
Chapter 4
Inerter-Based Dynamic Vibration
Absorption System

Abstract This chapter is concerned with the H∞ and H2 optimization problem
for inerter-based dynamic vibration absorbers (IDVAs). The proposed IDVAs are
obtained by replacing the damper in the traditional dynamic vibration absorber
(TDVA) with some inerter-based mechanical networks. It is demonstrated in this
chapter that adding one inerter alone to the TDVA provides no benefits for the H∞
performance and negligible improvement (less than 0.32% improvement over the
TDVA when the mass ratio less than 1) for the H2 performance. This implies the
necessity of introducing another degree of freedom (element) together with inerter
to the TDVA. Therefore, four different IDVAs are proposed by adding an inerter
together with a spring to the TDVA, and significant improvement for both the H∞
and H2 performances is obtained.Numerical simulations in dimensionless form show
that more than 20 and 10% improvement can be obtained for the H∞ and H2 per-
formances, respectively. Besides, for the H∞ performance, the effective frequency
band can be further widened by using inerter.

Keywords Dynamic vibration absorber · IDVA · H∞ optimization ·
H2 optimization · Dimensionless analysis

4.1 Introduction

Dynamic vibration absorber (DVA) is an auxiliarymass systemattached to a vibrating
primary system to reduce undesired vibration, which is widely used in the fields of
civil and mechanical engineering for its simple design and high reliability (Den
Hartog 1985). In the first DVA proposed by Frahm in 1909 (Frahm 1909), only a
spring was employed, and it was useful only in a narrow band of frequency. In 1928,
the damping mechanism was introduced by Ormondroyd and Den Hartog (1928),
which is a parallel arrangement of a spring and a damper, and as a result, the effective
frequency band was significantly widened. It was also pointed out in Ormondroyd
andDenHartog (1928) that for the spring–damperDVA (in this chapter, it is called the
traditionalDVAorTDVA)andundampedprimary system, therewere two frequencies
called fixed points, where the magnitudes were independent of the damping, and the
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optimal setting of the spring stiffness was the one equalizing the magnitudes at
the fixed points, and the optimal damping was the one making the curves of the
frequency response horizontally pass through the fixed points. Such a tuning method
is still in use today and currently known as the fixed-pointmethod (DenHartog 1985),
which has been demonstrated to be a suboptimal H∞ optimizationmethod (Nishihara
and Asami 2002). The exact solutions were analytically derived in Nishihara and
Asami (2002) and it was also shown that the fixed-point method actually yielded
an approximate but highly precise solution (with less than 0.5% deviation when the
mass ratio less than 1). Another common performance measure of tuning DVA is the
H2 performance measure, which is desirable when the primary system subjected to
randomexcitations. The objective of H2 optimization is to optimize the total vibration
energy of the system over all frequencies (Crandall and Mark 1963). For the TDVA
with undamped primary systems, the optimal tuning frequency and damping ratio
were investigated in Crandall and Mark (1963), and then the analytical solutions
were derived in Asami et al. (1991). For damped primary systems, various design
methods and tuning criteria have been proposed, such as those in Anh and Nguyen
(2013), Asami et al. (2002), Ghosh and Basu (2007), Bekdas and Nigdeli (2013), and
the applications of the TDVA in nonlinear and distributed primary systems have been
investigated (Cheung and Wong 2009; Pai and Schulz 2000; Miguelez et al. 2010).
The active DVAs utilizing feedback control actions have also been proposed (Gao
et al. 2013; Si et al. 2014; Zhan et al. 2013).

Vibration absorption is one of the potential applications of inerter (Smith 2002).
In Smith (2002), the problem of designing inerter-based networks to absorb vibration
at a specific frequency was studied. Thereafter, the suppression of vibration over a
broadband frequency by using inerter has been proposed. In Lazar et al. (2014),
an inerter-based configuration (C4 in this chapter) was employed between adjacent
storeys to suppress the vibration of amultistorey building. InHu et al. (2015), optimal
solutions for several inerter-based isolators (including all the configurations except
C5 in this paper) were algebraically derived based on a “uniaxial” vibration isolation
system. In Marian and Giaralis (2014), a new configuration incorporating an inerter
was proposed and applied to a mechanical cascaded (chain-like) systems. In Brzeski
et al. (2014), the dynamics of a tuned mass absorber with an additional viscous
damper and an inerter attached to the pendulum was investigated.

In this chapter, a novel structure for inerter-based DVAs (IDVAs) is proposed by
replacing the damper in the TDVA with some inerter-based mechanical networks,
and both the H∞ and H2 performances of the proposed IDVAs are investigated. It
is demonstrated in this chapter that adding an inerter alone to the TDVA, no matter
it is in parallel connection or in series connection, provides no benefits for the H∞
performance and negligible benefits (less than 0.32% improvement over the TDVA
when the mass ratio less than 1) for the H2 performance. In contrast, by adding
an inerter together with a spring to the TDVA (e.g. C3, C4, C5, and C6 in this
chapter), both H∞ and H2 performances can be significantly improved. Over 20%
improvement compared with the TDVA can be obtained for the H∞ performance,
and the effective frequency band can also be further widened by using inerter. For
the H2 performance, it is analytically demonstrated that the IDVAs proposed in
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this chapter perform surely better than the TDVA and over 10% improvement is
obtained in numerical simulation. Moreover, a minmax framework directly using the
resonance frequencies is proposed for the H∞ optimization, and an algebraic method
to analytically calculate the H2 norm is employed for the H2 optimization. All these
constitute the main contributions of this chapter.

4.2 Preliminary

The traditional spring–damper DVA is shown in Fig. 4.2a, where the mass M is the
primary mass, i.e., the main structure the vibration of which is to be controlled. The
spring–damper–mass (k, c, m) system is the DVA to be designed. The commonly
used method for parameter tuning is the so-called fixed-point method (Den Hartog
1985), which can be summarized as follows.

The frequency response of the spring–damper DVAwith respect to various values
of absorber damping is shown in Fig. 4.1. It is obvious that if the damping is zero,
the spring–damper DVA reduces the spring-only DVA (Frahm 1909); while is the
damping is ∞, the two masses are rigidly connected together then a single-degree-
of-freedom system is obtain. For both cases, the magnitudes are infinity, as shown
in Fig. 4.1. Therefore, there must exist a value of damping where the peak of the fre-
quency response is minimal. This result can also can be explained by from the energy
dissipation point of view. The amplitudes of the masses are reduced by converting
the kinetic energy into heat via the damper (Den Hartog 1985). The work done by the
damping force can be calculated by the force times the relative displacement. For the
case of zero damping, no work is done, and hence the amplitude is infinity; for the
case of infinity damping, the two masses are clamped together such that the relative
displacement is zero, and hence no work is done either. There must exist a damping
where the work done by the damping force is maximal and then the amplitudes are
minimized.

Fig. 4.1 Frequency response of the primarymasswith respect to various values of absorber damping
for traditional spring–damper DVA (Den Hartog 1985)
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Observing Fig. 4.1, it is shown that two invariant points independent of the
damping are depicted. Therefore, the most favorable curve is the one which has
equal heights of the invariant points and a horizontal tangent through these invariant
points (Den Hartog 1985). Then, two steps are generally required for the fixed-point
method: first, a proper choice of the spring stiffness where the heights of the two
invariant points are equal; second, a proper choice of the damping coefficient where
the curve passes through the invariant points horizontally. Since it normally not possi-
ble tofind adamping coefficient such that the curve simultaneously passes through the
two invariant points horizontally, some approximations are usually employed (Den
Hartog 1985).

4.3 Inerter-Based Dynamic Vibration Absorbers

Figure 4.2 shows the comparison between the IDVAs proposed in this chapter and the
TDVA, where the IDVA is obtained by replacing the damper in the TDVAwith some
inerter-based mechanical networks. The entire networks employed in this chapter
are shown in Fig. 4.3. The equations of motion for the whole system in the Laplace
domain are

Ms2x = F + Fd − K x, (4.1)

ms2xa = −Fd , (4.2)

Fd = (k + sY (s)) (xa − x), (4.3)

where Y (s) is the admittance of the inerter-based passive mechanical networks and
Fd is the force of the DVA imposed on the primary mass M .

From (4.2) and (4.3), one obtains,

Fig. 4.2 Dynamic vibration absorbers (DVA): a traditional dynamic vibration absorber (TDVA);
b inerter-based dynamic vibration absorber (IDVA)
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(a) C1 (b) C2 (c) C3

(d) C4 (e) C5 (f) C6

Fig. 4.3 The employed inerter-based networks as Y (s) in Fig. 4.2

Fd = −R(s)x,

where

R(s) = (k + sY (s))ms2

k + ms2 + sY (s)
.

Then, one obtains the displacement transfer function as

H(s) = x

xs
= 1

s2
ω2

n
+ 1

K R(s) + 1
, (4.4)

where xs = F/K and ωn =
√

K
M are the static displacement and natural frequency

of the primary system, respectively.
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The admittance of each network in Fig. 4.3 is shown in Table 4.1, where Yi (s),
i = 1, . . . , 6 corresponds to Ci , i = 1, . . . , 6 in Fig. 4.3, respectively. Substituting
each Yi (s) into (4.4), one can obtain the detailed transfer function for each configura-
tion. To obtain the dimensionless representation of each configuration, the following
dimensionless parameters are defined as

μ = m
M : mass ratio

δ = b
m : inertance-to-mass ratio

ζ = c
2
√

mk
: damping ratio

η = ωb
ωm

: corner frequency ratio
γ = ωm

ωn
: natural frequency ratio

λ = ω
ωn

: forced frequency ratio

⎫
⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎭

(4.5)

where
ωm =

√
k
m : natural frequency of the DVA

ωb =
√

k1
b : corner frequency of the DVA

ωn =
√

K
M : natural frequency of the primary system

⎫
⎪⎪⎪⎬
⎪⎪⎪⎭

(4.6)

Remark 4 In this chapter, the force–current analogy between mechanical and elec-
trical networks is employed, and admittance is defined to be the ratio of force to
velocity, which agrees with the usual electrical terminology (see Smith 2002 for
details). Such a definition is consistent with some books (Shearer and Murphy 1967,
p. 328), but not others which use the force–voltage analogy (Hixson 1988).

Remark 5 Since the natural frequencies would be perturbed by using inerter as
demonstrated in Chen et al. (2014), ωm and ωn are not the real natural frequencies
of the whole system. Neither is ωb the real corner frequency. Here, these notations
are employed just for dimensionless representations.

Replacing s with jω in (4.4), the frequency response functions in a dimensionless
form can be obtained as

Hi ( jλ) = Rni + j Ini

Rmi + j Imi
, i = 1, . . . , 6, (4.7)

where Rni , Ini , Rmi , and Imi , i = 1, . . . , 6 are functions with respect to λ, γ , δ, and
ζ . The detailed representations are given in Appendix.
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Table 4.1 Admittance Y (s) for each configuration in Fig. 4.3

Y1(s) = bs + c Y2(s) = 1
1
bs + 1

c
Y3(s) = 1

s
k1

+ 1
c + 1

bs

Y4(s) = 1
1

k1
s +c

+ 1
bs

Y5(s) = 1
1

k1
s +bs

+ 1
c

Y6(s) = 1
1

bs+c + s
k1

4.4 H∞ Optimization for the IDVAs

4.4.1 Minmax Optimization Problem Formulation

The objective of the H∞ optimization is to minimize the maximum magnitude of
the frequency response |Hi ( jλ)| , i = 1, . . . , 6, which is known as the H∞ norm
of Hi (s) with s = jλ. For the TDVA, the fixed-point method (Den Hartog 1985) is
commonlyused to analytically obtain the optimal parameters (DenHartog1985, Sect.
3.3). Since there always exist more than two fixed points with respect to the damping
ratio for IDVAs, it is difficult to obtain simple and analytical representations for
optimal parameters. Given this fact, in this chapter, a minmax optimization problem
is formulated as follows to directlyminimize themagnitude at resonance frequencies.

For a given mass ratio μ, solving the follow minmax problem

min
δ,γ,η,ζ

(
max

λl

(|Hi ( jλl)|)
)

, i = 1, . . . , 6 (4.8)

subject to δ ≥ 0, γ ≥ 0, η ≥ 0, ζ ≥ 0, and λl , l = 1, . . . , N , are the real and positive
solutions of the following equation:

∂|Hi ( jλ)|2
∂λ2

= 0, (4.9)

where i = 1, . . . , 6 corresponds to the six IDVAs in Fig. 4.3, respectively.
The underlying idea of the minmax problem (4.8) and (4.9) is, instead of using

the fixed points to approximately minimize the H∞ norm as done in the fixed-point
method (Den Hartog 1985), here the resonance frequencies are directly used to
exactly minimize the H∞ norm. This is inspired by the method in Nishihara and
Asami (2002), where the two resonance frequencies were employed to derive the
exact solutions for the TDVA. Note that the solution set of (4.9), that is λl , l =
1, . . . , N , contains the resonance frequencies, anti-resonance frequencies, and other
frequencies where the curves horizontally pass through. Since the largest magnitude
of the frequency response, representing the H∞ norm of the transfer function, only
occurs at resonance frequencies, it is sufficient to minimize maxλl (|Hi ( jλl)|), l =
1, . . . , N , to obtain the optimal H∞ norm of the transfer function Hi (s).

Equation (4.9) can be transformed into a polynomial function with respect to λ2

as follows. From (4.7), |Hi ( jλ)|2 can be written as
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|Hi ( jλ)|2 = n

m
,

where n = R2
ni + I 2ni , m = R2

mi + I 2mi . Since

∂|Hi ( jλ)|2
∂λ2

= n′m − m ′n
m2

,

where n′ = ∂n
∂λ2 and m ′ = ∂m

∂λ2 , (4.9) is equivalent to

n′m − m ′n = 0, (4.10)

which is an equation of λ2 with different orders for different configurations.
Problem (4.8) and (4.10) is a constrained optimization problem, and the equal-

ity constraint (4.10) can be transformed into the objective function by employing
λl = f (δ, γ, η, ζ ). In this chapter, a direct search method is employed to solve the
constrained optimization problem (4.8) and (4.10) by using the Matlab solver pat-
ternsearch with multiple starting points.

4.4.2 Comparison Between the TDVA and IDVAs

For the TDVA, the optimal parameters can be analytically obtained as (Den Hartog
1985):

γopt =
√

1

1 + μ
, ζopt =

√
3μ

8(1 + μ)
,

and the optimal height at the two fixed points are
√

2+μ

μ
.

4.4.2.1 Performance Limitation of C1 and C2

In this subsection, it will be demonstrated that configurations C1 and C2 provide no
improvement for the H∞ performance compared with the TDVA.

For configuration C1, by directly using the fixed-point method in Den Hartog
(1985), the optimal parameters for C1 can be analytically obtained as

γopt =
√
1 + (1 + μ)δ

1 + μ
, ζopt =

√
3μ

8(1 + μ)
,

and the optimal height at the two fixed points is
√

2+μ+2δ(1+μ)

μ
. It is obvious that the

optimal δ is 0, which means that the parallel inerter in configuration C1 provides no
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Fig. 4.4 Comparison between the TDVA and C1 when μ = 0.1 with different δ

Fig. 4.5 Comparison between the minmax optimization method in this chapter and the fixed-point
method when μ = 0.1

improvement in the H∞ optimization. Such an observation is shown in Fig. 4.4 with
μ = 0.1.

The minmax optimization method proposed in this chapter is also applicable for
C1 and a comparison between the method in this chapter and the fixed-point method
is shown in Fig. 4.5. As shown in Fig. 4.5, the results by these two methods highly
coincide with each other and the results are consistent with the analytical solutions
in Nishihara and Asami (2002, Table 2), which demonstrates the effectiveness of the
method in this chapter.

In what follows, it will be shown that for configuration C2, the series-connected
inerter provides no improvement for the H∞ performance as well. To show the
influence of δ, the problem (4.8) is slightly modified as: for a given μ and δ,

min
γ,ζ

(
max

λl

(|H2( jλl)|)
)

,

subject to γ ≥ 0, η ≥ 0, ζ ≥ 0, and λl , l = 1, . . . , N , are the real and positive solu-
tions of (4.10). Figure 4.6 shows the comparison between C2 with different δ and
the TDVA when μ = 0.1, where it is clearly shown that the maximum of |H2( jλ)|
is decreased by increasing δ and if δ is sufficiently large, the frequency response of
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Fig. 4.6 Comparison between the TDVA and C2 when μ = 0.1 with different δ

Fig. 4.7 max(|H2( jλ)|) with different μ and δ

C2 coincides with that of the TDVA. Such an observation is also confirmed by other
choices of μ, as shown in Fig. 4.7. Therefore, it is sufficient to conclude that for a
single series arrangement of an inerter and a damper, the series inerter provides no
improvement for the H∞ performance of the isolation system.

The IDVAs C1 and C2 represent the two ways of adding an inerter to the TDVA,
that is, the parallel connection (C1) and the series connection (C2). Now, it has
been demonstrated that adding a single inerter alone to the TDVA, no matter it is
in parallel connection or in series connection, provides no improvement for the H∞
performance. Therefore, other degrees of freedom should be introduced, which is the
motivation of introducing IDVAs C3, C4, C5, and C6 by adding an inerter together
with a spring to the TDVA.

4.4.2.2 Performance Benefits of C3, C4, C5, and C6

In this subsection, it will be shown that after adding another degree of freedom, that
is the spring k1, the H∞ performance will be significantly improved compared with
the TDVA.

The optimization problem (4.8) with the constraint (4.10) is solved for configu-
rations C3, C4, C5, and C6, separately, where a ninth-order polynomial of equation
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Table 4.2 Maximum magnitude max |H( jλ)| in the H∞ optimization

μ TDVA (Nishi-
hara and
Asami 2002)

C3 C4 C5 C6

0.01 14.1796 11.0330 11.0860 12.9216 11.0351

0.02 10.0530 7.8340 7.9064 9.1498 7.8352

0.05 6.4080 5.0159 5.1194 5.8051 5.0210

0.1 4.5892 3.6175 3.7448 4.1379 3.6208

0.2 3.3254 2.6552 2.7986 2.9877 2.6616

0.5 2.2480 1.8513 1.9941 2.0198 1.8521

1 1.7457 1.4893 1.6127 1.5809 1.4893

2 1.4279 1.2697 1.3629 1.3157 1.2697

5 1.1942 1.1166 1.1702 1.1766 1.1166

10 1.1033 1.0602 1.0918 1.0934 1.0603

(4.10) with respect to λ2 is obtained. The exact solutions of the TDVA in Nishihara
andAsami (2002) are employed for comparison and the detailed parameter values are
shown in Tables 4.2, 4.3, and 4.4. Table 4.2 shows that all the IDVAsC3,C4,C5, and
C6 can improve the H∞ performance compared with the TDVA, where C3 performs
the best and the order of the performance is C3 > C6 > C4 > C5 > T DV A (“>”
means performing better) with an exception for μ >= 1. However, since the mass
ratio is normally quite small and practically less than 0.25 (Inman 2008; Cheung
andWong 2011b), it is sufficient to conclude that C3 > C6 > C4 > C5 > T DV A.
Such a conclusion is also confirmed by Fig. 4.8, where the comparison of the IDVAs
over the TDVA in the range of 0 < μ ≤ 0.25 is shown. As shown in the right figure
of Fig. 4.8, 8 to 26% improvement can be obtained for the IDVAs. The other param-
eters in the range of 0 < μ ≤ 0.25 are depicted in Fig. 4.9. It should be noted that
although the optimal γ and ζ for C3 are almost identical to the TDVA, as shown
in Table 4.3 and Fig. 4.9, over 22% improvement can be provided by C3 compared
with the TDVA. Moreover, the spring k1 is better to be in series connection for the
H∞ performance, given the fact that C3 and C6 are superior to C4 and C5.

The frequency responses of the IDVAs and the TDVA when μ = 0.1 are shown
in Fig. 4.10, where one sees that the magnitudes of the IDVAs around 1 are much
flatter than those of the TDVA, and the effective frequency band is much larger than
that of the TDVA.
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Table 4.3 Optimal natural frequency ratio γ and damping ratio ζ in the H∞ optimization

μ TDVA (Nishi-
hara and
Asami 2002)

C3 C4 C5 C6

(a) Optimal natural frequency ratio γ

0.01 0.9902 0.9900 0.9957 0.9712 0.9842

0.02 0.9802 0.9802 0.9911 0.9493 0.9684

0.05 0.9520 0.9520 0.9766 0.9090 0.9242

0.1 0.9083 0.9083 0.9499 0.8501 0.8642

0.2 0.8319 0.8319 0.8931 0.7538 0.7693

0.5 0.6642 0.6643 0.7514 0.5681 0.5604

1 0.4973 0.4971 0.5882 0.4041 0.3979

2 0.3307 0.3302 0.4100 0.2547 0.2526

5 0.1646 0.1641 0.2145 0.2004 0.1197

10 0.0889 0.0893 0.1198 0.1118 0.0652

(b) Optimal damping ratio ζ

0.01 0.0603 0.0547 0.0025 0.0655 0.0025

0.02 0.0841 0.0769 0.0065 0.0973 0.0073

0.05 0.1276 0.1199 0.0224 0.1477 0.0270

0.1 0.1686 0.1657 0.0505 0.2086 0.0593

0.2 0.2101 0.2244 0.0981 0.2919 0.1180

0.5 0.2402 0.3175 0.2012 0.4294 0.3047

1 0.2235 0.3894 0.2905 0.5359 0.4354

2 0.1749 0.4505 0.3779 0.6325 0.5498

5 0.1002 0.5057 0.4525 0.5163 0.6593

10 0.0581 0.5288 0.4804 0.5313 0.6841

Fig. 4.8 Maximum magnitude comparison between the IDVAs and the TDVA (left figure) and
percentage improvement of the IDVAs with respect to the TDVA (right figure)



4.4 H∞ Optimization for the IDVAs 85

Table 4.4 Optimal inertance-to-mass ratio δ and corner frequency ratio η in the H∞ optimization

μ C3 C4 C5 C6

(a) Optimal inertance-to-mass ratio δ

0.01 0.0238 0.0234 2.2791 0.0228

0.02 0.0473 0.0453 1.8105 0.0448

0.05 0.1156 0.1069 1.6782 0.0989

0.1 0.2208 0.1930 1.5320 0.1538

0.2 0.4082 0.3212 1.1521 0.2126

0.5 0.8256 0.5719 0.6919 0.2426

1 1.2552 0.7785 0.3130 0.2009

2 1.7228 0.9703 0.1423 0.1364

5 2.2540 1.1307 3.9018 0.0627

10 2.4989 1.2089 3.6257 0.0339

(b) Optimal corner frequency ratio η

μ C3 C4 C5 C6

0.01 1.0051 0.9864 1.1242 1.0248

0.02 1.0098 0.9745 1.1982 1.0492

0.05 1.0248 0.9420 1.3341 1.1288

0.1 1.0485 0.9013 1.5181 1.2454

0.2 1.0940 0.8563 1.8754 1.4560

0.5 1.2219 0.7713 2.8856 2.2775

1 1.4061 0.7163 4.9686 3.5386

2 1.7178 0.6629 9.6074 6.0835

5 2.4169 0.6141 0.5009 14.5775

10 3.2632 0.5780 0.4739 27.6261

Fig. 4.9 Optimal parameters in the H∞ optimization: natural frequency ratio γ (up left); damping
ratio ζ (up right); inertance-to-mass ratio δ (bottom left); corner frequency ratio η (bottom right)
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Fig. 4.10 Comparison between the IDVAs and TDVA when μ = 0.1

4.5 H2 Optimization for the IDVAs

4.5.1 H2 Performance Measure and Its Analytical Solution

If the system is subjected to random excitation instead of sinusoidal excitation, the H2

optimization would be more desirable than the H∞ optimization (Asami et al. 1991,
2002; Cheung and Wong 2011a). The performance measure in the H2 optimization
is defined as (Asami et al. 1991, 2002; Cheung and Wong 2011a)

I = E
[
x2

]

2π S0ωn
, (4.11)

where S0 is the uniform power spectrum density function. The mean square value of
x of the object mass m can be calculated as

E
[
x2

] = S0

∫ ∞

−∞
|H( jλ)|2 dω = S0ωn

∫ ∞

−∞
|H( jλ)|2 dλ, (4.12)

where H( jλ) is given in (4.7). Substituting (4.12) into (4.11), one obtains

I = 1

2π

∫ ∞

−∞
|H( jλ)|2 dλ, (4.13)

which is exactly the definition of the H2 norm of the transfer function Ĥ(s) by
replacing jλ in H( jλ) with the Laplace variable s.

Therefore, the H2 performance measure is rewritten as

I =
∥∥∥Ĥ(s)

∥∥∥
2

2
. (4.14)
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The analytical approach provided in Doyle et al. (1992, Chap. 2.6) will be
employed to derive analytical solutions for IDVAs in the H2 optimization, which
is briefly presented as follows.

For a stable transfer function Ĥ(s), its H2 norm can be calculated as (Doyle et
al. 1992, Sect. 2.6)

‖Ĥ(s)‖22 = ‖C(s I − A)−1B‖22 = C LCT ,

where A, B, and C are the minimal state-space realization Ĥ(s) = C(s I − A)−1B
and L is the unique solution of the Lyapunov equation

AL + L AT + B BT = 0. (4.15)

We can write Ĥ(s)

Ĥ(s) = bn−1sn−1 + · · · + b1s + b0
sn + an−1sn−1 + · · · + a1s + a0

in its controllable canonical form below

ẋ = Ax + Bu, y = Cx,

where

A =

⎡
⎢⎢⎢⎢⎢⎣

0 1 0 . . . 0
0 0 1 . . . 0
...

...
...

...
...

0 0 0 . . . 1
−a0 −a1 −a2 . . . −an−1

⎤
⎥⎥⎥⎥⎥⎦

, B =

⎡
⎢⎢⎢⎢⎢⎣

0
0
...

0
1

⎤
⎥⎥⎥⎥⎥⎦

, C = [
b0, b1, b2 . . . bn−1

]
.

4.5.2 Comparison Between the TDVA and IDVAs

For the TDVA, the H2 performance measure can be obtained as

IT DV A = γ (1 + μ)ζ

μ
+ 1 − (μ + 2)γ 2 + (1 + μ)2γ 4

4μγ ζ
, (4.16)

and the optimal γ and ζ are
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γT DV A,opt =
√

μ + 2

2(1 + μ)2
, (4.17)

ζT DV A,opt =
√

(3μ + 4)μ

8(μ + 1)(μ + 2)
. (4.18)

Substituting γT DV A,opt and ζT DV A,opt into (4.16), one obtains the optimal IT DV A,opt

as

IT DV A,opt =
√

3μ + 4

4(μ + 1)μ
. (4.19)

4.5.2.1 Performance Limitation of C1 and C2

The H2 performance measures for C1 and C2 can be obtained as

IC1 = γ (1 + μ)ζ

μ
+ 1

4μγ ζ

(
δ2 − 2((1 + μ)γ 2 − 1)δ + 1 − (μ + 2)γ 2 + (1 + μ)2γ 4

)
(4.20)

= IT DV A + 1

4μγ ζ

(
δ2 + aC1,1δ

)
, (4.21)

IC2 =
(

aC2,2δ
−2 + aC2,1δ

−1 + aC2,0

)
ζ + 1 − (μ + 2)γ 2 + (1 + μ)2γ 4

4μγ ζ
(4.22)

= IT DV A +
(

aC2,2δ
−2 + aC2,1δ

−1
)

ζ, (4.23)

where

aC1,1 = −2((1 + μ)γ 2 − 1),

aC2,2 = γ

μ

(
(1 + μ)3γ 4 − 2(1 + μ)γ 2 + 1

)
,

aC2,1 = γ

μ

(
2 + μ − 2(1 + μ)2γ 2) ,

aC2,0 = γ (1 + μ)

μ
.

The following proposition can be obtained.

Proposition 4.1 For the H2 performance, C1 performs no better than the TDVA.

Proof See Appendix.

Proposition 4.2 For the H2 performance, C2 performs slightly better than the
TDVA, but only at most 0.32% improvement can be achieved when μ ≤ 1.

Proof See Appendix.

Now, we have demonstrated that for the H2 performance, C1 performs no better
than the TDVA andC2 provides negligible improvement over the TDVA. This means
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that adding an inerter alone to the TDVA provides limited improvement for the H2

performance, and therefore, another four IDVAsC3,C4,C5, andC6 are proposed by
adding an inerter togetherwith a spring to the TDVA. It will be shown in the following
sections that in this way, the H2 performance can be significantly improved.

4.5.2.2 Performance Benefits of C3, C4, C5, and C6

In this subsection, it will be analytically demonstrated that for the H2 performance,
IDVAsC3,C4,C5, andC6 perform surely better than theTDVA, and an optimization
problem will be formulated to find the optimal parameters.

By using the method shown in Sect. 4.5.1, the analytical representations of the
H2 performance measures for C3, C4, C5, and C6 are calculated and the detailed
equations are shown in Appendix. Denote the optimal H2 performances of C3, C4,
C5, andC6 as IC3,opt , IC4,opt , IC5,opt , IC6,opt , respectively. The following proposition
can be obtained.

Proposition 4.3 For the H2 performance, IDVAs C3 and C5 always perform better
than the TDVA, that is, the following inequalities hold:

IC3,opt < IT DV A,opt , (4.24)

IC5,opt < IT DV A,opt , (4.25)

and if μ ≤ 1, IDVAs C4 and C6 always perform better than the TDVA, that is, the
following inequalities hold:

IC4,opt < IT DV A,opt , (4.26)

IC6,opt < IT DV A,opt , (4.27)

where IT DV A,opt is the optimal H2 performance for the TDVA given by (4.19).

Proof See Appendix.

Remark 6 The condition μ ≤ 1 for C4 and C6 in Proposition 4.3 is only a sufficient
condition, which means that for the case μ > 1, it is also possible that the inequalities
(4.26) and (4.27) hold. However, such a condition introduces no conservativeness for
DVA applications, as the mass ratio μ is normally less than 1 in practice (typically
less than 0.25) (Inman 2008; Cheung and Wong 2011b).

Since the IDVAs C3, C4, C5, and C6 can always reduce to the TDVA by setting the
spring stiffness k1 (or η) and inertance b (or δ) to 0 or ∞, the conclusions ICi,opt ≤
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IT DV A,opt , i = 3, 4, 5, 6 always hold. However, Proposition 4.3 demonstrates the
existence of finite η and δ such that the IDVAs C3, C4, C5, and C6 are surely better
than the TDVA.

To determine the optimal values of δ, γ , η, and ζ , the following optimization
problem should be solved.

min
δ,γ,η,ζ

ICi , i = 3, 4, 5, 6, (4.28)

subject to δ > 0, γ > 0, η > 0, and ζ > 0.
Analytical solutions of C3: Problem (4.28) can be analytically solved for C3,

where the optimal parameters for C3 are obtained as follows:

γC3,opt =
√√

17μ2 + 32μ + 16 − μ

4(1 + μ)2
, (4.29)

ηC3,opt =
√√√√ 1 − 2(1 + μ)γ 2

C3,opt + (1 + μ)γ 4
C3,opt

(1 − (2 + 3μ)γ 2
C3,opt + (1 + μ)2γC3,opt64)γ 2

C3,opt

, (4.30)

δC3,opt = −2âC3,2

âC3,1
, (4.31)

ζC3,opt =
√√√√ 1 − (μ + 2)γ 2

C3,opt + (1 + μ)2γ 4
C3,opt

4μγC3,opt (âC3,2δ
−2
C3,opt + âC3,1δ

−1
C3,opt + âC3,0)

, (4.32)

where âC3,2, âC3,1, and âC3,0 are obtained by setting γ = γC3,opt and η = ηC3,opt for
aC3,2, aC3,1, and aC3,0, respectively. For the representations of aC3,2, aC3,1, and aC3,0,
see Appendix.

The analytical solutions δ, γ , and η are derived by successively setting the first
derivatives of IC3 with respect to δ, η, and γ as 0, and then checking the sign of the
second derivatives at stationary points. The optimal ζC3,opt is derived due to the fact
that both parts on the right-hand side of (4.40) of IC3 are positive.

Solutions of C4, C5, and C6: The analytical solutions of C4, C5, and C6 cannot
be obtained due to the high order equations (more than fourth order) involved in the
derivation. However, the optimal solutions of η and ζ can be analytically represented
with respect to δ and γ as follows:

ηC4,opt =
√−(gC4,1δ + fC4,1)(2 fC4,2 + 2gC4,2δ + 2lC4,2δ2)

2( fC4,2 + gC4,2δ + lC4,2δ2)
, (4.33)

ζC4,opt =
√

lC4,2η4δ2 + lC4,1δ + lC4,0

aC4,2δ−2 + aC4,1δ−1 + aC4,0
, (4.34)

δC5,opt = −2aC5,2

aC5,1
, (4.35)
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Fig. 4.11 Comparison
between IDVAs and the
TDVA. a the H2
performance; b Percentage
improvement of IDVAs with
respect to the TDVA

(a)

(b)

ζC5,opt =
√

1 − (μ + 2)γ 2 + (1 + μ)2γ 4

4μγ (aC5,2δ
−2
C5,opt + aC5,1δ

−1
C5,opt + aC5,0)

, (4.36)

ζC6,opt =
√

lC6,2η4δ2 + lC6,1δ + lC6,0

aC6,2δ−2 + aC6,1δ−1 + aC6,0
. (4.37)

Correspondingly substituting the optimal representations above into ICi , i =
4, 5, 6, the problem (4.28) for Ci , i = 4, 5, 6 reduces to a nonlinear programming
problemwith two unknown variables δ and γ forC4 andC5, andwith three unknown
variables δ, γ and η forC6,which can be efficiently solved by using theMatlab solver
fmincon and GlobalSearch in Global Optimization Toolbox.

Figures 4.11 and 4.12 depict the comparison between IDVAsC3,C4,C5,C6, and
the TDVAwhen 0 ≤ μ ≤ 1. As shown in Fig. 4.11b, C3 performs the best, and more
than 10% improvement with respect to the TDVA can be obtained by C3, C4 and
C6. Similar to the H∞ performance, the spring k1 is better to be in series connection
for the H2 performance, given the fact that C3 and C6 are superior to C4 and C5.
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Fig. 4.12 Optimal
parameters: a optimal γ ; b
optimal ζ ; c optimal δ; d
optimal η

(a)

(b)

(c)

(d)

4.6 Conclusions

In this chapter, the performance of inerter-based dynamic vibration absorbers
(IDVAs) has been investigated, where the proposed IDVAs were a parallel arrange-
ment of a spring and an inerter-based mechanical network. Both H∞ and H2 perfor-
manceswere considered.The H∞ performanceoptimization problemwas formulated
in a minmax framework and solved by using a direct search optimization method;
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while in the H2 optimization, an analytical method was employed to calculate the
H2 performance measures. Comparisons between the proposed IDVAs and the tra-
ditional dynamic vibration absorber (TDVA) were conducted. The results showed
that adding one inerter alone to the TDVA, no matter it is in parallel connection (C1)
or in series connection (C2), provided no improvement for the H∞ performance,
and negligible improvement (less than 0.32% improvement over the TDVA when
the mass ratio less than 1) for the H2 performance. This demonstrated the necessity
of introducing another degree of freedom together with the inerter to the TDVA, and
then the IDVAs C3, C4, C5, and C6 were proposed by adding an inerter together
with a spring to the TDVA. Significant improvement was obtained by IDVAs C3,
C4, C5, and C6. For the H∞ performance, numerical simulations showed that over
20% improvement was achieved compared with the TDVA and the effective fre-
quency band can be enlarged by using inerter; while for the H2 performance, it was
analytically demonstrated that IDVAs C3, C4, C5, and C6 were surely better than
the TDVA by carefully choosing the parameters, and over 10% improvement was
obtained in the numerical simulation.

Appendix

Detailed representations of Rni , Ini , Rmi , and Imi , i = 1, . . . , 6.

Rn1 = λ2 − γ 2 + δλ2,

In1 = −2λγ ζ,

Rm1 = (−μδ − δ − 1)λ4 + (γ 2 + μγ 2 + 1 + δ)λ2 − γ 2,

Im1 = 2λγ ζ(λ2 − 1 + μλ2),

Rn2 = δλ(γ 2 − λ2),

In2 = −2γ ζ(γ 2 − (1 + δ)λ2),

Rm2 = δλ(λ4 − (γ 2 + μγ 2 + 1)λ2 + γ 2),

Im2 = −2γ ζ((1 + δ + μδ)λ4 − (γ 2 + μγ 2 + 1 + δ)λ2 + γ 2),

Rn3 = δη2γ λ(γ 2 − λ2),

In3 = −2ζ(γ 4η2 − (1 + δη2 + η2)λ2γ 2 + λ4),

Rm3 = δη2γ λ(λ4 − (1 + γ 2 + μγ 2)λ2 + γ 2),

Im3 = 2ζ(λ6 − (1 + μ + η2 + δη2 + μδη2)λ4 + ((μ + 1)η2γ 2 + 1 + η2 +
δη2)γ 2λ2 − γ 4η2,

Rn4 = −δ(λ4 − (1 + η2 + δη2)γ 2λ2 + γ 4η2),

In4 = −2γ λζ(γ 2 − λ2 − δλ2),

Rm4 = δ(λ6 − (1 + (1 + μ + η2 + δη2 + δμη2)γ 2)λ4 + ((μ + 1)η2γ 2 + (1 + η2 +
δη2))γ 2η2 − γ 4η2),

Im4 = −2γ λζ((1 + δ + μδ)λ4 − (1 + δ + γ 2 + μγ 2)λ2 + γ 2),



94 4 Inerter-Based Dynamic Vibration Absorption System

Rn5 = δ(γ 2 − λ2)(λ2 − η2γ 2),

In5 = −2γ λζ((1 + δη2)γ 2 − (1 + δ)λ2),

Rm5 = δ(λ2 − η2γ 2)(λ4 − (1 + γ 2 + μγ 2)λ2 + γ 2),

Im5 = −2γ λζ((1 + δ + μδ)λ4 − ((1 + μ + δη2 + μδη2)γ 2 + 1 + δ)λ2 +
(1 + δη2)γ 2),

Rn6 = −δ(λ4 − (1 + η2 + δη2)γ 2λ2 + γ 4η2),

In6 = 2λγ ζ(λ2 − (1 + δη2)γ 2),

Rm6 = δ(λ6 − (1 + (1 + μ + η2 + δη2 + μδη2))λ4 + ((μ + 1)η2γ 2 +
(1 + η2 + δη2))γ 2λ2 − γ 4η2),

Im6 = −2γ λζ(λ4 − (1 + (1 + μ + δη2 + μδη2)γ 2)λ2 + (1 + δη2)γ 2).

Proof of Proposition 4.1

From (4.21), if C1 performs better than the TDVA, that is IC1 < IT DV A, the second
term of (4.21) must be less than 0, which means

δ2 + aC1,1δ < 0.

Since δ ≥ 0, if γ 2 < 1
1+μ

, the optimal δ denoted as δopt is 0. If γ 2 ≥ 1
1+μ

, the optimal

δopt = (1 + μ)γ 2 − 1, and it can be checked that the optimal γ is 1
1+μ

by substituting
δopt into (4.21), which means that the optimal δ is also 0.

Proof of Proposition 4.2

First, we prove that C2 performs better than the TDVA, that is IC2,opt < IT DV A,opt ,
where IC2,opt denotes the optimal IC2. From (4.23), if C2 performs better than the
TDVA, the following inequality must hold:

aC2,2δ
−2 + aC2,1δ

−1 < 0,

which requires that

aC2,1 < 0 or γ 2 >
2 + μ

2(1 + μ)2
,

as aC2,2 ≥ 0 for any γ ≥ 0. If γ 2 >
2+μ

2(1+μ)2
, the optimal δ−1 is

δ−1
opt = − aC2,1

2aC2,2
,

and IC2 can be represented as

IC2 =
√

(1 − (2 + μ)γ 2 + (1 + μ)2γ 4)(4(1 + μ)2γ 2 − μ)

4μ(1 − 2(1 + μ)γ 2 + (1 + μ)3γ 4)
. (4.38)



4.6 Conclusions 95

Using IT DV A,opt given in (4.16), one obtains

I 2C2 − I 2T DV A,opt = ((μ + 1)γ 2 − 1)(2(μ + 1)2γ 2 − 2 − μ)2

4μ(1 − 2(μ + 1)γ 2 + (μ + 1)3γ 4)(μ + 1)
,

Clearly, if γ 2 < 1
1+μ

, then IC2 < IT DV A,opt . Since 1
1+μ

>
2+μ

2(1+μ)2
, one can always

find a γ such that IC2 < IT DV A,opt . Since IC2,opt ≤ IC2, one obtains IC2,opt <

IT DV A,opt .
Second, we graphically prove that only at most 0.32% improvement can be

obtained by C2 when μ ≤ 1. The optimal γ can be obtained by solving ∂ I 2C2
∂γ 2 = 0,

which is equivalent to

(2α2γ 2 − 1 − α)(2α5γ 6 + (α4 − 7α3)γ 4 + (8α2 − 2α3)γ 2 − 3α + 1) = 0,
(4.39)

where α = μ + 1. It is easy to check that (4.39) has two real positive solutions
denoted as γ1 and γ2, γ1 < γ2, where

γ1 =
√
1 + α

2α2
,

and γ1 < γ2 <
√
2γ1. Also, γ 2

2 is the unique real solution of equation

2α5γ 6 + (α4 − 7α3)γ 4 + (8α2 − 2α3)γ 2 − 3α + 1 = 0,

and the optimal γ is γ2.
For 0 ≤ μ ≤ 1, a graphical comparison with the TDVA is shown in Fig. 4.13,

where it is clearly shown that at most 0.32% improvement is obtained for C2.

Analytical representations of the H2 performance measures for C3, C4, C5, and
C6

Denote IC3, IC4, IC5, and IC6 as the H2 performance measures for C3, C4, C5, and
C6, respectively. The detailed representations are obtained as follows:

IC3 =
(

aC3,2δ
−2 + aC3,1δ

−1 + aC3,0

)
ζ + 1 − (μ + 2)γ 2 + (1 + μ)2γ 4

4γμζ

= IT DV A +
(

aC3,2δ
−2 + aC3,1δ

−1
)

ζ, (4.40)

IC4 =
(

aC4,2δ
−2 + aC4,1δ

−1 + aC4,0

)
ζ +

(
lC4,2η

4δ2 + lC4,1δ + lC4,0

) 1

ζ

= IT DV A +
(

aC4,2δ
−2 + aC4,1δ

−1
)

ζ +
(

lC4,2η
4δ2 + lC4,1δ + fC4,2η

4 + fC4,1η
2
) 1

ζ
,

IC5 =
(

aC5,2δ
−2 + aC5,1δ

−1 + aC5,0

)
ζ + 1

4γμζ

(
1 − (μ + 2)γ 2 + (1 + μ)2γ 4

)

= IT DV A +
(

aC5,2δ
−2 + aC5,1δ

−1
)

ζ, (4.41)
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Fig. 4.13 Comparison
between C2 and TDVA
when 0 ≤ μ ≤ 1. a the H2
performance; b Percentage
improvement of C2 with
respect to TDVA

(a)

(b)

IC6 =
(

aC6,2δ
−2η−4 + aC6,1δ

−1η−2 + aC6,0

)
ζ +

(
lC6,2δ

2 + lC6,1δ + lC6,0

) 1

ζ

= IT DV A +
(

aC6,2δ
−2η−4 + aC6,1δ

−1η−2
)

ζ +
(

lC6,2δ
2 + lC6,1δ + fC6,2η

−4 + fC6,1η
−2

) 1

ζ
,

where

aC3,2 = dC3,2η
−4 + dC3,1η

−2 + dC3,0,

aC3,1 = gC3,1η
−2 + gC3,0, aC3,0 = γ (1 + μ)

μ
,

dC3,2 = 1

γ 3μ

(
1 − 2γ 2 + (1 + μ)γ 4

)
, dC3,1 = − 2

γμ

(
1 − (2 + μ)γ 2 + (1 + μ)2γ 4

)
,

dC3,0 = γ

μ

(
1 − 2(1 + μ)γ 2 + (1 + μ)3γ 4

)
, gC3,1 = − 2

μγ

(
1 − (1 + μ)γ 2

)
,

gC3,0 = −γ

μ

(
2(1 + μ)2γ 2 − 2 − μ

)
,

aC4,2 = γ

μ

(
1 − (2 + μ)γ 2 + (1 + μ)3γ 4

)
,

aC4,1 = γ

μ

(
2 + μ − 2(1 + μ)2γ 2

)
, aC4,0 = γ (1 + μ)

μ
,

lC4,2 = γ 3(1 + μ)2

4μ
, lC4,1 = gC4,2η

4 + gC4,1η
2, lC4,0 = fC4,2η

4 + fC4,1η
2 + fC4,0,

gC4,2 = γ 3

2μ

(
1 + μ − (1 + μ)3γ 2

)
, gC4,1 = γ

4μ

(
2(1 + μ)2γ 2 − μ − 2

)
,
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fC4,2 = γ 3

4μ

(
(1 + μ)4γ 4 + (μ − 2)(μ + 1)2γ 2 + 1

)
,

fC4,1 = − γ

2μ

(
(1 + μ)3γ 4 − 2(1 + μ)γ 2 + 1

)
,

fC4,0 = 1

4μγ

(
1 − (μ + 2)γ 2 + (1 + μ)2γ 4

)
,

aC5,2 = gC5,2η
4 + gC5,1η

2 + gC5,0

μ(1 + fC5,1η
2 + fC5,2η

4)2
,

aC5,1 = lC5,3η
6 + lC5,2η

4 + lC5,1η
2 + lC5,0

μ(1 + fC5,1η
2 + fC5,2η

4)2
, aC5,0 = γ (1 + μ)

μ
,

gC5,2 = γ
(
(1 + μ)γ 4 − 2γ 2 + 1

)
, gC5,1 = −2γ

(
(1 + μ)2γ 4 − (μ + 2)γ 2 + 1

)
,

gC5,0 = γ
(
(1 + μ)3γ 4 − 2(1 + μ)γ 2 + 1

)
, fC5,1 = −(1 + γ 2(1 + μ)), fC5,2 = γ 2,

lC5,3 = 2γ 3((1 + μ)3 − 1), lC5,2 = −γ
(
4(1 + μ)2γ 4 − 2γ 2 − μ − 2

)
,

lC5,1 = 2γ
(
(1 + μ)3γ 4 + (1 + μ)2γ 2 − μ − 2

)
, lC5,0 = γ

(
μ + 2 − 2(1 + μ)2γ 2

)
,

aC6,2 = 1 − 2γ 2 + (1 + μ)γ 4

γ 3μ
, aC6,1 = 2((1 + μ)γ 2 − 1)

γμ
, aC6,0 = γ (1 + μ)

μ
,

lC6,2 = 1

4γμ
, lC6,1 = gC6,1η

−2 + gC6,0,

lC6,0 = fC6,2η
−4 + fC6,1η

−2 + fC6,0,

gC6,1 = μ − 2 + 2γ 2

4γ 3μ
, gC6,0 = 1 − (1 + μ)γ 2

2γμ
,

fC6,2 = 1 + (μ − 2)γ 2 + γ 4

4μγ 5
, fC6,1 = −1 − 2γ 2 + (1 + μ)γ 4

2μγ 3 ,

fC6,0 = 1 − (2 + μ)γ 2 + (1 + μ)2γ 4

4γμ
.

Proof of Proposition 4.3

For C3, substituting γT DV A,opt and ζT DV A,opt into (4.40), one obtains

I ′
C3 = IT DV A,opt + (

a′
C3,2δ

−2 + a′
C3,1δ

−1
)
ζT DV A,opt ,

where a′
C3,2 and a′

C3,1 are obtained by setting γ = γT DV A,opt for aC3,2 and aC3,1,
respectively. It can be checked that a′

C3,2 > 0 and

a′
C3,1 = −

√
2

2 + μ
η−2 < 0,
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which means that there exist finite δ and η such that I ′
C3 < IT DV A,opt . Since IC3,opt ≤

I ′
C3, then one obtains IC3,opt < IT DV A,opt .

For C4, denote

I ′
C4 = 2

√(
a′

C4,2δ
−2 + a′

C4,1δ
−1 + a′

C4,0

) (
l ′C4,2η

4δ2 + l ′C4,1δ + l ′C4,0

)
,

where a′
C4,2, a

′
C4,1, a

′
C4,0, l

′
C4,2, l

′
C4,2, and l ′C4,0 are obtained by setting γ = γT DV A,opt .

Expanding I ′
C4, one obtains

I ′
C4 = 2

√
a′

C4,0 f ′
C4,0 + fC4,η, (4.42)

where

fC4,η = (
l ′C4,2δ

2 + g′
C4,2δ + f ′

C4,2

)
(a′

C4,2δ
−2 +

a′
C4,0)η

4 + f ′
C4,1(a

′
C4,2δ

−2 + a′
C4,0)η

2 + f ′
C4,0a′

C4,2δ
−2.

Note that
IT DV A,opt = 2

√
a′

C4,0 f ′
C4,0.

Then, we will prove that there exist finite δ and η so that fC4,η < 0. It can be
checked that l ′C4,2δ

2 + g′
C4,2δ + f ′

C4,2 > 0,a′
C4,2δ

−2 + a′
C4,0 > 0, and f ′

C4,1(a
′
C4,2δ

−2

+ a′
C4,0) < 0. The discriminant of fC4,η = 0 is

Δ = (a′
C4,2δ

2 + a′
C4,0)

(
( f ′

C4,1
2 − 4 f ′

C4,2 f ′
C4,0)a

′
C4,2δ

−2 − 4g′
C4,2 f ′

C4,0a′
C4,2δ

−1+

f ′
C4,1

2a′
C4,0 − 4l ′C4,2 f ′

C4,0a′
C4,2

)
.

It can be checked that if μ < 8
√
2−4
7 ≈ 1.045, there exists a finite δ such that the

second term of Δ is positive, which means that if μ < 1.045, there exists a finite η

such that fC4,η < 0. For example, if choosing

δ−1 = 2g′
C4,2 f ′

C4,0

f ′
C4,1

2 − 4 f ′
C4,2 f ′

C4,0

= (3μ + 4)(1 + μ)

4μ(μ + 2)
, (4.43)

and

η =
√

− f ′
C4,1

l ′C4,2δ
2 + g′

C4,2δ + f ′
C4,2

=
√

2(3μ + 4)2(1 + μ)(4 + μ)

(μ + 2)(43μ3 + 204μ2 + 272μ + 64)
,

(4.44)
one obtains
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fC4,η = 1

128

(7μ2 + 8μ − 16)(μ + 4)(3μ + 4)2

μ(43μ3 + 204μ2 + 272μ + 64)(1 + μ)(μ + 2)
< 0.

From (4.42) and for the δ and η given by (4.43) and (4.44), one obtains that if
μ < 1.045,

I ′
C4 < IT DV A,opt .

Since IC4,opt ≤ I ′
C4, one obtains that if μ < 1.045, IC4,opt < IT DV A,opt .

For C5, setting γ = γT DV A,opt and ζ = ζT DV A,opt in (4.41), one obtains

I ′
C5 = IT DV A,opt + (

a′
C5,2δ

−2 + a′
C5,1δ

−1
)
ζT DV A,opt . (4.45)

Then, we will show that there exist finite δ and η such that a′
C5,2δ

−2 + a′
C5,1δ

−1 < 0.
It can be checked that a′

C5,2 > 0. Therefore, we only need to prove that there exists
a finite η such that a′

C5,1 < 0. Since

a′
C5,1 = l ′C5,3η

6 + l ′C5,2η
4 + l ′C5,1η

2

μ(1 + f ′
C5,1η

2 + f ′
C5,2η

4)2
,

it is easy to check that a′
C5,1 < 0 if η2 > (μ + 1)

(
μ + 1 + √

μ2 + 2μ
)
or η2 <

(μ + 1)
(
μ + 1 − √

μ2 + 2μ
)
. For example, if choosing

η =
√
2(1 + μ)2, (4.46)

δ−1 = 2(2 + μ)(μ + 1)2

(1 + 8μ + 4μ2)(4 + 9μ + 4μ2)
, (4.47)

one obtains

fδ = −
√
2(2 + μ)5/2(μ + 1)2

(1 + 8μ + 4μ2)(4 + 9μ + 4μ2)(1 + 3μ + 5μ2 + 2μ3)2
< 0,

which means that for the η and δ given by (4.46) and (4.47), I ′
C5 < IT DV A,opt . Since

IC5,opt ≤ I ′
C5, one obtains IC5,opt < IT DV A,opt .

For C6, setting γ = γT DV A,opt and ζ = ζT DV A,opt , one obtains

I ′
C6 = IT DV A,opt + fC6,η,

where fC6,η = d2η−4 + d1η−2 + d0, with

d2 = a′
C6,2ζT DV A,optδ

−2 + f ′
C6,2/ζT DV A,opt ,

d1 = a′
C6,1ζT DV A,optδ

−1 + (g′
C6,1δ + f ′

C6,1)/ζT DV A,opt ,

d0 = (l ′C6,2δ
2 + g′

C6,0δ)/ζT DV A,opt .
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It can be checked that d2 > 0 for any δ and if μ <
√
2, d1 < 0. Thus, it remains

to prove that there exists a finite η > 0 such that fC6,η < 0. This can be done by
checking the discriminant of fC6,η, which is

Δ = d2
1 − 4d2d0

= 16(μ − 4)(μ + 1)8δ4 − 16μ(4μ3 + 11μ2 + 5μ − 4)(μ + 1)4δ3 +
8μ2(5μ2 + 21μ + 20)(μ + 1)3δ2 + μ3(3μ + 4)2.

It is easy to see that there always exists a finite δ such that Δ > 0. For example, if
choosing

δ = μ(4μ3 + 11μ2 + 5μ − 4 − √
6μ6 + 56μ5 + 253μ4 + 606μ3 + 799μ2 + 568μ + 176)

2(μ − 4)(μ + 1)4
,

which is larger than 0 if μ < 4, one obtains

Δ = μ3(3μ + 4)2 > 0.

Therefore, we can always find a η−2 between the two real positive solutions of
fC6,η = 0 such that fC6,η < 0. A possible choice is η−2 = − d1

2d2
. This means that if

carefully choosing δ and η, the inequality I ′
C6 < II DV A,opt holds. Since IC6,opt ≤ I ′

C6,
one obtains IC6,opt < IT DV A,opt .
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