size and shape of the ellipses therefore the heat
source distribution and Q are the welding energy input.

Figure 3a–f shows the temperature distribution results during welding simula-
tion process between A5052 alloys and SS400 steel at various time periods. From
results could see the temperature field around the MIG heat source increasing from
20 to 600 °C between time periods 0 and 2 s at initial zone. This can understand
that at this period the models as subjected three heat transmission includes con-
ductivity, radiation, and convection. Figure 3b–f shows the initial, central, and final
zone lengths of butt joint models. This time is part fixed of center zone with the
isotherm moving regular and at this stage the heat transmission due conduction will
be large than the heat transfer by radiation and convection. Besides that when the
MIG sources move from the next points of model to end model with the steady state
also as affected by boundary condition and heat radiation. A large difference at the
distribution of the isotherm heat in welding simulation aluminum alloy to steel.
Although the two materials have same thickness, conductivity distribution of iso-
therm closes together and tends to focus around the welding area at the steel sheets.
But at the aluminum plate, the thermal conductivity is big so the heat dissipation is
faster and the isotherm distributes more widely. This shows that coefficient of
thermal conductance is importantly special in the convective heat transfer in the
surface and the radiation affected the melting and the heat affected the boundaries in
the welding process of the different materials. Simulation results are considered as a
basis for handling these issues in the course of the most effective way for the
experimental welding. The distribution temperature on the model showed the heat
distribution is unasymmetric between aluminum alloys and steel also as stainless
steel at the different time.

Fig. 2 Double ellipsoidal heat source of Goldak
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Figure 4 shows the comparison of simulation results and experimental results at
fusion area of dissimilar welding between aluminum alloys and steel. From results,
simulation can see normalize dilution of SS400 steel in the fusion zone. This is
good indicator for the alloy density in the welding bead during welding process.
This is a good sign for the blend of welding metals inside welding area, and it is
usually used for estimating the alloy content and also used as the uniformity of
welding bead during welding process. The results also showed, the metallurgical
calculate during simulation present in Fig. 4a shows that the components formed
phase 1 in the welding zone different about from range 19–77% of butt joint.

Fig. 3 Temperature distribution during MIG welding at different time periods: a–b initial time; c–
d central time; and e–f final time
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3 Experimental Procedure

The materials used are aluminum alloy A5052 and steel SS400 sheets with thick-
ness of 5 mm, and the chemical composition materials used are experimentally
shown in Tables 1, 2, and 3 [6, 7, 13, 22–25]. The equipment was used to
implement all experiments including a MIG/MAG-pulsed welding machine, uni-
versal testing machines, Vickers hardness testing machines, and SEM/EDS system.

The welding process used argon, an industrial shield gas, ER4043 welding wire
of 0.8 mm was selected, protective gas was 10.51/min, welding speed was 4.5 mm/
s, welding voltage was 17 V, and welding current intensity was 90 A. All exper-
iments were performed on A5052 aluminum alloys and SS400 steel plate with a
fixed thickness of 5 mm.

Fig. 4 Comparison of simulation result and experimental result

Table 1 Chemical composition of steel SS400 (wt%)

Materials Fe C Si Mn Ni Cu P Cr Al

SS400 Bal 0.13 0.19 0.81 0.049 0.063 0.015 0.021 0.024

Table 2 Chemical composition of steel A5052 alloys (wt%)

Materials Al Si Mn Cu Mg Fe Cr Zn Ti

A5052 Remain 0.08 0.04 0.02 2.51 0.15 0.22 0.01 0.01

Table 3 Chemical composition of steel ER4043 welding wire (wt%)

Materials Al Si Mn Cu Mg Fe Zn Ti

A5052 Remain 4.5–6 0.05 0.03 0.05 0.8 0.1 0.2
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4 Results and Discussion

Seven specimens were selected to test the tensibility, and Table 4 shows the results
of the tensile test. From the results, we can see that the shear strength of the welding
seam is achieved at 225.9 MPa. The results of the tensile test of seven weld
specimens are presented in Table 4.

Microstructure hardness testing of butt joints was performed on the typical cross
section of weld joint samples through load force of 10 g and 10-s downtime by the
Vickers testing method. The microhardness results were used as one of the data for
researching the microstructure of weld joints and also as the adjacent area of welds.
To investigate microstructure of welded, the typical weld joints cross-section of
typical weld joints has been grinding and polishing follow metallurgical standards.
The hardness of weld joints tended to increase at adjacent area of welds and descend
at area far from center of the welds, and the microhardness of weld surface area is
higher than that at the two base metals. The results of the microstructural hardness
tests in the IMC layer zone are shown in Fig. 5. At the intermetallic layer zone, the
maximum testing result is 850 HV was observed at central of IMC layer compound,
the minimum value measured was observed at the adjacent between IMC layer and
welding seam of 182 HV, the average values hardness measured in the SS400 steel
side was 280 HV and average values hardness measured in the A5052 aluminum
alloy side was 150.72 HV such as presented in Table 5. The hardness average values
at the IMC layer zone in this research were higher than that of the welding wire
ER4043 (56–64 HV), as compared to the hardness reported in [14], with the evi-
dence of the low dynamic load capacity and brittleness of the welds. Because the

Table 4 Results of tensile test of 7 specimens of welded A5052 and SS400 butt joints

Materials T1 T2 T3 T4 T5 T6 T7 Average

Values (MPa) 206.5 203 195.5 220 225.9 215 193.5 208.5

Fig. 5 Microstructure
hardness test in IMC layer
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IMC layer was not good for the dynamic load and the load of the welds, it was
necessary to find a way to reduce the thickness of the IMC layer as much as possible
in order to increase the load capacity and the strength of the welding joints. The
specific values of the tested positions for the hardness of the weld microstructures
with the IMC layer and without the IMC layer zone are shown in Table 5.

The OM and SEM were used for observed microstructure of weld joints. All
specimens was grinding and polishing following metallographic standard by
machine with abrasive paper have been different distribution grain size. The
chemical composition of two base metals and the filler metal and also the cooling
rate of the welding process are decided for the formation of microstructure of weld
joints and phase transformation after welding.

Figure 6a shows the microstructure of the welding seam and the SS400 steel
plate, when welding A5052 aluminum alloy and steel, and our study used a welding

Table 5 Results of microhardness test at IMC layer area

Specimens H-1 H-2 H-3 H-4 H-5 H-6 H-7 Average

Values (HV) 850 209 468 182 240 237 239 346.43

Fig. 6 Microstructure of welded A5052 aluminum alloy/SS400 steel: a IMC layer zone on the top
side; b IMC layer zone on the bottom side; c without the IMC layer zone; and d cracking after
welding
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intensity of 95 A and a welding speed from 3.5 to 4 mm/s. Figure 6b shows the
results of the welding on the bottom side. A minimum IMC layer about 3 μm in
thickness was produced with a suitable intensity and velocity; the welding seam
was a seamless crystal lattice, which helped the weld to possess high mechanical
properties. Figure 6a shows the welding of the top side; the two metal plates were at
room temperature so the IMC layer here was thicker than that on the bottom side.
The bottom side was welded after the two metal plates had cooled. When welding
the bottom side, because the first background layer was created, the Fe atoms at the
solid–liquid interface reach a supersaturated concentration faster because of the
current power from the welding process and the background of the top side. Fur-
thermore, the first IMC layers were thin and stable so the flow of the metal liquid on
the steel surface was better, as shown in Fig. 6b. Other areas had better mechanical
properties, especially near the welding area, some far from the center heat source
and many parts without IMCs, as shown in Fig. 6c. As shown in Fig. 6d, an IMC
layer appeared or did not appear depending on the welding process used and on the
appropriate welding speed and intensity. The temperature of the steel sheets
increased when the arc directly affected the surface of the steel plate during the
welding process. Furthermore, on a thick IMC layer, cracks appeared between the
surface of the SS400 steel sheets and the welding seam when a high welding
intensity and low welding speed were used. We could see that choosing a suitable
welding intensity has great influence on the fusion of Al base metal as well as on
the wettability and spreading ability of the weld metal; it can also lead to the quality
change of welds and, as seen, affect the formation of the continuous surface
appearance.

The morphology of the brazed interface layer between the welding seam metal
and the SS400 steel is shown in Fig. 7. It is shown that two main IMC layers
formed along the brazed interface and that a thin layer is connected to the SS400
steel sheet surface; it includes the undulating surface structure in the welding seam
metal and the serrated structure and rupture in the welding seam. The welding seam
joint was formed between the base aluminum alloy and the welding wire in the
welding process, and a thin IMC layer formed mainly along the brazed interface
and the adjacent SS400 steel surface. The IMC layer was found to be about 1.95–
5 μm thick between the welding seam and the SS400 steel surface after SEM
testing. There were no defects at the welding seam, and the area had good
mechanical properties, as shown in Fig. 7a. With the 5 wt% of Si additions in the
ER4043 welding wire, Si atoms inside the molten pool enrich the interface and
often tend to aggregate the interface because it can decrease the enthalpy of for-
mation of the IMC layer [26]. The IMC layer was thick and uneven as the welding
was done by hand and the temperature in the area was uneven. Figure 7b shows the
microstructure of the IMCs between the welding seam and SS400 steel. A seamless
metal structure with no defects has good mechanical properties, as found at the
welding seam with length about 3–7 μm. It was clear that Si atoms appeared in the
welding seam due to the use of ER4043 welding wire in the welding process. As the
welding was done by hand, the temperatures of different areas were uneven, which
made the IMC layer thick and uneven. Before welding, the edge of the SS400 steel
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plate was chamfered using a hand grinding machine and then cleaned using
sandpaper. The cleaning process for the steel plate surface before welding was not
good; this affected the welding quality and caused other defects, as shown in
Fig. 7c. Figure 7d shows the microstructural cracks on the surface steel sheet
because of the high welding intensity and low welding speed, which caused the
steel sheet surface to overheat and cracks to appear along the welds.

The energy-dispersive X-ray spectrometer mapping of the elements at the
intermetallic layer zone between the SS400 steel and the welding seam at the IMC
layer zone and without the IMC layer is shown in Fig. 8a. Some atoms diffused
during the welding process. Figure 8b shows the elements with their corresponding
amounts which appeared at the welding seam area: Al (47.4%), Fe (27.8%), C
(2.31%), and Si (1.7%). Figure 8c shows the results of the scanning of the weld
without the intermetallic layer. At the investigated position, the four elements and
its corresponding amounts were Al (45.9%), Fe (30.2%), C (2.18%), and Si (2.1%),
as shown in Fig. 8d.

Fig. 7 SEM microstructure at area between the welding seam and SS400 steel sheet: a IMC layer
area; b without IMC layer area; c defects due to surface cleaning; and d microstructural crack on
the surface of the steel sheets
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5 Conclusions

The dissimilar joint of A5052 aluminum alloys and SS400 steel was made by MIG
welding process with ER 4043 welding wire. The tensile strength, the
microstructure hardness, and the microstructure characteristics were investigated.
The major conclusions of this paper could be summarized as follows:

To make the welding process successful, we had to choose the appropriate
welding materials to welded materials, the groove of the welding edge, careful
clean, suitable welding conditions, and good welding gaps. In addition, cleaning
metal sheet surfaces before welding is very important, especially the oxide layer on
every plate after welding the opposite side.

This research used appropriate gas shield to protect the welding pool well in the
welding process. On the other hand, not only must the welders be very skillful but
also the steels’ microstructure surfaces were smooth and rounded beveled before
fitting, assembling, and implementing the welding process to make the intermetallic
layer thin and even throughout the length of the weld.

The interaction of the solid steel and the liquid aluminum in the welding process
had been controlled by the diffusion of the IMC layer areas. Furthermore, Si atoms

Fig. 8 SEM microstructure at area between the welding seam and SS400 steel sheet: a IMC layer
area; b without IMC layer area; c defects due to surface cleaning; and d microstructural crack on
the surface of the steel sheets
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which were found in the welding seam were involved actively in forming the IMC
layers. The IMC layer found with thickness of about 3–7 µm.

The average microstructure hardness achieved is 346.43 HV, average tensile
strength achieved is 225.9 MPa, and a fracture occurred at the surface layer of
welding seam and SS400 steel plate. The cracks, which derived from using high
power in the welding process, have been found between the welding seam and
SS400 chamfered steel when the thickness of IMC layer was high.

References

1. Tu JF, Paleocrassas AG (2011) J Mater Process Technol 211:95–102
2. Xua W, Liu J, Luan G, Dong C (2009) Mater Des 30:1886–1893
3. Sierra G, Peyre P, Beaume FD, Stuart D, Fras G (2007) Mater Sci Eng, A 447:197–208
4. Torkamany MJ, Tahamtan S, Sabbaghzadeh J (2010) Mater Des 31:458–465
5. Elrefaey A, Gouda M, Takahashi M, Ikeuchi K (2005) J Mater Eng Perform 14:10–17
6. Kimapong K, Watanabe T (2005) Mater Trans 46:835–841
7. Ito K, Okuda T, Ueji R, Fujii H, Shiga C (2014) Mater Des 61:275–280
8. Shih JS, Tzeng YF, Lin YF, Yang JB (2012) Adv Mech Design Syst Manuf 6:222–235
9. Hangai Y, Saito M (2013) Mater Trans 54:1012–1017

10. Taban E, Gould JE, Lippold JC (2010) Mater Des 31:2305–2311
11. Kobayashi S, Yakou T (2002) Mater Sci Eng, A 338:44–53
12. Qiu R, Iwamoto C, Satonaka S (2009) J Mater Process Technol 209:4186–4193
13. Zhang H, Liu J (2011) Mater Sci Eng, A 528:6179–6185
14. Qiu R, Shia H, Zhanga K, Tua Y, Iwamotoc C, Satonaka S (2010) Mater Charact 61:684–688
15. Travessa D, Ferrante M, Ouden G (2002) Mater Sci Eng, A 296:287–337
16. Lee KJ, Kumai S, Arai T, Aizawa T (2007) Mater Sci Eng, A 471:95–101
17. Watanabe T, Sakuyama H, Yanagisawa A (2009) J Mater Process Technol 209:5475–5480
18. Weman K, Lindén, G (2006) MIG Weld Guider 3–10
19. Groover MP (2007) Fundam Modern Manuf Mater Process Syst 3:689–701
20. Degarmo EP, Black JT, Kohser RA (2007) Mater Process Manuf 10:829–856
21. Long H, Gery D, Carlier A, Maropoulos PG (2009) Mater Des 30:4126–4135
22. Yong Y, Tong ZD, Cheng Q, Wen Z (2010) Trans Nonferrous Met Soc China 20:619–623
23. Lee CY, Lee WB, Kim JW, Choi DH, Yeon YM, Jung SB (2008) J Mater Sci 43:3296–3304
24. Zhang DQ, Li J, Joo HG, Lee KY (2009) Corros Sci 51:1399–1404
25. Specifiation for bare aluminum and aluminum alloy welding electrodes and rods, AWS

A5.10/A5.10 M:1999 (R2007)
26. Nguyen QM, Huang S-C (2015) An investigation of the microstructure of an intermetallic

layer in welding aluminum alloys to steel by MIG process. Materials 8(12):8246–8254

656 Q. M. Nguyen et al.



Behaviour of Two Chamber Aluminium
Profiles Under Axial Crushing:
An Experimental and Numerical Study

Nguyen-Hieu Hoang, Magnus Langseth, Gaute Gruben
and Terence Coudert

Abstract The present study investigated experimentally and numerically the
structural behaviour of two chamber extruded profiles in AA6060-T7 alloy sub-
jected to axial crushing under quasi-static loading conditions. Experimental tests
were performed (including uniaxial tests, in-plane shear test and plane strain tension
tests) to characterize the elastic–plastic, anisotropy and fracture behaviour of the
investigated material. The material under investigation exhibited anisotropic
properties and isotropic yield models such as von-Mises were not able to predict
correctly the shear and plane strain test behaviour. It depicted that the advanced
material model with anisotropic Yld2004-18p yield function and ECL criterion was
necessary to predict the material tests results (UT, ISS and PST) both in terms of
force–displacement curves and ductile fracture. Axial crushing tests were also
conducted to investigate the energy absorption capacity of two chamber profiles
made of this alloy. A solid element-based numerical model of these component tests
was established in the commercial finite element code LS-DYNA, and simulations
were run with the calibrated material models and fracture criterion. The predicted
force–displacement curves, the energy absorption and fracture were in a good
agreement with the experimental results. These results demonstrate that numerical
models can be used as a reliable design tool for optimizing aluminium profiles for
automotive applications.
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1 Introduction

The AA6xxx aluminium alloys are used extensively for crash-relevant components
in automotive vehicles due to its light weight and high energy absorption capacity.
To protect to car passengers during car crash events, the crash component should be
designed to optimize the energy absorption capacity and buckling modes, i.e. the
crash component should fold in a controlled manner without the formations of
significant cracks and does not tend to fragmentation during fracture [1]. However,
design and selection of light but crashworthy structural components in aluminium
for the automotive industry are challenging and time-consuming tasks. In order to
reduce the time and cost needed to develop a new component product, it is nec-
essary to use finite element analysis as an effective design tool. The capacity to
predict the energy absorption and fracture of the components is thus crucial for a
robust and reliable design.

Different geometries for thin-walled structures have been adopted in recent years
by a number of researchers to investigate their energy efficiencies and capacities for
car crash components [2–10]. Investigations show that aluminium tubes have
proved to give an excellent crashing behaviour and energy absorbing characteris-
tics, and numerical simulations have shown to be a veritable tool. However, prior
studies have also shown that the aluminium alloys used in automotive applications
have complex mechanical properties with anisotropic strength and ductility. It may,
therefore, be necessary to use relatively complicated constitutive models to obtain
the required accuracy in the numerical analysis [10–17].

In the present study, work was carried out to investigate experimentally and
numerically the structural behaviour of two chamber extruded profiles in
AA6060-T7 alloy subjected to axial crushing under quasi-static loading condi-
tions. Material tests were performed (including uniaxial tests, in-plane shear test
and plane strain tension tests) to characterize the elastic–plastic, anisotropy and
fracture behaviour of the investigated material. The material test data were then
used to calibrate user-defined material constitutive and fracture models, as
required for non-finite elements methods. Axial crushing tests were conducted to
investigate the energy absorption capacity of two chamber profiles made of this
alloy. A solid element-based numerical model of the component tests was
established in the commercial finite element code LS-DYNA, and simulations
were run with the calibrated material models and fracture criterion. The perfor-
mance of the established model was then verified and demonstrated by comparing
the experimental results with the tests results, in terms of energy absorption
capacity and fracture.
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2 Material and Experimental Programme

The investigated aluminium alloy is AA6060 in overaged temper T7, received as
extruded profiles. The cross-sectional geometry is given in Fig. 1a. The nominal
thickness of the outer wall is 3.5 mm and while the nominal thickness of the inner
wall is 2 mm.

A material test programme was carried out to investigate the materials consti-
tutive and fracture behaviour. The material test programme included uniaxial ten-
sion tests (UT) plane–strain tension tests (PST) and in-plane simple shear tests
(ISS). Uniaxial tensile specimens were cut out 0°, 45° and 90° to the extrusion
direction, plane–strain tension specimens were cut out 0° and 90° to the extrusion
direction, and in-plane simple shear specimens were cut out in the extrusion
direction. For each test type and extrusion direction, three parallel tests were carried
out. In the following, the tests are denoted as Test-α-x, in which Test designates the
type of test (UT, ISS and PST), α corresponds to the angle with respect to the
extrusion direction, and x refers to the test repetition. All the tests specimens were
machined out from the outer wall (WO), and their geometries are shown in Fig. 2.
The material test matrix is summarized in Table 1. In all the tests, extensometers
were used to monitor the displacement on the test specimens.

Fig. 1 a Geometry of as received profile (cross section A-A) and b axial crushing test setup

Fig. 2 Material test specimens
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To study the energy absorption capability of the two chamber extruded profile,
axial crushing tests were performed at room temperature at a quasi-static cross-head
velocity. The component test geometry is shown in Fig. 1b. An inclined shape was
introduced at the top of the specimen to trigger a repeatable folding pattern. Prior to
testing, the wall thickness of the profiles was measured. Three repetitions were
carried out for each test and during testing the axial force versus cross-head dis-
placement histories were recorded.

3 Test Results

3.1 Material Test Results

The tensile test results are reported in Fig. 3 in terms of engineering and true stress–
strain curves in the three different orientations α with respect to the extrusion
direction (i.e. α = 0°, 45° and 90°). It is noted that only one representative true
stress–strain curve for each orientation is shown in Fig. 3b, and the curves are
plotted up to onset of diffuse necking. The tests clearly show that the investigated
material exhibits minor anisotropy in strength. This minor anisotropy in strength of
the material is also shown in Fig. 4a, plotting the stress ratio rα which is defined as
ratio between the flow stress in α direction and extrusion direction ED at equal

Table 1 Material test matrix

Section Test Number of test
in ED

Number of test in 45°
w.r.t ED

Number of test in 90°
w.r.t ED

WO UT 3 3 3
WO PST 3 0 3
WO ISS 3 0 0

Fig. 3 Tensile test results. a Engineering stress–strain curves and b true stress–strain curves up to
onset of diffuse necking
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amounts of specific plastic work. Here, the extrusion direction is used a reference
direction. However, the material under investigation exhibits an anisotropy in terms
of flow properties with respect to different directions, as shown by the Lankford
ratios in Fig. 4b. The Lankford ratio is defined as the ratio between the plastic strain
in the width direction, εpw, and in the thickness direction, ε

p
t , of the tested specimens

Rα = εpw ̸εpt ð1Þ

The stress and strain ratios will be used later on for calibrating an anisotropic
yield criterion.

The results from the in-plane simple shear tests and the plane–strain tension tests
in terms of force versus the displacement monitored by extensometer are shown in
Fig. 5. As in the uniaxial tensile tests, only a small scatter was observed in these
tests. Thus, only one representative experimental curve was plotted for clarity
reason. As seen from the PST test results in ED (PST-0) and in 90° direction
(PST-90), the present material exhibits a stronger anisotropy in strength in-plane–
strain tension than in uniaxial tension.

Fig. 5 Experimental and numerical results of a in-plane simple shear tests and b, c plane strain
tension tests

Fig. 4 a Stress ratio rα and b strain Lankford ratio Rα of AA6060-T7. The back dots represent
the experimental data, while the red curves are numerical results predicted by the calibrated
anisotropic model Yld2004 with m = 8

Behaviour of Two Chamber Aluminium Profiles … 661



3.2 Axial Crushing Test Results

The axial crushing tests results are shown in Fig. 6 in terms of the force–dis-
placement curves, the mean force–displacement curves and the buckling modes. If
Ea is the energy absorption of the profile at a displacement d, then the mean force
is defined by Fm =Ea ̸d. The material exhibits high ductility and only small cracks
were observed in the profile corner and in the T-junction between the inner and
outer walls for all the profiles; see Fig. 7. Due to insignificant fracture and the
geometrical trigger, no variation in the folding mode was found. All the tests
exhibited a progressive and regular ‘step case’ buckling mode.

Fig. 6 Axial crushing test results (Axial crushing force, buckling mode and mean force)

Fig. 7 Fracture in tested profiles. a Fracture in corner, b and c fracture at T-junction of the inner
wall and the outer wall (outer surface and inner surface)
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4 Constitutive Models

4.1 Material Modelling

The test results have shown that the investigated alloy 6060-T7 exhibits minor
difference in strength in different axes with respect to the extrusion direction.
However, the material possesses an anisotropic property in terms of plastic flow
ratio, which defines the following direction at a given stress state on the yield
surface. In order to account for this anisotropy, an appropriate material model in
combination with an anisotropic yield criterion is necessary. The main ingredients
of the material model used in the present work, are isotropic elasticity, anisotropic
yielding, associated plastic flow rule and isotropic strain hardening. Here, the
anisotropic yield criterion YLD2004-18p proposed by Barlat et al. [18] was
adopted, and the equivalent stress is written:

σeq =
1
4
ϕ

� �1 ̸m

ð2Þ

where

ϕ= S ̃′1 − S ̃′′1
� �m

+ S ̃′1 − S ̃′′2
� �m

+ S ̃′1 − S ̃′′3
� �m

+ S ̃
0
2 − S ̃′′1

h im
+ S ̃

0
2 − S ̃′′2

h im
+ S ̃

0
2 − S ̃′′3

h im
+ S ̃′3 − S ̃′′1
� �m

+ S ̃′3 − S ̃′′2
� �m

+ S ̃′3 − S ̃′′3
� �m

ð3Þ

In this equation, m is a yield surface shape parameter, and S ̃′i, S ̃
′′

i are principal
values of the stress tensors s ̃′ and s ̃, defined by linear transformations of the deviator
of the co-rotational Cauchy stress

s ̃′ =C′: s ̂=C′: T : σ ̂ and s ̃′′ =C′′: s ̂=C′′: T : σ ̂ ð4Þ

where the fourth-order tensor T transforms the co-rotational Cauchy stress σ ̂ into
its deviatoric part s ̂. For orthotropic symmetries, only 9 of these constants are
non-trivial so that the tensors C′, C″ and T in Voigt notation read

C′ =

0 − c′12 − c′13 0 0 0
− c′21 0 − c′23 0 0 0
− c′31 − c′32 0 0 0 0
0 0 0 c′44 0 0
0 0 0 0 c′55 0
0 0 0 0 0 c′66

2
6666664

3
7777775
, C′′ =

0 − c′′12 − c′′13 0 0 0
− c′′21 0 − c′23 0 0 0
− c′′31 − c′′32 0 0 0 0
0 0 0 c′′44 0 0
0 0 0 0 c′′55 0
0 0 0 0 0 c′′66

2
6666664

3
7777775
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And

T=
1
3

2 − 1 − 1 0 0 0
− 1 2 − 1 0 0 0
− 1 − 1 2 0 0 0
0 0 0 3 0 0
0 0 0 0 3 0
0 0 0 0 0 3

2
6666664

3
7777775

The coefficients in the tensors C′, C″ are material parameters characterizing the
anisotropy of the yield function. It is to note that the isotropic yield function of this
material model can be obtained by setting all the coefficients of C′ and C″ to unity.
For more details on Yld2004-18p, the reader is referred to Barlat et al. [18].

The evolution of the flow stress is defined assuming isotropic hardening, using a
Voce hardening rule written as follows:

σ ̄= σ0 + ∑
3

i=1
Qi 1− exp −Ciεp̄

� �� � ð5Þ

In which
Here εp̄ is the equivalent plastic strain; σ0, Qi and Ci are the material

parameters, respectively, defining the yield stress, and strain hardening
The yield function is assumed convex and is, thus, written as

f = σeq − σ ̄=0 ð6Þ

4.2 Fracture Criterion

To model the ductile fracture of the present aluminium alloy, the extended Cock-
croft–Latham criterion (ECL) presented by Gruben et al. [19] was adopted.
The ECL criterion explicitly accounts for the influence on the materials ductility
from both the hydrostatic and the deviatoric stress state and can be expressed as an
accumulative damage variable as

D=
1
Wc

Zε ̄p

0

⟨ϕ
σI
σ ̄

+ 1−ϕð Þ σI − σIII
σ ̄

� 	
⟩γσ ̄dε ̄p ð7Þ

where ⟨.⟩ is the Macaulay brackets and Wc ≥ 0, γ ≥ 0 and 0≪ϕ≪ 1 are the
fracture parameters. In addition σI , σII and σIII are, respectively, the first, second
and third principal values of the co-rotational Cauchy stress tensor. In this
uncoupled damage model, the fracture is assumed to initiate when D=1. The
readers are referred to Gruben et al. [19] for more detailed description of the model.
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5 Calibration

5.1 Strain Harderning

The yield stress and the Voce work-hardening parameters of the investigated
material were first calibrated by fitting with the experimental true stress–plastic
strain curves of the tensile tests in ED upto the diffuse necking point. However, in
order to describe the strain hardening behaviour of the material beyond the necking
point to the final fracture with a reasonable accuracy, the Voce parameters were
finally refined by inverse modelling of the tensile tests in ED.

A 3-D solid element-based model was established in the commercial non-linear
finite elements code LS-DYNA for this numerical test. A reasonably fine mesh size
of 0.25 mm × 0.25 mm and eight-node solid elements with one integration point
were used for the numerical model. As seen in Fig. 8a, the numerical force–dis-
placement curve is in a good agreement with the tests up to the final fracture.

5.2 Anisotropic Yield Model

Since the material investigated in the present study is aluminium alloy, the m pa-
rameter of the yield function described in section was set equal to 8. Hosford [20]
and Hill [21] showed that this value is suitable to isotropic f.c.c. crystal structures.
The anisotropy of the material is accounted for through the anisotropic coeffi-
cients C′, C″, which are calibrated using the experimental results obtained in
Sect. 2.

Fig. 8 Comparison of numerical and experimental test results in extrusion direction: a Tensile test
UT-0, b in-plane shear test ISS-0 and c plane strain tensile test PST-0
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The initial set of anisotropic parameters was determined using the experimental
results in Sect. 3.1. The anisotropic coefficients are finally refined by running
numerical simulations of the ISS and PST tests, using the initial set of C′, C″
parameters and the strain hardening properties determined in Sect. 5.1.

The constitutive relations described in Sect. 4 were implemented as a
user-defined material subroutine in the nonlinear finite element code LS-DYNA.
The numerical models of the ISS and PST tests were established using 8-node solid
elements with one integration point and stiffness-based hourglass control. The
element size of the numerical models is shown in Fig. 8.

Figure 9 shows representative contour plots of the final yield surfaces obtained
by Yld2004-18p for the alloy 6060-T7 under investigation. As can be seen in
Fig. 4, the obtained yield model captured with a good accuracy the experimental
flow stress ratios (a) and strain ratios (b). A more detailed information about the
calibration process can be found in the work by Barlat et al. [18].

Figure 5 shows the numerical force–displacement curves obtained both with
an isotropic and calibrated anisotropic yield function, plotted along with the
experimental ones for the test ISS and PST tests. It can be seen that numerical
models with anisotropic yield function together with the strain hardening prop-
erties calibrated in Sect. 5.1 were able to predict very well the global behaviour
(force–displacement curve) of the shear test and plane–strain test. The numerical
models with an isotropic von-Mises yield model underestimated the force in the
shear tests and overshot the force–displacement curves of the plane strain tests
PST-0.

Fig. 9 Yield surface Yld2004-18p for AA6060-T7
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5.3 Fracture Criterion

As discussed in Sect. 4.2, the used fracture model ECL has three parameters, i.e.
Wc, γ and ϕ, as expressed by Eq. (7). Since the model has three parameters, three
tests are thus necessary for a full calibration. Here, the model was calibrated in the
extrusion direction, by using three tests namely UT-0, ISS-0 and PST-0.

Numerical simulations of these tests were run with anisotropic yield model
Yld2004-18p, and the results were shown in Fig. 8. Since the extrusion direction
was used as a reference direction for anisotropic yield model, the force–displace-
ment curve of UT-0 test was not influenced by the yield function shape. However,
the plastic deformation is dependent on the yield function, which describes the
plastic follow through the associate plastic follow rule. To evaluate the fracture
strain, the plastic strain in the critical element was collected from the simulation
result of each test and plotted together with the force–displacement curves as shown
in Fig. 8. The strain at fracture was assumed when the global fracture occurred, as
displayed in the force–displacement curves. As seen, the significantly large plastic
strain at fracture in these tests confirmed an important ductility of the investigated
material.

The stress state (σI , σII , σIII ) were then collected from the same elements to
determine the stress state trajectories towards the fracture strain from each test. By
integrating the obtained stress–strain paths from three tests in Eq. (7), the ECL
fracture criterion was fully calibrated. Figure 10 shows the numerical results of the
three tests with the calibrated ECL fracture model. It can be observed that the used
fracture model can predict with a reasonable accuracy the fracture initiation of the
investigated tests.

Fig. 10 Numerical simulation results with fracture criterion: a Damage contour plot and b force–
displacement curves
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6 Numericals Analyses of Axial Crushing Tests

6.1 Numerical Model

A full solid-based model was generated in the FEM code LS-DYNA to simulate the
axial crushing tests of the two chamber extruded profiles made of AA6060-T7. The
model consisted of three parts: profile, bottom plate and top plate, as illustrated in
Fig. 11. Reduced integrated eight-node solid elements a characteristic element size
of 1 mm and 5 elements through the wall thickness were used to describe the whole
model. Hourglass control was employed to inhibit zero-energy deformation modes.
The node-to-surface contact algorithm was used to model the contact between the
plates and profile, while the single-surface contact type was used for the self-contact
within the profile.

Both the top and bottom plates were modelled as rigid bodies, while the profile
was modelled as an elastic–plastic material, using the anisotropic material model as
described in Sect. 4.1. The calibrated ECL criterion together with element erosion
was used to model the fracture of the profiles during the test. The explicit solver of
LS-DYNA was used for the axial crushing problem and the loading was applied by
velocity control. While all degrees of freedom were constrained in the bottom plate,
a downward velocity was prescribed for the top plate. The velocity was carefully
chosen to keep the kinetic energy at a low level compared with the internal energy
and thus ensure quasi-static loading. Coulomb friction (with a friction coefficient of
0.3) was specified in the contact between the plates and the profile and in the
self-contact of the profile walls.

Fig. 11 Finite element model
of axial crushing test
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6.2 Numerical Results and Discussions

The simulation of the axial crushing was run using the calibrated ECL criterion, and
the global numerical results are shown in Fig. 12 together with experimental ones,
both in terms of force–displacement curves and in mean force–displacement curves.
It can be observed that the global numerical results were in good agreement with the
tests. Moreover, the numerical model was able to predict the complex buckling
mode of the two chamber extruded profiles under axial crush loading.

The numerical model was also able to capture the fracture in the corners (lo-
cation 1) and the T-junction between inner and outer wall (location 2) as observed
in experimental tests; see Fig. 13a. Only few elements at these positions were
eroded due to the fracture criterion in the profiles, as shown in Fig. 13b. This is
consistent with the experimental results where only small cracks were observed due
to the high ductility of the investigated material. This insignificant fracture has not

Fig. 12 Comparison between numerical and experimental results of axial crushing tests (axial
crushing force, buckling mode and mean force)

Fig. 13 a Fracture in the profiles predicted by numerical models in comparison with the test
results, and b elements eroded by ECL fracture criterion in numerical simulations
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influenced the global bucking mode or the energy absorption capacity of the two
chamber profiles at hand, as depicted in Fig. 12 where numerical results of the
simulation without considering any fracture criterion (i.e. assuming that no crack is
initiated in the aluminium profile during testing) also have been plotted. As seen,
the mean force–displacement curves obtained with these two simulations were
almost identical.

7 Concluding Remarks

The present paper investigated experimentally and numerically the structural
behaviour of two chamber extruded profiles in AA6060-T7 alloy subjected to axial
crushing under quasi-static loading conditions. The main findings are summarized
as follows:

• Several material tests were carried out to characterize the behaviour of the alloy
AA6060-T7. The present alloy exhibits a strong ductility. The tests results also
showed that the anisotropy in strength is minor in tension, but somewhat higher
in-plane strain tension condition. In addition, the anisotropic properties in plastic
follow were also observed.

• Due to the present anisotropic properties, isotropic yield models such as
von-Mises was not able to predict correctly the shear and plane strain test
behaviour. An anisotropic yield function was necessary to describe the observed
anisotropic properties.

• In the present study, a material model with anisotropic yield model
Yld2004-18p was used in combination with Extended Cockcroft–Latham
(ECL) fracture criterion to model the material constitutive and fracture beha-
viour. The material model was implemented as a user-defined material sub-
routine in the nonlinear finite element code LS-DYNA. Material test results
were used to calibrate the material model. It depicted that the advanced material
model with Yld2004-18p yield function and ECL criterion can predict very
good the material test results (UT, ISS and PST) both in terms of force–dis-
placement curves and ductile fracture.

• Axial crushing test was conducted to investigate the energy absorption capacity
of two chamber profiles made of this alloy. All test results revealed a pro-
gressive and regular “step case” buckling mode, with a small fracture observed
in the profiles corner and at the T-junction between inner wall and outer wall.

A solid element-based numerical model of the axial crushing test was established
in the commercial finite element code LS-DYNA, and simulations were run with
the calibrated material models and fracture criterion. The predicted force–dis-
placement curves, the energy absorption and fracture were in a good agreement
with the experimental results. These results demonstrate that it is now possible to
use numerical models as a design tool for optimizing aluminium profiles for
automotive applications.
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Evaluating the Saltwater Intrusion
to Aquifer Upper-Middle Pleistocene
(qp2–3) in Coastal Area of Tra Vinh
Province Due to Groundwater
Exploitation

Huynh Van Hiep, Nguyen The Hung and Pham Van Long

Abstract Today, one of the most serious problems in Tra Vinh as other coastal
provinces in Mekong Delta is the exploitation of groundwater for different pur-
poses. In many cases, the aquifers are pumped or withdrawn with greater discharge
to its natural ability, thus making seawater draw into the system [1]. This paper
aims at evaluating the saltwater intrusion into aquifer upper-middle Pleistocene in
Tra Vinh province area due to groundwater extraction. The calculated area includes
2,176 nodes, 2,079 elements, and grid steps Δx = Δy = 1,000 m. The program is
set up to determine the interface between freshwater and saltwater which moves
from the sea into the mainland of upper-middle Pleistocene aquifer. The calculating
results show that at the initial point when pumping with outflow Q = 29,987 m3/
day, the toe interface in position is of 2,019 m from the sea, then with the time of
exploitation t = 150,000 days, the interface moving into in the mainland is
approximately 21,000–24,000 m. The calculation results enable managers and
abstraction units to know the process of salt line by time in order to launch sound
plan for exploitation.
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1 Introduction

Water is a precious natural resource for human life since it is very important for
socioeconomic development and contributes to environmental sustainability.
Groundwater extraction in coastal areas is a matter of concern and careful man-
agement; otherwise, the water quality will be degraded due to seawater intrusion
[2]. The population increase and water demand for livelihood and economy have
strained water resources in the world seriously. Due to pollution and degradation of
surface water, groundwater aquifers are more and more exploited. However, if the
groundwater reserve is over-extracted, this will cause adverse impacts, more
specifically, the groundwater level drops down causing ground subsidence and the
salinity intrudes into the mainland deeply [3]. Coastal aquifers are connected by
freshwater in the field and saltwater in the sea. Those are important sources of
groundwater which is often over-exploited due to high population density. Coastal
aquifers are prone to salinity intrusion due to other factors such as sea level rise by
climate change [4]. To cope with these situations, intrusive salinity management
models need to be developed to design optimal and sustainable groundwater
extraction strategies [1]. Tra Vinh province is located in the east of the Mekong
Delta. It shares borders with Ben Tre province in the north by Co Chien river (a
tributary of the Tien river), by Soc Trang province in the southwest and Can Tho
city across Hau river, by Vinh Long province in the west, and the East Sea in the
east (length of 65 km) (Fig. 1).

In Tra Vinh province, water supply for daily lives, industrial zones, and factories
are all extracted from groundwater. Consequently, the assessment of salinity
intrusion into the upper-middle Pleistocene aquifer is an urgent issue today. This is
very useful for managers in distributing and licensing of groundwater exploitation
reasonably and efficiently.

2 Materials and Methods

In Tra Vinh province where the groundwater in the natural state does not move or
lightly move and its one side contacts the river or the coast, this will form the
interface between saltwater and freshwater. If the freshwater is over-extracted, it
will be lowered. This causes pressure drop and the interface will gradually move to
the pump position all triggering the freshwater reserve to be minimized and the
ground to be subsided [5]. Therefore, the location of the interface over time by
freshwater pumping can be performed by mathematical model [6–8].

676 H. Van Hiep et al.



2.1 The General Basic Differential Equations
for Describing the Interface

The governing equations for describing the interface between saltwater and fresh-
water of groundwater in coastline, two horizontal dimensions 2DH (x,y) with
confined aquifer [6–8] (Fig. 1) are formulated as follows:

−∇ ⋅ ðαT ∇fÞ+∇ ⋅ ðαTa∇hÞ= If + Is + q′f + q′s ð1Þ

S∂h ̸∂t−∇ ⋅ ðαTaÞ∇h+∇ ⋅ ðαTa∇fÞ= − Is − q′s ð2Þ

with f =ϕf ̸α; T =K H1 −H2ð Þ; Ta = T H1 − hð Þ ̸ H1 −H2ð Þ

A

A

Fig. 1 Location of cadastral boundaries of Tra Vinh province
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where T is transmissivity coefficient of aquifer, with aquifer anisotropic T = (Tx,
Ty), where Tx and Ty are the coefficients of transmissivity in x, y directions.
Eqs. (1) and (2) have set up separate formula of intrusion flows with two confined
horizontal dimensions; the 2DH equation is rewritten in the general form as
follows:

∂
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with f = ð1− βÞhf + βϕf
α ; α= ρs − ρf

ρf

Tx =Kx H1 + ð1− βÞhf − βH2½ �; Ty =Ky H1 + ð1− βÞhf − βH2½ �

Tax =Tx ×
ðH1 − hÞ

½H1 + ð1− βÞhf − βH2� ; Tay =Ty ×
ðH1 − hÞ

½H1 + ð1− βÞhf − βH2�

and with β = 1 if the aquifer is confined; β = 0 if the aquifer unconfined, and where
ρf denotes density of freshwater; ρs denotes density of saltwater; S0 denotes the
storativity; t denotes the time; hf denotes the freshwater head above sea level; ϕf

denotes the piezometric head for freshwater; q′f , q
′

s denote the freshwater and salt-
water sink; If, Is denote the freshwater and saltwater recharge in aquifer; Kx, Ky

denote the hydraulic conductivity in the x, y directions (Fig. 2).
Eqs. (3) and (4) are nonlinear partial differential equations, and their accurate

solution cannot be performed by analytical method but by numerical method.

Z=0Sea

'
sq

'
fq

x∇

saltwater
freshwater

z I

h 1H

2H

Fig. 2 Confined aquifer
(represented by the A–A
section and lies in the oxz
plane at perpendicular to the
oxy plane given in Fig. 1)
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2.2 Numerical Method

The above equations are approximated by using the Galerkin finite element method
(FEM) with the triangle element, and assuming that the values of the permeability
coefficients pass or permeability coefficients at each element under the xz or xy
directions remain unchanged, then the equation for any element is set up as follows:

Z

AðeÞ

NðeÞ
i LðMÞm dA=0 ð5Þ

where Ni
(e) with i = 1, 2, 3 is the triangle element function (first degree chosen); L

(M)m with m = 1, 2 is the differential Eqs. (3) or (4) to be set for any element; A(e)

is the area of element. The value h is approximated by the formula:

hðeÞ = ∑
n

i = 1
NðeÞ

i × hi ð6Þ

where h(e) is the approximate value of the interface depth at a point in the element; n
is nodes of element; hi is the interface depth at the nodes of element. After per-
forming mathematical transformations, we get the following linear system of
equations:
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with
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where S0
(e) denotes the specific storativity of the triangle element; ai, bi, ci are

coefficients of the function Ni [6–8].

2.3 Diagram Calculation for Checking the Program

Selected calculation area a horizontal rectangle (1,500 m × 600 m), the axis ox
(1,500 m), the coastline oy edge (600 m) [7, 8].

The calculated domain is divided into 90 quadrilateral elements (applied in the
manner of [6] each quadrilateral elements consists of four triangular elements), 112
nodes, grid step Δx=Δy= 100m with boundaries as shown in Fig. 3 and the
coordinate Z = 0 coincides with sea level. Average permeability coefficients
Ktb = 8.5 m/day, average saturation thickness of aquifer B = 30 m, storativity
S = 0.6.

2.4 Boundary and Initial Conditions

At the initial time t = 0, the height of the groundwater table and the depth (h) of the
interface at the node points along the axis were preliminarily determined according
to the approximate analytical formula Ghyben–Herzberg, we have (Table 1).
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Boundary conditions: flow across AB boundaries: qn1 = 0 and symmetric CD
boundaries: qn2 = 0; sea water level AC: h = −10 m; with the BD boundary, the
function f does not change in the axial direction oy, meaning BD: ∂f ̸∂y= 0.

2.5 Calculation Results

The calculating program determined the value of the depth of the interface at nodes
over time. In straight vertical planes with shoreline passing through the wells Q1,
Q2, the values are shown in Figs. 4 and 5.

The above figures show that at the initial time (t = 0), saltwater toe is located
160 m away from the coastline, 840 m from the exploitation well, after a extract
time t = 10,000 days ≈ 27.39 years, saltwater toe will move to the position of
525 m from the coastline and 475 m from the well.
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Fig. 3 Domain calculated with quadrilateral elements spacing 100 m nodes

Table 1 Head of freshwater value and initial interface depth (m)

X 0 100 200 300 400 500 600 700 800

ϕfð Þ 0 0.59 0.84 1.03 1.19 1.32 1.45 1.57 1.68
hinitial 0 −33.76 −40.0 −40.0 −40.0 −40.0 −40.0 −40.0 −40.0
X 900 1,000 1,100 1,200 1,300 1,400 1,500
ϕfð Þ 1.78 1.88 1.97 2.06 2.14 2.22 2.3
hinitial −40.0 −40.0 −40.0 −40.0 −40.0 −40.0 −40.0
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2.6 Checking and Discussing the Calculation Results

By using the finite element method (FEM), the results of calculation are compared
with the most common formulas such as the Thesis and the superposition formula.
The position of saltwater toe by each method is shown in Table 2.

The differences between the three methods from the above results were negli-
gible. The above data show that at the initial time (t = 0), saline wedge is located

Fig. 4 Position and depth of the interface by time at the section through the well Q1

Fig. 5 Position and depth of the interface by time at the section through the well Q2

Table 2 Position of saltwater toe according to methods

X Thesis
formula

FEM
method

Superposition
formula

The distance from the coast to the saltwater toe
position farthest (m)

516.3 525.0 534.4
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160 m away from the shore, 840 m from the exploitation well. After a mining time
t = 10, 000 days≈ 27.39 years, saline season will move to the position 525 m from
the shore, 475 m from the well in the case of FEM method. In the case of the Thesis
formula, at the beginning of the salinity boundary at x0 = 159.4 m, after the
extraction time of 10, 000 days≈ 27.39 years the salinity boundary will advance to
the mainland by about 356.9 m, 516.3 m from the shore, 483.7 m from the well. As
for the piling formula, the simultaneous exploitation of the three wells and saltwater
wells is 534.4 m far from the coastline, 465.4 m away from the pavement. The
difference in finite element method compared with the Thesis formula was 0.087
and 0.094% as compared to the superposition formula. Especially, the results from
the FEM method have average value higher than the Thesis formula but lower than
the superposition formula. These results are fairly reasonable. On the other hand,
the FEM solution demonstrates the shape and position of the interface at each
computing time with any geological structure which corresponds to the different
freshwater exploitation flows, the complex boundary shape, and many anisotropic
pumping and infiltration positions. The problem can be complex at any time that is
convenient for use. From the discussed results and remarks, we find that the used
model is well suited to the reality. This is considered as a steady basis for using this
model to evaluate the salinity intrusion into the groundwater aquifer in the coastal
area.

3 Calculating the Salinity Intrusion into the Upper-Middle
Pleistocene Aquifer in Tra Vinh Province

3.1 Hydrogeology Characteristic

In Tra Vinh province, there are seven aquifers: Holocene, the upper Pleistocene, the
upper-middle Pleistocene, the lower Pleistocene, the middle Pliocene, the lower
Pliocene, and the upper Miocene. Alternating between these porous aquifers are
poorly formed aquifers with, respectively, geologic ages: Holocene, upper Pleis-
tocene, upper-middle Pleistocene, lower Pleistocene, middle Pliocene, lower Plio-
cene, upper Miocene. Figures 6, 7, and 8 illustrate the above-mentioned aquifers.

The upper-middle Pleistocene layer has depth to top varies from 69.0 to
140.0 m, average 106.60 m; depth to base varies from 118.0 to 201.5 m, average
154.9 m; minimum thickness is 10.30 m, maximum thickness is 73.50 m, average
44.41 m. Average permeability coefficient is 35.85 m/day. The average specific
yield coefficient (μ) is 0.19, and the average specific storage coefficient (μ*) is
0.0032. The composition of this layer is mostly granular sand, sand, and gravel.
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3.2 Chart of Calculation

The mathematical domain is modeled as a horizontal quadrilateral which has the
width of 33,000 m (OY) overlapping the shoreline, the length of 63,000 m
(OY) along Hau river and perpendicularly to the shoreline. Based on the coast
length and the location of the pump wells, the computing domain is divided into
quadrilateral elements and the coordinate angle z = 0 coincides with the mean sea
level. The calculation chart is divided into 2,176 nodes, 2,079 quadrilateral ele-
ments, and a grid step Δx = Δy = 1,000 m (Fig. 9). The study area is arranged
with 89 wells with a total exploitation volume of 29,987 m3/day, and the
exploitation layer is mainly concentrated in the upper-middle Pleistocene aquifer
(qp2−3).

Fig. 6 Map of hydrogeology in Tra Vinh province [9]
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Fig. 7 Cross section of hydrogeology I–I [9]

Fig. 8 Cross section of hydrogeology II–II [9]
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3.3 Boundary and Initial Conditions

• Boundary condition: boundary AB: qn1 = 0; boundary CD qn2 = 0; boundary
AC: h = −107 m; boundary BD: ∂f ̸∂y= 0

• Initial condition: The initial condition for the interface between saltwater and
freshwater was assumed when freshwater has not been exploited yet; given the
height of piezometric head ϕfð Þ and the depth (h) of the interface to the
upper-middle Pleistocene (qp2–3) porous aquifer at the nodes in the vertical
section (Fig. 9, cross sections II–II and III–III).

3.4 Results and Discussion

Algorithm and modeling program were established by FEM method in weak
Galerkin formulation in order to predict the position, the interface shape over time
between fresh and salt water of upper-middle Pleistocene aquifer. The change of the
interface position at the wells of the aquifer is shown in Figs. 10, 11, 12, 13, and 14.

Commenting calculation results: From the above results, we find that depending
on the location and time, the displacement value of saltwater toe varies despite the
same pumping flow (Figs. 10, 11, 12, 13, and 14). For example, saltwater toe at the
beginning is located at a distance of 2,019 m from the sea, but after t = 10,000
days of exploitation, saltwater toe moved into the mainland with a distance of
14,000 m in the section along Hau river, 8,000 m in section I–I, 10,000 m in
section II–II, 7,000 m in section III–III and 12,000 m in the section along Co Chien
river. But then, at t = 50,000 days, the salinity displaced 18,000 m from the sea
into mainland for the sections, except for I–I section when it moved 15,000 m only.
Especially, at the time of t = 50, 000 days ð≈410.9 yearsÞ with the specific outflow,
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Fig. 9 Chart of calculation and layout of pumping wells in the study area
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the displacement of salinity at sections II–II and III–III was 24,000 m, the largest
value as compared to other sites. More specifically, it was 2,000 m larger than that
at the site of section II, 3,000 m larger than at the section along Hau River, and
1.000 m larger than at the cross section along Co Chien River. The calculation
results also indicated that in the initial time, the saltwater moved very fast from
7,000 to 14,000 m at t = 10,000 days, then from 4,000 to 11,000 m at time
t = 50,000 days and only about 3,000–7,000 m at t = 150,000 days (Table 3).
This is appropriate to the fact that the deeper the displacement of salinity into the

Fig. 10 Position and depth of the interface along Hau River by time

Fig. 11 Position and depth of the interface at the cross section I–I by time
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Fig. 12 Position and depth of the interface at the cross section II–II by time

Fig. 13 Position and depth of the interface at the cross section III–III by time
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mainland is the less it is near the sea. The calculation results also show that when
the groundwater is pumped (freshwater), the surface value of the interface moves in
the horizontal direction (from the sea to the mainland) corresponding to the pump
flow and time.

4 Conclusions

The mathematical model of salinity intrusion into the aquifer was set up to calculate
for the coastal area algorithm and calculation program calculated for confined
aquifer in Tra Vinh province. The calculation results are identified as follows:

• Determining the depth and shape of boundaries that salinity moves into the
mainland from the sea over time, depending on the location of the cross section

Fig. 14 Position and depth of the interface along Co Chien River by time

Table 3 Displacement value of salinity compared to the position of saltwater toe over time

Cross section Distance from the coast to the farthest saltwater toe position (m)
t = 0 day t = 10,000 days t = 50,000 days t = 150,000 days

Along Hau River 2,019 14,000 18,000 21,000
I–I 2,019 8,000 15,000 22,000
II–II 2,019 10,000 18,000 24,000
III–III 2,019 7,000 18,000 24,000
Along Co Chien
River

2,019 12,000 18,000 23,000
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considered differently in the calculation area. For example, at the II–II section at
the beginning of salt wedge at 2,019 m from the sea, but after pumping time
t = 150, 000 days ≈ 410.9 years, the salt wedge shifted to 24 km.

• Evaluating the level of salinity intrusion into the upper-middle Pleistocene
aquifer (qp2–3) over time corresponding to the specific exploitation flows. Based
on this, the model can predict the salinity intrusion into the aquifer over time
corresponding to the different exploitation flows.

• Algorithms and calculation programs can be calculated for all confined and
unconfined aquifers, corresponding to different areas in the coastal zone.

• The results of this calculation are significant for planning, laying out wells, and
forecasting salinity intrusion so that the managers can devise feasible plans for
exploiting groundwater in order to meet the need of the socioeconomic devel-
opment needs, and also to ensure the sustainable development of Tra Vinh
province as well as other coastal areas in the country and in the world.
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Study the Hull Form
and Propeller-Rudder System
of the Fishing Vessel for Vietnam

Victor G. Bugaev, Dam Van Tung and Yana R. Domashevskaya

Abstract Currently, the construction of steel fishing vessels in Vietnam is extre-
mely important. For the traditional fishing vessels were built in Vietnam, the
characteristic form of the contours corresponding to low-speed running and block
coefficient is increased. The transition to a new level of construction and operation
of fishing vessels requires a thorough and detailed analysis of the hull form and the
characteristics of propeller-rudder system, as well as their interaction in the process
of fishing operations. In this paper we discuss the characteristics of the hull form
and propeller-rudder system (propeller inside the nozzle) of the fishing vessel
(project 70133), intended for the manufacture and operation in Vietnam by using
Computational Fluid Dynamics.

Keywords Fishing vessel ⋅ Propeller-rudder system ⋅ Resistance of ship

1 Introduction

Today, computational fluid dynamics (CFD—Computational Fluid Dynamics) is
widely used both in its traditional fields: shipbuilding, aviation, design vehicles, and
at the creation of home appliances, printing equipment, etc. Modern software
products of hydrodynamic simulation combine high level of functionality, accuracy,
and ease of use.
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Features of designing and operation of fishing vessels are [1, 2]:

Search of fishing objects and fishing practices by various fishing gear;
Storage and transportation of whole cooled fish and seafood in refrigerated tanks

with water from 6 to −1 °C;
Changing load during fishing and during the voyage;
Long-term stay in the sea under various meteorological conditions;
Conducting fishing in conditions of the agitated sea and in various modes of
movement.

The organization of fishing is autonomous, in which the fishing vessel will
deliver the catch or the cooled products ashore, receiving from the shore bases all
types of supplies.

Errors in the selection of fishing speed, maneuverability, and seaworthiness can
lead to a significant decrease in the efficiency of the vessel.

Currently, the construction of steel fishing vessels in Vietnam is extremely
important. For the traditional fishing vessels had been built in Vietnam, the char-
acteristic form of the contours corresponding to low-speed running and block
coefficient is increased. The transition to a new level of construction and operation
of fishing vessels requires a thorough and detailed analysis of the hull form and the
characteristics of propeller-rudder system, as well as their interaction in the process
of fishing operations.

The purpose of research is studying the characteristics of the hull form and
propeller-rudder system (propeller in the nozzle) of the fishing vessel project 70133,
intended for the manufacture and operation in Vietnam.

In this study, the following problems have been solved:

1. Created 3D models: of the hull vessel surface and propeller-rudder system,
which allows carrying out parametric study and optimization.

2. Determined dependence of the resistance water from the vessel’s speed and hull
form.

3. Determined the hydrodynamic characteristics of the propeller-rudder system in
the free water.

4. Determined the features of interaction of the propeller-rudder system with the
vessel’s hull.

5. Developed recommendations for improving the hull form and propeller-rudder
system.

The vessel project 70133 is intended for seafood catching in the coastal areas of
the exclusive economic zone of Vietnam and their transportation in the cooled
condition (Fig. 1).

The vessel has been designed taking into account the requirements of the rules of
the Russian Maritime Register of Shipping for compliance with foreign rules and
regulations. The vessel has a diesel engine, single-screw, with transom stern,
continuous upper deck and with two-tier forward deckhouse. The speed is 11.0
knots.
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On modern fishing vessels, operating in various driving modes (on crossing,
trawling, etc.), the use of controllable pitch propeller in the guide nozzle [3] is
typical. Experience in the design and operation of these vessels has shown that they
have large values of the coefficient of thrust and efficiency at low speeds as com-
pared with vessels having a conventional propeller-rudder system.

The vessel has a controllable pitch propeller, with a diameter of 1.5 m and four
blades of Ni-AL-BZ in the rotating guide nozzle (Table 1) [4].

The 3D model of the hull surface. The ship’s surface has been made of ruled
surfaces, interconnected by knuckles. The only exceptions are the bilge lines with
rounded radius of 500 mm and part of the extreme end in the forepeak region. All
knuckles are located higher the construction waterline. Thus, an increase in the
process ability of the hull construction is achieved without a significant increase in

Fig. 1 General arrangement of ship

Table 1 Main characteristics
of fishing vessel project
70133

Characteristics Value

Lpp-length between perpendiculars, м 27.31
B-breadth by construction waterline, м 7.08
T-draft by load line, м 2.4
H-depth molded, м 3.42
β-mid-ship area coefficient 0.823
δ-block coefficient 0.534

φ-vertical prismatic coefficient 0.662

Study the Hull Form and Propeller-Rudder … 693



water resistance [5]. The line drawing is shown in Fig. 2, and a 3D model of the
surface of the hull without a lito-welded stern frame, propeller, and nozzle with
rudder in Fig. 3a

To study the hydrodynamic characteristics of the propeller-rudder system, a
parametric model of four-blade propeller was created, which allows modeling the
work of the vessel in various modes of field operations and transitions. The base
screw has been chosen with a diameter of 1.5 m, with constructive pitch 1.24 m,
pitch ratio 0.653, and the disk-area ratio 0.63 (Fig. 3b).

The model of the basic version of the nozzle is shown in Fig. 3c.

1.1 Simulation and Results

Dependence of water resistance on ship’s speed and the hull shape
Simulation of the vessel’s motion is carried out in a mode of transition (without

regard to agitation) with Froude numbers, which allow calculating the water
resistance of the vessel by traditional methods and comparing it with the results of
the present studies. The focus is on the movement of the vessel at speeds of 4.06 m/
s. The flow is laminar and turbulent. The surface roughness of the hull is assumed to

Fig. 2 Lines plan of ship

Fig. 3 3D models: a ship’s surface; b propeller; and c nozzle with rudder
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be 100 μm (micrometer). The dimensions of the computational domain have been
chosen in such a way as to exclude the influence of the boundary conditions on the
results of flow past the surface of the hull. As indicators determining the quality of
the hull form, the following are accepted: complete resistance, pressure resistance,
and frictional resistance, as well as flow velocities in the boundary layer and surface
pressure [6]. In Fig. 4 is shown the diagrams of velocity distribution in various
planes of the ship’s hull, and in Fig. 6 curves of the resistance of the vessel,
obtained in this study (R2) and calculated using the method Eroshin V.A. (R1).

Conclusion (Fig. 4):
In the area of the stern extremity, a significant decrease in pressure (flow

velocity) is observed, which causes the formation of vortices and the separation of
the flow in places of the sharp increase in pressure.

The velocity field in the plane of the propeller disk has a significant circum-
ferential irregularity, which is associated with the V-shaped shape of the contours in
the aft extremity.

Installing the wheel with the rudder (without screw) leads, on the one hand, to
some leveling of the flow and, on the other, to increasing of the joint and frictional
resistance, respectively, by 3 and 2%.

The thickness of the boundary layer in the middle part of the ship is changed
significantly around the perimeter of the frame, and the greatest value is in the bilge
area, which is explained by the presence of bilge vortices in this region.

Fig. 4 Diagrams (field) of velocities: a in the plane of CWL; b in the plane of the mid-ship frame;
and c in the plane of the disk propeller(in the system the hull—nozzle), the rear view
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A significant perturbation of the boundary layer is observed in the region of 06fr.
and 40fr., which makes us pay attention to the shape of the surface of the hull in
these areas.

The curvature of the flow lines in the boundary layer leads to the appearance of
vortices and flow separation in the form of discrete vortices, which affects the
resistance and associated flow.

The character of the distribution of velocities and flow lines in the location of the
propeller in many (but not only) depends on the shape of the aft extremity and
protruding parts.

Hydrodynamic characteristics of propeller-rudder systems in free water
In the simulation, the following initial conditions are assumed:
The propeller rotational speed is 350, 400, 450 rpm;
Speed motion 8 m/s with lead 2 m/s;
The dimensions of the computational domain exclude the influence of the walls

on the hydrodynamic characteristics of the propeller in addition to the previous
ones, and the following quality indicators have been introduced: Kt—coefficient of
thrust; Kq—coefficient of moment; CE—Coefficient of efficiency sizes of mesh
allow to obtain results with sufficient accuracy.

Fig. 5 shows the calculation results: (a) Diagram of velocity in the DP; (b) Line
flow through the nozzle and rudder, and in Fig. 6—curves of the action of the
propeller Kt, Kq, and CE.

The results of the calculations are in good agreement with the values obtained
from the diagrams of the propeller in the guide nozzles, given in the references (so
the difference in the coefficients of thrust is 5–10%) [7]. The calculated value of the
efficiency of the propeller installed on the ship is slightly smaller (by 5%) than for
the B-series propeller. However, the advantage of the controllable pitch propeller in
the nozzle is its versatility and possibility of thrust control.

Fig. 5 Visualization of calculation results: a diagram of velocity in the DP; b line flow through
the nozzle and rudder
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A drawback of some propellers in the nozzle is the screw twisting of the water
flows inside the nozzle which, under the action of the centrifugal force, move
radially and create an increased pressure between the end of the blade and the
nozzle, which leads to the appearance of an additional component of the torque and
a decrease in the efficiency.

The dimensions and shape of the nozzle with the rudder and propeller have been
chosen in such a way as to exclude the phenomenon described above.

Features of interaction of the propeller-rudder systems with the hull
After creating the assembly surface of the body—the screw in the nozzle, a new

study has been made in order to determine the influence of the elements on the
entire system

Figure 7 shows: (a) the assembly model; (b) the diagram of the speeds of
assembling the vessel’s ship’s surface with propeller-rudder systems in the plane of
the mid-ship frame and (c) in the plane DP.

In Fig. 8 along with the ship’s resistance curves obtained in this study (R2) and
calculated using the method Eroshin V.A. (R1), the dependence of the resistance of
the vessel with the nozzle and the propeller (R3) is shown.

At the end of the study, passport diagram is constructed to analyze the inter-
action of the hydrodynamic complex and the propelling engine (Fig. 9).

On the profile of the nozzle installed behind the hull of the vessel, circulation of
the velocity is created, so the speed of water flow through the propeller disk
increases, which contributes to an additional increase in its efficiency, in compar-
ison with the value in free water (see Fig. 6). As a result, the use of the power of the
main engine in various modes is improved due to the fact that the speed of the flow
in the propeller disk varies more slowly than the speed of the vessel. When the
propeller rotation speed of 450 per/min, obtaining at power of propelling engine
Ng = 350 kW, the ship has a top speed of 11.2 knots (see Fig. 9) which corre-
sponds sufficiently to the speed of the project vessel 70133 in free water.

Fig. 6 Curves of the action of the propeller Kt, Kq, and CE
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2 Conclusion

(1) In the area of the stern extremity, a significant decrease in pressure (flow
velocity) is observed, which causes the formation of vortices and the sepa-
ration of the flow in places of the sharp increase in pressure.

(2) The velocity field in the plane of the propeller disk has a significant circum-
ferential irregularity and the installation of a nozzle with rudder somewhat
smooth out this irregularity.

(3) The results of calculations of the resistance to movement of the vessel (R2) are
in good agreement with calculations using the method Eroshin V.A. (R1), at a
speed of 4.75 m/s the difference is 10%, and at a speed of 5.9 m/s decreases to
a value of 0.6%.

(4) Estimation the nozzle with rudder behind the ship’s hull leads to decrease of
joint resistance (ship surface and propeller-rudder system) (R3) of the system,
20% (at medium speeds) and 8% (at high speeds) respectively. The positive
effect of the propeller-rudder system has an impact on formation of streams of
flow around the elements of the whole system.

Fig. 9 Passport diagram
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(5) The picture of fishing vessel simulation and also numerical values of the
parameters (speed and resistance) shows the suitability of SolidWorks Flow
Simulation for using it at the stage of design and engineering analysis before
carrying out experimental research.
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Research the Strength of the Decking
Overlap of the Fishing Vessel for Vietnam

Victor G. Bugaev, Dam Van Tung and Yana R. Domashevskaya

Abstract SolidWorks Simulation allows to analyze the local strength of hull
construction and to determine the strength characteristics of structural elements and
equipment. It is possible to assess the strength of a structure or assembly as a whole,
to determine which structural elements or parts of the assembly will reduce the
product’s operational reliability, and make changes to obtain an equivalent con-
struction or assembly. The purpose of the study is to research the strength of the
decking overlap of the fishing vessel by using SolidWorks Simulation.

Keywords Fishing vessel ⋅ Strength ⋅ Decking overlap

1 Introduction

Vietnam is a country with a long coastline, with rich and diverse marine resources,
including fishes. The efficient development of fishery resources leads to the rapid
growth of both fishery and shipbuilding industry, as well as Vietnam’s marine
economy as a whole. The Vietnamese fishing fleet is low-tonnage fleet, made
mostly (90%) of wood. Steel fishing vessels exist in limited numbers that are
designed and built in foreign shipyards, including Russia. Therefore, the devel-
opment of the shipbuilding industry of Vietnam is a promising direction, and the
construction of modern fishing vessels at shipyards in Vietnam is extremely
important.
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The vessel of project 70133 is intended for catching seafood in the coastal areas
of the exclusive economic zone of Vietnam and their transportation in the cooled
condition.

The vessel is designed, taking into account the requirements of the rules of the
Russian Maritime Register of Shipping for compliance with foreign rules and reg-
ulations. The model is diesel powered vessel, single-screw, with transom counter,
upper continuous deck and twolevel forward deckhouse. Its speed is 11.0 knots.

The structure of the hull is made of shipbuilding steel of normal strength cate-
gory A with the guaranteed yield strength of at least 235 mPa (24 kg/mm2) in
accordance with GOST 5521-86.

1.1 Theoretical Propositions

At the stage of creating constructions and making final decision construction ele-
ments are subjected to thorough engineering analysis in order to provide strength,
fabricability and other properties as a result of mechanical and thermal effects,
according to criteria that are related to the product quality indicators [1]. Engi-
neering analysis is carried out using the CAE-applications SolidWorks Simulation,
which allows analyzing the local strength of hull structures, to determine the
strength characteristics of structural elements.

SolidWorks Simulation allows to analyze the local strength of hull construction
and to determine the strength characteristics of structural elements and equipment.
It is possible to assess the strength of a structure or assembly as a whole to
determine which structural elements or parts of the assembly will reduce the
operational reliability of the product and make changes to obtain an equivalent
construction or assembly.

The SolidWorks Simulation module provides the ability to assess the strength of
structures using various strength criteria for ductile materials:

• the equivalent maximum stress for Misses;
• normal stresses by x, y, z;
• main stresses σ1, σ2, σ3, and other.

Permissible stresses for structures are taken in accordance with the theory of
Misses, taking into account the joint influence of bending and shear. The essence of
Misses theory (the maximum energy forming) consists in the assertion that the
ductile material begins to collapse in places where von Misses stresses are limiting
stress. The maximum (maximum permissible) stress may be the yield strength,
ultimate strength, or other criterion, in our study the yield strength σy. Factor of
safety kvonMises = σпpeдeл/σvonMises.

The maximum values of normal and tangential stresses are assumed equal

σ пpeдeл = σy = 235 мПa;
τ пpeдeл = 0,9τy = 122,7 мПa, гдe τy = 0,58σy.
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1.2 3D Model Description

The hull of the vessel is a complex technical system consisting of separate inter-
connected overlap and structures that provide the ship with sufficient strength,
reliability, and economic efficiency in the course of its operation. In order to analyze
the strength of structures under the influence of local loads, overlapping is separated
from the general system and considered autonomously, and the influence of adja-
cent structures is taken into account by modeling fixity of the overlap along the
perimeter. Strictly speaking, isolating overlaps from the system is a forced measure,
and it would be more correct to consider a closed loop as a whole, but such a
calculation is very laborious and costly.

The overlap supporting contour forms the sides of the vessel and transverse
bulkheads. The longitudinal bulkheads and deck plates are considered rigidly fixed
on transverse bulkheads, and the beams on the sides are resiliently fixed with a
certain elastic compliance factor.

The vessel is built by transverse system framing with frame spacing 540 mm.
The frames and beams are made of bulb flat. Longitudinal and transverse bulkheads
are welded and flat, reinforced with vertical bulb stiffeners. Three cargo hatches
measuring 800 × 1200 mm in size are installed on the upper deck for access to
RSW tanks. The cuts are supported by stiffeners of longitudinal and transverse
directions. The corners of the cuts are rounded in order to prevent the creation of
stress concentration [2, 3]. Between the hatches, there are two longitudinal bulk-
heads, dividing the hold into three compartments. On the deck, there is a trawl
winch with a drum (3 tons × 60 m/min); Net drum (8 tons × 40 m/min); and
Extraction winch (2 tons × 40 m/min) (Fig. 1).

(a) (b)

Fig. 1 Hull construction of: a frame spacing (шп) 25; b 3D model of overlap
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1.3 Creating of the Project

Mounting. Overlap lean on the ship’s side and transverse bulkheads. The overlap
beams are located parallel to the sides of the supporting contour. The overlap is
rigidly fixed on transverse bulkheads, and it is leaned on the sides and longitudinal
bulkheads, which in turn are rigidly fixed at the bottom (Fig. 2a).

Load. The strength of the overlap bonds is checked for the effect of a trans-
versely uniformly distributed load of the weight of the cargo (catch) on the deck and
the weight of the water falling on the deck during the storm, but not less than
20 kPa of vessels (Fig. 2a) [4].

Grid. An important step in the analysis of structures is the creation of a grid. The
quality and time of research depend on its parameters. In this study, it is customary
to automatically create a grid based on the geometric dimensions of the structures
using grid controls in the nodes that are subject to more detailed analysis. At the
initial stages of the analysis of structures, a grid with linear tetrahedral solid-state
elements is used, in the final stages—with parabolic elements (Fig. 2b).

To connect the coincident nodes along the boundary of the bodies, a binding
contact is established, which gives a compatible grid.

The grid characteristics: type—on a solid body; The size of the element is
173.147 mm; Tolerance: 8.65735 mm; Quality is high; Total number of nodes is
100524; and Total number of elements is 51681.

1.4 Calculation Results

The diagrams of equivalent Misses stresses arising in the overlap (Fig. 3), dis-
placements (Fig. 4), deformations (Fig. 5), and graphs of their distribution along
the beams of the transverse framing from side to side are given below.

(a) (b)

Fig. 2 Project creation: a scheme of fixing the overlap and application of the load; b the grid in
the problem nodes of the structure
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Conclusions:

1. The maximum stresses in the deck overlap reach 170 MPa, which does not
exceed the yield strength of steel. The node must be found and represented in
the graphics. The safety factor is 1.38.

Fig. 3 Stresses according to Misses: a the distribution diagram; b the probing results

Fig. 4 Displacement: a the distribution diagram; b the probing results

Fig. 5 Deformations: a the distribution diagram; b the probing results
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The most stressed places are the fastening place of the beams to the side bracket
and the area where the trawl winch base is fixed to the deck floor.

2. The maximum displacement is 1.2 mm in the center of the plates in the area of
the fr.26–27.

3. The maximum deformations reach values of 4.15e-005 and are also observed in
the region of the fr.26–27.

The most problem places of constructions are knots connection beams with
vertical stiffeners of longitudinal bulkheads and with frames with the help of
brackets (Fig. 6).

In the places of maximum stresses and displacements, it is recommended to
perform the following structural changes:

• In the area of connection of beams with vertical stiffeners of longitudinal
bulkheads, the knee with straight free edge is welded butt-joint, which signifi-
cantly increases the stresses in this area (Fig. 6a). Using knee somewhat larger
with a rounded free edge will significantly reduce the stress in the rounded edge
of brackets and beams. Simultaneously with this, the value of stress concen-
tration in the beams will decrease.

• It is advisable to modify the knots at the nodes of connection of the beam and
frame, giving them curvilinear shape in order to reduce the value of the stress
concentration (Fig. 6b).

• The accepted thickness of decking plate provides sufficient safety factor for
structures. In this case, the maximum displacements in the center of the plates in
the area of the fr.26–27 reach values of 1.2 mm (Fig. 4). The presence of
additional compressive forces can lead to large displacements and increase in
stress concentration in the node of connection of the structures. In this case, it is

Fig. 6 Most problem places of structures: a joints of beams with vertical stiffeners of longitudinal
bulkheads; b with frames
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recommended to increase the thickness of the decking plate by 0.5–1.0 mm,
which will lead to an increase in the mass of structures and will require addi-
tional research.

2 Conclusions

1. The results analysis of the study shows that the strength of the deck overlap is
provided under the influence of loads, regulated by the rules and norms of
strength and operating conditions: the maximum stresses on Misses do not
exceed the yield strength of the material; Tangential stresses do not exceed
permissible limits.

2. Taking into account the deck overlap of real (not excluded) side structures in the
investigation significantly changes pictures of the operation of overlap and leads
to the stresses redistribution and deformations along the length of the beams,
which indicates the sensitivity of the software to types of fixed end and
obtaining more accurate results.

3. The picture of the load perception by overlap as well as the numerical values of
the parameters (stresses, displacements, and deformations) indicates the suit-
ability of SolidWorks Simulation at the design and engineering analysis stage.
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Analysis and Evaluation of the Ground
Wave Propagation Due to Blasting
Activities of the Road Construction
by Numerical Models and Experiments

Lan Nguyen, Huy Hung Pham and Phuong Hoa Hoang

Abstract Blasting activities of the road construction could damage to the neigh-
boring buildings because of the ground wave propagation. This paper focused on
analyzing the numerical models of blasting in tunnel construction by using FEM
software—MIDAS GTS NX and comparing to empirical measurements. From the
results of analysis, we can identify the relationship of the wave propagation speed
in the ground and the radius from the considering point to the source of vibration.
Based on the results of this analysis assess the potential damage to neighboring
buildings as well as designs the way to limit the impact of the wave propagation to
neighboring buildings for similar projects.

Keywords The finite element method (FEM) ⋅ The ground wave propagation
Peak particle velocity (PPV) ⋅ Vibration sources ⋅ Radius ⋅ Vibration limit
velocity

1 Introduction

Currently, the process of tunnel construction method NATM (New Austrian Tun-
neling Method), blasting activities have caused the propagation seismic wave that
can could damage to the neighboring buildings. Cause of vibration makes the
floors, beams, pillars, walls structure to be cracked and broken, especially, the
building structure was solidly built or appeared cracks for a long time in form III
under TCVN 7378-2004.

This is not conducive to the investors when the risk occurs, the cost of com-
pensation for influence will make the total cost of construction increased, especially,
the public projects (use the capital budgets, the state’s capital, etc.) go against the
spirit of saving and cut down spending under Resolution 11/2011/ND-CP issued by
the Government of the solutions to curb inflation and macroeconomic stability.
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Therefore, the research, analysis and evaluation of the impact of the seismic
waves propagation will exactly predict the influences of blasting activities, reduce
to the smallest consequences for people and property, decrease compensative
expenses so that the savings for the budget and the investors.

2 The Theoretical Basis

2.1 Peak Particle Velocity

When blasting activities in tunnel construction takes place, the explosive charge is
detonated in a blast hole the rock is immediately fractured and splitted apart,
pressure is high enough, they will make waveforms spread in rock, include: Shear
waves (S), compression waves (P) and Rayleigh waves (R). Essentially, they can be
divided into two waves: Body waves—propagating below ground, and Surface
waves—propagating on the face of the ground.

The waveform moves at different speeds. The P wave is the fastest moving wave
through the ground, the particles in the wave move in the same direction as the
propagation of the 50–60% of the velocity of the P wave and the particles within the
wave move at right angles to the direction of motion of the wave. The Rayleigh
wave is the latest and the particles within the wave move in elliptic orbits, it makes
scrambling on the face that influences works of the ground under results research in
former times.

All of these waveforms have the same in damping attenuation of energy, because
of energy dispersion and force of friction when it moves in an infinite elastic
medium and an infinite elastic plane, which leads to dependence of displacement
(x), velocity (v), and acceleration (a) on vibration energy sources, propagation
medium condition of wave, and distance that they moved.

According to the experience of the researchers, peak particle velocity correlates
with damage more closely than peak of displacement or acceleration. Therefore,
peak particle velocity, which influence on experimental mensuration of seismic
wave, are used in assessing ground vibration (Fig. 1).

Fig. 1 Peak particle velocity of vibration velocity spectrum
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Proceed to build logarithm curve that it is asymptotic plane of point of peak
particle velocity so evaluation of the ground wave propagation (Fig. 2; Table 1).

2.2 Proposed Predictor for Blasting Vibration

Based on data of experimental measuring and calculations analyzed, the proposed
predictor equation of peak particle velocity (ppv) is under the Australia Standard [5]
(AS 2178.2–2006) of explosives, storage, and use.

Fig. 2 Attenuation of peak particle velocity

Table 1 List of the existing equations for estimation of peak particle velocity

Ambraseys–Hendron [1] (1968)
ppv=K Rffiffiffi

Q3
p

� �− β

Nicholls, Johnson–Duvall [2] (1971)
ppv=K Rffiffiffi

Q
p

� �− β

Langefours–Kihlstrom [1] (1973)
ppv=K

ffiffiffiffiffiffi
R2 ̸3

Q

q� �− β

United States Bureau of Mines [3] (USBM-1959)
ppv=K Rffiffiffi

Q
p

� �− β

Indian Standard [4] (IS 6922-1973)
ppv=K R2 ̸3

Q

� �β

Australia Standard [5] (AS 2187.2-2006)
ppv=K Rffiffiffi

Q
p

� �− β

Where:
ppv peak particle velocity (mm/s)
R distance from charge (m)
Q Instantaneous charge (kg)
K; β Site constant and site exponent
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ppv=K
Rffiffiffiffi
Q

p
� �− β

ð1Þ

where:

ppv peak particle velocity (mm/s).
R distance from charge (m).
Q Instantaneous charge (kg).
K is site and rock factor constant. Free face—hard or highly structured

rock = 500; Free face average rock = 1140; Heavily confined = 5000
β is constant related to the rock and site (usually –1.6)

• Rhyodacite/Rhyolite: 2.2–2.5
• Granite: 2.1–2.4
• Limestone: 2.1
• Ordovician sediments: 2.8
• Coal mine overburden: 1.5–1.8
• Basalt (clay floor): 1.5–1.6
• Basalt (massive): 1.9–3.0.

2.3 Calculation Results

According to terrain conditions of site measurement in Sect. 3, free face average
rock K = 1140, weathering rock β = 1.6. We have equation of peak particle
velocity (Table 2):

ppv=1140
Rffiffiffiffi
Q

p
� �− 1.6

ð2Þ

where:

ppv peak particle velocity (mm/s).
R distance from charge (m).
Q Instantaneous charge (kg).

Table 2 Theoretical
calculation results

STT R (m) ppv (mm/s)

1 227 7.84
2 257 6.43
3 287 5.38

4 517 2.10
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3 Experimental Measurement in Site

3.1 Experimental Site

The experiment was performed on November 26, 2015. The experimental field
included a section near the source of vibrating, belong to the center line of a tunnel
the approach to left tunnel in the South tunnel construction works through the Eo
mountain in the 4th package—highway construction project in Da Nang–Quang
Ngai, from Km21 + 500 to Km32 + 600, Duy Son Commune, Duy Xuyen Dis-
trict, Quang Nam Province [6] (Figs. 3 and 4; Table 3).

Layout of the probe on the ground is described in Fig. 5, each of the vibrant
sensor location on the ground has an iron bar attached to the ground. On the iron
bar, attached two vibrant probes, one is vertical vibration (denoted V) and one is the
vibration according to diameter (denoted R). The vibrant probe is connected to the
receiving and signal processing parts. The distance of the probe to vibrant source is
227, 257, 287, and 517 m (Fig. 6).

3.2 Vibratory Measuring Equipment

Vibratory measuring system includes vibratory sensors (transducers), signal sys-
tems (datalogger), and a software to receive and process signals (software). The
requirements on the equipment according to the TCVN 7378 are as follows: Fre-
quency range is 1−100 Hz, the non-linear is 10%, and velocity range is 0.01
−500 mm/s (Fig. 7).

A geophone is automatically calibrated to follow a service characteristic of
manufacturer. Before laboratory activities, this geophone is checked by standard
impulses equipment.

Fig. 3 Experimental site
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The data were stored in the computer at field and analyzed by use the dedicated
software Vibration Monitoring.

Fig. 4 Checking 102 kg of explosive type P113

Table 3 Explosive
parameters of P113

Specification Unit Parameters

Potential work cm3 320–330
Blasting velocity m/s ≥ 4200
Conducting explosion cm ≥ 6
Explosive density g/cm3 1.10–1.25
Being able to leave water h ≥ 12

Fig. 5 Layout of the probe on the ground at the field

Fig. 6 102 kg of explosive type P113 installed as designed at the source of vibration
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3.3 The Works Needed to Protect

The works need to protect is the homes level 4 built solidly. Figure 8 describes the
surrounding works. According to TCVN 7378:2004, with the kind of works is on
type III and measured frequency are in the very wide range from 39 to 184 Hz [6],
take the most adverse 39 Hz is near the upper of the selected range from 10 to
50 Hz, the safe values of vibratory velocity allow to selected is 6.63 mm/s for the
works has not been damaged before construction. With uncertainty works that were
damaged before the construction of the road, the values of vibratory velocity for the
selected license are 3 mm/s in order to protect the works from being more crack.

3.4 Vibration Measurement Results

The measuring results and analysis of vibrations at the measuring point include
vertical vibrant velocity and velocity according to diameters during the experiment.
From this measuring results [6], conduct sum data of direction, detailed analysis of
significant instant at the right time peak particle.

• Peak particle velocity of vertical, max Vz (mm/s);
• Peak particle velocity of horizontal, max Vr (mm/s);
• Peak particle velocity of sum, ppv (mm/s) (Fig. 9; Table 4).

Fig. 7 Block diagram for vibration measurement system

Fig. 8 Works needed to protect
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Based on the results from the experiment, we proposed the gradually decrease
rules the peak velocity value according to the distance under formula:

ppv=4500
R2

Q

� �− 1

ð3Þ

where:

ppv peak particle velocity (mm/s).
R distance from charge (m).

Point 1 – 227m  Point 2 – 257m 

Point 3 – 287m Point 4 – 517m 

Fig. 9 Wave spectrum of experiment

Table 4 Experimental
measurement results (unit:
mm/s)

STT R (m) Vz Vr ppv

1 227 5.93 6.47 8.78
2 257 3.95 4.81 6.22
3 287 3.21 3.80 4.98

4 517 1.08 1.65 1.97
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Q Instantaneous charge (kg).
4500; −1 Site constant and site exponent.

The propagating rules of seismic wave depend on distance from charge in for-
mula (3) to be true of experimental data in site. Showing that it is reliable.

4 Simulation on Midas GTS NX

GTS NX is a comprehensive finite element analysis software package that is
equipped to handle the entire range of geotechnical design applications including
deep foundations, excavations, complex tunnel systems, seepage analysis, consol-
idation analysis, embankment design, and dynamic and slope stability analysis.
GTS NX also has an advanced user-friendly modeling platform that enables
unmatched levels of precision and efficiency (Figs. 10, 11, 12 and 13).

• Peak particle velocity of vertical, max Vz (mm/s);
• Peak particle velocity of horizontal, max Vr (mm/s);
• Peak particle velocity of sum, ppv (mm/s) (Table 5).

Based on simulation results of Midas GTS NX, damping rules of peak particle
velocity direct ratio distance from charge with amount of explosives 102 kg,
approximate formula:

ppv=570429×R− 2.035 ð4Þ

where:

ppv peak particle velocity (mm/s).
R distance from charge (m).
570429; −2.035 constant of simulation.

Fig. 10 Simulated model
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5 Comparison Results and Evaluation

To conduct vibration impact assessments, we compare the results between exper-
iment, model, and theory for a more accurate and complete view.

With this results in Tables 6, 7, 8, and Fig. 14, the calculated values from
experiment, Midas GTS, and theory have points of similarity. With regard to the
software, maximum relative error is 13.5%, and calculated theory is 10.7%.
Showing that it is predictable basis of safety distance based on simulation on
Midas GTS and to calculating of theory.

Fig. 11 Blasting dynamic load definition

Fig. 12 Graph and formula of blasting pressure
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We proceed to build logarithm curve that it is asymptotic plane of point of peak
particle velocity from data Table 6.

Based on results, the group of researchers proposed safety distance for the works
in Sect. 3.3 (Table 9).

Point 1 – 227m Point 2 – 257m

Point 3 – 287m Point 4 – 517m

Fig. 13 Wave spectrum of Midas

Table 5 Simulation results
of Midas GTS NX (unit: mm/
s)

STT R (m) Vz Vr ppv

1 227 6.39 9.50 9.55
2 257 3.90 6.25 7.06
3 287 2.26 4.29 5.37
4 517 1.06 1.47 1.74

Table 6 To comparing rules
of velocity damping of
experiment, Midas GTS and
theory

R (m) Peak particle velocity (mm/s)
Experiment Midas GTS Theory

227 8.78 9.55 7.84
257 6.22 7.06 6.43
287 4.98 5.37 5.38
517 1.97 1.74 2.10
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Table 7 Relative errors
between experiment and
Midas GTS software

R (m) Peak particle velocity (mm/
s)

Relative errors (%)

Experiment Midas GTS

227 8.78 9.55 8.77
257 6.22 7.06 13.50
287 4.98 5.37 7.83
517 1.97 1.74 11.67

Table 8 Relative errors
between experiment and
theory

R (m) Peak particle velocity
(mm/s)

Relative errors (%)

Experiment Theory

227 8.78 7.84 10.7
257 6.22 6.43 3.38
287 4.98 5.38 8.03
517 1.97 2.10 6.60

Fig. 14 To comparing rules of velocity damping of experiment, Midas GTS and theory

Table 9 Determined safety distance for the works in form III under TCVN 7378-2004 with
amount of explosives 102 kg

Limit velocity (mm/s) Experiment (m) Midas GTS (m) Theory (m)

6.63 263 266 252
3 391 393 414
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6 Conclusion and Recommendation

• From the empirical data, we can construct the relation of PPV and R. Using this
relationship defines the radius of influence if we know the allowable vibration
threshold.

• The law of PPV decline from empirical R and numerical analysis by
MIDAS GTS software is quite appropriate. It is possible to use MIDAS GTS to
calculate the rough forecast of wave propagation due to blasting.

• To determine the ground wave propagation law that is more reliable for each
project, it is necessary to experimentally determine filed factor K and exponent
factor β.
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Fluid–Structure Interaction Analysis
of Revetment Structures—An Overview

T. Vu-Huu, C. Le-Thanh, Phuc Phung-Van, Hung Nguyen-Xuan
and M. Abdel-Wahab

Abstract The strong development of numerical models, especially, computational
fluid dynamic (CFD, i.e., the using of computational software to visualize how
liquid affects objects as it flows past) and fluid–structure interaction (FSI, i.e., the
coupling applications of fluid and structural mechanics disciplines) brought engi-
neers more good measures to investigate the interaction problems. Meanwhile, the
understanding gap of interaction between fluid and revetment structure (RS, i.e., a
special structure lean on the slope of dikes to keep the safe of slope and core from
erosion due to current and wave) is one of the biggest interests. Hence, the priority
aim of this study is to develop computer simulations, which will be used as the tools
during the construction of RS that will better protect the coasts from flood and
erosion.
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1 Introduction

Due to the flow and wave attack, the beach or riverbank will be eroded, as indicated
in Fig. 1. The consequence is the disappearance of living sides. The fact is that
thousands of square meter of coastal zone in Vietnam as well as in the world have
been vanishing, annually.

In order to avoid such damages, the revetments, bulkheads, seawalls, emerged or
submerged breakwaters, groins, jetties, dikes, levees, etc., could be used to saving
the landsides, as shown in Fig. 2.

In the above protection structures, revetment is one of the most common
structural solutions to protect the landsides because of its effectiveness [2]. The
revetment structure (RS) can be riprap rock (granular), concrete blocks, or various
mattresses, i.e., asphalt, vegetation, etc., as shown in Fig. 3. Furthermore, concrete
block revetment is the coastal engineer’s current trend owing to its better capability
in absorbing wave energy.

In fact, most of the design tools for each type of revetment structures still have a
lot of limitations. This is the reason why the design methodology for revetments has
recently been extended in applicability by means of a number of desk-studies for
other revetments [2]. The existence of many guided criterions for the designing of
revetment structures is a proof, such as PIANC (the World Association for
Waterborne Transport Infrastructure) guidelines, design of revetments [2], design of

Fig. 1 Coastal retreat under wave attack [1]

Fig. 2 Coastal structures [1]
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riprap revetment [4], revetment structure [5], design of coastal revetments, seawalls,
and bulkheads [6], recommendations for updating EM 1110-2-1614, design of
coastal revetments, seawalls, and bulkheads [7], river and channel revetments: a
design manual [8], the rock manual [9]. In addition, such designing tools are almost
based on the particular real revetment’s data or the physical experiments in the
modern laboratory. It absolutely is a big disadvantage for the developing countries,
especially in Vietnam where the limitations of financial condition, as well as,
modern laboratory equipment are common. Furthermore, the demand of the better
concrete revetment is increasingly urgent in Vietnam, and the country of “vulner-
able” Southeast Asia is facing on the threats from sea-level rise, global warming,
because of the less effectiveness of the current coastal protection structures under
the raise of severe storms and floods. The analytical approach, moreover, is almost
impossible as in Jo’s [10] confirmation owing to the too complex fluid–structure
interaction problem even with the simple governing equations.

As a result, the numerical approach, which can overcome all drawbacks of
finance, equipment will be good alternative solution. This is realistic because of the
present great development of numerical methods. That is the reason why this
research is to develop the specialized computational simulations for the construc-
tion of RS that will better protect coasts from erosion. This paper, therefore, aims to
make a review on the fluid–structure interaction analysis of the revetment structure.

Fig. 3 Types of revetment structures [3]
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2 Fluid–Structure Interaction (FSI) Concept

Firstly, a simple definition for fluid–structure interaction, presented in Ref. [10],
firmed that a flexible solid structure contacting on a flowing fluid is subjected to a
fluid-induced pressure, which may cause structural deformation and displacement
that return to alter the fluid field. The altered fluid field then exerts another pressure
on the structure. That process is called fluid–structure interaction (FSI). It allows
you to model scenarios showing where fluid deforms a structure, how the structure
responses to its deformation, and how such deformations influence the fluid flow.
For example, the fluid flows through pipe connections, flow meters, valves, airplane
wings, turbine blades, and other structures [11], as shown in Fig. 4.

Secondly, for numerical approach of FSI problem, we consider a fluid–solid
interaction problem domain as in Fig. 5; with a total area domain, Ω = Ωf ∩ Ωs,
consists of a fluid domain, Ωf, and a solid domain, Ωs. The contacting boundary
between the fluid and the solid domain is denoted, Γsf, the remaining of fluid
boundary, Γf, the remaining solid boundary, Γs.

Thirdly, the equations of motion for the fluid and structure are expressed in the
same index form, as a result of the D’Alembert’s principle [13]:

ρvi̇ − σij, j + fi =0 ð1Þ

Fig. 4 Some examples for the fluid–structure interaction [11]

Fig. 5 A domain of the
fluid–solid interaction
problems [12]
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where

fi is the body force, such as gravity
vi is the velocity; the time derivative of the displacement ui
σij, j is the internal stresses

In the structural domain, the equation is rewritten as follows:

ρsv ̇si − σsij, j + f si =0 in Ωs ð2Þ

where

s denotes the quantity associated with the structure
σsij, j denotes the structural stress and is a function of the strains εij

σsij, j = λ ⋅ δijεij +2Gεij ð3Þ

λ,G are Lame constants
εij is the structural strains

G=
E

2 1+ ϑð Þ
λ=

Ev
1+ ϑð Þ 1− 2ϑð Þ

ð4Þ

εij =
1
2

ui, j + uj, i
� � ð5Þ

E, ϑ are the Young’s modulus and the Poison’s ratio, respectively (4).
The fluid domain is usually represented by the Eulerian description as the

subsequent equations:

ρ f v ̇ fi − σ f
ij, j + f fi =0 in Ωf ð6Þ

where
f denotes the quantity associated with the flow-fluid.
And the gradient of current velocity is defined as follows:

v ̇ fi =
du f

i

dt
=

∂v fi
∂t

+ v fj v
f
i, j ð7Þ

In order to consider the incompressible flow, Newtonian fluid theory will be
used to compute the stress as:
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σ f
ij = − pδij + τij ð8Þ

where
p is the static pressure;

τij =2μ eij − δijekk ̸3
� �

eij = v fj, i + v fi, j
� � ð9Þ

Finally, on the fluid–structure interface boundary Γsf with no-slip conditions, the
Dirichlet and Neumann conditions can be defined as follows:

vsi = v fi onΓsf ð10Þ

σsijni = σ f
ijni onΓsf ð11Þ

In other words, the displacement of both fluid and structure on the interface
boundary is the same, i.e.:

xsij = x fij onΓsf ð12Þ

It means that the Eq. (12) can replace (10) in the computational boundary
conditions. And Eqs. (11) and (12) represent the coupling condition in the FSI
problem.

3 Computational Procedure Approaches for FSI

To start with, the need for a wide range of scientific and engineering disciplines has
been leading to a marvelous number of numerical techniques development for FSI
[13]. The fact is that it still continually growing and contributing more enormous
efforts to scientists and engineers. In this section, a review on the fluid–structure
interaction approaches is presented.

In addition, we can easily find many books and reviews of FSI problems,
recently. Morand and Ohayon [14] presented a number of numerical methods in
modeling the linear vibrations of elastic structures coupled with internal fluids, with
applications focused on sloshing, hydro elasticity, and structural acoustics. Dowell
and Hall provided an in-depth discussion of non-linear dynamical modeling of FSI
problems, largely drawn from applications in aerospace engineering, with an
emphasis on the construction of reduced-order models (ROM) based on rigorous
fluid dynamical theory [15]. Chakrabarti represented a collection of several
numerical works in modeling FSI problems in the context of ocean engineering
[16]. Mittal and Iaccarino extensively reviewed FSI computational techniques
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based on the immersed boundary formulation [17], originally proposed by Peskin
[18]. Shyy et al. [19] described a variety of computational methods for general
moving boundary problems in fluid dynamics, which also cover FSI applications,
etc.

Based on such documents, the numerical procedures to solve the FSI problems
may be broadly classified into four main approaches, as indicated in Fig. 6.

The first approach, named the monolithic/immersed approach, is a method
creating only one system of equations for the entire problem by simultaneously
solving both fluid and structure dynamics in an unified mathematical framework. Its
interfacial conditions are implicit in the solution procedure. This approach can
achieve better accuracy for a multidisciplinary problem, but it may require sub-
stantially more resources and expertise to develop and maintain such a specialized
code.

In the second method, the partitioned approach, two computational frameworks
of fluid and structure are created and separately solved with their respective mesh
and numerical algorithm. Another difference between monolithic and the parti-
tioned approach is about the interfacial conditions. The interfacial data will be
explicitly exchanged between the fluid and structure problems. Furthermore, the
partitioned approach reduces the code development time by using the validated
existing codes or numerical algorithms that are used for solving many complicated
fluid or structural problems.

The above two approaches are classified by computational framework and
shown as in Fig. 7.

The next classification is based on the treatment of mesh. The conforming mesh
approach treats the fluid, structural field, and mesh in a sequential process. This
process, to begin with, solves the fluid field at a given time and an assumed
interface location. The resulting fluid fields (pressure and stress) then are applied to
the structure field as external forces. The computation in structural field finishes
with the update of deformations and coordinates of the structure. New fluid mesh, at
the end of each computational time step, is created to adjust the new interface
location [13].

The non-conforming mesh approach means that there is no any re-meshing after
each computational time step. In this method, a term called force-equivalent term is
added into fluid equations. That term is the representation for the interaction
between fluid and structures and will be used to compute the fluid velocity. Such
result and the no-slip condition then are applied to find the structural velocity. As a

Fig. 6 Procedure approaches of FSI problem
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result, the need for mesh update is completely eliminated. Peskin [18] and Mittal
and Iaccarino [17] showed the analysis, as well as, applications for this method.

The major difference between two above approaches is figured in Fig. 8. In the
conforming mesh, it is clear that the new mesh for fluid is formed at time step t2. In
contrast, the mesh of non-conforming approach has no change after time step t1.

It is obvious that each computational procedure approach of FSI problems has its
own advantages and disadvantages. The choice completely depends on the
researchers’ desire. In this paper, the detail computational process, as well as,
formulations, equations, etc., of each approach is not illustrated.

4 Conclusions

Some basic definitions as well as classifications of FSI problems were revealed so
that the new researchers can have a better approach in FSI field. Furthermore, as the
driving task of this project is to investigate the interaction between currents, waves,
and revetment structure, meanwhile, the understanding for this problem is

(a) Monolithic approach

(b) Partitioned approach

Fig. 7 a Monolithic approach and b the partitioned approach for fluid–structure interaction, in
which Sf and Ss are solution for fluid and structure, respectively [13]

Fig. 8 a Conforming mesh and b the non-conforming mesh [13]
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inadequate. Hence, this article hopefully provides the general revetment definitions
and the rules in coastal protection so that in the next stages, the best approach is
chosen.
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Building the Empirical Formula Defining
Parameters of Blast Wave in Coral
Environment

L. Vu-Dinh and T. Nguyen-Huu

Abstract The article presents the empirical method to determine the characteristics
of coral material and coral foundation serving for computation and design of
defense security works on islands. The authors built the empirical formula to define
the parameters of blast wave in coral medium and compared the computation results
using AUTODYN software and then drew the conclusion as the basis for appli-
cation in reality.

Keywords Blast loading ⋅ Blast wave propagation ⋅ Soil

1 Raising the Problem

At present, there are not many scientific works which declare the study results about
blast wave propagation in coral medium [1–5]. Thus, the empirical study defining
blast wave parameters in coral medium is an urgent demand with practical value. In
this article, the authors will focus on solving some following detailed issues.

An explosive charge is put in coral medium. Deformation medium can be
constitutive of one layer or multi-layers. Loading on coral medium is the pressure of
blast wave caused by focused explosive charge. So, it is necessary to define the
parameters of blast wave at different locations in the medium (Figs. 1 and 2).

The medium is assumed to be constitutive of one layer or multi-layers with
various physico-mechanical properties. But each medium layer is homogeneous and
isotropic.

The authors measure blast wave parameters at positions with different explosive
charges by using AUTODYN software to simulate the explosion process in coral.
The detailed process is shown by the computing graph in Fig. 3. The parameters
from this test are compared with experimental results to draw the conclusion.
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Fig. 1 Vibrometer NI SCXI-1000DC

Fig. 2 Experimental instruments

010203 c

Fig. 3 Layout of explosive charges and the locations of pressure gauges
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2 Empirical Method Defining the Parameters of Blast
Wave in Coral Foundation

2.1 Experimental Equipment

Multi-channel vibrometer NI SCXI-1000DC is a modern device of multi-channel
fluctuation measurement made by National Instrument Firm—USA, which is an
intelligent measurement system with elastic configuration by integrating various
measuring cards depending on the users’ experimental purposes. The device has the
direct current source with the attached battery which can be continuously used at
field within 10 h without charging.

Sampling speed of this device can reach 333 kS/s with very low interference
level. There are four slots on the device for inserting different types of measuring
cards. NI company supplies a wide range of types of measuring cards SCXI suitable
with the line SCXI-1000DC. These types of measuring cards can be used for
different measurement such as acceleration, deformation, displacement, and
voltage.

Vibrometer NI SCXI-1000DC is totally controlled by computer through USB
connector. Driving software LABVIEW is a well-known software of analysis
measurement in the world, which allows to design the programs of measurement
and direct data analysis during measurement and cold-handles after measurement
with the channel quantity up to thousands each measurement.

Soil pressure gauge KDC-1MPA (produced by TML, Japan).
Pressure gauge KDC-PA is made of stainless steel and can be corrosion-resistant

in seawater. This gauge is used to measure pressure of blast wave in soil medium
and the blast wave pressure on work structure. The maximum pressure of gauge
type KDC-1MPA is about 1 MPa.

In this study, the gauge is used to measure the blast wave pressure on structure
model and compressive wave propagation in coral medium.

Strain gauge PLA-5 (produced by TML, Japan)
Strain gauge PLA-5 is a deformation measurement device for steel structure.

This gauge is used to measure the deformation of steel structure under the effect of
static load and dynamic load.

2.2 Experiment Description and the Measurement Results

(Figs. 4, 5, 6, 7 and 8), (Table 1).
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Fig. 4 Graph of gauge
pressure 01

Fig. 5 Graph of gauge
pressure 02

Fig. 6 Graph of gauge
pressure 03
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2.3 Empirical Formula

We build the empirical formula to define the maximum load in compressive wave.

(a) General formula of compressive wave pressure:

Fig. 7 Graph of three measurement combination

Fig. 8 Graph of processed experimental data

Table 1 Summary of detonation results in coral medium

Parameters Summary of detonation results in coral mediumffiffiffi
C3

p
R

2.46 1.95 1.23 0.975 0.82 0.65

ΔPmax(MPa) 0.55 0.33 0.25 0.09 0.06 0.024
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ΔPmax =A

ffiffiffiffi
C3

p

R

� �m

ð1Þ

(b) The formula built from the detonation experiment in coral at Truong Sa island:

ΔPmax = 0.092

ffiffiffiffi
C3

p

R

� �2.226

ð2Þ

The formula determining blast loading in Truong Sa region for designing works
of defense has not been built yet, so on-site testing and building empirical formula
to define blast load are totally suitable. Empirical formula is applied for shallow
placement of explosive charge with hopper and affected by the surface.

3 Comparing the Result from Experimental Studies
and Numerical Stimulation Using AUTODYN Software

3.1 Material Model

3.1.1 Coral

Table 2

3.1.2 Explosive TNT

Equation of state (EOS) shows the relationship among pressure p, density ρ, and
specific energy e. In calculation of mine explosion mechanism, the empirical
equation of state for explosive Jones–Wilkins–Lee (JWL) is used widely. The
equation of state (EOS) JWL [6–8] can be written in aspect of initial energy per
each bulk unit, as:

P=A 1−
ω

R1V

� �
e−RV1 +B 1−

ω

R2V

� �
e−R2V +

ωE
V

ð3Þ

Table 2 Coral material

Elastic module Density Poisson ratio Cohesive force Internal friction angle

E = 2.19 × 104 ρ = 2.2 g/cm3 ν = 0.3 C = 0 φ = 31.65
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where, P—pressure; E—specific internal energy; V—relative volume; A, B, R1, R2

and ω are empirical coefficients for each type of explosive, respectively. The
parameters of explosive TNT are listed in Table 3.

3.2 Boundary Condition

In the survey model, the author solves above problems by supplementing the spring
and dashpot system at the boundary positions without deformation and wave
reflection so that the wave reflection from the boundaries is small enough to not
affect the process of pressure and velocity value survey at the positions in the
environment. Empirical data measured in tests are shown in Table 4.

Based on experimental data by least squares method, we have the following
formula to determine the load duration in compressive wave.

• Load duration:

θ=0.0105R+0.0282
ffiffiffiffi
C3

p
ð4Þ

• Load increase time:

θ1 =0.0079R− 0.002
ffiffiffiffi
C3

p
ð5Þ

• Dimensionality of variables in empirical formula is as follows:

[θ, θ1] = second; [R] = m, [C] = kg (Fig. 9)

Table 3 Parameters of explosive TNT used in the equation JWL [6]

Cd A B R1 R2 ω ρ0 Emo

6930 m/s 373.8 GPa 3.747 GPa 4.15 0.9 0.35 1630 kg/m3 3.63 Jun/kg

Table 4 Empirical data measured

R/(C(1/3)) 0.3558 0.4065 0.5128 0.7092 0.813 1.0256 1.0706 1.2195 1.5384

σmax(Mpa) 0.87 0.55 0.33 0.29 0.25 0.09 0.076 0.06 0.024

θ/(C(1/3)) 0.0277 0.032 0.0355 0.037 0.038 0.0405 0.0408 0.041 0.0415

θ1/(C(1/3)) 0.00081 0.001 0.0025 0.0035 0.004 0.0055 0.0073 0.0078 0.01
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4 Conclusion

Empirical formula determining the parameters of blast wave built on the basis of
field experiment at Son Ca island of Truong Sa archipelago can be used to compute
the impact load on military works constructed on coral islands.
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A CFD Modeling of Subcooled Pool
Boiling

T. T. Nguyen, H. N. Duong, V. T. Tran and H. Kikura

Abstract Subcooled pool boiling is of immense importance in many industrial and
engineering systems because of its great heat transfer coefficient in comparison with
other heat transfer mechanisms. However it is one of the most complicated
two-phase phenomena due to, for example, the simultaneous liquid/vapor motion at
the same time with heat and mass transfer across the phase interfaces, distorted and
deformable phase interface geometry with complicated bubble breakup/coalescence
mechanisms etc. As the accuracy of the CFD simulation of two-phase flows has
much improved, numerical study of subcooled pool boiling two-phase flow by
using the CFD approach is desirable. To incorporate experimental and numerical
studies of subcooled boiling, the objective of this study is to setup a numerical
modeling of the subcooled pool boiling in a vertical pipe by using the CFD
approach. The numerical setup is based on the physical experimental model
developed in our previous study. For the numerical simulation of subcooled pool
boiling and wall boiling, the extended RPI boiling model is exploited in the
framework of the two-fluid CFD approach. Test simulations by using the numerical
setup have been carried out for three cases: a single air bubble rising in still water, a
vapor Taylor bubble rising in saturated still water, and a vapor bubble rising and
condensing in subcooled still water. Evaluation of the model setup has been clar-
ified. An initial simulation of subcooled pool boiling has also been demonstrated.

Keywords Subcooled boiling ⋅ Two-phase flow ⋅ Bubbly flow
CFD simulation ⋅ Two-fluid approach ⋅ Wall boiling ⋅ Heat mass transfer
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1 Introduction

Subcooled boiling is one of the most efficient heat transfer modes because of the
tremendous latent heat of vaporization. Thus, it is widely exploited in various
important industrial and engineering processes such as in the cooling system (i.e.
the thermal hydraulic system) of nuclear reactors, heat exchangers, electronic
cooling devices etc. (e.g. see [1, 2]). Therefore, it not only implies the economic
significance but also has great industrial safety importance. However, subcooled
boiling is inherently one of the most complicated flow phenomena that makes
high-accuracy calculation, prediction and hence control of the flow behaviors dif-
ficult (e.g. see [3, 4]).

For the study of subcooled boiling, both physical experiments and numerical
calculations have been applied (e.g. see [1–4]). On the physical experimental side,
measured data are lack and scattered since the experimental conditions are critically
industrially aggressive. Thus, most of the measured data were obtained for par-
ticular conditions (e.g. high pressure, temperature etc.) which are most relevant to
nuclear safety (e.g. see [5, 6]). In our previous study, a physical experimental
subcooled pool boiling apparatus has been setup to measure the condensation
phenomena (specifically, the condensation rate of vapor bubbles) in subcooled
boiling at ambient pressure. A novel method for condensation-rate measurement
has been devised [7]. In order to incorporate the measured data of these physical
experimental measurements into CFD simulation, a numerical experimental model
setup is desirable.

In the CFD simulation of two-phase flows, there exist a number of theoretical
formulation approaches that include the single-fluid and multi/two-fluid ones (e.g.
see [8, 9]). The single-fluid approach is based on the solution of single continuity
and momentum equations of a multiphase mixture. Regarding the simulation of
boiling and condensation by using this approach, a number of phase interface
treatment techniques such as VOF (Volume of Fluid), level set, phase field,
front-tracking has been extensively used. These techniques have provided a number
of detailed physical aspects of the boiling and condensation phenomena (e.g. see
[8–10]). However, several assumptions must be satisfied for the application of the
single-fluid approach. For example, the phases should be strongly coupled. In some
practical situations, such assumptions may not be adequately fulfilled, e.g. in the
counter-current two-phase flow which is widely accounted for in nuclear engi-
neering. Moreover, the accuracy of the interface treatment techniques depends on
the computational mesh resolution. Therefore, the computational cost would be
extremely expensive in order to resolve accurately a large range of the size of the
dispersed phase in, for example, bubbly flow.

The two-fluid approach is based on the Eulerian framework, in association with
mechanistic component/closure models of the phase interactions. It is the most
detailed and accurate formulation of the thermal and hydrodynamic behaviors of the
two-phase boiling systems (e.g. see [1, 3–5, 11]). This approach is based on the
solution of the continuity and momentum equations written for each phase
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separately [12–14]. It is most appropriate for the highly complicated flow phe-
nomenon under investigation here. Hence it would be most suitable for this study.

In the CFD simulation of boiling and condensation with wall boiling, the RPI
model is most widely/successfully used to account for the generation, development
and detachment of vapor bubbles from the heated walls. The combination of the
RPI model with the two-fluid approach has been implemented in a number of
previous studies for specific problems, typically for flow boiling over heated sur-
faces (e.g. see [5, 11, 15–17]). Nevertheless, CFD simulations of boiling and
condensation in wall bounded flows, with conjugate heat transfer through solid
walls, were less accounted for in the published literature.

The objective of this study is to setup a numerical modeling of subcooled pool
boiling in a vertical pipe by using the CFD approach. The prototype of the model is
based on the physical experimental model [7]. For the numerical simulation, the
extended RPI boiling model (i.e. the non-equilibrium boiling model) (e.g. see [9]) is
exploited in the two-fluid CFD approach. Test simulations by using the numerical
setup have been carried out for three cases: a single air bubble rising in still water, a
vapor Taylor bubble rising in saturated still water, and a vapor bubble rising and
condensing in subcooled still water. Evaluation of the setup has been clarified. An
initial simulation of subcooled pool boiling has also been demonstrated.

2 Theoretical Formulation and Numerical Method

Governing Equations for Multiphase Flow Modeling of Unsteady Subcooled
Pool Boiling

Phase Mass Conservation Equations
The equations shown below are used in the calculation of the phase volume

fractions [9]:

∂

∂t
αqρq
� �

+∇. αqρq v
!

q
� �

= ∑
n

p=1
ṁpq − ṁqp
� �

+ Sq ð1Þ

where p and q denote the two-phases (water and vapor). The equation for the
p phase has exactly the same form. αq, ρq and v!q are the volume fraction, density
and velocity of the phase q, respectively; ṁpq represents the mass exchange from
the phase p to the phase q (by definition ṁpq ≥ 0

�
; ṁqp denotes the mass transfer

from the phase q to the phase p (similarly ṁqp ≥ 0
�
; Sq is the source term which is 0

by default [9].
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Phase Momentum Conservation Equations

∂

∂t
αqρq v

!
q

� �
+∇. αqρq v!q v!q

� �
= − αq∇p+∇.τq + αqρq g

!+ ∑
n

p=1
Rpq + ṁpq v!pq − ṁqp v!qp
� �

+ F
!

q + F
!

lift, q + F
!

wl, q + F
!

vm, q + F
!

td, q

� �
ð2Þ

where p stands for the pressure shared by all phases; τq = αqμq ∇ v!q +∇ v!T
q

� �
+

αq λq − 2 ̸3μq
� �

∇. v!qI represents the stress-strain tensor of the phase q; I means the
unit tensor; μq and λq are the shear and bulk viscosity of the phase q; g! is the
acceleration due to gravitational force; Rpq =Kpq v!p − v!q

� �
denotes an interaction

force between the two phases where Kpq = Kqp
� �

is the interphase momentum
exchange coefficient. Here Rpq represents the mean interphase momentum exchange
and does not include any contribution due to turbulence. The turbulent interphase
momentum exchange is modeled with the turbulent dispersion source term

F
!

td, q. v!pq is the interphase velocity which is defined as follows. If ṁpq >0 (that is,
phase p mass is being transferred to phase q), v!pq = v!q. Likewise, if ṁqp >0 then

v!qp = v!p.F
!

q is an external body force; F
!

lift, q is a lift force; F
!

wl, q is a wall

lubrication force; F
!

vm, q is a virtual mass force; F
!

td, q is a turbulent dispersion force.
These forces are all referred to phase q [9].

Phase Enthalpy Conservation Equations
Equation of the fluid zones

∂

∂t
αqρqhq
� �

+∇. αqρq v!qhq
� �

= αq
dp
dt

+ τq.∇ v!q −∇. q!q + Sq + ∑
n

p=1
Qpq + ṁpqhpq − ṁqphqp
� � ð3Þ

where hq is the specific enthalpy of the phase q which relates to the fluid tem-

perature T by hq =
R T
Tref , q

cp, qdT + h0q Tref , q
� �

+ p
ρq

where Tref , q is the reference

temperature which is usually taken to be 298.15 K; cp, q is the heat capacity of the
phase q at the temperature T; h0q Tref , q

� �
is the phase q’s formation enthalpy at the

reference temperature Tref , q. q!q is the heat flux to the phase q; Sq is a source term
that includes sources of enthalpy; Qpq is the intensity of the heat exchange between
the phase p and the phase q, which must comply with the local balance condition
Qpq = −Qqp and Qqq =0; hpq is the interphase enthalpy [9].

Equation of the solids zones in the conjugate heat transfer problems

∂ ρhð Þ ̸∂t+∇. v!ρh
� �

=∇. k∇Tð Þ+ Sh ð4Þ
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where h denotes the sensible enthalpy defined by h=
R T
Tref

cpdT ; v! is the (bulk)

velocity of the solid regions; k is the thermal conductivity of the solid material; Sh is
the volumetric heat source [9].

Equation for the Calculation of the Shared Pressure Field

∑
k = p, q

∂

∂t
αkρkð Þ+∇.αkρk v

!′

k
+∇.αkρk v

!*
k
− ∑

l= p, q
ṁlk − ṁklð Þ

 !
=0 ð5Þ

where v!′

k
is the velocity correction for the kth phase, and v!*

k
is the value of v!

k
at

the current iteration.

Turbulence Consideration
The per-phase turbulence model is used as shown below [9]:

∂

∂t
αqρqkq
� �

+∇. αqρq v
!

qkq
� �

=∇. αq μq +
μt, q
σk

� �
∇kq

� �
+ αqGk, q − αqρqεq
� �

+ ∑
l= p, q

Klq Clqkl −Cqlkq
� �

− ∑
l= p, q

Klq v!l − v!q

� �
.
μt, l
αlσl

∇αl

+ ∑
l= p, q

Klq v!l − v!q

� �
.
μt, q
αqσq

∇αq +Πkq

ð6Þ

where μt, q = ρqCμk2q ̸εq;Cμ = 0.09; kq and εq are the turbulence kinetic energy and
the turbulence dissipation rate of the phase q, respectively; σk = 1.0 is the turbu-
lence Prandtl number for kq in phase q; Gk, q is the turbulence production of the

phase q Gk, q = μt, q ∇ v!q + ∇ v!q

� �T� �
:∇ v!q ;Klq is the interface momentum

exchange coefficient;Clq and Cql are the model coefficients that are described as
Clq = 1, Cql =2 ηlq ̸1+ ηlq

� �
where ηlq is the ratio between the eddy particle

interaction time to the characteristic particle relaxation time; σl and σq coefficients
are set to 0.75 by default; Πkq is the source term included to model the turbulent
interaction between the dispersed phases and the continuous phase [9].

∂

∂t
αqρqεq
� �

+∇. αqρq v!qεq
� �

=∇. αq μq +
μt, q
σε

� �
∇εq

� �
+

εq
kq

C1εαqGk, q −C2εαqρqεq +C3ε ∑
l= p, q

Klq Clqkl −Cqlkq
� � "

− ∑
l= p, q

Klq v!
l
− v!q

� �
.
μt, l
αlσl

∇αl + ∑
l= p, q

Klq v!
l
− v!q

� �
.
μt, q
αqσq

∇αq

!#
+Πεq

ð7Þ
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where σε = 1.3 is the turbulence Prandtl number for ε in the phase q; the constant
coefficients are C1ε = 1.44, C2ε = 1.92; Πεq is the source term included to model
the turbulence interaction between the two phases [9].

Non-equilibrium Wall Boiling Model
Generalized Non-equilibrium Model of Wall Heat Flux Partitioning
The total heat flux from the heated wall to the liquid phase (included in the

source term in Eq. (3)) can be partitioned into three basic components including the
convective heat flux qĊð Þ, the quenching heat flux q ̇Qð Þ, the evaporative heat flux
qĖð Þ. In addition, two components q ̇V and q ̇G are used to consider vapor and gas
temperature [9, 15–17].

qẆ = qĊ + qQ̇ + qĖð Þf αlð Þ+ 1− f αlð Þð ÞqV̇ + qĠ ð8Þ

The heated wall surface is subdivided into an area Ab covered by nucleating
bubbles, and a portion 1−Abð Þ covered by the liquid phase.

Convective Heat Flux

qĊ = hC Tw − Tlð Þ 1−Abð Þ ð9Þ

where hC is the single phase heat transfer coefficient of the liquid; Tw and Tl are the
wall and liquid temperatures, respectively.

Quenching Heat Flux

qQ̇ = Tw − Tlð Þ2kl ̸
ffiffiffiffiffiffiffiffiffi
πλlT

p
ð10Þ

where kl is the thermal conductivity of the liquid phase; T is the periodic time of
bubble departure; and λl = kl ̸ρlCpl is the thermal diffusivity of the liquid phase [9,
15–17].

Evaporative Heat Flux

qĖ =VdNwρvhfvf ð11Þ

where Vd is the volume of the bubble calculated based on the bubble departure
diameter; Nw is the active nucleate site density; ρv is the vapor density; hfv is the
latent heat of evaporation; and f is the bubble departure frequency [9].

Convective Heat Flux to the Vapor Phase

qV̇ = hV Tw − Tvð Þ ð12Þ

where hV is the single phase heat transfer coefficient of vapor; TV is the vapor
temperature.

In Eq. (8), the function f αlð Þ depends on the local liquid volume fraction with
similar limiting values as the liquid volume fraction. In this study, the expression
shown below is used:
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f αlð Þ= 1− 0.5e− 20 αl −αl, critð Þ

0.5 αl ̸αl, critð Þ20αl, crit
	

ð13Þ

where αl, crit =0.2 is exploited [9].

Area of Influence

Ab =min 1,KNwπD2
w ̸4

� � ð14Þ

where K =4.8e − Jasub ̸80ð Þ with Jasub = ρlCplΔTsub ̸ρvhfv is the subcooled Jacob
number; ΔTsub =Tsat −Tl.

Bubble Departure Frequency

f =1 ̸T =
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4g ρl − ρvð Þ ̸3ρlDw

p
ð15Þ

Nucleation Site Density

Nw =Cn Tw −Tsatð Þn ð16Þ

where n = 1.805 and C = 210.

Bubble Departure Diameter

Dw =min 0.0014, 0.0006e−ΔTw ̸45� � ð17Þ

Interfacial Transfer Modeling
Momentum Transfer
Bubble diameter

Db =
0.0015 ΔTsub <0

0.0015− 0.0001ΔTsub 0≤ΔTsub ≤ 13.5K
0.00015 ΔTsub >13.5K

8<: ð18Þ

with ΔTsub = Tsat − Tl.
Interfacial drag force
The drag force included in the interaction force Rpq shown in Eq. (2) is written

as follows:

F
!

drag = vq!− vp!
� �

̸τr ð19Þ

where τr =
ρpD

2
b

18μq
24

CdRe denotes the droplet or particle relaxation time; ρp is the density of

the phase p (the dispersed phase);Cd is the drag coefficient; Re= ρqDb vq!− vp!


 

 ̸μq is

the relative Reynolds number of the dispersed phase; Ishii’s model of the drag force
includes: Cd =min Cvis

D ,Cdis
D

� �
where Cvis

D = 1+0.15Re0.75
� �

24 ̸Re is the drag
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coefficient of the viscous regime, Cdis
D =Db2 ̸3 ̸

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
σ ̸g ρq − ρp


 

q

is the drag coefficient

of the distorted regime and σ is the surface tension.
Interfacial lift force

F
!

lift = −Clρqαp v!q − v!p
� �

× ∇× v!q
� � ð20Þ

where Cl is the lift coefficient calculated by using the Moraga’s correlation (referred
to in [9]).

Cl =

0.0767 φ≤ 6000
− 0.12− 0.2e− 10− 5φ ̸3.6
� �

e10
− 7φ ̸3 6000<φ<5×107

− 0.6353 φ≥ 5× 107

8><>: ð21Þ

where φ=Re×Reω with the vorticity Reynolds number Reω = ρqD
2
b ∇× vq!


 

 ̸μq.

Wall lubrication force

F
!

wl = −Cwlρqαp v!q − v!p
� �

jj




 


2 n!w ð22Þ

where Cwl is the wall lubrication coefficient; v!q − v!p
� �

jj




 


 is the phase relative

velocity component tangential to the wall surface; n!w is the unit normal pointing
away from the wall; Cwl =max 0,Cw1 ̸db +Cw2 ̸ywð Þ,Cw1 = − 0.01 and
Cw2 = 0.05; yw is the distance to the nearest wall [9].

Turbulent dispersion force

F
!

td, q = − F
!

td, p =CTDρqkq∇αp ð23Þ

where CTD = 1 by default [9].
Turbulence interaction model
The Troshko Hassan per-phase turbulence interaction model is used. The model

of the source terms are shown bellows.

Πkq =Ckeαq ∑
M

p=1
Kpq v!p − v!q


 

2; Πεq =Ctd

1
τp
Πkq ð24Þ

where Cke = 0.75; Ctd = 0.45; τp =2CVMDb ̸3CD v!p − v!q



 

 is the characteristic
time of the induced turbulence [9].

Virtual mass force

F
!

vm =Cvmαpρq dq v!q ̸dt − dp v!p ̸dt
� � ð25Þ
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where Cvm = 0.5 is the virtual mass coefficient; dq ϕð Þ ̸dt= ∂ ϕð Þ ̸∂t+ v!q.∇
� �

ϕ
with ϕ is any scalar variable [9].

Surface tension
The Brackbill’s continuum surface force (CSF) method (referred to in [9]) is

exploited to model the surface tension force:

Fvol = σijρκi∇αi ̸1 ̸2 ρi + ρj
� � ð26Þ

where σij = 0.057 is the surface tension coefficient (in the case of subcooled boiling
vapor-water two-phase flow); ρ= ∑ αqρq is the volume-averaged density; κi is the
curvature defined by κi =∇.bni ;bni = ni ̸ nij j and ni =∇αi; (i,j) = (p,q) [9].

Interfacial area concentration
An algebraic formulation (the symmetric model) is used in accordance with the

Sauter mean diameter used as shown previously in Eq. (18) [9]:

Ai =6αp ̸Db ð27Þ

Heat Transfer
Interface to liquid heat transfer

Qpq = ql̇t = hsl Tsat − Tlð Þ ð28Þ

where Tsat is the vapor saturation temperature; Tl is the liquid bulk temperature; hsl
is the surface to liquid heat transfer coefficient [9].

Interface to vapor heat transfer

Qqp = qv̇t = Tsat −Tvð ÞαvρvCρ, v ̸δt ð29Þ

where δt = 0.05 is the time scale; Tv is the vapor temperature; Cρ, v is the isobaric
heat capacity of the vapor phase [9].

Mass Transfer
Mass transfer from the heated wall to vapor

ṁE = qĖ ̸ hfv +Cp, lΔTsub
� � ð30Þ

Interfacial mass transfer

m
.
= ṁlt + ṁvt = ql̇t + qv̇tð Þ ̸hfv ð31Þ

Computational Domain, Boundary and Setting Conditions
Computational Domain
The computational domain and its dimensions are shown in Fig. 1. It consists of

a round tube made of polycarbonate, an aluminum base, an electric heater and
water/vapor phases inside the pipe. All these components are modeled by using the
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CFD approach. Convective heat transfer with the surrounding air is allowed
between the pipe walls, base walls and the ambient.

In the solid regions of the polycarbonate walls, aluminum base and heater, the
temperature field is calculated by using the energy Eq. (4). Heat transfer is calcu-
lated at the boundaries between fluids (water and vapor) and solids.

Boundary and Setting Conditions
At the free surface of the fluid mixture inside the pipe, a pressure outlet boundary

condition is used. In addition, single-phase flow of only water through this
boundary is allowed. This means that the volume fraction of the vapor phase at this
boundary is zero. The temperature of the liquid through this boundary is set to
372 K.

At the fluid-solid interface, the non-slip boundary condition is used for flow
simulation of both phases. The coupled boundary condition is used for heat transfer
calculation.

A near-wall modeling approach that allows a consistent mesh refinement
(modification) without any deterioration of the results, especially in the near wall
regions, is exploited for the calculation of the variables at the cells adjacent to the
wall.

As for the thermal boundary condition at the heater surface, the heat flux to the
computational domain is set to 72 kW/m2 based on the heater surface area and
heater power.

Convective heat transfer boundaries are used along the outer boundaries of the
pipe walls and of the base wall.

Other setting conditions are as follows. The two fluids used include liquid water
and vapor. The saturation temperature of water is 373.15 K. The operating pressure
is set to ambient pressure (i.e. atmospheric pressure). The properties of the fluids are
set temperature dependence.

Fig. 1 Computational
domain
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Computational Mesh and Numerical Discretization of the Governing
Equations

Computational Mesh
The computational mesh is shown in Fig. 2. Meshing has been carried out for

both fluid and solid regions. The computational domain is divided into 54180 2D
quadrilateral cells. For ease of visualization, the meshing in two areas (thin wall
area and heater area, Fig. 2) is shown in the enlarged pictures.

Numerical Discretization of the Governing Equations
The Finite Volume Method (FVM) is used for discretizing and for the approxi-

mate transient solution of the governing Eqs. (1)–(5), with the closure relationships/
mechanistic models shown in Eqs. (6)–(31). The solution strategy is known as the
pressure-based multiphase solution method. Details can be referred to [9].

In this study, the following specific selections are implemented in the solution
algorithm:

• For the pressure-velocity coupling, the coupled scheme is used. The momentum
and pressure-based continuity equations are solved altogether. Moreover, the
continuity equation of both liquid and vapor phases are solved (i.e. Solve
N-Phase Volume Fraction Equations).

• For the spatial discretization, the following techniques are exploited:

– The Green-Gauss Node Based approach is used for the calculation of the
gradient terms.

– The Second Order Upwind and Modified HRIC (High Resolution Interface
Capturing) schemes are applied to the discretization of the momentum,
continuity, turbulence transport and energy equations.

Fig. 2 Computational mesh with two enlarged regions
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• For the transient formulation (discretization of the time dependent term), the
Bounded Second Order Implicit technique is applied.

3 Tests of the Numerical Model Setup

Computational Grid Refinement Investigation
In order to evaluate the effects of the computational mesh refinement, three mesh

resolutions have been investigated. The coarse mesh (cell size 2 × 2 mm) has
10000 elements approximately. The medium mesh (cell size 1 × 1 mm) has about
51000 elements. And the fine mesh (cell size 0.5 × 0.5 mm) has about 170000
elements.

Simulations of a single air bubble rising in still water at 20 °C in the pipe are
used for mesh resolution study. Initially, the bubble has a spherical shape, a
diameter of 8 mm. It is placed at the pipe center, at a distance of 150 mm from the
bottom of the pipe. When released, the bubble rises freely under the effects of
buoyancy, drag forces and so on [18]. Three computational meshes mentioned
above are used to evaluate the mesh resolution dependency. Figure 3 illustrates the
initial rising velocity and terminal rising velocity of the bubble. As shown in the
figure, the difference between the calculated results derived by using the fine mesh
and the medium one could be negligible. Moreover, both results are in good
agreement with the experimental data and theoretically predicted data of the ter-
minal rising velocity of 8 mm—diameter air bubble in pure still water [3, 18–20].
On the contrary, the calculated result obtained by using the coarse mesh is clearly
inaccurate. As the result, in this study, the use of the medium mesh for further
investigations shown later on would be reasonable.

Test Cases
The CFD model is initially tested by three test cases:
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1. An initially spherical air bubble (initial diameter of 10 mm) rising in the water
column in the pipe (at ambient temperature, still-water condition): adiabatic,
non-condensable case without heat/mass exchange;

2. A Taylor bubble rising in the water column at saturated water temperature
(still-water condition). The bubble (or slug) has an initially cylindrical body
(40 mm diameter, 60 mm in length) with a spherical nose (i.e. the leading head).
The nose diameter is 40 mm: adiabatic, 0 condensation case with 0 heat/mass
exchange;

3. An initially spherical vapor bubble (initial diameter of 12 mm) rising and
condensing in subcooled liquid (the subcooling degree is 1.15 K, still-water
condition): heat/mass transfer without wall boiling.

Case 1: Rising Air Bubble
A fundamental element of the simulation of bubbly flows in a vertical pipe

would be the simulation of a single rising bubble. For brevity, the distribution of the
volume fraction of air is shown in Fig. 4, for three time instances: t = 0, 0.1 and
0.2 s.

As shown in the figure, the numerical experimental setup would be able to
generate and reproduce the development of an air bubble rising in viscous liquid
(i.e. water in this study). The initially spherical bubble becomes a generally
observed shell-shape under the effects of the inertial force, viscosity, surface tension
etc. [3]. As shown in Fig. 5a, the rising velocity of the bubble reaches the terminal
rising velocity after approximately 0.2 s. In order to evaluate quantitatively the
calculated result of the bubble terminal rising velocity, the CFD result of the

Fig. 4 The development of
the 10 mm—diameter air
bubble rising in still water in
the water column
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terminal rising velocity is plotted against a large number of experimental data
presented in Clift 1978 (Fig. 5b). The figure shows that the result of this study
agrees fairly well with the experimentally measured data reported in the published
literature.

Consequently, a conclusion can be obtained that, once detached vapor bubbles
enter liquid water, their development would be modeled by using the CFD model
setup in this study. Moreover, based on the simulation result, the dynamics of rising
air/vapor bubbles in viscous liquids can be further investigated in details. In the
next step, the numerical model will be evaluated in the simulation of a liquid-vapor
two-phase system.

Case 2: Taylor Vapor Bubble Rising in Saturated Water
In bubbly flows, big cap bubbles (i.e. Taylor or slug bubbles) can exist in the flows.
Hence, in the next stage, correctly modelling of the development of Taylor bubbles
is of importance. For brevity, only the distribution of the volume fraction of the
vapor phase is shown in Fig. 6, for three time instances: t = 0, 0.1 and 0.2 s.

As shown in Fig. 6, the numerical experimental setup would be capable of
generating and reproducing the development of a Taylor vapor bubble rising in
saturated water. A self-rearrangement of the bubble from the originally initialized
shape is captured. The shedding of smaller bubbles from the bubble trailing end is
reasonably observed [3].

Moreover, as illustrated in Fig. 7, quantitatively, the rising velocity of the Taylor
vapor bubble in saturated still water is obtained. In addition, in Fig. 7, the terminal
rising velocities are also shown for two slug bubbles that have Froude numbers 0.27
and 0.33, respectively. The range of the Froude number from 0.33 to 0.37 is widely
suggested for the terminal rising velocity of slug bubbles when the viscosity and
surface tension forces would be negligible [19, 21–23]. Nonetheless, the Froude
value of 0.27 (or even smaller) has been also mentioned elsewhere for specific cases
[22, 23]. The calculated result of the terminal rising velocity shown in Fig. 7 would
be corresponding to a Froude number of 0.27 approximately.
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Case 3: Rising and Condensing Vapor Bubble

Approaching to the full problem of subcooled boiling, a simulation of a rising and
condensing vapor bubble in subcooled liquid is executed. Similar to the previous
cases, for brevity, the distribution of the volume fraction of the vapor phase is
shown in Fig. 8, for three time instances: t = 0, 0.1 and 0.2 s.

Fig. 6 Development of a
Taylor vapor bubble rising in
saturated water
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As shown in the figure, the numerical model would enable to generate and
capture the development/condensation of a rising/condensing vapor bubble in
subcooled water [3]. In the next stage, the wall boiling model is activated for the
execution of the full problem.

Fig. 8 Development of a vapor bubble rising and condensing in subcooled water (1.15 K degree
of subcooling)

Fig. 9 An instantaneous CFD calculated result of the volume fraction of the vapor phase in the
pipe
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4 Initial Application to Pool Boiling

The numerical model, which is tested by the three test cases shown above, is initially
applied to the simulation of subcooled boiling in the pipe. In this case, the full model,
which includes wall boiling model, is executed. Initial results are shown in Fig. 9
below for a time instance during the transient development of the flow in the pipe.

As shown in the figure, qualitatively, a conclusion would be derived that the
numerical experimental setup would generates and captures the formation and
development of the observed flow regime of subcooled pool boiling [3, 4]. The
obtained results can be used for further studies to incorporate physical experimental
measurements with numerical modelling of boiling flow.

5 Concluding Remarks

In order to setup a CFD model for the simulation of subcooled boiling, relevant
theoretical background has been summarized and presented. Analogous to the
development of a physical experimental model, suitable component models have
been considered and included in the CFD model. Computational mesh refinement
study has been performed. Evaluations of the model setup have been carried out.
Test simulation of subcooled pool boiling has been demonstrated.

Based on the obtained results, the following concluding remarks have been
derived:

• A CFD model of subcooled pool boiling has been setup.
• The model has been tested using three test cases. Fairly good results have been

obtained.
• The simulation result of one flow regime of subcooled pool boiling has been

demonstrated.
• In next studies, quantitative assessments of the simulation results of wall boiling

and bubble condensation are required. Comparisons with experimentally mea-
sured data are necessary to further validate the model.

• As accurate modeling of the interfacial area concentration (IAC) plays crucially
important role in two-fluid model, IAC modeling is necessarily applied in next
studies.

• Since boiling is one of the most complicated flow phenomena, most of the
boiling correlations are empirical and valid only for a specific range of
parameters, much research effort (both physical experiments and numerical
simulations) is required in this field, e.g. to develop specifically required cor-
relations, universal correlations of boiling phenomena etc.

Acknowledgements Financial support from the following scientific research project of Vietnam
Academy of Science and Technology (VAST) to carry out this study is gratefully acknowledged:
VAST01.04/17-18 project.

A CFD Modeling of Subcooled Pool Boiling 757



References

1. Ishii M, Hibiki T (2010) Thermo-fluid dynamics of two-phase flow. Springer Science &
Business Media

2. Ghiaasiaan SM (2007) Two-phase flow, boiling, and condensation: in conventional and
miniature systems. Cambridge University Press

3. Yeoh GH, Tu J (2009) Computational techniques for multiphase flows basics and
applications. Elsevier

4. Yeoh GH, Tu J (2009) Modelling subcooled boiling flows. Nova Science Publishers, Inc
5. Krepper E, Končar B, Egorov Y (2007) CFD modelling of subcooled boiling—concept,

validation and application to fuel assembly design. Nucl Eng Des 237(7):716–731
6. Warrier GR, Basu N, Dhir VK (2002) Interfacial heat transfer during subcooled flow boiling.

Int J Heat Mass Transf 45(19):3947–3959
7. Nguyen TT, Tsuzuki N, Murakawa H, Duong NH, Kikura H (2016) Measurement of the

condensation rate of vapor bubbles rising upward in subcooled water by using two ultrasonic
frequencies. Int J Heat Mass Transf 99:159–169

8. Dykas S, Wróblewski W (2011) Single- and two-fluid models for steam condensing flow
modeling. Int J Multiph Flow 37(9):1245–1253

9. Končar B, Krepper E, Egorov Y (2005) CFD modeling of subcooled flow boiling for nuclear
engineering applications. In: International conference on nuclear energy for new Europe,
pp 140.1–140.14

10. Kharangate CR, Mudawar I (2017) Review of computational studies on boiling and
condensation. Int J Heat Mass Transf 108:1164–1196

11. Tu JY, Yeoh GH (2002) On numerical modelling of low-pressure subcooled boiling flows.
Int J Heat Mass Transf 45(6):1197–1209

12. Kataoka I (2010) Development of research on interfacial area transport. J Nucl Sci Technol 47
(1):1–19

13. Brooks CS, Ozar B, Hibiki T, Ishii M (2012) Two-group relative velocity in boiling
two-phase flow. In: 20th International conference on nuclear engineering and the ASME 2012
power conference. American Society of Mechanical Engineers, pp 235–242

14. Kataoka I, Yoshida K, Naitoh M, Okada H, Morii T (2012) Transport of interfacial area
concentration in two-phase flow. Nuclear Reactors. InTech

15. Talebi S, Abbasi F, Davilu H (2009) A 2D numerical simulation of sub-cooled flow boiling at
low-pressure and low-flow rates. Nucl Eng Des 239(1):140–146

16. Li H, Vasquez SA, Punekar H, Muralikrishnan R (2011) Prediction of boiling and critical heat
flux using an Eulerian multiphase boiling model. In: ASME 2011 International mechanical
engineering congress and exposition. American Society of Mechanical Engineers, pp 463–
476

17. Punekar H, Das S (2013) Numerical simulation of subcooled nucleate boiling in cooling
jacket of IC engine (No. 2013-01-1651). SAE Technical Paper

18. Talaia MA (2007) Terminal velocity of a bubble rise in a liquid column. World Acad Sci Eng
Technol 28:264–268

19. Clift R, Grace JR, Weber ME (1978) Bubbles, drops, and particles. Courier Corporation
20. Tomiyama A, Nakahara Y, Adachi Y, Hosokawa S (2003) Shapes and rising velocities of

single bubbles rising through an inner subchannel. J Nucl Sci Technol 40(3):136–142
21. Bui DT (2001) Taylor bubble velocity measurements in two-phase air/water vertical flow.

Vietnam J Mech 23(3):183–192
22. Lu X, Prosperetti A (2008) A numerical study of Taylor bubbles. Ind Eng Chem Res 48

(1):242–252
23. Ambrose S (2015) The rise of Taylor bubbles in vertical pipes. PhD thesis, University of

Nottingham

758 T. T. Nguyen et al.



Optimization of Precision Die Design
on High-Pressure Die Casting of AlSi9Cu3

T. A. Do and V. T. Tran

Abstract Precision high-pressure die casting for nonferrous casting applications is
increasingly used in the foundries. This paper focuses on the following issues:
filling simulation, defect analysis by computer-aided simulation, experiment with
Taguchi analysis to select optimal parameters when design die for high-pressure die
casting aluminum AlSi9Cu3. After analysis, the optimal parameters are as follows:
cross section area of gate 40 mm2, location of gate at type 2, gate velocity 50 m/s,
and liquid alloy temperature 640 °C. Based on the results of calculation parameters,
we conducted design die by computer aided with the main objective is to optimize
the die design parameters. The use of this integrated solution can shorten the cycle
of die design and manufacture, and result in the production of high-quality die
castings in the shortest time with the biggest profit.

Keywords Die design ⋅ Taguchi method ⋅ Die casting ⋅ Shrinkage porosity
AlSi9Cu3 aluminum

1 Introduction

High-pressure die casting (HPDC) process is significantly used in the industry for
its high productivity and less post-machining requirement. Due to light weight and
good forming-ability, aluminum die casting plays an important role in the pro-
duction of transportation and vehicle components. It has a much faster production
rate in comparison with other methods and it is an economical and efficient method
for producing components with low surface roughness and high dimensional
accuracy. All major aluminum automotive components can be processed with this
technology. The development of industrial die casting and requirements for higher
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quality product, shorter development times and more complex geometry, the use of
computer-aided simulation has become essential in industry.

The HPDC castings production process has many defects, such as: shrinkage
porosity, misrun, cold-shut, blister, scab, hot-tear. Techniques such as cause–effect
diagrams, design of experiments, casting simulation, fuzzy logic controller, genetic
algorithms, and artificial neural networks are used by various researchers for
analysis of casting defects. Dargusch et al. [1] used pressure sensor in the cavity to
make a confident statement of aluminum that molten metal velocity increases and
porosity development with high-pressure die casting. Verran et al. [2] used the
design of experiments (DOE) to find out the best parameters in production and
notice that: porosity low indices are related with low speeds from slow and fast
shots and high upset pressures. Mousavi Anijdan et al. [3] used genetic algorithm
(GA) methods to determine the optimum conditions leading to minimum porosity in
aluminum alloy die casting. Tsoukalas [4, 5] used the design of experiments
(DOE) and genetic algorithm (GA) methods to determine the optimum conditions
leading to minimum porosity in aluminum alloy die castings. Syrcos [6] used
Taguchi method to determine the optimum conditions leading to casting density in
aluminum alloy die castings. Yue et al. [7] used CAD/CAE/CAM simulation and
analysis with the purpose the quality of the die castings improved greatly in a
shorter time. Yarlagadda and Chiang [8] used the artificial neural network
(ANN) methods to determine the optimum conditions in aluminum alloy die
castings. Seo [9] used CAD/CAE simulation and analysis with purpose minimizing
the porosities and hot spots for applying in die casting. However, most researchers
were used to predict solidification and optimize aluminum alloy casting process
parameters in the condition of production foundry factory. Little was published die
design in die casting, gating, and die casting parameters. Approximately 90% of
defects in die casting components are due to die design errors (Shehata [10]). Die
design is a very difficult work, and the company often does not published because
of economic competition. In order to obtain good die design, it requires extensive
knowledge in mechanical engineering and experience in die castings foundry
factory.

In this paper, the ProCAST
®

Software commercial is used for analysis casting
defects and die filling simulation to enhance the quality and efficiency of die
casting. The Taguchi method control with design of experiments will be developed
to improve aluminum die casting quality and productivity in the cold chamber die
casting method. After conducting a series of initial experiments in a controlled
environment, significant factors for die casting processes are selected to find the
optimal parameters to increase the aluminum die casting quality and efficiency.
Based on the results from analysis by considering the influence of defects on quality
castings, we conducted die design for die casting with optimal parameters. It is
suggested to reduce casting defects, reduce time and money, increasing with better
casting product quality and die design die casting efficiency.
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2 Materials and Methods

2.1 Basic Design

Die casting of this study with the 3D solid model of automobile start motor casing
part is shown in Fig. 1.

The 3D drawings of objects cast to represent the color with different meanings.
Accordingly, the white light is the portion need to be machined or cut later.
Depending on the material molding, casting method and mechanical processing
methods after casting product finished that the designer will select the size, toler-
ances, and metal machining appropriate for requirements. This study using cast
material is the aluminum alloy AlSi9Cu3 with chemical composition of the alu-
minum shown in Table 1.

Some of the very important properties of the material AlSi9Cu3 used in the
experiments as fraction solid are shown in Fig. 2 and conductivity in Fig. 3.

The die with a specific gating system will perform differently on different die
casting machines. Only by considering both the die and machine characteristics
could optimal flow conditions be achieved. Therefore, P−Q2 technique is employed
to predict the best gate area, flow rate, filling time, and gate velocity. This will avoid
excessive calculation and ensure that the gating system is designed properly. With
the computer-aided design software, we design the simply filling system with die
casting gate and runner. We design three location of gates with the basic shapes as
Fig. 4.

Analysis software is used as ProCAST
®

commercial with finite element method
(FEM) analysis for a casting process. The designer based on FEM simulation to
visualize the metal flow in the die cavity, the temperature variation, the solidifi-
cation progress, and the evolution of defects such as shrinkage porosity, cold-shut,
hot-tear.

Fig. 1 Model 3D of object

Table 1 Composition of alloy AlSi9Cu3

Elements Al Si Mg Mn Zn Cu Ni Ti

% Balance 9.0 0.3 0.6 1.2 3.0 0.5 0.2
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2.2 Experiment and Analysis

The shrinkage porosity formation in pressure die casting is the result of a so much
number of parameters. Figure 5 shows a cause and effect diagram that was con-
structed to identify the casting process parameters that may affect die casting
porosity. In this case, liquid alloy temperature (holding furnace temperature),

Fig. 2 Fraction solid of
AlSi9Cu3 material

Fig. 3 Conductivity of
AlSi9Cu3 material
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speed of molten alloys of the gate (Gate velocity), cross section of the gate (Gate
area), and location of the gate (Gate location) were selected as the most critical in
the experimental design. The other parameters were kept constant in the entire
experimentation. Gate velocity has an influence on mechanical properties of the
casting and on the properties in the casting surface quality. High gate velocity
produces higher mechanical properties and less porosity than lower gate velocity.
New high-pressure casting machine capable of velocity generated at the gate up to
100 m/s. The die erosion started to increase already around 60 m/s, so that reason
the higher gate velocity range from 60 m/s to 100 m/s rarely used in normal
conditions (Shehata [10], Weishan et al. [11]). Based on technical parameters of
high-pressure die casting machine SD-500CF from LIKW Enterprise Corp-Taiwan,
we select the velocity of the liquid alloy in range: 30–50 m/s. This paper used cast
material AlSi9Cu3 with the super-heated range (640–720)°C. The selected casting
process parameters are given in Table 2.

Fishbone diagram [2, 4–7] of the configuration shown in Fig. 5, in which with
the aim is minimum shrinkage porosity die casting defect, so that objective
“smaller-is the-better” is selected.

Fig. 4 Location of gates

Fig. 5 Fish-bone diagram
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According to cause and effect diagram, we have factor level table shown in
Table 2, so that nine experiments parameters are shown in Table 3.

The results of the nine shrinkage porosity experiments were analyzed and the
results shown in Table 4.

Table 2 Factor levels

Factors Levels

A Gate area (total cross section
area) (mm2)

1 70 2 55 3 40

B Gate location 1 Position
1

2 Position
2

3 Position
3

C Gate velocity (m/s) 1 50 2 40 3 30
D Liquid alloy temperature (°C) 1 720 2 680 3 640

Table 3 Parameters of nine experiments were performed

Trials Gate area
(mm2)

Gate location
(position)

Gate velocity
(m/s)

Liquid alloy
temperature (°C)

A B C D

1 70 p1 50 720
2 70 p2 40 680
3 70 p3 30 640
4 55 p1 40 640
5 55 p2 30 720
6 55 p3 50 680
7 40 p1 30 680
8 40 p2 50 640
9 40 p3 40 720

Table 4 Experimental data

Shrinkage Porosity (%) MSD S/N

1 1.604 1.677 1.597 1.589 1.588 2.596444 −4.143789
2 1.646 1.645 1.591 1.590 1.534 2.565576 −4.091848
3 1.685 1.599 1.599 1.591 1.584 2.598633 −4.147449
4 1.616 1.588 1.573 1.570 1.566 2.504957 −3.988003
5 1.580 1.559 1.558 1.566 1.545 2.438725 −3.871629
6 1.567 1.563 1.560 1.553 1.556 2.433001 −3.861422
7 1.675 1.661 1.645 1.641 1 592 2.699583 −4.312967
8 1.437 1.467 1.468 1.457 1.459 2.124722 −3.273022
9 1.590 1.567 1.564 1.566 1.566 2.466379 −3.921479

Average −3.956845
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Measure of interactions between these factors with regard to robustness is
signal-to-noise (S/N) ratio. S/N characteristics formulated for three different cate-
gories are as follows: the bigger the better, the smaller the better, and the nominal
the best. This paper focused on studying the effects of four input parameters (A, B,
C, and D) to defect shrinkage porosity in the process of casting, so the criteria “the
smaller the better” is selected.

The smaller the better:

S ̸N = − 10 log
1
n
∑
n

i=1
y2i

� �
ð1Þ

where:

n: number of measurement.
yi: value of shrinkage porosity.

The measurement results calculated by formula (1) after sorting out the S/N
response as Table 5 and S/N response graphs in Fig. 6. We found the best com-
bination in this study for aluminum die casting shrinkage porosity defects are
A3B2C1D3 corresponding to the gate area of 40 mm2, group 2 of the gate location,
the speed of the liquid metal at the gate is 50 m/s, the temperature of molten
aluminum 640 °C.

The contribution rate of each factor results is shown in Table 6.

Table 5 S/N response A B C D

1 −4.127696 −4.148253 −3.759411 −3.978966
2 −3.907018 −3.745500 −4.000443 −4.088746
3 −3.835823 −3.976784 −4.110682 −3.802825

Fig. 6 S/N response graphs
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2.3 Computer-Aided Die Design

High-pressure die casting (HPDC) with the gating system consists of a biscuit or a
sprue, runners system, a gate, overflows, and vents. There are two basic gate types:
tangential and fan-gate (Gating manual, NADCA, USA. 2006. p. 56 [12], Wu et al.
[13], Hu et al. [14]). Both gates are usually designed with converging
cross-sectional area. The selection between the gate types depends on the part
requirements. Fan-gate is the simplest in structure and easier to machine. Tangential
gates are more difficult to design and machine, but the design is flexible and easy to
adapt to different technical requirements. The designer should ensure that the gate
and runner system to maintain smooth, continuous flow profiles and by designing
the casting so that no backflow occurs or two lines overlap. Based on the technical
side-core and molding direction, we design two types of gate systems with com-
ponents of a biscuit (diameter: 70 mm), a runner, a gate, and overflows. Two types
runner is designed as Figs. 7 and 8 with a cross section of gate: 40 mm2.

The results of the optimum parameters will be installed in ProCAST software
with two cases (full inlet and half inlet):

• gate area of 40 mm2

• gate location: group 2
• velocity of the molten metal at the gate: 50 m/s
• the temperature of molten metal: 640 °C
• the die temperature: 180 °C

With full inlet filling of the liquid metal flow in the die cavity is good. In case of
half inlet, not fill in all the volume of die cavity, high pressure increased. The
shortage metal occurs as Fig. 9 mean that having a disability and the option half
inlet design cannot be used for further study.

Shrinkage porosity analysis as in Fig. 10 with full inlet case shows that need
additional overflows in some locations important to reduce this phenomenon
shrinkage porosity. Figure 11 shows solid 3D of dies with full gating system.

Table 6 The ANOVA table

Factors S F (Degrees of
freedom)

V (Variation) Sʹ Contribution
rate (%)

Contribution

A 0.277270 2 0.138635 0.277268 37.285 2
B 0.372506 2 0.186253 0.372504 50.091 1
C 0.034864 2 0.017432 0.034862 4.688 4
D 0.059011 2 0.029505 0.059009 7.935 3
e
(Error)

0.000001 1 0.000001 0.00108 5

Total 9 100%
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The simulation results with the parameters setting on the ProCAST are calcu-
lated in the previous steps. The result of test is the liquid metal fill in full of die
cavity. Figure 12 shows that the casting no defects and shrinkage porosity
acceptable.

Fig. 8 Die casting with half
inlet

Fig. 7 Die casting with full
inlet
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Fig. 10 Shrinkage porosity
of the casting with full inlet

Fig. 11 3D solid model of
die casting dies

Fig. 9 Shortage of the
casting with half inlet
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3 Results and Discussion

The die for this study is the result of collaboration between the LIKW Enterprise
Corp, Taiwan and Department of Mechanical Engineering—Hung Yen University
of Technology and Education.

The entire die will be installed on the SD-500 CF casting machine as Fig. 13
with the parameters setting on the machine are calculated in the previous steps.

The product after casting to the naked eye without disabilities is shown in
Fig. 14. X-ray inspection with ERESCO 160 MF4-R for castings with parameters:
2% sensitivity, 30 s time exposure in the critical sections of castings. Results
showed no defects shrinkage porosity and no cracks inside, good quality castings,
as shown in Fig. 15.

The results of simulation and experiment indicate that the liquid metal in the die
filling full, no cracks inside, and shrinkage porosity acceptable. That means the die
is designed and manufactured optimization in accordance with the conditions of the
foundry factory production.

Fig. 12 Shrinkage porosity
of castings

Fig. 13 Casting in
SD-500CF die casting
machine
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4 Conclusions

The design experiments by Taguchi method and computer-aided casting simulation
technique for analysis of the optimal condition is a good combination in die design.
The results of the optimum parameters for design die are as follows: the cross
section of gate 40 mm2, the gate location at group two, the velocity of the molten
metal at the gate at 50 m/s, the temperature of liquid aluminum at 640 °C. For
analysis of defect such as shrinkage porosity, computer-aided casting simulation

Fig. 14 Product after casting

Fig. 15 X-ray film testing of samples casting
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technique is the most efficient and accurate method. The quality of the casting
product can be efficiently improved by computer-assisted casting simulation tech-
nique in the shortest possible time and without the conventional trial and error on
foundry factory. This in turn implies that the resources (materials, saving time, and
money) required for the experiments are also minimized.
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Flow and Performance Analysis
of a Valveless Micropump

P. K. Das and A. B. M. T. Hasan

Abstract The flow behaviour and performance parameters of a diffuser-nozzle
element of a valveless micropump have been investigated for different geometric
and flow properties. When a fluctuating pressure is imposed on the inlet boundary
of a diffuser-nozzle element, there is a net flow in diffuser direction due to the
dynamic effect. The variation of this net flow along with rectification capacity, and
diffuser efficiency has been investigated for different inlet-outlet length combination
and frequencies of driving pressure. Flow behaviour and recirculation region have
been studied. Pressure and velocity have been analyzed for quantitative analysis
and for validation with results found in literature. 2-D geometry has been used in
the present study. 3-D geometry has been modeled to justify the results obtained
from 2-D analysis. Different inlet-outlet length combinations ranging from 0.2 to
1.0 mm has been investigated. Five different pressure frequencies in the range from
5 to 50 kHz have been considered to identify their effects on the performance of
diffuser-nozzle element. The net flow and performance of the nozzle-diffuser ele-
ment are found to be less dependent on outlet length while more dependency was
found on inlet length. Further, the performance becomes weaker with the increase
of frequency of inlet driving pressure pulsation.

Keywords Diffuser-nozzle element ⋅ Micropump ⋅ Pressure frequency
Dynamic effect ⋅ Recirculation

1 Introduction

According to the convention for microelectromechanical systems (MEMS),
micropump is a specialized pump having a length scale in the order of 100 μm or
smaller whichmeets the demand of both small scaleflow (usually less than 15μL/min)
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and high pressure fluid transport. In mechanical displacement micropumps, a moving
boundary forces the fluid along by volume changes. Some of the examples are
piezoelectric, thermo-pneumatic, electromagnetic, and so on. In the recent past, dif-
ferent types of micropumps are described [1–5]. Micropumps having nozzle-diffuser
elements asflow rectification devices are commonly known as valvelessmicropumps.
The name “valveless” is due to the absence of conventional dynamic valves with
moving parts. The general types of nozzle-diffuser elements are shown in Fig. 1. If a
diffuser-nozzle element is subjected to a pulsatile pressure, there will be a net flow in
the diffuser direction after each pressure cycle although the time dependent pressure
differences through the element remain the same at each half cycle. This phenomenon
is known as the dynamic effect. Because of the lower flow resistance through the
diffuser direction than that in the nozzle direction, larger flow occurs in the diffuser
direction in one half cycle. In the inlet portion of the micropump, the minimum
cross-sectional area of the diffuser nozzle element is mounted with the inlet chamber
while the maximum cross-sectional area is mounted with the pump chamber. In the
outlet portion another element is mounted in opposite way. Thus a net flow can be
achieved from inlet to outlet.

The absence of moving parts and the simplicity in geometric construction of a
valveless micropump make them suitable for electronic cooling, bioMEMS and
other small scale technical applications. Effects of geometry of diffuser and inlet/
outlet port, actuation frequency and amplitude of actuation pressure on the per-
formance of conical diffuser-nozzle element were investigated by Wang et al. [6].
Results showed the best rectification performance can be obtained with diffuser
diverging angle of 10°, and a slenderness ratio of 7.5. Further, it was noted that
small pump chamber and inlet/outlet port deteriorate the pump performance.
Nabavi and Mongeau [7] studied the effects of various geometric and flow
parameters on the performance of diffuser-nozzle element. The performance of the
pump was found to be strongly dependent on diffuser half angle, pressure amplitude
and frequency. Several other researches [8, 9] showed the suitability of the
diffuser-nozzle element for flow rectification instead of dynamic valves (check
valves, flap valves, etc.). Flow separation was also observed at different frequen-
cies. However, performance of the diffuser-nozzle element at very high frequencies

Fig. 1 Diffuser-nozzle element a planer, b conical, c pyramidal
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and effects of different inlet-outlet length combinations are not clearly understood
till now. In the present study, an attempt is taken to address these fluid mechanical
and geometric issues through computational approach.

2 Performance Parameters of Diffuser-Nozzle Element

The performance parameters of a diffuser-nozzle element, which determine the suit-
ability of the element in flow rectification purpose, are: net velocity, net volume flow
rate, rectification capability and diffuser efficiency. Net velocity is the time-averaged
net velocity measured at inlet of the diffuser section of the element during the positive
and negative pressure cycle. Accordingly, net flow rate can be calculated.

Rectification capability is the measure of the capability of a nozzle-diffuser
element to direct the flow through the element in a definite direction. It is defined as
the net volume of the fluid transported from the inlet to outlet divided by the swept
volume and is expressed as,

ξ=
Φ+ −Φ−

Φ+ +Φ− ð1Þ

where Φ+ and Φ− are the total volume flow in the diffuser and nozzle directions,
respectively. To produce an effective flow rectification, ξ must be positive. Gen-
erally, it is less than 100%. High rectification capability indicates higher amount of
flow towards diffuser direction than the nozzle direction. Diffuser efficiency (η) is
the most important performance parameter indicating the net flow rate through
diffuser-nozzle element which can be defined as,

η=
εn
εd

ð2Þ

where εn and εd are the measure of the flow resistance or pressure loss coefficients
of the nozzle and diffuser directions, respectively. These parameters are defined as,

εn =
2Δpn
ρu2n

ð3Þ

and εd =
2Δpd
ρu2d

ð4Þ

where Δpn and Δpd are time averaged total pressure drops in the narrowest zone
downstream of the inlet and the broadest zone upstream of the outlet of the element
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during negative and positive pressure cycle, respectively. un and ud are the corre-
sponding time averaged velocities. To produce a net flow, η should be greater than
one.

3 Numerical Procedure

A CFD package ANSYS FLUENT [10] is used for present computation which
discretizes the governing equations using finite volume method. Pressure based
solver has been used. Fluid material is considered as water with density,
ρ = 998.2 kg/m3 and viscosity, µ = 0.001003 kg/m-s. The flow is assumed as
laminar and incompressible. At the inlet, pressure is imposed which is varied as
sinusoidal profile in the form of P0 sin(2πft), where P0 is the peak pressure
amplitude and f is the frequency of pulsation. At the outlet, 0 Pa gauge pressure is
assigned. Walls are considered as no-slip and midplane symmetry is assumed in the
present problem as in Fig. 2. The governing fluid mechanical equations for the
present problem are:

∂u
∂x

+
∂v
∂y

=0 ð5Þ

∂u
∂t

+ u
∂u
∂x

+ v
∂u
∂y

+
1
ρ

∂p
∂x

= ν
∂
2u
∂x2

+
∂
2u
∂y2

� �
ð6Þ

0.2

1.6

0.2 1.26

0.06
45°

Inlet

Outlet

Symmetry

Wall

Fig. 2 2-D geometry of the nozzle-diffuser element (dimensions are in mm)
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∂v
∂t

+ u
∂v
∂x

+ v
∂v
∂y

+
1
ρ

∂p
∂y

= ν
∂
2v
∂x2

+
∂
2v
∂y2

� �
ð7Þ

where (u, v) are the velocity components and ν is the kinematic viscosity of the
fluid. A pressure-implicit with splitting of operators (PISO) has been used as the
pressure–velocity coupling scheme. Pressure has been discretized with a
pressure-based segregated solver only (PRESTO!) scheme. Second order upwind
momentum discretization and second order implicit transient formulation has been
considered.

Inlet velocity is evaluated for different grid sizes to determine the grid inde-
pendent solution. It is found that the transient behaviour of velocities are almost the
same for 30,000–50,000 number of grids as shown in Fig. 3a. In the present study,
computational validation is done by comparing inlet velocity for 10 kPa peak
pressure at 10 kHz frequency, 0.2 mm inlet and 0.2 mm outlet length with the
reference data [6]. The results have been found in good agreement with the ref-
erence results as shown in Fig. 3b. From the inlet y-velocity (Fig. 4a), it is found
that the values of y-component of velocity are in the range of 10−3 m/s meaning that
it has almost no contribution to the resultant velocity for the calculation of per-
formance parameters. Further, the use of two-dimensional approach has been jus-
tified based on another 3-D computation. Figure 4b shows that the inlet x-velocity
is remained the same both in 2-D and 3-D computation. Further, z-velocity is found
to be very small as shown in Fig. 4c. Above findings confirmed the accuracy of the
2-D approach which is adopted in the present study.
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Fig. 3 a X-velocity over one period of oscillation for different grid numbers; b Comparison of
inlet velocity with reference data
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4 Results and Discussion

4.1 Stream Function Contour

Stream function contours for different pressure phase angles (α) at 10 kPa peak
pressure with 10 kHz frequency are shown in Fig. 5. Flow separation appears near
the peak pressure in both positive and negative cycle. This flow separation is the
result of using large diffuser half angle and the dynamic effect of a nozzle-diffuser
element. Due to this flow separation and associated recirculation zone, there is a
significant energy loss in the peak pressure (change in velocity direction) region.
During all other phases of pressure, continuous contours are found. From the stream
function contours for positive and negative pressure cycle, it is found that, flow
separation and the associated recirculation last for a longer period (α = 260°–295°)
in peak pressure region of negative pressure cycle when velocity initiates in
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negative nozzle direction than in peak pressure region of positive pressure cycle
(α = 68°–90°) when velocity initiates in positive diffuser direction. There is a
stronger retardation to increase the velocity in negative direction than in positive
direction. This influences to rectify the flow more in positive diffuser direction than
in nozzle direction.

4.2 Effects of Inlet and Outlet Lengthon Performance
Parameters

For a constant peak pressure value of 10 kPa and frequency of 10 kHz, three
different inlet lengths of 0.2, 0.3 and 0.6 mm and three different outlet lengths of
0.2, 0.3, and 1.0 mm are used in case of planar geometry. From Table 1, it is
observed that, net velocity, net volume flow, rectification capability, and diffuser
efficiency are more dependent on inlet length than outlet length. Maximum per-
formance is found for 0.2–0.3 mm inlet-outlet length combination. In case of
axisymmetric geometry, net velocity is found almost the same as in case of planar
geometry for the same 0.2–0.2 mm inlet-outlet length combination. Rectification
capability and diffuser efficiency are reduced in axisymmetric model indicating
more backflow towards nozzle direction.

4.3 Effects of Pressure Frequency on Performance
Parameters

Effects of pressure frequency is observed in case of planer geometry. For a peak
pressure, P0 = 10 kPa, it is found that, diffuser-nozzle element becomes ineffective
in rectifying flow towards diffuser direction at high frequencies (Table 2). All the

Table 1 Comparison of performance parameters for different inlet-outlet length combination

Inlet and outlet
length

Planar Axisymmetric
0.6 and
1.0 mm

0.3 and
0.3 mm

0.3 and
0.2 mm

0.2 and
0.3 mm

0.2 and
0.2 mm

0.2 and
0.2 mm

Net velocity (mm/
min)

477 1760 1848 3165 3156 3252

Net volume flow
rate (mL/min)

0.0572 0.2112 0.2208 0.3798 0.3786 0.0368

Rectification
capability,
ξ= Φ+ −Φ−

Φ+ +Φ−

6.33% 15.4% 16% 22.7% 22.34% 15.3%

Diffuser efficiency,
η= εn

εd

1.144 1.462 1.437 1.753 1.726 1.6
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performance parameters including net velocity, net volume flow, rectification
capability, and diffuser efficiency are observed to decrease with increasing fre-
quency. Higher the frequency, higher is the backflow towards the nozzle direction
lowering the flow rectification objective of diffuser-nozzle element. At a very high
pressure frequency range (greater than 50 kHz), the performance of diffuser-nozzle
element becomes insensitive to frequency.

5 Conclusions

In the present study, a numerical compuation is performed to investigate the per-
formance of a diffuser-nozzle element of a valveless micropump. Pressure pulsation
has been imposed at the inlet of the element. Following conclusions can be drawn:

• In the flow field of the diffuser-nozzle element, flow separation appears near the
peak pressure phase both in positive and negative pressure cycle. Flow sepa-
ration and the associated recirculation exist for a longer period in negative
pressure cycle than in positive pressure cycle. This indicates stronger retardation
to increase the velocity in negative direction than in positive direction.
Accordingly, a net flow is achieved in the positive diffuser direction.

• For planar geometry, net velocity, net volume flow, rectification capability, and
diffuser efficiency are strongly dependent on inlet length than outlet length.
Maximum performance is found for 0.2–0.3 mm inlet-outlet length combination
for the cases studied in the present investigation. In case of axisymmetric
geometry, there was no effect of geometric size on the net velocity. However,
rectification capability and diffuser efficiency are reduced in axisymmetric
model.

• All the performance parameters are observed to decrease with frequency. The
planar diffuser-nozzle element becomes inefficient in rectifying the flow towards
the diffuser direction at high frequencies.

Acknowledgements The present work has been carried out with computational resource support
from Higher Education Quality Enhancement Project (HEQEP), AIF (2nd Round)-Sub-Project CP
2099, UGC, MoE, Government of Bangladesh (Contract no. 28/2012).

Table 2 Comparison of performance parameters for different pressure frequency

Driving frequency (kHz) 5 10 20 30 50

Net velocity (mm/min) 8922 3156 1336 423 252
Net volume flow rate (mL/min) 1.07065 0.3786 0.1603 0.05076 0.03024
Rectification capability,
ξ= Φ+ −Φ−

Φ+ +Φ−

32.01% 22.34% 19.33% 10.02% 9.2%

Diffuser efficiency, η= εn
εd

2.149 1.726 1.62 1.2731 1.279
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Aeroelastic Analysis on Wing Structure
Using Immersed Boundary Method

D. T. K. Hoang, S. V. Pham, K. N. Tran, C. D. Nguyen
and K. P. Nguyen

Abstract Flutter of airplane’s wing is a critical issue determining reliability of
aircraft. Flutter phenomenon is the result of fluid–structure interaction and is usually
involved with complicated phenomena such as shock wave–boundary layer inter-
action, flow separation, and nonlinear limited cycle oscillation. Accurate prediction
of flutter is very challenging due to perplexing physical phenomena and requires
large amount of computation. In this paper, a developed code based on immersed
boundary method (IBM) was realized to predict aeroelastic response and charac-
teristic parameters of the wing structure. There were two rectangular and two
trapezoid 3D-shapes of wing; each 3D-shape of wing had NACA65A004 and
supercritical airfoil, respectively. Results from IBM method were first analyzed to
carry out behaviors of flow on and around airplane wings and then were compared
with experimental results at low speed.

Keywords Aeroelasticity ⋅ Flutter ⋅ FSI ⋅ IBM

1 Introduction

Aeroelasticity is a science to study the interaction between aerodynamic force,
elastic force, and inertial force. Flutter which is one of the most dangerous aeroe-
lastic phenomena is defined as the dynamic instability of an elastic body in an
airstream. Reason is unsteady aerodynamic forces generated from elastic deforma-
tions of the structure. It can lead to a disastrous structural failure. Therefore, flutter
problem should be calculated in the early phase of the air-vehicle structural design.
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Actually, these aeroelastic solution procedures solved two-way fluid–structure
interaction (FSI) that used strongly coupled algorithms between Computational
Fluid Dynamics and Computational Structural Dynamics [1–4].

Immersed boundary method carried out fluid–structure interaction by solving
Navier–Stokes equations for flow momentum in couple with Newton equation for
structure movement under the effect of friction force exerting on structure surface.
Due to change of structure position in time, computational mesh needed to be
re-calculation in each time step. To overcome this obstacle, Pham et al. [5] invoked
both immersed boundary and finite volume methods in solving the interaction
between fluid flow and moving structure.

The aim of this paper was to estimate numerical and experimental results on
wing structure at low speed. Numerical results were performed by a developed code
based on immersed boundary method (IBM) [5], while experimental results were
carried out by using subsonic wind tunnel which was located at Hanoi University of
Science and Technology (HUST) [6]. Both experimental research and numerical
research were effectuated at air velocity 20 m/s and attack angle 5°. Four different
wing models were carried out in order to analyze the effect of wing structure. There
were two rectangular and two trapezoid 3D-shapes of wing, each 3D-shape of wing
had symmetric (NACA65A004) and asymmetric (supercritical) airfoil, respectively.

2 Methodology

2.1 IBM method

Having assumption that structure was linear elastic, fluid flow and deformation of
structure were governed by below equations [5]:

∂u
∂t

=
1
Re

∇2u− u∇u−∇p+ f ð1Þ

∇u=0 ð2Þ

d mpUc
� �
dt

=F + g ð3Þ

dxc
dt

=Uc ð4Þ

d Ip ⋅ωp
� �
dt

= T ð5Þ

dθp
dt

=ωp ð6Þ
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where u was fluid velocity vector; p was fluid pressure; f was force that affected on
wing; Re was Reynolds number; Uc, ωp, xc, and θp were displacement velocity,
angular velocity, center of gravity, and rotation of wing, respectively; mp and Ip
were mass and inertial moment of wing; and F and T were force and moment that
created by fluid go pass through the wing.

To solve out Eqs. (1–6), this research used IBM method. The most important of
this method was that the interaction force (f) between wing and fluid was calculated
so that boundary condition of fluid was satisfied on the surface of wing: velocity of
the fluid at fluid–solid interface was equal velocity of wing. The Cartesian grid and
immersed boundary were illustrated in Fig. 1, in which moving surface of wing was
described by Lagrangian points (rounded points), and fixed points in fluid were
called Eulerian points. To distinguish, parameters of Lagrangian points were noted
as capitalization.

Discrete partial derivative of velocity over time of Eq. (1) with intermediate
velocity, Ûk, was velocity at zero force of Lagrangian point, F of Lagrangian points
was estimated as follows

F =
Uk+1 − bUk

Δt
−

1
Re

∇2U −U∇U −∇P
� �

ð7Þ

where k was time step; Uk+1 was identified from moving of wing, so this velocity
was known as U(b).

To calculate force, which created from displacement, affected on fluid element,
following interpolation formula was applied:

f = ∑
N

l=1
F xlð Þδh x− xlð ÞΔVl ð8Þ

Lagrangian point

Euler point

Fig. 1 Cartesian grid and
immersed boundary
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where x was coordinate of Eulerian point; N was set of Lagrangian points around
Eulerian point l; xl was coordinate of Lagrangian point; ΔUl was volume of effect
corresponded to Lagrangian point l; and δh was 3D delta function was identified as
follows:

δh x− xlð Þ= δ1Dh x− xlð Þδ1Dh y− ylð Þδ1Dh z− zlð Þ ð9aÞ

δ1Dh rð Þ= 1
h
φ rð Þ r=

x− xl
h

ð9bÞ

φ rð Þ=
1
6 5− 3 rj j−

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1− 3 1− rj jð Þ2

q� �
1
2 ≤ rj j≤ 3

2

1
3

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1− 3 rj j2

q
rj j≤ 1

2

0 rj j≥ 3
2

8>>><
>>>: ð9cÞ

To incorporate this method to solve Navier–Stokes equations and Newton
equations, three-step Runge–Kutta method was applied:

• Step 1: Identify instantaneous velocity at Eulerian points with assumption that
there was no immersed boundary surface, i.e., f = 0

u ̃= uk+1 +Δt 2αkυ∇2uk− 1 − 2αk∇pk − 1 − γk u ⋅ ∇ð Þuð Þk− 1 − ζk u ⋅ ∇ð Þuð Þk− 2
� �

ð10Þ

where k was step calculation of Runge–Kutta method (k = 1, 2, 3); αk, γk, and ζk
were the coefficient of kth step calculation; and υ was kinematic viscosity.

Apply this instantaneous velocity to calculate Lagrangian velocity on surface of
wing:

eUxl = ∑
N

k=1
ux̃δh x− xkð Þh3 ð11Þ

This velocity was combined with wing velocity, Uxl
(b), which was calculated from

the dynamic equation of wing, to calculate forces of Lagrangian points (F) fol-
lowing Eq. (7). Then, these forces are applied to Eq. (8) to calculate forces of
Eulerian points (f).

• Step 2: Solve Navier–Stokes Eq. (1) to bring the effect of flutter of wing into
velocity field around wing:
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∇2u*−
u*

αkυΔt
= −

1
υαk

u ̃
Δt

+ fx

� �
+∇2uk− 1 ð12Þ

To satisfy continuity equation, a temporary pressure was described:

∇2Φk =
∇ ⋅ u*
2αkΔt

ð13Þ

• Step 3: Solve Eq. (11) and calculate velocity and pressure at kth step of Runge–
Kutta method:

uk = u*− 2αkΔt∇Φk ð14aÞ

pk = pk− 1 +Φk − αkΔt∇2Φk ð14bÞ

From estimated forces at Lagrangian points, translational and angular move-
ments of wing were carried out by solving Eqs. (3) and (5):

Uk
c =Uk− 1

c +2αk
Δt
M

F +Gð Þ ð15aÞ

ωk
p =ωk− 1

p +2αk
Δt
Ic

T ð15bÞ

After calculating the velocity of the center of gravity (Uc
k) and angular velocity

of wing (ωp
k), coordinates of Lagrange points were estimated by same expressions.

2.2 Aircraft wings

Rectangular and trapezoidal wings were studied in this research (Fig. 2). Rectan-
gular wing had chord length 7.5 cm, semi-span-wise length 30 cm. While, trape-
zoidal wing had no sweep angle at leading edge line with tip chord length 5 cm,
root chord length 10 cm, semi-span-wise length 30 cm. There were two cross
sections of wing in this research. One was NACA 65A004 airfoil in stream-wise
direction, which was a symmetric airfoil with a maximum thickness of 4% of local
chord (Fig. 2a, b), and other was supercritical airfoil (Fig. 2c, d). NACA65A004
airfoil was thin and symmetric airfoil that its sections were particularly adaptable to
airplanes having high-level flight speeds. Supercritical airfoil was asymmetric and
was characterized by its flattened upper surface, highly cambered (curved) aft
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section, and larger leading edge radius compared with NACA 6-series laminar
airfoil shapes. The wing was constructed by aluminum.

Experiments were conducted at the low-speed blowdown wind tunnel, which
belongs to Department of Aeronautic and Space Engineering at Hanoi University of
Science and Technology (HUST), Vietnam. Maximum free-stream velocity in
empty test section was 30 m/s corresponding to Reynolds number 106, and tur-
bulence level was slightly less than 1%. Wind tunnel was operated continuously,
and a centrifugal blower was driven by an 8 kW electric motor. Free-stream
velocity was kept constant within ±2%. Total pressure of free-stream and dynamic
pressures was measured by Pitot tube within ±2%. Air temperature was measured
within ±1%. Both experimental research and numerical research were effectuated at
air velocity 20 m/s and attack angle 5°.

For experimental study, wing model had 160 pressure taps (Fig. 2). These
pressure taps were connected to an external digital manometer via stainless and
silicon tubes. Each pressure tap was measured, using Keygence pressure mea-
surement, one time with waiting time of 5 s (average of about 1000 instant values).
The standard deviation of measurement errors was within ±0.001 Pa. Moreover,
flutter of wing was captured with help of high-performance camera.

3 Results

The results of deformation and stress of wings were analyzed at three different
instants (Fig. 3):

• Time T0: Initial time when distortion did not occur.
• Time T1: Time between maximum deformation and non-deformation.
• Time T2: Time of maximum distortion.

(a) NACA65A004– Rectangular wing (c) Supercritical – Rectangular wing

(b) NACA65A004 – Trapezoidal wing (d) Supercritical – Trapezoidal wing

Fig. 2 Wing models for experiment
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(a) NACA65A004 – Rectangular wing

(b) NACA65A004 – Trapezoidal wing

(c) Supercritical – Rectangular wing

(d) Supercritical – Trapezoidal wing

Fig. 3 Instant displacement of wings
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The maximum deformation was found at the tip of wing and raised down
gradually into the root of wing over time. This remark was also observed by
experimental results within a relative error less than 10% (Table 1).

Comparing the maximum distortion between two 3D-shapes of the wing with
same airfoil, rectangular wing has more distortion than trapezoidal wing. Thus,
3D-shape of wing contributed significantly to deformation of wing when aeroelastic
phenomenon occurred (Table 1).

Table 1 Maximum deformation of wing tip

Wing IBM method
(mm)

Experiment method
(mm)

Relative error
(%)

NACA65A004-Rectangular 0.119 0.131 9.7
NACA65A004-Trapezoidal 0.030 0.033 8.6
Supercritical Rectangular 0.035 0.039 9.9
Supercritical Trapezoidal 0.034 0.037 9.2

T0 T1 T2

(a) NACA65A004 – Rectangular wing

(b) NACA65A004 – Trapezoidal wing

(c) Supercritical – Rectangular wing

(d) Supercritical – Trapezoidal wing

Fig. 4 Instant normal stress
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In comparison with the same 3D-shape of wing but different airfoils,
NACA65A004 rectangular wing was deformed more than supercritical rectangle
wing. Meanwhile, NACA65A004 trapezoidal wing was deformed less than the
supercritical trapezoidal wing. It could be concluded that the 3D-shape or airfoil of
wing played an important role in creating the durability of the structure (Table 1).

Normal stress was remarked that has an opposite tendency in comparison with
deformation. Wing root must support maximum stress while wing tip supports
minimum stress (Fig. 4). This observation could be explained by the fixed support
of wing root at fuselage, while at wing tip, it was a free support [1].

At non-distortion instant (T0), normal stress had important value near wing
tip. During flutter behaviors of wing, important normal stress propagated from wing
tip to wing root. Maximum value of normal stress was found out at wing root and at
T2 instant.

With same airfoil, maximum normal stress at wing root of rectangular wing was
higher than that of trapezoidal wing. At the same 3D-shape of wing, maximum
normal stress of NACA65A004 rectangular wing was higher than that of super-
critical rectangle wing. Meanwhile, this value of NACA65A004 trapezoidal wing
was less than supercritical trapezoidal wing.

4 Conclusion

Numerical method based on IBM and experimental methods was carried out to
predict the flutter of aircraft wing. The main results could be summarized as
follows:

• During flutter phenomenon, deformation of wing tip was maximum and mini-
mum at wing root. In contrast with deformation, normal stress was minimum at
wing tip, but maximum at wing root.

• Experimental results were in good agreement with numerical results within a
relative error less than 10%.

• Geometry of wing (3D-shape, airfoil) contributed significantly to the deforma-
tion of wing when aeroelastic phenomenon occurred.

In the future work, the aeroelastic experimental research at low speed and high
speed will be realized for AGARD 445.6 wing. The numerical research will be also
performed in order to compare with experimental results and with other results.
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Development of a 3-DOF Haptic
Tele-manipulator System Using
Magnetorheological Brakes

Nguyen Ngoc Diep, Hung Nguyen-Xuan, Nguyen Ngoc Tuyen
and Nguyen Quoc Hung

Abstract In this work, a tele-manipulator system with force feedback (Haptic
tele-manipulator) is designed and manufactured. The haptic tele-manipulator sys-
tem in this study consists of two main parts: slave and master manipulator. The
slave manipulator is a three 3-rotary degrees of freedom (DOF) manipulator and
driven by AC servo motors. At the end effector of the slave manipulator a 3D force
sensor are mounted to measure impact force from the environment. The master
manipulator is used to control the slave manipulator; it has a structure and shape
similar to the slave manipulator. At the joints of the master manipulator,
magneto-rheological brakes (MRBs) are installed. They are meants to create the
variable braking torque in order to generate a required resultant force acting to the
master operator. The value of required resultant force is obtained from sensors
mounted on the slave manipulator. In this way, the operator of the master manip-
ulator can feel the force at the end effector of the slave during its operation.

Keywords Magneto-rheological brake ⋅ Optimal design ⋅ Haptic system
Haptic tele-manipulator
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1 Introduction

Recently, position feedback and force feedback techniques have been in use to
increase the effectiveness of human-machine interfaces. The applications range
from medicine, space technologies, military application to computer games and
virtual reality devices such as virtual rehabilitation. In robotics, the well-known
concept of “tele-presence” is based on the force feedback techniques. The
tele-presence is defined as the ideal of sensing sufficient information about the
tele-operator and task environment, and communicating this to the human operator
in a sufficient natural way, that the operator feels physically present at the remote
site [1]. Such a system is often referred to as a haptic master-slave system. This
allows the operator to perform tasks in hazardous or distant environments by
knowledgeably guiding the robot slave from a safe distant location. For such
operations to be successful it is necessary to virtually immerse the human operator
in the remote environment through haptic feedback, otherwise the manipulation
requires too much effort and becomes slow and imprecise.

Many tele-manipulator systems have been proposed such as five-fingered haptic
interface system [2], the Polish cardio-robot RobIn Heart (RIH) system [3], MR
Brake for haptic wrist application [4] and Control of haptic master-slave robot
system for minimally invasive surgery [5]. Although there have been saveral
researches on haptic tele-manipulator systems, no research effort on on haptic
system for industrial robot are conducted so far.

The main objective of this research is to focus on the development of a haptic
system for industrial robots with 3 degrees of freedom. Haptic robots with force
feedback devices featuring magneto-rheological fluid (MRF), these devices are
called magneto-rheological brakes (MRB). In this study, we propose a new con-
figuration of MRB modified from previous one [6–8] by using a thin-wall for
separation between the coils and MRF duct, which is referred as thin-wall MRB.
With this configuration, the MRB can be manufactured more accurately and easily,
especially at the MRF ducts. The MRBs located at the joints of the master
manipulator are used to feedback the torque/force from slave manipulator to the
master manipulator. In addition, the slave manipulator is driven by AC servo
motors and its trajectory is the same as that of the master manipulator. This paper is
organized as following: Introduction is presented in Sect. 1; The thin-wall MRB is
introduced in Sect. 2; Haptic tele-manipulator system is displayed in Sect. 3;
Tele-operation control and experiment results are shown in Sect. 4, and finally
some conclusions are shown in Sect. 5.
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2 Description of Thin-Wall MRB

A new configuration of a disc-type MRB with two coils placed on each side of the
brake housing is introduced and its braking torque is analyzed based on
Bingham-plastic model of MRF. Figure 1a shows the previously developed MRB
in which the two coil on each side of the housing directly contact with MRF [6],
while Fig. 1b shows the configuration of the proposed MRB in which the coils are
separated with MRF by a thin wall.

As shown in the Fig. 1, a disc (rotor) made of magnetic steel is fastened to the
flange of the MRB shaft made of nonmagnetic steel. The disc is embedded inside a
stationary envelop (housing) made of magnetic steel. In Fig. 1a, two wire-coils are
directly placed on each side of the housing and directly contact with the MRF (In
this study, this is referred as contact side-coil MRB). In Fig. 1b, there are not any
slots on the inner face of the side housing, the side housing is composed of two
parts and the coils are placed on the inner part of the housing from outside. In this
case, the coils do not contact with the MRF (In this study, this is referred as
non-contact side-coil MRB). The space between the rotary disc and the housing is
filled with MRF. In order to prevent the leaking of MRF, radial lip seals are
employed. It is noted that, for the non contact MRB, the wall should be manu-
factured as thin as possible to prevent magnetic flow going through it.

With the new configuration of MRB (Fig. 1b), the coils are separated with the
MRF by thin walls of the side housing, the inner face of the side housing can be
manufactured continually. This allows the MR fluid duct to be manufactured more
easily and accurately, and avoid the contamination of the coils with MRF. The MR

Magnetic 
Flux

Magnetic 
coils 

MRF

Rotary disk

Stationary 
housing

Sealing

Disk

Stationary 
housing

Cover

Thin wall

Shaft 

Sealing

(a) (b)

Fig. 1 Configuration of the conventional a and the proposed disc-type MR brake b
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fluid using in this study is Lord Corporation’s MRF – 132DG that has plastic
viscosity of 0.09 Pa s.

When an electrical current is applied on the coil of MRB, due to the generated
magnetic fields, the MR fluid in the gap becomes solid-like instantaneously. The
shear friction between the rotating disk and the solidified MR fluid provides the
required braking torque on the shaft. As such, depending on the current supplied to
the MRB, the corresponding torque is obtained. The change in braking torque by
change in the applied current is shown in the Fig. 2 [7, 8]. It can be seen that at the
start when current is not applied only viscous torque acts on the fluid, but when the
current is applied the braking torque increases.

3 Haptic Tele-manipulator System

3.1 The Master Manipulator

The configuration of the master manipulator is shown in Fig. 3. It is noted that this
master manipulator is designed and manufactured by our research group to control
the commercial manipulator shown in Fig. 4. Three MRBs are installed at the three
corresponding rotary joints for force feedback. The manipulator is made of alu-
minum alloy material (5052-H38). At the joints there are encoders installed to
determine the rotational angle of the joint. Besides, the torque sensors are installed
to measure the torque at the joints. In this system we used three encoders type:

Fig. 2 Braking torque versus current at different speeds of the rotary disk
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LBJ-096-2000, power 5VDC, resolution 2000 pulse/rotation (Sumtak) and three
torque sensors type: AZM 350, measure range 0–20 Nm, power ±15 V DC (Giken).
At the end of the master manipulator a 3D force sensor is mounted to measure the
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Joint 2’s 
MRB

Joint 1’s 
MRB

Encoder 3

Torque sensor 3

Torque sensor 2

Base

Link 1

Link 2

Link 3

Encoder 2

Fig. 3 Configuration of the master manipulator
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Link 1
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Joint 1

3D Force sensor

Joint 3

Joint 2

Fig. 4 Configuration of the slave manipulator
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forces that verify the results of the force feedback control problem. The length of
the links are: L1 = 160 mm, L2 = 280 mm, L3 = 260 mm.

In this study, dynamics of the manipulators are neglected and equation of
momentum at the joints of the master manipulator can be derived as following [9,
10, 11]:

M qð Þi = Dij
� �

Fxyz
� �

− Gij
� �

mið Þ; i=1, .3 ð1Þ

where M(q)i is the equilibrium momentum at the joints when the armature operates,
G(q) is the inertia matrix, and F is the control input torque. The mentioned matrix of
the 3 DOF articulated manipulator can be computed by:

D 1, 1ð Þ=L1 +L2 cos θ2 +L3 cosðθ2 + θ3Þ; D 1, 2ð Þ=0; D 1, 3ð Þ=0 ð2Þ

D 2, 1ð Þ=0; D 2, 2ð Þ=0; D 2, 3ð Þ=L3 +L2 cos θ3 + L2 sin θ3 ð3Þ

D 3, 1ð Þ=0; D 3, 2ð Þ=L3; D 3, 3ð Þ=0 ð4Þ

G 1, 1ð Þ=0; G 1, 2ð Þ=0; G 1, 3ð Þ=0 ð5Þ

G 2, 1ð Þ=0; G 2, 2ð Þ= − g
L2
2
cosθ2; G 2, 3ð Þ= − g L2cosθ2 +

L3
2
cos θ2 + θ3ð Þ

� �
ð6Þ

G 3, 1ð Þ=0; G 3, 2ð Þ=0; G 3, 3ð Þ= g
L3
2
cos θ2 + θ3ð Þ ð7Þ

Fxyz
� �

=
Fx

Fy

Fz

2
4

3
5 ð8Þ

mi½ �=
m1

m2

m3

2
4

3
5 ð9Þ

where Fx, Fy, Fz are forces acting on the slave arm at the end-effector. L1, L2, L3 are
length of the three links, m1, m2, m3 are weight of the links, θ1, θ2, θ3 are rotation
angles of the joints and m1, m2, m3 are weigh of the links, respectively.

3.2 The Salve Manipulator

The slave manipulator is shown in Fig. 4. This is a 6-DOF commercial manipulator
which is modified by our research group to make it suitable for this research. It is
observed that the joints of the machine arm are driven by AC servo motors. At the
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end-effector, a 3D force sensor are mounted to measure impact force from the
environment. These forces will be calculated by the controller and converted into
current signals; these signals are supplied to the MRBs on the master arm to
produce feedback forces to the operator. The slave manipulator is controlled by the
master manipulator and it must travels in the same trajectory as the master
manipulator.

The slave manipulator with maximum payload is 1.5 kg; max. reach is 700 mm;
max. operation speed is 0.5 m/s; robot weight is 19 kg.

Using forward and inverse kinematics of robot, the rotation angle of each slave
robot arm is derived as follows:

θ1 = actan2 dy, dx
� � ð10Þ

θ2 = actan2 r, dzð Þ− actan2ðL2 +L3 cos θ3, L3 sin θ3Þ ð11Þ

θ3 = acos
d2z + d2x + d2y −L2

2 −L2
3

2L2L3

 !
ð12Þ

where

dx = ðL1 +L2cosθ2 + L3cosðθ2 + θ3ÞÞcosθ1; dy = ðL1 +L2cosθ2 + L3cosðθ2 + θ3ÞÞsinθ1;
dz = L2sinθ2 + L3sinðθ2 + θ3Þ; r = L1 + L2cosθ2 + L3cosðθ2 + θ3Þ.

4 Tele-operation Control

Figure 5a shows the photograph of the manufactured haptic master combined with
the MRBs, encoders, torque sensors installed in the joints. Figure 5b shows the
photograph of the manufactured slave manipulator. The control system diagram of
the tele-manipulator system showed in Fig. 6, this system is controlled by a NI card
6289 (National Instruments) and PID controllers are used. When operator moves
the master arm, position information such as rotational angles is obtained from
encoders, and transferred to controller to control the servomotors of slave arm, so
this arm must move according to the movement path of the master arm. At the same
time, the forces acting on the slave arm are also transfer to the controller, and then
converted into the control signals to supply to the MRBs on the master arm, which
is to be reflected to the user. The forces acting on the slave arm are measured by a 3
axes force sensor at the end-effector. The generated force/torque at the joints of
haptic master is measured by three torque sensors installed at the joints.

Rotational angle (in degrees) of the corresponding joints on the master (θmaster)
and slave (θsalve) manipulator is determined:
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a) Manufactured haptic master b) Manufactured slave manipulator

Fig. 5 The photograph of the manufactured tele-manipulator system

Fig. 6 Experimental apparatus of master and slave manipulator system
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θi slave = i
n

2000
360 θi master; i=1, . 3 ð13Þ

where n is the number of pulses counted of the encoder at the joint of master
manipulator; i is the transmission ratio of the harmonic box; θi-slave, θi-master are
rotational angles of the joints of the slave and master manipulator, respectively.

Fig. 7 Block diagram of the force feedback control systems

Fig. 8 Force feedback control program in Matlab Simulink
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a) θ1 angle

b) θ2 angle

c) θ3 angle

Fig. 9 Comparison of rotational angles of the joints of the master and slave arms
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a)Moment at joint 1

b) Moment at joint 2

c) Moment at joint 3

Fig. 10 Reflected torques at the joints of the master arm
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Besides, the block diagram of PID controller for the force feedback of the master
and slaver system has been brought in Fig. 7, and the control program in Matlab
Simulink showed in Fig. 8. In this control program the Fx_s, Fy_s, Fz_s are the
acting forces at the end-effector of the slave manipulator.

Figure 9 presents rotational angles results of the corresponding joints on the
master and slave manipulator. Accordingly, deviation of the rotational angle of two
corresponding joints on the master and slave manipulator is about 0.5°. At the same
time, the torque tracking control responses of rotation motion at the joints of master
manipulator showed in Fig. 10. From the result, it is clearly seen that the torques at
the joints of the mater track the desired signal except at the times that the direction
of manipulator is inverted, errors between be desired torque from measuring torque
of the master manipulator is about 0.1 Nm. Also from these results, the proposed
haptic master system was successfully operated and communicated with the slave
without time delay problem.

5 Conclusion

In this study, a novel configuration of a disc-type MRB with two coils placed on
each side of the brake housing is introduced and its braking torque is analyzed
based on Bingham-plastic model of MRF. A haptic master manipulator using new
MRBs for forces feedback was proposed and integrated with the slave manipulator,
the master manipulator is used to control the slave manipulator; it has a structure
and shape similar to the slave manipulator. Kinematic analysis of the slave and
master arm was studied. The interface communication between master and slave
system has been analyzed. Accordingly, the haptic master-slave system has been
established by incorporating the slave manipulator with the master manipulator in
which the repulsive force/torque and desired position are transferred to each other.
In order to obtain the desired torque trajectories, a PID controller was used, the
system control program has been built and the experiments have been done. It has
been demonstrated that the desired effective torque tracking and position control
performances are well achieved.
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Studying Convective Flow in a Vertical
Solar Chimney at Low Rayleigh Number
by Lattice Boltzmann Method: A Simple
Method to Suppress the Reverse Flow
at Outlet

Y. Q. Nguyen

Abstract Solar chimneys absorb solar radiation heat and induce natural convective
airflow for natural ventilation of buildings. In this study, we simulate induced
airflow in a two-dimensional vertical solar chimney by Lattice Boltzmann Method
(LBM) and focus on laminar flow region at low Rayleigh (Ra) number. Standard
D2Q9 and D2Q4 models with single relaxation time are used for flow and tem-
perature fields, respectively. Airflow and air temperature distributions inside the
chimney are investigated under effects of main parameters of solar chimneys: heat
flux, chimney height H, and chimney width b. Typical characteristics of a solar
chimney were well reproduced in our simulations. Particularly, we analyze flow
reversal region near the outlet of the chimney. The flow separation regions were
observed at low ratio of H/b at a given Ra number or at high Ra number at a given
H/b ratio and significantly reduced the induced flowrate. To suppress the flow
reversal, we propose a simple method of rearranging the heat transfer surface on the
opposite side in the upper and lower halves of the chimney. The results show that
this method can eliminate the separation region and increases the induced flowrate
at low ratio of H/b at a given Ra number.
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1 Introduction

Solar chimney has been studied by many researchers as an effective method for
natural ventilation of buildings [1–3]. An example of using solar chimneys for
natural ventilation is the zero-energy building (ZEB) in Singapore [4].

A solar chimney absorbs solar radiation heat to induce thermal effect, or stack
effect, inside the air channel. A typical configuration of a solar chimney consists of
a glass plate, or a glazing plate, an air channel, and an absorber surface opposite to
the glazing surface. Solar radiation heat is transmitted through the glazing and then
received by the absorber surface. Heat transfer between the air inside the channel
and the absorber surface, which is mainly in convection mode, creates thermal
effect to induce airflow through the chimney. The airflow can be used for venti-
lating buildings naturally [1, 2].

There are two main types of solar chimneys: vertical ones and inclined ones.
Induced flowrate through a solar chimney is affected by many parameters, such as
inclined angle, dimensions of the air channel, and materials of the absorber surface
[1–3]. For the vertical solar chimneys, dimensions of the air channel significantly
affect the structure of the airflow and the ventilation performance accordingly [1, 2].
Chen et al. [1] conducted experiments with a vertical solar chimney of 1.5 m height
and reported that there was a flow separation zone at the outlet of the chimney as
the width of the chimney was greater than 0.3 m. Khanal and Lei [2], with their
experimental and numerical studies, focused on effects of the separation zone at the
outlet of a vertical solar chimney on the induced flowrate. Their results showed that
the reverse flow at the outlet significantly reduced the induced flowrate through the
chimney. They then proposed a simple method to suppress the separation zone by
using an inclined glazing surface.

Khanal and Lei [2] reported that the height of the separation zone increased with
the heat flux, or the Rayleigh number, Ra, which is defined in Eqs. (10) and (11)
below. The value of Ra at which the separation zone existed in their chimney was
from 109 to 1011. Chen et al. [1] reported that transition to turbulent flow happened
in a vertical solar chimney at around 1013. Therefore, the airflow in Khanal and
Lei’s experiment [2] was in the upper laminar regime.

In this study, natural convection flow at lower laminar regime is investigated
numerically. Lattice Boltzmann Method is used to model flow and temperature
fields inside a vertical solar chimney to examine effects of flow separation zone at
the outlet. A simple method is then proposed to suppress the reverse flow to
enhance the induced flowrate through the chimney.

2 Numerical Method

Main characteristics of a solar chimney can be studied numerically by a
two-dimensional model [1–3] as depicted in Fig. 1.
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In real solar chimneys, transmission and absorption of solar radiation take place
at the glazing place and the absorber surface, respectively. Major portion of the
absorbed heat is transferred to the air in the channel in convection mode. In sim-
ulation, to focus on thermal effect, only the convection mode is modeled, while the
others are ignored, such as radiation heat loss through the glazing plate or con-
duction heat loss through the absorber plate. The convection heat transfer on the
absorber surface can be described by an applied heat flux or a specific surface
temperature which is higher than the ambient temperature [2]. In this simulation,
both methods are applied to validate the model (with an applied temperature) with
experimental results [5] and to examine flow structure (with an applied heat flux).

In the numerical model, coupled field of airflow and temperature is described
with Lattice Boltzmann Method (LBM). The following assumptions are used:

• The airflow and temperature fields are two-dimensional and steady. The airflow
is incompressible.

• Heat and airflow coupling follows the Boussinesq approximation.
• The airflow is laminar. Particularly, the considered Ra number is from 104 to

107.

LBM has some advantages over traditional computational fluid dynamics
methods, such as readiness for parallelization or treatment of complex solid
geometries [6]. Details of LBM can be found in a number of previous studies [6–9].
Only fundamental equations of LBM employed in this study are presented here.

In LBM, motions of a group of fluid particles at a point as well as temperature
distribution are described by directional distribution functions. For this
two-dimensional problem, the airflow is described by the D2Q9 model with nine
distribution functions fi, where i is from 0 to 8, while the temperature field is
modeled by the D2Q4 scheme with four distribution functions gk, where k is from 1

b 

H 

1 

2 

3 4 

x 
y 

g 
Fig. 1 Two-dimensional
model of a vertical solar
chimney, where H and b are
the height and the width of the
chimney, respectively; 1 is the
inlet; 2 is the outlet; 4 is the
absorber plate; and 3 is the
glazing surface
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to 4, as shown in Fig. 2. Mohamad and Kuzmin [8] reported that this combination
is suitable for the natural convection problems.

2.1 D2Q9 Model for the Airflow

The D2Q9 model with BGK approximation [6–8] is described by Eq. (1).

fi x+ ciΔt, t +Δtð Þ− fiðx, tÞ= −
fiðx, tÞ− f eqi ðx, tÞ

τ
+ΔtFi ð1Þ

In Eq. (1), x is the spatial vector; t and Δt are the time and time step, respec-
tively; ci is the velocity in i direction, i = 0,…8 as in Fig. 2; τ=1 ̸ωm is the
relaxation time; and Fi is the body force in i direction, which is the buoyancy force
in this problem.

The equilibrium distribution function f eqi is calculated by Eq. (2).

f eqi =wiρ 1+ 3
ciu
c2

+
9
2

ci.uð Þ2
c4

−
3
2
ðu.uÞ2
c2

" #
ð2Þ

where wi is the weighting factor in the direction i:

wi =
4 ̸9, i=0
1 ̸9, i=1, 2, 3, 4
1 ̸36, i=5, 6, 7, 8

8<
:

u is the velocity vector; ρ is the air density; and c is the lattice speed, c=Δx ̸ Δt
where Δx is the lattice spacing.

The directional vector ci has the following values in each direction: c0 = (0, 0),
c1 = c(1, 0), c2 = c(0, 1), c3 = c(−1, 0), c4 = c(0, −1), c5 = c(1, 1), c6 = c(−1, 1),
c7 = c(−1, −1), c8 = c(1, −1).

The body force Fi is calculated by the Boussinesq approximation:

Fi =wiF ⋅ ci ̸ c2s ð3Þ

1 
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3 

4 

5 
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7 8 
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0 

Fig. 2 Directions of nine
distribution functions fi for
airflow (left) and four
distribution functions gk for
the temperature field (right)
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where F= ρgβΔT . g is the gravitational acceleration. β is the thermal expansion
coefficient of air. ΔT = T −Ta is the temperature difference between air temperature
T and the ambient temperature Ta.

The relationship of density and velocity is described by Eq. (4).

ρðx, tÞ= ∑i fiðx, tÞ, ρuðx, tÞ= ∑i ci fiðx, tÞ ð4Þ

Air macroscopic viscosity ν is determined from the time relaxation τ and the
lattice sound speed cs = c ̸

p
3.

ν= τ−
1
2

� �
c2sΔt ð5Þ

or

ωm =
1

3ν+0.5
ð5’Þ

2.2 D2Q4 Model for the Temperature

For the temperature field T, the distribution function gk can be written as [6, 8, 9]:

gk x+ ckΔt, t+Δtð Þ= gkðx, tÞ½1−ωs�+ωsg
eq
k ðx, tÞ ð6Þ

where k = 1, 2, 3, 4 as shown in Fig. 2.
The distribution function geqk has a form of:

geqk =wkθðx, tÞ 1+
ck.u
c2s

� �
ð7Þ

The weighting factors wk have the values of:

w1 =w2 =w3 =w4 = 1 ̸4

The constant ωs relates to the thermal diffusivity as:

ωs =
1

3α+0.5
ð8Þ

Temperature T is determined from the distribution functions gk:

Tðx, tÞ= ∑k gkðx, tÞ ð9Þ
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In LBM, the variables in Eqs. (1) and (6) and ρ, u, and T in Eqs. (4) and (9) are
nondimensional. Details can be found in the Ref. [6].

2.3 Rayleigh Number

Natural convection flows in a solar chimney can be modeled from a specific
temperature Ts of the absorber surface or a given heat flux qs from the surface [2].
In both cases, the most important nondimensional parameter is the Rayleigh
number [1, 2, 6]:

Ra=
gβΔTs.H3

αν
=

gβðTs −TaÞ.H3

αν
ð10Þ

for the case of given surface temperature Ts, or

Ra=
gβqsH4

ανk
ð11Þ

for the case of given heat flux qs, where k is the heat conductivity of air.

2.4 Boundary Conditions

For the airflow, the following boundary conditions are applied, as shown in Fig. 1:

• At the inlet 1: Zhou and He [7] pressure boundary conditions.
• At the outlet: outflow condition with zero velocity gradient in y direction.
• On wall surfaces 3 and 4: no-slip boundary condition with bounce back scheme

in LBM [6, 7].

For the temperature:

• At the inlet 1: The air temperature is equal to the ambient one.
• At the outlet 2: Outflow condition with zero temperature gradient in y direction

is applied.
• On the surface 4: Either a uniform heat flux qs or uniform surface temperature Ts

is used.
• On the surface 3: A uniform wall temperature, a uniform heat flux, or adiabatic

condition is applied.

Equations (1) and (6) are solved by the standard collision–streaming scheme
[6–9]. At first, in the collision step, the right-hand sides of Eqs. (1) and (6) are
evaluated at each lattice point. Uniform lattice size is used in both x and y directions
in this study. Secondly, in the streaming step, the left-hand sides of the two
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equations are calculated at the next time step by streaming the distribution functions
fi and gk in according directions. The boundary conditions are applied after the
streaming step. The process is repeated until a steady solution is achieved.

3 Results and Discussion

3.1 Grid Convergence

To check grid convergence, a solar chimney with a ratio of H/b = 10 and a Ray-
leigh number of Ra = 107 was tested with four different grid resolutions,
100 × 1000, 150 × 1500, 200 × 2000, and 250 × 2500, in the horizontal and
vertical directions, respectively. The distribution of velocity, which is normalized
by the average velocity, at the outlet is presented in Fig. 3. It shows that the velocity
distribution converged at the two highest grid resolutions. For tests at other Ra
numbers, similar grid convergence tests were also conducted to find the appropriate
grid resolution.

3.2 Validation of the Numerical Model

Numerical results with the present model were compared with the experimental and
numerical results by Aung et al. [5]. The tested solar chimney has the ratio of H/
b = 10 and Ra = 1.24 × 105. Distribution of velocity in the vertical direction and
temperature distribution across the air channel are presented in Fig. 4. In this test,
temperature of the left surface (at x/b = 0.0) was T = 0.5, while that of the right
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Fig. 3 Velocity at the outlet
of a solar chimney with H/
b = 10 and Ra = 107 at
different grid resolutions
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surface (at x/b = 1.0) was T = 1.0. Distributions of velocity and temperature
obtained from our model are seen to match well with Aung et al. [5] results.

3.3 Effects of the Ratio of H/B and Rayleigh Number
on the Temperature and Velocity Distributions

The numerical model is now used to investigate flow structure and temperature field
in solar chimneys. As suggested in the literature [1–3, 5], dimensions of the air
channel and heat flux from the absorber surface are the main factors determining the
performance of a solar chimney. Our previous study [3] showed that combination of
the height H and the width b of a channel can be described by the ratio of H/b and is
the suitable parameter for representing the dimensions. The heat flux is in term of
the Rayleigh number, Ra, in Eq. (11).

To test effects of H/b and Ra, firstly, the Rayleigh number was kept constant,
while the ratio of H/b varied. As shown in Fig. 1, the heat flux was distributed
uniformly on the left side (wall 4) of the air channel. This distribution is similar to
real configuration of a solar chimney where the absorber surface (wall 4) receives
solar radiation transmitted through the glazing plate (wall 3). Velocity and tem-
perature fields for a test case with Ra = 1.106 and H/b = 3, 4, 6, 8 are presented in
Fig. 5. Velocity and temperature are higher near the heated surface. As the channel
length is short, for H/b = 3, the thermal and induced airflow layers only occupy
near the left half of the air channel. The right half of the air channel has lower
temperature, which is approximately around the ambient one, and hence is less
induced by the buoyancy effect. As a result, a reverse flow exists at the outlet of the
chimney. As the length of the chimney, or the ratio H/b, increases, the thermal and
the accordingly induced air layers expand and gradually suppress the reverse flow,
at H/b = 6 and 8.
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Fig. 4 Comparison of the numerical results of the present model and the results of Aung et al. [5]
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Secondly, the ratio of H/b was fixed, while the Rayleigh number changed.
Figure 6 shows the results for the test case of H/b = 5 and Ra = 104, 105, 106, and
5.106. The thermal layer becomes thinner as Ra increases. At Ra = 5.106, the
induced airflow occupies the left half of the upper part of the channel, while a
reverse flow exists on the right half. At low Ra (104), heat transfer under thermal
diffusion mode dominates [10]. As Ra increases, the convection mode affects more
and yields thinner thermal layers as shown in Fig. 6. Similar to the case of H/b = 3
in Fig. 5, a reverse flow is clear for the case of Ra = 5.106 in Fig. 6.

H/b=6 8=b/H4=b/HH/b=3 H/b=6H/b=4 8=b/H3=b/H

1.2

1

0.8

0.6

0.4

0.2

0

0.8

0.6

0.4

0.2

0

0.6

0.4

0.2

0 0

0.5

1

1.5

Fig. 5 Velocity and temperature fields for the test case of different H/b’s at Ra = 1.106. Red line
indicates the separation zone
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Fig. 6 Velocity and temperature fields for the test case of different Ra’s at H/b = 5. Red line
indicates the separation zone
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The above characteristics of the thermal and induced airflow layers, as well as
the appearance of the reverse flow, are similar to the results in the literature [1, 2].
Chen et al. [1] reported that a reverse flow appeared in their chimney of 1.5 m
height as the width was larger than 0.3 m. As the width of the channel further
increased, the separation zone enhanced and penetrated further into the channel [1,
2]. The penetration depth also increased with Ra [2].

3.4 Suppressing the Reverse Flow by Redistributing Heat
Source on Both Sides of the Channel

As reported in the literature [1, 2], from our previous study [3], and as shown in the
Figs. 8 and 9, the induced air flowrate through a solar chimney increases with the
height and the heat flux. However, beyond the value of H/b or Ra from which the
reverse flow happens, the increase rate of the induced flowrate decreases signifi-
cantly. A relationship between H/b and Ra where the reverse flow initiates at the
outlet of a vertical solar chimney was proposed in our previous study [3]:

H ̸b= 0.224 Ra0.2415 ð12Þ

To enhance the performance (induced flowrate) of a solar chimney, it is nec-
essary to suppress the separation zone at the outlet. A simple method is to redis-
tribute the heat source on the surfaces inside the air channel so that the thermal layer
can expand to the space of the separation zone. In this study, it is proposed that the
heat source is distributed both on lower half of one wall and on the upper half of the
opposite wall of the air channel. This distribution does not change the total heat
transfer rate inside the air channel since the total surface area for heat transfer is
unchanged.

Figure 7 shows velocity and temperature distributions inside the channel in
Fig. 6 (H/b = 5 and Ra = 104, 105, 106, and 5.106) with uniform heat flux applied
on lower half of the left wall and upper half of the right wall. The separation zones
at the outlet of the chimney of the case Ra = 106 and Ra = 5.106 did not exist.
Comparison of the temperature distribution in Figs. 6 and 7 shows that the thermal
layer in Fig. 6 on the left wall continues to expand on the upper half, where there is
no heat source, although the temperature value is lower. The thermal layer on the
upper half of the right wall combines with the one on the left wall at the outlet to
induce nonnegative velocity in the y direction. The velocity distribution for the case
of lowest Ra (104) is similar as the one in Fig. 6. As the Ra increases, toward the
upper half of the channel, with weaker thermal layer near the left wall and new
thermal layer on the right wall, the velocity distribution is shifted to the right wall.

To suppress the flow reversal at the outlet, Khanal and Lei [2] proposed that the
glazing plate is inclined toward the top of the absorber surface. By that way, the
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region of weakly heated air near the outlet was eliminated in their chimneys at Ra
from 109 to 1011.

3.5 Induced Air Flowrate

Induced air flowrate for the chimneys in Figs. 6 and 7 is presented in Fig. 8
together with another test case with H/b = 10. The flowrate is expressed in term of
the Reynolds number which is based on the mean velocity in the channel and the
width of the channel. For both cases of H/b, at low Ra, the induced flowrate is
indistinguishable from each other as the heat source is on one side or two sides.
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Fig. 7 Velocity and temperature distributions for the chimney in Fig. 6 with heat source
distributed on both lower half of the left wall and upper half of the right wall
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However, as the Ra increases and reverse flow exists at the outlet, the induced
flowrate when the heat source is distributed on both sides is significantly higher.
Khanal and Lei [2] also reported that eliminating the reverse flow enhanced the
induced flowrate.

It is also noted in Fig. 8 that induced flowrate of the case H/b = 10 is below that
of the case H/b = 5. This trend seems to be opposite to the findings in the literature
at higher Rayleigh numbers [1, 2]. To further investigate this point, numerical
simulations were conducted with more values of H/b and Ra. The results for the
induced flowrate are plotted in Fig. 9, for Ra = 104, 105, 106, and 107, while H/b is
from 2 to 20. When the heat source is on one side, the induced flowrate is seen to
increase with the ratio of H/b up to a particular ratio and then decreases as H/b
increases further. The value of the critical H/b at which the induced flowrate peaks
is seen to be higher for higher Ra value. Below the critical H/b, the induced flowrate
through the chimney heated on one side is always below that of the chimney heated
on both sides.

However, the induced flowrate for the chimney heated on both sides drops
steadily with the increase of H/b at all values of Ra. This can be explained as the
dominance of viscous effect at low Rayleigh number [11]. Khanal and Lei [11]
showed a linear relationship between the induced flowrate and a scaling factor of
(Ra/[H/b]3)1/2 as a result of the viscous effect. To check this effect in our results, the
data in Fig. 9 are replotted in Fig. 10 using their proposed scaling factor. It is seen
that the induced flowrate for the cases of the heat source on both sides and the heat
source on one side of the channel without a reverse flow fits this scaling, while the
data points for the cases with flow separation at the outlet do not follow. The
difference can be explained as effects of the reverse flow.
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4 Conclusions

In this paper, a Lattice Boltzmann Method model was used to investigate flow
structure and temperature field inside a vertical solar chimney under effects of the
dimensions of the chimney and heat flux. The results showed that flow structure,
and hence the induced flowrate, was influenced by both thermal and viscous effects.
Particularly, reverse flow existed at the outlet of the chimney at low ratio of the
chimney height and width or high Rayleigh number. The separation zone reduced
the increase rate of the induced flowrate with the Raleigh number. A simple method
to suppress the reverse flow by distributing the heat source on both sides of the air
channel was proposed and showed to enhance the induced flowrate significantly.
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A Dual Approach to Modeling Solute
Transport

H. Nguyen-The

Abstract The classic average method is usually applied to describe the solute
transport equation of one-dimensional horizontal flow or two-dimensional hori-
zontal flow. The solute transport equation is totally integrated one time from the bed
to the water surface; the average values received by classic average method do not
generalize by means of dual approach. So, in this paper, a dual approach is applied
to solve the solute transport equation of two-dimensional horizontal flow. The
equation describing the depth average concentration is obtained by two times
integration: The first time integral is from the bed to the intermediate surface lays
between bed and water surface, and the second time integral is from the bed to the
water surface. With the dual approach, the received depth average concentration is
better, particularly, in the case of stratification, mixed solute, and so on. The
received governing equation based on the dual approach describes more accurately
the physical characteristic of the transport phenomena in nature. Moreover, it
provides flexible parameter adjustment based on the experimental data. A case
study of salinity transport in Huong river is illustrated.

Keywords Dual approach ⋅ Solute transport equation ⋅ Depth average
concentration

1 Introduction

To obtain the solute transport of one-dimensional (1D) or two-dimensional (2D)
horizontal flow equations, one often integrated the three-dimensional (3D) flow
equation from the bed to the water surface [1]; the average values received in the
1D or 2D equations are called the global average value (GAV). According to [2],
the global-local average values (GLAVs) obtained using the dual approach are
more general than the GAV. Thus, in this paper, the author establishes the 2D solute
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transport equation based on the dual approach [2, 3], the 3D solute transport
integrated twice: The first time integral is from the bed to the intermediate surface
lays between bed and the water surface, and the second time integral is from the bed
to the water surface. The obtained average solute transport equation can describe
complex physical phenomena such as the stratification solute transport average
equation, mixed solute, and so on.

2 Building 2D Solute Transport Equation Based
on the Dual Approach

The three-dimensional transport equation in the form of conservation [1]:

∂c
∂t|{z}
ðIÞ

+
∂ðucÞ
∂x|ffl{zffl}
ðJÞ

+
∂ðvcÞ
∂y|ffl{zffl}
ðKÞ

+
∂ðwcÞ
∂z|fflffl{zfflffl}
ðLÞ

=
∂

∂x
ðD+ εxÞ ∂c

∂x

� �

|fflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflffl}
ðMÞ

+
∂

∂y
ðD+ εyÞ ∂c

∂y

� �

|fflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflffl}
ðNÞ

+
∂

∂z
ðD+ εzÞ ∂c

∂z

� �

|fflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflffl}
ðPÞ

ð1Þ

First, integrating the term (I) from the bed to the intermediate surface Zm layers
between the bed and the water surface (see Fig. 1).

In Fig. 1, h is water depth; h1 is the depth at which the concentration Cm is
nearly equal to zero; Zb, Zm, and Zs are corresponding bed, h1, and water surface
elevation.

TI =
ZZm

Zb

∂c
∂t
dz=

∂

∂t

ZZm

Zb

cdz−
ZZm

Zb

c
∂ðdzÞ
∂t

=
∂

∂t
ðCh1Þ−C1 ⋅

∂h1
∂t

ð2Þ

Fig. 1 Sketch of dual
approach the solute transport
equations
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where C and C1 are the average concentrations of the depth h and h1, respectively,
given by:

C=
1
h

ZZs

Zb

cdz=
1
h

ZZm

Zb

cdz+
ZZs

Zm

cdz

0
B@

1
CA=

1
h

ZZm

Zb

cdz ð3aÞ

(because, from Zm to Zs, C = 0).
Posing C1 is average concentration, such that:

ZZm

Zb

c ⋅
∂ðdzÞ
∂t

=C1

ZZm

Zb

∂ðdzÞ
∂t

=C1
∂h1
∂t

C1 =
1
∂h
∂t

ZZm

Zb

c ⋅
∂ðdzÞ
∂t

ð3bÞ

C1 = α1 ⋅C ð3cÞ

where

α1 =
C1

C
=

1
C ∂h

∂t

ZZm

Zb

c ⋅
∂ðdzÞ
∂t

ð3dÞ

Then, integrating the term (I) in Eq. (1), the second time, from the bed to the
water surface:

T2I =
ZZs

Zb

∂

∂t
ðC ⋅ h1Þ−C1 ⋅

∂h1
∂t

� �
dh1 =

ZZs

Zb

∂

∂t
ðCh1Þ

� �
dh1

|fflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
I1

−
ZZs

Zb

C1 ⋅
∂h1
∂t

dh1

|fflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflffl}
I2

ð4:aÞ

T2I1 =
ZZs

Zb

∂

∂t
ðCh1Þ

� �
dh1 =

∂

∂t

ZZs

Zb

Ch1 ⋅ dh1

|fflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflffl}
I11

−
ZZs

Zb

Ch1 ⋅
∂

∂t
ðdh1Þ

|fflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflffl}
I12

ð4:bÞ
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where

I11 =
1
2
.
∂

∂t
CðZ2

s − Z2
bÞ

� � ð4:cÞ

I12 =
ZZs

Zb

Ch1 ⋅
∂
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ðdh1Þ

|fflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflffl}
I12

≅ I2 =
ZZs

Zb

C1 ⋅
∂h1
∂t

dh1

|fflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflffl}
I2

=
1
2
⋅C12

∂

∂t
ðZ2

s −Z2
b Þ

� �
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Let

C12 = α12.C ð4:eÞ

where

α12 =
2

C ∂

∂t ðZ2
s −Z2

bÞ
⋅
ZZs

Zb

C1 ⋅
∂

∂t
ðzdzÞ= 2

C ∂
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s −Z2
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⋅
ZZs

Zb

1
∂h
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ZZm

Zb
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∂ðdzÞ
∂t
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; ⋅

∂
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ðzdzÞ
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With

T2I = I1 − I2 = ðI11 − I12Þ− I2 = I11 − 2I12 ð4:gÞ

T2I =
1
2
⋅
∂

∂t
CðZ2

s − Z2
bÞ

� �
− α12C

∂

∂t
ðZ2

s − Z2
bÞ
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In the non-conservative form,

T2I ≅
1
2
ðZ2

s −Z2
b Þ ⋅

∂

∂t
ðCÞ− 1

2
α12C ⋅

∂

∂t
ðZ2

s − Z2
bÞ ð5:bÞ

Similarly, integrating the second term (J), the first time, from the bed to the
intermediate surface Zm layers between the bed and the water surface (see Fig. 1):

TJ =
ZZm

Zb

∂uc
∂x

⋅ dz=
∂

∂x

ZZm

Zb

ucdz−
ZZs

Zb

uc
∂

∂x
ðdzÞ= ∂

∂x
ðh1 ⋅UCÞ− β1 ⋅UC ⋅

∂

∂x
ðh1Þ

ð6:aÞ

824 H. Nguyen-The



where

UC=
1
h1

ZZm

Zb

ðucÞ ⋅ dz ð6:bÞ

β1 =
1

UC ∂h
∂x

⋅
ZZm

Zb

uc
∂

∂x
ðdzÞ ð6:cÞ

Integrating the term (J) or Eq. (6.a), the second time, from the bed to the water
surface:

T2J =
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bÞ|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

J12

ð7:bÞ

Noticed

J2 = J12 ð7:cÞ

So,

T2J = J1 − J2 = J11 − J12ð Þ− J2 = J11 − 2J12 ð8:aÞ

J1 =
1
2
β2

∂

∂x
UC ⋅ ðZ2

s − Z2
bÞ

� �
− β1β3UC

∂

∂x
ðZ2

s − Z2
bÞ ð8:bÞ
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where

β2 =
1

UC h2
2

ZZs

Zb

UCh1dz ð8:cÞ

β3 =
1

UC ∂

∂x ðZ2
s −Z2

b Þ
ZZs

Zb

UC
∂

∂x
ðzdzÞ ð8:dÞ

Again, integrating, the first time, the third term (K) on the left-hand side of the
Eq. (1) from bed to the water surface, we have:

TK =
ZZm

Zb

∂

∂y
ðvcÞdz= ∂

∂y

ZZm

Zb

ðvcÞdz
|fflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflffl}

K1

−
ZZm

Zb

ðvcÞ ∂

∂y
ðdzÞ

|fflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflffl}
K2

ð9:aÞ

where

K1 =
∂

∂y

ZZm

Zb

ðvcÞdz= ∂

∂y
ðVC ⋅ h1Þ ð9:bÞ

K2 =
ZZm

Zb

ðvcÞ ∂

∂y
ðdzÞ= δ1 ⋅ ðVCÞ. ∂

∂y
ðZm − ZbÞ= δ1 ⋅ ðVCÞ ⋅ ∂

∂y
ðh1Þ ð9:cÞ

Thus,

TK =
∂

∂y
ðVC.h1Þ+ δ1 ⋅ ðVCÞ ⋅ ∂

∂y
ðh1Þ ð9:dÞ

where

VC=
1
h1

ZZm

Zb

ðvcÞ dz ð10:aÞ

δ1 =
1

ðVCÞ ⋅ ∂

∂y ðh1Þ
ZZm

Zb

ðVCÞ ∂

∂y
ðdzÞ ð10:bÞ
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Similarly, integrating the term (K) in the Eq. (9.d), the second time, we receive:

T2K =
ZZs

Zb

∂

∂y
ðVC ⋅ h1Þdz

|fflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflffl}
K11

+
ZZs

Zb

δ1 ⋅ ðVCÞ ⋅ ∂

∂y
ðh1Þdz

|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
K22

ð11:aÞ

K11 =
ZZs

Zb

∂

∂y
ðVC.h1Þdz= ∂

∂y

ZZs

Zb

VC.h1.dz

|fflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflffl}
K111

−
ZZs

Zb

ðVCÞ ⋅ h1 ∂

∂y
ðdzÞ

|fflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
K112

K11 =
∂

∂y
δ2 ⋅VC ⋅

1
2
ðZ2

s −Z2
bÞ

� �

|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
K111

− δ3 ⋅VC
1
2
∂

∂y
ðZ2

s − Z2
bÞ|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

K112

ð11:bÞ

We have:

K22≈K112

Therefore,

T2k =K11 −K22 = K111 −K112ð Þ−K22 =K111 − 2K112 ð11:cÞ

The correction coefficients δ2 and δ3 are calculated as follows:

δ2 =
2

ðVCÞ.ðZ2
s −Z2

bÞ
ZZm

Zb

1
h1

ZZm

Zb

ðvcÞdz

0
B@

1
CAhðdzÞ ð11:dÞ

δ3 =
2

ðVCÞ ⋅ ∂

∂y ðZ2
s −Z2

bÞ
ZZm

Zb

1
h1

ZZm

Zb

ðvcÞdz

0
B@

1
CA ∂

∂y
ðzdzÞ ð11:eÞ

Integrating the fourth term (L) on the left-hand side of Eq. (1) the first time, we
obtain:

TL=
ZZm

Zb

∂ðωcÞ
∂z

dz=0 ðω≈ 0Þ ð12Þ
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Integrating the first term (M) on the right-hand side of Eq. (1), the first time, we
have:

TM =
Z Zm

Zb

∂

∂x
ðD+ εxÞ ⋅ ∂c

∂x

� �
dz= γ1

∂

∂x
ðD+ εxÞ ⋅ ∂C

∂x

� �
⋅ ðZm − ZbÞ ð13:aÞ

where

γ1 =
1

∂

∂x ðD+ εxÞ ⋅ ∂C
∂x

n o
⋅ ðZm −ZbÞ

⋅
ZZm

Zb

∂

∂x
ðD+ εxÞ ⋅ ∂c

∂x

� �
dz ð13:bÞ

Integrating the term (M) of Eq. (13.a), the second time, we receive:

T2M =
ZZs

Zb

γ1
∂

∂x
ðD+ εxÞ ⋅ ∂C

∂x

� �
.h1dz=

1
2
⋅ γ1 ⋅ γ2

∂

∂x
ðD+ εxÞ ⋅ ∂C

∂x

� �
⋅ ðZ2

s −Z2
bÞ

ð14:aÞ

The coefficient γ2 is calculated by:

γ2 =
2

∂

∂x ðD+ εxÞ ⋅ ∂C
∂x

n o
⋅ ðZ2

s −Z2
b Þ

⋅
ZZs

Zb

∂

∂x
ðD+ εxÞ ⋅ ∂C

∂x

� �
⋅ h1 dz ð14:bÞ

Thus,

T2M =
1
2
⋅ γ1 ⋅ γ2

∂

∂x
ðD+ εxÞ ⋅ ∂C

∂x

� �
⋅ ðZ2

s −Z2
bÞ ð14:cÞ

Similarly, integrating the second term (N) on the right-hand side of Eq. (1), the
first time, we have:

TN =
ZZm

Zb

∂

∂y
ðD+ εyÞ ⋅ ∂c

∂y

� �
dz= θ1

∂

∂y
ðD+ εyÞ ⋅ ∂C

∂x

� �
⋅ ðZm − ZbÞ ð15:aÞ

where

θ1 =
1

∂

∂y ðD+ εyÞ ⋅ ∂C
∂y

n o
⋅ ðZm − ZbÞ

⋅
ZZm

Zb

∂

∂y
ðD+ εyÞ ⋅ ∂c

∂y

� �
dz ð15:bÞ
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Integrating the term (N) of Eq. (15.a), the second time, we obtain:

T2N =
ZZs

Zb

θ1
∂

∂y
ðD+ εyÞ ⋅ ∂C

∂y

� �
.h1 dz=

1
2
⋅ θ1 ⋅ θ2

∂

∂y
ðD+ εyÞ ⋅ ∂C

∂y

� �
⋅ ðZ2

s − Z2
bÞ

ð15:cÞ

The coefficient θ2 is calculated by:

θ2 =
2

∂

∂y ðD+ εyÞ ⋅ ∂C
∂y

n o
⋅ ðZ2

s − Z2
bÞ

⋅
ZZs

Zb

∂

∂y
ðD+ εyÞ ⋅ ∂C

∂y

� �
⋅ h1 dz ð15:dÞ

Therefore,

T2N =
1
2
⋅ θ1 ⋅ θ2

∂

∂y
ðD+ εyÞ ⋅ ∂C

∂y

� �
⋅ ðZ2

s − Z2
bÞ ð15:eÞ

Integrating the thirst term (P) on the right-hand side of Eq. (1), the first time, we
have:

TP=
ZZm

Zb

∂

∂z
ðD+ εzÞ ⋅ ∂c

∂z

� �
dz= ðD+ εzÞ ⋅ ∂c

∂z

����
m
− ðD+ εzÞ ⋅ ∂c

∂z

����
b

ð16:aÞ

Integrating the term (P) the second time, we obtain:

T2P=
ZZs

Zb

ðD+ εzÞ ⋅ ∂c
∂z

����
m
dz−

ZZs

Zb

ðD+ εzÞ ⋅ ∂c
∂z

����
b
dz ð16:bÞ

T2P= ðD+ εzÞ ⋅ ∂c
∂z

����
m
.h− ðD+ εzÞ ⋅ ∂c

∂z

����
b
⋅ h= ðD+ εzÞ ⋅ h ⋅ ∂c

∂z

����
m
−
∂c
∂z

����
b

� �
ð16:cÞ

In case,

∂c
∂z

��
Zm

= ∂c
∂z

��
Zb
, then the term T2P = 0

Therefore, the 2D solute transport equation based on the dual approach can be
presented as:

T2I + T2J +T2K+TL=T2M+T2N+T2P
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1
2
⋅
∂

∂t
CðZ2

s − Z2
bÞ

� �
− α12C

∂

∂t
ðZ2

s − Z2
bÞ

� �
+

1
2
β2

∂

∂x
UC ⋅ ðZ2

s − Z2
bÞ

� �
− β1β3UC

∂

∂x
ðZ2

s − Z2
bÞ

+
1
2
δ2 ⋅

∂

∂y
VC ⋅ ðZ2

s − Z2
b Þ

� �
− δ1δ3 ⋅VC

∂

∂y
ðZ2

s − Z2
bÞ=

1
2
⋅ γ1 ⋅ γ2

∂

∂x
ðD+ εxÞ ⋅ ∂C

∂x

� �
⋅ ðZ2

s − Z2
bÞ

+
1
2
⋅ θ1 ⋅ θ2

∂

∂y
ðD+ εyÞ ⋅ ∂C

∂y

� �
⋅ ðZ2

s − Z2
bÞ+ ðD+ εzÞ ⋅ h ⋅ ∂c

∂z

����
m
−
∂c
∂z

����
b

� �

ð17Þ

From Eq. (17), we receive the 1D solute transport equation as follows:

1
2
⋅
∂

∂t
CðZ2

s − Z2
bÞ

� �
− α12C

∂

∂t
ðZ2

s − Z2
bÞ

� �
+

1
2
β2

∂

∂x
UC ⋅ ðZ2

s − Z2
bÞ

� �
− β1β3UC

∂

∂x
ðZ2

s − Z2
bÞ

=
1
2
⋅ γ1 ⋅ γ2

∂

∂x
ðD+ εxÞ ⋅ ∂C

∂x

� �
⋅ ðZ2

s −Z2
bÞ+ ðD+ εzÞ ⋅ h ⋅ ∂c

∂z

����
m
−
∂c
∂z

����
b

� �

ð18Þ

3 Comments

It is easy to see that the 2D transport equation averaged by the classical method is a
special case of the general form Eq. (17). In fact, if Zs – Zb = h ≈ Const, so:
∂

∂t ðZ2
s −Z2

b Þ≈0, ∂

∂x ðZ2
s − Z2

bÞ≈0, ∂

∂y ðZ2
s −Z2

b Þ≈0 (the water level changes insignifi-

cantly over time and space) and the coefficients (αi, βi, δi, γi, θi) = 1, ∂c
∂z

��
m
≅ ∂c

∂z

��
b
then

Eq. (17) arrive at the 2D transport equation averaged by the classical method
{Eq. (19)}:

∂

∂t
C ̄ðZ2

s − Z2
bÞ

� �
+

∂

∂x
UC ⋅ ðZ2

s − Z2
bÞ

� �
+

∂

∂y
VC ⋅ ðZ2

s −Z2
bÞ

� �
=

∂

∂x
ðD+ εxÞ ⋅ ∂C

̄
∂x

� �
⋅ ðZ2

s − Z2
bÞ

+
∂

∂y
ðD+ εyÞ ⋅ ∂C

̄
∂y

� �
⋅ ðZ2

s −Z2
bÞ

ð19Þ

From Eq. (19), we receive the 1D classical equation as follows:

∂

∂t
CðZ2

s − Z2
bÞ

� �
+

∂

∂x
UC ⋅ ðZ2

s − Z2
bÞ

� �
=

∂

∂x
ðD+ εxÞ ⋅ ∂C

∂x

� �
⋅ ðZ2

s − Z2
bÞ ð20Þ

Simplifying Eq. (20), we achieve:

∂

∂t
C

� �
+

∂

∂x
UC

� �
=

∂

∂x
ðD+ εxÞ ⋅ ∂C

∂x

� �
ð21Þ

Equation (21) is the familiar classical 1D solute transport equation.
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4 Results and Discussions

To illustrate the generality of the Eqs. (17) and (18), a case study of the salinity
intrusion of Huong river in the dry season is presented [4]. The Huong river system
is simply simulated by two branches: Ta Trach and Huu Trach. The confluence is at
Nga Ba Tuan, and then it flows along the mainstream of Huong river to the Thao
Long barrage [4], see Fig. 2.

The upstream discharge boundary condition is implied at the junction Nga Ba
Tuan Q = QBinhĐieu + QDươngHoa + QKL = (0.98 + QKL) m3/s. The downstream
boundary condition is tidal water level with frequency P = 25% and is implied at
Thao Long barrage, Fig. 3.

To determine the size of Khe Lu reservoir, all step discharge from Khe Lu
reservoir is assumed in the document [4].

Applying the finite difference method and using the Preissmann scheme with the
weight θ = 0.66 for solving the 1D Saint-Venant equations system [1, 4–7], after
that solving the solute transport Eqs. (20) and (21). Equations (20) and (21) are
solved by fraction steps: transport equation and diffusion equation. The transport
equation is solved by the characteristic method, while the diffusion equation is
solved by the weighted finite difference scheme [4, 5].

Fig. 2 Huong river system
simplified scheme
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The calculated results from Eqs. (20) and (21), the salinity at La-Y corre-
sponding the Khe Lu discharge QKL = 10.00 m3/s, are plotted in Fig. 4.

5 Comments

Figure 4 shows that results based on the dual approach {Eq. (20)} are more
accurate than the classical method {Eq. (21)}. In addition, better results could be
potentially achieved by changing the coefficients αi, βi, δi, γi, and θi in the general
Eq. (18). Though the simulation results based on the dual approach are better than

Fig. 3 Downstream water level boundary condition corresponding

Fig. 4 Changing of salinity at La-Y in a tidal period

832 H. Nguyen-The



the classical method, it still cannot capture all the observed data. This is because of
the variation of cross-sectional shape and roughness at different water depths and at
different locations along the Huong river.

6 Conclusions

The solute transport equations derived from the dual approach, Eqs. (17) and (18),
are more general than those received from the classic approach with the appearance
of new terms: 2nd, 4th, 6th on the left-hand side of the Eq. (18). As a result, it could
be used to describe the solute transport phenomena better compared to the classical
method. The correlation coefficients αi, βi, δi, γi, and θi increase the adjustable
ability of calculated results.
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A Nonlocal Formulation for Weakly
Compressible Fluid

Huilong Ren and Xiaoying Zhuang

Abstract In this paper, we propose a nonlocal formulation for both solid and weakly

compressible fluid. The nonlocal fluid formulation is based on the nonlocal interac-

tion of each material point with its neighbors, which is analogous to the peridynamic

theory, a nonlocal formulation for solid. By considering the direction of the interac-

tion, the horizon and dual-horizon are defined, and the dual property between horizon

and dual-horizon is proved. The nonlocal divergence is introduced, which enables to

derive the nonlocal interaction with the local formulation. The formulations allow

the varying horizon size and satisfy the conservation of linear momentum, angu-

lar momentum, and energy at the same time. Two numerical examples are tested to

verify the accuracy of the current method.

Keywords Dual-horizon ⋅ Nonlocal formulation ⋅ Weakly compressible fluid

1 Introduction

Nonlocality is a general property of material that exists in certain scales includ-

ing the spatial scale and temporal scale. The nonlocality in spatial scale means that

the state of one material point depends on the collective states of its neighbors as

well as its own state. The nonlocality in temporal scale often manifests itself as the

memory-dependent or history-dependent effect of the material [1]. The nonlocality

can be considered as a generalization of local theory, where the interaction and state

are defined in the infinitesimal. The theories based on nonlocality are formulated in
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integral form, circumventing the difficulty such as the nonexistence of differential

operator for local models and thus showing some advantages in solving problems

with strong discontinuities such as cracks.

There have been numerous research on the nonlocal models: for examples, the

nonlocal damage model [2], the nonlocal plasticity theory [3], the nonlocal contin-

uum mechanics [1, 4], peridynamics [5], and the nonlocal image processing [6], to

name a few. For the conventional nonlocal continuum solid, the controlling equations

are obtained by replacing the local material constitution with the nonlocal differen-

tial constitutive relations of Eringen that relates the stress tensor to the strain tensor

field [1]. One outstanding application among these nonlocal models is the peridy-

namics theory, which has been successfully used to solve problems involving frac-

tures, strong discontinuities. Peridynamics proposed by Silling [7] contains two main

categories: bond-based peridynamics [7] and state-based peridynamics [5]. Peridy-

namics has clear physical meaning for the nonlocal interaction and thus allows the

modeling of fractures with ease. The horizon of one point in peridynamics represents

the nonlocal domain, the neighbors of that point. Peridynamics allows for variable

horizons [8] and the conventional various material constitutions. However, most of

them concentrate on the solid mechanics; there is very few formulation on the nonlo-

cal fluid. In this paper, we propose a simple formulation for nonlocal fluid, to model

the weakly compressible fluid dynamics.

The content of the chapter is organized as follows. In sect. 2 some concepts on the

horizon and dual-horizon based on Newton’s third law are presented. sect. 3 derives

the nonlocal forms of equation of motion and energy equation, and calculates the

various bond forces based on the nonlocal divergence theory. sect. 4 discusses the

numerical implementation of the nonlocal formulation. In sect. 5, two numerical

examples including thermal conduction and dam break on the dry bed are presented

to validate the method.

2 Basic Concepts

Consider the domain in the initial and current configuration as shown in Fig. 1a, for

any material point i; let Ri be the material coordinate in the initial configuration 𝛀0,

ri ∶= r(Ri, t) the spatial coordinates of i in the current configuration 𝛀t. Let 𝜌i ∶=
𝜌(Ri, t), ui ∶= u(Ri, t) and vi ∶= v(Ri, t) be point i’s density, displacement, and the

velocity, respectively. Let ij denote the bond from i to j; Rij ∶= Rj − Ri is initial bond

vector, the relative distance vector for bond ij; vij ∶= vj − vi is the relative velocity

vector for bond ij; rij ∶= rj − ri = Rij + uij is the current bond vector for bond ij. For

point i, the domain Hi with radius of hi is called as the horizon of i, where any point

j falling inside forms a bond ij, as shown in Fig. 1b. More discussion of horizon Hi
will be presented subsequently. Bond is the basis where interaction happens. The

interaction usually includes the force and heat flux. The nonlocal force interaction

acting on particle i due to bond ij is defined as
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Ri

t

ui

uj

o
ri = R i+u i

Rij

Rj

ri

rij

rj

rj = R j+u j rij = R ij+u ij

rij = r j -ri
uij = u j -ui

Rij = R j -Ri

j

i

Hi

hi
rij

fij
-fij

Hj

hj

(a) (b)

Fig. 1 a The x velocity at different time; b The bond forces in Hi, as j ∈ Hi, bond ij exerts direct

force f ij on i, based on Newton’s third law, j receives reaction force −f ij

f ij ∶= f ij(𝜌i,Rij, rij,uij, vij,⋯). (1)

f ij is also called the force vector density in peridynamics. f ij is the direct force on

i due to bond ij, meanwhile there is a reaction force −f ij acting on j, as shown in

Fig. 1b. The horizon Hi is the domain where any material point j falling inside forms

bond ij. From the force point of view, bond ij will exerts direct force on i and reaction

force on j. Hence, i will undertake all the direct forces from bonds in Hi.

Dual-horizon of particle i is defined as a union of the points whose horizons include

i, denoted by

H′
i = {j|i ∈ Hj}. (2)

The bond in dual-horizon is in terms of dual-bond; for example, i ∈ Hj forms bond

ji; bond ji is called the dual-bond of H′
i since j ∈ H′

i . Therefore, the symbol ji has

two meanings: One is the dual-bond of material point i, and the other is the bond

of material point j. As dual-bond ji exerts reaction force on i, the dual-horizon of

i can be viewed as reaction force horizon. One example to show the horizon and

dual-horizon is Fig. 2, where H0 = {r1, r2, r4, r6},H′
0 = {r1, r2, r3, r4}.

Fig. 2 Schematic diagram

for horizon and dual-horizon,

all circles above are horizons
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The dual property of dual-horizon
Let  (i, j) be any expression depend on two points i, j. The dual property of dual-

horizon is that the double integration of the term  (i, j) from dual-horizon can be

converted to the double integration of the term  (j, i) from horizon, as shown in Eq.

(3). The key idea lies in that the term  (i, j) can be both interpreted in Hi and H′
j .

For the detailed proof, please see Ref. [8].

∫i∈𝛀 ∫H′
i

 (i, j) dVjdVi =
∫i∈𝛀 ∫Hi

 (j, i) dVjdVi. (3)

3 The Nonlocal Formulation for Fluid

The continuum media can be described by a set of equations as

d𝜌
dt

+ 𝜌∇ ⋅ v = 0 continuity equation (4)

𝜌

dv
dt

= ∇ ⋅ 𝝈 + 𝜌b equation of motion (5)

𝜌

de
dt

= 𝝈 ∶ ∇v − ∇ ⋅ q + 𝜌s energy equatoin, (6)

where
d
dt

is the material derivative, 𝜌 is the density, v the velocity, 𝝈 the Cauchy

stress tensor, e the specific energy density, and s the energy source per unit mass.

The above set of equations cannot be solved directly since they are based on local

formulation, where the ‘local’ can be understood as the equations are based on dif-

ferential form. In local theory, the interaction happens between two material points

where their distance is infinitesimal. For example, as shown in Fig. 3a, cuttingΩwith

virtual surface s creates two surfaces s+ and s−, where the internal surface forces F+

and F−
are exposed. In the nonlocal theory, the local surface is not required since the

interaction can be transmitted a over finite distance. As shown in Fig. 3b, two points

i and j with finite distance are associated with volume ΔVi and ΔVi, respectively;

Fig. 3 a Local interaction b
Nonlocal interaction s+ s-

ds+ ds-

F+

F-

Vi Vj

F-

F+

(b)
(a)
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there exists a pair of forces F+
, F−

satisfying F+ = −F−
. Therefore, the local sur-

face interaction is not required in the nonlocal theory. The difference in interaction

indicates that the derivation of the governing equations can be obtained in a different

way.

3.1 Nonlocal Equation of Motion

Consider material point i with volume ΔVi, averaged density 𝜌i, material coordinate

Ri, current coordinate ri, velocity vi, temperature Ti, internal energy density 𝜖i, stress

state 𝜎i, horizon Hi, and dual-horizon H′
i . The internal forces exerted at i from any

other material point include two parts, namely the direct forces from the horizon

and the reaction forces from the dual-horizon. The other forces applied to a particle

include the body force 𝜌iΔVi ⋅ b and the inertia force 𝜌iΔVi ⋅ üi, where b is the body

force density, e.g., the gravity.

At any time t, for j in the dual-horizon of i, the force vector of dual-bond ji is

defined as f jiΔVi ΔVj, where f ji is the force density due to bond ji in Hj (or dual-bond

ji in H′
i ) with unit of force per volume squared. The forces from the dual-horizon

are reaction forces. The total force applied to i from its dual-horizon, H′
i , can be

computed by

−
∑

H′
i

f jiΔVi ΔVj . (7)

For any j inside the horizon of i, the force acting on i due to bond ij is defined as

f ijΔVj ΔVi. The total force i undertaken from horizon Hi is

∑

Hi

f ijΔVi ΔVj. (8)

By summing over all forces on particle i, including inertia force, body force, and

reaction forces in Eq. (7) and direct forces in Eq. (8), we obtain the equation of

motion

𝜌iΔViüi =
∑

Hi

f ijΔVj ΔVi −
∑

H′
i

f jiΔVj ΔVi + b𝜌iΔVi . (9)

Dividing ΔVi yielding the governing equation based on i:

𝜌iüi =
∑

Hi

f ijΔVj −
∑

H′
i

f jiΔVj + 𝜌ib . (10)

When the discretisation is sufficiently fine, the summation is approximating the inte-

gration of the force on the dual-horizon and horizon. Thus, the integral form of the



840 H. Ren and X. Zhuang

equation of motion is given as

𝜌iüi =
∫Hi

f ij dVj −
∫H′

i

f ji dVj + 𝜌ib . (11)

Note that here we do not specify whether the domain is solid or fluid as long as the

domain is in Lagrangian description. When the computational region is solid and f ji
depends mainly on Rji and uji, i.e., f ji = f ji(Rji,uji), we have

𝜌iüi =
∫Hi

f ij(Rij,uij)dVj −
∫H′

i

f ji(Rji,uji)dVj + 𝜌ib, (12)

the dual-horizon peridynamics; for more details, please refer to [9]. Note that for

solid, the horizon and dual-horizon are defined on the initial configuration (the

Lagrangian type). When the computational region is fluid and f ji depends mainly

on 𝜌j, rji, and vji, i.e., f ji = f ji(𝜌j, rji, vji), we have the nonlocal form of fluid,

𝜌iüi =
∫Hi

f ij(𝜌i, rij, vij)dVj −
∫H′

i

f ji(𝜌j, rji, vji)dVj + 𝜌ib . (13)

Since the deformation of configuration in fluid is large and the history effect is

insignificant, the horizon and dual-horizon in fluid are defined on the current config-

uration, and we may call this horizon the Eulerian type horizon. In some cases with

complicated material properties, both Lagrangian type horizon and Eulerian type

horizon can be introduced to describe the nonlocal interaction forces. For simplicity,

we only discuss the application in fluid.

3.2 Nonlocal Energy Equation

Let ei denote the specific energy density (energy per unit mass) for material point

i. The specific energy density contains kinematic energy density (denoted by
1
2
v2i ),

internal energy density (denoted by 𝜖i), and other possible forms. Here, we restrict

that ei comprises only two forms of energy, that is, ei =
1
2
v2i + 𝜖i. The variation of

the energy results from internal force interaction, external force (body force), heat

conduction, and so on. For the internal force interaction, the variation of the energy

density for i is comprised with two parts: (a) the work from bond ij in Hi and (b) the

work from dual-bond ji in H′
i .

Let point i be the reference point, j ∈ Hi, reaction bond force −f ij does work to j
along j’s velocity vj in the period of time Δt. When Δt is sufficiently small, f ij can

be considered as constant; the energy changed on i due to bond ij can be expressed

as
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−(−f ijΔViΔVj) ⋅ vjΔt = f ij ⋅ vjΔViΔVjΔt, (14)

where the first negative represents the energy subtracted from i. The total energy

changed in Hi is

∑

Hi

f ij ⋅ vjΔViΔVjΔt. (15)

For any point j ∈ H′
i , let point j be the reference point, reaction bond force −f ji does

work to i along i’s velocity vi in the period of time Δt, i gains energy

(−f jiΔViΔVj) ⋅ viΔt. (16)

The total energy variation in H′
i is

∑

H′
i

(−f jiΔViΔVj) ⋅ viΔt = −
∑

H′
i

f ji ⋅ viΔVjΔViΔt. (17)

When considering the heat conduction, let qji denote the heat flux density j gained

due to bond ji, the lost internal energy for i is −qjiΔViΔVjΔt. The energy changed

due to heat flux for particle i in H′
i is

−
∑

H′
i

qjiΔViΔVjΔt. (18)

The gained internal energy for particle i due to bond ij is qijΔViΔVjΔt. The energy

changed due to heat flux for particle i in Hi is

∑

Hi

qijΔViΔVjΔt. (19)

The total energy variation in interval Δt

𝜌iΔViΔei =
∑

Hi

f ij ⋅ vjΔVjΔViΔt −
∑

H′
i

f ji ⋅ viΔVjΔViΔt

+
∑

Hi

qijΔViΔVjΔt −
∑

H′
i

qjiΔViΔVjΔt + 𝜌ibΔVj ⋅ viΔt , (20)

where 𝜌ibΔVj ⋅ viΔt is the work due to body force. Dividing by ΔViΔt and applying

Δt → 0,ΔVj → 0 in Eq. (20), we have the continuous nonlocal energy equation:

𝜌i
dei
dt

=
∫Hi

f ij ⋅ vjdVj −
∫H′

i

f ji ⋅ vidVj +
∫Hi

qijdVj −
∫H′

i

qjidVj + 𝜌ib ⋅ vi. (21)
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Note that during the derivation of nonlocal energy equation, we don’t specify whether

the domain is fluid or solid. Since 𝜌i
dei
dt

= 𝜌ivi
dvi
dt

+ 𝜌i
d𝜖i
dt

, Eq. (21)−vi⋅ Eq. (13) leads

to the internal energy equation

𝜌i
d𝜖i
dt

=
∫Hi

f ij ⋅ vijdVj +
∫Hi

qijdVj −
∫H′

i

qjidVj. (22)

With the momentum equation and energy equation available, the remaining work is

how to determine the bond force density f ij for bond ij and dual-bond force density

f ji for dual-bond ji. The dual-bond force density f ji in H′
i can be determined when

calculating the force inHj for j since dual-bond ji for i is the bond ji for j. In this sense,

it is not necessary to know the dual-horizon geometry to calculate the bond force

in dual-horizon; we only need to determine the force f ij for bond ij. In the context

of peridynamics, the bond force is determined by the equivalence of strain energy

density in local formulation and nonlocal formulation; for more details, please refer

to as [5, 9]. However, such strain energy principle is not easy to be established in the

field of fluid. As this chapter focuses on the nonlocal formulation of fluid, we will

present an approach called nonlocal divergence method to determine the bond force

density f ij and nonlocal heat flux qij in fluid.

3.3 Nonlocal Divergence

The divergence of a tensor field 𝝈 at a point p is defined as the limit of the net flow

of 𝝈 across the smooth boundary of a three-dimensional region V divided by the

volume of V as V shrinks to p. Formally,

∇ ⋅ 𝝈(p) = lim
V→{p}∮S(V)

𝝈 ⋅ n
|V|

dS (23)

where |V| is the volume of V , S(V) is the boundary of V , and the integral is a surface

integral with n being the outward unit normal to that surface; 𝝈 ⋅ n, the projection

of 𝝈 on direction n, is the flux across the surface dS, as shown in Fig. 4a. Note that

here, the out-flux is assumed to be positive, which is the same with the direction in

Fig. 1b.

Following the same procedure, we can define the nonlocal divergence. Consider

spherical domain Hi, w(rij) is the scalar-valued influence function. The divergence

on point i is the summation of out-flux and influx. When j ∈ Hi, the out-flux for i
due to bond ij is assumed as

𝛼w(rij)𝝈i ⋅ rij, (24)
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V

p

S(V)

n
n

dS
i

j
rij

i

jrji

w(rji) j rji

w(rij) i rij

Hi

Hj(a)

(c)(b)

Fig. 4 The out-flux in divergence a 𝝈 ⋅ n is the out-flux density in local divergence; b 𝛼w(rij)𝝈i ⋅ rij
is the out-flux for bond ij in Hi; and c 𝛼w(rji)𝝈j ⋅ rji is the out-flux density for bond ji in Hj

where 𝛼 is a coefficient to be determined, and rij denotes the direction of out-flux, as

shown in Fig. 4b. Reversely, when i ∈ Hj (j ∈ H′
i ), the out-flux for j is 𝛼w(rji)𝝈j ⋅ rji,

as shown in Fig. 4c; in the sense of flux conservation, the out-flux for j is the influx

for i. Compared with Fig. 1b, we have f ij = 𝛼w(rij)𝝈i ⋅ rij and f ji = 𝛼w(rji)𝝈j ⋅ rji.
Summing all flux for i leads to

−
∫H′

i

𝛼w(rji)𝝈j ⋅ rjidVj +
∫Hi

𝛼w(rij)𝝈i ⋅ rijdVj. (25)

Assuming any point’s horizon radius being constant, and using Taylor expansion

𝝈j = 𝝈i + ∇⊗ 𝝈i ⋅ rij + O(r2ij), the coefficient 𝛼 can be expressed as

𝛼 =
nd

trace(Ki)
=

nd
vhi

, Ki =
∫Hi

w(rij)rij ⊗ rijdVj, vhi = ∫Hi

w(rij)rij ⋅ rijdVj, (26)

where nd ∈ {1, 2, 3} is the dimensional number. When hi → 0, it is easy to prove that

Eq. (25) converges to the local divergence operator ∇ ⋅ 𝝈i. If w(rij) = r−2ij , vhi is the

volume of horizon Hi. In this chapter, w(rij) = r−2ij is used. Therefore, for constant

horizon, the nonlocal divergence corresponding to the local divergence is

∇ ⋅ 𝝈i →
∫Hi

nd
vhj

w(rij)𝝈j ⋅ rijdVj +
∫Hi

nd
vhi

w(rij)𝝈i ⋅ rijdVj. (27)

For variable horizon, Eq. (27) can be rewritten as

∇ ⋅ 𝝈i → −
∫H′

i

nd
vhj

w(rji)𝝈j ⋅ rjidVj +
∫Hi

nd
vhi

w(rij)𝝈i ⋅ rijdVj. (28)
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When the nonlocal divergence is expressed as bond flux f ij, f ji, we have

∇ ⋅ 𝝈i → −
∫H′

i

f jidVj +
∫Hi

f ijdVj, (29)

where

f ji =
nd
vhj

w(rji)𝝈j ⋅ rji, f ij =
nd
vhi

w(rij)𝝈i ⋅ rij. (30)

3.4 Application of Nonlocal Divergence

Two simple material constitutives for fluid are

𝝈 = −pI ideal gas

𝝈 = −pI + µ

2
(∇v + v∇) Newtonian fluid. (31)

Once the stress state is known, based on Eq. (29), the bond force density can be

obtained with ease. We will discuss some special cases for pressure, physical vis-

cosity, and heat flux subsequently.

When 𝝈 represents the pressure only, i.e., 𝝈 = −pI, the bond force in term of

pressure is

f prji = −
nd
vhj

w(rji)pjrji, f prij = −
nd
vhi

w(rij)pirij. (32)

Similarly, second-order nonlocal operators can be obtained

∇ ⋅ (µ∇v)i → −
∫H′

i

nd
vhj

w(rji)(µ∇v)ji ⋅ rjidVj +
∫Hi

nd
vhi

w(rij)(µ∇v)ij ⋅ rijdVj. (33)

In order to avoid the nested integral, we use the finite difference to approximate

(∇v)ij, i.e., (∇v)ij →
vij⊗rij
r2ij

. Hence,

∇ ⋅ (µ∇v)i → −
∫H′

i

nd
vhj

w(rji)µj
vji ⊗ rji

r2ji
⋅ rjidVj +

∫Hi

nd
vhi

w(rij)µi
vij ⊗ rij

r2ij
⋅ rijdVj

(34)

→ −
∫H′

i

nd
vhj

w(rji)µjvjidVj +
∫Hi

nd
vhi

w(rij)µivijdVj. (35)
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In fact, Eq. (35) expresses the bond force in terms of physical viscosity of fluid. The

bond force for physical viscosity is

f pvij =
nd
vhi

w(rij)µivij, f pvji =
nd
vhj

w(rji)µjvji, (36)

where µ is the dynamic viscosity.

Similarly, the expression for nonlocal heat flux is

∇ ⋅ (−𝜅∇T)i → −
∫H′

i

qjidVj +
∫Hi

qijdVj, qji = −
nd
vhj

w(rji) 𝜅jTji,

qij = −
nd
vhi

w(rij) 𝜅iTij, (37)

where 𝜅 is the thermal conductivity. Therefore, the nonlocal flux f ij and qij in

Eqs. (12) and (21) are obtained.

3.5 Artificial Viscosity

In order to capture the shock wave or eliminate the unphysical oscillations in the

numerical results around the shocked region, we use the von Neumann-Richtmyer

artificial viscosity together with linear artificial viscosity term [10]

Π =

{
𝛼𝜌cΔx∇ ⋅ v + 𝛽𝜌Δx2(∇ ⋅ v)2, ∇ ⋅ v < 0
0, ∇ ⋅ v ≥ 0

(38)

where 𝛼and𝛽 are adjustable non-dimensional constants, c is the speed of sound, and

Δx represent the characteristic length scale used in the computation, e.g., the grid

spacing in finite difference method, finite volume method, etc.

In nonlocal fluid, the characteristic length scale is horizon size hi; we use the finite

difference to represent Δx∇ ⋅ v

µij ∶= (Δx∇ ⋅ v)ij → hi
vij ⋅ rij
r2ij

. (39)

The artificial viscosity bond force is

f avij =
nd
vhi

𝜔(𝐫ij)𝐫ij ⋅
{

𝛼𝜌iciµij + 𝛽𝜌iµ
2
ij, vij ⋅ rij < 0

0, vij ⋅ rij ≥ 0.
(40)



846 H. Ren and X. Zhuang

3.6 Nonlocal Continuity Equation

The domain is based on Lagrangian description; thus, the conservation of mass is

satisfied naturally. However, the pressure in fluid depends heavily on the density

state. Based on Eq. (29), the nonlocal form of Eq. (4) can be obtained as

d𝜌i
dt

= −𝜌i
∫Hi

nd
vhi

w(rij) vij ⋅ rijdVj. (41)

3.7 The Conservation of Basic Laws

Based on the dual property of dual-horizon, it would be easy to prove that the

Eqs. (13) and (21) satisfy the conservation of momentum, angular momentum, and

energy. Due to the length restriction of this chapter, we omit these derivations.

4 Numerical Implementation

We replace ΔVi,ΔVj with
mi

𝜌i
,

mj

𝜌j
, respectively; then, Eq. (9) and Eq. (22) are con-

verted into

miüi =
∑

Hi

f ij
mimj

𝜌i𝜌j
−
∑

H′
i

f ji
mimj

𝜌i𝜌j
+ mib . (42)

mi
d𝜖i
dt

=
∑

Hi

f ij ⋅ vij
mimj

𝜌i𝜌j
−
∑

H′
i

qji
mimj

𝜌i𝜌j
+
∑

Hi

qij
mimj

𝜌i𝜌j
, (43)

where f ij may contain pressure bond force f prij in Eq. (32), the physical viscous bond

force f pvij in Eq. (36), the artificial viscous bond force f avij in Eq. (40), and qij is the

nonlocal heat flux in Eq. (37). The two-step predictor-corrector integral scheme [11]

is used to integrate the independent variables. For weakly compressible fluid model,

the pressure of water is obtained with the following equation of state

p = p0((
𝜌

𝜌0
)𝛾 − 1), (44)

where 𝛾 is a constant,and 𝛾 = 7 is used, 𝜌0 is the reference density, p0 is the bulk

modulus of fluid [12].

The time increment for numerical stability is limited by several criteria [13]. The

three main conditions are CFL-condition based on the artificial sound speed cmax and

the maximum flow speed |vmax|, the viscous condition, and the body force condition,
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i.e.,

Δt ≤ min

(

0.25 h
cmax + |vmax|

, 0.125h
2

µ
, 0.25( h

|g|
)1∕2

)

. (45)

The solid wall is modeled by the reflective boundary conditions:

v′ = v − 2(v ⋅ n)n if v ⋅ n < 0 (46)

where v denotes the velocity and n is the inward normal direction of the wall at that

point.

5 Numerical Examples

5.1 2D Heat Conduction

Consider a 2d plate of with length L = 50 cm and width W = 10 cm. The plate is dis-

cretized with particles with a particle spacing of Δx = 0.5 cm or Δx = 0.25 cm; the

heat diffusion coefficient is 𝛼 = 1.0 × 10−4m2s−1. The left half is assigned an internal

energy of e0l = 1 J∕m2
, the right half e0r = 2 J∕m2

, as shown in Fig. 5. Particularly,

the small patch discretized with Δx = 0.25 cm is designed to test the influence of the

variation of the horizon size. During the simulation, the horizon size is set as two

times of the particle size, i.e., hi = 2Δxi; therefore, there is a sharp transition of hori-

zon size in the interface of two different particle sizes. The energy conservation can

be monitored by tracking the total internal energy. The energy profile is compared

to an analytic solution after 4.5 s, as shown in Fig. 6a. The analytical solution is

e(x, y, t) =
e0r + e0l

2
+

e0r − e0l
2

erf

(
x − xc
√
4𝛼t

)

. (47)

The numerical results agree well with the theoretical solution given by Eq. (47); The

maximal error is −2.07% which happened at the interface of two different horizon

sizes due to the nonlocal effect of the current formulation. The total energy variation

is shown in Fig. 6b.

Fig. 5 Initial configuration

of the plate, e0l = 1 J∕m2
in

blue domain and

e0r = 2 J∕m2
in red domain
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Fig. 6 a The comparison of analytical result with numerical results at t = 4.5 s b The total energy

variation var = ∫Ω e(x, y, t)dΩ∕(∫Ω0
e(x, y, 0)dΩ) − 1

5.2 2D Dam Break on Dry Bed

The Dam break experiment, which was described in reference [14], is a benchmark

problem in SPH field [15]. The tank is shown in Fig. 7a. The system was solved with

a leapfrog predictor-corrector scheme with a specular reflection boundary condition

by Eq. (46), artificial viscosity, 𝛼 = 0.5, and 𝛽 = 0.5. Fluid particles were initially

placed on a staggered grid with zero initial velocity. Two particle sizes are adopted,

e.g., Δx = 1.25 × 10−2 m in Ω0, Δx = 8 × 10−3 m in Ω1 (17,350 particles) in order

to test the dual-horizon in the formulation. In order to employ a large time increment,

the initial sound speed is set as 100 m/s, which is 10 times larger than the maximum

flowing speed. Note that the specular reflection boundary only changes the direction

of the particle’s velocity when the particle is approaching the boundary; thus, the

kinetic energy is not effected. This enables us to track the global energy during the

simulation. The energy equation Eq. (22) is considered in order to track the internal

energy.
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Fig. 7 a Initial configuration b Lines represent the X position of the dam toe c Total energy evo-

lution
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Fig. 8 The x velocity at different time

The toe velocity evolution agreed well with experimental data in Fig. 7b. The

motions of the water at different times are shown in Fig. 8. During the simulation,

the density variation is always less than 1%. The evolution of kinetic energy, internal

energy, and total energy is shown in Fig. 7c. It is safe to conclude that the total energy

is well conserved for the nonlocal fluid formulation. The small variation (<5%) of

total energy comes from the numerical integration. of the tank, and some particles’

density may exceed 1020 kg/m
3
. However, the variation of density for other part of

the fluid is small.

6 Conclusions

In this chapter, we developed a simple nonlocal formulation to model the weakly

compressible fluid. The nonlocal equation of motion and energy equation are derived.

Different bond forces in the aspects of pressure, physical viscosity, artificial viscos-

ity, and the nonlocal heat flux are determined by the nonlocal divergence method.

Two numerical examples are presented to show the accuracy of this method.
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CFD Simulations of the Natural Cavitating
Flow Around High-Speed Submerged
Bodies

T. T. Nguyen, H. N. Duong, T. Q. Nguyen and H. Kikura

Abstract Cavitating flow is of considerable importance in underwater high-speed
applications because of the desirable drag-reduction effect that concerns the pres-
ence of a cavity around moving objects. In many operating regimes, a proper design
of high-speed underwater bodies, e.g., the slender ones, should produce not only a
stable motion with a straight trajectory but also maximize the travel distance of the
bodies. To this end, both physical experiment and CFD simulation can be exploited
to investigate the behaviors of a body. Regarding this issue, a number of previous
studies have been carried out. However, little specific data of the body design have
been documented in the published literature so far. This study investigates
numerically a number of varied designs of high-speed underwater slender bodies.
The designs are different in some of the bodies’ typical parameters which include
the cavitator shape and body length. Steady state simulations of the single/
two-phase partial- and super-cavitating flows around the bodies have been carried
out by using the CFD approach. A two-phase mixture formulation, turbulence k-ɛ
model (for the solution of the flow field) and Zwart-Geber-Belamri (ZGB) cavita-
tion modeling (for mass transfer modeling) are exploited. For the model validation,
comparisons with the published experimental and numerical data have been per-
formed. The behaviors of the natural cavitating flow around the different bodies
investigated are obtained. The modified drag coefficient for these specific bodies
and operating conditions are proposed.
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1 Introduction

When a solid body moves at high enough speed underwater, the pressure of the
flow around the body can drop below the saturated vapor pressure. A gas pocket
can be formed around the body. The gas pocket is filled by water vapor due to the
high pressure drop, i.e., water boiling naturally at reduced pressure. The flow is
known as the natural cavitating flow. If the vapor pocket completely covers the
body, it is called a super-cavity. If not, it is considered as a partial-cavity when the
vapor pocket encloses part of the body (e.g., see [1, 2]). The cavitating flow
imposes critical effects on the dynamics, control, and guidance of the high-speed
underwater bodies.

In the practical operation of high-speed submerged bodies, both the partial- and
super-cavitating flow regimes play important roles. In the partial-cavitating flow,
the skin friction remarkably reduces because the body comes less in contact with
the liquid phase. This regime crucially effects the flow dynamics during flight
transients or maneuvering. Furthermore, in the super-cavitating flow, the vapor
pocket is long enough to enclose the whole body. Accordingly, super-cavitation
enables to minimize the skin friction. High-speed (or even supersonic) underwater
motion can be attained in the super-cavitating flow regime [1–4]. Optimal operation
of a high-speed submerged body can only be obtained if the dynamics and effects of
the cavitating flow regimes are fully addressed and taken into account. Careful
considerations must be performed from the initial stage, i.e., body design.

A proper design of high-speed underwater bodies, e.g., high-speed cavitating
slender objects, should produce not only a stable motion with a straight trajectory,
but also maximize the travel distance of the body. To this end, physical experiments
(e.g., see [1]), analytical approximations (e.g., see [5]) and CFD simulations (e.g.,
see [6–8]) can be exploited to investigate the behaviors of the cavitating flow
around the body. A number of previous studies have been carried out (e.g., see [1–
8]). However, little specific data of the body design have been documented in the
published literature so far. On the experimental side, physical experiments are
usually highly difficult. That is typically due to the fact that high velocity and
two-phase cavitating flow are involved. Methods for detailed measurements of such
demanding flow conditions are not available currently. Presently, optical visual-
ization is extensively used [9–12]. Analytical approximations are computationally
efficient, but there are difficulties in obtaining the details of the flow behaviors [5,
13, 14]. Consequently, in this study, the CFD approach is exploited.

The CFD approach to the cavitating flow simulation can be based on several
theoretical formulations such as single-fluid, volume of fluid (VOF), two-fluid (e.g.,
see [15]). For the cavitating flow simulation, the two-phase mixture formulation
which is based on the single-fluid approach is most computationally efficient, and
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capable of providing sufficiently accurate results. It has been well exploited pre-
viously for cavitating flow study (e.g., see [16–18]). Hence, the two-phase mixture
approach is applied in this study to the investigation of the cavitating flow dynamics
and effects of different body designs.

On the numerical simulation of the cavitating flow by using the CFD approach
and analytical approximations, the flow dynamics and cavity behaviors have been
well clarified for the flow around some specific body configurations (e.g., see [5, 7,
8]). Both the natural cavitating flow and ventilated one have been investigated (e.g.,
see [7, 8]). A comparison between the partial- and super-cavitating flow regimes
have been carried out for blunt cavitator. The partial-cavitating flow has been
investigated with changing the body diameter [5]. In order to clarify the effects of
different cavitator shapes (e.g., hemispherical, conical) and/or the body length on
the flow dynamics, cavity size, and so on, further investigations are necessarily
required.

In this study of high-speed submerged bodies, numerical simulations by using
the CFD approach have been performed for a number of varied cavitator designs.
The designs are different in some of the body’s typical parameters which include
the cavitator shape and body length. Steady state simulations of the single/
two-phase cavitating flows around the bodies have been conducted. The
well-known two-phase mixture formulation with the Realizable k-ε turbulence
model and the ZGB cavitation modeling [19] is exploited to investigate the partial-
and super-cavitating flow regimes around the high-speed underwater bodies. For the
model validation, comparisons with the published experimental data [20] and
numerical data [7, 8] have been carried out. Effects of the computational grid
refinement have been investigated. The validated CFD model is then applied to the
study of the dynamics of the cavitating flow around the bodies. The effects of
cavitator shapes and body lengths are quantified. A modified drag coefficient for the
bodies considered is proposed.

2 Theoretical Formulation and Numerical Method

For the CFD simulation of the cativating flow, the mixture model which uses the
single-fluid approach can be exploited (e.g., see [16–18, 21, 22]). In this approach,
the two phases (liquid and vapor) are treated mathematically as interpenetrating
continua. The mixture model is developed for two (or more) phases (e.g., see [15]).
This model solves a set of the governing equations that are written for the
two-phase mixture variables (e.g., mixture density, velocity). Additional volume
fraction equations for the secondary phases and algebraic representations for the
relative velocities between the two phases can be included. This approach con-
siderably reduces the computational expenses. In details, for the CFD simulation of
the natural cavitating flow, the following equations are solved numerically.

CFD Simulations of the Natural Cavitating Flow Around … 853



2.1 Governing Equations for the Natural Cavitating Flow

In the natural cavitating flow, the vapor phase is rapidly generated in the single-phase
fluid regions where the static pressure drops below the saturated vapor pressure.
Consequently, the variation in the temperature field is small and can be negligible.
Hence, a constant ambient temperature is maintained which implies the omission of
the energy equation in the governing equations of the natural cavitating flow.

Mixture continuity equation
The mixture continuity equation shown in Eq. (1) is exploited for the calculation

of the phase volume fractions [15]. In addition, it is also exploited in the solution
method to calculate the mixture pressure distribution as shown later on.

∂

∂t
ρmð Þ+∇ ⋅ ρmvm⃗ð Þ=0 ð1Þ

where vm⃗ and ρm are the mass-averaged velocity and mixture density, respectively.
They are written, respectively, as vm⃗ = ∑n

k=1 αkρkvk⃗
� �

̸ρm and ρm = ∑n
k=1 αkρk

where αk, ρk and n are the volume fraction, density of the phase k, and the number
of phases, respectively.

Mixture momentum equation
For the calculation of the mixture velocity distribution, the mixture momentum
equation shown in Eq. (2) is used [15].

∂

∂t
ρmv ⃗mð Þ+∇ ⋅ ρmv⃗mv ⃗mð Þ= −∇p+∇ ⋅ μm ∇v ⃗m +∇v ⃗Tm

� �� �
+ ρmg ⃗+ F

!−∇ ⋅ ∑
n

k=1
αkρkv⃗dr, kv ⃗dr, k

� �

ð2Þ

where, p is the mixture pressure; μm is the viscosity of the mixture (μm = ∑n
k=1 αkμk

where μk is the molecular dynamic viscosity of the phase k); g ⃗ is the gravitational

acceleration; F
!

is the body force; vd⃗r, k is the drift velocity for the secondary (i.e.,
kth) phase, by definition, vd⃗r, k = vk⃗ − vm⃗ which is the difference between the phase
velocity and the mathematically defined velocity of the multiphase mixture.

Mixture pressure-correction equation
In this study, the distribution of the mixture pressure field which appears on the

right hand side of Eq. (2) is iteratively calculated by using the pressure-correction
equation (i.e., the pressure-based continuity equation) shown in Eq. (3). This is one
of the multiphase solution methods of CFD pressure-based solvers [15].

∑
n

k=1

∂

∂t
αk +∇ ⋅ αkv ⃗′k +∇ ⋅ αkv ⃗*k −

1
ρk

∑
n

l=1
ṁlk

� 	
=0 ð3Þ

where vk⃗ , v ⃗
′

k and v ⃗*k are the velocity of the kth phase’s velocity, velocity correction
and the value of vk⃗ at the current iteration, respectively. ṁlk denotes the mass
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transfer from the lth to kth phase. With the approach used here, the pressure and
velocities are corrected so as to satisfy the continuity constraint [15].

Equation of drift velocity
In Eq. (2), an additional equation for the specification of the drift velocity v ⃗dr, k is

required. It can be obtained by using Eq. (4) that connects vd⃗r, k and the relative
velocity between the two phases vl⃗kð Þ [15].

vd⃗r, k = vk⃗l − ∑
n

i= q
civl⃗i ð4Þ

where ci is the mass fraction of the ith phase, which is defined by ci = αiρi ̸ρm. In
order to close Eq. (4), an algebraic slip formulation can be used to calculate the
relative (slip) velocity in the form vl⃗k = τl ̸ fdrag

� � ðρl − ρmÞ ̸ ρlð Þa ⃗ where τl and a ⃗
are the relaxation time and acceleration whose specific models can be found in [15].

Phase volume fraction equation
In the last term on the right hand side of Eq. (2), one more additional equation

must be required for the phase volume fraction αk. From the continuity equation for
the secondary phase k, the phase volume fraction equation can be derived as shown
in Eq. (5) [15].

∂

∂t
αkρkð Þ+∇ ⋅ αkρkvm⃗ð Þ= −∇ ⋅ αkρkvd⃗r, kð Þ+ ∑

n

q=1
ṁkq − ṁqk
� � ð5Þ

In order to close this equation, a mechanistic model for the mass transfer terms is
required. For the cavitating flow, a cavitation model shown later on in the cavitation
modeling is described for that purpose.

Turbulence effects
The natural cavitating flow is typically turbulent one where there exists high

flow velocity. For the application of the multiphase mixture model in the CFD
simulation of the turbulent natural cavitating flow, the numerical solution of the
Reynolds-Averaged Navier-Stokes (RANS) equations derived from Eq. (2) is
sought. The multiphase mixture k-ε turbulence model (an extension of the
single-phase k-ε model) shown in Eqs. (6) and (7) for the turbulence kinetic energy
k and turbulence energy dissipation rate ε, respectively, can be used to close the
RANS equations accompanied with the Boussinesq hypothesis [15].

∂

∂t
ρmkð Þ+∇ ⋅ ρmvm⃗kð Þ=∇ ⋅ μm +

μt,m
σk

� �
∇k

� �
+Gk,m − ρmε+Πkm ð6Þ

∂

∂t
ρmεð Þ+∇ ⋅ ρmvm⃗εð Þ=∇ ⋅ μm +

μt,m
σε

� �
∇ε

� �
+

ε

k
C1εGk,m −C2ερmεð Þ+Πεm

ð7Þ
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where, Cμ =0.009; σk =1.0 is the turbulent Prandtl number for k and σε =1.3 is
that for ε in the mixture; Gk,m is the turbulence production (i.e., the production of
the turbulent kinetic energy of the mixture): Gk,m = μt,m ∇vm⃗ + ∇vm⃗ð ÞT� �

:∇vm⃗;
C1ε =1.44; C2ε =1.92; Πkm , and Πεm are the source terms that can be used to model
the turbulent interaction between the phases. Importantly, based on the solution of
Eqs. (6) and (7), the turbulent viscosity for the mixture μt,m = ρmCμk2 ̸ε is obtained.

2.2 Cavitation Modeling

Natural cavitation means liquid boiling and vapor generation, at ambient temper-
ature, in the liquid regions where the static pressure falls below the saturated vapor
pressure. In such a case, very large and steep density variations occur in the
low-pressure/cavitating regions. In order to correctly model the cavitating process
by using the CFD approach, several cavitation models such as Singhal, ZGB,
Schnerr and Sauer models have been developed. Based on previous investigations
(e.g., see [23, 24]), ZGB model which is robust and more flexibly controllable over
the other models is exploited in this study. The details of ZGB model are shown
below.

Vapor volume fraction equation (vapor transport equation)
In natural cavitation, the multiphase mixture can be regarded to be composed of
liquid and vapor phases. The liquid–vapor mass transfer (i.e., evaporation and
condensation) is governed by the vapor transport equation which is a specifically
rewritten form of Eq. (5) as shown below.

∂

∂t
αkρkð Þ+∇ ⋅ αkρkvm⃗ð Þ= −∇ ⋅ αkρkvd⃗r, kð Þ+ ṁkl − ṁlk ð8Þ

where k and l denote vapor and liquid phases of the two-phase mixture, respec-
tively. The mass transfer terms ṁkl (condensation) and ṁlk (evaporation) are
modeled based on the Rayleigh-Plesset equation (shown below) which describes
the growth/collapse of a single vapor bubble in a viscous liquid [15].

Effects of bubble dynamics
To account for the bubble growth and collapse, the bubble dynamics equation

obtained from the generalized Rayleigh-Plesset equation can be used as shown in
Eq. (9). Here, a flowing liquid with zero velocity slip between the fluid and bubbles
is assumed.

Rbd2Rb ̸dt2 + 1.5ðdRb ̸dtÞ2 = ðpb − pÞ ̸ρl − 4νlṘb ̸Rb − 2σ ̸ðρlRbÞ ð9Þ

where Rb, σ, ρl, υl, pb, and p are the bubble radius, liquid surface tension coefficient,
liquid density, liquid kinematic viscosity, bubble surface pressure, and local
far-field pressure, respectively [15].
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In the cavitation phenomena, the pressure drop is a dominant force. Hence, the
surface tension force can be negligible. In addition, in Eq. (9), by eliminating the
second-order terms and noting that the contribution of the second term on the right
hand side of Eq. (9) would be negligible since Ṙb ≪Rb and υl ≪ 1, the following
simplified equation for the bubble dynamics is obtained.

dRb ̸dt=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð2 ̸3Þðpb − pÞ ̸ ρl

p
ð10Þ

ZGB cavitation model
This model calculates the total interface mass transfer rate per unit volume by using
the bubble density number n (which is later replaced by the vapor volume fraction
αv since n and αv are related to each other) and the mass change rate of a single
bubble. Moreover, in order to account for the following effects: evaporation, con-
densation, and cavitation bubble interaction, the final form of ZGB cavitation model
is written as shown in Eq. (11) for evaporation (i.e., p ≤ pv), and Eq. (12) for
condensation (i.e., p ≥ pv).

ṁlk =Fvap3αnuc 1− αvð Þρv ̸ Rb

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð2 ̸3Þðpv − pÞ ̸ ρl

p
ð11Þ

ṁkl =Fcond3αvρv ̸ Rb

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð2 ̸3Þðp− pvÞ ̸ ρl

p
ð12Þ

Suggested values of the coefficients and variables in Eq. (11) and (12) are
Rb = 10−6 m; αnuc = 5 × 10−4 (nucleation site volume fraction); Fvap = 50
(evaporation coefficient); Fcond = 0.01 (condensation coefficient) [15].

2.3 Body Shapes, Computational Domain, Boundary
and Setting Conditions

Body shapes and lengths
This study investigates four right circular cylindrical bodies with different cav-

itator shapes: blunt, 45°-conical, hemispherical, and 1-caliber-ogive, respectively, as
shown in Fig. 1 for 2D case. The same body diameter dbody = 6.6 mm and cavitator
diameter dc = 6.6 mm are used for all bodies. Regarding the body length Lbody,
three values which are 50, 100, and 150 mm are investigated.

Computational domain
An example of the computational domain for 100-mm-long bodies is shown in
Fig. 2. In the high-speed natural cavitating flow, the inertial force effects are

Fig. 1 Bodies with different cavitator shapes
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dominant over the gravitational effects; hence the gravitational acceleration can be
ignored. Consequently, the symmetry of the flow field around the body can be
suitably assumed. Hence, as shown in Fig. 2, half of the flow field is modeled. The
axis of symmetry is the body’s symmetric axis. The 2D computational domain is
composed of the rectangular ABCD and half of the body wall as shown in Fig. 2
(e.g., of blunt cavitator). For other cavitator types, just the body’s fore region is
modified accordingly. AB and DC are the upstream and downstream boundaries of
the flow field. BC is taken coincidently with the body’s symmetric axis. The body’s
symmetric axis is aligned parallel with the upstream flow direction. AD is the
far-field (free-flow) boundary. The domain size is shown in the figure as well.

The selection of the computational domain size must be carefully considered
since the flow field at the upstream and downstream boundaries (AB and CD)
where boundary conditions are specified in advance can be strongly affected by the
flow inside the computational domain. Moreover, the selection of the computational
domain at the rear of the body must be adequate for adequately capturing the wake.
Also, the distance between the boundaries AD and BC must be reasonable so that,
for the sake of simplicity, available types of the free-flow boundary condition in the
CFD approach can be applied with minimal effects on the flow field inside the
computational domain.

From the literature review (e.g., see [22, 25]), the selection of the size of the
computational domain around the body (as shown in Fig. 2) would be reasonable.
The proper selection of the computational domain size is further quantitatively
confirmed in the model validation shown later on.

Boundary and setting conditions
For the upstream boundary condition along AB, a constant-velocity boundary
condition is selected. The velocity magnitude is taken to be the body’s speed
underwater. The flow direction is set normal to AB. In order to simulate the natural
cavitating flow around high-speed submerged bodies in quiescent water, the tur-
bulence intensity along AB is set to 4% [15].

For the downstream boundary condition along DC, the constant static pressure
(i.e., hydrostatic pressure) is applied. The gauge pressure is set to zero. The tur-
bulence intensity along DC is set to 4% as well. Test calculations for varied values

Fig. 2 2D computational domain with blunt cavitator body, 100-mm body length
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of the turbulence intensity along DC revealed that the effects of the boundary
condition for turbulence along DC would be negligible [15].

Along the symmetric axis, the axis boundary type is used. For this type of
boundary condition, there is no calculation along the axis boundary. The appro-
priate physical value of a particular flow variable at any point along this axis is
taken to be the cell value in the adjacent cell [15].

Along the free-flow boundary AD, the symmetry boundary condition is selected.
This implies that along AD, a zero-shear stress condition (i.e., slip wall) is assumed.
Hence, the normal velocity and gradient of all variables are zero across this
boundary [15].

Along the body wall, no slip boundary condition is prescribed. In addition, to
model turbulent flow, a near-wall modeling approach that allows a consistent mesh
refinement (modification) without any deterioration of the results, especially in the
near-wall region, is exploited for the calculation of the flow variables at the cells
adjacent to the wall [15].

Other setting conditions are as follows. The two-phase mixture composes of
liquid water and vapor only. The operating pressure is set to ambient pressure (i.e.,
atmospheric pressure). Simulations are carried out for adiabatic condition with the
operating temperature set to 25 °C. The depth of the submerged bodies is set to 1 m.
As a result, the saturated vapor pressure is approximately 2338 Pa with hydrostatic
pressure taken into account.

2.4 Computational Grid and Numerical Discretization
of the Governing Equations

Computational grid
The computational domain is discretized into structured quadrilateral meshes

(cells or elements also). The meshing strategy here is to generate body aligned mesh
which, to some extent, also implies flow aligned mesh. Hence, some sources of
errors caused by the domain discretization would be minimized. High quality of the
computational mesh is prioritized in the regions close to the body wall as shown in
Fig. 3. The figure is an example of the computational mesh around the
spherical-cavitator, 100-mm-long body. The total number of cell elements is around
41000 for the computational mesh of all 100-mm-long bodies (blunt, 45°-conical,
spherical, and 1-caliber-ogive cavitator types). For all 150-mm-long bodies, the
number is approximately 56000. For all 50-mm-long bodies, it is about 30000.

Since a near-wall modeling approach is exploited for the calculation in the
near-wall regions, and test calculations have shown that the grid resolution in the
cavitating and wake regions would be reasonable; these computational meshes will
be used for the validation calculations. Once the validation results are acceptable,
the meshes will be used in further investigations of the cavitating flow around the
bodies.
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Numerical discretization of the governing equations
The governing equations were solved numerically by using the finite volume
method (FVM). The pressure-based coupled algorithm was chosen. The algorithm
solves a coupled system of equations consisting of the momentum Eq. (2) and the
pressured-based continuity Eq. (3). This algorithm significantly improves the
convergence of the calculations. The volume fraction equation is solved in a seg-
regated manner in order to reduce the memory requirement [15].

The body force weighted scheme was selected for the calculation of the cell-face
pressure. The second-order upwind scheme was used for the momentum and tur-
bulence transport equations. The Quadratic Upstream Interpolation for Convective
Kinematics (QUICK) scheme was employed for the volume fraction equation (i.e.,
the vapor transport equation). The Realizable k-ε turbulence model with enhanced
wall treatment (i.e., near-wall modeling) for the cells adjacent to the walls was
exploited [15].

For the optional calculation of the drift velocity, the Schiller Naumann model of
the drag force, Manninen-et al model of the slip velocity would be used. These
selections were adopted in all calculations in this study. In addition, corresponding
to the flow conditions investigated in this study, a constant surface tension coeffi-
cient of 0.072 N/m was used to account for the effects of the surface tension force
along the cavity surface.

2.5 Numerical Model Validation for Blunt, 45o-Conical,
Spherical, and 1-Caliber-Ogive Cavitator Bodies

Experimental and numerical data for the model validation
The numerical models of the steady state natural cavitating flow around

100-mm-long bodies (for four cavitator shapes) have been setup by using the CFD
approach. For the model validation, the data extracted from [7, 8] are used. The
published data have been obtained for four bodieswith the same body configuration as
those of this study [7, 8]. They include the experimental and numerical data of a
non-dimensionalized parameter that is the pressure coefficient Cp = ðplocal − p∞Þ ̸
ð0.5ρlU2Þ against the non-dimensionalized arc length along the body surface s/dc

Fig. 3 2D partial-computational mesh around the spherical-cavitator body
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(Fig. 2). Here, plocal is the local static pressure along the body surface; p∞ is the far-field
static pressure; ρl is the density of the liquid phase;U is the upstream velocity; s is the
arc length; dc is the cavitator diameter (for the cavitator types of the four bodies used in
this study, dc = dbody) as shown in Fig. 2. The data of Cp are obtained for different
cavitation number σ = ðp∞ − pcÞ ̸ ð0.5ρlU2Þ, which is shown in Table 1 for the
partial-cavitating flow (i.e., cavity closes on the body), whose σ is relatively high (i.e.,
σ > 0.1). In addition, a comparison for the case of the single-phase flow is also
performed. Here pc is the cavity pressure which means the saturated vapor pressure in
the natural cavitating flow in this study (Fig. 2).

The model validation by using Cp is useful and widely used (e.g., see [16]) since
the correct calculation of Cp would imply two important factors: the accuracy of the
calculation of the flow dynamics would be adequate, and the simulation of the
cavity behaviors would also be reliable. Moreover, the calculations involve not only
two-phase flows but also single-phase flow (i.e., single-phase non-cavitating flow,
and single-phase flow in the non-cavitating, and wake regions in the
partial-cavitating flow), therefore, the model setup would be properly acceptable.
Consequently, depending on the available data for comparison, the model valida-
tion would be conducted by using Cp alone, though the use of additional flow
parameters for the model validation would also be highly important.

Computational grid refinement investigation
In order to evaluate the effects of the computational grid refinement, three grid
resolutions are investigated for all bodies. They are corresponding to coarse,
medium, and fine ones. Approximately, the coarse grids have about 15000 com-
putational elements for all cavitator shapes and body lengths. The medium ones
have about 56000 elements for all cases. And the fine ones have about 90000
elements. For brevity, the calculation results of the distribution of the pressure
coefficient Cp along the body’s axis (extended into the cavity wake region) are
shown in Fig. 4 for the case of 1-caliber-ogive cavitator, 150-mm body length. For
other cases, the behaviors of the obtained results are almost identical to that shown
in Fig. 4. Calculations are executed for the same cavitation number σ = 0.0713
(i.e., U = 55 m/s) which corresponds to the partial-natural cavitating flow around
150-mm body length.

As illustrated in Fig. 4, the difference among the results obtained by using three
different grids can be negligible except in the wake region of the cavity. Closely
investigate the wake region as shown in the enlarged part in Fig. 4, the difference
between the result of the medium grid and that of the fine one can also negligible.

Table 1 Cavitation number and upstream velocity for the partial-cavitating and single-phase flow
simulations [7, 8]

σ [−] 0.20 0.24 0.30 0.32 0.40 0.46 0.50 Single-phase
U [m/s] 32.81 29.95 26.79 25.94 23.20 21.64 20.75 5.00
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Consequently, the medium grid resolution should be adequate. Hence, it is selected
for further investigations later on in this study.

Comparison results
As shown in Fig. 5, for all four bodies, the results of this study would agree fairly
well with the experimental data of both the single-phase and two-phase cavitating
flow regimes. Moreover, in most cases, the numerical results of this study would be
somewhat closer to the experimental data, in comparison with the published
numerical results obtained by using another CFD solver and cavitation model.

Consequently, the results of the model validation would suggest that the CFD
model setup in this study would be adequate for further investigations of the
cavitating flow around the bodies. In more details, the use of the discretization
schemes, ZGB cavitation model, the computational mesh quality, boundary and
setting conditions would be reasonable and accurate.

3 Simulation Results

3.1 Simulation Conditions

Body shapes and lengths
In order to investigate the effects of the typical cavitator shapes on the partial- and
super-cavitating flow regimes, four types of cavitator shape shown in Fig. 1 have
been used.

The partial- and super-cavitating flow regimes are dependent relatively on the
body length. With a specified body length, a super-cavitating flow will become a
partial-one if the body length increases to a value that is larger than the current

-0.2

0.0

0.2
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0.6

0.8

1.0

0 5 10 15 20

C
p

[-
]

s/dc [-]

Fine grid, 88000 elements

Medium grid, 55211 elements

Coarse gird, 14311 elements

Fig. 4 Evaluation of the
refinement of the
computational grids (s/dc:
non-dimensionalization of the
arc length s shown in Fig. 2)
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super-cavity length. Hence, in order to investigate the effects of the body length, for
each cavitator shape, simulations have been carried out for three body lengths, i.e.,
50, 100, and 150 mm. For each body length, a range of cavitation number that
centers on the transitional one (i.e., the value of σ that corresponds to the transition
from partial-cavitation to super-one) is investigated.

Flow conditions
For all body shapes and lengths, the operating conditions and settings are remained
identical. Only is the upstream velocity U varied, which corresponds to the vari-
ation of the cavitation number. The ranges of the upstream velocity U and cavi-
tation number for different cavitator types and body lengths are shown in Tables 2,
3, 4 and 5.

Fig. 5 Comparison of the pressure coefficient Cp for the four bodies (s/dc: non-dimensionalization
of the arc length s shown in Fig. 2)
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3.2 Results and Discussions

Calculations with the flow conditions shown in Tables 2, 3, 4 and 5 have been
conducted. Convergence of the calculations was satisfied. After each calculation,
the cavity region which is bounded by the void fraction contour of 0.5 is specified.
The void fraction criteria of 0.5 is selected based on the same value used in the
previous study done by Kunz et al. (1999) [7]. The cavity length (Lcav) and diameter
(Dcav) are then determined by following almost the same procedure used in Kunz
et al. (1999) [7]. In this study, Lcav and Dcav are the major and minor axes of an
ellipse which is determined as follows. The ellipse shares the same symmetric axis
with the body (i.e., the symmetric axis of the body). It contains the flow separation
point and the first point (with reference to the flow separation point) on the void
fraction contour that is furthest from the body surface. An illustration is depicted in
Fig. 6.

The received data of Lcav and Dcav (non-dimensionalized by dc) are then plotted
against cavitation number in Figs. 7, 8, 9, and 10. Figures 7, 8, 9 and 10 are
corresponding to the flow conditions shown in Tables 2, 3, 4 and 5, respectively. In
the figures, the data of both the partial- and super-cavitating flow regimes are
plotted altogether for all three body lengths. In addition, in the figures, the data
calculated by using Garabedian 1956’s theoretical correlation [26] for the cavity
length and diameter shown in Eqs. (13) and (14) are also plotted.

Lcav = ðdc ̸σÞ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
CD ln ð1 ̸σÞ

p
ð13Þ

Dcav = dc
ffiffiffiffiffiffiffiffiffiffiffi
CD ̸σ

p ð14Þ

where CD = CD0 × (1 + σ) is the drag coefficient; CD0 is the drag coefficient
corresponding to σ = 0. For these plots, the following values of the drag coefficient
CD0 are used as shown in Table 6.

As seen in Figs. 7, 8, 9 and 10, the calculated results of the non-dimensionalized
cavity length and diameter against cavitation number are highly in accord with the
formulation derived theoretically by Garabedian (1956) [26]. The calculated cavity
dimension obtained by using the CFD approach which is validated earlier would be
reasonably reliable, for the flow conditions and bodies investigated. This would

Fig. 6 Reconstruction of the cavity (blunt cavitator, 100-mm-long body; σ = 0.111; U = 44 m/s)
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confirm that the calculated results show the correct behaviors of the natural cavi-
tating flow around the bodies with different cavitator shapes and body lengths under
investigation.

For each cavitator shape, calculations were carried out for both the partial- and
super-cavitating flow regimes and three body lengths. It is worth noting that, the
super-cavitating flow around a body with a specific length becomes the partial-one
if the body length increases. The flow conditions shown in Table 1 are an example.
For the velocity range from 40 to 48 m/s, the flow is super-cavitating for 50 mm
long, blunt cavitator body. However, in the same velocity range, the flow is
partial-cavitating for 100-mm-long body. Physically there exists difference of the
flow field at the cavity closure region (between the partial- and super-cavitating
flow regimes); the calculated results show that the partial-cavities appear to be
somewhat smaller than the super-ones. From the calculated results in this study for
natural cavitation, this behavior seems to be less noticeable in comparison with the
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Fig. 7 Non-dimensionalized cavity length (Lcav/dc) (a) and cavity diameter (Dcav/dc) (b) against
cavitation number: Blunt cavitator
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Fig. 8 Non-dimensionalized cavity length (Lcav/dc) (a) and cavity diameter (Dcav/dc) (b) against
cavitation number: Hemispherical cavitator
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case of the water entry cavitating flow [10, 11]. Nevertheless, in general, the
calculated results of both flow regimes (i.e., the partial- and super-cavitating flow
regimes) align well with the trend predicted by using Garabedian 1956’s
formulation.

The results shown in Figs. 7, 8, 9 and 10 also show a well-known fact that the
blunt cavitator bodies generate largest cavity. As seen in Garabedian 1956’s for-
mula (Eqs. (13) and (14)), the difference of the cavity size at the same cavitation
number (with different cavitator shapes, same body length) depends on the drag

0

10

20

30

40

0.00 0.05 0.10 0.15 0.20 0.25

L c
av
/d
c

[-
]

σ [-]

CFD 50mm partialcavity

CFD 50mm supercavity

CFD 100mm partialcavity

CFD 100mm supercavity

CFD 150mm partialcavity

CFD 150mm supercavity

 Garabedian 1956

1.0

1.5

2.0

2.5

3.0

3.5

4.0

4.5

0.00 0.05 0.10 0.15 0.20 0.25

D
ca
v/d

c
[-

]

σ [-]

CFD 50mm partialcavity

CFD 50mm supercavity

CFD 100mm partialcavity

CFD 100mm supercavity

CFD 150mm partialcavity

CFD 150mm supercavity

 Garabedian 1956

(a) (b)

Fig. 9 Non-dimensionalized cavity length (Lcav/dc) (a) and cavity diameter (Dcav/dc) (b) against
cavitation number: 45o-conical cavitator
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Fig. 10 Non-dimensionalized cavity length (Lcav/dc) (a) and cavity diameter (Dcav/dc) (b) against
cavitation number: 1-caliber-ogive cavitator

Table 6 Drag coefficient CD0 for each type of cavitator shapes

Blunt Hemispherical 45°-conical 1-caliber-ogive

CD0 [−] 0.815 0.329 0.293 0.245
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coefficient CD which in turn depends on CD0. The values of CD0 for each cavitator
shape are shown in Table 6. The blunt cavitator shape has the largest drag coeffi-
cient. The other three cavitator shapes have much smaller drag coefficient CD0. It is
also worth noting here that, for the blunt cavitator shape, the value of CD0 which is
0.815 is almost the same as what suggested previously (e.g., see [1, 13, 26]). For the
other three cavitator shapes, using the value of CD0 shown in Table 6 systematically
matches all numerically calculated data with the results of Garabedian 1956’s
theoretical formulation. However, these three values are a little modified in com-
parison with the values used in the published literature. Approximately, the pre-
viously suggested CD0 are 0.259, 0.243, and 0.2 for hemispherical, 45°-conical, and
1-caliber-ogive cavitator shapes, respectively. Consequently, the values of CD0

proposed in Table 6 would be a suitable modification of the drag coefficient for the
bodies and cavitating flow conditions investigated in this study.

4 Concluding Remarks

The natural cavitating flow around high-speed submerged bodies of varied designs
has been investigated numerically in this study. The bodies all have a right circular
cylindrical shape of 6.6 mm diameter. Different cavitator shapes have been studied.
The cavitator shapes include blunt, hemispherical, 45°-conical, and 1-caliber-ogive
cavitators. For each cavitator shape, three different body lengths which are 50, 100,
and 150 mm have been investigated. The flow regimes studied are the partial- and
super-cavitating flow regimes.

Steady state simulations of the single/two-phase cavitating flow around the
bodies have been carried out by using the CFD approach. The well-known
two-phase mixture formulation and the Realizable k-ε turbulence model are
exploited for the solution of the flow field. ZGB cavitation model has been selected
for the mass transfer modeling. For the model validation, the pressure coefficient Cp

computed in this study has been compared with the experimental and numerical
data extracted from the published literature. Fairly good agreements have been
obtained that confirm the high accuracy of the calculated results of this study. In
addition, the effects of the computational grid refinement have been considered. The
reasonable grid resolution has been addressed and selected.

The CFD model has then been applied to the simulations of the partial- and
super-cavitating flow around the bodies. The calculated results have been obtained
and processed. Based on the received results, the following concluding remarks and
new findings have been established:

• For all types of cavitator shape, the calculated cavity size for both the partial-
and super-cavitating flow well aligns with the trend predicted by using
Garabedian 1956’s theoretical formulation.

• For each type of the cavitator shapes, the effects of the body length on the flow
behaviors, e.g., the cavity size, have been investigated. At the same cavitation
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number, the partial-cavity generated by a longer body appears to be smaller than
the super-cavity generated by a shorter body. This behavior seems to be less
noticeable in comparison with the cavitating flow after horizontal water entry.

• A set of modified drag coefficient CD0 has been proposed for the types of
cavitator shapes and flow conditions investigated. This can be useful for the
accurate calculation of the drag on high-speed submerged bodies.
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Effect of Low-Frequency Flow on Cable
Dry-State Galloping

H. Vo-Duy, L. Hoang-Trong, M. Nguyen-Van and V. Nguyen-Hoang

Abstract Cable-stayed bridge has widely been applied for medium-to-very long
span. Thanks to advanced construction technology and structural materials, its span
length is being broken time by time. Due to the increase of main span, cable length
becomes longer and more vulnerable to wind excitation. Common large amplitude
vibration types of stay cables are rain-wind-induced vibration (RWIV) and dry-state
galloping (DG). Therefore, countermeasure for DG and RWIV is one of the key
design factors of cable-stayed bridges. Many studies on its mechanism and coun-
termeasures have been conducted in which its causes and mechanism were
explained to some extent. It is typically explained that an axial flow behind the
cable and flow fields around the cable at the critical Reynolds number regime
suppress Karman vortex shedding, and then low-frequency vortices related to latent
Strouhal frequencies become stronger, which causes dry galloping at high reduced
wind speeds (U/fD) [1–3], although the complete explanation for the mechanism
has not been given. In this study, using a spiral protuberance cable, which was
developed as an aerodynamic countermeasure stay cable [4], and a circular cable,
wake flow behind the cable as well as wind-induced dynamic response were cap-
tured by wind tunnel test. Comparing power spectral densities and coherence along
the cable axis of the wake flow between spiral cables and circular cables at different
wind speeds, the role of low-frequency vortices/flow on dry galloping and the
suppression mechanism of the spiral protuberance were clarified.
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1 Wind-Induced Vibration of Circular and Spiral
Protuberance Cable

Cable-stayed bridge has widely been applied for medium-to-very long span. Thanks
to advanced construction technology and structural materials, its span length is
being broken time by time. At the completion, Tatara Bridge in Japan with a main
span of 890 m used to be known as the longest stay cable bridge in the world.
Nevertheless, it was rapidly passed over by Sutong Bridge (2008), Stonecutters
Bridge (2009), E’dong Yangtze River Bridge (2010) and Russky Island Bridge
(2012). With 1104 m of the main span, Russky Island Bridge is the current first
position in the main span-length rank. Due to the increase of main span, cable
length becomes longer and more vulnerable to wind excitation. In this scenario, it
has been pointed out that a stay cable could gallop under wind actions. Common
vibration types are rain-wind-induced vibration (RWIV), dry galloping (DG),
vortex-induced vibration and wake galloping. After RWIV phenomenon was
reported for the first time by Hikami and Shiraishi [5], cable manufacturers have
proposed some types of surface modification on cable sheathing in order to prevent
forming water rivulet along the cable which is main cause of RWIV. The proposed
control methods are based on researches carried out mainly in Japan and Europe, for
instance, a high-density polyethylene tube (HDPE) with indented surfaces, a HDPE
tube with twelve parallel protuberances and a HDPE with single spiral protuber-
ances. It has been found to promote the stabilization of these kinds of surface
modification under rain–wind interaction. However, Katsuchi and Yamada [6]
reported that DG occurred in case of indented cable with a low Scruton number
condition. It was also found that the presence of the spiral protuberance signifi-
cantly reduced the shedding correlation length. Larose and Smitt [7] conducted
wind tunnel tests (WTT) with a single spiral protuberance for controlling RWIV.
Consequently, their experiments showed a strong reduction of RWIV through the
disruption of upper rivulet formation in a rain condition. Nevertheless, it should be
paid attention to that recent full-scale monitoring at Øresund Bridge by Acampora
and Georgakis [8] revealed that single spiral protuberance was not effective as
initially expected.

Recently, Yagi et al. [9] tried to optimize the drag force for a parallel protu-
berance cable by giving spiral configuration. Finally, a cable with twelve spiral
protuberances wound with 27° was proposed to reduce the drag force and
wind-induced response. However, a WTT to observe cable response in a rain
condition has not been carried out yet. In this study, wind-induced response of a
circular cable and a spiral protuberance cable model was first measured at various
angles against the wind in not only a no-rain condition but also a rain condition.
The generation mechanism of dry galloping and its suppression by multiple spiral
protuberances will be explained in detail.
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1.1 Wind Tunnel Test

A cable model was fabricated by HDPT. Dimensions of the spiral protuberance are
5 mm high and 7.5 mm wide. Twelve protuberances were formed on the surface
with 27° winding angle as shown in Fig. 1. Diameter and length of the cable model
are 158 mm and 1500 mm, respectively. The cable model was supported by single
degree of freedom (1DOF) spring system in vertical direction. Cable attitude is
defined by the vertical angle α and horizontal flow angle β as shown in Fig. 2. The
test was conducted with three vertical angles; α = 9°, 25° and 40° and five hori-
zontal angles; β = 0°, 15°, 30°, 45° and 60°.

A rain condition was simulated by water nozzles at wind tunnel ceiling, as
shown in Fig. 3. Rain volume at the cable model position was 40–50 mm/h in the
wind speed range (around 8–15 m/s), which was adjusted to create the critical
RWIV amplitude. Other test conditions such as mass, damping, frequency are
shown in Table 1.

(1) 2 protuberances  (2) 4 protuberances     (3) 6 protuberances   (4) 12 protuberances

Fig. 1 Spiral protuberance cable model

*Wind
flow

Fig. 2 Definition of cable
attitude
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1.2 Wind-Induced Response

Figure 4 shows wind-induced response of a circular cable model in no-rain and rain
conditions. The response in a rain condition agrees with former studies [5, 10, 11]
where rain-wind-induced vibration (RWIV) only occurred in specific ranges of
wind speed and relative angles to wind. Large amplitude vibration with
non-dimensional amplitude of more than 1D (D: cable diameter) occurred in cases
of the inclined angle 25° and flow angles 15°–45°. When RWIV occurs, cable can
gallop rapidly and divergently. Due to the constraint of the supporting spring
system, maximum amplitude can be recorded in this study is around 2D. Diverging
characteristic at a constant wind speed is shown by arrows in Fig. 4. In parallel,
wind tunnel test was also carried out in a no-rain condition. Results are summarized
in Fig. 4. Generally, divergent galloping took place in some specific cases such as
the inclined angle (α) 40° with the flow angles (β) 15°, 30° and 45°, and (α) 25°
with (β) 30° in the subcritical Reynolds number region (6 × 104–1.2 × 105). This

Fig. 3 Cable model
orientation

Table 1 Wind tunnel test
conditions

Wind condition Smooth

Diameter: D (mm) 158
Effective length: L (mm) 1,500
Inclination angle: α (°) 9, 25, 40
Flow angle: β (°) 0, 15, 30,45, 60
Mass: m (kg/m) 9.9 (circular), 10.8 (spiral)
Natural frequency (Hz) 0.78–1.02
Logarithm decrement: δ 0.005–0.016
Scruton number (2m/ρD2) 3.3–11.5

Reynolds number 0–2.1 × 105
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experimental result is consistent with previous studies [5, 11] where DG can occur
at some specific wind attack angles and wind speed range.

In the other aspect, spiral protuberance or helical fillet-type cable is often applied
for aerodynamic countermeasure. Field measurement showed that installing a spiral
wire can mitigate wind-induced vibration of stay cables to some extent. It is pointed
out that stay cables with small diameter helical fillets still exhibited large amplitude
vibration [12]. Besides that, Gu and Du [10] concluded that only proper spiral pitch
could mitigate RWIV of cables. Recently, Yagi et al. [9] used twelve spiral pro-
tuberances with the winding angle of 27° to control RWIV with lower drag force
compared to the parallel protuberances type. In this study, 12 spiral protuberance
cables were tested as shown in Fig. 5. Not only RWIV but also DG is almost
suppressed, and only small amplitude random vibration is observed. Furthermore,
the detail of wake flow characteristics will also be clarified.

2 Excitation Force from Latent Low Frequency

To understand the dry-state galloping mechanism, the fluctuating of wind velocity
in the wake of the inclined cable model will be investigated along the model. The
circular cylinder was mounted in the wind tunnel with flow angle β = 30° and
inclined angle α = 25°. The hot-wire anemometer was set at 2D (D: cable diameter)
from the cable wake and 0.5D from cable axis as shown in Fig. 6, and its position
along the cable direction was varied from the upstream side to the downstream side

(1) No rain,  = 25 degree                                    (2) No rain,  = 40 degree 

(3) No rain,  = 9 degree                                        (4) With rain,  = 25 degree 

Fig. 4 Wind-induced response of circular cable
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at the distances from 2D to 7D. From this set-up, fluctuation of wind speed in
spatial and time will be measured at different wind speeds.

The power spectrum density (PSD) diagrams of fluctuating wind velocity in
vertical direction near the wake along the cable direction are shown in Figs. 7 and 8a.

(1) No rain,  = 40 degree                                          (2) No rain,  = 25 degree 

(3) No rain,  = 9 degree   (4) With rain,   = 25 degree 

Fig. 5 Wind-induced response of spiral protuberance cable

0.
5D

Cable model
D=158mm

2
5

7

2D

Wind flow

5D
7D

3
4

6

2D

Hot wire

Fig. 6 Arrangement for
measurement wake flow
fluctuation
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The mean wind velocities in the wind tunnel are fixed as 5/s, 10 m/s, 15 m/s and
20 m/s, respectively. When wind speed at around 5 m/s, Karman vortex frequency
with Strouhal number (St) around 0.2 seems to be dominant. However, as wind speed
increases to U = 10 m/s, the low-frequency components are observed through
span-wise direction. Especially at the downstream side corresponding to 6D and 7D
locations, these low-frequency components are extremely dominant. These fre-
quency components correspond to reduced wind velocity around U/fvD = 110,
where fv is the dominating frequency offluctuating velocity. This kind of pattern also
detected more clearly at wind speed U = 15 m/s. Further, there are two dominant
frequency components: one corresponds to U/fvD = 110 which probably driven
force of dry galloping phenomenon and the other is U/fvD = 60 where supposed for
vortex-induced vibration at high reduced wind speed [10]. Obviously, these
vibrations (dry galloping and vortex-induced vibration at high reduced wind speed)
apparently differ from the conventional Karman vortex-excited vibration because
they appear at much higher reduced wind speed. Furthermore, this kind of trend also
appeared in case of flow angle β = 45° and inclined angle α = 25° or β = 0° and
inclined angle α = 25° as shown in Figs. 8b and 9. In this figure, the wind speed is
20 m/s and the low dominant frequency component around U/fvD = 110. Moreover,
the dominant frequency is around 0.6–2 Hz, which is close to fundamental frequency
of cable, so the vibration can easily occur. This finding is consistent with the DG
occurrence range in previous section. In detail, the dominant frequency appeared
coincided with wind speed where DG took place.

In addition, the wavelet analysis was carried out to observe the variation of the
velocity against time as well as the excitation mode, in which Morlet wavelet is
mother function. The results of location = 6D and 7D, U = 15 m/s, β = 30° and
α = 25° are plotted in Fig. 10. Two peaks for first mode and second mode keep
their shapes and magnitude almost unchanged along the time. In addition, the low
peak frequency can be observed clearly. Similar trends were found at 2D, 3D, 4D
and 5D in Figs. 11, 12, 13 and 14. In addition, there are some frequency peaks with

10-3 10-2 10-1 100 101
10-2

10-1

100

101

102 circular-25-30-5

Reduced frequency(fD/U)

P
S

D
[(m

/s
)2 /H

z]

X=2D
X=3D
X=4D
X=5D
X=6D
X=7D

circular-25-30-10

Reduced frequency(fD/U)

P
S

D
[(m

/s
)2 /H

z]

X=2D
X=3D
X=4D
X=5D
X=6D
X=7D

a) U=5m/s, =30° and = 25°                     b) U=10m/s, =30° and = 25° 

U/fvD=80 

10-2

10-1

100

101

102

10-3 10-2
10-1 100 101

Fig. 7 PSD of fluctuating U in the wake of stationary inclined cable, U = 5 and U = 10 m/s
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much shorter period region. Since the reduced velocity for these peak is calculated
around U/fvD = 5–8, it can be the conventional Karman vortex-induced vibration.
In short, the wake flow fluctuation with very low frequencies and its regular
shedding along the cable axis play very important in dry galloping's mechanism. It
is obviously that there are many latent low frequencies at high wind speed, and they
will only appear at high range of wind velocity with high energy.

10-3 10-2 10-1 100
101 10-3 10-2 10-1 100
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a) U=15m/s, =30° and = 25° flow) b) U=20m/s, =45° and = 25°)

Fig. 8 PSD of fluctuating U in the wake of stationary inclined cable, U = 15 and U = 20 m/s
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a) Location= 6D, U=15m/s b) Location= 7D, U=15m/s

1st mode: U/fvD= 110-160

2nd mode: U/fvD= 60-80

1st mode: U/fvD= 110-160

2st mode: U/fvD= 60-80

Fig. 10 WA of fluctuating U in the wake of stationary inclined cable, β = 30° and α = 25°

a) Location= 2D, U=15m/s, b) L ocation= 3D, U=15m/s

1st mode: 
U/fvD= 110-160

1st mode: 
U/fvD= 110-160

Fig. 11 WA of fluctuating U in the wake of stationary cylinder, β = 30° and α = 25°

Fig. 12 WA of fluctuating U of inclined circular cylinder
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3 Stabilization Characteristic of Spiral Protuberance
Cable

3.1 The Elimination of Low-Frequency Band

To understand the reasons why spiral cable can mitigate the cable dry-state gal-
loping, wake flow velocity of inclined spiral protuberance cable model was
recorded along the model. The cable with twelve spiral protuberances was mounted
in the wind tunnel with flow angle β = 30° and inclined angle α = 25°. The
experimental set-up was same to measurement of circular cable in Chap. 4.
The PSD diagrams of fluctuating wind velocity in the wake along the spiral pro-
tuberance in comparison with circular cable can be seen at Figs. 15 and 16.

a) Location= 6D, U=15m/s b) Location= 6D, U=20m/s

Fig. 13 Wavelet analysis of fluctuating U in the wake of inclined cable, β = 45° and α = 25°

a) Location= 2D, U=15m/s     b) Location= 2D, U=20m/s

U/fvD= 110-160
U/fvD= 110-160

Fig. 14 Wavelet analysis of fluctuating U in the wake of inclined cable, β = 0° and α = 25°
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Significantly, the low-frequency flows/vortices were vanished through span-wise
direction. In comparison with circular cable, spiral one has much lower power in
low-frequency component band. In the other expression, the spiral protuberances
mitigated the wake flow fluctuation considerably and made its shedding’s energy
becomes weaker. In presence of spiral protuberance, Karman vortex (St = 0.15–
0.2) is most dominant flow, which contained higher energy. Moreover, The Karman
vortex flow also decreased as wind speed increased, and it is nearly suppressed at
high wind speed, say 15 or 20 m/s. In this case, there were some low-frequency
peaks, but the excitation energy is negligible. Furthermore, there was no large
amplitude vibration occurred in these cases. It means that the interruption of Kar-
man vortex is only necessary condition, not the sufficient condition for dry gal-
loping. The sufficient conditions for generating dry galloping are both interruption
of Karman vortex and formation of low-frequency flow/vortices.

Besides that, according to the wavelet analysis in Fig. 17, there was a shift of
frequency from low range in case of circular cable to high-frequency components in
presence of spiral protuberances. In particular, the total energy of wake flow
reduced considerably. Frequency component from 1–10 Hz seems to be sup-
pressed, and the power of other component was also reduced. In another expression,
spiral protuberance changed the wake flow pattern from unstable pattern to the
stable one. In addition, the low-frequency peak vortices with reduced wind speed
(U/fvD = 110–160) which was also found in circular cable were vanished. Cur-
rently, there are high non-stationary frequency peaks correspond to reduced wind
velocity around U/fvD = 4–6. This range of reduced wind speed is equivalent to
Strouhal number around 0.15–0.25, which is conventional Karman vortex.
According to previous publications [13], when Karman vortex shed, amplitude
becomes small. Because the Karman vortex would come from the communication
of two separation flows, this communication makes the pressure difference of upper
and lower sides of cable become zero. As a result, it can reduce galloping.

a) Location= 6D, U=15m/s;     b) Location= 6D, U= 20m/s

St= 0.15-0.25 St= 0.15-0.25

Fig. 17 Wavelet analysis of fluctuating wind velocity in the wake of stationary spiral
protuberance cable (Smooth flow β = 30° and α = 25°)
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Furthermore, the Karman vortex-induced oscillation for stay cables is not so dan-
gerous, and it is easy to suppress by increase structural damping. Above findings
proved that spiral protuberances destroyed the low-frequency component, which
may cause cable vibration at high wind speed. In short, the presence of spiral
protuberances suppressed the low-frequency component as well as reduced the
energy of wake flow.

3.2 Interruption of Shedding Correlation

In case of circular cylinder, it was found that the low frequency has a high cor-
relation with high energy; therefore, it can create strong excitation force. Currently,
coherence also used for assessing the correlation of wake flow in span-wise
direction of spiral protuberance cable. The correlation of wake flow of flow angel
30° and inclination 25° can be seen at Fig. 18. Under comparison with circular
cable, it is found that spiral cable has higher correlation at Strouhal number (fD/U)
around ∼0.2 which corresponding to Karman vortex component. In the other
expression, owing to spiral protuberance, shedding correlation of low-frequency
flow was mitigated while the Karman vortex shedding correlation increased again.
According to previous studies, when KV shed, amplitude becomes small [13–15].
At low-frequency flow band, spiral protuberance exhibited very low correlation
compared to circular surface. In conclusion, the suppression mechanism procedure
is as following: in presence of spiral, flow separation point is fixed, the regularity of
flow shedding will be maintained even though the Karman Vortex is suppressed in
this case. Then, the vortex continues shedding regularly. Consequently,
low-frequency vortices do not appear, and spatial shedding correlation also
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disrupted. It leads to no excitation force created. Consequently, the dry galloping
will be mitigated.

4 Conclusion

In this study, wind-induced response and wake flow structures of circular and spiral
protuberance cables were measured in the wind tunnel test. Then, a role of
low-frequency vortices on dry galloping and the suppression mechanism of the
spiral protuberance cable were clarified. Results obtained are as follows:

In the case of a circular cable, large amplitude dry-state galloping occurs when
suppression of Karman vortices collapses the regularity of vortex shedding and
increases randomness of vortex shedding along the cable axis, and as a result, it
increases PSD in the low-frequency range.

In the case of a spiral protuberance cable, protuberance fixes the location of
vortex shedding even under suppression of Karman vortices and collapse of the
regularity of vortex shedding. As a result, it does not increase largely the ran-
domness of vortex shedding along the cable axis, peaks of PSD in the
low-frequency range do not appear, DG does not occur, either.
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Investigation on Turbulence Effects
on Flutter Derivatives of Suspended Truss
Bridge Section

L. Hoang-Trong, V. Nguyen-Hoang and H. Vo-Duy

Abstract This paper presents the flutter derivatives extracted from a stochastic
state-space system identification method under difference turbulent flows. The aim
of the study is to clarify the effects of oncoming turbulence on the flutter of
suspended long-span bridges by using section model wind tunnel test. Several wind
tunnel tests on a trussed deck section have been carried out with different oncoming
turbulent properties involving turbulence intensities and turbulent scales. The
analysis includes the transient response data from wind tunnel test which have been
analyzed by the system identification technique in extracting flutter derivatives
(FDs) and the difficulties involved in this method. The time-domain analysis
stochastic system identification is proposed to extract simultaneously all FDs from
two degree of freedom systems. Finally, the results under different condition were
discussed and concluded.

Keywords Flutter derivative ⋅ Stochastic system identification
Wind turbulence ⋅ Flutter critical velocity

1 Introduction

The wind in the atmospheric boundary layer is always turbulent. Therefore, any
research of wind-induced vibration problems must consider this issue. Not many
researches have focused clearly on the effects of turbulence on aeroelastic forces.
Scanlan (1978) [1] is the pioneer who used a trussed deck section model and then
concluded that flutter derivatives had an insignificant difference from smooth and
turbulent flows. However, Huston (1986) conducted a test on a model of the Golden
Gate Bridge deck section, and the results showed a significant discrepancy in flutter
derivatives between smooth and turbulence flows [2]. Sarkar et al. (1994) [3]
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conducted a streamlined steel box girder section model test under both smooth and
turbulence flows and applied robust system identification method, Modified Ibra-
him Time Domain (MITD) [4]. Their study showed two valuable conclusions:
(1) The turbulence flow does not appreciably affect self-excited forces via the FDs,
and (2) the MITD method is based on the assumption that there is no external
excitation of the system. For a section model immersed in turbulent flow, the
buffeting forces and these responses are considered external forces, and hence free
vibration condition is conflicted theoretically. The MITD method treats the
resulting forced response as though additional noise is presented in the signals. This
made the identification flutter derivatives more difficult and most likely reduced the
accuracy.

For a study on FDs, the free vibration technique of sectional model is used, and
system identifications (SID) technique to extract FDs is widely applied [3–5].
Various SID techniques were developed by many authors: the Extended Kalman
Filter Algorithm, Modified Ibrahim Time-Domain method, Unifying Least-squares
method, and Iterative Least-Squares method. In these systems, the buffeting force
and their response are considered as external noise, so this causes more difficulties
at high wind velocity such as noise increase due to turbulence.

Kirkegaard and Andersen [6] compared three state-space systems: stochastic
subspace identification (SSI), stochastic realization estimator matrix block Hankel
(MBH), and prediction error method (PEM). The results showed that the SSI gave
good results in terms of estimated modal parameters and mode shapes. The MBH
was found to give poor estimates of the damping ratios and the mode shapes
compared with the other two techniques. In addition, the SSI was approximately ten
times faster than the PEM.

This study is to clarify the effects of oncoming turbulence on self-excited force
of a suspended long-span bridge deck. The more challenging is the application of a
stochastic system identification method to identify flutter derivatives from free
decay response for the section model which is obtained by an experimental wind
tunnel test for a truss deck section. The output only time-domain analysis stochastic
system identification, also known as data driven stochastic system (SSI-data)
methods is proposed to extract simultaneously all flutter derivatives (FDs) from two
degrees of freedom system (DOF).

2 Wind Tunnel Test

A wind tunnel test was conducted in a closed-circuit wind tunnel of Yokohama
National University. The investigated profile is trussed deck section (Fig. 1). Since
the truss deck with closed open grating exhibits torsional flutter at a relatively low
wind speed, FDs (particularly A2

*) identified can be validated by a flutter onset wind
speed. The width and depth of the section model are 363 mm and 162.5 mm,
respectively. The unit mass is 8.095 kg/m, and moment of inertia is 0.2281 kg m2/
m. The vertical frequency and damping ratio are 1.869 Hz and 0.0051, respectively.
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The torsional frequency and damping ratio are 3.296 Hz and 0.00419, respectively.
The tests have been carried out in both smooth and different turbulent flows. The
turbulent flows used in this study are generated with biplane wooden grids. The
turbulent properties are controlled by changing the distances to the model. The flow
conditions and turbulence properties are shown in Table 1.

3 Identification of Flutter Derivatives

3.1 Stochastic Discrete-Time State-Space System

Considering a 2 DOF section model of bridge deck in turbulent flow, equation of
motion is written by

m½h
..
+ 2ξhωh h

.
+ω2

hh�= Lse + Lb

I½α.. + 2ξαωα α
.
+ω2

αα�=Mse +Mb

ð1Þ

where h and α are the vertical and torsional displacement; m and I are mass and
mass moment of inertia per unit length, respectively; ωh = 2πfh and ωa = 2πfa are
circular frequencies of heaving and pitching mode; ξh and ξa are damping ratio to
critical; Lse and Mse are the aerodynamic self-excited lift and moment, respectively,
given by Simiu and Scanlan [7]

Fig. 1 Truss deck section model

Table 1 Turbulence
intensity and scale

Iu (%) Iw (%) Lu (cm) Lw (cm)

Case 1 6.2 4.6 11.3 9.1
Case 2 9.1 6.9 9.0 8.7
Case 3 15.6 13.2 6.8 6.4
I turbulence intensity, L turbulence integral length scales with
horizontal u and vertical direction w
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Lse =
1
2
ρU2B KhH*

1ðKhÞ h
̇

U
+KαH*

2ðKαÞBα̇U +K2
αH

*
3ðKαÞα+K2

hH
*
4ðKhÞ hB

� �

Mse =
1
2
ρU2B2 KhA*

1ðKhÞ h
̇

U
+KαA*

2ðKαÞBα̇U +K2
αA

*
3ðKαÞα+K2

hA
*
4ðKhÞ hB

� � ð2Þ

where ρ is the air density; U is the mean wind velocity; B is the width of bridge
deck; Ki = ωiB/U the reduced frequency (i = h, α); Hi

* and Ai
* (i = 1, 2, 3, 4) are

the flutter derivatives. Lb andMb (factorized into matrix B2 and input vector u(t)) are
the buffeting forces in the vertical and torsional directions, respectively. By sub-
stituting Lse, Mse, Lb, and Mb into Eq. (1) and moving the aerodynamic damping
and stiffness terms to the left-hand side, Eq. (1) can be transformed into a first-order
state equation by Eq. (3) [8]

x ̇ðtÞ= 0 I
− M½ �− 1 Ke½ � − M½ �− 1 Ce½ �

� �
4x4

xðtÞ+ 0
M½ �− 1B2

� �
uðtÞ ð3Þ

where x(t) is state vector; [M] is mass matrix; [Ce] is gross damping matrix
including the structural damping and aerodynamic damping; [Ke] is gross stiffness
matrix including the structural stiffness and aerodynamic stiffness.

In the modal analysis, sometimes the input is unknown and measurements are
mostly sampled at discrete-time. On the other hand, it is impossible to measure all
DOFs, and measurements always have disturbance effects. For all these reasons, the
continuous deterministic system will be converted to suitable form, discrete-time
stochastic state-space model, as follows:

xk+1 =Axk +wk

yk =Cxk + vk
ð4Þ

where xk = x(kΔt) is the discrete-time state vector containing the discrete sample
displacement and velocity; wk is the process noise; vk is the measurement noise due
to sensor inaccuracy. Assuming wk and vk are zero mean and {xk}, {wk}, and {vk}
are mutually independent, the output covariance R = E[yk+i yk

T] for any arbitrary
time lags iΔt can be considered as impulse response (Eq. (5)) of the deterministic
linear time-invariance system A, C, and G, where G = E[xk+1 yk

T] is the next
state-output covariance matrix.

Ri =CAi− 1G ð5Þ
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3.2 Stochastic System Identification (SSI)

Data-driven stochastic subspace identification (SSI-data) method [9] is used in this
study. It works directly with time series of experimental data without the need to
convert output data to correlation, covariance, or spectra. The main step of SSI-data
is a projection of the row space of the future outputs into the row of past outputs.
The orthogonal projection Pi is defined as follows:

Pi = Yf ̸Yp = Yf YpðYpYT
p Þ− 1Yp ð6Þ

where the matrix Yf and Yp are the under half part and upper part half of a block
Hankel matrix H as below.

H =

y0 y1 ⋯ yj− 1

y1 y2 ⋯ yj
⋯ ⋯ ⋯
yi− 1 yi ⋯ yi+ j− 2

yi yi+1 ⋯ yi+ j− 1

yi+1 yi+2 ⋯ yi+ j

⋯ ⋯ ⋯
y2i− 1 y2i ⋯ y2i+ j− 2

2
66666666664

3
77777777775
2ixj

=
Y0ji− 1

Yij2i− 1

� �
=

Yp
Yf

� �
↕li
↕li

ð7Þ

where y = (y0, y1, y2, y2… yn) ∈Rlxn is the output measurement data obtained
from l sensors (in this study l = 2 for heaving and torsion modes), 2i is the number
of block rows, and j is the number of columns.

The main theorem of stochastic subspace identification states that the projection
Pi can be factorized as the product of observability matrix Oi and the Kalman filter
state sequence Xî. The observability matrix Oi and the Kalman filter sequence X ̂i are
obtained by applying SVD to the projection matrix Pi. The Kalman state sequences
Xî, X ̂i+1 are calculated using only output data. The system matrices can now be
recovered from overdetermined set of linear equations and obtained by extending
Eq. (4)

X
⌢

i+1

Yiji

 !
=

A
C

� �
X
⌢

i

� �
+

ρw
ρv

� �
ð8Þ

where Yi/i is a Hankel matrix with only one block row. Since the Kalman state
sequence and the outputs are known and the residuals (ρwT ρvT)T are uncorrelated
with Xî, the set of equation can be solved for A and C in the least-squares, where (.)u

is pseudo-invert of a matrix
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A

C

 !
=

Xî+1

Yiji

 !
X ̂i
� 	† ð9Þ

3.3 Identification of Flutter Derivatives

The modal parameters of system can be obtained by solving the eigenvalue problem
state matrix A as

A=ΨΛΨ− 1, Φ=CΨ ð10Þ

where Ψ is the complex eigenvector; Λ the complex eigenvalue is the diagonal
matrix; Φ the mode shape matrix. When the complex modal parameters are known,
the gross damping Ce and gross stiffness Ke in Eq. (3) are determined by following:

Ke Ce½ �= −M ΦΛ2 Φ*ðΛ*Þ2
h i Φ Φ*

ΦΛ Φ*Λ*

� �− 1

and C
e
=M − 1Ce; Ke =M − 1Ke

C=M − 1C0; K =M − 1K0



ð11Þ

where C0 and K0 are the mechanical damping and stiffness matrix of the system
under no-wind condition.

Thus, the flutter derivatives of 2 DOF can be defined as follows:

H*
1ðKhÞ= −

2m
ρB2ωh

ðCe
11 −C11Þ, H*

2ðKαÞ= −
2m

ρB3ωα
ðCe

12 −C12Þ

H*
3ðKαÞ= −

2m
ρB3ω2

α

ðKe
12 −K12Þ, H*

4ðKhÞ= −
2m

ρB3ω2
h
ðKe

11 −K11Þ

A*
1ðKhÞ= −

2I
ρB3ωh

ðCe
21 −C21Þ, A*

2ðKαÞ= −
2I

ρB4ωα
ðCe

22 −C22Þ

A*
3ðKαÞ= −

2I
ρB4ω2

α

ðKe
22 −K22Þ, A*

4ðKhÞ= −
2I

ρB4ω2
h
ðKe

21 −K21Þ

ð12Þ

4 Flutter Derivatives

The decay responses are acquired at a sampling frequency 100 Hz, and these
samples are set to zero before operating with MATLAB (Fig. 2).

The actual implementation of SSI-data consists of projecting (Pi) the row space
of the under part outputs (Yf) into the row space of the upper part outputs (Yp) by
applying robust numerical techniques QR factorization Eq. (6) and shifted pro-
jecting matrix Pi-1, computing SVD of Pi, truncating the SVD into the model order.
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The Kalman filter state sequence X ̂i is calculated by Pi then the SVD is found out.
Continously, the state matrix A and C is obtained by least-square solution Eq. (9).
The system order n can be determined from the number nonzero singular values of
projecting matrix. In practice, affect by noise thus singular values that are all
different from zero. Therefore, it is suggested to look at the “gap” between two
successive singular values. The order will be selected by a maximum number of
singular values at “gap” occur. Finally, the flutter derivatives will be obtained by
comparing the gross damping and gross stiffness with mechanical damping and
mechanical stiffness Eq. (12).

4.1 The Effects of Turbulence on Flutter Derivatives

In order to clarify the effects of oncoming flow turbulence on FDs, the SSI-data
method is applied to extract FDs from free decay response with different turbulence
intensity. Figure 3 shows the damping ratio of heaving and torsional mode versus
reduced wind speed (Vr). Compared with smooth flow, the damping ratio of
heaving mode increases more slowly, at certain reduced velocity; torsional damping
ratio decreases when turbulence intensity increases.

Figures 4 and 5 show the FDs under smooth and turbulent flows with the dif-
ferent turbulence intensity versus reduced wind speed. H*

1 , H
*
4 , A

*
1, A*

4 associated
with vertical oscillation are identified using the vertical frequency, and

Fig. 3 Damping ratio of heaving (left) and torsional (right) mode of the bridge section model
under smooth and turbulence flows (solid curves are fitted polynomial)

Fig. 2 Free decay response (V = 2.91 m/s) of the bridge deck section model (h-vertical; α-
torsional)
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Fig. 4 FDs (Hi) of the bridge section model under smooth and turbulent flows by free decay
response (solid curves are fitted polynomial of smooth case)

Fig. 5 FDs (Ai) of the bridge section model under smooth and turbulent flows by free decay
response (solid curve is fitted polynomial of smooth case)
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H*
2 , H

*
3 , A

*
2, A

*
3 associated with torsional oscillation are calculated using torsional

frequency. The torsional damping term A2
* plays an important role in torsional

flutter instability since its positive/negative value corresponds to the aerodynamic
instability/stability of torsional fluter. On the other hand, the coupled term H3

* and
A1
* together with the aerodynamically uncoupled term A2

* has significant role on
heaving-torsional 2 DOF-coupled flutter instability.

From Figs. 4 and 5, it can be found that in smooth flow, the FDH1
* increases faster

than that extracted from turbulent flows. This means that damping ratio of heaving
mode under smooth flow is higher compared with that from turbulent flow. Turbu-
lence has a very small effect on vertical and torsional frequency terms H4

* and A3
*.

In this experiment, the onset flutter is defined zero cross of reduced velocity axis
with the A2

*. Under smooth flow, the positive value A2
* at reduced wind speed

(Vr = 5.2) coincides with the negative total torsional damping. The significant
effects of turbulence flows on flutter derivatives are also illustrated particularly for
aerodynamic torsional damping term A2

*, the positive value correspond to the Vr

around 6.5 to 7.8 under Iu = 6.2% and Iu = 9.1%, respectively, whereas in case of
Iu = 15.6%, flutter does not occur up to Vr = 8. On the other hand, the effects of
different turbulent intensities on FDs are fairly modest. Slight difference can be seen
that A2

* tends to be lower in a high reduced velocity range as turbulence intensity
increases. The influence of turbulence on FDs will depend on the section. Sarkar
(1994) [4] found small effect for a streamlined section, while tests on a truss section
showed appreciable effect which is shown clearly by torsional damping term A2*.

The off-diagonal terms H2*, H3*, A1*, and A4* are fluctuated around zero value,
which means that in this experiment, the coupled vibration does not appear at small
wind velocity.

4.2 Flutter Critical Velocity

In order to confirm results of identified FDs under free decay responses, the flutter
critical velocity will be obtained from an equation of motion of a 2DOF system [10]

½M�fu ̈g+ ½C�fu ̇g+ ½K�fug= F½ �fu ̈g ð13Þ

where

½M�= m 0

0 I

� �
½C�= 2mξhωh 0

0 2Iξαωα

� �
½K�= mω2

h 0

0 Iω2
α

" #

½F�= Lh Lα
Mh Mα

� �
fug=

h

α

( )
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For stability check, self-excited force is only considered, and Lz, Lθ, Mz, and Mθ
are self-excited force components defined by

Lh = − πρB2ðLhR + iLhIÞ, Lα = − πρB2ðLαR + iLαIÞ
Mh = − πρB4ðMhR + iMhIÞ, Mα = − πρB4ðMαR + iMαIÞ

ð14Þ

where LhR, LhI, LαR, LαI, MhR, MhI, MαR, and MαI are self-excited force coefficients
(flutter derivatives) those can be compared with those by Scanlan’s format as
follows:

LhR =H*
4 ̸2π, LhI =H*

1 ̸2π, LαR =H*
3 ̸2π, Lα I =H*

2 ̸2π

MhR =A*
4 ̸2π, MhI =A*

1 ̸2π, MαR =A*
3 ̸2π, Mα I =A*

2 ̸2π
ð15Þ

Flutter derivatives of truss bridge deck section given in this study are approxi-
mated polynomials of the results from Figs. 4 and 5.

Assuming sinusoidal motion fug= fu0g expðiωtÞ and since structural damping
of a long-span bridge can be negligibly small, the damping matrix in Eq. (13) can
be dropped. Then, the aerodynamically influenced equation of motion can be
written by

½K�− 1 M½ �− F½ �ð Þfu ̈g= 1
ω2 fu ̈g ð16Þ

Solving Eq. (16) as an eigenvalue (λ) problem gives the modal frequency and
modal damping ratio as Eq. (17).

ωi =
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ReðλiÞ2 + ImðλiÞ2

q
ζi =ReðλiÞ ̸

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ReðλiÞ2 + ImðλiÞ2

q ð17Þ

where λ is an eigenvalue, Re(λ) and Im(λ) are real and image parts of eigenvalue,
respectively.

The stability condition of the system is estimated based on modal damping ratio
(or logarithmic decrement). Figure 6 shows the change of aerodynamic damping of
torsional mode. The flutter critical wind speed (Ucr) is defined by the cross point of
torsional aerodynamic logarithmic decrement and equivalent torsional structural
logarithmic decrement (δ = −0.0263). The flutter critical velocity increases with
increase of turbulence intensity (Fig. 6). In the case of smooth flow the Ucr = 5.7.
And Ucr = 7.2, Ucr = 7.7 and Ucr = 8.2 correspond to Iu = 6.2%, Iu = 9.1% and
Iu = 15.6%, respectively.
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5 Conclusions

This study has investigated the effects of turbulence on flutter derivatives of the
truss bridge deck section by using wind tunnel test and output only state-space
stochastic system identification technique. Conclusions from this study are sum-
marized as follows:

• SSI-data shows good results because of an advantage of the method considered
buffeting force and its response as inputs instead of noise

• Turbulent flow significantly affects self-excited force via FDs of the truss bridge
deck section. A2

* became positive at Vr = 5.2 in the smooth flow and delayed to
Vr = 6.5–7.8 in the turbulent flows of Iu = 6.2% and 9.1%, respectively; and in
case of Iu = 15.6%, positive value did not appear.

• Turbulence induces buffeting response but increases flutter critical velocity.
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Numerical Modelling of the Aeroelastic
Response of Irregular Slender Structures

Cung H. Nguyen

Abstract This paper presents a general framework for the evaluation of the
aeroelastic response of a complex slender structure with generic cross sections.
First, the Rayleigh–Ritz approach and the Lagrange equation are employed to
describe the vibrations of a continuous coupled structure through a system of
ordinary differential equations in common forms which are familiar to structural
analysts. Then, the general framework for instability analysis will be presented.
Finally, the theory is then applied to a real telecommunication pole with an irregular
shape. The numerical results show different aspects from traditional findings,
emphasizing the structural irregularity.

Keywords Numerical modelling ⋅ Aeroelasticity ⋅ Wind–structure interaction
Irregular structure ⋅ Eccentricity

1 Introduction

Nowadays, the speedy development of advanced technology and research has
provided powerful tools for engineers to design and build structures lighter, longer,
higher and more complex. In general, irregular structures can appear with eccen-
tricity between mass centre and stiffness centre. For example, buildings with
asymmetry shapes, or a telecommunication mast attached with antenna and
parabolas.

Such irregular slender structures are tremendously susceptible to wind actions.
Their aerodynamic behaviour becomes sophisticated and sensitive to potential
aeroelastic instabilities such as galloping, leading to collapses or serious damages
unable to be repaired [1–3]. The eccentricity gives rise to the three-dimensional
(3D) modes, shapes and structural responses, resulting in the coupling among
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responses and generalized force components. Then, the traditional analysis may not
be suitable to evaluate the behaviour of structures under wind actions since the
eccentricity is often ignored. With the presence of eccentricity, previous studies
have mainly focused on buildings; moreover, the aeroelastic forces have not been
considered [4]. These limitations prevent the full understanding the aeroelastic
behaviour of structures.

Aeroelasticity is the study of the interaction between aerodynamic forces and
structural motion. Phenomenon which is characterized by a rapid increase of the
structural response due to the aeroelastic forces is referred to as aeroelastic insta-
bility phenomenon.

Aeroelastic stability has been analyzed since over 80 years ago but not all
aeroelastic phenomena are entirely understood. The first study of the aeroelastic
galloping instability, along with the quasi-steady theory, was introduced by Den
Hartog with a criterion for the critical condition for one degree of freedom (1-DOF)
transversal galloping [5]. According to that, the galloping occurs in the crosswind
direction when the aerodynamic damping is negative. This criterion is referred to as
Den Hartog’s criterion, which has become a crucial method in engineering appli-
cation. Starting from this investigation, a number of models have been proposed to
understand deeper such a topic.

In 1992, Jones introduced a 2-DOF model for the translational coupled galloping
[6]. The result can be archived only when the first two natural frequencies are the
same. This hypothesis is not appropriate in reality for structures having asym-
metrical sections; therefore, only a class of particular problems can be dealt with.
To overcome this limitation, Luongo and Piccardo applied the perturbation tech-
nique to formulate analytically the critical condition for translational coupled gal-
loping, taking into account the different values of natural frequencies [7]. The
perturbation method was also employed to study the 3-DOF coupled instability of
the transmission lines [8].

It is worth noting that all researches mentioned above have not considered the
eccentricity between mass and stiffness centres. In addition, most of the analyses
have been carried out for simple structures with a hypothesis that the aerodynamic
coefficients, mean wind velocity, mass per unit length and size of cross sections are
constant along the structure. This assumption is actually not correct since those
parameters, in reality, usually vary along the structure.

This paper aims to present a general framework for the evaluation of the
aeroelastic response of a complex slender structure with generic cross sections.
First, the Rayleigh–Ritz approach and the Lagrange equation are employed to
describe the vibrations of a continuous coupled structure through a system of
ordinary differential equations (Sect. 2). Based on that, Sect. 3 presents the modal
analysis to derive the natural frequencies and mode shapes. In Sect. 4, the general
framework for instability analysis will be presented. The coupling among modes,
the general direction of the wind with respect to structures, the variation of mean
wind, aerodynamic coefficients and mass per unit length along the structure are
taken into account. Besides, essentially particular cases in which the analytical
solutions can be derived are discussed. The theory is then applied to a real
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telecommunication pole with irregular shape (Sect. 5). The numerical results show
different aspects from traditional findings, emphasizing the structural irregularity.
Finally, critical remarks will be discussed.

2 Numerical Derivation of Equation of Motion

Let us now consider a slender structure whose length L with a generic cross section
subjected to the wind with mean velocity U (Fig. 1). Let x, y, z be a Cartesian
reference system with origin in O coincided the stiffness centre; x and y are hori-
zontal axes, z coincides with the structural axis. The coordinate of the eccentricity
between the mass centre M and O is ex and ey.

The structural response vector to external load is denoted as

r z, tð Þ=
rx z, tð Þ
ry z, tð Þ
rz z, tð Þ

8<
:

9=
; ð1Þ

where rx and ry are translational displacement responses in x and y directions; rz is
rotation response around z-axis; t denotes time.

In determination of the structural response, analytical solutions can be found for
simple structures with simple shapes, e.g. a cantilever beam with square section.
For a general case, a numerical procedure is applied. In numerical approaches, the
Rayleigh–Ritz technique is an efficient tool to offer an approximation to the exact
response of a structure. This method has been presented in many text books, e.g. [9,
10], and used widely in engineering, particularly in structural dynamics. It is worth
pointing out that most of the applications of this approach are for uncoupled
structures, i.e. no eccentricity between mass and stiffness centres. This section, for
that reason, extends such a technique for the coupled structures where the eccen-
tricity is present.

ex

ey
O

y

x

M

U

drag

lift
Fig. 1 A cross section with
eccentricity between mass and
stiffness centres
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Using the Rayleigh–Ritz method, each displacement response component can be
approximated as a linear combination of a series of N trial functions:

rα z, tð Þ= ∑
N

k=1
ϕα
k zð Þqαk tð Þ ð2Þ

where qαk tð Þ are unknown generalized responses and ϕα
k zð Þ are the trial functions.

Substituting Eq. (2) into Eq. (1), the response can be also rewritten in a matrix
form as follows:

r z, tð Þ=Φ zð ÞQ tð Þ ð3Þ

where

Φ zð Þ=
ϕx zð Þ ∅ ∅
∅ ϕy zð Þ ∅
∅ ∅ ϕz zð Þ

2
4

3
5,ϕα zð Þ= ϕα

1 zð Þ ϕα
2 zð Þ . . .ϕα

N zð Þ� � ð4Þ

Q tð Þ=
Qx tð Þ
Qy tð Þ
Qz tð Þ

8><
>:

9>=
>;,Qα tð Þ=

qα1 tð Þ
qα2 tð Þ
. . .

qαN tð Þ

8>>><
>>>:

9>>>=
>>>;

ð5Þ

From Eq. (2), it is apparent that the trial functions ϕα
k zð Þ decide the goodness of

the approximation. The choice of these functions will be discussed later. Mean-
while, the generalized responses qαi tð Þ will be determined through equations of
motion, which will be formulated later, starting from the Lagrange’s equation.

Assuming the rotation is small, then the translational displacements of the mass
centre M are given by:

rMx z, tð Þ= rx z, tð Þ− ey zð Þrz z, tð Þ
rMy z, tð Þ= ry z, tð Þ+ ex zð Þrz z, tð Þ ð6Þ

The Lagrange’s equations are written as:

d
dt

∂T tð Þ
∂q ̇αk tð Þ

� �
−

∂T tð Þ
∂qαk tð Þ +

∂V tð Þ
∂qαk tð Þ =Fα

k tð Þ, k=1,N, α= x, y, z ð7Þ

where T, V and Fα
k are referred to as the kinetic energy, potential energy and

generalized load, respectively. These terms can be determined as below.

T tð Þ= ∑
α= x, y, z

TMα tð Þ ð8Þ
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TMα tð Þ= 1
2

Z
Lð Þ

mα zð Þr ̇2Mα z, tð Þ� �
dz ð9Þ

V tð Þ= ∑
α= x, y, z

Vα tð Þ ð10Þ

Vα tð Þ= 1
2

Z
Lð Þ

Jα
∂
2rα z, tð Þ
∂z2

� �2
dz ð11Þ

Fα
k tð Þ=

Z
Lð Þ

fα z, tð Þϕα
k zð Þdz ð12Þ

in which mx zð Þ=my zð Þ=m zð Þ, which is the mass per unit length; mz zð Þ= IM zð Þ is
the moment of inertia at the centre of mass M; Jx =EIy zð Þ and Jy =EIx zð Þ are the
modulus of bending stiffness, and Jz =GIz zð Þ is the modulus of torsional stiffness.

Substituting Eqs. (8), (10) and (12) in Eq. (7) with the use of Eqs. (2), (6), (9)
and (11), after some mathematical manipulations, the Lagrange’s equation can be
rewritten as:

MQ ̈ tð Þ+KQ tð Þ=F tð Þ ð13Þ

where

M=
Mx ∅ −Mxz

∅ My Myz

−Mxz Myz Mz

2
4

3
5,K=

Kx ∅ ∅
∅ Ky ∅
∅ ∅ Kz

2
4

3
5 ð14Þ

F tð Þ=
Fx tð Þ
Fy tð Þ
Fz tð Þ

8><
>:

9>=
>;,Fα tð Þ= Fα

1 tð Þ Fα
2 tð Þ . . .Fα

N tð Þ� �T ð15Þ

The element (i, j) of matrices Mα,Mαθ,Kα in Eq. (14) are given by:

Mαð Þij =mα
ij, Mαzð Þij =mαz

ij , Kαð Þij = kαij ð16Þ

where

mα
ij =

Z
Lð Þ

mα zð Þϕα
i zð Þϕα

j zð Þdz ð17Þ
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mxz
ij =

Z
Lð Þ

m zð Þey zð Þϕx
i zð Þϕz

j zð Þdz ð18Þ

myz
ij =

Z
Lð Þ

m zð Þex zð Þϕy
i zð Þϕz

j zð Þdz ð19Þ

kαij =
Z
Lð Þ

Jα zð Þ d
2ϕα

i zð Þ
dz2

d2ϕα
j zð Þ

dz2
dz ð20Þ

Finally, involving the damping matrix C, the full 3D coupled motion equations
can be expressed as follows:

MQ̈ðtÞ+CQ̇ðtÞ+KQðtÞ=FðtÞ ð21Þ

It can be realized that thanks to the Rayleigh–Ritz approximation and the
Lagrange’s equations, the motion of a continuous structure is governed by a system
of ODEs, as shown in Eq. (21), instead of PDEs. This looks like that such a system
with infinite degrees of freedom is reduced to the discretized one with 3N ×3Nð Þ
degrees of freedom. As shown in the next section, however, the properties of a
distributed structure are still remained, such as the continuity of mode shapes or
displacements, which are not appeared in multi-degrees of freedom. This highlights
the advantage of the proposed technique since working with a discrete system
governed by ODEs in Eq. (21) is basically more familiar to structural analysts than
PDEs corresponding to a continuous structure.

3 Modal Analysis

The natural frequencies and mode shapes of the structure can be determined
through the modal analysis. This can be done by solving the eigenvalue problem
below, which is formulated from the equation for undamped free vibration,
resulting from neglecting damping and external load from Eq. (21), i.e. C= 0 and
F tð Þ= 0:

−ω2M+K
� �

q= 0 ð22Þ

In Eq. (22), ω and q are referred to as eigenvalue (or natural circular frequency)
and Ritz eigenvector. The eigenvalues are the solutions of the following equation:
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det −ω2M+K
� �

= 0 ð23Þ

It can be realized that, for given trial functions, matrices M andK are determined
and real symmetric matrices. Then Eq. (23) results in 3N real roots ωi, i=1, 3N.
For each value ωi, there is a corresponding Ritz eigenvector qi. As a result, the ith
mode shapes Ψi zð Þ and their modal matrix Ψ zð Þ can be determined as:

Ψ zð Þ= ½Ψ1 zð Þ Ψ2 zð Þ . . .Ψ3N zð Þ �=Φ zð Þφ ð24Þ

Ψi zð Þ= ½Ψx
i zð Þ Ψy

i zð Þ Ψz
i zð Þ�T =Φ zð Þqi ð25Þ

φ= ½q1q2 . . . q3N � ð26Þ

As mentioned before, the choice of the trial functions ϕα
i zð Þ decides the good-

ness of the approximated natural frequencies and mode shapes and consequently the
structural response. These functions are chosen such that the boundary conditions
of the structure are satisfied. This requirement is evident if the all trial functions are
selected from a set of comparison functions, which are differentiable as many times
as the order of the system and satisfy all the boundary conditions. Unfortunately, it
is difficult for all the trial functions to agree with all the boundaries in practice. For
instance, it is impossible for a comparison function which is continuous to satisfy
the shear discontinuity, which is associated with the third-order derivative of such a
function, of a beam having a concentrated mass. This condition is usually ignored
in this case. In addition, a higher derivative of mode shape, such as moment or
shear, is more susceptible to a specific trial function than a lower one, such as
displacement or its slope. As a consequence, the trial functions may be chosen from
the class of admissible functions, which are differentiable half as many times as the
order of the system and satisfy only the geometric boundary conditions which are
related to the deformation of the structure, i.e. the deflection and its slope [10].

An efficient way to choose the trial functions is that these functions selected from
the mode shapes of a similar structure with uniform properties in which the ana-
lytical solutions may be found. Increasing the number of trial functions improves
the accuracy of the approximation. When an approximated function is closer to the
exact mode shape, the boundary conditions tend to be satisfied with higher order
derivatives.

Finally, it is remembered that Eq. (21) is a system of 3N coupled equation. To
solve this equation, it is useful to decouple it into 3N uncouple equations. This can
be done by substituting the linear transformation Q tð Þ=φP tð Þ into Eq. (21) that
results in

M̃P̈ tð Þ+ C̃P ̇ tð Þ+ K̃P tð Þ= F̃ tð Þ ð27Þ
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where

M̃=φTMφ ð28Þ

K̃=φTKφ ð29Þ

C̃=φTCφ ð30Þ

F̃ tð Þ=φTF tð Þ ð31Þ

4 Galloping Instability Analysis

To evaluate the aeroelastic stability of the structure, it is necessary to introduce the
aeroelastic wind load to the Eq. (27). The load is expressed as [11]:

F̃ tð Þ= − C̃aṖ tð Þ− K̃aP tð Þ ð32Þ

where C̃a0 and K̃a0 are the generalized aerodynamic damping and stiffness matrices,
respectively, given by:

C̃a =
Z
Lð Þ

ΨT zð Þca zð ÞΨ zð Þdz ð33Þ

K̃a =
Z
Lð Þ

ΨT zð Þka zð ÞΨ zð Þdz ð34Þ

ka zð Þ= 1
2
ρU2 zð Þb zð Þ

0 0 c′d zð Þ
0 0 c′l zð Þ
0 0 b zð Þc′m zð Þ

2
4

3
5 ð35Þ

ca zð Þ= 1
2
ρU zð Þb zð Þ

2cd zð Þ c′d zð Þ− cl zð Þ 0
2cl zð Þ cd zð Þ+ c′l zð Þ 0

2b zð Þcm zð Þ b zð Þc′m zð Þ 0

2
4

3
5 ð36Þ

in which U,ρ and b are the mean wind velocity, air density and characteristic size of
cross section, respectively; cd, cl, cm are, respectively, the drag, lift and moment
coefficients, which are dependent on the angle of attack and determined through
wind tunnel tests; d are the derivatives of corresponding coefficients with respect to
the angle of attack.

Inserting the Eq. (32) with the use of Eqs. (33)–(36) and then arranging it in
state-space form, it yields:
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X ̃̇ tð Þ= ÃX ̃ tð Þ ð37Þ

where

X̃ tð Þ= P tð Þ
Ṗ tð Þ

" #
ð38Þ

Ã=
∅ I

− M̃− 1 K̃+ K̃a
� �

− M̃− 1 C̃+ C̃a
� �� �

ð39Þ

The Eq. (37) represents a 3D problem for aeroelastic stability. The criteria for
stability conditions are based on the sign of the real values of the eigenvalues λj of
the state-space matrix Ã [10]. The structure is unstable if there is at least a positive
value of Re λj

� �
. Corresponding to this value, there is critical wind velocity Ucr for

the instability occurrence.
In general, the eigenvalues λj and critical wind velocity Ucr can be estimated

through a numerical procedure. For a commonly interesting case in practical
engineering along with 2-DOF model where two consecutive modes (mode 2k−1
and mode 2k) associated with two translational directions (x and y) are equal,
analytical solution for galloping instability can be found [12]. Then, the necessary
condition for the instability occurrence is given by:

trC̃a, xy, 2k <0 or tr C̃a, xy, 2k ≥ 0> det C̃a, xy, 2k ð40Þ

in which tr(.) and det(.) stand for the trace and determinant of a matrix, respectively.
The critical wind velocity at the reference height zr is then given by:

Ucr, xy, 2k zrð Þ= −
8ω2kξ2km̃2k, eq

ρb zrð Þca, xy, 2k ð41Þ

ca, xy, 2k =Re trC̃a, xy, 2k −
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
tr2C̃a, xy, 2k − 4 det C̃a, xy, 2k

q� �
ð42Þ

m̃2k, eq =
Z
Lð Þ

m zð Þ Ψ2k zð Þk k2dz ̸
Z
Lð Þ

Ψ2k zð Þk k2dz ð43Þ

5 Numerical Application

The theoretical framework described above is derived for the general case and can
be applied for any slender structures. It is herein applied to investigate the aeroe-
lastic stability a particular real structure, which is an antenna pole. The pole has
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height H = 30 m and is composed by two shafts (Fig. 2a). The first shaft is 24 m
long; the outer diameter of its section, whose thickness is constant and equal to
5 mm, varies from 950 mm at the bottom to 350 mm at the top. There are cables
attached to this shaft with a distributed mass per unit length 5 kg/m. The second
shaft, put above the first one, is 6 m long and with 6 antennas attached. Its section
has constant outer diameter 193.7 mm and constant thickness 7.1 mm; the total
mass of the shaft is 540 kg. The whole pole is also attached with a stair from the
bottom to the top. Its mass per unit length 7 kg/m. The additional stair, cables and
antennas create a distributed mass eccentricity. It is reasonable to assume that they
are ineffective to the structural stiffness. The pole is located in a terrain charac-
terized by a roughness length 0.3 m and a basic reference wind velocity 25 m/s.

The static aerodynamic coefficients have been determined by wind tunnel tests,
reported in [13] and described herein. Since the outer diameter of the main shaft
varies significantly along the pole, the measurements have been carried out by
dividing this shaft into two uniform parts (part 1 and part 2, Fig. 2b) and antenna part
(part 3, Fig. 2b). The tests on the main shaft have been conducted in the wind tunnel
of the Faculty of Engineering of the University of Genoa, Italy (Fig. 2c1–c2).
The corresponding drag and lift coefficients are shown in Fig. 2d1–d4. The wind

Fig. 2 a Pole in study; b pole sketch to define its 3 parts; c wind tunnel testing models for the 3
parts; d. drag and lift coefficients of the 3 models
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tunnel test for the antenna part of the pole (Fig. 2c3) has been carried out at Milan
Polytechnic University. The corresponding drag and lift coefficients are shown in
Fig. 2d5–d6. As for the structural type, the rotation is small and can be neglected [2].
So, the moment coefficients are not shown here and any rotational terms in the
stability analysis are neglected.

As mentioned above, the presence of the stairs and cable bundles creates the
eccentricity distributed along the pole. The natural frequencies and mode shapes are
derived by employing the method presented in Sects. 2 and 3, in which the trial
functions are chosen as the mode shapes of the cantilever prismatic beam.

Figure 3 shows the first four modes’ shapes of the pole, considering the
eccentricities. It can be seen that each coupled mode shape has three components
that is different from the case without eccentricity where each mode shape has only
one dimension restricted to the principle axes. Also, it is confirmed that the tor-
sional component is almost irrelevant.

Based on the obtained aerodynamic coefficients and mode shapes, it is checked
that the trace of the aerodynamic damping matrix trCã,xy,2k is always positive. So,
the second condition given in Eq. (40) is used for checking if the structure is
potentially unstable. Figure 4 shows the condition for galloping instability occur-
rence (Fig. 4a) and critical wind velocity, in comparison with 1-DOF and 2-DOF
cases (Fig. 4b).

It can be seen that, on the one hand, the instability can occur not only for the first
two modes but also for higher modes. Moreover, at angle 230°, the structure is
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Fig. 3 First four mode shapes a and b first and second modes in front view; c first and second
modes in top view; d and e: third and fourth modes in front view; f third and fourth modes in top
view
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unstable for higher mode instead of first two modes. This prediction is not given in
traditional analysis. On the other hand, at angle 190° and 230°, the critical velocities
for the 2-DOF case are lower than those for the 1-DOF case. All of these mean that
using the conventional analysis will provide an incorrect prediction for instability
occurrence that is unsafe for the structure.

6 Conclusions

This paper presents an efficient numerical procedure for evaluating the aeroelastic
stability condition of irregular slender structures with the presence of eccentricity
between mass and stiffness centre. Using the Rayleigh–Ritz technique, dynamic
characteristics of the structures can be obtained through modal analysis.

Literature usually deals with lighting poles and antenna masts as slender vertical
structures endowed with polar symmetry. This approach is conflicting with the
frequent presence of several devices along the main shaft of the structure. Several
damages and even collapses of this structural type not fully understood or explained
may give rise to the idea that the above devices play a significant role also from the
structural engineering standpoint.

The proposed method is applied to a real telecommunication antenna mast.
Although the selected test case represents only one of the infinite possible
arrangements in which this structural type may be realized, it clearly points out the
importance of the mechanical and aerodynamic eccentricities, of the upper modes
of vibration, of the coupling between the crosswind and alongwind components of
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Fig. 4 a Condition for galloping occurrence; b critical velocity
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the motion and of the aerodynamic damping. In its whole, this paper shows that
traditional calculations based on neglecting eccentricities lead to relevant errors that
may make classical engineering approaches seriously unsafe.

For the aeroelastic stability aspect, it is pointed out the importance of the
aerodynamic eccentricities, of the upper modes, and of the coupling between the
crosswind and alongwind motion. A comparison between the results provided
herein and the classical engineering approaches emphasizes that relevant errors may
occur, especially for particular sets of parameters and specific configurations. In
such conditions, the structure may exhibit very low critical galloping velocity able
to produce unexpected damages and collapses. This might explain a lot of damages
and collapses of slender poles that this structural type has often suffered without
clear and suitable explanations.

All the analyses carried out in this paper are based on a quasi-steady theory
supported by wind tunnel experiments involving static sectional model tests. This
choice is justified by the wish of opening a new research line, not considered in the
traditional literature, inspecting the potential occurrence of critical situations
unpredictable by means of classic engineering models. Provided that the prelimi-
nary results illustrated in this paper confirm the existence of such critical situations,
it is now necessary to improve the above evaluations in order to quantify their
reliability by means of refined analyses. For this reason, aeroelastic wind tunnel
tests are currently carried out with the aim of confirming, correcting, generalizing or
revising the results illustrated in the present paper.
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Analysis of Fluid–Structures Interaction
Problem of Revetment Slope Thin-Walled
Structure Using Abaqus

P. Truong-Thi, L. Dang-Bao, M. Abdel Wahab, H. Duong-Ngoc,
T. Hoang-Duc and Hung Nguyen-Xuan

Abstract This paper aims to analyze fluid–structure interaction (FSI) problems of
revetment slope thin-walled structures using ABAQUS software. The method is
based on a combination of computational fluid dynamics (CFD) for fluids and finite
element method (FEM) for structures. During the simulation process, the required
data are exchanged by the subsystems. Based on the co-simulation FSI, behaviors
of solid structures under impact of flow are examined. The purpose of the
co-simulation is to reduce costs and time consumed in manufacturing revetment
slope (RS) structures. The expected results help improve geometry of blocks.
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Geometry dimensions of blocks of revetment slope thin-walled structure are sup-
ported by Busadco Company (Ba Ria Vung Tau Urban Sewerage and Development
One Member Limited Company). In this article, an overview of computational
aspect of FSI is presented. We expect to provide application of simulation tech-
nology to deal with such RS structures.

Keywords Co-simulation ⋅ Fluid–Structure Interaction (FSI) ⋅ ABAQUS
software ⋅ Revetment slope structure ⋅ Thin-walled structure

1 Introduction

A strong RS structure can protect riverbanks, coastlines, and dikes under impact of
floods, sea waves, and erosion. The designing of a RS that suits each flexible
ground needs to take into consideration fluid–structure interaction analysis.
Most FSI problems are very complicated, and closed-form solutions are hard to
obtain, while laboratory experiments are limited in scope. In other words, numerical
simulation is proven to be an effective method to handle this kind of problem. Due
to their strong non-linearity and multi-disciplinary nature, these problems remain a
challenge [1]. Nowadays, numerical methods are developed quickly, and FSI
problems are solved through separate analysis and couple analysis. Several
researchers have studied fluid–structure interaction problems through various
softwares, such as ABAQUS and FlowVision [2], ABAQUS and Fluent to inves-
tigate fluid flow [3].

The co-simulation technique is a multi-physics capability that serves several
functions, available within ABAQUS or as separate add-on analysis capabilities, for
run-time coupling of ABAQUS and other analysis programs. We can perform
complex FSI problems by coupling ABAQUS/Standard or ABAQUS/Explicit to
predict damages of structures and ABAQUS/CFD to solve for fluids using ABA-
QUS software [4, 5]. In previous studies, modeling of RS has not yet been
considered.

In this study, we apply co-simulation method in ABAQUS software for simu-
lation of RS structures, which are formed by interlocking thin-walled blocks, and
put on a flexible ground (see Fig. 1) provided by Busadco http://busadco.com.vn/
en/. This work proposes redesign solution of such structures at low costs. The
innovation of RS contributes to protecting countries adjacent to the sea, e.g.,
Vietnamese coastline, against floods and erosion caused by global climate change.
Some thin-walled concrete block shapes have been put into use and have not been
simulated yet.
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2 Computational Aspects

2.1 Governing Equations

The dynamic equilibrium (for the discrete model in finite element system) is defined
in terms of the external applied forces (P), the internal element forces (I), and the
nodal accelerations:

M
d2u
dt2

=P− I ð1Þ

whereM is the mass matrix, u is the displacement vector, and P is the sum of forces
that act on the structure including forces from the fluid.

This fluid flow is described by the incompressible Navier–Stokes equations for
the velocity field:

∂V
∂t

+∇ðV⊗VÞ= −
∇p
ρ

+
1
ρ
∇ðμ∇VÞ+F ð2Þ

∇V=0

where V is the velocity, p is pressure, μ is effective viscosity, ρ is density, and F is
volume force affecting the fluid [2].

2.2 Boundary Conditions

Except ordinary boundary conditions for simulating structure deformations,
boundary conditions of the fluid–structure interface are specified in terms of
pressure loading from the fluid, calculated for each element face that is in contact

Fig. 1 Several blocks shape have been built to protect coast and riverbank
(Source http://busadco.com.vn/en/)
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with the fluid (Fig. 2) [6, 7]. Fluid domain is specified for the inlet, outlet char-
acteristics. Boundary conditions of structure are clamped at the bottom. The aims of
this is to evaluate the bearing capcity of concrete component and simplify the model
as well. In addition, special boundary condition of interface between fluid and
structure are specified following formula:

Vij = ∑
n− 1,N

wnij
dunij
dt

ð3Þ

where N is the number of nodes for element face, Fij and wnij are weight coefficients
for calculating face velocity depending on the face geometry.

The displacements and velocities that are being imported into ABAQUS/CFD
from ABAQUS/Standard or ABAQUS/Explicit serve as the necessary boundary
conditions at the FSI interface [2].

2.3 Numerical Scheme

Co-simulation controls are used to control the time increment process and the
frequency of exchange between the two ABAQUS analyses. These controls are
specified automatically in ABAQUS/CAE. The coupling step size is the period
between two consecutive co-simulation data exchanges. To determine the coupling
step size, each analysis suggests a coupling step size, which is the next increment
suggested by its automatic increment scheme. ABAQUS/CFD always uses a time
increment size that is the same as the coupling step size (no sub-cycling), while
ABAQUS/Standard and ABAQUS/Explicit are allowed to sub-cycle.

2.3.1 Coupling Scheme

FSI analysis attributes are Gauss–Seidel (serial) coupling scheme. One solver waits
while the other solver proceeds. ABAQUS/Standard or Explicit leads the simulation
and ABAQUS/CFD lags. Coupling step size is determined automatically (Fig. 3).
There are two methods to determine the coupling step size:

Fig. 2 Boundary conditions
between the fluid and
the structure on FSI interface
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Min/Max

• Minimum coupling step size is based on the suggested coupling step size of
structural and CFD models

Import/Export

• Structural model imports the time step size from CFD model

Apply semi-implicit projection method

Momentum solve 2ð Þ: ρ V̄
n+1 −Vn

Δt
+ ρ

Vn+1 − V̄n+1

Δt
+∇Pn+1 = f ð4Þ

ΔV̄n+1 ≠ 0

Pressure Solve
1 1

1
n n

n nP P
t

ρ
+ +

+− = −∇ −
Δ

V V

2 1 1.n n nP P
t

ρ ++∇ − = ∇
Δ

V

ð5Þ

Obtain velocityVn+1 = V̄n+1 −
Δt
ρ
∇Pn+1 −Pn ð6Þ

These equations ignore pressure gradient at time n + 1. The intermediate

velocity V̄n+1 is not divergence free, and f is a function of velocity and ΔVn+1 = 0
[5].

ABAQUS ̸Standard solves 1ð Þ: d2u
dt2

�
�
�
�

n

=M− 1ðP− IÞ��n ð7Þ

du
dt

�
�
�
�

n+1 ̸2

=
du
dt

�
�
�
�

n− 1 ̸2

+
ðΔtn+1 +ΔtnÞ

2
d2u
dt2

�
�
�
�

n

ð8Þ

Fig. 3 Gauss–Seidel (serial) coupling scheme
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un+1 = un− 1 +Δtn+1du
dt

�
�
�
�

n+1 ̸2

ð9Þ

ABAQUS/CFD solves the numerical solution for system (4–6), and ABAQUS/
Standard or ABAQUS/explicit solves the system (7–9).

3 SetUp Model in Abaqus

3.1 Setting Up FSI Analyses in ABAQUS

For solving every FSI problem in ABAQUS, the following tasks will be performed
(Fig. 4).

This method is especially about boundary conditions, and the names of the
interaction of the structure model and the fluid model have to be identical between.
In addition, the surfaces of both models must be matched. The sets of data exchange
with each other in the same step and the same increment time. The first step
ABAQUS/CFD solves fluid domain, and then the sets of data are imported through
interaction surfaces by Eq. (3), and ABAQUS/standard or ABAQUS/explicit solves
the structure domain.

As a simple example, an FSI analysis of seawater impact on RS feature is carried
out by employing co-simulation. Two models are created: one for fluid domain and
the other for structure domain. In this example, fluid is seawater, so the density is

Fig. 4 Setup steps for an FSI problem in ABAQUS
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1020 kg/m3 and viscosity is 0.001 Pa s [8]. Material of the structure domain is
concrete, with a density of 2500 kg/m3, a modulus of elasticity E = 2.5 × 1010 N/
m2 and Poisson’s ratio ν = 0.2. Boundary conditions of fluid domain are showed in
Fig. 5, velocity inlet V = 20.83 m/s corresponding to hurricane 9 level. The
problem was solved using ABAQUS/explicit solver for structure domain. A tur-
bulent flow is applied with the standard k − ε model. Partially contact to the ground
is defined by a spring with linear stiffness k = 1 N/m. The nodes at the interface
between the two models match.

4 Numerical Results

Velocity and pressure fields are obtained as shown in Figs. 6 and 7 when
ABAQUS/CFD solves fluid domain. Max velocity is 54.9 m/s, and max pressure is
6.379 × 105 Pa. At this stage of the research, we have not yet analyzed and
validated the results. This will be done in the next stage of the project and is
considered as future work of the current paper.

(a) Fluid domain (b) Structure domain 

Fig. 5 Models are created in ABAQUS and boundary conditions

Fig. 6 Velocity field in fluid domain
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The results of the stress and displacement of structure concrete are shown in
Fig. 8 when exposed to storm waves of level 9.

The results show that the behavior of structure RS thin-walled has quite small
displacements with the largest displacement of 0.144 m with max stress magnitude
1.078 × 108 Pa. The obtained results need to be compared with experiment.

5 Conclusion

An overview of the computational aspect of FSI problems was presented in this
article. Such problems require researchers with high education and modeling skills.
Moreover, many factors of the simulation process need to be investigated carefully
to ensure the accuracy. The paper has presented the co-simulation method to predict
behavior of RS thin-walled structure under impact of flow. Using ABAQUS/CFD
and ABAQUS/standard in ABAQUS software, fluid–structure interaction is simu-
lated. The behavior of a simple RS structure is considered. Next, this method is

Fig. 7 Pressure contours in fluid domain

Fig. 8 a Von-Mises’ stress distribution, b displacements
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applied to simulate a complex RS structure. Further analysis and validation of the
interlocking blocks are also required and will be done as future work.
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Influence of Swelling Pressure on Pore
Water in Embankment Core with Swelling
Clay Soil

Tuong Nguyen Ke, Hung Nguyen Pham Khanh, Hung Nguyen Minh,
Hung Nguyen Viet and Thi Nguyen Minh

Abstract Swelling clay soil used to fill at core of and used to waterproof for soil
dam will swell and increase volume when soaked. This expansion status created the
expansion pressure inside dam, increased volume of dam, and harmed the con-
struction. It needs a cover soil to balance and keep the volume of core from
expansion due to swell, make soil swelled in cover pressure condition, unchange
soil volume, and reduce pore inside soil and permeability coefficient. Swelling
pressure reduced pore water pressure and saturated water curve. When swelling
finished, permeability coefficient reduced and saturated water curve inside dam
raised up, it made pressure to the stability of dam. Changes in swelling pressure
depended on type of soil, soil conditions, and density of soil. When swelling
finished, friction angle and stickiness of soil increased and the stability of con-
struction did not decrease. Recommendation applies result of this research to
constructing earth dam and construction over swelling clay.

Keywords Swelling clay soil ⋅ Pore water pressure ⋅ Swelling pressure
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1 Introduction

Pore water pressure in soil will be changed when impact pressure changed. Soaked
swelling soil used for core of earth dam or ground will swell, and if it was pressed
and obstructed the swelling by cover layer, soil pore would be decreased. And pore
water pressure would be changed when swelling pressure inside soil appeared as a
force reducing volume of pore. When pore reduced, permeability coefficient also
reduced and pore water pressure increased, while permeability pressure caused by
water in lake did not change. Saturated water curve increased inside construction
effected to the stability of construction. Some earth dam worked many years
damaged caused of excluding this incident.

Other authors have also studied swollen soil in the world, such as [2–18]:

• Amer Ali Al-Rawas &amp; Matheus F.A. Goosen (2006) study of expansive
soil properties [2];

• B. Xu, Z.-Z. Yin, and S.-L. Liu, “Experimental study of factors influencing
expansive soil strength” [3];

• The Effect of Interlayer cations on the Expansion of the Mica [4];
• J.-P. Yuan, Z.-Z. Yin, and C.-G. Bao, “Quantitative description method & index

for fissures in expansive soils [10];
• J.-J. Zhang, B.-W. Gong, B. Hu, X.-W. Zhou, and J. Wang. “Study of evolution

law of fissures of expansive clay under wetting and drying cycles” [11];
• S.-H. Zheng, J.-L. Jin, H.-L. Yao, X.-R. Ge, “Analysis of initial cracking

behavior of expansive soil due to evaporation” [13];
• H.-B. Lü, Z.-T. Zeng, Y.-L. Zhao, and H. Lu, “Experimental studies of strength

of expansive soil in drying and wetting cycle” [14].

The authors study the issue that the authors previously did not mention, as
follows: “Influence of swelling pressure on pore water pressure in embankment
core with swelling clay soil”. This paper presents the principle of changing pore
water pressure by time when swelling pressure appeared in the swelling clay. This
paper analyzed effecting of swelling inside ground and dam to pore water pressure
and stability of construction.

2 Study Content

1. Theoretical basis

Stress inside earth dam, and effected stress and effected pore water pressure in
saturated soil are related as follows [1, 2, 4, 6, 7, 8, 9, 15, 16]:

σ = σ′ + u ð1Þ
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where

• σ: acted stress;
• σ′: effected stress, transferred thought interface soil particles;
• u: pore water pressure, transferred to water in pore.

From formula (1) and swelling process [2, 5, 6, 8, 13]:

u= σ − σ′

u= σ − σ′
� �N +PN

�
ð2Þ

With swelling clay soil, during absorbed clay swelled volume due to soil
structure, swelling pressure PN reduced effecting of effected stress (σ′), formula (2)
may be wrote [2–18]:

u= σ − σ′
� �N +PN

u= uN +PN

� �
ð3Þ

At a moment, effected stress (σ′) unchanged, according to formula (3) [2–18], we
found that increasing swelling pressure PN made pore water pressure (u) reduced.

Swelling pressure PN → 0 [2, 5, 6, 8, 13] when swelling process finished; →
u= uN , pore water pressure (u) will change as in non-swelling soil [4].

According to testing result and calculating swelling pressure in Table 6, theo-
retical basic of formula (2), (3) consisted with testing result in Table 6.

2. Selected swelling soil to study

This research used strongly swelling clay soil to study the change in pore water
pressure due to swelling pressure with outside pressure.

The authors used swelling clay soils which are used to make some dam in South
Center of Vietnam. Testing to determine swelling property, selecting strongly
swelling soil to study changing of pore water pressure due to changing of swelling
pressure (Table 1).

Table 1 Physical properties of soil for testing [1, 3, 10, 11, 17]

Grading (%) Plastic limit (%) Gravity Proctor
compacting

Grit Sand Dust Clay WL WP IP Δ γcmax,

T/m3
Wop

(%)

Thuan
Ninh

10.5 57 14 18.5 48.89 22.19 26.7 2.61 1.75 19

Thuan
Ninh core

8.98 58.2 18.37 17.2 30.26 17.17 13.08 2.62 1.88 13

Am Chua 14.3 36.9 16.5 32.2 38.9 21.07 17.83 2.64 1.68 18
Suoi Dau 8.7 40.3 21.8 34.7 58.32 32.66 25.66 2.62 1.57 24
Cam Tan 9.3 37.7 25.4 33.5 59.13 32.84 26.28 2.63 1.67 22
Vinh Son 0 18.41 24.52 57.1 48.9 33.92 14.98 2.90 1.72 19.5
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Swelling testing did with samples γc =0, 95γcmax and humidity Wcb =Wop at left
side of Proctor compacting curve followed each soil (Tables 2 and 3).

According to testing result shown in Table 3 and Fig. 1 and classification
standard CHΠ 2-05-08-85, the authors selected strongly swelling soils to study
changing of swelling pressure affected to pore water pressure.

Selected soils were:

• Soil mine used to make Thuan Ninh Lake, Binh Dinh;
• Soil mine used to make Am Chua Lake, Nha Trang, Khanh Hoa;
• Soil form core of Thuan Ninh Lake’s dam, Binh Dinh.

Table 2 Physical properties of testing samples [1, 3, 10, 11, 17]

Testing samples
soil

Saturation testing G
(%)

Specific gravity of the experimental soil γcb,
T/m3

Thuan Ninh 100 1.66
Thuan Ninh core 100 1.79
Am Chua 100 1.60
Suoi Dau 100 1.49
Cam Tan 100 1.59
Vinh Son 100 1.63

Table 3 Value of swelling testing RN of above soils by time T (h) [1, 3, 10, 11, 17]

Testing
time

Thuan
Ninh dam
soil mine

Thuan
Ninh
dam
core

Am Chua
dam soil
mine

Suoi Dau
dam soil
mine

Cam Tan
dam soil
mine

Vinh Son
dam soil
mine

T (h) RN (%) RN (%) RN (%) RN (%) RN (%) RN (%)

0 0 0 0 0 0 0
0.02 0.22 0.3 0.26 0.1 0.12 0
0.04 0.3 0.5 0.34 0.2 0.22 0
0.06 0.9 1.1 1.02 0.3 0.4 0
0.08 1.6 1.8 1.71 0.3 0.7 0
0.1 3.4 3.8 3.47 0.3 1.2 0
0.15 6 7.1 6.89 0.3 2.1 0
0.3 8 9.2 8.9 0.3 2.5 0
0.5 10 11.5 10.9 0.3 2.5 0
1 10.9 12.3 11.2 0.3 2.5 0
2 11.4 12.8 11.9 0.3 2.5 0
4 11.8 13.4 12.5 0.3 2.5 0

8 12 13.9 12.9 0.3 2.5 0
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3. Studying effecting of swelling pressure (PN) to pore water pressure (u) in
pressed condition

3a. Testing condition

According to free swelling testing of samples presented at Fig. 1 showed that:
soil samples soaked after time less than (4–8) h, reached nearly maximum of
swelling level RN, then swelling negligible. Testing carried out is given in the
following cases with each soil:

Case 1 [1–18]:
The testing sample covered with rubber film is assembled in the pressure

chamber of the triaxial compressor. Pressure chamber was filled by water. The
backpressure method is used to make soil completely saturate, while soil absorbing
and swelling measure pore water pressure by time (t) under different pressure levels
σ3 = 100 , 200, 300 and 400 kPa and time less than 4 h, and the testing is finished.

Case 2 [1–18]:
Soil sample assembled as case 1, but after saturated by backpressure method and

absorbed, swelled by time more than 4 h, when sample finished swelling measured
pore water pressure in sample by time under different pressure levels σ3 = 100 , 200,
300 and 400 kPa.

3b. Testing result

Soil mine used to make Thuan Ninh Lake, Binh Dinh.
Reviewed:
Result in Table 4 and Figs. 2, 3, 4, and 5 showed that pore water pressure was

affected by swelling pressure.
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Fig. 1 Level of free swelling (RN) by the time of studying soils (soil samples prepared with
compacting K = 0.95) [1, 3, 10, 11, 17]
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When clay soil started soak, swelling pressure started swell and swelling pres-
sure reduced pore water pressure, Fig. 4; pore water pressure’s value was small at
swelling phase.

When clay soil saturated, swelling pressure stopped and go to 0; pore water
pressure increased as shown in Fig. 4. Pore water pressure’s value was strong when
swelling finished.

Soil mine used to make Vinh Son Lake, Binh Dinh [1–18].
It was Bazan soil, non-swelling soil, tested to determine pore water pressure

under pressure levels to compare with swelling soil: PN + uN = u; uN = σ − σ′
� �

−
PN → uN +PNð Þ= u= σ − σ′

� �
(Fig. 6; Table 5)

Reviewed:
Bazan was non-swelling soil, pore water pressure was not affected, and pore

water pressure followed formula PN + uN = u; uN = σ − σ′
� �

−PN → uN +PNð Þ=
u = σ − σ′

� �

Table 4 Value of pore water pressure u under each pressure level according to time of soaking
and swelling [1–18]

Compacting
test time with
compress
level of
pressure
chamber (s)

Soaking time less than 4 h; swelling and
compress level of pressure chamber

Soaking time more than 4 h; swelling and
compress level of pressure chamber

100 kPa 200 kPa 300 kPa 400 kPa 100 kPa 200 kPa 300 kPa 400 kPa

0 −4 −2 0 0 −4 0 0 0

1 12 15 22 45 12 34 64 83

2 13 16 25 65 23 43 86 125

4 15 17 37 89 30 65 116 145

6 15 22 44 124 41 89 130 176

8 15 23 45 157 46 92 141 212

10 16 24 46 187 51 94 167 254

15 17 25 53 192 65 95 177 276

30 18 26 66 212 82 96 183 295

60 19 27 77 218 89 130 205 344

120 20 27 90 228 92 150 245 365

180 20 29 99 235 94 167 266 378

240 21 33 108 240 95 177 275 382

300 21 34 117 243 96 183 280 387

360 21 37 123 245 96 185 291 388

420 22 39 129 247 96 190 293 393

480 22 40 132 248 96 194 294 394

600 22 40 136 250 96 194 294 394

900 22 41 141 251 96 194 295 394

1200 22 41 148 253 96 194 295 394
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Fig. 2 Pore water pressure (u) by time of soil mine made Thuan Ninh Lake, Binh Dinh; samples
prepared with compacting coefficient K = 0.95; specific gravity of the experimental soil
γC =1, 66T ̸m3; humidity w=12% with saturation and swelling time t less than 4 h. Soil started
swell with outside pressure corresponded to the chamber pressure levels σ3 = 100 , 200, 300 and
400 kPa [1–18]

Fig. 3 Pore water pressure (u) by the time of soil mine made Thuan Ninh Lake, Binh Dinh;
samples prepared with compacting coefficient K = 0.95; specific gravity of the experimental soil
γC =1.66T ̸m3; humidity w=12% with saturation and swelling time t more than 4 h. Soil started
swell with outside pressure corresponded to the chamber pressure levels σ3 = 100 , 200, 300 and
400 kPa [1–18]
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Fig. 4 Pore water pressure (u) by time of soil mine made Thuan Ninh Lake, Binh Dinh; samples
prepared with compacting coefficient K = 0.95; specific gravity of the experimental soil
γC =1.66T ̸m3; humidity w=12% with saturation and swelling time t less than 4 h and more
than 4 h. Soil started swell with outside pressure corresponded to the chamber pressure levels
σ3 = 100 kPa [1–18]

a, Cross section of Thuan Ninh dam’s body 

b, Low saturated water curve cause of started accumulating water, swelling phase

c, Stability saturated water curve cause of accumulated water many years, finished swelling 
phase 

Fig. 5 Cross section showed saturated water curve inside Thuan Ninh dam’s body according to
reality monitory data to calculate slope stability [1–18]
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Fig. 6 Pore water pressure (u) by time of soil mine made Vinh Son lake, Binh Dinh; samples
prepared with compacting coefficient K = 0.95; specific gravity of the experimental soil
γC =1.66T ̸m3; humidity w=12% with saturation, Bazan, non-swelling soil

Table 5 Pore water pressure under pressure levels of Bazan soil, Vinh Son soil mine [1–18]

Testing time (s) Chamber pressure (kPa)
50 100 150 200 250 300 400 500
Pore water pressure value (u)

0 −4 −3 −2 −2 −2 −2 0 0
1 3 4 5 6 6 12 15 18
3 4 6 7 9 16 18 25 35
5 8 8 8 13 18 19 27 40
10 10 10 11 15 19 22 35 50
15 10 12 13 17 22 24 39 55
20 11 15 15 18 23 25 43 60
30 12 16 17 18 25 28 46 65
45 13 17 18 18 27 32 48 70
60 14 17 18 19 28 35 50 72
90 15 17 18 22 32 43 54 74
120 16 17 19 23 34 44 57 76
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3 Conclusion

With swelling clay soil, swelling under cover pressure [1–18] :

1. During swelling phase, swelling pressure (PN) reduced pore water pressure (u);
2. Finished swelling, swelling pressure PN → 0, pore water pressure increased,

changed as non-swelling soil;
3. Testing’s result is compared with theoretical basis;
4. This research served for construction on swelling clay soil, the solution reduced

damage cause by swelling soil made soil saturate and swell with pressure when
constructed. Swelling pressure was determined by testing to choose the
appropriate pressure.
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Concrete Mesoscopic Model
and Numerical Simulation Based
on Quadtree Mesh Refinement Technology

Guojian Shao and Shengyong Ding

Abstract In the concrete mesoscopic model established by using the traditional
background mesh method, a mesh refinement technology based on balanced
quadtree is proposed to refine the elements of interfacial transition zone (ITZ).
Considering the control standards of the minimum size requirement and the bal-
ancing condition, the implementation program of mesh refinement is studied. The
polygonal FEM is applied to ensure the consistency of the mesh after quadtree
refinement. Then, the modified concrete mesoscopic model is given, which is more
reasonable for reflecting the constitutive behavior of ITZ. In the proposed concrete
mesoscopic model, the correlative material parameters can directly assign to the
elements of ITZ. The sawtooth defect of meshes around the aggregates in the
background mesh method is also enhanced to a certain degree. Accordingly, the
geometrical morphology and material property of ITZ are simulated better and more
realistic. In the end, the numerical simulation is presented to preliminarily compare
the differences between the background mesh method and the proposed method.

Keywords Concrete ⋅ Mesoscopic model ⋅ Quadtree structure
Mesh refinement ⋅ Numerical simulation

1 Introduction

At the mesoscopic level, concrete is usually regarded as the three-phase composite
composed of aggregate, mortar matrix, and interfacial transition zone (ITZ). In
previous studies, the background mesh method [1] is a common method for the finite
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element discretization of concrete mesoscopic model. In this method, a uniform
square mesh as the background mesh is pre-generated, and then the aggregates are
randomly placed inside the region of background mesh. The material types of ele-
ments in background mesh can be identified by the relationship between aggregate
and element: aggregate element located inside the aggregate, mortar element located
outside the aggregate, and ITZ element partly located inside the aggregate.

Many studies [2, 3] reveal that the cracks of concrete first appear in the ITZ
along the boundary of aggregate, and thus the macro-performance of concrete
depends largely on the geometric and physical properties of the ITZ. Thus, how to
reasonably reflect the ITZ as the weak part is the important aspect in the mesoscopic
simulating of concrete. Because the element size is single in the background mesh
method, if the coarse meshes are chosen, the selected elements of ITZ are too large
compared with its actual thickness (20–100 μm). The increased percentage of ITZ
weakens the whole mechanical property of concrete. Conversely, the reasonable
proportion of ITZ can be obtained by using the refined meshes, but the huge scale
of mesh has caused a sharp increase in computing time. At present, there are several
methods to treat the above-mentioned problem. One potential solution [3] is to
appropriately improve the elasticity modulus and material strength of ITZ, but the
improved ratio is not stable between the element sizes. In the second method [4, 5],
the elements of ITZ are considered as the composite element composed of aggre-
gate, mortar, and ITZ. Using the Voigt-Reuss averaging scheme, the influence of
ITZ is smeared into the composite element. The difficulty of this method is to
determine the percentages of various materials in the composite element. The third
method [2] employs the interface element with no thickness to simulate the ITZ.
Because the crack path grows along the edge of element, this method has the mesh
dependence problem.

In this paper, the alternative mesoscopic model of concrete with lower com-
puting cost is developed for reflecting the percentage and material property of ITZ
accurately. Based on the background mesh method, the coarse elements of ITZ are
refined to decrease the size of elements by using the quadtree refinement technol-
ogy, which is more suited to the refinement of uniform square mesh. The rest of this
paper is organized as follows: A brief review about quadtree mesh is described in
Sect. 2. In Sect. 3, the quadtree refinement strategy for the background mesh is
proposed by adhering to the minimum size requirement and the balancing condi-
tion. In Sect. 4, a brief overview of the polygonal FEM is given. In Sect. 5, the
study to compare the concrete mesoscopic models with uniform mesh and quadtree
refined mesh is performed. Our concluding remarks are given in Sect. 6.

2 Quadtree Data Structure

Quadtree is a kind of hierarchical data structure, and it is often used in computer
graphics and digital image processing. The origin, application, and related algo-
rithms of quadtree structure are described in detail in [6]. The work of Yerry and
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Shephard [7] shows the first use of quadtree in finite element mesh generation.
Subsequently, the mesh generation methods coupling quadtree for h-adaptivity has
been actively used and proved to be a simple, fast, and efficient method [8–11].

The establishment of quadtree is a process of recursive decomposition, and this
process can be described as that the target geometry is first placed inside a square
element. This square element is then subdivided into four new homogeneous square
sub-elements. Next, each new sub-element is tested to confirm that if it reaches the
stopping criterion such as errors or sizes of elements, and the sub-elements
unreached the stopping criterion are subdivided into four new square sub-elements
again. The process continues until meeting the stopping criterion in all
sub-elements, and the target geometry is covered by the varied dimensions of
non-overlapping square sub-elements.

Some terminology is introduced for the quadtree structure as shown in Fig. 1.
The original square element A is called the root element of quadtree. Four children
elements B1, B2, B3, B4 are created, all of which have the same element A as their
father element. An element is called the leaf element if this element is not to be
decomposed, e.g., the leaf elements B1, B3, B4. In addition, some extra lists are built
up once by performing a search over the base structure. Two elements are neighbors
if they share the same edge, e.g., the elements B1 and C1 as shown in Fig. 1b. The
level of an element is the number of subdivisions from the root element. Finally, the
elements, the basic parts of quadtree structure, are characterized by network and
layer and can easily communicate with each other through pointers.

The direct application of quadtree for the finite element mesh generation may
occur inappropriately; e.g., some elements may undergo more subdivision than its
neighbors. The balanced quadtree [6, 12] is employed to improve the defect of the
standard quadtree. In the balanced quadtree, the variation gradient of size between
adjacent elements has been controlled by adding the balancing condition, which
allows that only a one-level difference exists between any neighboring elements.
This method is easy to ensure the size of element with uniform change and obtain
the guaranteed-quality transition elements in quadtree mesh.

Fig. 1 Quadtree data structure: a tree structure, b Quadtree mesh
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3 Modified Concrete Mesoscopic Model with Quadtree
Refinement

In the present study, the quadtree refinement is adopted for modifying concrete
mesoscopic model. The performance of quadtree refinement adopted in this study is
driven by the minimum size requirement and the balancing condition.

3.1 The Control Criterion of Quadtree Refinement

(1) The minimum size requirement

Take the composite with the single circular inclusion, for example, as shown in
Fig. 2, the whole material domain Ω is divided into two parts of Ω+ and Ω− by the
interface Γ. We define the following function

ϕðxÞ= x− xck k− rc ð1Þ

where x is the coordinates of node, xc is the coordinates of center of circular
inclusion, and rc is the radius of circular inclusion. The sign of Eq. (1) is positive/
negative if the node (x) is outside/inside of the circular inclusion.

Beginning with the uniform square mesh, all nodes are classified into interior
nodes and exterior nodes by the IN/OUT test of Eq. (1). For an element including
NP nodes, it regards NIN as the number of the interior nodes and NOUT as the
number of the exterior nodes. Table 1 synthesizes the statistical information of
nodes about the different element patterns as shown in Fig. 3. In Table 1, di denotes
the size of the element and can be computed by

di = 1 ̸2ð Þid0 ð2Þ

where i is the level of the current element, and d0 is the size of its root element. The
array Epre allows the user to control the minimum size of element in various
material regions. The quadtree refinement is performed if the size of element does
not reach the minimum size requirement. When the refinement process is

Fig. 2 Domain with
discontinuous circular
interfaces
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completed, the elements of Type 1–3 correspond to the inclusion, the ITZ, and the
mortar, respectively.

To the composite with the multiple circular inclusions, the element patterns are
more complicated than the element patterns with single inclusion. Programs will
return wrong results if it continues to use the standard of Table 1 directly. For
example, the pattern in Fig. 4, as the element of Type 2, holds the same values of
NIN and NOUT as the element of Type 1. Here the solution is to save the element
type only with the patterns with single inclusion and set the priorities of element
types: first Type 1, second Type 2, and third Type 3. In every step with single
inclusion, the current type of each element is compared with the previous type, and
the higher priority element type can replace the lower one. Otherwise no previous
element type is modified. After the cycle for all inclusions is completed, the types of

Table 1 Determination of element patterns and its decomposition condition

Element patterns Material property NIN NOUT Decomposition condition

Type 1 Aggregate NP 0 di > Epre(1)
Type 2 ITZ a b di > Epre(2)
Type 3 Mortar 0 NP di > Epre(3)
Note: a + b = NP, NP ≥ 4

Fig. 3 Element patterns in the single inclusion problem: a Type 1, b Type 2, c Type 3

Fig. 4 Element pattern in the
multiple inclusions problem
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elements are determined and then the corresponding elements are divided according
to the decomposition condition in Table 1.

(2) The balancing condition

In order to obtain uniform variation of mesh with density, the balancing con-
dition is enforced in the refinement process. This treatment may cause some ele-
ments to be decomposed although the parts of them have met the minimum size
requirement. Therefore, when an element is marked to be decomposed, its neighbor
elements will be determined whether they should be further decomposed. Since the
quadtree structure has always maintained a balance in the refinement process, Fig. 5
makes simple classification of the situations between two neighbors. In the example
of Fig. 5, the element A and its left element B are neighbors, and let Level (A) be the
level of the element A. If the element A is marked to be decomposed, its neighbor
B also needs to be marked when Level (A)-Level (B) = 1 is true, and thus the
decomposition of the element B is triggered only in the situations of Case 3 and
Case 4. Similarly, the other neighbors of the element A can be treated equally.
According to the level information of element and the geometric property of
neighboring elements sharing the common edge, the balancing process for all
elements is complete with the tree traversal.

3.2 The Implementation Program of Modified Model

With all the methods mentioned above, the specific procedure for generating the
modified model is as follow:

Fig. 5 Geometric relationships between element A and its neighborhood element B: a Case 1,
b Case 2, c Case 3, d Case 4, e Case 5
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(a) Input the information of random aggregate particles and the minimum size
requirements in various material regions, and generate an initial uniform square
mesh, in which each of these elements is considered as the root of a different
tree.

(b) Traverse the leaf elements and mark the elements which do not reach the
minimum size requirement.

(c) Traverse the marked elements and their neighbors and mark those neighbors
which should be further decomposed to achieve the balancing condition.

(d) Repeat step (c) until the number of the elements marked in step (c) is constant.
(e) Decompose the elements marked and save the information of new nodes and

elements.
(f) Repeat step (b) to step (e) until the number of the elements marked in step (b) is

constant.
(g) Output the information of nodes and leaf elements.

4 The Polygonal Finite Element Method

To the above-mentioned mesh after quadtree refinement, hanging nodes may be
present along the common edges between adjacent elements that differ in size,
thereby leading to an incompatibility problem in traditional finite element method
(FEM). In this paper, the polygonal FEM based on the Wachspress interpolation
[13] is employed to obtain C0 admissible approximations along edge that includes
hanging nodes. A brief overview of the polygonal FEM based on the Wachspress
interpolation is given in this section, and further detailed discussion can be referred
in the literature [14, 15] and the references therein.

At first, considering with a convex polygonal element Ω⊂R2 in Fig. 6,
P1,P2, . . . ,Pn are vertex points in Ω and arranged counterclockwise. Any point P
with coordinates x≡ x, yð Þ∈Ω, has a set of associated shape functions Ni xð Þ. An
interpolation scheme for a function u xð Þ:Ω→R2 can be expressed as

uh xð Þ= ∑
n

i
Ni xð Þui ð3Þ

where ui is the unknown at Pi, and the polygonal shape function Ni xð Þ is repre-
sented in the general form

Ni xð Þ=ωi xð Þ ̸ ∑
n

j=1
ωj xð Þ ð4Þ

where ωi xð Þ is the weight function as following [13]
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ωi xð Þ= cot γi− 1 + cot βi
P−Pik k2 ð5Þ

in which the angles γi− 1 and βi are given in Fig. 6. Equation (4) satisfies the
following properties: nonnegative and bounded; interpolation; constant and linear
precision; and C0 function along the edges. Thus, the polygonal element is easily
incorporated into traditional FE codes.

In fact, the Wachspress interpolation can only describe the convex polygons. In
order to expand the scope of the Wachspress interpolation to the elements with
hanging nodes, an isoparametric transformation technique proposed by Sukumar
and Tabarraei [14] is introduced here, in which the affine mapping from the regular
polygon to any convex polygon is constructed, as shown in Fig. 7. The isopara-
metric mapping is expressed as

x= ∑
n

i=1
Ni ζ1, ζ2ð Þxi ð6Þ

In Fig. 8, for the purpose of numerical integration, the regular polygon is
decomposed into sub-triangles [15], and this process is performed to integrate by
the following transformations

Fig. 6 Polygonal element
with the Wachspress
interpolation

Fig. 7 Isoparametric
mapping from the regular
polygon to any convex
polygon
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fdΩ=
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Ω0

f J2j jdΩ= ∑
n

j=1

Z 1

0

Z 1− L2

0
f J j

1

�� �� J2j jdL1dL2 ð7Þ

where n is the number of sub-triangles, J j
1

�� �� and J2j j are the Jacobi determinant of
the transform matrix. Finally, Guass integration rule is used in each triangle.

5 Numerical Simulation

In this section, the application of the quadtree refinement scheme to mesoscopic
model of concrete is investigated. The concrete model consisting of aggregates,
mortar matrix, and ITZ is considered. The side length of the square specimen is
100 mm. The area fraction of the aggregates is 60% with nominal diameters
between 2 and 20 mm. Aggregate particles of various sizes in mesoscopic model
are generated by the aggregate area fraction and the aggregate gradation curve given
in literature [16]. The two models with uniform mesh and quadtree refinement mesh
are summarized in Fig. 9. The element size of uniform mesh in Fig. 9a is 1.25 mm,
and the minimum size requirement of ITZ of quadtree refinement mesh in Fig. 9b is
0.1 mm.

In general, the elastic modulus of element is randomly assigned in accord with
certain probability distribution to simulate the property change in the same material
[1]. Because the concrete is a kind of highly inhomogeneous and discontinuous
composites, in this paper, the random parametric model following Weibull distri-
bution is assumed for describing the random characteristics of mechanical prop-
erties of concrete mecro-components, as listed in Table 2. Considering the change
of Poisson’s ratio is small, its randomness can be ignored, and thus the Poisson’s
ratios of aggregate, ITZ, and mortar are chosen as 0.18, 0.25, and 0.2, respectively.

As quasi-brittle materials, the nonlinear stress–strain relationship of concrete is
boiled down to the cracks growth, propagation, penetration, and failure of concrete

Fig. 8 Numerical integration schemes for polygonal element
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material. In numerical simulation, this change process can be expressed by the local
degradation of the global stiff matrix. Here, the sample elastic-brittle damage
constitutive law is adopted to describe the mechanical behavior of
mecro-components of concrete. Supposing the material in the state of uniaxial load,
the damage constitutive law of mecro elements is illustrated in Fig. 10, where D is
the damage factor, E0 is the initial elasticity modulus, and ftr/fcr is the residual
tensile/compressive strength. When the state of the element strain achieves the
strain value (εtr/εcr) corresponding to the elastic limit, the element begins to be
damaged. In the damage model, the maximum tensile strain criterion is regarded as
the first damage criterion, and the Mohr–Coulomb criterion is regarded as the
second damage criterion. In the other words, if the strain state of the element
achieved first damage criterion, the second damage criterion does not need to be
tested. When the state of the element strain exceeds the stain limit (εtu/εcu), the
element fails. Under the complicated stress state, the strain value ε in Fig. 10 can be
replaced by using the equivalent strain ε ̄ as follows

ε ̄=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
⟨ε1⟩

2 + ⟨ε2⟩
2 + ⟨ε3⟩

2
q

ð8Þ

(a) (b)

Fig. 9 Concrete mesoscopic model with a uniform mesh and b quadtree refinement mesh

Table 2 Material parameters of the concrete specimen-based Weibull distribution

Material
property

Elastic modulus/
GPa

Strength (pressure/tension)/
MPa

Homogeneity

Aggregate 80.0 500/50 6
ITZ 15.0 150/15 1.5
Mortar 28.6 175/17.5 3
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where ε1, ε2, and ε3 are three principal strains, and the symbolic function < > is the
function defined by

⟨x⟩=
x x≥ 0
0 x<0

�
ð9Þ

Both uniaxial tension and uniaxial compression tests are carried out for two
models with uniform mesh (Sample 1) and quadtree refinement mesh (Sample 2).
The specimen is fixed at the bottom, and a uniform vertical load is applied at the
top. The whole load process applies the displacement control mode, in which the
displacement step length is 0.5 μm/5.0 μm under uniaxial tension/compression.

Figure 11 shows the comparison of the final damage distribution observed for
concrete mesoscopic models with two kinds of meshes. One main crack grows
perpendicular to the loading direction under uniaxial tension. In the uniaxial
compression test, the specimen cracks along the loading direction and shows
several intersecting cracks. As can be seen, the sawtooth defect of meshes around
the aggregates gets well improved, and the geometric shapes of mecro-components
of concrete are more accurate and vivid after refining the elements of ITZ. It can be
concluded that the cracks form in the ITZ and propagate along an aggregate con-
centrated path. Finally, the cracks interconnect with each other in the mortar,
resulting in the macroscopic failure of concrete.

Figure 12 shows the relationship between the average stress and the average
strain over the region of concrete. In both simulations, the curves with the same

Fig. 10 Elastic-brittle damage constitutive law of material in the state of uniaxial load [1]
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changing tendency are obtained. The peak stresses of the curves corresponding to
Sample 2 are slightly larger than Sample 1. The differences result between Sample 1
and Sample 2 can probably be ascribed to the lower percentage of ITZ in the refined
mesh. Furthermore, the results of curves with the refined ITZ element [1] are also
given. As depicted in Fig. 12, the curve results of Sample 2 and reference show
good agreement, so that it can be found that the proposed concrete mesoscopic
model is competent.

Fig. 11 Comparison of the final damage distribution observed for concrete mesoscopic models
with different meshes: a Sample 1—uniaxial tension, b Sample 1—uniaxial compression,
c Sample 2—uniaxial tension, d Sample 2—uniaxial compression
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6 Conclusions

The ITZ, as the weak part of concrete, has significant influence on the
macro-performance of concrete. In this paper, the quadtree refinement scheme using
control standards of the minimum size requirement and the balancing condition are
proposed to refine the meshes of ITZ, where the elements may be coarse in the
background mesh method. The percentage of ITZ in concrete is more accurate after
the performance of refinement, and thus the correlative material parameters can be
assigned to the elements of ITZ without other additional measures. Furthermore, the
sawtooth defect of meshes around the aggregates is improved by using the finer
description of ITZ in the modified model, in which the change of stress and strain
near the region of ITZ is more reasonable. It is simple and easy for the proposed
method to extend to three-dimensional problems when the octree is used. Further
verification studies for the influence of ITZ with different element sizes are cur-
rently under investigation.
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A Coupling of Three-Dimensional Finite
Element Method and Discontinuous
Deformation Analysis Based
on Complementary Theory

C. Su, Z. M. Ren, V. H. Dao and Y. J. Dong

Abstract The continuous and discontinuous deformation analysis is essential for
the stability analysis of the anchor bar-surrounding rock masses system. To elim-
inate the open-close iteration and the penalty factor of the 3D-DDA, the CDDA is
proposed to extend into the three-dimensional block system. Then a novel simu-
lation approach, the coupling method of 3D CDDA-FEM, is demonstrated, which
combines the specific benefits of two numerical methods: the contacts between
blocks are described by 3D-CDDA, while the displacement field inside block is
described by FEM. Two numerical examples verify that the new coupling method is
feasible and the displacement solution is more accurate. Taking different initial
stress conditions of anchor bars into account, the stability analysis of anchor
bar-surrounding rock masses system demonstrates that the appropriate installation
and the optimal initial stress of anchor bar efficiently improve the stability of
surrounding rock masses system of underground chamber.

Keywords Complementary discontinuous deformation analysis (CDDA)
Finite element method (FEM) ⋅ Stability analysis ⋅ Prestressed anchor bar
Surrounding rock masses system

1 Introduction

In a large underground chamber group excavation, the crack and fracture of
complicated earth media may cause a large displacement and deformation of sur-
rounding rock. To improve the stability, the anchor bar is commonly installed into
the surrounding rock. The classifications of on the economic efficiency and
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operational technology, the end-point anchorage bar is suitable to reinforce the
surrounding rock with many discontinuous interfaces inside the involved domain.
So the mechanical analysis of anchor bar-surrounding rock is essential content of
the numerical simulation in the rock and soil mechanics. In experimental model,
many have conducted the anchor bar experimental models and field test [1–5]. In
numerical simulation, many have presented various numerical models of the anchor
bar-blocks system [6–10].

The discontinuous deformation analysis (DDA) method is suitable for simulating
and analyzing the anchor bar-surrounding rock masses system. In the DDA, the
numerical model of anchor bar analyzed the axial force acting on the blocks [11–
13], in which the anchor bar was replaced by an equivalent line spring. The
anchorage effect of anchor bar in the tangential direction was proposed [14].
The DDA was applied to simulate the tangential anchoring effect of anchor bar by
installing the springs between blocks along the crack direction [15–17]. To over-
come the shortcomings of the DDA, the discontinuous deformation analysis based
on the complementary theory was presented and rewrote the corresponding
numerical model of anchor bar [18].

In the analysis of blocks system, the coupling method of 3D DDA-FEM [19]
was proposed to the large displacement and large deformation between blocks and
to solve the stress field and the displacement field inside block. The corresponding
form of contact matrix was expressed [20]. To eliminate the open-close iteration
and the penalty factor of 3D-DDA, the complementary discontinuous deformation
analysis (CDDA) is extended to analyze the three-dimensional blocks system. Then
the coupling method of 3D CDDA-FEM is proposed to analyze the continuous and
discontinuous deformation problem of anchor bar-surrounding rock masses system.
To demonstrate the feasibility and to investigate the effectiveness of the new
coupling method, two simple numerical examples and a practical surrounding rock
masses system of underground powerhouse group are presented and the results are
compared with the corresponding results of the original method.

2 Three-Dimensional CDDA

To solve and obtain the complete displacement solutions, it is necessary to extend
the CDDA method into three-dimensional block system.

2.1 Mixed Complementary Problem

Let G and H be the two continuous vector-valued functions, G:Rn1 ×Rn2 →Rn1 and
H:Rn1 ×Rn2 →Rn2 , with n1 and n2 being two positive integers. A mixed comple-
mentary problem is to find a pair of vectors, w∈Rn1 , v∈Rn2 , such that:
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G w, vð Þ=0
v≥ 0,H w, vð Þ≥ 0
vTH w, vð Þ=0

8<
: ð1Þ

Furthermore, the vector v is replaced by a continuous vector-valued function F:
Rn 1 ×Rn 2 →Rn 2 , we can obtain a generalized mixed complementary problem:

G w, vð Þ=0
F w, vð Þ≥ 0,H w, vð Þ≥ 0
F w, vð ÞTH w, vð Þ=0

8<
: ð2Þ

The first equation will represent the discrete momentum conservation equations.
The second inequality will stand for the constraints on the contact-pairs. The third
equation will indicate the complementary conditions on the contact forces and the
relative displacements of the contact-pairs. We can rewrite (2) as a system of
equations of the form:

G w, vð Þ=0
min F w, vð Þ,H w, vð Þð Þ=0

�
ð3Þ

2.2 Stiffness Equation of a Block

The loads of a block include known point load f, line load p1, surface load p2,
unknown volume load b− ρüð Þ, and contact force p̄. Based on the principle of
momentum conservation, the variational equation of block Ωi is written as:

Z
Ωi

δεð ÞTσdΩ=
Z
Ωi

δuð ÞT b− ρüð ÞdΩ+
Z
Sp1

δuð ÞTp1dSp1

+
Z
Sp2

δuð ÞTp2dSp2 + ∑ δuð ÞT f + ∑ δuð ÞTp̄
ð4Þ

where σ and u, respectively, represent the stress vector and the displacement vector
of a point inside block, δu and δε, respectively, denote the virtual displacement and
the virtual strain.

The stress and the strain are described by the displacement function.

σ= D½ �ε+σ0 = D½ � L½ �u+σ0 = D½ � B½ �d ̂+ σ0 ð5Þ

where D is the elastic matrix and σ0 is the initial stress. The virtual work of stress is
written as:
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Z
Ωi

δεð ÞTσdΩ=
Z
Ωi

B½ �δd ̂� �T
D½ � B½ �d ̂� �

dΩ+
Z
Ωi

B½ �δd ̂� �Tσ0dΩ

= δd ̂
� �T Z

Ωi

B½ �T D½ � B½ �dΩ
� �

d ̂+ δd ̂
� �T Z

Ωi

B½ �Tσ0dΩ
� � ð6Þ

The contact force is decomposed as:

p ̄= τ1 τ2 nð Þ p ̄τ1 pτ̄2 pn̄ð ÞT ð7Þ

where ð τ 1 τ 2 n Þ is the coordinate of slave block. The virtual work of unknown
contact force is:

∑ δuð ÞTp̄= δd ̂
� �T

NT
c1Lc1 ⋯ NT

cnLcn

� �
p̄= δd ̂

� �T
C½ �p̄

Lci = τ1ciτ2cincið Þ i=1,⋯, n
ð8Þ

where Lci and Nci , respectively, represent the local coordinate and the shape
function matrix of the slave block in the cn − th contact-pair. The 3cn × 1 unknown
contact force vector in Eq. (4) is expressed as:

p̄T = p ̄τ1c1 , p ̄
τ2
c1 , p ̄

n
c1 ,⋯, p ̄τ1cn , p ̄

τ2
cn , p ̄

n
cn

	 

ð9Þ

Since the virtual displacement δd ̂ is arbitrary, the stiffness equation of a block is
simplified as:

M½ �id ̂ï + K½ �idî − C½ �ipī = f i ð10Þ

where Mi is the 12 × 12 mass matrix, Ki is the 12 × 12 stiffness matrix, and Ci is
the 12 × 3cn contact matrix determined from the position and local frame corre-
sponding to all contact forces acting on block. The 24th order generalized force
vector is written as:

f i = −
Z
Ωi

B½ �Tσ0dΩ+
Z
Ωi

NT
i bdΩ+

Z
Sp1

NT
1p1dSp1 +

Z
Sp2

NT
2p2dSp2 + ∑NT

i f

ð11Þ

where Ni is the shape function matrix. Taking the consistent measure of the original

DDA to obtain the equivalent form of d ̂ï, the simplified form of the stiffness
Eq. (10) of a block is:

K̄½ �idi − C½ �ipī = f ī ð12Þ
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2.3 Global Stiffness Equation of Blocks System

Suppose that the blocks system has n1 blocks and n2 contact-pairs within the time
step, the Eq. (12) of all blocks is collected as a system of 12n1 equations in
12n1 + 3n2 unknowns ðd,p ̄Þ. As the contact forces are the variables shared by
blocks in contact, the global stiffness equations system of the block system is
expressed as:

K̄1 0 ⋯ 0
0 K̄2 ⋯ 0
⋮ ⋮ ⋱ ⋮
0 0 ⋯ K̄n1

2
664

3
775

d1̂
d2̂
⋮
dn̂1

2
664

3
775−

CT
1

CT
2
⋮
CT

n1

2
664

3
775 p̄½ �=

f 1̄
f 2̄
⋮
f n̄1

2
664

3
775 ð13Þ

where Ci is a 12 × 3n2 submatrix corresponding to global contact matrix. The
simple equation of Eq. (13) is written as K½ �d ̂− C½ �p ̄= f .

2.4 Contact Equation

The contact force p ̄ is decomposed into ð pτ̄ 1 , p ̄τ 2 , p ̄n Þ, and the contact force pτ̄ 1 is
zero. To obtain the displacement solutions, 2nc contact equations are associated
with the global stiffness equations of block system. The common plane algorithm is
used to judge the contact type between blocks in this paper. The unit n in local
coordinate matrix is the inner normal vector of the contact surface p0p2p3p4p5
shown in Fig. 1. The point p0 in the contact surface is the predetermined contact
point of the vertex p1. Since the point p0 is moving to p

0
0 and the point p1 is moving

to p
0
1 in this time step, the unit τ2 in local coordinate matrix is the projection L

!
of

the line p
0
0p

0
1

��!
in contact surface.

Fig. 1 Vertex-to-face contact
model of blocks
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In the normal n direction, since the two blocks corresponding to the contact-pair
of interest cannot be penetrated into each other, the relative distance should be
non-negative:

gn = nT xi − xj
� �

= nT xī − xj̄ +Nidî −Njdĵ
� � ð14Þ

where i and j represent, respectively, the mash and the slave block. x ̄ i and x ̄ j
represent the positions of the two nearest points of the contact-pair at the start of
this step. So the complementary equations of normal contact conditions are
equivalently expressed as:

min p ̄n Egnð Þ=0 ð15Þ

where E is a constant elastic modulus used to transform pn̄ and gn to the same order.
In the tangential τ2 direction, a contact-pair may be in one of two contact states:

the sticky state and the sliding state. The velocity of movement of the master
relative is approximated by the Euler-Backward difference:

g ̇τ2 =
1
Δ
τT2 Njdĵ −Nidî
� � ð16Þ

The friction force is pτ2j j=C+ μpn .
where μ is the friction factor, C is the inner cohesion, and pτ2 is the friction. So

the complementary equations of tangential contact conditions are equivalently
expressed:

min Gġτ2pτ̄2 μp ̄n +C− p ̄τ2j jð Þ=0 ð17Þ

where G is a constant elastic modulus used to transform gτ̇2pτ̄2 and μpn̄ +C− p ̄τ2j j
to the same order.

Collecting global stiffness equation system (13) and the contact Eqs. (15) and
(17) of the n2 contact pairs, the equations system of three-dimensional discontin-
uous deformation analysis based on complementary theory (3D-CDDA) with
unknown ðd, p̄Þ is expressed as:

H d,p ̄ð Þ=
K½ �d− C½ �p̄− f

min pn̄ Egnð Þ
min Ggτ̇ 2pτ̄ 2 μp ̄n +C− pτ̄ 2j jð Þ

� i= n2

i=1

0
@

1
A=0 ð18Þ
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3 Coupling Method of 3D CDDA-FEM

The 3D-CDDA chooses the complete first-order polynomial as displacement
function for a block in the blocks system. So the 3D-CDDA describes the contact
between blocks but restricts the stress and displacement field inside block.
The FEM is applied to solve the displacement field by proper internal discretization
of deformable blocks. The coupling method of 3D CDDA-FEM implements the
continuous and discontinuous deformation analysis of block system.

3.1 Displacement Function of a Finite Element

Taking three-dimensional eight-node hexahedral finite element as example, the
displacement field of a finite element is described as:

u v wð ÞT = N½ �ei ⋅ dei =
N1 0 0 ⋯ N8 0 0
0 N1 0 ⋯ 0 N8 0
0 0 N1 ⋯ 0 0 N8

2
4

3
5 u1 v1 w1 ⋯ u8 v8 w8ð ÞT

ð19Þ

where Nei is the shape matrix and dei is the node displacement. The shape function
Nei is agreement with the shape function of finite element method.

3.2 Review of Coupling Method of 3D DDA-FEM

The potential energy of a finite element inside a block is:

∏b = ∑
mb

i=1

1
2
dTi k½ �idi − ∑

mb

i=1
dTi pi ð20Þ

where k½ �i is the stiffness matrix and p½ �i is the equivalent nodal load matrix.
In the discretization model of block system, the discontinuous deformation of

contact surface between blocks was controlled by the principles of Mohr–Coulomb
and non-tensile stress, and the displacement was solved by the penalty function
method in the DDA. In other words, the normal and tangential springs are installed
to the contact point and the open-close iteration is the installation-elimination of the
equivalent spring. Suppose the blocks system contained n blocks and k con-
tact-pairs, the total potential energy of blocks system is written as:
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∏p = ∑
n

b=1
∑
mb

i=1

1
2
dTi k½ �idi − ∑

k

ij=1

1
2
dTij k½ �cijdij − ∑

n

b=1
∑
mb

i=1
dTi pi ð21Þ

where k½ �cij is the contact spring matrix.
According to the variation principle, ∂∏p =0, the global balance equation of

block system is expressed as:

K½ �d=P ð22Þ

where K is the global stiffness matrix and P is the global load matrix.

3.3 Coupling Method of 3D CDDA-FEM

According to the loads acting on a finite element, the variational equation of
momentum conservation of the eith mesh element is written as:

Z
Ωei

δεð ÞTσdΩ=
Z
Ωei

δuð ÞT b− ρüð ÞdΩ+
Z
Sep1

δuð ÞTp1dSep1

+
Z
Sep2

δuð ÞTp2dSep2 + ∑ δuð ÞT f + ∑ δuð ÞTp̄
ð23Þ

The stress and the strain are described by the displacement function of finite
element:

σei = E½ �iεei = E½ �i B½ �eidei ð24Þ

where Bei is the geometry matrix and Ei is the elastic matrix. The virtual work of
stress is:

Z
Ωei

δεð ÞTσdΩ=
Z
Ωei

B½ �δdð ÞT E½ � B½ �dð ÞdΩ+
Z
Ωei

B½ �δdð ÞTσ0dΩ

= δdð ÞT
Z
Ωei

B½ �T E½ � B½ �dΩ
� �

d+ δdð ÞT
Z
Ωei

B½ �Tσ0dΩ
� � ð25Þ

Since the virtual displacement δd is arbitrary, the equation of momentum con-
servation of a finite element inside block is simplified as:

K̄½ �eidei − C½ �eipēi = f ēi ð26Þ
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where K̄ei is the 24 × 24 generalized stiffness matrix and Cei is the 24 × 3cn
contact matrix (the values of element in the contact matrix are zero except the node
effected by contact force).

Suppose that a block has n1 nodes in the finite element mesh and n2 contact
forces, the stiffness equation system of a block with 3n1 and 3n1 + 3n2 unknown
ðd,p ̄Þ is established by collecting all the simplified equation of finite elements
inside block.

K̄½ �ede − C½ �epē = f ē ð27Þ

where K̄e is the 3n1 × 3n1 generalized stiffness matrix and Ce is the 3n1 × 3n2
contact matrix.

Suppose that the block system has np nodes and nc contact-pairs in the element
mesh of block system, the stiffness equation system of the block system with 3np
and 3np + 3nc unknown ðd,p ̄Þ is established by collecting all the stiffness equations
of blocks.

K½ �d− C½ �p̄= f ð28Þ

where K is the 3np × 3np generalized stiffness matrix and C is the 3np × 3nc
contact matrix.

Since the finite element mesh is generated in the blocks system, the contact-pairs
are transformed to the vertex-to-face contact between finite elements. The relative
distance and velocity between finite elements are expressed as:

gne = nT xei − xej
� �

= nT xēi − xēj + N½ �idei − N½ �jdej
	 


ð29Þ

g ̇τ2e =
1
Δ
τT2 N½ �jdej − N½ �idei
	 


ð30Þ

Collecting the global stiffness equation system (28) and all the complementary
Eqs. (29) and (30) of the nc contact-pairs, the equations system of the coupling
method of 3D CDDA-FEM is expressed as:

H d, p̄ð Þ=
K½ �d− C½ �p̄− f

min pn Egneð Þ
min Gg ̇τ2e pτ2 μpn +C− pτ2j jð Þ

� i= nc

i=1

0
@

1
A=0 ð31Þ
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4 Numerical Model of Anchor Bar

The rock blot is the main supporting component and plays an important role in the
surrounding rock masses system. The coupling method of 3D CDDA-FEM is
applied to simulate the anchor bar-surrounding rock masses system, and the cor-
responding model of anchor bar is expressed in the following section.

The axial force of anchor bar is:

s=
0 s<0

E ̄A Δl
l 0< s<T

T s>T

8<
: ð32Þ

where E ̄ is the elastic modulus, A is the cross-sectional area, T is the yield strength,
l, and Δl are, respectively, the length and elongation of anchor bar. The point M1

(x1, y1, z1) in the ith mesh element is connected to the point M2 (x2, y2, z2) in the jth
mesh element by anchor bar. The end-points displacements of anchor bar are,
respectively, expressed as:

dx1 = u1 = u x1, y1, z1ð Þ dy1 = v1 = v x1, y1, z1ð Þ dz1 =w1 =w x1, y1, z1ð Þ
dx2 = u2 = u x2, y2, z2ð Þ dy2 = v2 = v x2, y2, z2ð Þ dz2 =w2 =w x2, y2, z2ð Þ ð33Þ

The length of rock blot is l=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 − x1ð Þ2 + y2 − y1ð Þ2 + z2 − z1ð Þ2

q

dl=
1
l

x1 − x2ð Þ u1 − u2ð Þ+ y1 − y2ð Þ v1 − v2ð Þ+ z1 − z2ð Þ w1 −w2ð Þ½ �

= u1 v1 w1ð Þ lx ly lzð ÞT − u2 v2 w2ð Þ lx ly lzð ÞT
h i

= dTi N
T
i lx ly lzð ÞT − dTj N

T
j lx ly lzð ÞT

h i ð34Þ

where lx = x1 − x2
l , ly =

y1 − y2
l , lz = z1 − z2

l represent the direction cosines of anchor bar.
When the ith mesh element is reinforced by anchor bar, the directional cosines of

the anchor bar are (−lx −ly −lz)T and the virtual work of axial forces is:

δuið ÞT f ĩ = δdið ÞT N½ �Ti −
E ̄A
l
dTi N½ �Ti

lx
ly
lz

0
B@

1
CA+

E ̄A
l
dTj N½ �Tj

lx
ly
lz

0
B@

1
CA

0
B@

1
CA

lx
ly
lz

0
B@

1
CA

= −
E ̄A
l

δdið ÞT G½ �i G½ �Ti di +
E ̄A
l

δdið ÞT G½ �i G½ �Tj dj

ð35Þ

When the jth mesh element is reinforced by anchor bar, the directional cosines of
rock bolt are (lx ly lz)

T and the virtual work of axial forces is:
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δuj
� �T f j̃ = δdj

� �T N½ �Tj
E ̄A
l
dTi N½ �Ti

lx
ly
lz

0
B@

1
CA−

E ̄A
l
dTj N½ �Tj

lx
ly
lz

0
B@

1
CA

0
B@

1
CA

lx
ly
lz

0
B@

1
CA

=
E ̄A
l

δdj
� �T G½ �j G½ �Ti di −

E ̄A
l

δdj
� �T G½ �j G½ �Tj dj

ð36Þ

The node submatrix in coefficient matrix G½ �i G½ �Ti ,− G½ �i G½ �Tj ,− G½ �j G½ �Ti , and
G½ �j G½ �Tj is, respectively, added into the corresponding submatrix of the generalized
stiffness matrix Ke of block system.

E ̄A
l

G½ �i G½ �Ti → K½ �eii −
E ̄A
l

G½ �i G½ �Tj → K½ �eij

−
E ̄A
l

G½ �j G½ �Ti → K½ �eji
E ̄A
l

G½ �j G½ �Tj → K½ �ejj
ð37Þ

If the axial force f ̃ exceeds the yield strength T of anchor bar, the axial force is
equivalent to the yield strength T. The node submatrix in coefficient matrices
−[G]iT and −[G]jT is, respectively, added into the corresponding submatrix of the
generalized force vector f of the block system.

− G½ �iT → f i − G½ �jT → f j ð38Þ

5 Numerical Example

The feasibility of the 3D-CDDA and the coupling method of CDDA-FEM in the
deformation analysis of blocks system are investigated by solving two typical
anchor bar-block systems. The displacement solutions solved by the new method
are compared with the displacement of the original methods.

5.1 Rectangle Tunnel

The surrounding rock of rectangle tunnel with fractures along the horizontal and
vertical directions is shown in Fig. 2. The boundary conditions contain the fixed
surfaces of X = 0.20, Y = 0.25 and the free surfaces of Z = 0.4. The blocks
material constants are: the unit weight γ = 2.0 kN/m3, Young’s modulus E = 2
MPa, and Poisson’s ratio v = 0.24. The friction between blocks is zero. Through
the mechanical analysis of blocks system without anchor bar, five rock masses in
the top of the surrounding rock of rectangle tunnel are unstable and the other rock
masses are stable.
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The anchor bars are installed into the surrounding rock masses system in the
following distributions: (a) the unstable rock masses aren’t reinforced, (b) two
unstable rock masses on the upper layer of unstable rock masses are reinforced,
(c) five unstable rock masses are reinforced by anchor bars. The three cases are,
respectively, solved by the three-dimensional DDA and the DDA based on the
complementary theory (CDDA). The displacement solutions in the Y negative
direction at time t = 0.5 s shown in Table 1 indicate that the displacement solved
by the 3D-CDDA are bigger and closer to the analytical solutions than the dis-
placement solved by the 3D-DDA.

5.2 Underground Chamber

The surrounding rock of underground chamber is shown in Fig. 3, and two element
hexahedron finite elements are generated in all blocks. The boundary conditions
contain the fixed faces X = 0.50, Y = 0.50 and the free faces Z = 0.60. The blocks
material constants are: the unit weight γ = 2.0 kN/m3, Young’s modulus E = 2
MPa, and Poisson’s ratio v = 0.24. The friction between blocks is zero. Through
the mechanical analysis of blocks system without anchor bar, eight blocks in the top
and the sides of surrounding rock of underground chamber are unstable and the
other blocks are stable.

Fig. 2 Model of rectangle
tunnel excavated

Table 1 Displacement solutions of unstable blocks in surrounding rock of rectangle tunnel

Solving method 3D DDA 3D CDDA Analytical solution
Monitoring point A B A B A B

Case a −1.1334 −1.1333 −1.1841 −1.1844 −1.2500 −1.2500
Case b −0.4815 −1.1332 −0.2447 −1.1842 — —

Case c −0.7146 −0.9259 −0.4786 −0.7512 — —
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The anchor bars are installed into the surrounding rock masses system in the
following distributions: (a) the unstable rock masses aren’t reinforced, (b) six rock
masses in the top of the unstable block system are reinforced, (c) six rock masses in
the sides of the unstable block system are reinforced, (d) eight unstable rock masses
are reinforced by anchor bars. The four cases are, respectively, solved by the
coupling methods of 3D DDA-FEM and CDDA-FEM. The displacement solutions
in the Y negative direction at time t = 0.5 s shown in Table 2 indicate that the
displacement solutions of the coupling method of 3D CDDA-FEM are bigger than
the displacement solutions of the coupling method of 3D DDA-FEM.

Since the coupling method of 3D CDDA-FEM eliminates the penalty factor and
the open-close iteration, the proposed method accurately solves the large dis-
placement and deformation between blocks and describes the stress field and the
displacement field inside block. The anchor bar prevents the large displacement and
deformation between blocks.

Fig. 3 Model of underground chamber excavated

Table 2 Displacement solutions of unstable blocks in surrounding rock of underground chamber

Solving
method

Coupling method of 3D DDA-FEM Coupling method of 3D CDDA-FEM

Monitoring
point

A B C D A B C D

Case a −0.7399 −1.1874 −0.7723 −0.8892 −0.8215 −1.2017 −0.9123 −1.0245
Case b −0.1953 −0.4699 −0.0282 −0.7179 −0.2741 −0.5854 −0.1024 −0.8241
Case c −0.0926 −1.1332 −0.0379 −0.0199 −0.2138 −1.1634 −0.1687 −0.1344
Case d −0.1968 −0.4709 −0.0316 −0.0185 −0.3146 −0.5942 −0.1516 −0.1124
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6 Practical Application

The characters of surrounding rock, such as the fault, shear zone, and anisotropic
deformation, may result in the large deformation and large deformation in the
surrounding rock masses system. The stability analysis of surrounding rock masses
system is important content in the complex deformation of the large underground
excavating engineering.

6.1 General Description of Underground Powerhouse

The underground water diversion and power generation system is roughly divided
into diversion system, power plant system, and tailrace system. The detailed
components contain nine diversion tunnels, main power plant, nine busbar tunnels,
main transformer chamber, three surge chambers, and nine tailrace tunnels. The
sizes of main powerhouse are 388.5 × 31.3 × 74.5 m (length × width ×
height). The wall thickness between main power plant and transformer chambers is
43 m. The sizes of transformer chamber are 405.5 × 19.5 × 33.5 m. The wall
thickness between transformer and surge chambers is 27 m. The surge chambers are
arranged in a straight line and the sizes of surge chambers are, respectively,
67.0 × 21.5 × 89.5, 74.5 × 21.5 × 89.5, and 95.5 × 21.5 × 89.5 m.

The rock stratum is monoclinal structure, and stratigraphic occurrence is
345°−355°/NE<57°−60° in the surrounding rock. In the model of surrounding rock
block system, four major faults are F1, F5, F12, and F18, in which F5, F12, and F18
are arranged in parallel and F1 intersects with the other faults. The finite element
mesh of surrounding rock block system is shown in Fig. 4, and the finite element
mesh of the intersection of the major faults and the underground water diversion
and power generation system is shown in Fig. 5.

6.2 Stability Analysis of Surrounding Rock

The surrounding rock block system is composed of eight rock blocks divided by the
major faults. The constrain functions contain that the displacement of the surfaces
x = −176,176 are zero in the x direction, the displacement of the surfaces z = 0,
−554 are zero in the z direction and the displacement of the surfaces y = −246 are
zero in the x, y, z directions. The material constants of isotropic block are: the unit
weight γ = 26000 kN/m3, Young’s modulus E = 20 GPa, Poisson’s ratio
v = 0.24, the inner cohesion C = 0, and internal friction angle φ = 0.15o. The
length and cross-sectional area of linear elastic deformation rock blot are, respec-
tively, 30 m and 0.1 m2, and the Young’s modulus is E = 20 GPa.
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Since the faults have a great influence on the stability of the surrounding rock
block system of underground water diversion and power generation system, the
faults of surrounding rock at the across section of z = −390 m is shown in Fig. 6
and the distribution of anchor bar in specific section is shown in Fig. 7.

Fig. 4 Surrounding rock with element mesh

Fig. 5 Underground excavation and faults with element mesh
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The prestressed anchor bar becomes the main anchorage measure and prevents
the displacement of surrounding rock masses system. Suppose the finite element i in
block Ω1 and the finite element j in block Ω2 is connected by anchor bar, the node
submatrices in coefficient matrices –[G]if0 and −[G]jf0 are added into the corre-
sponding submatrices of the block system generalized force vector f.

− G½ �if0 → − N½ �Ti lx ly lz
� �T f0 → f i

− G½ �jf0 → − N½ �Tj lx ly lz
� �T f0 → f j

ð39Þ

When the anchor bar in different initial stress conditions is applied to reinforce
the surrounding rock masses system, the relative displacements of contact surfaces
between rock masses in the X, Y, Z axis directions are, respectively, shown in
Fig. 8a–c. The results indicate that the increasing initial stress condition of anchor
bar reduces the relative displacements, but the over-large initial stress condition of
rock masses increases the relative displacement of contact surfaces between rock

Fig. 6 Model of specific
across section in surrounding
rock masses system

Fig. 7 Distribution of anchor
bars in the across section
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masses. When the installation of anchor bar is shown in Fig. 8 and the initial stress
condition of anchor bar is 0.866 GPa, the relative displacements of contact surfaces
between rock masses are minimum. The minimum relative displacement is the most
stable surrounding rock of underground water diversion and power generation
system.

(a) Relative displacements of four major faults in the X axis direction

(b) Relative displacements of major faults in the Y axis direction

Fig. 8 Relative displacements of contact surfaces between rock masses in specific across section
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7 Conclusion

According to the complementary discontinuous deformation analysis, the study
proposes to extend the CDDA to solve three-dimensional block system and presents
the coupling method of 3D CDDA and FEM. The novel coupling method enhances
the ability of the displacement field and the stress field inside block and describes
the large displacement and large deformation between rock masses. The coupling
method of 3D CDDA-FEM eliminates the penalty factor and the open-close iter-
ation of the block system. The corresponding numerical model of anchor bar is
established to analyze the stability of anchor bar-surrounding rock masses system.

The simple numerical examples demonstrate that the 3D-CDDA can solve the
accurate displacement solutions of block system, and the coupling method of 3D
CDDA-FEM is feasible to precisely simulate the anchor bar-surrounding rock
masses system. The surrounding rock of underground water diversion and power
generation system demonstrates that the prestressed anchor bars prevent the large
displacement and large deformation of the surrounding rock masses system. So the
coupling method of 3D CDDA-FEM is available for the stability analysis of the
anchor bar-surrounding rock masses system, and the prestressed anchor bar
improves the stability of surrounding rock masses system.

Acknowledgements The authors would like to thank Dr. Liu Jun and Jiang Wei Maura of China
for providing the references about the theory and application of novel coupling of 3D CDDA and
FEM. The research is supported by the National Nature Science Foundation of China
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(c) Relative displacements of major faults in the Z axis direction

Fig. 8 (continued)
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Part IX
Computational Mechatronics



Analysis and Summarization
of a Mechanism Featuring Variable
Stiffness

Do Xuan Phu, Nguyen Quoc Hung and Ta Duc Huy

Abstract This study presents the analysis of a novel mechanism based on the
summarization of conventional models and gyroscope. The theoretical mechanism
employs a nonlinear spring and a cantilever beam. This system has only one fixed
support for the spring, and one non-contacted support to prevent the impact of
friction in operation for cantilever beam. Exciting forces apply to the structure,
including vertical and horizontal forces, and a moment. The cantilever beam is
symbolized as an Euler–Bernoulli beam which has nonlinear property. After for-
mulating, detections along the 2D coordinate are pointed out by using a nonlinear
approximate method as Adomian decomposition method. The results of this method
are compared with the numerical method. It is shown that the values of analysis and
the numerical simulation are consistent with small errors. In addition, vibrations of
the tip mass which is attached at the end of the beam are derived and simulated. The
results of the tip mass vibrations are harmonic responses which prove that vibra-
tions of any system always remain under harmonic conditions. This finding and the
mentioned results are the base for the development of the new mechanism for both
sensors and energy-harvesting devices.
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1 Introduction

Energy-harvesting devices have been rapidly developing following miniature
structure as small as possible. Symbolic developments for this trend are listed in
MEMS and NEMS sensors. To serve the structures in energy harvesting, new
compliant mechanisms must be invented which inherit advanced properties of
conventional models and expand new characteristics pursuing the requirements of
the design. There are numerous researches of design and analysis concerning
compliant mechanisms. Firstly, a relevant review of bistable system is given. What is
the bistable system?Why the bistable structure is applied? To answer these two main
questions, it is useful to give a revision on some background knowledge. Normally,
there always exists one stable point in a system which can be calculated with
mathematical tools. However, this position restricts the ability of the
energy-harvesting device in finding vibration frequencies that lie outside the range of
equilibrium. Hence, an added stable position aids the expansion of the capacity of
the system. This idea has been examined and applied in many studies. In the design
of the bistable structure, the characteristic of the spring component is important.
Hooke’s law is conventionally used to derive the governing equation, but it is not
recommended for use to find the equation for the bistable system. The spring must be
derived as nonlinear equation where its exponent follows a three-order [1]. The
governing equation is also called as Duffing equation. Hence, the structure using
Duffing equation is also named as Duffing oscillator. However, a dis-advanced
problem of bistable system is that it is difficult to view bistable points. A solution to
this problem is applying smart material such as piezoelectric for the control of
vibration and two permanent magnets to hold the positions of the system [2]. This
solution needs an energy supply for the control of vibration, and energy from the
permanent magnetic to the remaining two stable points. It is not difficult if it is a
large-scaled system, but the big problem arises if this is applied to the micro-scale
system. A general review of bistable system is also transparently given [3]. It can be
noticed that the transition of a bistable system could cause large amplitude in motion
and could dramatically increase the generated power. This advanced property and
the capacity of measurement across a broad-frequency bandwidth make the bistable
structure superior. Hence, the application of bistable characteristic to the proposed
design is necessary and encouraging. Beside the bistable structure, conventional
models which have only one stable point have always been intensively researched.
As aforementioned, the bistable mechanism can expand the bandwidth of mea-
surement. But it is not always applied because of commercial aspects, its arrange-
ments, and control. Especially in narrow bandwidth range, the bistable mechanism is
not suitable thus we can only resort to the use of conventional structures. There are
numerous studies of these structures and the derivation of their characteristic with
mathematical tools. In most cases, the Euler–Bernoulli beam and its equation are
used for modeling in the study of energy-harvesting systems. It was used in [4]
which applied in large deflection of the beam. To solve this equation, the authors
used the Cartesian method. It can be noted that the complexity of solving the
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equation is decreased by using two exciting forces including vertical force and
moment. Similarly, the model of Euler–Bernoulli beam is also used [5]. This study
focuses on large deflection with three exciting forces, including vertical force, axial
force, and moment. The study was as a synthesis research of methods for finding the
result of nonlinear equation such as shooting method, Adomian decomposition
method. It is emphasized that the structure in [5] is conventional model which is
commonly studied in energy harvesting. Another approach for Euler–Bernoulli
equation is the integral method which applied large deflection in [6]. The model [6]
is also conventional, and only the vertical force is applied. The Euler–Bernoulli
equation can be used for a curved beam with an axial load which is used in [7].
Comprehensive elliptic integral solution for large deflection was thoroughly studied
[8]. A planar beam flexure with a tip mass was studied [9] under large deflections. In
[9], Hamilton’s principle used to derive the governing equations, and there were
solved by using multiple time scales perturbation technique. The Timoshenko beam
theory was also used to derive the governing equation in [10]. The elliptic integral
method was comprehensively studied [11]. The Euler–Bernoulli beam theory has
been surveyed, and the elliptic method has been applied to analyze the cycles of
three equations such as angular, vertical, and axial deflections. Application of
piezoelectric material to the cantilever beam with the tip mass has been presented
[12]. This structure has been studied for its stiffness tunable energy harvester. A full
study of parametric response for the cantilever beam with a tip mass-based
Timoshenko beam theory has been studied [13]. It has been shown that an increase in
the tip mass would reduce the stable periodic region with a known excitation.
A simple method based on analysis of angular deflection of the cantilever beam has
been suggested [14]. This method is a predicted method and cannot be used in
complicated systems. Another mechanism should be noted in the design as a
gyroscope. This mechanism is designed using conventional model and can be
improved by applying the bistable system. It should be noted that the vibration
relating mass is also one of the most important to find for the understanding of the
gyroscope and then to use these properties to design another measurement. From the
above analysis, the conventional model with cantilever beam/or elastic element is
always a main structure for the design of energy harvest. The energy-harvesting
devices are concentrated in three groups such as the bistable system, the conven-
tional system, and the gyroscopes. To symbolize these models, the Euler–Bernoulli
equation is used and its boundary conditions vary following the required system. Its
dynamic parameters are found through many approaches such as Cartesian method
[4], elliptic integral method [7, 8, 11], predictive method [14], and approximate
method [5, 6, 9]. These tools are nonlinear approach hence they can find the exact
values of the system. Hence, the application of nonlinear tools to find the solutions
for the proposed model is useful to evaluate the operation before manufacturing. In
this study, the models of three groups of energy-harvesting are reassessed to derive a
new breakthrough model. This model also inherits the properties of the conventional
model and can be expanded to develop high-level models such as a gyroscope. These
characteristics are essential for new design of sensors and open new doors for the
exploitation of the potential of simple mechanisms.
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2 Configuration of the Proposed System

The configuration of the proposed system is depicted in Fig. 4. This configuration
includes a nonlinear spring and a cantilever beam with a tip mass. The weight of the
tip mass can be designed larger than the cantilever beam in this proposed system.
The support of the system is of non-contacted type which has objective to eliminate
friction. Hence, some solutions can be chosen for this support such as magnetic
devices, electric magnet coil, pointed bearing mount. To analyze the dynamical
responses, there are three exciting forces applied to the system, including vertical
force, horizontal or axial force, and a moment. Hence, the system is analyzed
according to the three forces to show a full-view of vibration of the system, which
differentiates itself from the previous studies in choosing one/or two exciting forces
for evaluation. A brief summary of operation of the system is given. When the
forces are applied, the cantilever beam is vibrated in two dimensions due to vertical
and horizontal/or axial vibrations. These vibrations are related and affect the sta-
bility of the system. It is noted that the proposed structure does not study the
angular velocity of the cantilever beam. Because of the vibrations, the tip mass
connected to the cantilever beam is also detected. In these vibrations, it is assumed
that the system is symmetric and there is no torsional phenomenon in the section of
the beam. In the next sections, the proposed system is derived into two cases: the
fixed and the flexible tip mass to find the equations.

3 Non-linear Analysis for the Fixed Tip Mass

In this section, the proposed model is derived based on nonlinear equation. The
proposed system is shown in Fig. 1, and its governing equation is obtained based
on Euler–Bernoulli equation. Firstly, the moment acting at any point (x, y) on the
proposed system is defined by:

Fig. 1 Configuration of the proposed system

980 D. X. Phu et al.



Mðx, yÞ=Fy x Lð Þ− xð Þ−Fx y Lð Þ− yð Þ+M0 ð1Þ

where L is the length of the cantilever (m), Fx is the axial force (N), Fy is the vertical
force (N), Lmax

y is the maximal defection following vertical direction, M0 is the
exciting moment (N.m), δx is the axial defection (m), x and y are the coordinates of
the beam. In this analysis, the angular deflection dθ of the cantilever is determined
with respect to the curvature ds of the beam. Using the Euler–Bernoulli moment–
curvature relationship, Eq. (1) following small curvature ds can be calculated as:

EI
dθ
ds

=Fy x Lð Þ− xð Þ−Fy y Lð Þ− yð Þ+M0 ð2Þ

where θ is the angular deflection (rad), E is the elastic modulus of cantilever
material N/m2, I is the inertial moment of cross section of the cantilever beam m4, y
is the vertical deflection (m), s is the position as a function of the curved deflection
of the beam. It is noted that x(L) is the axial position at the end of the cantilever.
Taking differentiation of (2), the Euler–Bernoulli moment–curvature relationship
can be written as:

EI
d2θ
ds2

=Fx
dy
ds

−Fy
dx
ds

ð3Þ

From Eq. (3), equations for vibration following the vertical and axial directions
are expressed as nonlinear equations:

dx
ds

= cos θð Þ, dy
ds

= sin θð Þ ð4Þ

Substituting (4) into (3), the Euler–Bernoulli moment–curvature relationship can
be rewritten as:

d2θ
ds2

=
1
EI

Fx sin θð Þ−Fy cos θð Þ� � ð5Þ

Equation (5) can be written as:

θ
dθ
dθ

=
1
EI

Fx sin θð Þ−Fy cos θð Þ� � ð6Þ

Integrating the left-hand side of (6) from θ sð Þ to θL = dθ
ds Lð Þ= M0

EI and the
right-hand side of (6) from θ sð Þ to θL = θ Lð Þ, the relation between angular deflec-
tion and the curvature can be found as follows:
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ZθL
θ

θdθ=
ZθL
θ

1
EI

Fx sin θð Þ−Fy cos θð Þ� �
dθ ð7Þ

1
2

dθ
ds

� �2

=
1
EI

−Fy sin θð Þ−Fx cos θð Þ� �
+Fy sin θLð Þ+Fx cos θLð Þ+ M2

0

2E2I2
ð8Þ

Equation (8) can now be written as:

dθ
ds

� �2

=
2
EI

β−Fy sin θð Þ−Fx cos θð Þ� � ð9Þ

where β=Fy sin θLð Þ+Fx cos θLð Þ+ M2
0

2E2I2. Hence, Eq. (8) can be rewritten as:

dθ
ds

=±

ffiffiffiffiffi
2
EI

r ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
β−Fy sin θð Þ−Fx cos θð Þ

q
ð10Þ

It can be derived from Eq. (10) as follows:

s=
Zs

0

ds=

ffiffiffiffiffi
EI
2

r Zθ sð Þ

θ 0ð Þ

dθffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
β−Fy sin θð Þ−Fx cos θð Þp ð11Þ

Using Eq. (11) at s = L, it obtains:

ffiffiffiffiffiffiffi
2L2

EI

r
=

ZθL

θ 0ð Þ

dθffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
β−Fy sin θð Þ−Fx cos θð Þp ð12Þ

Using non-dimensionless definitions, Eq. (12) is determined as:

ffiffiffi
2

p
=

ZθL

θ 0ð Þ

dθffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
β1 − αy sin θð Þ− αx cos θð Þp ð13Þ

where αx = FxL2

EI , αy =
FyL2

EI , β1 = αy sin θL − αx cos θL + 1
2m

2,m= M0L
EI . To find gov-

erned equation of vibration x(s), Eq. (10) is modified as:

dθ
ds

=
dθ
dx

dx
ds

=

ffiffiffiffiffi
2
EI

r ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
β−Fy sin θð Þ−Fx cos θð Þ

q
ð14Þ
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Using (4), Eq. (14) is expressed as:

x sð Þ
L

=
1ffiffiffi
2

p
Zθ sð Þ

θ 0ð Þ

cos θdθffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
β− αy sin θ− αx cos θ

p ð15Þ

Once again, the Eq. (10) is used for deriving the vibration y(s), and it is modified
as follows:

dθ
ds

=
dθ
dy

dy
ds

=

ffiffiffiffiffi
2
EI

r ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
β−Fy sin θ−Fx cos θ

p ð16Þ

Using (4), Eq. (16) is written as:

y
L
=

1ffiffiffi
2

p
Zθ sð Þ

θ 0ð Þ

sin θdθffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
β− αy sin θ− αx cos θ

p ð17Þ

Finally, using Eqs. (1), (13), (15), and (17), values such as Fx, Fy, and M(x, y)
are found. Their summarization is expressed as follows:

ffiffiffi
2

p
=

RθL
θ 0ð Þ

dθffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
β1 − αy sin θð Þ− αx cos θð Þ

p , x sð Þ
L = 1ffiffi

2
p

Rθ sð Þ

θ 0ð Þ
cos θdθffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

β− αy sin θ−αx cos θ
p ,

y
L = 1ffiffi

2
p

Rθ sð Þ

θ 0ð Þ
sin θdθffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

β− αy sin θ− αx cos θ
p

ð18Þ

Equation (18) is the governing equation of the system. To solve this equation,
there are numerous methods. In this study, the Adomian decomposition method
(ADM) is used to find the approximate solutions. The equation group (18) is
nonlinear and can be solved by applying approximate method. To simplify, Eq. (5)
is used. Integrating (5) twice with respect to s:

θ sð Þ= θ 0ð Þ+ θ Lð Þs+
Z s

0

Z L

t
N zð Þdzdt ð19Þ

where N θð Þ= − 1
EI Fx sin θ−Fy cos θ
� �

. Eq. (19) can be summarized as follows:

θ sð Þ= θ 0ð Þ+ γs+ℓ− 1 ∑
∞

n=0
An

� �
ð20Þ
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where An are Adomian polynomials, γ = M0
EI . Set θ sð Þ= ∑

∞

n=0
θn sð Þ. Hence, the

components θn sð Þ can be computed by applying the recursive relation:

θ0 = θ 0ð Þ+ γs

θn =ℓ− 1 An− 1ð Þ ð21Þ

where Adomian polynomials for
f θð Þ= − 1

EI Fx sin θð Þ−Fy cos θð Þ� �
= − 1

L2 αx sin θð Þ− αy cos θð Þ� �
are given by:

A0 = f θ0ð Þ= − 1
L2 αx sin θ0 − αy cos θ0
� �

A1 = θ1 d
dθ0

f θ0ð Þ½ �
A2 = θ2

df θ0ð Þ
dθ0

+ θ21
2!

d2f θ0ð Þ
dθ20

A3 = θ3
df θ0ð Þ
dθ0

+ θ1θ2
d2f θ0ð Þ
dθ20

+ θ30
3!

d3f θ0ð Þ
dθ30

ð22Þ

Substituting (22) into (20), the results of (20) are found as follows:

θ0 sð Þ= γs
θ1 sð Þ= − 1

2L2 s − 2L+ sð Þ αy cos γsð Þ− αx sin γsð Þ� �� �
θ2 sð Þ= − 1

4L2 s2 − 2L+ sð Þ2 αy cos γsð Þ− αx sin γsð Þ� �
αy sin γsð Þ+ αx cos γsð Þ� �h i

θ3 sð Þ= − 1
32L6 − αy cos γsð Þ+ αx sin γsð Þ� �

α2x + α2y +3 α2x − α2y

	 

cos 2γsð Þ+6αxαy sin 2γsð Þ

h i
ð23Þ

Therefore, the approximate result of θ sð Þ is expressed as:

θ sð Þ= θ0 sð Þ+ θ1 sð Þ+ θ2 sð Þ+ θ3 sð Þ ð24Þ

Using (4) and (22), the positions of x(s) and y(s) are calculated as follows:

x sð Þ= s−
αy +m
� �2s3

6L2
+

αy +m
� �

αy +2αxαy +2mαx
� �

s4

8L3
ð25Þ

y sð Þ= 1
2L

αy +m
� �

s2 −
αy +2αxαy +2mαx
� �

s3

6L2
ð26Þ

To find the values of forces following vertical and horizontal vibrations, the
relations of αx and αy in (25) and (26) must be found. Equations (23) and (24) at the
end of cantilever beam s = L are determined as:
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Δθ Lð Þ= 1
2
αy +m− αx αy +m

� � ð27Þ

Δx Lð Þ=L−
1
6
L αy +m
� �2 + 1

8
L αy +m
� �

αy +2αxαy +2αxm
� � ð28Þ

Δy Lð Þ= 1
2
L αy +m
� �

−
1
6
L αy +2αxαy +2αxm
� � ð29Þ

4 Nonlinear Analysis of the Rotating Tip Mass

In this section, the vibration of the tip mass is analyzed based on the results of the
former section. Using (27), two Eqs. (28) and (29) can be written as follows:

Δθ Lð Þ= −
1
2
αy + γmL−

1
2
αmx γmL ð30Þ

Δx Lð Þ=L−
1
6
L αmy − γmL
	 
2

ð31Þ

Δy Lð Þ= 1
24

αmy − 8+ αmy

	 
2
+ 12− 5αmx − 3 αmy

	 
2
γmL+3αmy γ

2
mL− γ3mL

3
� �� �� �

ð32Þ

Solving three Eqs. (30), (31), and (32), the relations of external forces γm, α
m
x ,

and αmy applying to the tip mass with internal parameters of the system are
expressed as:

γm =
1
2L6

− 48ΔyL4 + 20ΔθL5±3
ffiffiffi
6

p
5Δx+3Lð ÞL4

h i
ð33Þ

αmx =∓
2

27L5
±9ΔxL4 + L4

ffiffiffi
6

p
− 6Δy+ΔθLð Þ

h i
ð34Þ

αmy =∓
1
L5

∓24ΔyL4±10ΔθL5 + 4L4
ffiffiffi
6

p
2Δx+Lð Þ

h i
ð35Þ

It is noted that values of γm, α
m
x , and αmy are expanded by using Maclaurin series

following Δθ, Δx, and Δy. From these values, values of the moment Mm, the
vertical force Fm

x , and the horizontal force Fm
y are found. For the simplicity of

finding vibrations of the tip mass, conventional method such as Castigliano’s
method is used [14]. This method [14] is applied to the system based on the
cantilever beam with an external exciting force/or moment. Hence, maximal values
of moment, the vertical force, and the axial force of the tip mass are found as:
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Mm =
2EI
L2

Δy,Fm
x = −

AE
L

Δx,Fm
y = −

EI
L3

Δy ð36Þ

The variations of positions of the rotating tip mass are determined as:

θ ̇=
2M0

mDR2 ,X
̈=

Fx

mD
,Y ̈=

Fy

mD
ð37Þ

where mD is the mass of the tip mass (kg), R is the radius of the tip mass.

5 Simulation Results and Discussion

5.1 Simulation Results for the Fixed Tip Mass System

After formulating, the proposed system is simulated through two methods:
numerical method and Adomian method as shown in the above analysis. The
simulations are carried out with two cases: change of axial load Fx and vertical load
Fy. The results of the first simulation with varied values of Fx are depicted in Fig. 2.
In this simulation, small values of Fx, Fy, and M0 are used. It is noted that it is
useful to evaluate responses of this system in small exciting force Fx in three cases:
(1) Fx = 10−4 N, Fy = 10−3 N, M0 = 10−1 Nm, (2)Fx = 10−2 N, Fy = 10−3 N,

Fig. 2 Simulation results with variation of Fx
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M0 = 10−1 Nm, (3) Fx = 1 N, Fy = 10−3 N, M0 = 10−1 Nm. It is noted that the
cantilever beam position follows the arc length in vibration, and values of two
vibrations as vertical force Fy and moment M0 are fixed. The angular deflection of
three cases is shown in Fig. 2a. It is shown that the force Fx increases at maximal
values are 2.26 × 10−2 (numerical method)/2.26 × 10−2 rad (approximate
method), 2.26 × 10−2 rad/2.25 × 10−2 rad, 2.22 × 10−2 rad/2.05 × 10−2 rad for
case (1), case (2), and case (3), respectively. Besides, the approximate method is
also not stable compared with the numerical method. Responses of horizontal and
vertical deflections are shown in Fig. 2c–d. In Fig. 2b and c, the approximate
method shows its outstanding calculation compared with the numerical method.
Horizontal deflection of three cases is similar, and there are no changes after
varying the magnitude of axial force. Variation of horizontal deflection is linear
with the position of the cantilever beam. The maximal values for horizontal
deflection are 0.1998 m/0.2 m for three cases. The maximal values for vertical
deflection are 2.26 × 10−3 m/2.25 × 10−3 m, 2.26 × 10−3 m/2.25 × 10−3 m, 2.24
× 10−3 m/2.25 × 10−3 m for case (1), case (2), and case (3), respectively.
Summarization of two deflections is vertical and horizontal deflections depicted in
Fig. 2d. In second simulation, it is performed following various vertical force Fy.
Figure 3 shows results of variation of vertical exciting force Fy in three cases:
(1) Fx = 10−4 N, Fy = 10−3 N, M0 = 10−1 Nm, (2)Fx = 10−4 N, Fy = 10−1 N,

Fig. 3 Simulation results with variation of Fy
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M0 = 10−1 Nm, (3) Fx =
10−4 N, Fy = 10−2 N, M0 = 10−1 Nm. The angular

deflection of three cases is shown in Fig. 3a. It is shown that if the force Fy

increases, the angular deflection is also increases. In addition, the angular deflection
is also not stable compared with the numerical method. Values of these results at
maximal values are 2.2552 × 10−2 rad (numerical method)/2.2552 × 10−2 rad
(approximate method), 2.0319 × 10−2 rad/2.0317.10−2 rad, 2.2349 × 10−2 rad/
2.2349 × 10−2 rad for case (1), case (2), and case (3), respectively. Responses of
horizontal and vertical deflection are shown in Fig. 3c–d. In Fig. 3b, the approxi-
mate method shows its outstanding calculation compared with numerical method. It
is shown that the vertical force is not affected by the horizontal deflection, and
variation of horizontal deflection is linear with the position of the cantilever beam.
The maximal values for horizontal deflection are 0.19983 m/0.19983 m,
0.19985 m/0.19987 m, 0.19983 m/0.19983 m for case (1), case (2), and case (3),
respectively. In Fig. 3c, vertical deflection of three cases is depicted. The affection
of vertical force to its responses is not stable. As the vertical force increases, the
calculation performance of approximate method decreases. The maximal values for
vertical deflection are 2.26.10−3 m/2.25 × 10−3 m, 2.11 × 10−3 m/1.81 × 10−3 m,
2.24 × 10−3 m/2.21 × 10−3 m for case (1), case (2), and case (3), respectively.
Summarization of two deflections of vertical and horizontal deflection is depicted in
Fig. 3d. The above results show that responses are found through approximate
method having small errors compared with the numerical method. Besides, the
vibrations of the proposed system are stable, the values of deflection increase with
respect to the cantilever position. These vibrations also show that there are similarly
shaped as shown in the conventional method. This point proves that the proposed
system has equivalent properties, and then can be applied in the design of
energy-harvesting devices. It is noted that the breakthrough idea of the new
mechanism guarantees flexible and efficient operation, erases the support of fixed
end in vibration control.

5.2 Simulation Results for the Rotating Tip Mass System

The proposed system is continually simulated for the tip mass at the end of the
cantilever. In this case, it is provided that the connection between the tip mass and
the cantilever is flexible. Then the vibrations of the tip mass are separated from the
beam. From the governing equations of the tip mass, simulation results are shown
in Fig. 4.

The parameters for this simulation are similar to the first case of Fx. It is shown
that all responses of the tip mass are harmonic vibrations. Because of vibration of
the cantilever, the angular deflection of the tip mass is also harmonic. The axial
deflection of the tip mass depicts clearly the extract and stretch at the end of the
cantilever. This is different from the responses of horizontal deflection as shown in
Figs. 2 and 3. Besides, the vertical vibration is also harmonic. These results show
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that the vibrations of the tip mass are always different from the cantilever. These
vibrations also suggest a new solution for controlling the system. Instead of con-
trolling the cantilever, the system can be controlled by adjusting the vibrations of
the tip mass. This method is a purely mechanical model, and there is no involve-
ment of external energy. Hence, this solution can save energy, retain its vibration
based on the exciting vibrations.

6 Conclusion

The study has presented a new design of compliant mechanism with a nonlinear
spring and a cantilever beam. The proposed model is analyzed based on Euler–
Bernoulli equation with three external forces such as vertical, horizontal forces and
moment. After formulating, forces and moment of the rotating tip mass system are
continuing to be derived based on the former Euler–Bernoulli equation. In these
analyses, the nonlinear equations are solved by applying the nonlinear approaches
such as Adomian decomposition method.

The results of the analysis are simulated with the numerical method. It is shown
that the results are good and its performances can satisfy the requirements of the
proposed system. The results show that the proposed system has the properties of

Fig. 4 Simulation results with variation of Fx
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the conventional model which is the base for the development of the structure of
bistable system energy-harvesting devices, compliant of robotics, MEMS devices.
In addition, this study also finds a new method which can control the system
through mechanical mechanism without external energy. This exploitation is
important in the mechanism where saving energy is crucially necessary. In the
future, this model could be manufactured and could estimate its operation in a
specific system.
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Dynamic Analysis
of Hydraulic–Mechanical System
Using Proportional Valve

D. T. Luan, L. Q. Ngoc and P. H. Hoang

Abstract Power hydraulic systems are used very often in industry. Usually, the
stroke of piston—a hydraulic actuator is controlled in on–off manner using tradi-
tional valves and start/stop switches on the moving way. Another characteristic of
traditional hydraulic system is suitable with static load. For applying dynamic load,
the behavior of system is not properly good. Nowadays, hydraulic systems with
proportional valve are used commonly. Proportional valve allows controlling for a
variable stroke of piston. It also allows the system work with variable load. This
paper presents the dynamic analysis of a hydraulic–mechanical system using pro-
portional directional valve. The system dynamics is evaluated when the load
changes in linear manner. A mathematical model is established to serve for
determining dynamic characteristics of the system. PID control is also used in the
simulation to enhance the integrity of the system.

Keywords Dynamics ⋅ Hydraulic system ⋅ Proportional valve

1 Introduction

Hydraulic systems are widely in industry. Providing powerful force and having
small size are the advantages of hydraulic system in comparative with electric
systems. Proportional valves are significantly improved in frequency response,
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accuracy, feedback system, and dead band. Those improvements reduce the dis-
tinction between servo valves and proportional valves. Proportional valves can
control actuators with more flexibility and lower cost than servo valves. Therefore,
proportional valves are suitable to industrial applications. The only difficulty is the
control of hydraulic systems with instability.

A lot of studies on proportional valves focus on the dead point of valves [1],
dynamic analysis of coil of proportional valves [2], dynamic response of valve [3],
dynamic analysis of fluid flow via valves [4]. Those studies just concentrate on the
characteristics of proportional valves without any interaction with actuators,
hydraulic–mechanical systems.

There are also some studies on hydraulic systems using proportional valves such
as the theoretical and experimental analyses of symmetric-two-cylinder systems
using proportional valves [5], study on the dynamical properties of hydraulic power
systems [6, 7]. In these studies, the mathematical models are simplified with
assumption of linearization of the hydraulic system. Actually, hydraulic systems
work with nonlinear characteristics; therefore, the linearization is only accepted
within a certain range, and this assumption reduces the authenticity of systems.

The control algorithms of hydraulic systems using proportional valves are
recently studied. Sliding mode control is applied to a lifting arm with one cylinder
[8]. Adaptive control is used for control fluid flow rate in a proportional valve [9].
Mino fuzzy is applied to force and position control of hydraulic cylinder [10]. PID
control is also used to improve the control quality of hydraulic cylinder using
proportional valve [11]. Generally, recent studies are performed with constant loads
rather than variable load as in real systems. The studies also ignored the leakage,
elasticity of fluid, and damping of system.

This paper presents a study of a hydraulic–mechanical system using a propor-
tional valve and adhering to the real characteristics of the system in order to
accurately describe the system response. Firstly, the differential equations of the
dynamic hydraulic system with variable load are established. The equations rep-
resent the relationship between flow rate and pressure, the interaction of the valve
with the hydraulic cylinder, the variable load causing system instability. The
mathematical model is simulated using the MATLAB– Simulink to compare the
position response of the cylinder according to the working time and the displace-
ment of the cylinder, with a PID controller. The experiment is performed to validate
the control. Research has clarified the dynamics characteristics of hydraulic–me-
chanical systems with linear change loads.

This study is the first step in studies of vibrator power using proportional valve
with the accuracy ± 0.2 mm to test vehicle damping systems or vibration isolation
systems. It is necessary to reduce cost of systems.
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2 Experimental System

Figure 1 shows the schema of hydraulic–mechanical systems using proportional
valve. The mechanical system includes a linear spring and a slider, which causes
varied load. Hydraulic system is a linear cylinder actuated by a proportional
directional control valve and controlled by a displacement transducer and a PID
controller. The maximum flow rate of pump is set at 32 l/min at rotating speed of
1500 rpm. The pump pressure is set at 350 bar. The proportional valve (PONAR—
made by the Netherlands) is a directional control valve with four ways and three
positive overlaps. Table 1 describes technical characteristics of the valve. The areas
of piston head and piston rod side correspondingly are 0.001963 m2 và 0.001563
m2. Maximum stroke of cylinder is 0.25 m. The variable resistor displacement
transducer has resolution 0.01 kΩ/mm and accuracy ±0.05%.

3 Modeling of Dynamic System

The differential equations of the dynamic hydraulic system without considering
friction are:

Mx ̈p +Blxxṗ + klx.xp =P1A1 −P2A2 ð1Þ

where

M total mass of piston and load,
xp piston displacement,
Blx damping coefficient,

Fig. 1 Schema of the
hydraulic–mechanical system

Dynamic Analysis of Hydraulic–Mechanical System … 993



klx spring stiffness,
A1, A2 areas of the two chambers of the cylinder,
P1, P2 pressures inside two chambers of the cylinder.

Differentiating Eq. 1, we have:

Mx ̈p +Blxxp̈ + klx.xv̇ = Ṗ1A1 − Ṗ2A2 ð2Þ

where

Ṗ1 =
βe
V1

Q1 −A1
dxp
dt

� �

Ṗ2 =
βe
V2

A2
dxp
dt

−Q2

� � ð3Þ

and

V1 =V0 +A1xp total volume of the first chamber,
V2 =V0 +A2 L0 − xp

� �
total volume of the second chamber,

V0 and L0 dead volume and maximum stroke,
βe effective bulk modulus,
Q1 and Q2 fluid flows at head side and rod side.

Flow rate of the valve can be considered as

Q1 =Cdω xvj j− εð Þ
ffiffiffiffiffiffiffiffiffiffi
2
ΔP
ρ

s
ΔP=

Ps −P1, xv ≥ 0

P1 −Pr, xv <0

�

Q2 =Cdω xvj j− εð Þ
ffiffiffiffiffiffiffiffiffiffi
2
ΔP
ρ

s
ΔP=

P2 −Pr, xv ≥ 0

Ps −P2, xv <0

� ð4Þ

where

Cd discharge coefficient,
ω width of the valve port, ω= πD, with D—diameter of the valve port,
xv spool displacement,
ε overlapping length,
Ps supply pressure from the hydraulic pump,

Table 1 Specification of the
proportional directional valve

Rated pressure 315 bar
Rated flow 32 lpm
Rated voltage 24 V
Rated current 1.5 A
Resistance of max hot solenoid coil 8.1 Ω
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Pr tank returned pressure

Assume that the displacement of spool xv is proportional to the controlling
current i in the coil of proportional valve

xv = kii ð5Þ

When xv > ε≥ 0, from Eqs. 4 and 5, we have

Q1 =Cdω kii− εð Þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2
Ps −P1

ρ

s

Q2 =Cdω kii− εð Þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2
P2 −Pr

ρ

s ð6Þ

Substituting Eqs. 6 and 3 into Eq. 2, we have

Mxp̈ = −Blxxp̈ − klxxṗ −
βe
V1

A2
1xṗ −

βe
V2

A2
2xṗ +Cdω kii− εð Þ βeA1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2 Ps −P1ð Þp

V1
ffiffiffi
ρ

p +
βeA2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2 P2 −Prð Þp
V2

ffiffiffi
ρ

p
 !

ð7Þ

Change:

y1 = xp
y2 = xṗ
y3 = xp̈

ð8Þ

We have:

y ̇1 = y2
y ̇2 = y3

y ̇3 = x ̈p = − Blx
M y3 − Klx

M + βe
MV1

A2
1 +

βe
MV2

A2
2

� 	
y2 + Cdω

M
βeA1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2 Ps −P1ð Þ

p
V1
ffiffi
ρ

p +
βeA2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2 P2 −Prð Þ

p
V2
ffiffi
ρ

p
� �

kii− εð Þ

8>><
>>:

ð9Þ

The state-space equation of the system is

y ̇=Ay+Bu

where y=
y1̇
y2̇
y3̇

2
4

3
5

and
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A=
0 1 0
0 0 1
0 − Klx

M + βe
MV1

A2
1 +

βe
MV2

A2
2

� 	
− BV

M

2
4

3
5;B=

0
0

Cdωβe
M

A1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2 Ps −P1ð Þ

p
V1
ffiffi
ρ
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ẏ3

2
4

3
5=

0 1 0
0 0 1
0 − Klx

M + βe
MV1

A2
1 +

βe
MV2

A2
2

� 	
− Blx

M

2
4

3
5 y1

y2
y3

2
4

3
5+

0
0

Cdω
M

βeA1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2 Ps −P1ð Þ

p
V1
ffiffi
ρ

p +
βeA2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2 P2 −Prð Þ

p
V2
ffiffi
ρ

p
� �

2
64

3
75 kii− εð Þ

ð10Þ

The schema of PID control system is:
See Fig. 2 and Table 2

Fig. 2 Schema of position control system with PID controller

Table 2 System parameters

N.O Name Symbol Measure Value

1 Head side area of cylinder A1 m2 0.0019625
2 Rod side area of cylinder A2 m2 0.0015826
3 Dead volume of cylinder V0 m3 2 × 10−4

4 Supply pressure Ps N/m2 15 × 106

5 Tank returned pressure Pr N/m2 0
6 Total load M kg 10.88
7 Gain of proportional valve Ki m/mA 0.55
8 Spring stiffness Klx N/m 8640
9 Effective bulk modulus βe N/m5 108

10 Stroke of cylinder L0 m 0.25
11 Damping coefficient of spring Blx N.s/m 3500
12 Overlapping length ε m 1 × 10−3

13 Diameter of the valve port D m 7.26 × 10−3

14 Discharge coefficient Cd 0.63
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4 Result and Discussion

A. Simulation

The mathematical model is simulated using MATLAB–Simulink R2014a Fig. 2.
The solution method is Ode45 (Dormand–Prince). The parameters used in the

system are given in Table 2. The parameters Kp, Ki, Kd are chosen based on the
trial and error method.

In Figs. 3 and 4, the system responds the displacement from 50 to 150 mm with
settling time about 8 s. In Fig. 5, the system responds from position of 5 to 250 mm
with a settling time more than 9 s and oscillation at 250 mm. Input signal of Figs. 4
and 5 is a step signal. The simulation results show that the system has a short
transient response time, however, with a long settling time and an error less than ±
0.2 mm.

In Fig. 6, pulse input has amplitude 200 mm, period 8 s and pulse width 50% of
period. This figure shows that error of retract stroke is larger than extend stroke.
Figure 7 illustrates response with since signal which has frequency 0.628 rad/s and
amplitude 80 mm, it is clear to see that simulated signal is later than designed
signal.

Fig. 3 System with PID controller

Fig. 4 Response of the system with kp = 0.96, ki = 0.005, kd = 0.01
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B. Experiment

Experiments are conducted to validate the analytical results obtained in the
simulation. The displacement and controller parameters used in experiments are the
same with the ones used in simulation. The experiment uses the PCI card Ni-6221
and computer to control the proportional valve. Figure 7 is the setup of the
experiment. Experimental results show that the settling time of 2 s (Fig. 8) and 4 s
in Fig. 9. Through Figs. 8, 9, and 10, transient response is faster than in simulation
(settling time is shorter). In Fig. 11, the output signal of experimental system is the
same phase with the input signal. However, the system fluctuation is higher than
simulation system about ± 0.5 mm Fig. 12.

Fig. 5 Response of the system with kp = 0.95, ki = 0.0009, kd = 0.01

Fig. 6 Response of the system with kp = 0.95, ki = 0.0009, kd = 0.01
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Fig. 7 Response of the system with kp = 0.95, ki = 0.0009, kd = 0.01

Fig. 8 Experimental system

Fig. 9 Response of the system with kp = 0.96, ki = 0.005, kd = 0.01
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Fig. 10 Response of the system with kp = 0.95, ki = 0.0009, kd = 0.01

Fig. 11 Response of the system with kp = 0.95, ki = 0.0009, kd = 0.01

Fig. 12 Response of the system with kp = 0.95, ki = 0.0009, kd = 0.01
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5 Conclusions

In this study, the mathematical model of hydraulic–mechanical systems using
proportional valve with linear variable load is simulated on a Matlab—Simulink.
The system’s displacement is controlled using a PID controller. The mathematical
model and its simulation are performed without considering the friction. PID
parameters obtained from experiments. The experiment of the system shows that
the established mathematical model together with its simulation can describe the
dynamic characteristics and responses of the systems. For further studies and for
application, the speed and force controls are also need to be studied for a total
research in this matter.
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A Tooth Profile Design for Roots Rotors
of Vacuum Pump

V. Tran-The and T. Do-Anh

Abstract In traditional tooth designs of the vacuum pump, the circular, cycloidal
curves and their combination are usually used for generating the tooth profiles of
roots rotor. However, to increase efficiency and to reduce vibration and noise for the
pump, a novel tooth profile for the roots rotor of a vacuum pump is proposed, which
are comprised of five different segments that are generated by the curves in order:
circular arc, extended epicycloid, involute, extended hypocycloidal, and conjugated
circular arc. A numeral example is presented to evaluate and compare the perfor-
mance (volumetric efficiency and seal line length) for the proposed tooth profile and
a traditional tooth design of the vacuum pump (cycloidal-cycloidal tooth profile)
with considering to the number of rotor lobes. It reveals that the proposed tooth
profile provides a much advantage than the traditional tooth profile.

Keywords Tooth profile ⋅ Volumetric efficiency ⋅ Seal line length
Roots rotor ⋅ Vacuum pump

1 Introduction

In the operating process of a pump, the tooth profile of roots rotor (lobe pump) is an
important factor for improving the performance of the vacuum pump. It permits the
roots rotors to remain meshing with each other. Number of rotor lobes of a pump
usually is two, three, or four lobes, and they are used for carrying the fluid. Roots
pumps are used in wide range of the life and industrial applications such as the
food, medicine, and biotechnology. In addition, they can be able to work with
various materials, including low viscosity fluids such as water, very high viscosity
fluids such as oil, and even solids. In this paper, a new tooth profile design method
is proposed based on the combination of the different traditional curves such as
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circular arc, extended epicycloid, and involute curve. In particular, higher area
efficiencies are obtained compared to the traditional cycloidal curve design.

The tooth profile design for roots rotor of vacuum pump has received much
attention by many researchers. Firstly, Litvin and Fuentes [1] and Tsay [2] proposed
a geometric design for tooth profile of a rotor with two lobes using a single circular
arc. Meanwhile, a new tooth profile for rotor is developed by combining circular
arcs and a conjugated epicycloidal curve [3]. Fang [4] patented an addendum and a
dedendum portions for the tooth profiles of rotor by comprising four circular arcs
that can improve area efficiency of a vacuum pump. Subsequently, the tooth profile
of the rotor is developed with the combination of five circular arcs by Wang et al.
[5]. Previously, Niimura et al. [6] patented an addendum tooth profile consisted a
circular arc and an involute to increase pump efficiency. More lately, an extended
cycloid curve with a variable trochoid ratio is applied to improve pump perfor-
mance by Hwang and Hsieh [7, 8]. Kang et al. [9]; Kang [10] developed a new lobe
pump rotor profile used circular and epicycloidal curves that can significantly
improve pump performance. Besides, a dynamic mesh method is proposed to
provide factors affecting on the performance of lobe pumps. A lobe profile design
of rotor consisting of a hypocycloid and epicycloid and a manufacturing method are
presented by Chiu [11]. More recently, Shujun et al. [12] presented a tooth profile
design of rotor by modifying the traditional involute profile and obtains a new
involute profile for improving the efficiency of vacuum pump.

This paper proposes a novel tooth profile for the roots rotor of a vacuum pump
that is composed of five curves in order circular arc, extended epicycloid, involute,
extended hypocycloidal, and conjugated circular arc (CEIEC tooth profile).
Mathematical models for conventional and proposed tooth profiles of the roots rotor
are also established. A numeral example is presented to illustrate and verify the
merits of the proposed roots rotor. The analytical results reveal that the performance
produced by proposed roots rotor is higher than that of traditional roots rotor.

2 Mathematical Model for Tooth Profiles of Roots Rotor

2.1 Mathematical Model for Tooth Profile
of the Conventional Roots Rotor

The generation schematic for generating the cycloid curve is shown in Fig. 1. The
tooth profile of roots rotor is comprised of two cycloid curves: addendum portion

δð1Þ1 and dedendum portion δð1Þ2 , as shown in Fig. 2. According to Fig. 1, the

position vector and unit normal vector for the addendum profile of roots rotor δð1Þ1
are represented in coordinate system Scðxc, yc, zcÞ as follows
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Fig. 1 Generation schematic for generating the cycloid curve

Fig. 2 Conjugated coordinate systems of the CC roots rotors
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rð1Þc ðλÞ= xð1Þc ðλÞ, yð1Þc ðλÞ, 1
h iT

= rbðλ− sin λÞ, rbð1− cos λÞ, 1½ �T , ð1Þ

nð1Þc =
Nð1Þ

cffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Nð1Þ

c .Nð1Þ
c

q , Nð1Þ
c =

∂rð1Þc

∂λ
× k= sin λ, rbð1− cos λÞ, 1½ �T ð2Þ

where rb is the radius of the rolling circle and λ is the angular parameter of the
rolling circle.

The position vector and unit normal vector of the addendum portion can be
presented in coordinate system Soðxo, yo, zoÞ as follows:

rð1Þo ðλÞ=Moc ⋅ rð1Þc ðλÞ, ð3Þ

nð1Þo ðλÞ=Moc ⋅ nð1Þc ðλÞ. ð4Þ

The dedendum portion, δð2Þ2 , is conjugate to the meshing addendum curve, δð1Þ1 ,
as shown in Fig. 2. By applying the homogeneous coordinate transformation matrix
equation from Soðxo, yo, zoÞ to Spðxp, yp, zpÞ, the position vector and unit normal
vector of the addendum curves can be represented in coordinate system Sp as
follows:

rð2Þp ðλ,ψÞ=MpoðψÞ ⋅ rð1Þo ðλÞ, ð5Þ

nð2Þp ðλ,ψÞ=MpoðψÞ ⋅ nð1Þo ðλÞ, ð6Þ

where ψ is the rotational angle of two rotors and Ec =2.rp is the center distance
between two rotors, as shown in Fig. 2.

The equation of meshing between the addendum curves and conjugated
dedendum curves can be obtained as

f1 = nð2Þp
∂rð2Þp ðλ,ψÞ

∂ψ
= nð2Þp

∂ xð2Þp ðλ,ψÞ, yð2Þp ðλ,ψÞ, zð2Þp ðλ,ψÞ
h i

∂ψ
=0, ð7Þ

2.2 Mathematical Model for Tooth Profile of the Proposed
Roots Rotor

The tooth profile of roots rotor is comprised of five different curves, as shown in
Fig. 3. Wherein tooth profile is the axially symmetrical curves. Therefore, only
one-half of the tooth profile requires definition. The tip of the roots rotor AB is the
circular arc curve and its center coinciding with the rotation center of rotor, BC is
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the extended epicycloid curve, CD is the involute curve, DE is the extended
hypocycloidal curve, and EF is the circular arc curve. The position vector and unit
normal vector of the tooth profile of roots rotor are represented in coordinate system
S1 as follows:

The top land of the proposed rotor profile is a circular arc with its center
coinciding with the center of rotation. Therefore, the gap between the top land of
the rotor and the wall of the chamber turns into a long and narrow path, which
provides better gas sealing and wider inlet opening. The position vector and unit
normal vector of the tooth profile for circular arc curve AB as:

rðABÞ1 = xðABÞ1 , yðABÞ1 , 1
h iT

= a1 + r1 sin θ, b1 + r1 cos θ, 1½ �T , ð8Þ

nðABÞ1 = nðABÞx1 , nðABÞy1 , 1
h iT

= cos θ, − sin θ, 1½ �T , ð9Þ

where r1 is the radius of the circular arc, r1 = ra, ra is the outer radius of roots rotors,
ða1, b1Þ are the center of the circular arc AB represented in coordinate system S1 and
coinciding with the rotation center of rotor, ða1, b1Þ= ð0, 0Þ. So the curvature dif-
ference between the tip of the rotor and the wall of the chamber can be eliminated.
And θ is the angular parameter of the circular arc, 0≤ θ≥ θ1.

The generation schematic for generating the extended epicycloid curve is shown
in Fig. 4. The position vector and unit normal vector of the extended epicycloid
curve BC can be presented in coordinate system Sdðxd , yd, zdÞ as follows:

Fig. 3 Tooth profile of the proposed roots rotors
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rðBCÞd = xðBCÞd , yðBCÞd , 1
h iT

= ðrp + reÞ cos τ+ d cosðτ+ τeÞ, ðrp + reÞ sin τ+ d sinðτ+ τeÞ, 1
� �T ,

ð10Þ

nðBCÞd = nðBCÞxd , nðBCÞyd , 1
h iT

=
NðBCÞ

dffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
NðBCÞ

d .NðBCÞ
d

q , NðBCÞ
d =

∂rðBCÞd

∂τ
× k, ð11Þ

where rp is the radius of the basic circle, re is the radius of the rolling circle, τ is the
angular parameter of the basic circle, τ1 ≤ τ≥ τ2 and τe is the angular parameter of
the rolling circle, τe =

rp
re
τ, and d is the distance between point M on the rolling

circle radius and the center of the rolling circle Oi (called eccentric throw). The
eccentric throw, d, can be determined by equation as follows

d= re + ðra − rp − 2re + gaÞκ. ð12Þ

where ra is the outer radius of the roots rotor, ga is the normal gap between the rotor
and chamber, and κ is the function of the trochoid ratio that is defined as a second
order polynomial of the angular parameter of the basic circle τ, κ=1− μ.τ2, with μ
is an extended cycloid coefficient.

Fig. 4 Generation schematic for generating the extended epicycloid curve
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The position vector and unit normal vector of the extended epicycloid curve BC
are represented in coordinate system S1ðx1, y1, z1Þ as follows:

rðBCÞ1 = xðBCÞ1 , yðBCÞ1 , 1
h i

=M1d ⋅ r
ðBCÞ
d , ð13Þ

nðBCÞ1 = nðBCÞx1 , nðBCÞy1 , 1
h iT

=M1d ⋅ n
ðBCÞ
d . ð14Þ

The generation schematic of the involute curve is shown in Fig. 5. The position
vector and unit normal vector of the involute curve CD can be presented in coor-
dinate system Seðxe, ye, zeÞ as follows:

rðCDÞe = xðCDÞe , yðCDÞe , 1
h iT

=
rp cos φ+ u cosðαon +φÞ+ πm

4 + rpφ
� �

sin φ
πm
4 + rpφ

� �
cos φ− rp sin φ− u sinðαon +φÞ

1

2
4

3
5,

ð15Þ

nðCDÞe = nðCDÞxe , nðCDÞye , 1
h iT

= − sinðαon +φÞ, − cosðαon +φÞ, 1½ �T , ð16Þ

Fig. 5 Generation schematic for generating involute curve
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where u is the rack cutter surface parameter, u1 ≤ u≥ u2, αon is the pressure angle of
the rack cutter, rp is the radius of the pitch circle, φ is the angular parameter of the
involute curve, and lp = rpφ the distance of rack cutter translate without rotation.

The position vector and unit normal vector of the involute curve CD are rep-
resented in coordinate system S1ðx1, y1, z1Þ as follows:

rðCDÞ1 = xðCDÞ1 , yðCDÞ1 , 1
h iT

=M1e ⋅ rðCDÞe , ð17Þ

nðCDÞ1 = nðCDÞx1 , nðCDÞy1 , 1
h iT

=M1e ⋅nðCDÞe . ð18Þ

According to the theory of gearing, the equation of meshing between the rack
cutter surface and gear surface can be derived as follows:

f2ðu,φÞ= nðCDÞe ⋅
∂½xðCDÞe ðu,φÞ, yðCDÞe ðu,φÞ, zðCDÞe ðu,φÞ�

∂φ
=0 ð19Þ

The meshing coordinate system for two roots rotor is shown in Fig. 6, where the
coordinate systems S1ðx1, y1Þ, S2ðx2, y2Þ, and Sf ðxf , yf Þ are rigidly connected to the
driving rotor, driven rotor, and frame, respectively. By applying the homogeneous
coordinate transformation matrix equation from S1ðx1, y1, z1Þ to S2ðx2, y2, z2Þ, the
extended hypocycloidal curve D1E1 is conjugate to the extended epicycloid curve

Fig. 6 Conjugated coordinate systems of the roots rotors
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BC, as shown in Fig. 6. The position vector and unit normal vector of the curve
D1E1 can be represented in coordinate system S2ðx2, y2, z2Þ as follows:

rðD1E1Þ
2 =M21ðϕÞ ⋅ rðBCÞ1 , ð20Þ

nðD1E1Þ
2 =L21ðϕÞ ⋅ nðBCÞ1 , ð21Þ

where L21ðϕÞ is the upper-left ð2× 2Þ sub-matrix of the ð3× 3Þ homogeneous
coordinate transformation matrix M21ðϕÞ.

Similarly, the circular arc curve E1F1 is conjugate to the circular arc curve AB, as
shown in Fig. 6. The position vector and unit normal vector of the curve E1F1 are
determined in coordinate system S2ðx2, y2, z2Þ as follows:

rðE1F1Þ
2 =M21ðϕÞ ⋅ rðABÞ1 , ð22Þ

nðE1F1Þ
2 =L21ðϕÞ ⋅ nðABÞ1 , ð23Þ

where ϕ is the rotational angle of two roots rotors and Ec is the center distance
between two rotors, as shown in Fig. 6.

According to the theory of gearing, the equation of meshing between the driving
rotor and driven rotor surface can be obtained by:

f3 =n2ðϕÞ. r
ðD1E1, E1F1Þ
2 ðϕÞ

∂ϕ

=n2ðϕÞ ⋅ ∂½x
ðD1E1, E1F1Þ
2 ðϕÞ, yðD1E1, E1F1Þ

2 ðϕÞ, zðD1E1, E1F1Þ
2 ðϕÞ�

∂ϕ
=0,

ð24Þ

The position vector, rðD1E1Þ
2 , rðE1F1Þ

2 of the respective dedendum curves, D1E1,

E1F1 of the driven rotor are identical to the position vector, rðD
′E′Þ

1 , rðE
′F′Þ

1 of the
respective dedendum curves, D′E′, E′F′ of the driving rotor, as shown in Fig. 6. So,

the position vector, rðDEÞ1 , rðEFÞ1 of the respective dedendum curves, DE, EF of the

driving rotor, can be derived by rotating the position vector, rðD
′E′Þ

1 , rðE
′F′Þ

1 with an

angle of ϑ= ðN − 1Þπ
N counter-clockwise about z− axis.

3 Vacuum Pump Performance

3.1 Volumetric Efficiency

The volumetric efficiency of a pump is defined as the ratio of discharged volume to
the volume of the chamber that embodies the mating rotors. In two-dimensional
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calculation, the volumetric efficiency can be simplified as area efficiency. Figure 7
illustrates a simple cross-section of a roots pump. The white area is the working
domain of the pump, while the shaded areas represent by rotors. The area efficiency
can be defined as follows:

η=
πr2a −Ar

πr2a
ð25Þ

where rp is the radius of pitch circle of roots rotor, ra is the outer radius of the rotor,
and Ar is the cross-sectional area of roots rotor.

3.2 Seal Line Length Efficiency

The length of seal line at a rotational angle of rotor is shown as in Fig. 8. The
average length of seal line at a rotational angle ψ i of roots rotor can be defined as
follows:

Ls = ∑
k

i=1

Li
k
, in the constraint, 0≤ gai ≤ gamax ð26Þ

Fig. 7 Cross-sectional area for volumetric efficiency calculation
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where Li is the seal line length between two points pi− 1 and pi, gai is the normal gap
at the same point pi on the driving and driven rotors, and gamax is the maximum
normal gap, it is chosen equal to 0.2 mm.

4 Numeral Examples

To validate the proposed tooth profile of the roots rotor, the volumetric efficiency of
roots rotor is calculated and compared for two kinds of tooth profiles: One is

comprised of two cycloidal curves (addendum δð1Þ1 and dedendum δð1Þ2 (Fig. 2)) and

Fig. 8 Model for calculating the length of seal line

Table 1 Basic data of the
root rotor

Roots rotor

Number of rotor lobes (N) 3
Normal module (m) 22
Pitch radius ðrpÞ 33.0 mm

Outer radius ðraÞ 44.88 mm
Normal gap ðgaÞ 40 µm
Normal pressure angle ðαnÞ 29.87o

Top tooth arc angle ðθ1Þ 3o

Extended cycloid coefficient ðμÞ 0.5 × 103

Center distance ðEcÞ 66 mm
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other one is comprised of five different curves (circular arc curve AB, extended
epicycloid curve BC, involute curve CD, extended hypocycloidal curve DE, cir-
cular arc curve EF (Fig. 3)). The basic data of the roots rotor are given in Table 1.
The volumetric efficiency of the roots rotor, comprised of two cycloid curves and
five different curves, is calculated for three different number of rotor lobes
ðN =2, 3, 4Þ, as shown in Table 2 and Fig. 9. The analytical results reveal that the
volumetric efficiency produced by a cycloid profile is smaller than that of a pro-
posed profile. The new rotor profile produces a volumetric efficiency of 7.6% higher
than the traditional profiles when the number of rotor lobes equals 3. And it also
reveals that for one rotor profile, a higher lobe number will provide lower volu-
metric efficiency, as shown in Table 2.

In addition, the internal leakage (a small liquid re-circulating around the rotor) is
directly affected to the performance efficiency of the roots pump. The length of seal
line for three different number of the rotor lobes ðN =2, 3, 4Þ is shown in Table 3
and Fig. 10. According to Fig. 10, the average length of seal line of the proposed
rotor is much higher than that of the traditional profiles specially for high number of
the rotor lobes. Besides, the length of seal line has no change in nearly almost
rotational cycle of roots rotor. So, it can reduce noise and vibration for the vacuum
pump in its operating process. It is verified that the proposed tooth profile of the
roots rotor is more advantages than traditional profile.

Table 2 Volumetric
efficiency

Number of rotor lobes (N)
N = 2 N = 3 N = 4

Cycloid roots rotors 0.502 0.409 0.344
Proposed roots rotors 0.558 0.485 0.410

Fig. 9 Comparing volumetric efficiency between cycloid rotor and proposed rotor
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5 Conclusions

In this paper, two mathematical models for CEIEC and CC tooth profiles of roots
rotor of the vacuum pump have constructed. A computer program is built for
simulating and comparing the volumetric efficiency and length of seal line of roots
rotor applying CEIEC tooth profile and CC tooth profile. According to the simu-
lated results of a numeral example, it leads to the following conclusions:

Table 3 The average length of seal line of cycloid rotor and proposed rotor

Number of rotor lobes (N)
N = 2 N = 3 N = 4

Cycloid roots rotors 5.685 6.169 6.392
Proposed roots rotors 6.021 7.154 7.267

Fig. 10 Length of the seal line of cycloid rotor and proposed rotor: a1–a3 CC tooth profile; b1–
b3 CEIEC tooth profile

A Tooth Profile Design for Roots Rotors of Vacuum Pump 1015



• The volumetric efficiency is calculated and presented for three different number
of rotor lobes. It reveals that the volumetric efficiency of roots rotor applying
CEIEC tooth profile is higher than that of roots rotor applying CC tooth profile.

• The length of seal line for the roots rotor applying CEIEC tooth profile is also
much higher than that of roots rotor applying CC tooth profile especially for
high number of the rotor lobes.
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Cascade Training Multilayer Fuzzy
Model for Identifying Nonlinear
MIMO System

Cao Van Kien and Ho Pham Huy Anh

Abstract In this paper, a new cascade training Multilayer Fuzzy logic is proposed
for identifying the forward model of double-coupled tank system based on exper-
iment. The Multilayer Fuzzy model consists of multiple MISO models; for each
MISO model, it consists of multiple single Fuzzy T-S models. The cascade training
optimized with DE algorithm sequentially trained Multilayer Fuzzy model one by
one. All parameters of the model are optimally trained with differential evolution
(DE) algorithm. The experimental results show that proposed method gives better
performance than the normal training. This proposed method can be used for
optimal Multilayer Fuzzy logic that efficiently applied for identifying nonlinear
MISO and MIMO systems. The experimental cascade training tests are presented. It
proves more accuracy and takes less time to compute than the normal training
method and demonstrates promisingly scalable and simple method as to success-
fully identify nonlinear uncertain MIMO system.

Keywords Identification of nonlinear MIMO mechanical system
Cascade training Multilayer Fuzzy model � Multiple single Fuzzy T-S model
Differential evolution (DE) optimization algorithm � Double-coupled tank system

1 Introduction

Since Zadeh introduced the concept of Fuzzy set in 1965 [1], there have been lots of
studies in this domain. Then, there were also many applications using Fuzzy logic
in medicine, engineering, management, and finance [2]. In the intelligent control
area, Fuzzy logic has been successfully applied in control, identification, clustering,
and classification.
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Authors [3] used MGA-based training intelligent model to identify pneumatic
artificial muscle manipulators model.

Currently, there are many studies about identification with its approaches from
classic to intelligent models, such as neural networks [2, 3] or Fuzzy logic [4, 5].
One main branch of modern control concerns the nonlinear MIMO systems, which
are more interested by scientists because of its complexity and uncertainty.

The nonlinear MIMO system is very difficult to identify based on the mathe-
matical model. To overcome this disadvantage, mega-heuristic tools, such as GA
and PSO, were increasingly applied for optimizing intelligent models, such as
neural networks or Fuzzy logic. Unfortunately, PSO algorithm seems often difficult
to get rid of the local minimum solution. Meanwhile, GA algorithm produced good
results, but it takes more time to calculate. Recently, DE algorithm [6] rises as a
promising optimization technique. It possesses global search ability and takes less
time to compute than GA. Hence, in this paper, DE technique is applied for opti-
mizing the novel proposed adaptive Fuzzy model.

Recently, Takagi and Sugeno [4] Fuzzy system in 1985 has been widely applied
for many identification and control problems. Authors in [5] proposed a new
method for offline training Fuzzy T-S model with hierarchical genetic algorithm
(HGA). Authors in [6] used GA for learning Fuzzy system applied for some typical
nonlinear model in Simulink.

Fuzzy logic for the identification of nonlinear SISO and MIMO systems has
been widely used, but only for simple structure. With a complex system, it required
more time for training and a lot of membership functions with eventual complex
Fuzzy rule tables. Anh and Ahn [3] used MGA algorithm for training the NARX
Fuzzy model with which to identify the pneumatic artificial muscle
(PAM) manipulators.

The Hierarchical Fuzzy model was first introduced in 1991 by Raju et al. [7].
With the Hierarchical Fuzzy model, multiple Fuzzy T-S logic was combined into a
net with input, hidden, and output layers; the output of the front is the input of
behind layer until the last one is output layer. In recent years, there are many
researches in this. Sun and Huo [8] used Hierarchical Fuzzy model for control
spacecraft. Rodríguez et al. [9] used Hierarchical Fuzzy CMAC control, a nonlinear
system in the simulation. But when another input is added into the model, at least
one or more Fuzzy T-S was added too, and the hidden layer cannot to be extended
freely. The hidden and output layers in hierarchical depend on the number of inputs.

Authors in [10] introduced a new Multilayer Fuzzy scheme as a part of the
Fuzzy-neural system. Unlike a traditional Fuzzy set, Multilayer Fuzzy model can’t
be built with the experience of the designer; it is only available to be trained with
soft computing optimal algorithm. Then, it can be applied for complex MIMO
system and easy to scale for both of large or simple system. The authors [10] used
Multilayer Fuzzy for control a cart–pole system in the simulation.
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This paper aims to initiatively introduce a new Multilayer Fuzzy cascade training
that can be used with better performance and more precision for identifying non-
linear MIMO system, such as the investigated coupled tanks system. The Multilayer
Fuzzy model can easily scale for the complex or large system. Furthermore, pro-
posed Fuzzy system parameters will be optimally minimized with DE algorithms.

The rest of this paper is organized as follows. Section 2 describes the coupled
tanks system modeling. Section 3 proposes the novel Multilayer Fuzzy model for
identification. Section 4 introduces DE algorithm used for learning the new pro-
posed Multilayer Fuzzy model with cascade training. In Sect. 5, the experimental
setup and results were shown. Finally, the conclusion is drawn in Sect. 6.

2 Quadrature Tanks System

Coupled tanks system is a MIMO nonlinear system that has two inputs (pump 1 and
pump 2) and two water-level outputs (x2 and x4) (Fig. 1). In this system, pump 1
directly controls the water level of tank 1, tank 2 is affected by the outlet of tank 1,
pump 2 directly controls the water level of tank 3, and tank 4 is affected by the
outlet of tank 3. There is mutual interaction between u1 and x4 and u2 and x3. This
coupling effect makes the system difficult to control.

The nonlinear plant equations of the coupled tanks can be obtained by mass
balance equation and Bernoulli’s law as follows Eq. (1):

Fig. 1 Double-coupled tanks
system
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dx1
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where u1 and u2 are voltage control of pump motors 1 and 2. x1, x2, x3, and x4 are
water levels at tanks 1, 2, 3, and 4. Value and physical meaning were shown in
Table 1. These values were collected from the experimental system.

3 Multilayer Fuzzy Logic

Multilayer Fuzzy logic was developed from Hierarchical Fuzzy [7], but the output
uses sum function instead of a Fuzzy model.

The input of hidden layer can obtain directly from the input or the output of the
input layer.

Fuzzy logic has been used for identifying the system, but it is only applied for
simple system. For a large-scale system, the structure of Fuzzy model needs a
different way to build [4]. In traditional, Fuzzy logic for identification is shown in
Fig. 2.

A typical rule in a Sugeno Fuzzy model has the form:
If Input1 = x and Input2 = y, then Output is z = ax + by + c.

Table 1 Physical meaning and numerical value used in the experiment

Notation Physical meaning Value (unit)

A1 Tank 1 inside diameter 16.619 (cm2)

A2 Tank 2 inside diameter 16.619 (cm2)

A3 Tank 3 inside diameter 16.619 (cm2)

A4 Tank 4 inside diameter 16.619 (cm2)

b1 Outflow orifice diameter of Tank 1 0.5027 (cm2)

b2 Outflow orifice diameter of Tank 2 0.3318 (cm2)

b3 Outflow orifice diameter of Tank 3 0.5027 (cm2)

b4 Outflow orifice diameter of Tank 4 0.3318 (cm2)

C The discharge coefficient of the outlet 0.8

g Gravity 981 (cm/s2)

K Pump flow constant 6.94 (cm3/(s.V))

c1 Ratio of flow in tank 1 to flow in tank 4 70 (%)

c2 Ratio of flow in tank 2 to flow in tank 3 65 (%)
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For a zero-order Sugeno model, the output level z is a constant (a = b = 0). This
was used in this paper. Each rule weights its output level zi, by the firing strength of
the rule wi.

wi ¼ AndMethodðF1ðxÞ; F2ðyÞÞ ð2Þ

where F1 and F2 are the membership functions for inputs 1 and 2.
The final output of the system is the weighted average of all rule outputs,

computed as:

y ¼
PN

i¼1 wiziPN
i¼1 wi

ð3Þ

where N is the number of rules.
In that system, there is only one Fuzzy model for MISO system. The more inputs

become, the more Fuzzy rule variables are to be computed. In the MIMO system,
there are many inputs then the structure of this system is very complex. This is a
disadvantage of Fuzzy in identification [4]. So, for overcoming this problem, we
propose a Multilayer Fuzzy logic structure applied to identify the investigated
MIMO system.

In this paper, Multilayer Fuzzy logic was proposed for identifying coupled tank
system. Multilayer Fuzzy model to identify includes multiple MISO Multilayer
Fuzzy models; MISO Multilayer Fuzzy model number is equal output number of
systems. For each MISO Multilayer Fuzzy model, it consists of multiple Fuzzy
logic models.

Depends on a complex system, the structure of MIMO model can be scalable
with more or less single Fuzzy model in the MISO system with the fixed number of
inputs.

Fig. 2 Fuzzy logic in identification MISO system
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Multilayer Fuzzy structure using for the Quad-tank system is shown in Fig. 3. In
this paper, the structure of Multilayer Fuzzy is chosen as two-Fuzzy model for the
first layer and one-Fuzzy model for the second layer. The output is sum of the
three-Fuzzy model output.

The final output of each MISO system as:

y ¼
XM
j¼1

PN
i¼1 wjizjiPN
i¼1 wji

ð4Þ

where M is the number of Fuzzy T-S model in MISO Multilayer Fuzzy logic.
Each Fuzzy T-S system consists of two input with three membership Gaussian

functions. That means each Fuzzy system has nine rules, 12 variables for mem-
bership structure, and 21 variables for the total. One MISO system that has four
Fuzzy T-S models has total 84 variables. MIMO system has total 168 variables.

Input variables of Fuzzy Fig. 4 structure as follows: Input range is constant from
−1 to 1. Each input of input layer has a gain with constant value for sure the inputs
are inside range.

Each input contains three membership Gaussian functions.

Fig. 3 Multilayer Fuzzy model structure
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4 Cascade Training Using Deoptimisation Algorithm

4.1 Differential Evolution Training Algorithm

Nowadays, differential evolution (DE) algorithm [11] becomes a popular opti-
mization algorithm. In this paper, it is used for learning Multilayer Fuzzy mem-
bership structures and rules. By minimizing the cost function that is the error
between actual output and Multilayer Fuzzy predicted output.

Cost function follows mean squared error (MSE) standard:

J ¼ 1
N

X
e2

In which

e ¼ y� ŷ

N is number of samples

ŷ is the output of Fuzzy models and y is the output of real data collected from the
experiment.

Fig. 4 Input of single Fuzzy T-S
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The DE algorithm as follows:

Initialization

The initial vector was chosen NP D-Dimension randomly and should cover the
entire parameter space.

Xi;G ¼ ½x1;i;G; x1;i;G; . . .; xD;i;G�

where, G is the number of generations.G ¼ 0; 1; . . .;Gmax and i ¼ 1; 2; . . .;NP

Mutation

DE generates new parameter vectors by adding the weighted difference between
two population vectors to a third vector. This operation is called mutation. For each
target vector xi;G, a mutant vector is generated according to:

vi;Gþ 1 ¼ xr1;G þFðxr2;G � xr3;GÞ

with random indexes r1; r2; r3 2 1; 2; . . .;NP.
The randomly chosen r1; r2; r3 are also chosen to be different from the running

index i. F is the real and constant coefficient F 2 ½0; 2�.
Crossover

After generating the vector through mutation, the crossover step is carried out to
enhance the diversity of the population pool. The donor vector exchanges its
components with the target vector ~Xi;G to form the trial vector
~Ui;G ¼ ½u1;i;g; u2;i;g; . . .; uD;i;g�. The DE algorithm often uses the binomial crossover
method. The binomial crossover scheme may be outlined as:

uj;i;G ¼ vj;i;G If ðrandj;i½0; 1�\CÞ
vj;i;G otherwise

�

Selection

To decide whether or not, it should become a member of Generation Gþ 1. The
target vector ~Xi;G is compared to the trial vector ~Ui;G, and the one with a lower
function value is survived to the next generation. The selection operation is
described as:

~Xi;Gþ 1 ¼
~Ui;G If f ð~Ui;GÞ\ f ð~Xi;GÞ
~Xi;G otherwise

�

1024 C. Van Kien and H. P. H. Anh



Termination

This is a condition to stop the loop of DE algorithm. The algorithm terminates when
one of the following conditions are satisfied:

• When maximum generations are reached.

• When the best fitness is lower than desired fitness.

• When the best fitness cannot increase for a long time (see Fig. 5).

4.2 Cascade Training Multilayer Fuzzy Logic

In this paper, we proposed a cascade training Multilayer Fuzzy model for identi-
fying the forward model of double-coupled tanks system.

The figure of cascade training is shown in Fig. 6. The core of model was trained
for the first time. From the second, new single Fuzzy T-S model was trained and
combined with the core model. Only new Fuzzy T-S model was trained while the
previous model was remained unchanged. The new Fuzzy T-S model was inte-
grated into hidden layer and can be extended for large-scale system. The process
goes on until the cost function achieves its objectives.

Cascade training made the model more accurate, and the time for training
reduced in comparison with other models possessed the same parameters.

First training second training n-th training

Fuzzy T-S

Fuzzy T-S

Fuzzy T-S

sum
output

MISO

Fuzzy T-S

Fuzzy T-S

sum
output

Core Core 

New Fuzzy T-S

Fuzzy T-S

Fuzzy T-S

sum
output

Core New

Fuzzy T-S

... ...

...

Fig. 6 Cascade training process

Start Initialization Mutation Crossover Selection Termination ? EndY

No

Fig. 5 Flow chart of DE algorithm for training
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5 Experimental Results

5.1 Experimental Setup

In this paper, we are using quadrature tanks model for testing algorithm. Quadrature
tanks consist of four tanks. In this experimental, tanks were made from acrylic with
the parameter is exactly from Table 1. Figure. 7 is the real experimental setup.

Arduino Due is the microcontroller used to control pump motor and to read
sensor. Real-time data exchange with the computer by Real-time Windows Target
of Matlab 2014b via RS232-USB cable. The program is running on Arduino Due,
and only data are transferred to the PC.

Pressure sensor uses MPX 10 from Freescale Semiconductor. It has a pressure
range from 0 to 10 kPa. In the experimental system, when the water level is 30 cm,
the pressure at the bottom of the tanks is 2.942 kPa. The pressure sensor has 3.5 mV/
kPa. When the water level is maximal, the output goes up to 20 mV and 10.297 kPa,
respectively. It is too small for the microcontroller to read. Thus, in this paper, we
apply instrumentation amplifier with a gain of 67. It pushes the voltage from 1.34 to
2.029 V corresponding to the 0–30 cm height of the water level in the tanks.

Two 24 V pump motors with 10 L per minutes at 24 V are controlled to change
the water flow into the tanks.

In this paper, each MISO system includes 84 variables. It composes of 36 output
variables and 48 membership structure variables.

The CPU core i5-3210 m is used for running DE optimal algorithm.

Fig. 7 Quadrature tanks system
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5.2 Getting Data

Data was collected by step time of 0.1 s. Data for training are shown in Fig. 8. Input
data are random values from 7.5 to 15 V, and data are changing the value every
10 s interval. Data are the voltage supply for pump motor 1 (u1) and pump motor 2
(u2) and the water level of tank 2 (x2) and tank 4 (x4).

Data for validating are shown in Fig. 9. It is different from training data, and its
random values are from 7.5 to 15 V within 10 s interval.

5.3 Training Multilayer Fuzzy Model

After getting in/out data, DE algorithm was used for training Multilayer Fuzzy
model. The proposed Multilayer Fuzzy model was presented in Sect. 3. In which,
each single output of the system described as a MISO model. In the quadrature tank
system in Sect. 2, we consider only output (water level) of tank 2 and tank 4.
Therefore, the Multilayer Fuzzy model consists of two MISO Multilayer Fuzzy
models. For each MISO model, there are three Fuzzy T-S models with two in input
layer, one in the middle layer; input layer describes an impact of input to output.
Middle layer describes a cross talk between the inputs. The output of MISO model
is the summary of 3 T-S Fuzzy model.
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Apply DE algorithm for each MISO model. The first MISO model has four
inputs (u1[n], u2[n], x2[n − 1], x2[n − 2]) and one output (x2[n]). The second also
has four inputs (u1[n], u2[n], x4[n − 1], x4[n − 2]) and one output (x4[n]). After
training, the model was validated with another dataset.

5.4 Identification Results

The results are compared between normal training and the cascade training.
Cascade training three times with DE algorithm, each training test includes 300

generations.
The normal training includes 900 generations.
All identification results are performed via core i5-3210 m CPU.
A proposed cascade training Multilayer Fuzzy logic using DE was compared

with the normal training Multilayer Fuzzy logic using the same DE algorithm. All
parameters of DE algorithm are the same. The total generation of cascade training is
900 and equally divided into three-time attempt. The total generation of normal
training is 900.

Figure 10 shows the result of training and validation of cascade training for the
first time. In the first time, only core model was created. It consists of two Fuzzy
T-S models with 42 variables.
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Figure 11 shows the result of training and validation of the second training. In
the second training, a core model was remained, and the new Fuzzy T-S was added
and to be trained.

Figure 12 shows the final cascade training. New Fuzzy T-S was added. The
more Fuzzy T-S was added, the more accuracy and the less error.

Figure 13 shows the results of normal training Multilayer Fuzzy logic. With the
same generation as cascade training, the normal training takes more time, and the
fitness function can’t reach to the cascade training.

Table 2 shows the summary of the performance comparison of cascade training
and normal training, we can see, the cascade training gives a quite better perfor-
mance than the normal training.
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6 Conclusions

In this paper, a novel cascade training Multilayer Fuzzy logic for identifying
double-coupled tanks system is proposed based on experiment platform. The
Multilayer Fuzzy logic is created from the multiple Fuzzy T-S models. The cascade
training optimized with DE algorithm sequentially trained Multilayer Fuzzy model
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Table 2 The performance comparison of cascade training and normal training

Cascade 1 Cascade 2 Cascade 3 Normal

Number of parameter 42 21 21 84

Start fitness 3.2784 0.666 0.0496 1.2584

End fitness 0.0518 0.026 0.0178 0.0403

Generations 300 300 300 900

Time [total] (s) 84.46 85.29 [169.75] 104.59 [274.34] 655.29
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one by one. The experimental results show that proposed method gives better
performance than the normal training method. This proposed method can be applied
to the optimal Multilayer Fuzzy logic that efficiently applied for identifying MISO
and MIMO system. The results prove that the proposed cascade training give a
better performance and more robust than the original normal training. Hence, it is
quite available for applying a scalable Multilayer Fuzzy model to a more complex
nonlinear uncertain MIMO system. Furthermore, the results also confirm that
proposed forward cascade training Multilayer Fuzzy model can be used for
model-based control in future studies.
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Enhanced Adaptive Fuzzy Sliding Mode
Control for Nonlinear Uncertain Serial
Pneumatic Artificial Muscle (PAM)
Robot System

Cao Van Kien and Ho Pham Huy Anh

Abstract This chapter proposes a new enhanced adaptive fuzzy sliding mode
controller (EAFSMC) with its perfect suitability for use in the control of a highly
nonlinear and uncertain serial pneumatic artificial muscle (PAM) robot. The critical
proof of the stability and the convergence of the overall system is presented using
Lyapunov stability principle. Simulation results of the proposed EAFSMC control,
applied to a two-degree-of-freedom nonlinear serial PAM robot, are implemented,
and we have evaluated their efficacy in maintaining Lyapunov stability and their
good performance.

Keywords Enhanced adaptive fuzzy sliding mode control (EAFSMC)
Adaptive Takagi–Sugeno (T-S) fuzzy rules � Pneumatic artificial muscle (PAM)
2-DOF serial PAM robot � Lyapunov stability principle

1 Introduction

Nowadays, sliding mode control (SMC) is well known with its robustness to system
uncertainties and external noises. A SMC algorithm through its switching laws
guarantees asymptotic stability of the uncertain nonlinear system. Thus, up to now,
SMC control has been improvingly used in versatile industrial engineering [1–3].
Regrettably, the inherent disadvantage of SMC linked to its switching control
which makes bad chattering issue. As to deleting chattering effect, researchers often
use a saturated function [4] combining the sliding surface. The drawback is that this
saturated function term can fail system stability of the closed-loop plant. Thus,
conventional SMC approach meets great difficulty in controlling unstructured
uncertain systems. Some recently proposed methods try to overcome this difficulty
by hybridized a SMC controller and fuzzy set. Then, some of adaptive fuzzy SMC
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methods [5, 6] have been implemented. The adaptive laws in these approaches are
designed based on the Lyapunov stability principle. Consequently, some hybrid
fuzzy SMC methods have been proposed in which the asymptotic stability of the
investigated closed-loop fuzzy SMC system is successfully proved [7–11]. The
benefit of this combined fuzzy SMC system is that the fuzzy laws can principally
approximately identify arbitrary continuous functions. Nevertheless, in order to
approximately model a time-varied nonlinear MIMO system, a fuzzy set often
requires a huge number of fuzzy if-then laws. Then, a big number of fuzzy if-then
laws will need a high time-consuming calculation. Hence, nowadays, the require-
ment of a newly efficient adaptive rule initiatively proposed to a fuzzy SMC method
as to online adaptively update the coefficients of the fuzzy rules, is strongly nec-
essary, which will guarantee a reduced computation load.

Improving above-mentioned results, this chapter proposes a novel-enhanced
adaptive fuzzy sliding mode EAFSMC method which will be applied on the highly
nonlinear uncertain serial PAM robot system. The new proposed EAFSMC method
contribution is to efficiently implement adaptation rules of fuzzy sliding mode
algorithm which is tested on a nonlinear uncertain serial PAM robot system, and
furthermore to introduce the Lyapunov function and then mathematically suc-
cessfully demonstrate the asymptotic convergence for the closed-loop serial PAM
robot and eventually to comparatively evaluate both of classic fuzzy SMC and the
novel-enhanced EAFSMC method.

This chapter is organized as follows. Section 2 introduces the investigated
nonlinear uncertain serial PAM robot. Section 3 introduces the conventional fuzzy
SMC control and its application to an uncertain nonlinear serial PAM robot.
Section 4 presents the newly proposed enhanced EAFSMC method with its stability
proof based on Lyapunov principle which is well applied to the serial PAM robot
application. Section 5 presents the simulation results of the EAFSMC algorithm
applied to a nonlinear uncertain serial PAM robot system. Eventually, Sect. 6 is the
conclusion.

2 The Nonlinear Serial Pam Robot Setup

A general configuration and working setup of the investigated serial PAM robot are
presented in Figs. 1 and 2, respectively.

The configuration setup (see Fig. 2) composes of a PC (2.7 GHz) which pro-
vides the voltage values u1(t) and u2(t) to the two proportional valves (FESTO,
MPYE-5-1/8HF-710B), via a D/A converter (ADVANTECH, PCI 1720) which
turns digital values from PC to analog voltage u1(t) and u2(t), respectively.

The rotation torque is produced by the pneumatic pressure difference, generated
from air compressor, from the antagonistic PAM muscles. Consequently, both
joints of the 2-dof serial PAM robot will rotate to track the required joint-angle
references (YREF1(k) and YREF2(k)), respectively. The rotating angles, h1 [deg] and
h2 [deg], are measured with two rotary encoders (METRONIX, H40-8-3600ZO)
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and supplied back to the PC via a 32-bit counter card (COMPUTING
MEASUREMENT, PCI QUAD-4) which turns pulse signals to analog angular
values y1(t) and y2(t). The pneumatic line is supplied with the pressure of 4 bar, and
the control algorithm of the closed-loop serial PAM robot system is coded in C-mex
code run in Real-Time Windows Target of SIMULINK environment. Table 1
presents the hardware setup installed from Fig. 2. A photograph of the experiment
serial PAM robot system is illustrated in Fig. 1.

3 Classic Sliding Mode (SMC) Control of Serial Pam
Robot

The serial PAM robot is applied as the simulated robot arm presented in Fig. 3.
The dynamic equation of investigated serial PAM robot is presented as:

MðqÞ€qþC1ðq; _qÞ ¼ s ð1Þ

with

M ¼ m1l2 þ 2m2l2 þ 2m2l2 cos q2 m2l2 þm2l2 cos q2
m2l2 þm2l2 cos q2 m2l2

� �

C1ðq; _qÞ ¼
�2m2l2 _q1 _q2 sin q2 � m2l2 _q22 sin q2

m2l2 _q21 sin q2

" #

Fig. 1 General configuration of the investigated serial PAM robot
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The purpose is to precisely track the required trajectory qd of the serial PAM
robot (1) using SMC controller. The value of _q is calculated from C1(q, _q) of (1),
and it is described as:

s ¼ MðqÞ€qþC1ðq; _qÞ _q ð2Þ

Fig. 2 Working setup of the investigated serial PAM robot system
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Then, the tracking error is considered as:

e ¼ q� qd ð3Þ

In which q = [q1, q2]
T, qd = [q1d, q2d]

T

The sliding surface is defined as:

s ¼ _eþ ke ð4Þ

with k = diag[k1, k2], k1 and k2 represent the control bandwidth of the serial PAM
robot.

Furthermore, it also needs to choose s as to ensure the requirement (1). First, the
reference state is considered as:

_qr ¼ _q� s ¼ _qd � ke ð5Þ

Table 1 Lists of the experimental hardware setup

No. Name Model name Company

1 Proportional valve (2) MPYE-5-1/8HF-710 B FESTO

2 Pneumatic artificial
muscle (4)

MAS-10-N-220-AA-MCFK FESTO

3 D/A board PCI 1720 ADVANTECH

4 Counter board PCI QUAD-4 COMPUTING
MEASUREMENT

5 Rotary encoder (2) H40-8-3600ZO METRONIX

Fig. 3 Compact structure of
the 2-dof serial PAM robot
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Then, the control input s is selected as:

s ¼ M̂ _qr þ Ĉ1 _qr � As� KsgnðsÞ ð6Þ

with M̂ and Ĉ1 represent the estimated values of M (q) and Ĉ1(q, _q); A = diag
[a1, a2] and K = diag[K1, K2] represent diagonal positive definite vectors.
Combining (2) and (6), it leads,

M _sþðC1 þAÞs ¼ Df � KsgnðsÞ ð7Þ

with Df = DM̂€qr þDĈ1 _qr, DM = M̂ − M and DC1 = Ĉ1 – C1. Suppose that the
bounded value Dfij jbound of Dfi (i = 1, 2) is known, then value K is selected as:

Ki � Dfij jbound ð8Þ

The Lyapunov function is selected as:

V ¼ 1
2
sTMs ð9Þ

Since M represents positive symmetric definite, it leads V > 0 with s 6¼ 0. The
derivative of M with respect to time in (1) is determined as:

_M ¼ �2m2l2 _q2 sin q2 �m2l2 _q2 sin q2
�m2l2 _q2 sin q2 0

� �
ð10Þ

Combining (7) and (10), it gets,

_M � 2C1 ¼ 0 2m2l2 _q1 sin q2 þm2l2 _q2 sin q2
�2m2l2 _q1 sin q2 � m2l2 _q2 sin q2 0

� �
ð11Þ

It is easy to see that (11) is a skew-symmetric matrix; then, we have:

sTð _M � 2C1Þs ¼ 0 ð12Þ

The derivative of V is then determined as:

_V ¼ sTM _sþ 1
2
sT _Ms

¼ sTðM _sþC1sÞ
¼ sT �AsþDf � K sgnðsÞ½ �

¼
X2
i¼1

ðsi Dfi � KisgnðsiÞ½ � � sTAsÞ

ð13Þ
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Choose Ki � Dfij j; it always gets si Dfi � KisgnðsiÞ½ � � 0. Then, _V can be
presented as:

_V ¼
X2
i¼1

si Dfi � KisgnðsiÞ½ �ð Þ � sTAs� � sTAs\0ðs 6¼ 0Þ ð14Þ

As to delete the chattering issue, a saturation function is used in the control law
instead of the sign function as introduced in (6). The control law now has the form
as:

s ¼ M̂€qr þ Ĉ1 _qr � As� K satðs=UÞ ð15Þ

In this traditional SMC control approach, the precise model of the serial PAM
robot is mostly unknown. We hardly know the real exact values of m1l

2 and m2l
2 in

M and C1 components. Let’s define p1 = m1l
2 and p2 = m2l

2. Then, it continues to
define p̂1 and p̂2 represent estimated values of p1 and p2. In case p̂1 and p̂2, values
are far from the real values; it must increase the control gain K to avoid the tracking
error in (3) getting bigger. Using (15), the chattering issue may be removed.
Unfortunately, there is still now no theoretical Lyapunov stability proof for the
control rule in (15).

Simulate this classic sliding mode control method for the 2-joint serial PAM
robot in (1). Select p1 = 1 and p2 = 2. Because serial PAM robot cannot follow a
step sequence instantaneously, the required trajectory will be the output of the
filtered sequential values of unit steps. The transfer function of pre-filter for each
joint of the serial PAM robot is defined as [9]:

WmðsÞ ¼ 2
s2 þ 4sþ 4

ð16Þ

The starting values of the serial PAM robot’ angular positions are set to 0.5
radians. The estimated dynamic features of the serial PAM robot are p̂1 = 1.5,
p̂2 = 3. It selects k in (4) with the same bandwidth as in (16). For simplicity, choose
A = diag[l, 1] in (6). Then to determine K in (6), it needs to determine the real Df in
(14).

It initially selects K = [20, 10]T. Then, run simulation and plot Df. It gets |Df1|
� 45 and |Df2| � 21. These results will fail the criterion in (12). As to respond this
criterion, it increases K = [45, 21]T and simulates once more. Eventually, Figs. 4
and 6 present that the tracking precision is obtained with rather significant error.
The drawback is that the chattering issue still exists as illustrated in Figs. 5 and 7.

As to overcome this disadvantage, in the next section, the proposed enhanced
adaptive fuzzy sliding mode EAFSMC control algorithm is used to successfully
estimate and robustly control the investigated serial PAM robot system.
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Fig. 4 a Tracking and b tracking errors of joint 1 in classic SMC control. Dash line: desired
trajectory; solid line: actual trajectory

Fig. 5 a Control input value and b SMC surface of 1st joint in classical SMC
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Fig. 6 a Tracking and b tracking errors of joint 2 in classic SMC control. Dash line: desired
trajectory; solid line: actual trajectory

Fig. 7 a Control input value and b SMC surface of 2nd joint in classic SMC control
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4 Proposed Enhanced Adaptive Fuzzy Sliding Mode
Control (EAFSMC)

4.1 Implementation of proposed Enhanced Adaptive
Fuzzy EAFSMC Algorithm

The enhanced adaptive fuzzy sliding mode EAFSMC control algorithm proposes a
new method to reduce the MIMO fuzzy model structure presented in previous
section to a single fuzzy structure which ensures to approximately identify the
residual coupled features of the serial PAM robot and then successfully remove the
chattering phenomenon issued from classic SMC control. The dynamic equation of
investigated serial PAM robot is defined as:

s ¼ M qð Þ€qþC1ðq; _qÞ _qþG qð Þ ð17Þ

The joint-angle error and the sliding SMC surface are defined as follows:

e ¼ q� qd ð18Þ

s ¼ _eþ ke ð19Þ

The state variables are introduced as

_qr ¼ _q� s ¼ _qd � ke ð20Þ

€qr ¼ €q� _s ¼ €qd � k _e ð21Þ

Then, the necessary torque input value is estimated by

s ¼ M̂€qr þ Ĉ1 _qr þ Ĝ� As� K ð22Þ

in which A = diag[a1, …, am] with a1, …, am denote positive constant values;
K = [K1, …, Km]

T with Kj represent the fuzzy gain evaluated from the fuzzy model.
Then, the fuzzy if-then rules applied to the jth joint of the serial PAM robot are

implemented as

RðlÞ : If s j is Al
j then y is Bl

j: ð23Þ

with j = 1,…, m; l = 1, …, M.
The Kj value is determined as:

Kj ¼
PM

l¼1 h
l
j lAl

j
ðsjÞ

h i
PM

l¼1 lAl
j
ðsjÞ

h i ¼ hTj njðsjÞ ð24Þ
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with

njðsjÞ ¼ n1j ðsjÞ; n2j ðsjÞ; . . .; nMj ðsjÞ
h iT

ð25Þ

and

nljðsjÞ ¼
lAl

j
ðsjÞPM

l¼1 lAl
j
ðsjÞ

h i ð26Þ

The membership function lAl
j
ðsjÞ represents a Gaussian one which is defined as

follows:

lAl
j
ðsjÞ ¼ exp � sj � alj

rlj

 !2
2
4

3
5; j ¼ 1; . . .;mð Þ ð27Þ

The adaptation rule is expressed by

_hj ¼ csjsjnjðsjÞ ð28Þ

in which the csj value is constantly positive.

4.2 Stability Proof of Proposed Enhanced Adaptive
Fuzzy EAFSMC Control Algorithm

The Lyapunov function is defined as follows:

V ¼ 1
2
sTMsþ 1

2

Xm
j¼1

1
csj

/T
j /j ð29Þ

with /j ¼ h�j � hj. The derivation of V gives

_V ¼ sTM _sþ 1
2
sT _Msþ

Xm
j¼1

1
csj

/T
j
_/j ð30Þ

Since ( _M − 2C1) represents a skew-symmetric matrix, it leads to sTM _s + 1
2 s

T _M
s = sT(M _s +C1s). From (17) and (22), we have
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M qð Þ€qþC1ðq; _qÞ _qþG qð Þ ¼ M̂€qr þ Ĉ1 _qr þ Ĝ� As� K ð31Þ

Because _qr = _q − s and €qr ¼ €q� _s in (20) and (21), we get

M _sþðC1 þAÞs ¼ Df � K ð32Þ

with Df = DM €qr + DC1 _qr + DG, DM = M̂ − M, DC1 = Ĉ1 − C1 and
DG = Ĝ − G. Then, _V becomes

_V ¼ sTðM _sþC1sÞþ
Xm
j¼1

1
csj

/T
j
_/j

¼ sTð�AsþDf � KÞþ
Xm
j¼1

1
csj

/T
j
_/j

¼
Xm
j¼1

sj Dfj � Kj
� �� �� sTAsþ

Xm
j¼1

1
csj

/T
j
_/j

¼
Xm
j¼1

sj Dfj � hTj njðsjÞ
� 	h i

� sTAsþ
Xm
j¼1

1
csj

/T
j
_/j

¼
Xm
j¼1

sj Dfj � ðh�j ÞTnjðsjÞþ/T
j njðsjÞ

� 	h i
� sTAsþ

Xm
j¼1

1
csj

/T
j
_/j

¼
Xm
j¼1

sj Dfj � ðh�j ÞTnjðsjÞ
� 	h i

� sTAsþ
Xm
j¼1

1
csj

/T
j csjsjnjðsjÞþ _/j

h i !
ð33Þ

The adaptation law _hj ¼ csjsjnjðsjÞ is chosen. Because _/j ¼ � _hj ¼ �csjsjnjðsjÞ,
_V obtains the result:

_V ¼
Xm
j¼1

sj Dfj � ðh�j ÞTnjðsjÞ
h i� 	

� sTAs ð34Þ

Then, the minimal approximating error is calculated as:

xj ¼ Dfj � h�j
� 	T

njðsjÞ ð35Þ

Then, _V changes to

_V ¼
Xm
j¼1

sjxj
� �� sTAs�

Xm
j¼1

sj


 

 xj



 

� sTAs

¼
Xm
j¼1

sj


 

 xj



 

� ajs
2
j

� 	
¼
Xm
j¼1

sj


 

 xj



 

� aj sj


 

� �� � ð36Þ
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Equation shows that the minimal approximating error xj seems as small as
possible. It is possible to select aj as to ensure aj sj



 

 > |xj| (sj 6¼ 0). Finally, it proves
_V < 0 for s 6¼ 0.

5 Simulation Results

The dynamic equation for the 2-joint serial PAM robot is described as:

s ¼ MðqÞ€qþC1ðq; _qÞ _q ð37Þ

with

MðqÞ ¼ m1l2 þ 2m2l2 þ 2m2l2 cos q2 m2l2 þm2l2 cos q2
m2l2 þm2l2 cos q2 m2l2

� �

¼ P1 þ 2P2 þ 2P2 cos q2 P1 þP2 cos q2
P1 þP2 cos q2 P2

� � ð38Þ

C1ðq; _qÞ ¼ �P2 _q2 sin q2 �P2 _q1 sin q2 � P2 _q2 sin q2
P2 _q1 sin q2 0

� �
ð39Þ

where m1 and m2 represent the mass of joint1 and joint2, respectively; l denotes the
length of joint1 and joint2; q1 and q2 represent joint-angle positions of the joint1
and joint2, respectively. The values of the parameters are chosen as P1 = m1l

2 = 1
and P2 = m2l

2 = 2. The serial PAM robot model’s transfer function of pre-filter for
each link is described as:

WmðsÞ ¼ 4
s2 þ 4sþ 4

ð40Þ

The required trajectory is the output of filtered sequential unique steps. The
starting values of the serial PAM robot’ joint-angle positions are given to 0.5
radians. For all five algorithms, we choose the parameter kj in the sliding surface as
same as the bandwidth of our desired model. The predefined adaptation gains in
adaptation laws are selected as a trial and error values. The number and the type of
membership functions for each input variable are selected to be consistent with the
proposed fuzzy EAAFSMC algorithm.

The proposed enhanced adaptive fuzzy EAFSMC algorithm has reduced the
MIMO fuzzy model to a single SISO fuzzy one in order to not only precisely identify
the torque-coupled effect presented in (1), but also attenuate the chattering issue. The
estimated values of M̂ and Ĉ1 are calculated as in previous section. In addition, A is
chosen as A = diag[250, 100] which is described in (22), cs1 = 104, cs2 = 5 � 103

which are chosen based on (28) by trial and error. As a benefit of proposed
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EAFSMC, the total number of fuzzy rules is reduced from 3 � k2m1 in classic fuzzy
SMC algorithm to k2 in proposed fuzzy EAFSMC method. Therefore, it is reason-
able to choose the value of k2 larger than the value of k1. Since we have chosen
k1 = 5 in design process, it is simple to define k2 = 7 fuzzy MPs (membership
functions) for each input value: NB NM NS ZO PS PM PB. The parameters of the
fuzzy MPs (membership functions) for sj are selected using the simulation results of
the sliding surface sj. The membership functions for the variable sj (j = 1, 2) in Fig. 8
are expressed as:

lsjNB ¼ 1

1þ exp sj þ 1:25
� �

=0:1
� �� �2

lsjNM ¼ exp � sj þ 1
� �

=0:3
� �2� 	

lsjNS ¼ exp � sj þ 0:5
� �

=0:3
� �2� 	

lsjZO ¼ exp � sj=0:3
� �2� 	

lsjPS ¼ exp � sj � 0:5
� �

=0:3
� �2� 	

lsjPM ¼ exp � sj � 1
� �

=0:3
� �2� 	

lsjPB ¼ exp
1

1þ exp � sj � 1:25
� �

=0:1
� �� �2

ð41Þ

Figures 9 and 11 show that the joint-angle tracking errors are surely bounded in
the limit [−0.005, 0.005] radians, which is a bit better than of classic fuzzy SMC

Fig. 8 Membership functions of sj
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Fig. 9 a Tracking precision and b tracking errors of joint-angle 1 in proposed fuzzy EAFSMC
algorithm. Dash line: required trajectory; solid line: real trajectory

Fig. 10 a Control signal and b SMC surface of joint-angle 1 in proposed enhanced adaptive fuzzy
EAFSMC algorithm
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Fig. 11 a Tracking precision and b tracking errors of joint-angle 2 in proposed fuzzy EAFSMC
control algorithm. Dash line: required trajectory; solid line: real trajectory

Fig. 12 a Control signal and b SMC surface of joint-angle 2 in proposed enhanced adaptive fuzzy
EAFSMC control algorithm
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control algorithm. However, unlike classic fuzzy SMC algorithm, Figs. 10 and 12
demonstrate that the chattering phenomenon has been strongly alleviated.

In summary, the proposed EAAFSMC algorithm downgrades the initial MIMO
fuzzy one to a single fuzzy model that, in addition to helping to identify the
parameter, estimates the residual cross-coupled error. Thus, the proposed fuzzy
AAFSMC algorithm helps to reduce both high computational load and chattering
problems encountered in classic FSMC method. First, with k2 MF (membership
functions) for every input, the amount of fuzzy if-then laws installed for each joint
of the serial PAM robot is k2 which is evidently and spectacularly decreased.
Second, by substituting the switching control term in classic fuzzy SMC method for
the fuzzy compensator in (22), the chattering issue has been adequately alleviated.

6 Conclusions

In this chapter, a novel-proposed adaptive fuzzy EAFSMC algorithm efficiently
alleviates the chattering issue by using an adaptive fuzzy compensator instead of the
classical switching control term. Furthermore, the amount of fuzzy if-then laws is
also significantly decreased by replacing the previous MIMO fuzzy model with an
adaptive SISO fuzzy model instead. The convergence and the stability of the new
proposed EAFSMC algorithm for the 2-link serial PAM robot is demonstrated
theoretically based on Lyapunov stability concept.
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Performance Evaluation of a 2D-Haptic
Joystick Featuring Bidirectional
Magneto-Rheological Actuators

Tri Bao Diep, Hiep Dai Le, Cuong Van Vo and Hung Quoc Nguyen

Abstract In this research, a new 2D-haptic joystick featuring a 2D-gimbal
mechanism and two bidirectional magneto-rheological actuators (BMRAs) is
designed, manufactured, and experimentally tested. Firstly, a new configuration of
proposed 2D-haptic joystick is introduced; then, the BMRAs for force feedback of
the haptic joystick are proposed, optimally designed, and experimentally evaluated.
The BMRA has two disks rotating in opposite directions at the same speed. The two
disks are placed inside a housing which is connected to the gimbal mechanism.
The BMRA has two coils placed directly on each side of the housing. A prototype
of the whole haptic joystick is then manufactured, and a controller is designed to
feedback a required force to the operator. Force feedback performance of the haptic
joystick is then experimentally investigated and compared with simulated one.
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1 Introduction

In modern Industry, the application of telemanipulator is very necessary, especially
for robots working in hazardous environment (polluted, radioactive) or extreme
environment (adventure robots). Basically, a telemanipulator system consists of a
slave manipulator and a master operator. An important issue to deal with in a
telemanipulator system is the lack of information on forces and torques at the
end-effector of the slave manipulator to the master operator. The lack of this
information reduces the accuracy and flexibility of the system. Therefore, a tele-
manipulator system with a force feedback system to the operator (haptic telema-
nipulator system) is very significant.

In recent years, with the fast development in research and application of smart
materials, especially magneto-rheological fluid (MRF), several researches on haptic
system featuring MRF have been performed. Kim et al. [1] have designed and
manufactured a 5-DOF haptic hand featuring five linear MR brakes. The results
showed that the haptic hand can fair reflect required forces to the fingers of human
operator (8 N). However, the off-state force is quite high, around 2 N. This is a big
challenge for the system to reflect a true force to the operator. Winter and Bouzit [2]
have designed and manufactured a 5-DOF haptic glove featuring five linear MR
brakes. The maximum force can reach up to 6 N. However, the off-state force is still
high in this case (1.5 N), and the brake general size is somewhat large:
50 � 12 � 12 mm. Conrad [3] have designed and manufactured a 3-DOF haptic
glove featuring three rotary MR brakes in order to feedback the force to the thumb,
the point (index), and the middle finger. The general dimensions of the MR brakes
are: D = 25 mm and L = 15 mm, and the maximum force at the fingertips can
reach up to 17 N. Li et al. [4] have researched on a 2-DOF haptic joystick featuring
two rotary MR brakes. The general dimensions of the MR brakes are: D = 156 mm
and L = 21 mm. The moment of the brake can be changed from 0.5 to 6 Nm.
Nguyen Q. H. et al. have performed several researches on force feedback system
using MRF [5, 6].

Although there have been several researches on MRF-based haptic system,
however, in previous researches MR brakes are used, and off-state friction force
(uncontrollable force), which significantly affects performance of the haptic system,
is inevitable. In addition, traditional configurations of MR brakes were used in
which the coils are placed on the cylindrical housing. This results in “bottleneck”
problem of magnetic circuit and manufacturing difficulties. The main technical
contribution of this work is to develop and investigate a new configuration of
bidirectional MRF actuator (BMRA) for haptic application with two coils placed
directly on each side of the housing. With this configuration, the off-state friction
force can be eliminated, the “bottleneck” problem of magnetic circuit can be
alleviated, and manufacture difficulties can be improved. In addition, by using
bidirectional actuators, the inaccuracy use to off-state friction force can be
eliminated.
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2 The Proposed Bidirectional MRF Actuator

In this study, a configuration of the BMRA is introduced, and its actuating torque is
analyzed based on Bingham plastic model of MRF. Figure 1 shows the configu-
ration of the proposed BMRA. As shown in the figure, the BMRA has two disks
rotating in opposite directions at the same speed. The two disks are placed inside a
housing which is connected to the haptic devices. The space between the rotary
disks and the housing is filled with MRF. The BMRA has two coils placed directly
on each side of the housing. The coils are separated with the magneto-rheological
fluid (MRF) by a thin wall of the housing. With this configuration, the inner face of
the side housing, which is interfaced with the MRF, is continuous. This allows the
MRF duct being manufactured more easily and accurately. In order to prevent the
leaking of MRF, radial lip seals are employed. As an electric current is applied to
the coil 1, a magnetic field in the housing and disk 1 is generated, and the MRF in
the gap between the disk 1 and the housing becomes solid-like instantaneously.
This results in a controllable torque transmitted from disk 1 to the housing con-
nected with the output shaft. On the other hand, as an electric current is applied to
the coil 2, a magnetic field in the housing and disk 2 is generated, and the MRF in
the gap between the disk 2 and the housing becomes solid-like instantaneously.
This results in a controllable torque transmitted from disk 2 to the housing. By
controlling the applied currents to the coils, an expected bidirectional torque can be
obtained at the output shaft.

By assuming that the MRF rheologically behaves as Bingham plastic fluids and
by the assumption of a linear velocity profile in the MRF ducts, the induced
transmitting torque of the MRA can be, respectively, determined as follows [7, 8]

Fig. 1 Configuration of the
proposed bidirectional MR
actuator

Performance Evaluation of a 2D-Haptic Joystick Featuring … 1053



T ¼ T1 � T2 þ Tsf ð1Þ

T1 ¼ pld11R
4
w1

2d
½1� ð Ri

Rw1
Þ4�Xþ 2psyd11

3
ðR3

w1 � R3
i Þþ

pld12R
4
w1o

2d
½1� ðRw1

Rw1o
Þ4�X

þ 2psyd12
3

ðR3
w1o � R3

1Þþ
pld13R

4
w2

2d
½1� ðRw1o

Rw2
Þ4�Xþ 2psyd13

3
ðR3

w2 � R3
w1oÞ

þ pld14R
4
w2o

2d
½1� ðRw2

Rw2o
Þ4�Xþ 2psyd14

3
ðR3

w2o � R3
w2Þþ

pld15R
4
d

2d
½1� ðRw2o

Rd
Þ4�X

þ 2psyd15
3

ðR3
d � R3

w2oÞþ 2pR2
dtdðsyd16 þ ld16

XRd

do
Þ

ð2Þ

T2 ¼ pld21R
4
w1

2d
½1� ð Ri

Rw1
Þ4�Xþ 2psyd21

3
ðR3

w1 � R3
i Þþ

pld22R
4
w1o

2d
½1� ðRw1

Rw1o
Þ4�X

þ 2psyd22
3

ðR3
w1o � R3

1Þþ
pld23R

4
w2

2d
½1� ðRw1o

Rw2
Þ4�Xþ 2psyd23

3
ðR3

w2 � R3
w1oÞ

þ pld24R
4
w2o

2d
½1� ðRw2

Rw2o
Þ4�Xþ 2psyd24

3
ðR3

w2o � R3
w2Þþ

pld25R
4
d

2d
½1� ðRw2o

Rd
Þ4�X

þ 2psyd25
3

ðR3
d � R3

w2oÞþ 2pR2
dtdðsyd26 þ ld26

XRd

do
Þ

ð3Þ

Tsf ¼ 0:65 2Rsð Þ2X1=3 ð4Þ

In the above, T is the output torque, T1 and T2, are, respectively, the transmitting
torque from disk 1 and disk 2 to the housing, and Tsf is the friction torque between
the housing and the seals at shaft 1. Rd is the outer radius of the disks, Ri is the inner
radius of the active MRF volume which is almost equal to the radius of the shaft
flange, Rs is the shaft diameter at the sealing, d is the gap size of the MRF ducts
between the disks and the housing, do is the gap size of the annular MRF duct at the
outer cylindrical face of the disks, td is the thickness of the disks, X is the angular
velocity of the rotor, Rw1 and Rw1o are the inner and outer radius of the first coils,
and Rw2 and Rw2o are the inner and outer radius of the second coils.
ld11; ld12; ld13; ld14;ld15;ld16 are, respectively, the average post-yield viscosity of
MRF denoted by MRF1, MRF2, MRF3, MRF4, MRF5, and MRF6 relating to disk
1, and syd11; syd12; syd13; syd14; syd15; syd16 are the corresponding yield stress,
ld21; ld22; ld23; ld24; ld25; ld26 are the average post-yield viscosity relating to disk
2, and syd21; syd22; syd23; syd24; syd25; syd26 are the corresponding yield stress.

1054 T. B. Diep et al.



3 Optimal Design of the BMRA

In the design of actuator for haptic application, besides the transmitting torque,
another issue that should be taken into account is their mass. It is obvious that the
mass of the BMRA should be as small as possible to reduce the BMRA’s size and
cost. In addition, smaller mass of the MRA can reduce the effect of inertia in the
haptic systems. Therefore, the optimization problem in this study is to find optimal
value of significant geometric dimensions of the BMRA that can produce a certain
required transmitting torque while the BMRA’s mass is minimized. The BMRA’s
mass can be approximately calculated by

mb ¼ Vd1qd þVd2qd þVhqh þVs1qs þVs2qs þVMRqMR þVcqc ð5Þ

where Vd1;Vd2;Vh;Vs1;Vs2;VMR and Vc are, respectively, the geometric volume of
the disk 1, disk 2, the housing, the shaft 1, the shaft 2, the MRF, and the coils of the
BMRA. These parameters are functions of geometric dimensions of the BMRA’s
structures, which vary during the optimization process. qd, qh, qs, qMR, and qc are
densities of the disks, the housing, the shafts, the MRF, and the coil material,
respectively. The method to solve optimization problem of MR brakes and actua-
tors is mentioned in detail in [7–9]. In this study, the finite element model to
analyze magnetic circuit of the BMRA is shown in Fig. 2.

In this research, C45 steel is used for magnetic components of the BMRA such
as the housing and the disks, the coil wires are sized as 28-gage (diame-
ter = 0.321 mm), and the MRF is the commercial one made by Lord Corporation,
MRF132-DG. Figure 3 and Table 1 show the first optimal solution of the BMRA
when the transmitting torque in disk 2 rotational direction is constrained to be
greater than 5 Nm with 2% of accuracy, the convergence rate is set by 0.1%. In this
case, no current is applied to coil 1 while a current of 1.5 A is applied to coil 2. The
shaft radius is set by Rs = 6 mm considering the strength of the shaft. As shown in
the results, at the optimum, transmitting torque can reach up to 5 Nm as con-
strained, and the mass of the optimized BMRA is 2.0744 kg. Figure 4 and Table 2
show the second optimal solution of the BMRA when the number of coil turns are
rounded and fixed during optimization process.

Fig. 2 Finite element model to analyze magnetic circuit of BMRA
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Table 1 First optimal solution of the BMRA

Parameter design (mm) Performance

Coils: wc = 4.155 (nwc = 13.850), hc1 = 4.05 (nhc1 = 13.521),
hc2 = 4.89 mm (nhc2 = 16.333)
Housing: R = 56,306, th1 = 3.4277, L = 26.565
Disks: Ri = 16,5, Rd = 47.3, b = 4, Rd = 54.306

Moment: 5Nm
Mass: 2.0744 kg
Power: 78.982 W
Resistor:
RC1 = 5.9082 Ω
Resistor:
RC2 = 11.643 Ω
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Fig. 4 Second optimal solution when the coil turns are rounded and fixed
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4 Experimental Results

Figure 5 shows the CAD model of the proposed 2D-haptic joystick featuring a
gimbal mechanism and two BMRAs. As shown in the figure, the two BMRAs
driven by two DC servo motors are connected to the two shafts of the gimbal
mechanism. The motion from the motor is transferred to the two shafts of the
BMRA through a bevel gear system. The gimbal mechanism is operated through a
handle of 150 mm length. By controlling the output torque of the two BMRAs, a
desired feedback force can be archived at the operating knob.

Figure 6 shows the experimental setup to test performance of the 2D force
feedback system featuring two BMRAs. In the figure, the servo DC motors with
gearbox controlled by the computer at a constant angular speed of 0.2p rad/s. The
feedback forces of the haptic joystick are measured by a 3D force sensor attached to
the end of the handle. Once the experiment process is started, the analog output
from the force sensor is sent to the controller (PC) through the NI card. The
controller, which is a PID controller in this study, then sends a control signal
through the NI card and an amplifier to the coils of BMRAs to control the output
torque of the BMRAs. The controlled torques from the two BMRAs reflect the
feedback force to the operator through the handle.

Table 2 Second optimal solution of the BMRA

Parameter design (mm) Performance

Coils: wc = 4.2 mm (nwc = 14), hc1 = 4.2 mm
(nhc1 = 14), hc2 = 5.1 mm (nhc2 = 17)
Housing: R = 55.956, th1 = 3.5084 L = 2.6817
Disks: Ri = 16.5, Rd = 53.880, b = 4

Moment: 5Nm
Mass: 2.0700 kg
Power: 79.270 W
Resistor RC1 = 6.1490Ω
Resistor RC2 = 11.467Ω

Fig. 5 CAD model of the proposed 2D-haptic joystick
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Figure 7 shows the tracking response of the haptic joystick when the desired
input force is a sinusoidal function. The results show a quite good agreement
between the actual and the desired values for both x and y directions.

5 Conclusion

In this study, a new 2D-haptic joystick featuring a 2D-gimbal mechanism and two
bidirectional magneto-rheological actuators (BMRA) is designed, manufactured,
and experimentally tested. Firstly, a new configuration of BMRAs for force feed-
back of the haptic joystick was proposed, optimally designed, and experimentally
evaluated. Then, a 2D-haptic joystick featuring two BMRAs were proposed. The
prototype haptic joystick was then manufactured, and a PID controller was

Fig. 6 Experimental setup to test performance of the 2D force feedback
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Fig. 7 Experimental results of 2D force feedback system
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employed to achieve 2D force feedback to the operator. Experimental results
showed that the proposed 2D-haptic joystick can quite well achieve a desired
sinusoidal feedback force in both x and y directions. As second phase of this study,
a new controller will be employed to improve force feedback response to arbitrary
required input force, and a 3D-haptic joystick will be considered.
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Design and Evaluation of a Shear-Mode
MR Damper for Suspension System
of Front-Loading Washing Machines

D. Q. Bui, V. L. Hoang, H. D. Le and H. Q. Nguyen

Abstract In this research, a low damping force shear-mode magneto-rheological
(MR) damper that can replace conventional passive damper of a front-loading
washing machine is designed and experimentally evaluated. In the design of the
MR damper, required damping force, off-state friction force, size, and low cost of
the MR damper are taken into account. Firstly, a suppression system for washing
machines featuring MR dampers is proposed considering required damping force,
available space, and cost of the system. Optimization of the proposed MR sus-
pension system is then performed considering required damping force, off-state
friction force, size, power consumption, and low cost of the MR damper. From the
optimal results, simulated performance of the optimized MR damper is obtained
and presented with discussions. A detailed design of the MR damper is then con-
ducted, and a prototype MR damper is manufactured. In addition, experimental
results on the prototype MR damper are obtained and compared with simulated
ones. Finally, discussions on performance and application of the MR suspension
system for front-loading washing machines are given.
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1 Introduction

It is well known that a washing machine is one of helpful equipment in human life
as it releases people from hard washing works for more free time. Recently, in order
to satisfy the high demands of customers, the laundry capacity and the spin speed
are increased, while the machine weight and cost are reduced. With these, the
vibration of washing machine becomes a more challenging issue that should be
under consideration. The vibration of washing machine is transferred from the
washing drum to the frame and then to the floor causing acoustic noises, uncom-
fortable feeling for human and gradual decrease of the machine life span.

The vibration of washing machine is mostly due to the unbalanced mass of
laundry disposed in the drum. Particularly, in a front-loading washing machine, the
impact of gravity makes the unbalance more serious. Various suspension systems
have been developed to control the vibration of washing machine. In this study, the
vibration of front-loading washing machine is suppressed based on the damping
control of suspension system. It is found that during the spinning process, the first
resonance (rigid body mode) usually appears at quite low speed, around 100–
250 rpm while another one occurs at high speed, usually above 1000 rpm. In a
conventional suspension system, since passive dampers (constant damping coeffi-
cient) are applied, there is a tradeoff between the probability of vibration sup-
pression at low frequency and its increased transmissibility at high frequency.
Consequently, in order to effectively attenuate, the vibration of washing machine at
low resonance frequency whereas the one at high excitation frequency is well
isolated, a semi-active suspension system with controllable damping coefficient
should be employed, as shown in Fig. 1. For that, in this paper, a shear-mode
magneto-rheological (MR) damper is designed.

Fig. 1 Control of washing
machine vibration featuring
semi-active suspension
system
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MR fluid is a type of smart material whose solidification depends on external
magnetic field. Applications of MR fluid can be found in various industrial fields
such as brake, clutch, valve, damper… due to its possibilities of rapid response,
easy control and reverse. There are some research works on semi-active suspension
system for front-loading washing machines featuring MR fluid. Michael and
Carlson [1] have developed a low-cost MR fluid sponge damper for washing
machines. Although the sponge MR damper can well eliminate the vibration of
washing machine at low frequency [2], wearing and durability of the sponge are
still significant challenges. Aydar et al. [3] have researched on design and appli-
cation of a flow-mode MR damper to control vibration of washing machine.
However, the optimal design of the MR damper has not been considered, and the
zero-field friction force (the damping force when no current is applied to the coils of
the damper), also called the off-state force, is still very high, which may cause a
grave vibration of washing machine at high frequency. Furthermore, because a
large amount of MR fluid is required for flow-mode, the cost of the damper is also
high. Recently, Nguyen et al. [4] have developed an optimal shear-mode MR
damper for front-loading washing machines. It is potential that the MR damper can
provide a damping force up to 120 N while the zero-field friction force can be
considerably small. Yet, this MR damper has not been verified on a front-loading
washing machine, where sealing and assembly of the damper are significant
problems that should be completely taken into consideration.

The main contribution of this research is to present an optimal design of the
shear-mode MR damper for semi-active suspension system which can be applied to
vibration control of front-loading washing machines. Firstly, a suppression system
for washing machines featuring MR dampers is proposed considering required
damping force, available space, and cost of the system. Optimization of the pro-
posed MR suspension system is then performed considering required damping
force, off-state friction force, size, power consumption, and low cost of the MR
damper. From the optimal results, simulated performance of the optimized MR
damper is obtained and presented with discussions. A detailed design of the MR
damper is then conducted, and a prototype MR damper is manufactured. In addi-
tion, experimental results on the prototype MR damper are obtained and compared
with simulated ones. Finally, discussions on performance and application of the MR
suspension system for front-loading washing machines are given.

2 Dynamic Modeling of Washing Machine

In this work, the commercial front-loading washing machine, Samsung
WF8690NGW, was considered as a prototype. A 2-D simplified schematic of the
washing machine is shown in Fig. 2. According to [4], the governing equation of
the washing machine can be expressed:
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where m is the mass of the suspended tub assembly including the drum, laundry,
shaft, counterweight, rotor, and stator; c is the damping coefficient of each damper;
k is the stiffness of each spring; u is the angle of an arbitrary direction, u, in which
the vibration is considered; u is the displacement of the tube center in the
u-direction; and Fu is the excitation force due to an unbalanced mass in the
u-direction, defined by Fu ¼ F0 cos xtð Þ ¼ mux2Ru cos xtð Þ, where mu and Ru are
the mass and radius from the rotation axis of the unbalanced mass, respectively.

Since the resonance frequencies in all directions of vibration should be control-
lable, it is easy to realize that, by choosing a1 ¼ a2 ¼ b1 ¼ b2 ¼ 45� considering
manufacturing and available space, Eq. (1) can be simplified as follows:

m€uþ c _uþ ku ¼ FuðtÞ ð2Þ

3 Configuration of MR Damper

Generally, there are three operational modes of MR dampers: shear-mode,
flow-mode and their combination, mixed-mode. The last two modes result in
complicated design and high zero-field friction force as well as high cost due to
large about of MR fluid required. Therefore, the shear-mode MR damper is pro-
posed for this paper.

Figure 3 shows the configuration of proposed shear-mode MR damper. In this
configuration, two coils are wounded directly on the coil grooves of the housing.

Fig. 2 Two-dimensional
simplified schematic of the
prototype washing machine
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The section of the thin wall between the coil grooves and the MR gap is designed to
have a small area so that the magnetic flux going through it promptly reaches to
saturation and hence is forced to go across the MR gap. In response to the magnetic
field, the MR fluid solidifies and resists the relative movement between the shaft
and the housing producing the damping force. In the literature, a configuration with
more than two coils can be used in order to increase the magnetic flux density
across the MR gap. However, this induces the difficulties in achieving the accuracy
of manufacturing and assembly. On the other hand, more coils mean more applied
powers required, which results in high cost of operation and the rising of heat
emission. Taking all above issues into account, the configuration with two coils is
recommended for our design.

4 Optimal Design of MR Damper

In this work, optimal design of the proposed shear-mode MR damper is performed
based on the quasi-static model of the MR damper and the dynamic equation of the
washing machine presented in Sect. 2. From Fig. 2, by assuming a linear profile of
velocity of the MR fluid in the duct between the shaft and the housing, the damping
force Fsd and the zero-field friction force Fs0 can be, respectively, determined by

Fsd ¼ 2pRsLeðsy þ g
v
d
Þþ 2For ð3Þ

Fs0 ¼ 2pRsLdðsy0 þ g0
v
d
Þþ 2For ð4Þ

where Rs is the shaft radius, d is the gap size of the MR fluid duct, v is the relative
velocity between the shaft and the housing, η and sy are, respectively, the
field-dependent post-yield viscosity and yield stress of the active MR fluid in the
duct, Ld is the length of the MRF duct, and Le is the effective length of the active
MRF in the duct. For the proposed MR damper, Le can be approximated by Le ≅ Ld.

Fig. 3 Schematic configuration of proposed shear-mode MR damper
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For is the coulomb friction force between the shaft and the o-ring which can be
approximately calculated by [5]

For ¼ fcLr þ fhAr ð5Þ

in which Lr is the length of seal rubbing surface, fc is friction per unit length due to
o-ring compression, Ar is the projected area of seal, and fh is friction force due to
fluid pressure on a unit projected area of seal. It is noteworthy that for the
shear-mode MR damper, the pressure on the o-rings is very small and thus can be
neglected, fh ≅ 0. Moreover, the compression of o-rings should be set at a moderate
ratio so that the off-state force is not too high while the sealing of the MR damper is
well ensured during the operation of washing machine. Therefore, in this paper,
70-durometer rubber o-rings are used and the compression of o-rings is set by 10%.
With these, it can be found that fc = 116.75 N/m.

The MR fluid 132-DG made by Lord Corporation is employed for our proposed
MR damper. Based on Bingham model, the rheological properties of MR fluid
depend on applied magnetic field and can be estimated by the following equation
[6]:

Y ¼ Y1 þ ðY0 � Y1Þð2e�BaSY � e�2BaSY Þ ð6Þ

where Y represents one of the rheological parameters of MR fluid such as yield
stress and post-yield viscosity. The value of parameter Y tends from the zero applied
field value Y0 to the saturation value Y∞. aSY is the saturation moment index of the
Y parameter. B is the applied magnetic density. The values of Y0, Y∞, aSY are
determined from experimental results using curve-fitting method, and the results are
presented in Table 1.

The objective damping force for the MR damper Fd is defined as follows [4]:

Fdj j ¼ kpnmur3Ru

2m

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

ð1� r2Þ2 þð2nrÞ2
s

ð7Þ

in which it is assumed that the spring stiffness, k, is 10 kN/m; the mass of the
suspended tub assembly, m, is 40 kg; the equivalent unbalanced mass mu is 7 kg
located at the radius Ru 0.125 m. With the required damping ratio n = 0.7 at the

resonance frequency ratio r ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� n2

p
, the required value of damping force is

obtained from Eq. (6), which is around 78.7 N. Accordingly, in this work, the
objective damping force for the proposed MR damper is set by 80 N.

Table 1 Rheological
properties of MR fluid
132-DG

Bingham model parameters

l0 = 0.1 pa � s
l∞ = 3.8 pa � s

sy0 = 15 pa
sy∞ = 40,000 pa

asl = 4.5 T−1

assy = 2.9 T−1
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Another problem should be considered in the MR damper design is the available
space of the washing machine. From assembly aspects, with the required maximum
stroke of the damper set by 40 mm, the available length of the MR duct is
approximately calculated by 80 mm. Despite no strict constraint on the outer radius
of the MR damper, it should be as small as possible in order to reduce its cost and
weight. Since the outer radius of conventional damper is around 20 mm, the one of
the MR dampers is restricted to be smaller than this value. Besides, for the pos-
sibility of machining the bushing cylinder without warping, the height of coil
grooves should not be so small. In this case, it is set to be larger than 4.6 mm. In
summary, the optimization of the MR damper design for the washing machine can
be expressed as follows: Find optimal values of significant geometric dimensions of
the proposed MR damper that minimize the off-state force Fs0, subjected to the
maximum damping force Fsd is greater than 80 N, the length of MR duct Ld is
smaller than 80 mm, the outer radius of the damper R is smaller than 20 mm, and
the height of coil grooves hc is greater than 4.6 mm.

In order to obtain the optimal solution, a FEA code integrated with an opti-
mization tool is employed. In this study, the first-order method with golden section
algorithm of ANSYS optimization tool is used. The detailed procedure to obtain the
optimal solution of MR fluid devices based on FEA has been mentioned in several
researches [7, 8].

5 Results and Discussions

In this section, the optimal results of the MR damper are obtained and the optimized
MR damper is then manufactured and tested. From commercial aspects, the C45
steel and the copper wire gauge 24 (0.511 mm-diameter) are employed for mag-
netic components of the MR damper. The MR fluid gap size is set from 0.5 to 1 mm
based on the consideration of manufacturing, amount of MR fluid, and size of
o-rings. Furthermore, the applied current is limited by 1.5 A in order to reduce the
consumption power and the heating of the coils. The optimal solutions of the
proposed MR damper are summarized in Tables 2, and the magnetic flux distri-
bution of the optimized damper is shown in Fig. 4. It is observed from the figure
that the magnetic flux density in the shaft and the housing reach to saturation and so
does the damping force as the applied current is above 1.5 A.

In order to verify the above optimal results and test performance of the optimized
MR damper, a prototype of the optimized MR damper is manufactured and
experimental results are obtained and presented. Figure 5 shows the experimental
setup to test performance of the prototype MR damper. As shown in the figure, a
crank–slider mechanism is used to convert the rotary motion of the motor to the
reciprocal motion of the damper shaft. The motor with a gearbox is employed to
rotate the crankshaft at a constant angular speed of 10p rad/s. The damping force of
the MR damper is measured by a force sensor. The output signal from the force
sensor is then sent to the computer via the A/D converter for assessment. During the
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Table 2 Optimal parameters of the proposed shear-mode MR damper

Parameters

Off-state force Fs0 (N) 13.52 Coil width wc0 (mm) 3.53

Max damping force Fsd (N) 80 Axial chamfer ch1 (mm) 10.32

MR duct length Ld (mm) 71.87 Shaft radius Rs (mm) 9

Outer radius R (mm) 18.74 MR duct gap tg (mm) 0.8

Coil groove height hc (mm) 4.98 Thin wall ti (mm) 0.8

Coil height hc0 (mm) 3.2 Sliding housing t0 (mm) 3.17

Radial chamfer ch (mm) 1.78 Coil to centerline tfi (mm) 5.88

.287E-14 .394077  .788154  1.182  1.576 
 .197038  .591115  .985192  1.379 

Fig. 4 Magnetic flux density of the proposed optimized MR damper

Fig. 5 Experimental setup to test performance of the optimized MR damper
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experiment, a constant current is applied to the coils of the MR damper via a current
power supply. The crank radius (the distance from the center of the eccentric cam to
the pin of the transmission rod) is set by 20 mm so that the mechanism could
provide the required maximum stroke of the MR damper, 40 mm.

Figure 6a and b shows the damping force of the prototype MR damper as a
function of the damper shaft velocity in the applied currents of 1.5 A and 0 A
(off-state), respectively. It is observed from Fig. 6a that the damping force obtained
from experiment is a little smaller than that obtained from the static modeling based
on finite element analysis. This mainly comes from the loss of magnetic field to the
ambient and at the contact between the magnetic parts of the MR damper. The
average value of the damping forces at the steady positions (at positions relatively
far from the stroke ends) is 76.24 N, which is around 95.3% of the modeling value
(80 N). Therefore, a good correlation between experimental results and static
modeling based on finite element analysis is achieved. From the results, it is also
observed that the damper exhibits nonlinear hysteresis, especially at the stroke ends.
From Fig. 6b, it is seen that the off-state force obtained from experiment is a little
higher than that obtained from the modeling results. The average value of the
off-state forces at the steady positions is 14.03 N, which is around 103.77% of the
modeling value (13.52 N). It is believed that the difference mainly comes from
the inaccurate estimation of the friction force of the o-rings.

In order to validate the efficiency in operation, the prototype MR dampers are
applied to a front-loading washing machine. Figure 7 shows the application of the
MR dampers to a washing machine. The laundry mass of 7 kg is put into the
washing drum, and an accelerometer is mounted to the frame for the acceleration
measurement. The spinning process of the washing machine is operated, and the
data is collected in 3 min since the spinning speed of the drum reaches to 100 rpm.
The current is applied to the MR dampers at the first resonance (from the second
18–60) while the off-state of the MR dampers is established when the drum speed is

Fig. 6 Experimental results of the prototype MR damper
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above 900 rpm (at the second 77). The acceleration indices in x-, y-, and
z-directions of the MR dampers are obtained and presented in Figs. 8, 9, and 10,
respectively. From the figures, it is observed that in the first resonance, the vibration
of the washing machine employing MR dampers (Figures b) is well suppressed
compared with that using conventional dampers (Figures a). This mainly comes
from the greater of damping force of the MR damper in comparison with the one of
conventional damper. When the drum speed is above 900 rpm, the vibration in
x- and y-directions of the washing machine featuring MR dampers is still well
attenuated against those using conventional dampers, but the result in z-direction is

Fig. 7 Application of the proposed MR damper to a front-loading washing machine

Fig. 8 Vibration indices in
x-direction of the washing
machine
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not much attenuated. The main reason comes from in-plane positioning (x-y plane)
of the MR dampers.

6 Conclusions

This paper focused on the design and evaluation of a shear-mode MR damper for
suspension system of front-loading washing machines to eliminate vibration due to
an unbalanced laundry mass occurring in the washing drum. Firstly, a suppression

Fig. 9 Vibration indices in
y-direction of the washing
machine

Fig. 10 Vibration indices in
z-direction of the washing
machine
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system for washing machines featuring MR dampers was proposed considering
required damping force, available space, and cost of the system. Optimization of the
proposed MR damper was then performed considering required damping force,
off-state friction force, size, manufacturing, and low cost. From the optimal results,
simulated performance of the optimized MR damper was obtained and presented
with discussions. A detailed design of the MR damper was then conducted, and a
prototype MR damper was manufactured. In addition, experimental results on the
prototype MR damper were obtained and compared with simulated ones. From the
results, it was shown that there was a good correlation between experimental results
and static modeling based on finite element analysis. The prototype MR dampers
were then applied to the suspension system of the prototype front-loading washing
machines for evaluation. It was observed that the vibration in all directions of the
washing machine featuring MR dampers is well suppressed in comparison with
those using conventional dampers, except the vibration in z-direction at the drum
speed of above 900 rpm. It is finally remarked that as the second phase of this
research, the MR dampers will be employed in appropriate positions to attenuate
vibration in z-direction and an appropriate controller is applied for the dampers.
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Abstract An edge-based smoothed finite element method (ES-FEM) was recently
proposed to significantly improve the accuracy and convergence rate of traditional
finite element method for static and force vibration analyses of plates and shells. In
this paper, the ES-FEM is further extended and incorporated with mixed interpo-
lation of tensorial components for triangular element (MITC3) [1], called
ES-MITC3, for transient analysis of laminated composite shells based on the
first-order shear deformation theory (FSDT). Numerical results for static analysis of
isotropic and transient response of laminated composite shell with various different
loadings and boundary conditions are provided. The accuracy and reliability of
proposed method are verified by comparing its numerical solutions with those of
other available numerical results.
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1 Introduction

Nowadays, laminated composite shell structures are widely used in civil, aerospace,
naval, automotive, defense industries, and other areas because of their superior
properties such as high strength, lightweight, stiffness-to-weight ratios, and excel-
lent fatigue strength. Therefore, there exists a need for full understanding of the
transient response of laminated composite shells. Recently, various theories have
been successfully applied in order to analyze transient response of the laminated
composite shells. Khdeir [2] has proposed a higher-order shear deformation theory
(HSDT), based on Sander’s shell theory and the state-space technique for exact
solution, to investigate transient response of laminated circular cylindrical shells.
Based on combining the Rayleigh–Ritz and the normal mode superposition method,
Chun and Lam [3] analyzed the dynamic response of laminated panels under step,
triangular, and blast loadings. Turkmen [4] studied the displacement time histories
of cylindrically curved laminated composite shells subjected to blast loading. In this
study, the Runge–Kutta method is employed to solve the governing equation of the
cylindrical shells. In addition, Sahan [5] analyzed the dynamic response of lami-
nated spherical shells based on a combination of Laplace transform and Navier
method.

In the front of the development of numerical methods, Liu et al. [6] integrated
the strain smoothing technique into the traditional FEM to create a series of
smoothed FEM such as a cell-based smoothed FEM (CS-FEM) [7], a node-based
smoothed FEM (NS-FEM) [8], an edge-based smoothed FEM (ES-FEM) [9], and a
face-based smoothed FEM (FS-FEM) [10]. Each of these smoothed FEM has been
delivered different desired properties for a wide class of benchmark and practical
mechanics’ problems. Among these S-FEM models, ES-FEM [9] demonstrated
good performances for two-dimensional problem. In the ES-FEM, the stiffness
matrix is computed using strains smoothed over the smoothing domains associated
with the edges of the elements. Besides, polygonal FEM for plate analysis also
provided some good properties [11]. In addition, in recent years, computational
approach based on isogeometric analysis (IGA) is very promising for analyzing
plate/shell problems [12–15].

Recently, Chau-Dinh et al. [16] developed further the ES-FEM for plate struc-
tures by combining the ES-FEM with the MITC3 [1], which can remove the
shear-locking phenomenon. The numerical results showed that ES-MITC3 achieves
the high accuracy compared to the exact solutions and other existing elements in the
literature.

This paper aims to extend further the ES-MICT3 to analyze static of isotropic
shell and the transient response of laminated composite spherical shell subjected to
different type of dynamic loadings including step, sine, triangular, and blast load-
ings. In this study, the first-order shear deformation theory (FSDT) is applied in the
formulation due to the simplicity and computational efficiency. The equations of
motion for the laminated composite shell are solved by Newmark method for time
integration. Several numerical examples are provided to illustrate the accuracy and
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reliability of the present method in comparison with those of other available
numerical results.

2 Theoretical Formulation

2.1 Weak Form of Laminated Composite Shells

Consider a flat shell element deformed by in-plane forces and bending moments, as
shown in Fig. 1a, in which the global coordinate is Oxyz and the local coordinate is
Ôx̂ŷẑ. The middle surface of the shell element is chosen as the reference plane that
occupies the domain X � <3. According to the FSDT, the displacements field at
any point of shell in the local coordinate can be expressed as follows

ûðx; y; zÞ ¼ û0ðx; yÞþ zb̂xðx; yÞ;
v̂ðx; y; zÞ ¼ v̂0ðx; yÞþ zb̂yðx; yÞ

ŵðx; y; zÞ ¼ ŵ0ðx; yÞ;

8<
: ; ð1Þ

where û0; v̂0 and ŵ0 are the displacements of the middle plane in the x̂; ŷ and ẑ

directions, respectively; b̂x; b̂y denote the rotations of the middle surface of the shell
around the ŷ axis and x̂ axis, respectively, as indicated in Fig. 1a.

The strain vector can be written as

êxx; êyy; ĉxy; ĉxz; ĉyz
� �T¼ ê

0

� �
þ z

ĵ

0

� �
þ 0

ĉ

� �
; ð2Þ

where the membrane ê, bending ĵ, and shear strains ĉ in local coordinate can be
defined by

Fig. 1 A shell element with local coordinate system Ôx̂ŷẑ in global coordinate system Oxyz
(a) and three-node triangular element and local coordinate (b)
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ê ¼ û0;x; v̂0;y; û0;y þ v̂0;x
� �

; ĵ ¼ b̂x;x; b̂y;y; b̂x;y þ b̂y;x
n o

; ĉ

¼ ŵ0;x þ b̂x; ŵ0;y þ b̂y
n o

: ð3Þ

The linear stress–strain relations are expressed as

r̂xx
r̂yy
r̂xy

8<
:

9=
; ¼

Q11 Q12 0
Q21 Q22 0
0 0 Q66

2
4

3
5 êxx

êyy
ĉxy

8<
:

9=
;;

r̂xz
r̂yz

� �
¼ Q55 0

0 Q44

� �
ĉxz
ĉyz

� �
; ð4Þ

in which Q11ðzÞ ¼ Q22ðzÞ ¼ EðzÞ
1�mðzÞ2 ; Q12ðzÞ ¼ mðzÞQ11ðzÞ; Q44ðzÞ ¼ Q55ðzÞ ¼

Q66ðzÞ ¼ EðzÞ
2ð1þ mðzÞÞ :

For forced vibration analysis of the laminated composite shell, a weak form can
be derived from the following undamped dynamic equilibrium equation as

Z
X
d

ê

ĵ

ĉ

8<
:

9=
;

T A B 0
B D 0
0 0 Ds

2
4

3
5 ê

ĵ

ĉ

8<
:

9=
; dXþ

Z
X
duTm�udX ¼

Z
X
duTpdX; ð5Þ

where p ¼ 0; 0; p x; y; z; tð Þ; 0; 0; 0f gT is a distributed load that applied on the shell,
in which pðx; y; z; tÞ is a function depending on time and space; the material con-
stant matrices A;B;D and Ds can be expressed by

ðAij; Bij; DijÞ ¼
Z h=2

�h=2
ð1; z; z2Þ�Qijdz; ði; j ¼ 1; 2; 6Þ;Ds

ij ¼
Z h=2

�h=2
k�Qijdz; ði; j

¼ 4; 5Þ: ð6Þ

where k = 5/6 denotes the transverse shear correction coefficient; �Qij is the trans-
formed material constants of the kth orthotropic layer [17]. The mass matrix m is
given as

m ¼

I0 0 0 I1 0 0
I0 0 0 I1 0

I0 0 0 0
I2 0 0

I2 0
sym: 0

2
6666664

3
7777775; ð7Þ

in which ðI0; I1; I2Þ ¼
R h=2
�h=2 qð1; z; z2Þdz where q is the mass density.
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2.2 Formulation of Finite Element Method for Triangular
Flat Shell Elements

In FEM, the problem domain X is discretized using a mesh of ne three-node finite
elements such that X ¼ Sne

e¼1 X
e and Xi \ X j ¼ ∅ with i 6¼ j: The finite element

approximation ûeh for laminated composite shell elements can be expressed as

ûeh ¼
XNn

I¼1

NIðxÞI6d̂I ¼
XNn

I¼1

NI d̂I ð8Þ

where I6 is the unit matrix of 6-th rank; Nn is the total number of nodes of problem

domain discretized; NI(x) is the shape function at the I-th node; d̂
e
I ¼

ûeI ; v̂
e
I ; ŵ

e
I ; b̂

e
xI ; b̂

e
yI ; b̂

e
zI

h iT
is the displacement vector of the nodal degrees of freedom

of ûeh associated to the I-th node.
According to Eq. (3), the approximation of the membrane, bending, and shear

strains in the triangular element can then be expressed in matrix forms as

êe ¼ Re
1;R

e
2;R

e
3

� 	
d̂
e ¼ Red̂

e
; ĵe ¼ Be

1;B
e
2;B

e
3

� 	
d̂
e ¼ Bed̂

e
; ĉe ¼ Se1; S

e
2; S

e
3

� 	
d̂
e

¼ Sed̂
e
;

ð9Þ

where

Re
i ¼

Ni;x 0 0000
0 Ni;y 0000
Ni;y Ni;x 0000

2
4

3
5;Be

i ¼
000 Ni;x 0 0
000 0 Ni;y 0
000 Ni;y Ni;x 0

2
4

3
5; Sei

¼ 00 Ni;x Ni 0 0
00 Ni;y 0 Ni 0

� �
: ð10Þ

Substituting Eq. (9) into Eq. (5), a discretized equation undamped for transient
analysis laminated composite shell elements can be rewritten in compact forms as

M̂ �̂dt þ K̂d̂t ¼ F̂t ð11Þ

where

K̂ ¼
Xne
e¼1

K̂
e ¼

Xne
e¼1

Z
Xe

Re

Be

Se

8<
:

9=
;

T A B 0
B D 0
0 0 Ds

2
4

3
5 Re

Be

Se

8<
:

9=
;dX ; ð12Þ
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F̂ ¼
Xne
e¼1

F̂
e ¼

Xne
e¼1

Z
Xe
NTbdX : ð13Þ

M̂ ¼
Xne
e¼1

M̂
e ¼

Xne
e¼1

Z
Xe
NTmNdX : ð14Þ

It should be noted that the above formulas are constructed in the local coordinate
system of each shell element. Therefore, the transformation between global coor-
dinates and local coordinates is required before conducting the assembling process
of element stiffness matrices. Finally, the dynamic analysis equations of laminated
composite shell in the global coordinates can be written as

M�dt þKdt ¼ Ft ð15Þ

in which

K ¼
Xne
e¼1

TTK̂
e
T|fflfflffl{zfflfflffl}

Ke

¼
Xne
e¼1

Ke;M ¼
Xne
e¼1

TTM̂
e
T|fflfflfflffl{zfflfflfflffl}

Me

¼
Xne
e¼1

Me;F ¼
Xne
e¼1

TT F̂
e|ffl{zffl}

Fe

¼
Xne
e¼1

Fe:

ð16Þ

where T is the transformation matrix of coordinate from global coordinate to the
local coordinate system [18]. In order to solve Eq. (15), several methods have been
proposed such as Wilson, Newmark, Houbolt, and Crank–Nicholson. In this study,
the displacements dt and the accelerations �dt in Eq. (15) are solved by using
Newmark method [19].

2.3 Formulation of ES-MITC3 for Laminated Composite
Shells

2.3.1 Brief on the MITC3 Formulation

It is well known that shear-locking phenomenon can appear when the shell struc-
tures become progressively thinner. In literature, many approaches have been
proposed such as the reduced integration method [20], assumed natural strains
(ANS) [21, 22], linked interpolation methods [23], family of various elements based
on the Timoshenko’s beam formulas [24], and smoothed finite elements [25, 26]. In
this study, the MITC3 technique [1, 16] is applied to avoid the shear-locking
phenomenon. Accordingly, the covariant transverse shear strains of the MITC3
element are separately interpolated from values of the covariant transverse shear
strains evaluated at tying points, as indicated in Fig. 2a. Using the natural coor-
dinates (g; n), the assumed covariant transverse shear strain fields can be rewritten
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enf ¼ e 1ð Þ
nf þ c1g; egf ¼ e 2ð Þ

gf � c1n ð17Þ

with c1 ¼ eð2Þgf � eð1Þnf � eð3Þgf þ eð3Þnf . Then, explicitly transverse shear strain fields are
obtained

ĉeMITC3 ¼ SeMITC3�1 SeMITC3�2 SeMITC3�3½ �|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
Ŝ
e
MITC3

d̂
e ¼ Ŝ

e
MITC3d̂

e
; ð18Þ

where

SeMITC3�1 ¼ J�1 00 �1 a
3 þ d

6
b
3 þ c

6 0

00 �1 d
3 þ a

6
c
3 þ b

6 0

" #
; SeMITC3�2 ¼ J�1 00 1 a

2 � d
6

b
2 � c

6 0

00 0 d
6

c
6 0

" #
;

SeMITC3�3 ¼ J�1 00 0 a
6

b
6 0

00 1 d
2 � a

6
c
2 � b

6 0

" #
; J�1 ¼ 1

2Ae

c �b

�d a

� �
:

ð19Þ

where a ¼ x2 � x1; b ¼ y2 � y1; c ¼ y3 � y1; d ¼ x3 � x1; as indicated in Fig. 1b
and Ae is the area of the triangular element.

2.3.2 Formulation of ES-MITC3 for Triangular Flat Shell Element

In the ES-FEM, the domain X is divided into nk smoothing domains XðkÞ based on
edges of elements, such as X ¼ [ nk

k¼1X
ðkÞ and XðiÞ \ XðjÞ ¼ ; for i 6¼ j. The

smoothing domain XðkÞ associated with each edge is established by connecting two
end-nodes of edge k to centroids of the triangles containing the edges, as shown in
Fig. 3a. The smoothing domain of an inner edge is formed by combining two
sub-domains of two adjacent triangles while the smoothing domain of the edges on
the boundary is a single domain. In order to compute the strain smoothing, which

Fig. 2 Typing points (a) and the laminated composite spherical shell (b)
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defined on sub-domains of adjacent elements sharing an edge, the smoothing
coordinate ~O~x~y~z is introduced. Accordingly, these two adjacent elements are
defined by two local coordinate systems Ô1x̂1ŷ1ẑ1 and Ô2x̂2ŷ2ẑ2, as shown in
Fig. 3b. The smooth coordinate ~O~x~y~z is defined by the ~x axis coinciding with the
sharing edge k; the ~z axis is average direction between the ẑ1 and ẑ2 axis. The ~y axis
is defined by the cross product of the ~x and ~z axis.

Using transformation law for each triangular element, the membrane strain �e; the
bending strain �j, and the shear strain �c of each element in the global coordinate
Oxyz are given by

�e ¼ Km1Km2ê
e; �j ¼ Kb1Kb2ĵ

e; �c ¼ Ks1Ks2ĉ
e ð20Þ

where êe, ĵe, and ĉe are strains in the local coordinate of each sub-domain attached
to edge k, respectively. In Eq. (20), the strain transformation matrices Km1, Km2,
Kb1, Kb2, Ks1, and Ks2 can be seen [18].

Substituting Eqs. (9) and (17) into Eq. (20), the strains in the global coordinate
Oxyz can be rewritten by

�e ¼ Km1Km2R̂d̂; �j ¼ Km1Km2B̂d̂; �c ¼ Ks1Ks2Ŝd̂: ð21Þ

in which R̂, B̂, and Ŝ are the membrane, the bending, and the shear matrices in the
local coordinate. A smoothed membrane strain �eðkÞ, a smoothed bending strain
�j kð Þo, and a smoothed shear strain �c kð Þ in the global coordinate Oxyz can be derived
as

�eðkÞ ¼
Z
XðkÞ

�eUðkÞdX; �jðkÞ ¼
Z
XðkÞ

�jUðkÞdX; �cðkÞ ¼
Z
XðkÞ

�cUðkÞdX; ð22Þ

Fig. 3 A mesh of triangular elements and the smoothing domains (a) and the local, global, and
smoothing coordinates of flat shell element (b)
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in which U kð Þ xð Þ is a given smoothing function that satisfies
R
XðkÞ UðkÞ xð ÞdX ¼ 1:

The smoothing function can be defined by

UðkÞ xð Þ ¼
1

AðkÞ x 2 XðkÞ;
0 x 62 X kð Þ;

(
ð23Þ

where A(k) is the area of the smoothing domain X(k) and is computed by

AðkÞ ¼
Z
XðkÞ

dX ¼ 1
3

Xnek
i¼1

Ai: ð24Þ

in which nek is the number of the adjacent triangular elements in the smoothing
domain X(k), and Ai is the area of the i-th sub-domain in a triangular element.

Substituting Eqs. (21) and (24) into Eq. (22), the smoothed strains on the
smoothing domain X(k) in Oxyz can be expressed as

�e kð Þ ¼
Xnnk
j¼1

�R kð Þ
j d kð Þ

j ; �j kð Þ ¼
Xnnk
j¼1

�B kð Þ
j d kð Þ

j ; �c kð Þ ¼
Xnnk
j¼1

�S kð Þ
j d kð Þ

j : ð25Þ

where nnk is the number of the neighboring nodes of edge k; dðkÞj is the nodal

degrees of freedom at the j-th node of the smoothing domain X(k) in Oxyz; �RðkÞ
j ,

�BðkÞ
j , and �SðkÞj are the membrane, the bending, and the shear smoothed gradient

matrices at the j-th node of the smoothing domain X(k) in Oxyz, respectively, and
can be computed by

�RðkÞ
j ¼ 1

AðkÞ
Xnek
i¼1

1
3
AiKðkÞ

m1K
i
m2R

i
j;
�BðkÞ
j ¼ 1

AðkÞ
Xnek
i¼1

1
3
AiKðkÞ

b1 K
i
b2B

i
j;
�SðkÞj

¼ 1
AðkÞ

Xnek
i¼1

1
3
AiKðkÞ

s1 K
i
s2S

i
j: ð26Þ

The global stiffness matrix of the laminated composite shell in Eq. (16) can be
rewritten by global stiffness matrix of ES-MITC3 as

KES�MITC3 ¼
Xnk
k¼1

K kð Þ
ES�MITC3: ð27Þ

in which KðkÞ
ES�MITC3 are the smoothed stiffness matrices defined by
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KðkÞ
ES�MITC3 ¼ TT

Z
XðkÞ

�RðkÞ

�BðkÞ

�SðkÞ

8><
>:

9>=
>;

T
A B 0
B D 0
0 0 Ds

2
4

3
5 �RðkÞ

�BðkÞ

�SðkÞ

8><
>:

9>=
>;dX

0
BB@

1
CCAT: ð28Þ

From Eq. (28), it can be seen that the values of element stiffness matrix at the
drilling degree of freedom bz equal zero. To deal with this problem, the null values
of the stiffness corresponding to the drilling degree of freedom are then replaced by
approximate values. This approximate value is taken to be equal to 10−3 times the
maximum diagonal value in the element stiffness matrix [27].

3 Numerical Results

In this section, several examples for static analysis of isotropic shell and transient
response of laminated composite shell are investigated. The results obtained are
compared with other published ones.

3.1 Static Analysis of Isotropic Shell Problem

We consider a pinched cylindrical shell supported by rigid diaphragms and sub-
jected to a point load P ¼ 1 at the center of the cylindrical surface as shown in
Fig. 4a. The material properties are given by Poisson’s ratio m ¼ 0:3 and Young’s
modulus E ¼ 3 � 106. The geometric dimensions of the pinched cylinder are the
length L ¼ 600, the radius R ¼ 300, and the thickness t ¼ 3, respectively. Due to
its symmetry, only one-eighth of the cylinder is modeled, shown in Fig. 4a. The

Fig. 4 a Pinched cylinder under central point load; b convergence of the vertical displacement at
loaded point
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pinched cylinder shell is discretized into uniform triangular and quadrilateral
meshes with 8, 12, 16, and 20. The convergence of the displacement at the center
point is plotted in Fig. 4b. In comparison with the reference results of Fluge [28],
the results of the proposed method are the best accurate compared with those of the
triangular shell elements DSG3, MITC3, and the quadrilateral shell element MITC4
in fine meshes.

3.2 Transient Analysis of Laminated Composite Shell
Problem

In all the numerical examples, all layers are assumed to be the same thickness, mass
density, and made of the same linearly elastic composite material but the fiber
orientations may be different among the layers. The spherical shell is uniformly
discretized by 8 � 8 triangular elements. The numerical results for
non-dimensional center deflection �w and stress �rx; �ry are normalized by
�w ¼ 100w� E2h3

�
q0a4; �rx ¼ rx=q0; �ry ¼ ry

�
q0:

Firstly, the dynamic response of simply supported laminated sphere shell sub-
jected to step load is considered. The geometrical parameters
are:a=b ¼ 1;Rx ¼ Ry ¼ 10m; h ¼ 0:1m; shown in Fig. 2b. The material properties
are given as follows: E1 ¼ 25� 109 Pa; E2 ¼ 1� 109 Pa; G12 ¼ G13 ¼ 0:5�
109 Pa; G23 ¼ 0:2� 109 Pa; v23 ¼ 0:25; q ¼ 2000 kg/m3: The step load can be
expressed as Table 1, in which p0 ¼ 1000N

�
m2 and t1 ¼ 0:04 s:

Figures 5 and 6 show dynamic response of central non-dimensional deflection �w
and normal stress �ry; �rx of the laminated composite spherical shells ½0�=90�� and
½0�=90�=0��; respectively. It is seen that the results of proposed method are in good
agreement with those from Sahan [5] and overtake those by MITC3. In fact, the
edge-based gradient smoothing technique of ES-MITC3 helps soften the
over-stiffness of the MITC3 as presented in Ref. [1].

In the next example, the dynamic response of simply supported laminated sphere
shell ½0�=90�=0�� subjected to such as step, sine, triangular, and blast load is
considered. The geometrical parameters are: a=b ¼ 1; Rx ¼ Ry ¼ 1; and
h ¼ 0:1m. The material properties are given as follows: E1 ¼ 172:369� 109 Pa;
E1 ¼ 6:895� 109 Pa; G12 ¼ G13 ¼ 3:448� 109 Pa; G23 ¼ 1:379� 109 Pa; v23 ¼
0:25; and q ¼ 1603:03 kg/m3: The different loads can be expressed in Table 1, in
which p ¼ 68:895 � 106 N

�
m2 and t1 ¼ 0:06 s:

The transient solution for non-dimensional deflection �w and normal stress �rx at
center of laminated spherical shell for various loadings are presented in Fig. 7 and
Fig. 8, respectively. Obtained results from the present method are compared with
those of Khdeir [29]. It is observed that the obtained results are in very good
agreement with the exact solution for all non-dimensional deflection and normal
stress as a function of time.
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Finally, the transient analysis of simply supported laminated composite spherical
shell with various boundary conditions subjected to blast loading is investigated.
The geometrical parameters are: a=b ¼ 1;Rx ¼ Ry ¼ 10m; h ¼ 0:1m: The material
properties of shell are the same as the first example. However, the blast load with
sinusoidal distributed load, which are expressed by the parameters listed in Table 1,
where p = p0 sin(px/a) sin(px/b) with p0 = 1000 N/m2; t1 = 0.004s; a = 1.98 is
considered.

Figures 9 and 10 present dynamic response of non-dimensional central deflec-
tion ð�wÞ and normal stress �ry; �rx of the laminated composite spherical shell
½0�=90��; ½0�=90�=0��, respectively, with various boundary conditions such as four
edges are simply supported (SSSS), four edges are clamped (CCCC) and (SCSC)
that mean two edges are simply supported and two edges are clamped, respectively.
The plots in these figures reveal that the effects of the boundary conditions are
significant to displacement and stress of laminated composite shell subject to blast
loading.

Fig. 5 Central displacement (a); central stress �ry (b) versus time for ½0�=90�� laminates
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Fig. 6 Central displacement (a); central stress �rx (b) versus time for ½0�=90�=0�� laminates
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Fig. 7 Variation of the center non-dimensional deflection as a function of time for different
loading: a step; b sine; c triangle; and d explosion
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Fig. 8 Variation of the center normal stress as a function of time for different loading: a step;
b sine; c triangle; and d explosion
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Fig. 9 Central displacement (a); central stress �ry (b) versus time for ½0�=90�� laminated
composite spherical shell subjected to blast loading
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4 Conclusions

In this study, the ES-MITC3 is used to investigate for static analysis of isotropic
shell problem and transient analysis of laminated composite spherical shells sub-
jected to various loadings based on FSDT. Through the present formulation and
numerical results, we can draw some of the following points:

(i) The proposed ES-MITC3 only uses three-node triangular elements that are
much easily generated automatically for complicated geometry domains.

(ii) Because of using the gradient smoothing technique, which can help soften
the over-stiff behavior in the MITC3, the proposed ES-MITC3 improves
significantly the accuracy of the numerical results.

(iii) The accuracy and reliability of the proposed ES-MITC3 are verified by
comparing its numerical solutions with those of other available numerical
results.

(iv) Analyses of the effects of various boundary conditions of the laminated
composite shells subjected to the blast loading by the ES-MITC3 give the
expected results.

Fig. 10 Central displacement (a); central stress �rx (b) versus time for ½0�=90�=0�� laminated
composite spherical shell subjected to blast loading
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Estimating Modal Parameters
of Structures Using Arduino Platform

Tuan Ta Duc, Tuan Le Anh and Huong Vu Dinh

Abstract This paper presents the identification of the modal parameters as fre-
quencies, damping coefficients, and mode shapes based on using Arduino platform
to measure oscillation signals of structure in time domain. The use of Arduino
platform aims to reduce costs in the experimental field. Experiments are carried out
on a cantilever beam; the measurement process collects input/output or only output
signal. MATLAB software is also used for the computing and data processing;
these signals are transformed from time domain to frequency domain by fast Fourier
transform (FFT). Modal parameters are estimated in the frequency domain.
Comparing obtained modal parameters from experimental method with those from
analysis method. Results are found to be in agreement with the theory.

Keywords Modal parameters � Frequencies � Damps � Mode shapes
Arduino � Sensors

1 Introduction

Carrying out an experiment on building structures is a difficult task, demanding the
complexity of instruments and high costs. Thanks to the development of science
and technologies, electronic devices and methods were applied in practice [1, 2]. In
order to reduce costly experiments, the previous studies used the Arduino platform
and achieved some results [3, 4]. This paper presents how to design a measurement
system based on Arduino platform. The Arduino is a data acquisition system of the
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sensors. Experimental data collected are used for signal processing to obtain modal
parameters. Input–output methods [5] are used to determine the dynamic charac-
teristics of small- and medium-sized structures. Output-only methods [6] are used
on large structure; these methods do not require any controlled excitation. Since the
forcing function is unknown, frequency response function between input force and
output response signal cannot be calculated. Instead, the analysis relies on corre-
lation function and spectral density function estimated from the operational
response.

2 A Measurement System Based on Arduino Platform

a. Hardware

Arduino
Arduino was born at the Ivrea Interaction Design Institute as an easy tool for fast

prototyping. Arduino is a completely open-source electronics platform based on an
easy-to-use hardware and software that has been the “brain” of thousands of pro-
jects, from everyday objects to complex scientific instruments.

This measurement system was built with the board Arduino Uno (Fig. 1). This is
a microcontroller board based on the ATmega328P. It has 14 digital input/output
pins (of which 6 can be used as PWM outputs), 6 analog inputs, a USB connection,
a 16 MHz quartz crystal, a power jack, a reset button [7].

In the IDE, there is a built-in serial monitor that can be used to send and receive
information. When connected over USB to a computer, the Arduino shows up as a
virtual COM-port and any software capable of serial communication can be used.

Fig. 1 Arduino Uno board
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Accelerometer
An accelerometer is a device that measures proper acceleration. It can detect

magnitude and direction of the proper acceleration. In this system, we used the
ADXL345 accelerometer (Fig. 2).

The ADXL345 is a small, thin, ultralow power, 3-axis accelerometer with many
measurement ranges at ±2, ±4, ±8, ±16 g [8]. Digital output data is 16-bit twos
complement and is accessible through a SPI or I2C digital interface. The ADXL345
is well suited for most experimental works. It measures the static acceleration of
gravity, as well as dynamic acceleration resulting from the effects of impacts on the
structure. It has high resolution which enables to measure of slight changes of
acceleration.
Force-Sensitive Resistor

Force-sensing resistors (FSR) are a polymer thick film (PTF) device which
exhibits a decrease in resistance with an increase in the force applied to the active
surface. They are simple to use and low cost.

This is a photograph of an FSR (Fig. 3)—the Interlink 402 model. It is basically
a resistor that changes its resistive value (in ohms X) depending on how much it is
pressed [9].

Fig. 2 Accelerometer
ADXL345

Fig. 3 Force-sensitive
resistor
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b. Software

Arduino software
Arduino Software (Fig. 4) allows to write code and upload it to the board. It can

run on many operating systems such as Windows, Mac OS X, and Linux [10].

MATLAB software
MATLAB is a high-level language and an interactive environment. It enables to

implement numerical computation, visualization, and programming [11]. It includes
built-in mathematical functions fundamental to solve engineering and scientific
problems and an interactive environment ideal for iterative exploration, design, and
problem solving. In this paper, a serial port communication is initialized between
Arduino and computer and programming on MATLAB software (Fig. 5) to process
data from the port.

Fig. 4 Arduino software

Fig. 5 MATLAB software
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3 Experimental Setup

a. Circuit diagram

On the basis of the techniques, methods and testing procedures to measure
structural oscillation and circuit diagram of the experimental program are set out as
shown in Fig. 6.

This diagram enables to measure the both acceleration and force or only
acceleration with different methods in vibration research.

b. Experimental structure

The experimental structure is a cantilever beam. The physical properties of the
beams are described in Table 1.

c. Measuring vibration of structure using two measurement systems

The purpose of this test is to evaluate the accuracy of an Arduino system
compared to a specialized measurement equipment at the same rate. Experimental
model is set up as shown in Fig. 7.

Experimental equipment
The first measurement system is based on the Arduino platform: Arduino,

acceleration sensor ADXL345, and force-sensitive resistor (Figs. 1, 2, and 3).

Fig. 6 Circuit diagram

Table 1 Physical properties
of the beam

Property Value Unit

Material type Steel

Length 710 mm

Mass per unit volume 7850 kg/m3

Modulus of elastic 2.03E5 MPa

Width—cross section 8 mm

Height—cross section 60 mm
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The second measurement system is based on the specialized measurement
equipment and software from National Instruments Corporation NI SCXI-1000DC,
acceleration sensor PCB352C68, and hammer PCB086C03 (Fig. 7). Detailed
information about these devices can be found in [12–15].

Experimental model

Experimental method
The experiment was performed according to the method of measuring structural

oscillations by simultaneous two measurement systems.
Testing and evaluating this measurement system involve mounting two

accelerometers at one location. Using hammer PCB086C03 to strike the structure
and measuring response of the structure by accelerometers.

As a result of the experiments (Fig. 8), we can confirm that this measurement
system is suitable for measuring oscillation of structures.

d. Estimating modal parameters from collected data

With the employment of the measurement system based on the Arduino plat-
form, measurement data obtained from responses of the structure are used to esti-
mate the parameters of the model.

Experimental method
The experimental structure is small, and thus, input–output methods are used to

determine the dynamic characteristics.
The structure is divided into the points corresponding to the degree of freedom to

be measured. Force is applied to the structure to induce vibrations and compute
frequency response functions (FRFs) Hij(x).

Fig. 7 Experimental model
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Input excitation in force and response outputs in acceleration are used to com-
pute an experimental FRF. The FRF is used to identify the resonant frequencies,
damping, and mode shapes of the physical structure.

The modal parameters are extracted from a set of FRF measurements between
the reference position and a number of measurement positions required in the
model.

Spectra are generated and then averaged in order to produce an average spec-
trum. This average spectrum represents true vibration behavior, and the averaging
process minimizes the effect of random variations or noise, as shown in Fig. 9.

Comparison between the results for obtaining the modal parameters through the
experimental and analytical methods is presented in Table 2 and Fig. 10.

b. Result

Estimating natural frequencies and damping
Analysis of signal input/output procedures is performed with the help of

MATLAB software. Using the Window function, cross-spectrum and least squares
procedures to filter the signal noise are calculated [16].
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Table 2 Comparison of first natural frequencies

Mode Analytical method
f (Hz)

Experimental method
f (Hz)

Error (%)

1 12.90 12.93 0.23

2 80.88 80.71 0.21
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Fig. 10 Comparing mode shapes of vibration of beam
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The Uniform Window can be used for data processing. This window is applied
to data where the entire signal is captured in one sample or record of data or when
the data are guaranteed to satisfy the periodicity requirement of the FFT process.

Frequency response function H(x) of averaging measurements is shown in
Fig. 8.

Comparison between obtained natural frequencies through experimental method
and analytical method can be seen in Table 2. The experimental results are very
close to the values obtained from analytical method [17].

The damping ratio n through spectral characteristics of FRF function is shown in
Table 3.

Estimating mode shape

The FRFs acquired to a reference FRF on a structure are used to determine the
mode shape. The results of comparison estimating the mode shapes through ana-
lytical method and experimental method are shown in Fig. 10.

4 Conclusions

The results of this system are satisfied when comparing with National Instruments
equipment while the price is very low.

The measurement system based on Arduino platform is suitable for using a
signal acquisition. It is easy to be installed and able to give accurate results.

The results of paper suggested that this measurement system can be used in
structural health monitoring with low cost.
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Analysis of Dynamic Impact Factors
of Bridge Due to Moving Vehicles
Using Finite Element Method

T. Nguyen-Xuan, Y. Kuriyama and T. Nguyen-Duy

Abstract This article presents analysis of dynamic impact factors for displace-
ment, bending moment, and shear force of bridge under moving vehicles by finite
element method. Vehicle is a dumper truck with three axles. Each axle of vehicle is
idealized as two mass dynamic systems, in which a mass is supported by a spring
and a dashpot. The structural bridges are simulated as bending girder elements. The
finite element method is applied to establish the overall model of vehicle–bridge
interaction. Galerkin method and Green theory are used to discrete the motion
equation of vehicle–bridge system in space domain. Solutions of the motion
equations are solved by Runge–Kutta–Mersion method (RKM) in time domain. The
numerical results are in good agreement with full-scale dynamic testing under
controlled traffic condition of the super T concrete girder at NguyenTriPhuong
Bridge in Danang city, Vietnam. Numerical results figure out that there are sig-
nificant differences between dynamic factors for displacement, bending moment,
and shear force. Therefore, the common use of only one dynamic impact factor for
displacements, bending moment, and shear forces of bridge structure in each lim-
ited state should add more consideration. Furthermore, current results are references
for bridge engineers to have more information for safety design requirements and
suitability in bridge operation.
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1 Introduction

Dynamic impact of moving vehicles on bridges is an important and long-standing
issue in the design and evaluation of bridges and has received much attention from
researchers and engineers. The use of the dynamic impact factor (IM) to account for
the impact effect of vehicles has been widely accepted in bridge engineering, which
is described by the dynamic impact factor (IM) or the dynamic amplification factor
(DAF) or dynamic load allowance (DLA) that reflects how many times the constant
load must be multiplied to cover additional dynamic effects, Frýba [1]. To account
for such an effect, a dynamic impact factor (IM) is typically proposed in design
practice, and the total live-load (LL) effect is usually calculated as follows:

LL ¼ 1þ IMð Þ � Rsta ! 1þ IMð Þ ¼ LL
Rsta

¼ Rdyn

Rsta
ð1Þ

where Rsta is static load effect; Rdyn is dynamic load effect; and (1 + IM) represents
the dynamic amplification for the static load effect. The dynamic IM plays a vital
role in the practice of bridge design and condition assessment. Accurate evaluations
of IMs lead to safe and economical designs for new bridges and provide valuable
information for condition assessment and management of existing bridges.

The earliest analytical study of moving loads can be found in Willis (1847) [2],
who investigated the case with a point mass moving on a simply supported massless
beam at a constant speed. Many of these early developments were summarized by
Fryba [1] and Paultre et al. [3]. Currently, with the advances in computer tech-
nologies; the finite element method has been widely applied to obtain results that
are in good agreement with those measured from field tests (e.g., Huang et al. [4];
Wang et al. [5]; Kwasniewski et al. [6], Shi [7]; and Ashebo et al. [8]). Au et al. [9]
presented a numerical study of the effects of surface road unevenness and long-term
deflection on the dynamic impact factor of prestressed concrete girder and
cable-stayed bridges due to moving vehicles. The results showed that the effects of
random road unevenness and the long-term deflection of concrete deck on bridge
vary a lot at the sections closed to the bridge tower, with significant effects on the
short cables. Lombaert and Conte [10] proposed the random vibration analysis of
dynamic vehicle–bridge interaction due to road unevenness by an original fre-
quency domain method. The road unevenness was modeled by the random non-
stationary process. Due to the complexity of the problem, the authors presented
only the results of simple supported beam model subjected to a moving concen-
trated load. Nguyen et al. [11–13] analyzed the dynamic three-axle vehicle–bridge
interaction considering the change of vehicle velocity through braking force by
finite element method. The numerical results showed that the influence of braking
force has significant effects on bridge dynamic impact factor. However, most of the
previous researches studied dynamic impact factor for displacement or bending
moment. Nevertheless, few of the studies have focused on analysis dynamic impact
factor for displacement, bending moment, and shear force. Additionally, the
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full-scale dynamic field testing under controlled traffic condition of the bridge is
needed in order to obtain a clearer understanding of the relationship between
dynamic interaction for bridges and vehicle models. Moreover, in the practice of
bridge design works, a lot of engineers still consider the dynamic impact factor to
be the same for displacement, bending moment, and shear force in each limited
state. However, from the authors’ study results, there is a significant difference of
dynamic impact factor for displacement, bending moment, and shear force.

This paper analyzes the dynamic impact factor for displacement, bending
moment, and shear force in the super T concrete girder subjected to three-axle
dumper truck by the finite element method. The numerical results are validated with
full-scale testing model at NguyenTriPhuong Bridge in Danang city, Vietnam.

2 Vehicle and Bridge Model

Consider a three-span super T concrete girder with link slab subjected to a
three-axle dumper truck vehicle as in Fig. 1. Assume that the body weight of
vehicle and goods on the vehicle distributes to three axles m11, m12, and m13,
respectively. The mass of three axles is m21, m22, and m23, respectively. The
dynamic interaction model between a three-axle vehicle and a girder element is
described as in Fig. 2.

Where wi(xi, t) is the vertical displacement of girder element at position xi; xi is
the coordinate of the ith axle of the vehicle at time t (i = 1, 2, 3); z1i is the vertical
displacement of chassis at ith axle of vehicle; z2i is the vertical displacement of ith
axle of vehicle; y1i is the relative displacement between the chassis and ith axle; y2i
is the relative displacement between ith axle and girder element; k1i and d1i are the
spring and dashpot of suspension at ith axle, respectively; k2i and d2i are the spring
and dashpot of tire at ith axle, respectively.

According to Clough and Penzien [14], the governing equation for the flexure
vibration of damped girder due to uniform loading p(x, z, t) can be written as
follow:

EJ � @4x
@x4

þ h
@5x

@x5 � @t
� �

þ qm � @
2x
@t2

þ b � @x
@t

¼ p x; z; tð Þ ð2Þ

p x; z; tð Þ ¼
Xn
i¼1

ni tð Þ � � m1i þm2ið Þ � g� m1i � €z1i � m2i � €z2i½ � � d x� xið Þ ð3Þ

37.6m

2.4m 2.4m

37.6m 37.6m

L

vFig. 1 Schematic of vehicle
moving on bridge
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where EJ is the bending stiffness of girder element; h and b are the coefficient of
internal friction and external friction of girder element; qm is the mass of girder per
unit length; n is the number of axle (n = 3); d(x − xi) is the Dirac delta function;
ni(t) is the logic control function; it is used to determine the position of vehicle on
the bridge and is described as follows:

ni tð Þ ¼
1 if ti � t� ti þ Ti ; Ti ¼ L

v
0 if t\ti and t[ ti þ Ti

8<
: ð4Þ

Using the finite element method, Eqs. (2) and (3) can be written in a matrix form
as following:

½Me� � f€qgþ ½Ce� � f _qgþ ½Ke� � fqg ¼ ffeg ð5Þ

where f€qg, f _qg, {q}, and {fe} are the complex acceleration vector, complex
velocity vector, complex displacement vector, and complex forces vector of the
system (girder element and vehicle), respectively.

€qf g ¼
€w
€z1
€z2

8<
:

9=
; ; _qf g ¼

_w
_z1
_z2

8<
:

9=
; ; qf g ¼

w
z1
z2

8<
:

9=
; ; fef g ¼

Fw

Fz1

Fz2

8<
:

9=
;; fwg ¼

wy1

u1
wy2

u2

8>><
>>:

9>>=
>>;
ð6Þ

m23

d23 k23

13 13d k

w

O

13m

L

x3

13z

23z

13k 13.y
13+d 13.y.
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Fig. 2 Model of vehicle–bridge interaction
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where wy1 and u1 are the vertical displacement and rotation angle of the left end of
girder element, respectively;

wy2 and u2 are the vertical displacement and rotation angle of the right end of
element, respectively;

[Me], [Ce], and [Ke] are the mass matrix, damping matrix, and stiffness matrix of
the system (girder element and vehicle), respectively.

Me½ � ¼
Mww Mwz1 Mwz2

0 Mz1z1 0
0 0 Mz2z2

2
4

3
5 Ce½ � ¼

Cww 0 0
0 Cz1z1 Cz1z2

Cz2w Cz2z1 Cz2z2

2
4

3
5 Ke½ �

¼
Kww 0 0
0 Kz1z1 Kz1z2

Kz2w Kz2z1 Kz2z2

2
4

3
5 ð7Þ

where [Mww], [Cww], and [Kww] are mass matrix, damping matrix, and stiffness
matrix of the girder elements, respectively. They can be found in Zienkiewicz et al.
[15]

Mz1z1 ¼

m11

m12 0
. . .

m1i

0 . . .
m1n

2
6666664

3
7777775
ðn�nÞ

Mz2z2

¼

m21

m22 0
. . .

m2i

0 . . .
m2n

2
6666664

3
7777775
ðn�nÞ

ð8Þ

Mwz1 ¼ P � Mz1z1; Mwz2 ¼ P � Mz2z2; P

¼

P11 P12 . . . P1i . . . P1n

P21 P22 . . . P2i . . . P2n

P31 P32 . . . P3i . . . P3n

P41 P42 . . . P4i . . . P4n

2
6664

3
7775
ðn�nÞ

ð9Þ

Pi ¼

P1i

P2i

P3i

P4i

8>>><
>>>:

9>>>=
>>>;

¼ niðtÞ
L3

ðLþ 2xiÞ � ðL� xiÞ2
L � xi � ðL� xiÞ2
x2i � ð3L� 2xiÞ
L � x2i � ðxi � LÞ

8>><
>>:

9>>=
>>;

ð10Þ
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Cz1z1 ¼

d11
d12 0

. . .
d1i

0 . . .
d1n

2
6666664

3
7777775
ðn�nÞ

Cz2 ¼

d21
d22 0

. . .
d2i

0 . . .
d2n

2
6666664

3
7777775
ðn�nÞ

ð11Þ

Cz1z2 ¼ Cz2z1 ¼ �Cz1z1; Cz2z2 ¼ Cz1z1 þCz2; Cz2w ¼ �Ni � Cz2ð ÞT ð12Þ

Ni ¼
N11 N12 ::: N1i ::: N1n

N21 N22 ::: N2i ::: N2n

N31 N32 ::: N3i ::: N3n

N41 N42 ::: N4i ::: N4n

2
664

3
775
ðn�nÞ

;

N1i ¼ 1
L3 � L3 � 3Lx2i þ 2x3i

� �
N2i ¼ 1

L2 � L2xi � 2Lx2i þ x3i
� �

N3i ¼ 1
L3 � 3Lx2i � 2x3i

� �
N4i ¼ 1

L2 � x3i � Lx2i
� �

9>>=
>>;
ð13Þ

Kz1z1 ¼

k11
k12 0

. . .
k1i

0 . . .
k1n

2
6666664

3
7777775
ðn�nÞ

Kz2 ¼

k21
k22 0

. . .
k2i

0 . . .
k2n

2
6666664

3
7777775
ðn�nÞ

ð14Þ

Kz1z2 ¼ Kz2z1 ¼ �Kz1z1; Kz2z2 ¼ Kz1z1 þKz2;

Kz2w ¼ - (Ni � Kz2ÞT�ðNi

: �Cz2ÞT
ð15Þ

Fw ¼
Xn
i¼1

� m1i þm2ið Þg½ � � Pi ð16Þ
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Fz1 ¼

�m11:g

..

.

�m1i:g

..

.

�m1n:g

8>>>>>>>>><
>>>>>>>>>:

9>>>>>>>>>=
>>>>>>>>>;

; Fz2 ¼

�m21 � g
�m22 � g

. . .
�m2i � g
�m2n � g

8>>>><
>>>>:

9>>>>=
>>>>;

n�1

ð17Þ

After assembling mass matrices, damping matrices, stiffness matrices, and forces
vectors, the solution of Eq. (5) can be solved by using direct integration method,
Runge–Kutta–Mersion method (RKM) in time domain to obtain displacements,
bending moment, and shear force of the bridge structure. The algorithm procedure
in dynamic analysis vehicle–bridge interaction is described in Fig. 3.

3 Analysis Vibration of NguyenTriPhuong Bridge

3.1 Properties of Structural Bridge and Vehicle

NguyenTriPhuong Bridge is located in Danang city, Vietnam. The approaching
spans of NguyenTriPhuong Bridge include three spans of super T concrete girder;
the deck of girder is connected in the flexible joints between two span with 2.4 m
length, shown in Fig. 1.

Fig. 3 Algorithm procedure in dynamic analysis vehicle–bridge interaction
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The cross section of the concrete girder and position of dumper truck is shown in
Fig. 4. The three-axle vehicle used in the numerical simulation and full-scale field
testing is FOTON dumper truck as shown in Fig. 5. The properties of super T
concrete girder are collected from design documents of the bridge management
unit; the properties of three-axle dumper truck FOTON are given by the manu-
factory company and checked on site. The parameters of super T concrete girder
and dumper truck are listed in Table 1.

The cross section of the concrete girder and position of dumper truck is shown in
Fig. 4. The three-axle vehicle used in the numerical simulation and full-scale field
testing is FOTON dumper truck as shown in Fig. 5. The properties of super T
concrete girder are collected from design documents of the bridge management
unit; the properties of three-axle dumper truck FOTON are given by the manu-
factory company and checked on site. The parameters of super T concrete girder
and dumper truck are listed in Table 1.

Fig. 4 Cross section of super T concrete girder

1.35m 3.90m

x

b1=2.68m

O

b3=2.57m

b2=1.22m

0.
51

m

w

(a) (b)

Fig. 5 The FOTON dumper truck: a picture of vehicle; b vehicle dimensional parameters
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3.2 Numerical Results

Using the finite element method, the bridge structure was discrete as Fig. 6. Setting
vehicle velocity moving on the bridge is 10 (m/s) (36 km/h). Equation (10) is
solved by the Runge–Kutta–Mersion method to obtain the static and dynamic
responses of super T concrete girder, shown in Fig. 7.

From the time history of 1st span in Fig. 7, it can be seen that responses of 1st
span decreased quickly when the dumper truck went over the 1st span. The cause
for that issue is that bending stiffness of concrete link slab in the flexible joints is
very smaller than bending stiffness of super T concrete girder.

Table 1 Properties of super T concrete girder and dumper truck FOTON

Item Notation Unit Value

Super T concrete girder

Length L m 37.6

Young’s modulus E GPa 30

Density q kg/m3 2500

Coefficient of internal friction h – 0.027

Coefficient of external friction b – 0.01

Cross sectional area A m2 1.21

Second moment of area I m4 0.537

Link slab (deck)

Height h m 0.2

Cross sectional area A m2 0.488

Second moment of area I m4 1.63 � 10−3

Dumper truck vehicle

Mass m11 m11 kg 5000

Mass m21 m21 kg 260

Mass m12, m13 m12, m13 kg 9000

Mass m22, m23 m22, m23 kg 870

Suspensions spring k11; k12; k13 k1i N/m 2.6 � 106

Tires spring k21; k22; k23 k2i N/m 3.8 � 106

Suspensions dashpot d11; d12; d13 d1i Ns/m 4000

Tires dashpot d21; d22; d23 d2i Ns/m 8000

37.6m
2.4m 2.4m

37.6m 37.6m

1 2 3 4 5 6 7 8 9 1011 12 13 14 15Fig. 6 Schematic of discrete
bridge structure
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3.3 Field Measurement Results

In order to validate the numerical results, the full-scale field measurement of
dynamic response of super T concrete girder was conducted at NguyenTriPhuong
Bridge in Danang city, Vietnam. This section presents a measurement system and
results obtained so far.

Since large vibration of super T concrete girder had been observed, displacement
sensors (LVDT) were placed on ½ of 1st span as Fig. 8.

Fig. 7 Static and dynamic responses of 1st span: a displacement at ¼ of 1st span; b displacement
at ½ of 1st span; c bending moment at ¼ of 1st span; d bending moment at ½ of 1st span; e shear
force at ¼ of 1st span; f shear force at ½ of 1st span
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Super T concrete girder vibration was measured after the girder was excited by a
dumper truck with various velocities. Properties of super T concrete girder and
dumper truck FOTON are listed in Table 1. Since traffic velocity has been limited
by the bridge management company, the testing velocity of dumper truck was
suggested 2.8, 5.6, 8.3, and 11.1 (m/s). For each velocity level of testing vehicle,
dynamic displacement of super T concrete girder was recorded and compared with
the numerical results, shown in Fig. 9.

From the time history of 1st midspan displacement in Fig. 9, it can be seen that
the numerical results (FEM results) show quite good agreement with the full-scale
experiment results on site. The maximum differences of dynamic displacement
between FEM results and experiment results are 3.83, 4.77, 5.24, and 6.12%, in
accordance with vehicle velocity 2.8, 5.6, 8.3, and 11.1 (m/s). Therefore, the
algorithm and numerical model mentioned above are quite reliable. This numerical
model is continuously used to investigate the influence of vehicle velocity on
dynamic impact factor for displacement, bending moment, and shear force of super
T concrete girder in the next section.

3.4 Numerical Investigation

Based on the validated numerical model with experimental results above, it carried
out to investigate dynamic vehicle–bridge interaction for this numerical model with
various vehicle velocities. Assume that vehicle velocity (FOTON dumper truck)
changed in the range [1 � 45] m/s. The other parameters of structural bridge and

Test Truck

LVDT

Dynamic
Strainmeter Computer

Dynamic 
strain meter 

Install LVDTs at 
midspan

Fig. 8 Measurement system in NguyenTriPhuong bridge
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dumper truck vehicle were given as Table 1. For each vehicle velocity level, the
governing equation of vehicle–bridge interaction is solved by Runge–Kutta–
Mersion to obtain static and dynamic displacements, bending moment, and shear
force output of super T concrete girder. From static and dynamic displacement,
bending moment, and shear force, it can determine dynamic impact factor for
displacement, bending moment, and shear force of super T concrete girder as in
Eq. (1). The numerical results are shown in Fig. 10.

In the investigative range of vehicle velocity v = [1 � 45] m/s, the comparison
of the average dynamic impact factors for displacement, bending moment, and
shear force is described as in Fig. 11.

From the Fig. 11, it can be seen that the difference between (1 + IM) for dis-
placement and (1 + IM) for bending moment has been 12.08%. Especially, the
difference between (1 + IM) for displacement and (1 + IM) for shear force has
reached 18.56%. These differences are significantly and should be considered in the
practice of bridge design works [16, 17].
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Fig. 9 Time history of displacement at 1st midspan: a v = 2.8 (m/s); b v = 5.6 (m/s); c v = 8.3
(m/s); d v = 11.1 (m/s)
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Fig. 10 Dynamic impact factors (1 + IM) versus vehicle velocity due to dumper truck:
a (1 + IM) for displacement; b (1 + IM) for bending moment; c (1 + IM) for shear force

Fig. 11 Average dynamic impact factors for displacement, bending moment, and shear force
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4 Conclusion

In this paper, the analysis of dynamic impact factors for displacement, bending
moment, and shear force of a three-span super T concrete girder with link slab
under a three-axle dumper truck vehicle is investigated by finite element method. In
comparison with field measurement results, the FEM was verified. The numerical
results showed that there are significant differences between IM for displacement,
bending moment, and shear force. Especially, the difference between (1 + IM) for
displacement and (1 + IM) for shear force has reached 18.56%. Therefore, the
common use of only one of dynamic impact factor for both displacement and
internal forces of structures in the bridge design code [16, 17] should be further
consideration. In addition, the current outcomes can be good references for bridge
engineers to have more information for safety design requirements and suitability
with the actual operation of bridges.
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Stationary Random Vibration Analysis
of Dynamic Vehicle-Bridge Interaction
Due to Road Unevenness

T. Nguyen-Xuan, Y. Kuriyama and T. Nguyen-Duy

Abstract This article presents stationary random vibration analysis of dynamic
vehicle-bridge interaction due to road unevenness based on the Finite element
method and Monte-Carlo simulation method. The road unevenness are described by
a zero-mean stationary Gaussian random process. The vehicle is a dumper truck with
three axles. Each axle of vehicle is idealised as two mass dynamic system, in which a
mass is supported by a spring and a dashpot. The structural bridges are simulated as
bending beam elements. The finite element method is applied to established the
overall model of vehicle-bridge interaction. Galerkin method and Green theory are
used to discrete the motion equation of vehicle-bridge system in space domain.
Solutions of the motion equations are solved by Runge-Kutta-Mersion method
(RKM) in time domain. The numerical results are in good agreement field test results
of the prestressed beam-slab at Nguyen-Tri-Phuong bridge, Danang city, Vietnam.
Also, the effects of road surface condition on dynamic impact factor of bridge are
investigated detail. The numerical results show that dynamic impact factor of bridge
has increased significantly when road unevenness have changed from Grade A-road
to Grade E-road according to ISO 8608:1995 [1] “Mechanical vibration—Road
surface profiles—Reporting of measured data”.
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1 Introduction

Vehicle-bridge interaction has been a subject of significant research for a long time.
The aim of these studies is to investigate the structural behaviour of bridge under
moving vehicles, as well as the ride comfort of vehicles travelling a bridge.
Dynamic vehicle-bridge interaction results in a increase or decrease of the bridge
deformation, which is described by the dynamic impact factor (IM) or the dynamic
amplification factor (DAF) or dynamic load allowance (DLA) that reflects how
many times the constant load must be multiplied to cover additional dynamic
effects, Frýba [2]. The dynamic IM plays a vital role in the practice of bridge design
and condition assessment. Accurate evaluation of IMs will lead to safe and eco-
nomical designs for new bridges and provide valuable information for condition
assessment and management of existing bridges.

Honda et al. [3] derived the power spectral density (PSD) of road surface
roughness on 56 highway bridges, measured using a surveyor’s level. For each
bridge, 84 lines at 10–20 cm intervals and 0.5 and 2.0 m from the centerline of the
road were measured. The authors observed that the PSD of roadway roughness can
be approximated by an exponential function, and proposed different functions for
certain bridge structural systems. Palamas et al. [4], Coussy et al. [5] presented a
theoretical study of the effects of surface road unevenness on the dynamic response
of bridges under suspended moving loads. A single-degree-of-freedom system was
used for the vehicle and a Rayleigh-Ritz method was used for the dynamic analysis.
This study showed that in some cases, the DAF could be two to three times that
recommended by current international design codes, suggesting that road uneven-
ness could no longer be neglected. Inbanathan and Wieland [6] presented an ana-
lytical investigation on the dynamic response of a simply supported box girder
bridge due to a moving vehicle. In particular, they considered the profile of the
roadway using a response spectrum and 10 artificially generated time history loads
for speeds of 19 and 38 km/h. The study of the response of a bridge due to a
generated dynamic force was justified in view of the random nature of the problem.
Some of the findings reported were the following: 1-The effect of vehicle mass on
the bridge response is more significant for high speeds; 2-The maximum response is
not affected by damping; 3-The stresses developed by a heavy vehicle moving over
a rough surface at high speeds exceed those recommended by current bridge design
codes. Hwang and Nowak [7] presented a procedure to calculate statistical
parameters for dynamic loading of bridges, to be used in design codes. These
parameters, based on surveys and tests, included vehicle mass, suspension system
and tires, and roadway roughness, which was simulated by stochastic processes.
This procedure was applied to steel and prestressed concrete girder bridges, for
single and side-by-side vehicle configurations. Values of the DAF were computed
using prismatic beam models for the bridges and step-by-step integrations. It was
found that: 1-the DAF decreases with an increase in vehicle weight; 2- the DAF for
two side-by-side vehicles is lower than that for a single vehicle; and 3- the dynamic
load is generally uncorrelated with the static live load. But the vehicle model of
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Hwang and Nowak didn’t consider the dashpot of suspension system and tires. Au
et al. [8] presented a numerical study of the effects of surface road unevenness and
long-term deflection on the dynamic impact factor of prestressed concrete girder
and cable-stayed bridges due to moving vehicles. The results showed that the effects
of random road unevenness and the long-term deflection of concrete deck on bridge
vary a lot at the sections closed to the bridge tower, with significant effects on the
short cables. Lombaert and Conte [9] proposed the random vibration analysis of
dynamic vehicle-bridge interaction due to road unevenness by an original frequency
domain method. The road unevenness was modeled by the random nonstationary
process. Due to the complexity of the problem, the authors presented only the
results of simple supported beam model subjected to a moving concentrated load.
Xuan-Toan Nguyen et al. [10, 11] and [12] analyzed the dynamic three-axle
vehicle-bridge interaction considering the change of vehicle velocity through
braking force by finite element method. The numerical results showed that the
influence of braking force has effects significantly on dynamic impact factor of
bridge. However, most of the previous research on dynamic interaction between the
vehicle and simply supported bridge, very few studies have focused on the
multi-span prestressed beam-slab bridge with link deck considering the random
road unevenness effects. Additionally, the field test is needed in order to obtain a
clearer understanding of the relationship between dynamic interaction for bridge
types and vehicle models.

This study develops the FEM to analyze the stationary random dynamic inter-
action between three-axle dumper truck vehicle and two-span prestressed beam-slab
bridge with link deck due to road unevenness. In addition, this research evaluates
the effects of the road surface condition on dynamic impact factor of the prestressed
beam-slab bridge. The road unevenness is simulated by a zero-mean stationary
Gaussian random process. The bridge is modelled by finite element method. The
dumper-truck has three axles. Each axle is idealised by two mass, in which a mass
is supported by a spring and dashpot. The governing equation of random dynamic
vehicle-bridge interaction is derived by means of dynamic balance principle.
Galerkin method and Green theory are employed to discrete the governing equation
in space domain. The solutions of equation are solved by Runge-Kutta-Mersion
method. Monte-Carlo simulation is applied to generate the random road unevenness
input. The numerical results are in good agreement field test results of two-span
prestressed beam-slab at Nguyen-Tri-Phuong bridge in Danang city, Vietnam.

2 Vehicle and Bridge Model

Consider an Euler-Bernoulli beam subjected to a three-axle dumper truck vehicle.
Assume that the body weight of vehicle and goods on the vehicle distribute to three
axle m11, m12 and m13, respectively. The mass of three axles are m21, m22 and m23

respectively. The dynamic interaction model between a three-axle vehicle and a
girder element considering random road unevenness effects is described as in Fig. 1.
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where wi(xi, t) is the vertical displacement of girder element at ith axle of
vehicle; ri is road unevenness at ith axle of vehicle; z1i is the vertical displacement
of chassis at ith axle of vehicle; z2i is the vertical displacement of ith axle of vehicle;
y1i is the relative displacement between the chassis and ith axle; y2i is the relative
displacement between ith axle and girder element; Gi.sinwi is the engine excitation
force at ith axle; k1i and d1i are the spring and dashpot of suspension at ith axle
respectively; k2i and d2i are the spring and dashpot of tire at ith axle respectively; xi
is the coordinate of the ith axle of the vehicle at time t (i = 1, 2, 3).

Base on the model of dynamic vehicle-bridge interaction in Fig. 1 and using
d’Alembert’s principle, the dynamic equilibrium of each mass m1i, m2i on the
vertical axis can be written as follows:

m1i � €z1i þ d1i � _z1i � d1i � _z2i þ k1i � z1i � k1i � z2i ¼ Gi � sinwi � m1i � g ð1Þ

m2i � €z2i � d1i � _z1i þ d1i þ d2ið Þ � _z2i � k1i � z1i þ k1i þ k2ið Þ � z2i
¼ k2i wi þ rið Þþ d2i � _wi þ _rið Þ � m2i � g

ð2Þ

where _ri is the first derivation of road unevenness at ith axle of vehicle. Adding on
the logic control function, Eqs. (1) and (2) can be rewritten as follows:

niðtÞ � m1i � €z1i þ d1i � _z1i � d1i � _z2i þ k1i � z1i � k1i � z2i½ �
¼ niðtÞ � Gi � sinwi � m1i � g½ � ð3Þ

niðtÞ � m2i � €z2i � d1i � _z1i þ d1i þ d2ið Þ � _z2i � k1i � z1i þ k1i þ k2ið Þ � z2i½ �
¼ niðtÞ � k2i wi þ rið Þþ d2i � _wi þ _rið Þ � m2i � g½ � ð4Þ

Fig. 1 Model of dynamic three-axle dumper truck vehicle—bridge interaction
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niðtÞ ¼ 1 if ti � t� ti þ Ti; Ti ¼ L
v

0 if t\ti and t[ ti þ Ti

�
ð5Þ

From Fig. 1, the contact force between the ith axle and girder element is
described by:

Fi ¼ k2i � y2i þ d2i � _y2i ð6Þ

The combined Eqs. (3)–(6), the contact force between the ith axle and girder
element can be rewritten as follows:

pi x; z; tð Þ ¼ niðtÞ: Gi: sinwi � m1i þm2ið Þ:g� m1i:€z1i � m2i:€z2i½ �:d x� xið Þ ð7Þ

where d x� xið Þ is the Dirac delta function.
According to Ray [13], the governing equation for the flexure vibration of

damped girder due to uniform loading p(x, z, t) can be written as follow:

EJ � @4x
@x4

þ h
@5x
@x5:@t

� �
þ qm:

@2x
@t2

þ b:
@x
@t

¼ p x; z; tð Þ ð8Þ

p x; z; tð Þ ¼
Xn
i¼1

niðtÞ: Gi: sinwi � m1i þm2ið Þ:g� m1i:€z1i � m2i:€z2i½ �:d x� xið Þ ð9Þ

where EJ is the bending stiffness of girder element; h and b are the coefficient of
internal friction and external friction of girder element; qm is the mass of girder per
unit length; n is the number of axle (n = 3).

The Galerkin method and Green theory are applied to Eqs. (3), (4) and (8)
transform into matrix form, and the differential equations of girder element can be
written in a matrix form as follow:

½Me�:f€qgþ ½Ce�:f _qgþ ½Ke�:fqg ¼ ffeg ð10Þ

where {q ̈}, {q ̇}, {q}, {fe} are the complex acceleration vector, complex velocity
vector, complex displacement vector, complex forces vector, respectively.

€qf g ¼
€w
€z1
€z2

8<
:

9=
;; _qf g ¼

_w
_z1
_z2

8<
:

9=
;; qf g ¼

w
z1
z2

8<
:

9=
;; fef g ¼

Fw

Fz1

Fz2

8<
:

9=
;; fwg ¼

wy1

u1
wy2

u2

8>><
>>:

9>>=
>>;
ð11Þ

Stationary Random Vibration Analysis … 1125



In which wy1, u1 are the vertical displacement and rotation angle of the left end
of girder element, respectively; wy2, u2 are the vertical displacement and rotation
angle of the right end of element, respectively;

[Me], [Ce] and [Ke] are the mass matrix, damping matrix and stiffness matrix,
respectively

Me½ � ¼
Mww Mwz1 Mwz2

0 Mz1z1 0
0 0 Mz2z2

2
4

3
5 Ce½ � ¼

Cww 0 0
0 Cz1z1 Cz1z2

Cz2w Cz2z1 Cz2z2

2
4

3
5 Ke½ �

¼
Kww 0 0
0 Kz1z1 Kz1z2

Kz2w Kz2z1 Kz2z2

2
4

3
5 ð12Þ

where [Mww], [Cww] and [Kww] are mass, damping and stiffness matrices of the
girder elements, respectively. They can be found in Zienkiewicz [14]

Mz1z1 ¼

m11

m12 0
. . .

0 m1i

m1n

2
66664

3
77775
ðn�nÞ

Mz2z2

¼

m21

m22 0
. . .

0 m2i

. . .
m2n

2
6666664

3
7777775
ðn�nÞ

ð13Þ

Mwz1 ¼ P:Mz1z1;Mwz2 ¼ P:Mz2z2;P ¼
P11 P12 . . . P1i . . . P1n

P21 P22 . . . P2i . . . P2n

P31 P32 . . . P3i . . . P3n

P41 P42 . . . P4i . . . P4n

2
664

3
775
ðn�nÞ
ð14Þ

Pi ¼
P1i

P2i

P3i

P4i

8>><
>>:

9>>=
>>;

¼ niðtÞ
L3

ðLþ 2xiÞ � ðL� xiÞ2
L � xi � ðL� xiÞ2
x2i � ð3L� 2xiÞ
L � x2i � ðxi � LÞ

8>><
>>:

9>>=
>>;

ð15Þ
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Cz1z1 ¼

d11
d12 0

. . .
d1i

0 . . .
d1n

2
6666664

3
7777775
ðn�nÞ

Cz2

¼

d21
d22 0

. . .
d2i

0 . . .
d2n

2
6666664

3
7777775
ðn�nÞ

ð16Þ

Cz1z2 ¼ Cz2z1 ¼ �Cz1z1;Cz2z2 ¼ Cz1z1 þCz2;Cz2w ¼ �Ni:Cz2ð ÞT ð17Þ

Ni ¼
N11 N12 . . . N1i . . . N1n

N21 N22 . . . N2i . . . N2n

N31 N32 . . . N3i . . . N3n

N41 N42 . . . N4i . . . N4n

2
664

3
775
ðn�nÞ

;

N1i ¼ 1
L3 � L3 � 3Lx2i þ 2x3i

� �
N2i ¼ 1

L2 � L2xi � 2Lx2i þ x3i
� �

N3i ¼ 1
L3 � 3Lx2i � 2x3i

� �
N4i ¼ 1

L2 � x3i � Lx2i
� �

9>>=
>>;
ð18Þ

Kz1z1 ¼

k11
k12 0

. . .
k1i

0 . . .
k1n

2
6666664

3
7777775
ðn�nÞ

Kz2

¼

k21
k22 0

. . .
k2i

0 . . .
k2n

2
6666664

3
7777775
ðn�nÞ

ð19Þ

Kz1z2 ¼ Kz2z1 ¼ �Kz1z1;Kz2z2 ¼ Kz1z1 þKz2;Kz2w ¼ �ðNi:Kz2ÞT � ð _Ni:Cz2ÞT
ð20Þ

Fw ¼
Xn
i¼1

Gi: sinwi � m1i þm2ið Þg½ �:Pi ð21Þ
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Fz1 ¼

G1: sinW1 � m11:g
..
.

Gi: sinWi � m1i:g
..
.

GN : sinWN � m1n:g

8>>>>>><
>>>>>>:

9>>>>>>=
>>>>>>;
;Fz2 ¼

�m21:gþ k21:r1 þ d21:_r1
�m22:gþ k22:r2 þ d22:_r2

. . .
�m2i:gþ k2i:ri þ d2i:_ri
�m2n:gþ k2n:rn þ d2n:_rn

8>>>><
>>>>:

9>>>>=
>>>>;

n�1

ð22Þ

3 Simulation of Stationary Random of Road Unevenness

Assume that the PSD (Power spectral density) roughness represented by the angular
frequency of a pavement section is known as Sr(x). According to Shinozuka [15],
Honda [3] and Sun [16] the temporal random excitation formed by a road
unevenness can be expressed by means of:

rðtÞ ¼
XM
k¼1

Akcos xktþUkð Þ ð23Þ

where M is a positive integer and Uk is an independent random variable with
uniform distribution at range [0, 2p]. Also, the discrete frequency xk is given by:

xk ¼ x1 þ k � 1
2

� �
Dx ð24Þ

In which frequency interval Dx = (xm − xl)/M and [xl, xm] is the range of
frequency where Sr(x) has significant values. The amplitude Ak in Eq. (23) is
represented by:

Ak ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2SrðxkÞDx

p
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2SrðXkÞDX

p
ð25Þ

In which Sr(Ωk) = v.Sr(x) is the PSD roughness in terms of wave number, Ω,
which represents spatial frequency; v is vehicle velocity. From ISO 8608:1995 [1],
the PSD roughness in terms of wave number Ω are described by:

SrðXÞ ¼ SrðX0Þ X
X0

� ��c

ð26Þ

where the fix-datumwave numberΩ0 is set as 1/2p cycle/m. The measurement shows
that various values exist for exponential c and the so-called roughness coefficient
Sr(Ω0), ranging from 1.5 to 3.0 for c and from 2 � 10−6 m3/cycle to 8192 � 10−6 m3/
cycle for Sr(Ω0). The values of roughness coefficient Sr(Ω0) are classified by ISO
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8608:1995 in Table 1. These different values reflect the components of wavelength in
elevation fluctuation and surface condition. Equation (26) is used as PSD road
unevenness later on to generate random road profile.

4 Analysis Random Vibration of Slab-Beam
at Nguyentriphuong Bridge

4.1 Properties of Structural Bridge and Vehicle

Nguyen-Tri-Phuong bridge located in Danang city, Vietnam. The approach bridge
of Nguyen-Tri-Phuong Bridge, which is a two-span slab beam prestressed concrete.
The deck of slab beam is connected in the flexible joint between two spans, shown
in Fig. 2. The cross section of the prestressed concrete slab beam and position of
vehicle is shown in Fig. 3. The three-axle vehicle used in the numerical simulation
and the field test is FOTON dumper truck as shown in Fig. 4.

The properties of slab beam are collected from design documents of the bridge
management unit; the properties of three-axle dumper truck FOTON are given by
the manufactory company and checked on site. The parameters of slab beam and
dumper truck are listed in Table 2.

Table 1 Road roughness values classified by ISO 8608:1995

Road class Roughness coefficient

Sr(Ωo) [10
−6 m2/(cycle/m)]

Lower limit Geometric mean Upper limit

A (very good) – 16 32

B (good) 32 64 128

C (average) 128 256 512

D (poor) 512 1024 2048

E (very poor) 2048 4096 8192

1.4m 22.35m

v

22.35m

O

Fig. 2 Model of two-span
slab beam and three-axle
dumper truck vehicle
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Fig. 3 Cross section of slab beam

1.35m 3.90m

x

b1=2.68m

O

b3=2.57m

b2=1.22m

0.
51

m

w

Fig. 4 The FOTON dumper truck
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4.2 Numerical Results

Base on the survey at site, assume that the road surface condition of
Nguyen-Tri-Phuong bridge is Grade C-road (ISO 8608:1995): roughness coefficient
Sr(Ω0) = 256 � 10−6 m3/cycle; exponential c = 2; M = 1000; the range of spatial
frequency (wave number) Ωk = [0.011 � 2.83] cycle/m. Monte-Carlo simulation
method is applied to generate road unevenness profiles. Some of random road
unevenness profiles are described as follows: (Fig. 5).

Using the finite element method, the bridge structure was discrete as Fig. 6. The
deck of slab beam prestressed concrete are connected in the flexible joint with
1.4 m of length. Setting vehicle velocity moving on the bridge is 10 m/s. For each
road unevenness input, Eq. 10 is solved by the Runge-Kutta-Merison method to
obtain the static and dynamic displacements of slab beam, shown in Fig. 7.

From the time history of 1st span displacements in Fig. 7. It can be seen that
displacements of 1st span decreased quickly when the dumper truck went over the
1st span. The cause for that issue is that bending stiffness of concrete link slab in the
flexible joint is very smaller than bending stiffness of slab beam prestressed
concrete.

Table 2 Properties of slab beam and dumper truck FOTON

Item Notation Unit Value

Slab beam prestressed concrete

Lenght L m 22.35

Young’s modulus E Gpa 36

Density q kg/m3 2500

Coefficient of internal friction h – 0.027

Coefficient of external friction b – 0.01

Cross sectional área A m2 0.723

Second moment of area I m4 0.097

Link slab (deck)

Height h m 0.15

Cross sectional area A m2 0.15

Second moment of area I m4 0.28 � 10−3

Dumper truck vehicle

Mass m11 m11 kg 5200

Mass m21 m21 kg 260

Mass m12, m13 m12, m13 kg 8900

Mass m22, m23 m22, m23 kg 870

Suspensions spring k11; k12; k13 k1i N/m 2.6 � 106

Tires spring k21; k22; k23 k2i N/m 3.8 � 106

Suspensions dashpot d11; d12; d13 d1i Ns/m 4000

Tires dashpot d21; d22; d23 d2i Ns/m 8000
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Fig. 5 Typical random road unevenness profiles
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Fig. 6 Schematic of discrete
bridge structure

Fig. 7 Static and dynamic displacement of 1st span: a ¼ of 1st span; b ½ of 1st span
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4.3 Field Measurement Results

In order to validate the numerical results, field measurement of dynamic response of
slab beam prestressed concrete was conducted at Nguyen-Tri-Phuong bridge in
Danang city, Vietnam. This section presents a measurement system and results
obtained so far.

Since large vibration of slab beam prestressed concrete had been observed,
displacement sensors (LVDT) were placed on ½ of 1st span as Fig. 8.

Slab beam vibration was measured after the slab beam was excited by a dumper
truck with various velocity. Properties of slab beam prestressed concrete and
dumper truck FOTON are listed in Table 2. Since traffic velocity have been limited
by the bridge management company, the testing velocity of dumper truck was
suggested 10, 20, 30 and 40 km/h. For each velocity level of testing vehicle,
dynamic displacement of slab beam prestressed concrete was recorded and com-
pared with the numerical results, shown in Fig. 9.

From the time history of 1st midspan displacement in Fig. 9, it can be seen that
the numerical results (FEM results) show quite good agreement with the experiment
results at the field. The difference of maximum dynamic displacement between them
are 3.83%; 4.77%, 5.24% and 6.12%, respectively with the moving vehicle velocity
10 km/h, 20 km/h, 30 km/h and 40 km/h. Therefore, the algorithm and numerical
model mentioned above are quite reliable. Therefore this numerical model are used
continuously to investigate the influence of the road surface condition on dynamic
impact factor of slab beam prestressed concrete in the next section.

4.4 Numerical Investigation

Base on the validated numerical model with experiment results above, it carried out
to investigate dynamic vehicle-bridge interaction for this numerical model with

v
O

Dumper Truck

Dynamic
strainmeter

Computer

Displacement sensors (LVDT)

Position attached 
LVDTs 

Dumper Truck 
(FOTON) 

Slab beam

(a)

Position attached 
LVDTs 

Dumper Truck 
(FOTON) 

Slab beam

(b)

Fig. 8 Measurement system in Nguyen-Tri-Phuong bridge. a diagram of installing system;
b measurement system at site
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various road surface condition. Assume that the roughness coefficient changed in the
range, Sr(Ω0) = [0, 32, 128, 512, 2048, 8192] �10−6 m3/cycle, corresponding to the
road surface condition: ideal smooth, Grade A, B, C, D and E (ISO 8608:1995). The
velocity of dumper truck was 10 m/s. The other parameters of structural bridge and
dumper truck vehicle was given as Table 2. For each the road surface condition,
Monte-Carlo simulation method is applied to generate 100 road unevenness profiles.
With each road profile input, the governing equation of vehicle-bridge interaction is
solved to obtain static and dynamic displacements output of slab beam prestressed
concrete. From static and dynamic displacement, it can determine dynamic impact
factor of slab beam prestressed concrete as shown in Eq. (27):

ð1þ IMÞ jx ¼
Rj
DðxÞ

Rj
sðxÞ

ð27Þ

where Rj
D xð Þ is the dynamic displacement of slab beam prestressed concrete at

position x due to dumper truck moving on jth road unevenness profile; Rj
s xð Þ is the

static displacement of slab beam prestressed concrete at position x due to dumper
truck moving on jth road unevenness profile.
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Fig. 9 Time history of displacement at 1st midspan: a v = 10 km/h; b v = 20 km/h;
c v = 30 km/h; d v = 40 km/h
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After analyzing with a series of road profiles input, it can obtain a series of
dynamic impact factor output which are also random process as shown in Fig. 10.
The statistical characteristics of the dynamic impact factor (IM) at 1st midspan are
described in Table 3.

Base on statistical characteristics of IM in Table 3, the relationship between the
mean value of IM and the road unevenness condition can be established in Fig. 11.

1.09 1.1 1.11 1.12 1.13 1.14 1.15 1.16 1.17
0

5

10

15

20

25

30

1+IM

Pr
ob

ab
ilit

y 
de

ns
ity

 fu
nc

tio
n

(1+IM) Lognormal fit

1.06 1.08 1.1 1.12 1.14 1.16 1.18 1.2 1.22
0

5

10

15

20

25

30

35

40

1+IM

(1+IM) Histogram

1 1.05 1.1 1.15 1.2 1.25 1.3 1.35 1.4
0

5

10

15

20

25

1+IM
0.8 1 1.2 1.4 1.6 1.8
0

5

10

15

20

25

30

1+IM

0.5 1 1.5 2 2.5
0

5

10

15

20

25

30

35

1+IM

Pr
ob

ab
ilit

y 
de

ns
ity

 fu
nc

tio
n

Pr
ob

ab
ilit

y 
de

ns
ity

 fu
nc

tio
n

(1+IM) Histogram
(1+IM) Lognormal fit

Pr
ob

ab
ilit

y 
de

ns
ity

 fu
nc

tio
n

(1+IM) Lognormal fit
(1+IM) Histogram

(1+IM) Lognormal fit
(1+IM) Histogram

Pr
ob

ab
ilit

y 
de

ns
ity

 fu
nc

tio
n

(1+IM) Lognormal fit
(1+IM) Histogram

(a) (b)

(c) (d)

(e)

Fig. 10 Dynamic impact factor at 1st midspan due to dumper truck: a grade A-road; b grade
B-road; c grade C-road; d grade D-road; e grade E-road
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In the Fig. 11, the correlation equation between the mean value of IM and road
surface condition are also found out, in which x is the roughness coefficient.

From the investigation results in Fig. 11, it can be seen that when the road
surface condition changes to be grade A-road, grade B-road, grade C-road the mean
value of IM increases 0.54%, 1.25% and 4.91%, respectively. Specially, the mean
value of IM reaches 11.52% and 32.85%, respectively, while the road surface
condition changes to be grade D-road and grade E-road. This increase in dynamic
impact factors are quite large and exceed those recommended by current bridge
design codes as AASHTO [17] and Vietnamese Specification for Bridge Design
[18]. Therefore, it is necessary to consider the influence of road surface condition
on analyzing dynamic response of structural bridge, especially bridges have passed
long time in operation and the pavement have been damaged as well as seriously
downgraded.

Table 3 Statistical characteristics of dynamic impact factor at 1st midspan

Items Dynamic impact factor (1 + IM)
Sr(Ωo) x10

−6 m3/cycle

0 32 128 512 2048 8192

Mean 1.120 1.126 1.134 1.175 1.249 1.488

Max – 1.159 1.199 1.340 1.579 2.180

Min – 1.093 1.068 1.011 0.918 0.796

Standard deviation – 0.019 0.038 0.096 0.194 0.405

0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000
1.1

1.15

1.2

1.25

1.3

1.35

1.4

1.45

1.5

1.55

1.6

Roughness coefficient,  S
r
(

o
)

M
e

an
 (1

+I
M

)

y = 4.4e-005*x + 1.1

Mean (1+IM)
   linear

Ω

Fig. 11 Mean value of IM versus the roughness coefficient
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5 Conclusion

In this paper, the analysis of stationary random dynamic interaction between
three-axle dumper truck vehicle and two-span slab beam prestressed concrete with
link slab due to road unevenness is investigated by means of finite element method
and Monte-Carlo simulation method. The road unevenness are described by a
zero-mean stationary Gaussian random process. The bridge is modeled by finite
element method. The dumper-truck has three axles. Each axle is idealised by two
mass, in which a mass is supported by a spring and dashpot. The governing
equation of random dynamic vehicle-bridge interaction is derived by means of
dynamic balance principle. Galerkin method and Green theory are employed to
discrete the governing equation in space domain. The solutions of governing
equation are solved by Runge-Kutta-Mersion method in time domain. Monte-Carlo
simulation is applied to generate the random road unevenness input. The numerical
results are in good agreement test results at Nguyen-Tri-Phuong bridge in Danang
city, Vietnam. In addition, this research evaluates the effects of the road surface
condition on dynamic impact factor of slab beam prestressed concrete. The
numerical results showed that the road surface condition has significantly effects on
dynamic impact factor of slab beam prestressed concrete. Specially, the mean value
of IM reaches 32.85%, respectively, while the road surface condition changes to be
grade E-road. This value of dynamic impact factors are quite large and exceed those
recommended by current bridge design codes. Therefore, it is necessary to consider
the influence of road surface condition on analyzing dynamic response of structural
bridge subjected to moving vehicles, especially bridges have passed long time in
operation and the pavement have been damaged as well as seriously downgraded.
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Dynamic Analysis of Beams
on Two-Parameter Viscoelastic
Pasternak Foundation Subjected
to the Moving Load and Considering
Effects of Beam Roughness

T. Tran-Quoc, H. Nguyen-Trong and T. Khong-Trong

Abstract In this paper, improved moving element method (IMEM) is intended to
analyze the dynamic response of the beam resting on the two-parameter viscoelastic
Pasternak foundation subjected to the moving load and considering effects of beam
roughness. Beams are modeled by moving elements, while the load is fixed. The
differential equation of motion of the structural system is established based on the
principle of virtual public balance and solved by means of numerical integration
based on the Newmark algorithm. The characteristic parameters of the foundation
and the loads are investigated in order to analyze the dynamic response of the beam
such as the second parameter of foundation, the roughness of beam, the velocity and
acceleration of moving load.

Keywords Moving element method � Beam � Foundation � Dynamic
Roughness amplitude � Roughness wavelength � Moving load

1 Introduction

Beam and plate structures are applied widely in the construction field nowadays.
The topic of the structural beam on the soil–foundation interaction is much attracted
and interested by many foreign and Vietnamese scientists. Majority of constructions
for building and traffic infrastructures are built up on the soil–foundation interac-
tion, so the scope of this application is wide. The moving load on structure is also
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represented by many researchers by different variety of types such as moving force,
moving mass, various moving forces, moving vehicles. The foundation alone when
analyzing the behavior of the structure which is described very complicated the
same as the one-parameter foundation model such as Winkler [1] or multiparameter
foundation models of Filonenko-Borodich [2], Hentényi [3], Pasternak [4], Reissner
[5]. The typical characteristics of these models are that the elastic layer (the first
parameter) that is illustrated based on the elastic Winkler foundation, with the
stiffness of elastic foundation layer which is represented by the non-mass elastic
springs; in respect to the multiparameter models, the second parameter is presented
by the stress layer elements, beams or bending plates or shear layers without the
mass of connection with the surface of springs on Winkler foundation model in
order to describe the continuous interaction of foundation. Therefore, a more
realistic model is needed for soil foundation under the loads of moving mass.
Because of its wide and realistic application, this issue is concerned deeply by many
researchers such as Chang-Yong and Yang [6], and they have analyzed the infinite
Euler–Bernoulli beam resting on Pasternak foundation subjected to moving load
which has constant velocity obtained by Fourier transformation technique to solve
the problem. Kumari et al. [7] have investigated an infinite Euler–Bernoulli beam
on Pasternak foundation; the beam is put placed on a concentrated mass which is
equal to the constant motion, and the velocity is equal to beam’s parameters.

Recently, many models of structures resting on viscoelastic and Pasternak
foundation have been developed. Luong-Van et al. [8] and Phung-Van et al. [9]
analyzed dynamics response of composite plates resting on viscoelastic foundation.
Phung-Van et al. [10] analyzed dynamics response of Mindlin plates on viscoelastic
foundation subjected to a moving sprung vehicle. Nguyen-Thoi et al. [11] analyzed
the dynamics response of composite plates on the Pasternak foundation subjected to
moving mass.

Lou and Au [12] have studied the response of Euler–Bernoulli beam under
moving mass vehicles by employing a finite element method (FEM). FEM has been
used widely to solve many complicated problems, but encountered issues when the
mass moves to the margin of the elements and also from one element to another,
while vector of moving mass must be updated at every time step. So as to make good
those shortcomings, Koh et al. [13] have proposed to put a moving coordinate to
solve the proposed moving mass of railway track. This method is called moving
element method (MEM). In this method, the railway is considered as an infinite
Euler–Bernoulli resting on beam onWinkler foundation and the train is simplified by
a “mass-spring-dashpot” system. Tran et al. [14] have employed MEM to study the
dynamic response of express railway under inconstant speed of moving mass. Ang
et al. [15] have studied a calculation to employ MEM to examine the dynamic
response of the rail on viscoelastic foundation with moving mass. Ang and Dai [16]
analyzed the reaction of the high-speed railway on foundation which has inconstant
stiffness, and the author employed the moving element method to have analytical
solutions for the response of the train. Ang et al. [17] have used MEM to research the
dynamic response of the railway system. The railway model as a mass spring system
which includes train body, cross section and wheels. Recently, Tran et al. [18] also
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utilized the moving element method to analyze the dynamics of the express railway.
In which the railway track is modeled as based on Euler–Bernoulli beam on the
elastic two-parameter, the impacts of reducing velocity process and the roughness
levels of railway track are also investigated. MEM has a lot of advantages such as the
load would never approach the margin because the limited elements system always
moves, and the moving load would not have to move from this element to another, so
it avoids updating the mass vector. This method enables the limited elements with
different lengths, and each interaction distance can be divided more effective.
However, the weak point of MEM is that must be re-updated the stiffness matrix and
dashpot matrix at every time step. It resulted in increasing the volume of calculation,
prolonging the time of analysis, and wasting the resources.

Therefore, this paper introduces one new method, that is, improved moving
element (IMEM) to analyze the dynamic response of the beam resting on vis-
coelastic two-parameter Pasternak foundation which is under moving mass and
with the consideration of beam surface. The mass matrices, the stiffness matrices,
and dashpot matrices of the moving elements are also represented in details later on.
All results obtained will be the helpful documents for studying and designing the
structural beams placed on moving loads in reality.

2 Theoretical Basis

Investigating an infinite Euler–Bernoulli beam with elastic module E, moment of
inertia I, and mass per unit length of the rail beam �m, beam is on a viscoelastic
foundation comprising of dashpots �c, vertical springs �kw, cross section ks. Figure 1
shows the beam model, foundation, and load that are applied in this research.

Fig. 1 Train–track model
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According to the coordinates in Fig. 1, the general equation of the car model Do
and Luong [19] can be expressed mathematically as follows

m1€u1 þ c1ð _u1 � _u2Þþ k1ðu1 � u2Þ ¼ �m1g ð1Þ

m2€u2 þ c2ð _u2 � _u3Þ � c1ð _u1 � _u2Þþ k2ðu2 � u3Þ � k1ðu1 � u2Þ ¼ �m2g ð2Þ

m3€u3 � k2ðu2 � u3Þ � c2ð _u2 � _u3Þ ¼ �m3gþFc ð3Þ

in which:

m1, m2, m3; c1, c2, c3; k1, k2, k3 in turn are mass, dashpots of the car, vertical
springs, and wheels;

u1; _u1; €u1; u2; _u2; €u2; u3; _u3; €u3 in turn vertical displacements, velocity, car body
acceleration, and wheel and axle;

g gravitational acceleration;
Fc the contact force between wheels and beam,

produced by the non-flat of the beam or the
roughness of the beam.

The contact force Fc (with the roughness at the contact point between the
moving load and the beam) is defined according to Koh et al. [13] as follows:

Fc ¼ c3 _ud � _u3ð Þþ k3 ud � u3ð ÞþFt ð4Þ

where:

Ft ¼ c3 _yt þ k3yt the track force, produced by the roughness of the beam;
ud denotes the vertical displacement at the contact point of the beam;
u3 denotes the vertical displacement of the wheel and axle;
yt denotes the magnitude of the track irregularity at the contact

point, and according to Koh et al. [13], the track irregularity
profile can be written in terms of a sinusoidal function as follows:

yt ¼ at sin
2pS
kt

ð5Þ

where:

at, kt denotes the amplitude and wavelength of the track irregularity, respectively;
S denotes the displacement of the object.

In the moving element method, Koh et al. [13] use x-y coordinates where x-axis
is the beam course. The moving r-y coordinates whose origin is attached to the
contact force as in Fig. 2. Therefore, this coordinates move along with the velocity
V as a moving load.
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The relationship between two axes of coordinates is demonstrated as follows:

x ¼ rþ s
y ¼ y

�
ð6Þ

where: x = fixed axis; r = movable axis; s = displacement; V(a,t) = velocity
function; t = moving time; a = acceleration.

The connection between the derivative operators of the coordinates when the
load moves with various velocities is as follows:

@4wðx; tÞ
@x4

¼ @4w�ðr; tÞ
@r4

ð7Þ

@2wðx; tÞ
@x2

¼ @2w�ðr; tÞ
@r2

ð8Þ

@wðx; tÞ
@t

¼ @w�ðr; tÞ
@t

@t
@t

þ @w�ðr; tÞ
@r

@r
@t

¼ @w�ðr; tÞ
@t

� V
@w�ðr; tÞ

@r
ð9Þ

@2wðx; tÞ
@t2

¼ @2w�ðr; tÞ
@t2

� a
@w�ðr; tÞ

@r
@r
@t

þV2 @
2w�ðr; tÞ
@r2

� 2V
@2w�ðr; tÞ
@r:@t

ð10Þ

where w(x, t) = transverse deflection of the beam in the x-y axial coordinates; w*(r,
t) = deflection of the beam in r-y coordinates.

By applying principle of virtual work and using displacement functions N, we
can write Me, Ce, Ke as generalized mass, damping and stiffness matrices of the
beam as follows:

Me ¼ �m
Zle

0

NTNdr ð11Þ

Ce ¼ c
Zle

0

NTNdr � Fe
1 ð12Þ

Fig. 2 Coordinates of MEM
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Ke ¼ EI
Zle

0

ðN;rrÞTN;rrdrþ kw

Zle

0

NTNdr � ks

Zle

0

NTN;rrdr � Fe
2 ð13Þ

Fe
1 ¼ 2�mV

Zle

0

NTN;rdr ð14Þ

Fe
2 ¼ �maþ cV½ �

Zle

0

NTN;rdr � �mV2
Zle

0

NTN;rrdr ð15Þ

P ¼
Zle

0

FcNTdr ð16Þ

with (.)r and (.)rr in turn are first derivative and second derivative of r.
To elements of the beam, the Hermitian interpolation N is written as follows:

Ne
1 ¼

1

ðleÞ3 2r3 � 3r2le þðleÞ3
h i

ð17Þ

Ne
2 ¼

1

ðleÞ3 r3le � 2r2ðleÞ2 þ rðleÞ3
h i

ð18Þ

Ne
3 ¼

1

ðleÞ3 �2r3 þ 3r2le
� � ð19Þ

Ne
4 ¼

1

ðleÞ3 r3le � r2ðleÞ2
h i

ð20Þ

Based on finite element method and using numeral degree of freedom technique,
respectively, to matrices of the general coordinates’ elements, the moving equation
of the whole beam model on the foundation is written as follows:

M€zþ C� F1ð Þ _zþ K� F2ð Þz ¼ P ð21Þ

where:

M, C, K, P, respectively, are global mass, damping and stiffness matrices, and
the global load vector;
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F1, F2 denote those elements which depend on time; F1 and F2 are not
forces but have the force unit so they can be considered to be
pseudo-force

Equation (21) is the main differential equation of the traditional MEM; in
Eq. (21), we can see the left side is comprised of elements which change over time,
and those elements are the pseudo-force F1 and F2 matrices. Therefore, when
solving the problem we need to update the global mass, damping and stiffness
matrices and this prolongs the processing time.

To fix this limitation of the traditional MEM, we like to move the pseudo-forces
from the left side of Eq. (21) to the right side. This idea is called IMEM. After the
moving, Eq. (21) is written as follows:

M€zþC _zþKz ¼ PþF1 _zþF2z ð22Þ

Solving the differential motion, Eq. (22) is put to act upon the help of computer
which is based on Newmark algorithm. This algorithm is a calculation program
written by MATLAB language, and the reliability as well as the calculation method
of the program are put to compare to the results of other authors which are available
in the reference.

3 Equation, Figure, and Table

3.1 Verifying the Calculation Program

In this part, the article examines some numerical examples to verify the correctness
and the reliability of the MATLAB program. The results are compared to those of
other authors.

Here is the verification of the high-speed train moving on beam with hanging
mass which is used by Koh et al. [13] Fig. 1. The parameters of the train, the beam,
and the foundation are demonstrated in Tables 1 and 2.

In the first example, the displacement of the beam while the train is moving on
the beam with constant velocity, without consideration of the second foundation
parameter affection (velocity V = 20 m/s, roughness amplitude margin at = 0.5 mm
and roughness wavelength kt = 0.5 m) (Fig. 3).

Table 1 Parameters for vehicle

Car Body Bogie Wheel and axle

m1 3500 kg m2 250 kg m3 350 kg

k1 1.41 � 105 N/m k2 1.26 � 106 N/m k3 8 � 109 N/m

c1 8.87 � 103 Ns/m c2 7.1 � 103 Ns/m c3 6.7 � 105 Ns/m
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In the next verification, the displacement of the beam when the train moves on
the beam with constant velocity, without consideration of the second foundation
parameter affection (first velocity V = 0 m/s, then moving with constant accelera-
tion amax = 10 m/s2, after 2 s it reaches the velocity Vmax = 20 m/s, then it moves
with constant deceleration amin = −10 m/s2, and it stops after 2 s. The total ana-
lyzing time is t = 6 s, without consideration of foundation roughness amplitude)
(Fig. 4).

From these surveyed results, we compare them to those of other authors and it
shows that the results from the article are well-matched with others which quote in
the references. It proves the calculation program is reliability. Thence, we have the
groundwork to continue to analyze the affection of foundation parameters, mass
model, the roughness of the beam surface on moving beam response.

Table 2 Parameters for beam and foundation

Beam Foundation

m 60 kg/m kw 1 � 107 N/m2

E 2 � 1011 N/m2 c 4900 Ns/m2

I 3.06 � 10−5 m4

L 50 m

Fig. 3 Beam displacement at the interaction point a Koh et al. [13], b Article

Fig. 4 Beam displacement at the interaction point a Koh et al. [13], b Article
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3.2 Numerical Survey Result

The parameters of over hanging moving mass, beam and foundation of the problem
which is showed in Tables 1 and 2. In case 1 and case 2, the second parameter of
the foundation changes in turn to ks = 0 N; 6 � 105 N; 8 � 106 N; 16 � 106 N
according to Feng and Cook [20] and the load moves on the beam with constant
velocity V = 90 m/s.

• Case 1: This problem keeps the roughness wavelength value kt = 0.5 m.
Changing the roughness amplitude on beam at in turn to 0; 0.8; 1.6; 2.4; 3.2; and
4 mm.

• Case 2: This problem keeps the roughness amplitude on beam value at = 1.6
mm. Changing the roughness wavelength kt in turn to 0.5; 1.0; 1.5; 2.0; 2.5; 3.0;
3.5; and 4.0 m.

Figure 5 indicates the analyzed results of the dynamic response of the beam in
case 1. The result shows that when increasing the second parameter of the foun-
dation, then the value of the beam displacement also decreases; the more value of ks
increases, the more value of the beam displacement decreases. Therefore, the
second parameter of the foundation is significant; it reduces dynamic response of
beam system.

Also in Fig. 5, the analysis shows that when increasing the roughness amplitude
on beam, the value of the beam displacement also increases. The more value of at
increases, the more value of the beam displacement increases. This proves that the
beam displacement depends on the roughness amplitude very large on beam. When
the roughness amplitude on beam increases, then the beam displacement also
increases likely linear with it.

Figure 6 shows the analyzed moving response in case 2. The analysis of Fig. 6
shows that the roughness wavelength on beam kt is small between 0.5 and 2 m; if
increasing the wavelength, the beam displacement also increases. Nevertheless,

Fig. 5 Maximum
displacement of the beam
when keeping the value of the
roughness wavelength
kt = 0.5 m, changing the
second parameter of the
foundation ks and the
roughness amplitude
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when the value of the roughness wavelength increases to a certain point, specifi-
cally in case 2, when the wavelength increases over 2.5 m then the beam dis-
placement decreases and is asymptotic to a certain point. When the roughness
wavelength on beam kt is between 2.0 and 2.5 m, then the beam displacement value
increases and reaches the maximum point. Specifically when ks = 6 � 106 N, then
the maximum displacement is −7.2728 mm (Table 3) with the wavelength
kt = 2.5 m.

• Case 3: This problem keeps the value of the second foundation parameter ks = 6
� 105 (N) and the roughness amplitude on beam at = 0.5 mm. Changing the
roughness wavelength kt in turn to 0.5; 1.0; 1.5; 2.0; 2.5; 3.0; 3.5; 4.0 m and
velocity V changes in turn to 5; 10; 15; 20; 25; 30; 35; 40; 45; 50; 55; 60; 65; 70;
75; 80; 85; 90; 95; 100; 105; 110; 115; 120 (m/s).

By observing Fig. 7, we can tell that to each value of the roughness wavelength,
when the velocity increases to a certain point, then the beam displacement reaches
the maximum value. When the beam displacement reaches the maximum value and
still velocity keeps going up, the beam displacement decreases and is asymptotic to
a certain point. On the other hand, when increasing the roughness wavelength on
beam, the velocity makes the displacement reach the maximum value and the beam
displacement also goes up correspondently.

From the result of Table 4, we can see that to make the beam displacement reach
the maximum value, then the ratio of the roughness wavelength and velocity has to
be a certain value. This ratio of the roughness wavelength and velocity T = kt/V is
also the beam oscillation. The appearance of the maximum displacement at
wavelength from 1.5 to 2.0 m is the consequence of resonance. In a way, the
exciting frequency fc = 1/T will be nearly to the natural frequency fn = x/2p
(Table 5).

Fig. 6 Maximum beam
displacement when keeping
the value of the roughness
amplitude on beam
at = 1.6 mm, changing the
second foundation parameter
and the roughness wavelength
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• Case 4: This math remains the roughness wavelength intact on beam kt = 0.5
m, and the second foundation parameter is 6 � 105 N. Changing the roughness
amplitude on beam at in turn to 0; 0.8; 1.6; 2.4; 3.2; and 4 mm.

• Case 5: This math remains the roughness amplitude on beam at = 1.6 mm, and
the second foundation parameter is 6 � 105 N. Changing of the roughness
wavelength on beam kt in turn to 0.5; 1.0; 1.5; 2.0; 2.5; 3.0; 3.5; and 4.0 m.

In case 4 and case 5, the velocity varies as in Fig. 8. The velocity is divided into
three phases (phase 1: increasing; phase 2: constant velocity; phase 3: decreasing).
The original velocity of the object is V = 0 m/s, then it moves with constant

Fig. 7 Maximum beam displacement when keeping the roughness amplitude on beam
at = 0.5 mm, changing velocity and the roughness wavelength

Table 4 Period and frequency of beam (mm)

Roughness
wavelength on beam
kt (m)

Maximum
displacement
(mm)

Velocity
V (m/s)

Period
T = k/V
(s)

Exciting
frequency fc = 1/T
(Hz)

0.5 −3.50179 20 0.0250 40.00

1.0 −3.47803 40 0.0250 40.00

1.5 −3.50986 55 0.0273 36.67

2.0 −3.63765 75 0.0267 37.50

2.5 −3.58805 95 0.0263 38.00

3.0 −3.51318 110 0.0273 36.67

Table 5 Natural frequency of the system in the first five modes

Natural frequency (Hz) Mode 1 Mode 2 Mode 3 Mode 4 Mode 5

fn = x/2p 0.955 11.6 38.1 65 65

1150 T. Tran-Quoc et al.



acceleration amax = 10 m/s2. After 2 s of acceleration, the object has the constant
velocity Vmax = 20 m/s in 2 s and moves with constant deceleration amin = −10 m/
s2 and stops after 2 s.

Figure 9 shows the value of the beam displacement at each phase of the velocity
and each value of the roughness magnitude on beam. The result shows that when
increasing the roughness amplitude on beam, the value of the beam displacement
increases also. Besides, other phases like acceleration, constant velocity, or
deceleration do not make the value of the beam displacement increase, and these
values are closely the same. Thence, the beam displacement depends very much on
the roughness amplitude on beam. When the roughness amplitude increases, the
value of the beam displacement also increases linearly.

Figure 10 shows the value of the beam displacement at each phase of the
velocity and each value of the roughness wavelength on beam. We can tell that the
bigger value of the roughness wavelength, the smaller the beam displacement of
three phases of the velocity. The beam displacement decreases dramatically when
the wavelength kt = 1.0 mm and is asymptotic to a certain point. This proves that
the beam displacement is also affected by the roughness wavelength on beam.

Fig. 8 Vehicle velocity
profile

Fig. 9 Maximum beam
displacement when keeping
the roughness wavelength on
beam kt = 0.5 m, changing
only the roughness amplitude
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4 Conclusions

The paper presents the result on dynamic analysis of beams on two-parameter
viscoelastic Pasternak foundation subjected to the moving load and considering
effects of beam roughness developed with Improved Moving Element Method
(IMEM). The result shows that the second foundation parameter has significant
effect on dynamic response of beam; when increasing the second foundation
parameter, the beam displacement also decreases. The model of two-parameter
foundation has the smaller displacement than the traditional viscoelastic foundation
(ks = 0).

In addition, the beam roughness also has influence significantly on dynamic
response of beam. When the roughness amplitude increases, the beam displacement
also increases with nearly linear ratio. Besides, when the roughness wavelength is
between kt = 0.5–2 m, the more roughness wavelength increases, the more beam
displacement increases. However, when the roughness wavelength reaches to a
certain point, the beam displacement will decrease and be asymptotic to a certain
point.

The resonance makes the beam displacement to reach the maximum value. The
cause of this resonance depends on many elements such as: the velocity of the mass,
the roughness wavelength on beam, and the second foundation parameter.
Therefore, it is necessary to consider the combination of all mentioned above
elements in the engineering design to avoid this dangerous resonance.

When the load moves with the various accelerations, decelerations, or constant
velocity, then the beam displacement depends on the roughness amplitude on beam.
The beam displacement increases when the amplitude increases. Moreover, the
beam displacement also varies dramatically when the roughness wavelength varies.
Thus, in the engineering design, special consideration of dynamic response of
moving load resting on beam with various speed is essential and correct to the real
demand of the structural beam.

Fig. 10 Maximum beam
displacement when keeping
the roughness amplitude
at = 1.6 mm, changing only
the roughness wavelength
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Part XI
Biological Systems



The Prevention of Pressure Ulcers:
Biomechanical Modelization
and Simulation of Human Seat Cushion
Contributions

T. H. Bui, P. Lestriez, D. Pradon, K. Debray and R. Taiar

Abstract The main cause of pressure ulcers (PUs) is high pressure on the surface of
buttock-tissue and support cushion as well as the area inside the bones and muscle
tissue. There are also many other factors, including shear stress, friction, temperature
and moisture. So far, many studies have used numerical simulations and experiments
to find the influence of the stresses and strains, the surface pressures on the formation
and development of pressure ulcers. This paper presents a biomechanical mod-
elization and simulation of the interactions between wheelchair seat cushion and
human buttock-tissue (HBT) aiming to prevent ulcers. In this paper, we used
three-dimensional (3D) finite element model (FEM) of a HBT in contact with a
honeycomb seat cushion (HSC) in a sitting position. This cushion is made from
thermoplastic polyurethane (TPU) for disabled people who use wheelchairs.
Mechanical simulation was performed to find the pressure distribution, the stress and
the deformation. Thermal simulation permits to identify the temperature distribution
on the surface of HBT and HSC that are the factors can cause PUs. Our results
showed that the highest distribution pressure, the von Mises stress, respectively,
found corresponds to 175.8 and 36.45 kPa. The highest temperatures obtained in the
zone of interaction between the buttock-tissue and HSC correspond to 33.74 °C after
35 min seating. Our study proposes a new methodology for the improvement and
validation of FEM to identify the risk of PUs. The results will permit to improve
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cushion by collaboration with the manufacturer (optimization of shapes and mate-
rials) to create the own cushion model for each patient increasing his daily life.

Keywords Thermal-mechanical � Buttock-tissue � Pressure ulcers (PUs)
Wheelchair � Seat cushion � Honeycomb � Thermoplastic polyurethane (TPU)
Finite element

1 Introduction

The PUs are common pathologies for paralyzed patients, disabled people who have
to sit for a long time on wheelchair [1, 2]. The contact interaction between HBT and
seat cushion for a prolonged period can cause some discomfort. This due to the
loading stresses applied mainly between the ischial tuberosities and the soft tissue at
the seat interface. This application causes the pressure distribution on the surface, the
stresses inside buttock-tissue, the shear stress, the friction and the microclimate.
These are the main factors causing the pressure ulcers. According to the report of the
World Health Organization (WHO) in 2008, there were estimated to be 650 million
disabled people around the world and about 10% of them require wheelchairs for
their daily life. This number will increase because the world population will age over
time [3–5]. Otherwise, the treatment cost of this problem may be up to 12500 € per
person [6]. Therefore, changing the design of the product or choosing products with
features suitable should be emphasized to achieve this goal [7, 8]. In fact, many
studies have focused on stress factors and pressure at the surface caused the PUs [9–
15]. These studies used different materials of the cushion to compare the effect of
cushions in the context of improved comfort and prevention of PUs. In parallel, these
studies were used in 2D and 3D FEM in the aim to determine the stress distribution
inside the model created by the ischial tuberosity, muscle tissue and the pressure at
the buttock-cushion interface. However, there are very few studies showing the
effect of temperature distribution on the surface of the buttock-tissue and seat
cushion to PUs [16–20]. Therefore, we cannot see the influence and importance of
temperature factors on pressure ulcers. The main aim of this study is to propose a 3D
FEM of a HBT in contact with a HSC made from TPU. We study the impact of stress
distribution, pressure distribution and thermal distribution at the interface HBT and
HSC in the aim to prevent PUs improving the comfort of users.

2 Methodology

2.1 Buttock-Tissue and Seat Cushion Model

We selected the buttock-tissue model based on the ISO standards 16840-2:2007
[21], and the “Zygote Human Factors’” model was associated with the sitting
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position [22]. This model was used from the study of Bui et al. [3], which was
designed by SolidWorks software as shown in Fig. 1. The total length of the
buttock-tissue model was 450 mm for a human.

The HSC used in this study is called “Stimulite® Honeycomb Cushion” [23]
with the dimensions L � W � H = 460 mm � 410 mm � 70 mm. Figure 2a
indicates the structure of the classic type of “Stimulite® Honeycomb Cushion” from
SUPRACOR Company and distributed by PHYSIPRO. The structure of cushion
consists of three layers of perforated honeycomb hexagonal bee and separated by
horizontal sheets (Fig. 2b). The alveolar has six faces: 2 double 0.4 mm of thick-
ness and 4 single 0.2 mm of thickness and several transverse holes with a diameter
of 1.3 mm (Fig. 2d). The clear blue transparent on top layer (Fig. 2c) is generated
to reduce the shear stresses at the interface of buttock-tissue and seat cushion.

Because of the symmetry of this model, so to reduce the time calculated by
FEM. In this study, we only created a half buttock-tissue/honeycomb cushion
model. Figure 3a shows the half FEM of the buttock-tissue and honeycomb cushion
model. In order to increase quality, the mesh elements were created very smoothly
and finely compared to other published models [9–13, 23]. The buttock-tissue and
honeycomb cushion models were developed using a total number of 10,500,256
elements and 5,084,925 nodes. The type of element used to mesh the different parts

Fig. 1 3D CAD the buttock-tissue model

Fig. 2 Structural decomposition of “Stimulite® Honeycomb Cushion”. a Stimulite® Honeycomb
Cushion; b horizontal sheets separated three layer of cushion; c the surface to reduce shear stress at
the interface contact; d thickness of alveolar
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of the geometry is tetrahedronal C3D4 with 1,623,344 mesh elements, and the
element size is set to 1 mm. In addition, the type of element for honeycomb cushion
is triangular S3R with total number of 8,586,042, and the element size is set to
1 mm. The three horizontal sheets are separated to three layers of honeycomb
cushion with a triangular S3R (1 mm of size) (Fig. 3b).

2.2 Material Models

It is well known that hyperelastic behaviour of the seat cushion and the HBT
materials is nonlinear, isotropic and nearly incompressible. In this paper, a non-
linear Mooney-Rivlin material was applied to the wheelchair seat cushion and the
HBT [9–15, 24, 25]. The viscoelastic behaviour of the two models was defined by
using a time-based Prony series. The parameter materials of the honeycomb cushion
(TPU) were obtained from tensile and compressive tests that were conducted using
the INSTRON 33R4204 machine. Figure 4b represents the tensile curve obtained
from the tests for the TPU material. Some material parameters are extracted and
used for the model according to Kanyanta et al. [24]. The second, static equilibrium
equations with large strain were affected in the material model in this FEM. The
Moony-Rivlin hyperelastic model [10, 11, 13–15, 25] was employed for muscles
behaviours. The model was based on the strain energy function as indicated in
Eq. (1):

W ¼ C10ð�I1 � 3ÞþC01ð�I2 � 3Þþ 2
D1

J � 1ð Þ2 ð1Þ

where W is the strain energy per unit of reference volume; J is the Jacobine
deformation. In Eq. (1), C10, C01 and D1 are the material-dependent parameters.

Fig. 3 3D CAD (a) and FEM (b) of a half buttock-tissue and honeycomb cushion
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D1 ¼ 1�2v
C10 þC01

, where v is the Poisson’s ratio of the material. �I1and �I2 are the first and
second deviatoric strain invariants defined as following (2) and (3),

�I1 ¼ �k21 þ �k22 þ �k23 ð2Þ

�I2 ¼ �k �2ð Þ
1 þ �k �2ð Þ

2 þ �k �2ð Þ
3 ð3Þ

where the deviatoric stretches are rewritten �ki ¼ J�1=3ki; ki are the principal
stretches. The parameters of buttock-tissue were taken from Dabnichki et al. [25];
Grujicic et al. [13]; Verver et al. [10]. In Eq. (1), C10, C01 and D1 are the material
parameters and m is the Poisson’s ratio m ffi 0:495ð Þ. The Mooney-Rivlin hypere-
lastic parameters of honeycomb wheelchair seat cushion are as follows: C10 = 1.24
(MPa), C01 = 0.01 (MPa), D1 = 0.008 (MPa−1). The Mooney-Rivlin hyperelastic
parameters of buttock-tissue are as follows: C10 = 0.00165 (MPa), C01 = 0.00335
(MPa), D1 = 2 (MPa−1).

The viscoelastic behaviour of the buttock-tissue is defined by using a time-based
Prony series model [14], and the time-dependent shear relaxation modulus G(t) is
given by Eq. (4):

G tð Þ ¼ G0 �
XN
i¼1

Gi 1� e�t=sGi
� �

ð4Þ

where sGi the relaxation time and N is the order of the Prony series. G0 and Gi are,
respectively, the instantaneous and relative shear modulus. The viscoelastic
parameters for the buttock-tissue model were set as g1 = 0.5, k1 = 0.5 and
s1 = 0.8 s [14, 26].

The viscoelastic parameters of the HSC were determined by plotting the nor-
malized stress with initial stress r0 against time. The viscoelastic model was

Fig. 4 a Loading and boundary conditions on the HBT and HSC model; b nonlinear stress–strain
curve of HSC material (TPU)
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obtained from relaxation tests by fitting a three-term Prony series (Eq. 5) to the
relaxation data as follows [24]:

E tð Þ ¼ 6:5ð1þ 0:023e�t=12 þ 0:08e�t=98 þ 0:034e�t=1600Þ ð5Þ

3 Mechanical-Thermal Simulation

3.1 Mechanical Simulation

The mechanical simulation was implemented by using an explicit integration law
and diagonal element mass matrix. The motion equations of the body were inte-
grated using the following explicit central-difference integration law:

_uN
iþ 1

2ð Þ ¼ _uN
i�1

2ð Þ þ
Dt iþ 1ð Þ þDti

2
� €uNið Þ ð6Þ

and

uN
iþ 1

2ð Þ ¼ uNið Þ þDt iþ 1ð Þ � _uN
iþ 1

2ð Þ ð7Þ

where uN is a degree of freedom (a displacement or rotation component) and the
subscript i refers to the increment number in an explicit dynamics step. The
central-difference integration operator is explicit such that the kinematic state is
advanced using known values of _uN

i�1
2ð Þ and €uNið Þ from the previous increment

(Abaqus version 6.13, [27]).
The interaction between the HBT and HSC models was analyzed in ABAQUS/

explicit 6.13-4 and the penalty contact method with finite sliding. The
surface-to-surface contact with a 0.5 coefficient of friction was used to define the
contact pair between the HBT and HSC models [13, 14]. The outer surface of the
HBT model was defined as the master-surface and the surface of the cushion as the
slave-surface. The upper surface of the HBT model was linked with a rigid surface
plate by the Tie contact. In order to connect together the three horizontal layers of
HSC, the contacts Tie was used (Fig. 4a). We apply 10−5 mass scaling coefficient
and half buttock-tissue/honeycomb cushion to reduce the computation time.

The loading applied to our model represents a human male weighing 75 kg.
Figure 4a shows the loading and boundary conditions between the HBT and HSC.
In this model, we applied a mass of 37.5 kg for half a buttock-tissue (representing
half the male human body weight) [2]. The bottom surface of the HSC is fixed.
The HBT used in our study permits to quantify the impact of the load on the
cushion in the Y-axis. A typical computational analysis of the BHT and HSC
interactions was carried out on a 64-bit Windows by the Centre of calculation of
University Reims Champagne-Ardenne.
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3.2 Thermal Simulation

Pennes [28] and Fiala [29] have developed the heat transport mechanism that occurs
in living tissue in the so-called bio-heat formulated. This differential equation
describes the heat dissipation in homogeneous, infinite tissue volume:

k
@2T
@r2

þ x
r
@T
@r

� �
þ qm þ b Tb � Tð Þ ¼ qCv

@T
@t

ð8Þ

In this equation, k the tissue thermal conductivity [W m−1 K−1]; T the tissue
temperature [°C]; qm the metabolic heat flow [W m−3]; for all body elements, r
denotes the radial coordinate [m]; x is a geometry factor; (x = 1 for polar coor-
dinates and x = 2 for spherical coordinates); b Tb � Tð Þ is blood perfusion, with
b ¼ qbl:wbl:cbl (heat convection term), where qbl is density of blood [kg m

−3], wbl is
blood perfusion rate [m3 s−1 m−3], cbl heat capacitance of blood [J kg−1 K−1]); Tb
the arterial blood temperature [°C]. This combined effect is balanced by the storage
of heat within the tissue mass (right-hand side of equation…, where q is tissue
density [kg m−3], tissue heat capacitance [J kg−1 K−1], t is time [s]).

In our study, we fixed 34 °C according to [29] for the modelization of HBT. The
synopsis of the heat transfer modelling is presented in Fig. 5.

A finite element method was used to simulate the temperature distribution in the
HSC in contact with the HBT as a function of time. The general governing equation
can be presented as [16]:

qCv
@T
@t

¼ kr2T þ S ð9Þ

where the HSC local temperature, T [°C], varies with spatial coordinates and time, t
[s]. The thermophysical properties k; q; and Cv are the material thermal conduc-
tivity [W m−1 K−1], density [kg m−3] and specific heat [J kg−1 K−1], respectively.
The source term, S, is the heat generation per unit volume for the nodes. In this
works, a symmetric condition is assumed, and the computational domain is limited
to the right half of the HBT and the HSC to reduce the calculation time. The HSC
was applied in our simulation without cover, and the temperature is considered to
be at 20 °C, which is the ambient temperature (Troom). Equation (9) is the heat
exchange equation between two contacts, which means the contact areas between

Fig. 5 Synopsis of the heat
transfer modelling
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the HBT and the HSC. For non-contact areas, the heat exchange between the HBT,
the HSC and the ambient air occurs by convection and radiation. The effective local
heat transfer coefficient can be defined as:

u ¼ ur þuc ¼ r� �T4 � T4
1

� �þ �hc �T � T1ð Þ ð10Þ

In this study, we used the ABAQUS/Standard 6.13-4 software to perform the
thermal simulation for the right half of the HBT and the HSC. The thermal
parameters of the buttock-tissue and honeycomb cushion materials in this simula-
tion are shown in Table 1 [30–32].

4 Results and Discussion

4.1 Results of Mechanical Simulation

4.1.1 Contact Pressure Distribution

The maximum contact pressure of 175.8 kPa was concentrated in the HBT shown
in Fig. 6. Compared with the results (187.7 kPa) obtained by Grujicic et al. [13], in
which subjects were modelled in the same sitting position, our results yield a
reduction in contact pressure of approximately 12 kPa. In our study, the total

Table 1 Thermal properties of HBT and HSC at room temperature for our simulation

Materials Thermal conductivity
(W C−1 m−1)

Specific heat
(J kg−1 C−1)

Density
(kg m−3)

Buttock-tissue 0.33 ➔ 0.54 3430 ➔ 3720 1020–1090

Honeycomb cushion 0.19 ➔ 0.25 1500 ➔ 1800 1120

Fig. 6 Contacted pressure distribution over the HBT/HSC interface: a global view; b enlarge
view
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contact surface area analyzed is smaller than that studied by Grujicic et al. [13].
With this result, we can see that HSC is more competitive than polyurethane foam
cushions for the problem of reducing pressure on the surface HBT/HSC.

4.1.2 The Von Mises Stress

The von Mises stresses of the HBT were determined by FEM. Figure 7 shows the
distribution of the von Mises equivalent stress on both the surface and the inside of
the buttock-tissue. The maximum value of the von Mises stress on the buttock is
36.44 kPa. These values are smaller than those in the 2D and 3D models found in
the literature. In their 2D FEM, Oomens et al. [33] found 180 kPa for the same
sitting position analyzed in our study.

In other 3D FEM of Verver et al. [10], Makhsous et al. [11] quantified the impact
of skin, fat, muscle and bone on buttock-tissue. For both studies, the authors
obtained values of 45–50 kPa and 40–50 kPa, respectively, for sitting positions
similar to those analyzed in our study.

4.1.3 Distribution of Contact Shear Stress

Using a constant coefficient of friction in static condition (0.5), Fig. 8 shows the
contact shear stress distribution. Our average value is 5.7 kPa is compared to 2 kPa
as obtained by Grujicic et al. [13]. The differences in these average values may be
explained by the differences in the material used for the two cushions, i.e. in our
case, the honeycomb cushion with contacted edge versus the foam polyurethane
cushion with flat contact surface used by Grujicic et al.

4.2 Result of Thermal Simulation

Figure 9 shows simulated temperature distribution on the HSC surface after 35 min
of sitting. The highest temperature obtained at the HSC surface of our study was

Fig. 7 Von Mises stresses distribution; a at the interface buttock-tissue; b inside the
buttock-tissue
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33.74 °C (Fig. 9). Karimi et al. [16] after 20 min of sitting with the foam poly-
urethane seat cushion obtained 35.4 °C in their simulation. The HSC appears more
efficient, reducing the temperature at the interface HBT and HSC.

Figure 10 shows that almost the largest temperature values are concentrated in
the centre of the HBT and the thigh-tissue at large contact position. At other
locations on the HSC, these locations are far from the buttock-tissue (no direct
contact with the buttock-tissue), which have lower temperature.

Based on the graph in Fig. 11, we can see that the temperature at the surface of
HSC increases rapidly during the first period of simulations (about the first 6 min).
The temperature value at the HSC surface increases very fast from 20 to 32.7 °C
(black spline). This is due to the significant temperature difference between the
HBT and HSC. Then the temperature on the HSC continued to increase relative in

Fig. 8 Contact shear stress distribution over the HBT/HSC interface: a global view; b enlarged
view

Fig. 9 Temperature distribution on the surface HSC after 35 min of sitting

1166 T. H. Bui et al.



the next period (6–22 min) with temperature values increasing from 32.7 to 33.2 °
C. However, the rate of heat transfer at surface of HSC slows down over time after
about 6 min initially. During the rest of time, from 22 to 35 min, the temperature
increases to the maximum value and then saturates at 33.74 °C.

Fig. 10 Temperature distribution in the buttock-tissue and honeycomb cushion after sitting
(35 min, cutting model in y-z plan)

Fig. 11 Variations of temperature in the contact areas
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5 Conclusions

This article used the finite element method to develop a mechanical-thermal sim-
ulation of the biomechanical model of HBT and HSC. We studied the influence of
the mechanical factors such as the distribution pressure, the von Mises stress, the
strain and the temperature distribution at the interface of HBT and the HSC. These
factors cause the formation and development of the pressure ulcers. Mechanical
simulation for biomechanical model of HBT and the HSC has been realized
commonly in literature. However, thermal simulation for biomechanical model of
the HBT and the wheelchair seat cushion is relatively new and has not been studied
much in the literature before, so this is an originality of our research. Mechanical
results obtained showed that our cushion (HSC) is better suited and designed to
reduce stress on the HBT and thus prevents the formation of pressure ulcers. The
temperature distribution on HSC obtained by thermal simulation permits to evaluate
the effect of temperature on seat comfort and provides methods to prevent PUs of
patient and wheelchair users. Through our study, the results will be useful for
manufacturers to improve cushion design and consequently the daily life of the
patient. The predictions based on mechanical-thermal analysis of the interaction
between user and the cushion will allow the better advises on the new conception of
the product satisfying the comfort of users in order to prevent pressure ulcers.

The next step of this study will be performed experimentations to record the
temperature distribution by the infrared camera and the distribution pressure by
mapping the pressure at the surface of seat cushion to compare the results obtained
by experimentations with the results obtained by numerical simulation to help the
selection of appropriate cushion.
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