
Chapter 2
Analysis for Inerter-Based Vibration
System

Abstract This chapter investigates the influence of inerter on the natural frequen-
cies of vibration systems. First of all, the natural frequencies of a single-degree-of-
freedom (SDOF) system and a two-degree-of-freedom (TDOF) system are derived
algebraically and the fact that inerter can reduce the natural frequencies of these
systems is demonstrated. Then, to further investigate the influence of inerter in a
general vibration system, a multi-degree-of-freedom system (MDOF) is considered.
Sensitivity analysis is performed on the natural frequencies and mode shapes to
demonstrate that the natural frequencies of theMDOF system can always be reduced
by increasing the inertance of any inerter. The condition for a general MDOF sys-
tem of which the natural frequencies can be reduced by an inerter is also derived.
Finally, the influence of inerter position on the natural frequencies is investigated
and the efficiency of inerter in reducing the largest natural frequencies is verified by
simulating a six-degree-of-freedom system, where a reduction of more than 47% is
obtained by employing only five inerters.

Keywords Natural frequency · Single-degree-of-freedom system ·
Two-degree-of-freedom system · Multi-degree-of-freedom system ·
Sensitivity analysis

2.1 Introduction

Inerter has been applied in variousmechanical systems. However, among these appli-
cations, inerter always appears in some mechanical networks which possess more
complex structures than the conventional networks consisting of only springs and
dampers. The networks with inerters will surely be better than or at least equal to the
conventional networks consisting of only springs and dampers as they can always
reduce to the conventional ones when the values of element coefficients (spring stiff-
ness, damping coefficient, or inertance) become zero or infinity (Chen et al. 2012). It
is true that inerter can provide extra flexibility in structure, but the basic functionality
of inerter in vibration systems has not yet been clearly understood and demonstrated.

It is well known that in a vibration system, spring can store energy, provide static
support, and determine the natural frequencies, while viscous damper can dissipate
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energy, limit the amplitude of oscillation at resonance, and slightly decrease the
natural frequencies if the damping is small (Tomson1993).As shown inSmith (2002),
inerter can store energy. However, for the other inherent properties of vibration
systems such as natural frequencies, the influence of inerter has not been investigated
before.

The objective of this chapter is to study the fundamental influence of inerter on the
natural frequencies of vibration systems. The fact that inerter can reduce the natural
frequencies of vibration systems is theoretically demonstrated in this chapter and the
question that how to efficiently use inerter to reduce the natural frequencies is also
addressed.

2.2 Preliminary

It is well known that all systems containing mass and elasticity are capable of free
vibration, that is, the vibration occurring without external excitation (Tomson 1993).
Natural frequency of vibration is of primary interest for such systems. For a single-
degree-of-freedom spring–mass system shown in Fig. 2.1, the motion of equation
can be written as

mẍ + cẋ + kx = 0.

In another form,
ẍ + 2ζωn ẋ + ω2

nx = 0, (2.1)

where

ωn =
√

k

m
, ζ = c

2
√
mk

.

Here, ωn is called natural frequency and ζ is the mode damping coefficient.

Fig. 2.1 A single-degree-of-freedom spring–mass system
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Fig. 2.2 Model of a
vibration-based self-powered
system

Since the influence of damping on natural frequencies is well known, only the
undamped conservative systems are considered for simplicity. For the undamped
system, i.e., ζ = 0, the solution of (2.1) is

x(t) = ẋ(0)

ωn
sinωnt + x(0) cosωnt,

where ẋ(0) and x(0) are the initial velocity and displacement. This implies that the
system harmonically vibrates at the natural frequency.

For forced vibration cases, when the frequency of the excitation is equal to one
of the natural frequencies, there may occur a phenomenon known as resonance,
which may lead to excessive deflections and failure (Tse et al. 1979). In practice, it
is always desirable to adjust the natural frequencies of a vibration system to avoid or
induce resonance where appropriate. For example, for vibration-based self-powered
systems (Beeby et al. 2006) (as shown in Fig. 2.2), the natural frequency of an
embedded spring–mass system should be consistent with the environment to obtain
maximum vibration power by utilizing resonance, while for the engine mounting
systems (Yuet al. 2001), the natural frequency should be below the engine disturbance
frequency of the engine idle speed to avoid excitation of mounting system resonance.

The traditional methods to reduce the natural frequencies of an elastic system are
either decreasing the elastic stiffness or increasing the mass of the vibration system.
However, this may be problematic; for example, the stiffness values of an engine
mount that are too low will lead to large static and quasi-static engine displacements
and damage of some engine components (Yu et al. 2001). It will be shown below
that other than these two methods, a parallel-connected inerter can also effectively
reduce natural frequencies.
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2.3 Single-Degree-of-Freedom System

A SDOF system with an inerter is shown in Fig. 2.3. The equation of motion for free
vibration of this system is

(m + b)ẍ + kx = 0. (2.2)

Transformation of the above equation into the standard form for vibration analysis
yields

ẍ + ω2
nx = 0,

where ωn =
√

k
m+b is called the natural frequency of the undamped system.

Proposition 1 The natural frequencyωn of an SDOF system is a decreasing function
of the inertance b. Thus, inerter can reduce the natural frequency of an SDOF system.

Remark 2.1 Note that in Smith (2002), one application of inerter is to simulate the
mass by connecting a terminal of an inerter to the mechanical ground. Observing
(2.2), one concludes that the inerter with one terminal connected to ground can
effectively enlarge the mass which is connected at the other terminal.

2.4 Two-Degree-of-Freedom System

To investigate the general influence of inerter on the natural frequencies of a vibration
system, a TDOF system, shown in Fig. 2.4, is investigated in this section.

The equations of motion for free vibration of this system are

m1 ẍ1 + k1(x1 − x2) + b1(ẍ1 − ẍ2) = 0,

m2 ẍ2 − k1(x1 − x2) − b1(ẍ1 − ẍ2) + k2x2 + b2 ẍ2 = 0,

Fig. 2.3 SDOF system with an inerter
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Fig. 2.4 TDOF system with
two inerters

or, in a compact form,
Mẍ + Kx = 0,

where M is called the inertia matrix and K is the stiffness matrix (Tse et al. 1979),
and

M =
[
m1 + b1 −b1

−b1 m2 + b1 + b2

]
, K =

[
k1 −k1

−k1 k1 + k2

]
.

Note that the inertances b1 and b2 only exist in the inertia matrix M, but the
positions of b1 and b2 are different as b1 exists in all the elements of M while b2
only appears in the last element of M. Since one terminal of b2 is connected to the
ground, b2 effectively enlarges the mass m2, which is consistent with the conclusion
made in Remark 2.1.

The two natural frequencies can be obtained by solving the characteristic equa-
tion (Tse et al. 1979)

Δ(ω) = ∣∣K − Mω2
∣∣

= (m1m2 + m1(b1 + b2) + m2b1 + b1b2)ω
4 − ((m1 + m2)k1 + m1k2 +

k1b2 + b1k2)ω
2 + k1k2 = 0, (2.3)

which yields

ωn1 =
√
k1k2( f1 + f2 −√( f1 − f2)2 + 4d0)

2( f1 f2 − d0)
, (2.4)

ωn2 =
√
k1k2( f1 + f2 +√( f1 − f2)2 + 4d0)

2( f1 f2 − d0)
, (2.5)

where f1 = (m1 + m2 + b2)k1, f2 = (m1 + b1)k2, and d0 = k1k2m2
1.

Proposition 2 For a TDOF system with two inerters, both natural frequencies ωn1

and ωn2 are decreasing functions of the inertances b1 and b2.
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Proof The monotonicity of ωn1 and ωn2 can be proven by checking the signs of the
first-order derivatives of ω2

n1 and ω2
n2 in terms of f1 and f2, respectively.

∂ω2
n1

∂ f1
= − k1k2(q1 − q2)

2(d0 − f1 f2)2
√

( f1 − f2)2 + 4d0
,

∂ω2
n2

∂ f1
= − k1k2(q1 + q2)

2(d0 − f1 f2)2
√

( f1 − f2)2 + 4d0
,

where q1 = (d0 + f 22 )
√

( f1 − f2)2 + 4d0 and q2 = f1(d0 − f 22 ) + 3 f2d0 + f 32 .
Note that q1 > 0 and

q2
1 − q2

2 = 4d0 f
2
2 ( f1 − d0/ f2)

2,

so one obtains |q1| > |q2|, which implies ∂ω2
n1

∂ f1
< 0 and ∂ω2

n2
∂ f1

< 0, that is, both ωn1

and ωn2 are decreasing functions of inertance b2.
Similarly,

∂ω2
n1

∂ f2
= − k1k2(q3 − q4)

2(d0 − f1 f2)2
√

( f1 − f2)2 + 4d0
,

∂ω2
n2

∂ f2
= − k1k2(q3 + q4)

2(d0 − f1 f2)2
√

( f1 − f2)2 + 4d0
,

where q3 = (d0 + f 21 )
√

( f1 − f2)2 + 4d0 and q4 = f2(d0 − f 21 ) + 3 f1d0 + f 31 .
Since q3 > 0 and q2

3 − q2
4 = 4d0 f 21 ( f2 − d0/ f1)2 > 0, one has |q3| > |q4|,

∂ω2
n1

∂ f2
< 0, and ∂ω2

n2
∂ f2

< 0, that is, both ωn1 and ωn2 are decreasing functions of
inertance b1. �

2.5 Multi-degree-of-Freedom System

From the previous two sections, one sees that inerter can reduce the natural fre-
quencies of both SDOF and TDOF systems. To find out whether this holds for any
vibration system, a general MDOF system, shown in Fig. 2.5, is investigated in this
section.

The equations of motion of the MDOF system shown in Fig. 2.5 are

Mẍ + Kx = 0,

where x = [x1, x2, . . . , xn]T , and
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Fig. 2.5 MDOF system with inerters

M =

⎡
⎢⎢⎢⎣
m1 + b1 −b1

−b1 m2 + b1 + b2 −b2
. . .

. . .
. . .

−bn−1 mn + bn−1 + bn

⎤
⎥⎥⎥⎦ ,

K =

⎡
⎢⎢⎢⎣

k1 −k1
−k1 k1 + k2 −k2

. . .
. . .

. . .

−kn−1 kn−1 + kn

⎤
⎥⎥⎥⎦ .

It is well known that the free vibration of the MDOF system can be described by
the eigenvalue problem as follows (Tomson 1993; Zhao and DeWolf 1999)

(K − Mλ j )ϕ j = 0, (2.6)

where j = 1, . . . , n, ωni = √λ j are the natural frequencies of this system, and ϕ j

is the j th mode shape corresponding to natural frequency ωnj and is normalized to
be unit-mass mode shapes, i.e., ϕ j

TMϕ j = 1.
Sensitivity analysis is performed on the eigenvalues and eigenvectors with respect

to each inertance and the following proposition is derived.

Proposition 3 Consider theMDOFsystem shown inFig. 2.5. For anarbitrary eigen-
value λ j , j = 1, . . . , n, and an arbitrary inertance bi , i = 1, . . . , n, the following
equations hold:

∂λ j

∂bi
= −λ jΦi j , (2.7)

∂Φi j

∂bi
= 2Φi j

⎛
⎝−1

2
Φi j +

n∑
l=1,l �= j

λ j

λl − λ j
Φil

⎞
⎠ , (2.8)
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∂2λ j

∂b2i
= 2λ jΦi j

⎛
⎝Φi j −

n∑
l=1,l �= j

λ j

λl − λ j
Φil

⎞
⎠ , (2.9)

where Φi j , j = 1, . . . , n, is defined as

Φi j = ϕ j
T ∂M

∂bi
ϕ j =

⎧⎨
⎩
(
ϕ

(i)
j − ϕ

(i+1)
j

)2
, i �= n(

ϕ
(n)
j

)2
, i = n

Proof The proof is inspired by the sensitivity analysis on natural frequencies (eigen-
values) andmodel shapes (eigenvectors) with respect to structure parameters in Zhao
and DeWolf (1999), Lin and Parker (1999), Lee and Kim (1999).

Sensitivity analysis on natural frequencies:
Considering the influence of the i th inertance bi on the j th natural frequency ωnj ,
the derivative of (2.6) with respect to bi is

(
∂K
∂bi

− ∂λ j

∂bi
M − λ j

∂M
∂bi

)
ϕ j + (K − λ jM)

∂ϕ j

∂bi
= 0. (2.10)

Premultiplying both sides of (2.10) by ϕ j
T and considering the relations that ∂K

∂bi
= 0

(K is independent of bi ), ϕ j
T (K − λ jM) = 0, and ϕ j

TMϕ j = 1, one obtains

∂λ j

∂bi
= −λ jϕ j

T ∂M
∂bi

ϕ j = 0. (2.11)

Note that

∂M
∂bi

=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

0
. . .

1 −1
−1 1

. . .

0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

, i �= n

⎡
⎢⎢⎢⎣
0

. . .

0
1

⎤
⎥⎥⎥⎦ , i = n

(2.12)

where the nonzero elements for the case i �= n locate on the i th, i + 1th rows and
i th, i + 1th columns.

Thus, one obtains
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∂λ j

∂bi
=
{

−λ j
(
ϕ j

(i) − ϕ j
(i+1)
)2

, i �= n

−λ j
(
ϕ j

(n)
)2

, i = n
(2.13)

where ϕ j
(i), i = 1, . . . , n, denotes the i th element of ϕ j .

Denoting

Φi j = ϕ j
T ∂M

∂bi
ϕ j =

⎧⎨
⎩
(
ϕ

(i)
j − ϕ

(i+1)
j

)2
, i �= n(

ϕ
(n)
j

)2
, i = n

where j = 1, . . . , n, one obtains (2.7). �

It is clearly shown in (2.7) that

∂λ j

∂bi
≤ 0,

and the equality is achieved if ϕ j
(i) = ϕ j

(i+1) for i �= n or ϕ j
(n) = 0 for i = n. Since

j and i are arbitrarily selected, (2.7) holds for any natural frequency with respect to
any inertance bi , which means that the natural frequencies of the MDOF system can
always be reduced by increasing the inertance of any inerter.

Note that for a discrete vibration system, λ j > 0, j = 1, . . . , n always holds (if
λ j = 0, the vibration system reduces to a lower degree-of-freedom system), then the
necessary and sufficient condition for ∂λ j

∂bi
≤ 0 is

∂M
∂bi

≥ 0. (2.14)

Thus, one obtains the following proposition:

Proposition 4 1. The natural frequencies of the MDOF system shown in Fig. 2.5
can always be reduced by increasing the inertance of any inerter.

2. The natural frequencies of any MDOF system can be reduced by an inerter if
the inertial matrix satisfies (2.14).

Remark 2.2 The second conclusion inProposition 4means that the vibration systems
of which the natural frequencies can be reduced by using an inerter are not restricted
to the “uni-axial” MDOF system shown in Fig. 2.5, but anyMDOF system satisfying
(2.14), such as full-car suspension systems (Smith andWang 2004), train suspension
systems (Wang and Liao 2009; Wang et al. 2011; Jiang et al. 2012), buildings (Wang
et al. 2010), etc.

Remark 2.3 Proposition 4 is easy to interpret physically. For a small increment of
inertance εbi of a particular inerter bi , one obtains

M = M0 + εbi
∂M
∂bi

, (2.15)
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Fig. 2.6 The permutation of natural frequencies of a three-degree-of-freedom system with mi =
100 kg, ki = 1000 N/m, i = 1, 2, 3 and b1 = b3 = 0 kg, b2 ∈ [0, 600] kg

where M0 is the original inertial matrix. Sine ∂M
∂bi

is positive semidefine, (2.15) can
be interpreted as increasing the mass of the whole system, which will surely result
in the reduction of natural frequencies.

Note that from Proposition 4, it seems that any natural frequency of an MDOF
system will be reduced if an inerter with a relatively large value of inertance is
inserted since the added inertance can always be viewed as an integration of small
increments. However, this is not always true since there exist permutations of two
particular natural frequencies if the divergence between two eigenvalues of the orig-
inal system is not large enough or the increment of inertance εbi is not small enough.
Figure 2.6 shows the permutation of the natural frequencies of a three-degree-of-
freedom system. As shown in Fig. 2.6, if one denotes the eigenvalues in the order
of λ1 ≥ λ2 ≥ . . . ≥ λn all the time, the λi , i = 1, . . . , n, will always decrease when
the inertance increases. Hence, in the following sections, the eigenvalues are always
sorted in a descending order unless otherwise stated.

Remark 2.4 Note that the equality sign can be achieved for some natural frequencies
of a particular system. This means that for some particular system, it is possible to
reduce part of natural frequencies while maintaining others unchanged. This fact can
be demonstrated by using a Two DOF system as shown in Fig. 2.7. Ifm1 = m2 = m,
k1 = k3 = k, b1 = b3 = b, then the natural frequencies of the system are

ωn1 =
√

k

m + b
, (2.16)

ωn2 =
√

k + 2k2
m + b + 2b2

. (2.17)

It is clear that increasing b2 can reduce ωn2 but cannot reduce ωn1.
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Fig. 2.7 A special TDOF system

2.6 Influence of the Inerter Position on the Natural
Frequencies

The fact that inerter can reduce the natural frequencies of any MDOF system sat-
isfying (2.14) has been demonstrated. However, for an MDOF system such as the
“uni-axial” MDOF system shown in Fig. 2.5, the influence of inerter position on a
specific natural frequency is still unknown. In particular, a practical problem is: for
a specific natural frequency such as the largest natural frequency, where is the most
efficient position to insert an inerter so that the largest reduction will be achieved? A
TDOF system shown in Fig. 2.4 will be investigated in detail and analytical solutions
will be derived for the TDOF system.

Considering (2.13) with n = 2, one obtains

∂λ j

∂b1
= −λ j

(
ϕ

(1)
j − ϕ

(2)
j

)2
, (2.18)

∂λ j

∂b2
= −λ j

(
ϕ

(2)
j

)2
, (2.19)

where j = 1, 2.
For a small increment of inertance, to compare the efficiency of reducing natural

frequencies in terms of b1 and b2, it is equivalent to compare the absolute values of
the derivatives in (2.18) and (2.19). Then, the following proposition can be derived.

Proposition 5 For a small increment of inertance and for a specific λ j , j = 1, 2, it
is more efficient to increase b1 than b2 if

k1
2m1 + b1

< λ j0 <
k1
b1

, (2.20)

or
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λ j0 >
k2

m2 + b2
, or λ j0 <

k2
m2 + b2 + 2m1

. (2.21)

It is more efficient to increase b2 than b1 if

λ j0 >
k1
b1

, or λ j0 <
k1

b1 + 2m1
, (2.22)

or
k2

m2 + b2 + 2m1
< λ j0 <

k2
m2 + b2

, (2.23)

where λ j0, j = 1, 2 denote the eigenvalues of the original system.

Proof Considering (2.6), one obtains

ϕ j
(1) − ϕ j

(2) = λ jm1

k1 − λ j (m1 + b1)
ϕ j

(2), (2.24)

= k2 − λ j (m1 + m2 + b2)

λ jm1
ϕ j

(2), (2.25)

where j = 1, 2, and (2.24) is obtained by checking the first row of (2.6) and (2.25)
is obtained by summing the first and second rows of (2.6).

Note that
∣∣∣∣∂λ j

∂b1

∣∣∣∣−
∣∣∣∣∂λ j

∂b2

∣∣∣∣ = λ j
(
(ϕ j

(1) − ϕ j
(2))2 − (ϕ j

(2))2
)
.

Substituting (2.24) and (2.25), separately, one obtains the conditions in
Proposition 5. �

Note that (2.20) and (2.21), (2.22) and (2.23) are equivalent, because (2.24) and
(2.25) are equivalent. Proposition 5 is only applied to the case that the increment of
inertance is small, as it is obtained by comparing the slopes of the tangent lines as
shown in the proof of Proposition 5. If large increments of inertance are allowed for
a given system that can be modeled as Fig. 2.4 and no inerter is employed in the
original system, the question that which is more efficient in terms of b1 and b2 will
be investigated as follows.

To answer this question, one needs to check two situations, where b2 = 0 or
b1 = 0, respectively. If b2 = 0, b1 = b, from (2.4) and (2.5), one has

ωn1 =

√√√√ (m1 + m2)k1 + m1k2 + k2b1 −
√

((m1 + m2)k1 − m1k2 − b1k2)2 + 4k1k2m
2
1

2(m1m2 + (m1 + m2)b1)
,

ωn2 =

√√√√ (m1 + m2)k1 + m1k2 + k2b1 +
√

((m1 + m2)k1 − m1k2 − b1k2)2 + 4k1k2m
2
1

2(m1m2 + (m1 + m2)b1)
.
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If b1 = 0, b2 = b, one has

ω′
n1 =

√√√√ (m1 + m2)k1 + m1k2 + k1b2 −
√

((m1 + m2)k1 − m1k2 + b2k1)2 + 4k1k2m
2
1

2(m1m2 + m1b2)
,

ω′
n2 =

√√√√ (m1 + m2)k1 + m1k2 + k1b2 +
√

((m1 + m2)k1 − m1k2 + b2k1)2 + 4k1k2m
2
1

2(m1m2 + m1b2)
.

The above question can be answered by comparing ωn1 and ωn2 with ω′
n1 and ω′

n2,
respectively. Thus, one has the following proposition.

Proposition 6 Denote

b0 = k1m2(2m1k2 − (2m1 + m2)k1)

(k2 − k1)(m1k2 − (m1 + m2)k1)
.

For the larger natural frequency ωn2:
If k2 ≤ (1 + m2

m1
)k1, b1 is more efficient than b2;

If k2 > (1 + m2
m1

)k1, b1 is more efficient in [0, b0]; b2 is more efficient in [b0,+∞).
For the smaller natural frequency ωn1:
If k2 > (1 + m2

2m1
)k1, b1 is more efficient than b2;

If k1 ≤ k2 ≤ (1 + m2
2m1

)k1, b2 is more efficient in [0, b0]; b1 is more efficient in
[b0,+∞);
If k2 < k1, b2 is more efficient than b1.

Proof Denote b1 = b2 = b,

d1 = 2(m1m2 + m1b),

d2 = 2(m1m2 + (m1 + m2)b),

d3 = (m1 + m2)k1 + m1k2 + k2b,

d4 = (m1 + m2)k1 + m1k2 + k1b,

d5 =
√

(bk2 + m1k2 − (m1 + m2)k1)2 + 4k1k2m2
1,

d6 =
√

(bk1 − m1k2 + (m1 + m2)k1)2 + 4k1k2m2
1,

and

F1(b) = ω2
n1 − ω′2

n1 = d1d3 − d2d4 − d1d5 + d2d6
d1d2

,

F2(b) = ω2
n2 − ω′2

n2 = d1d3 − d2d4 + d1d5 − d2d6
d1d2

.
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Also denote

b0 = k1m2(2m1k2 − (2m1 + m2)k1)

(k2 − k1)(m1k2 − (m1 + m2)k1)
.

By direct calculation, it can be easily verified that both F1(b) = 0 and F2(b) = 0
have solutions at 0 and b0. However, note that F1(b) and F2(b) cannot be zero at the
same time if b �= 0, thus F1(b0) = 0 and F2(b0) = 0 cannot hold simultaneously.
Particularly, since b > 0, one is more interested in the cases that k2 ∈ [k1, (1 +
m2/(2m1))k1] and k2 ∈ [(1 + m2/m2)k1,∞), where b0 ≥ 0.

Next, it is shown that the positive value of b0 in k2 ∈ [(1 + m2/m2)k1,∞) belongs
to F2(b) = 0 and the other one belongs to F1(b) = 0. Denote

Δ2 = m1k2 − (m1 + m2)k1,

Δ2
1 = Δ2

2 + 4k1k2m
2
1.

Then

d5 =
√
bk22 + 2Δ2k2b + Δ2

1 = k2b + Δ2 + 2k1m2
1

b
+ O

(
1

b2

)
,

d6 =
√
bk21 − 2Δ2k1b + Δ2

1 = k1b − Δ2 + 2k2m2
1

b
+ O

(
1

b2

)
.

Hence, one has

F2(b) = d1d3 − d2d4 + d1d5 − d2d6
d1d2

= Δ2(4b2 + 4(m1 + m2)b + 4m1m2)

d1d2
−

4m1(m2k1 − m1(k1m1 − k2(m1 + m2)))

d1d2
+ O

(
1

b

)
.

Note that if Δ2 < 0 and k2 > k1, or k1 < k2 < (1 + m2/m1)k1, F2(b) is always
negative by omitting the higher order item O

(
1
b

)
. This indicates that if k2 <

(1 + m2/m1)k1, then F2(b) = 0 only has the trivial solution 0, while if k2 ≥
(1 + m2/m1)k1, then F2(b) = 0 has solutions at 0 and b0. Consequently, if k2 <

(1 + m2/m1)k1, then F1(b) = 0 has roots at 0 and b0, while if k2 ≥ (1 + m2/m1)k1,
then F1(b) = 0 only has a trivial solution 0.

Besides, since

F1(b) = d1d3 − d2d4 − d1d5 + d2d6
d1d2

,

=
4m1(m1 + m2)(k1 − k2)b − 4m1(m

2
1(k1 − k2) − m2k1(m1 + m2)) − O

(
1
b

)
d1d2

,
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by the relationship of the coefficients and the roots of F1(b) and F2(b), one has
If k2 > (1 + m2/m1)k1, F1(b) ≤ 0 and F2(b) ≤ 0 for b ∈ [0, b0], F2(b) > 0 for
b ∈ (b0,∞);
If (1 + m2/(2m1))k1 ≤ k2 ≤ (1 + m2/m1)k1, F1(b) < 0 and F2(b) < 0;
If k1 ≤ k1 < (1 + m2/(2m1))k1, F1(b) ≥ 0 for b ∈ [0, b0], F1(b) < 0 for
b ∈ (b0,∞), and F2(b) < 0;
If k2 < k1, F1(b) > 0 and F2(b) < 0.

Thus, Proposition 6 and the four cases shown in Fig. 2.8 have been proved. �

Proposition 6 has addressed four cases, which are k2 > (1 + m2/m1)k1, (1 +
m2/(2m1))k1 ≤ k2 ≤ (1 + m2/m1)k1, k1 ≤ k2 < (1 + m2/(2m1))k1, k2 ≤ k1. A
numerical example is performed with m1 = m2 = 100 kg, k1 = 1000 N/m and k2
chosen as 2500, 1800, 1300, 500 N/m corresponding to the four cases in Proposi-
tion 6. The results are shown in Fig. 2.8, where one sees that in terms of the larger
natural frequency, although for small increment of inertance (about 0–250 kg) b1 is
more efficient than b2, for large increment of inertance, b2 tends to be more efficient
than b1.

Note that the above discussion is based on TDOF systems. For a general MDOF
system, a similar argument as in Proposition 5 can be employed to determine the
efficiency of the position of inerter by comparing the absolute values of the deriva-
tives. For example, consider a six-degree-of-freedom system with mi = 100 kg,
i = 1, . . . , 6, and k1 = 1000 N/m, k2 = 1000 N/m, k3 = 2000 N/m, k4 = 2000
N/m, k5 = 3000 N/m, k6 = 3000 N/m. The objective is to find out the most effi-
cient position to insert an inerter so that largest reduction of the largest natural

frequency will be achieved. By direct calculation, one obtains
∣∣∣ ∂λ1

∂bi

∣∣∣, i = 1, . . . , 6 as

2.759 × 10−4, 0.0134, 0.1559, 0.8571, 1.5999, 0.4043, respectively. Note that∣∣∣ ∂λ1
∂b5

∣∣∣ possesses the largest value. Hence, the position between m5 and m6 would be

the most efficient position to insert an inerter, which is consistent with the simulation
shown in Fig. 2.9. Another method to find the most efficient position is by using
Gershgorin’s Theorem (Horn and Johnson 1988), which shows that the largest abso-
lute row sums is an upper bound of the largest eigenvalue. Hence, an efficient way
to reduce the largest natural frequency is to insert the inerter between the mass m j

and m j+1 or m j−1 and m j , where the j th absolute row sum of M−1K is the largest
absolute row sum of M−1K. Taking the same six-degree-of-freedom system as an
example, one obtains

M−1K =

⎡
⎢⎢⎢⎢⎢⎢⎣

10 −10 0 0 0 0
−10 20 −10 0 0 0
0 −10 30 −20 0 0
0 0 −20 40 −20 0
0 0 0 −20 50 −30
0 0 0 0 −30 60

⎤
⎥⎥⎥⎥⎥⎥⎦

.
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(a)(a)

(b)

(c)

(d)

Fig. 2.8 The natural frequencies of the TDOF system. a k2 > (1 + m2/m1)k1; b (1 +
m2/(2m1))k1 ≤ k2 ≤ (1 + m2/m1)k1; c k1 ≤ k2 < (1 + m2/(2m1))k1; d k2 ≤ k1. The red solid
line: ωn1; the blue dashed line: ω′

n1; the red dash-dot line: ωn2; the blue dotted line: ω′
n2
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Fig. 2.9 The largest natural frequency of a six-degree-of-freedom system

The absolute row sums ofM−1K are 20, 40, 60, 80, 100, and 90. Thus, one concludes
that the optimal way is to insert an inerter between m5 and m6, which is consistent
with the simulation shown in Fig. 2.9 as well.

2.7 Design Procedure and Numerical Example

The problem of reducing the largest natural frequency of a vibration system is con-
sidered in this section, where the efficiency of inerter in reducing natural frequencies
will be quantitatively shown.

For the largest natural frequency, considering (2.8) and (2.9), one obtains

∂Φi j

∂bi
≤ 0, and

∂2λ j

∂b2i
≥ 0.

Table 2.1 Structure model parameters

Floor masses (kg) Stiffness coefficients (kN/m)

m1 = 5897 k1 = 19059

m2 = 5897 k2 = 24954

m3 = 5897 k3 = 28621

m4 = 5897 k4 = 29093

m5 = 5897 k5 = 33732

m6 = 6800 k6 = 232
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Fig. 2.10 Procedures. a first step; b second step: b4 = 5000 kg; c third step: b4 = 5000 kg, b2 =
5000 kg; d fourth step: b4 = 5000 kg, b2 = 5000 kg, b5 = 5000 kg; e fifth step: b4 = 5000 kg,
b2 = 5000 kg, b5 = 5000 kg, b3 = 3000; f sixth step: b4 = 5000 kg, b2 = 5000 kg, b5 = 5000 kg,
b3 = 3000, b1 = 1000 kg
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Table 2.2 Procedures and results

Steps Inertance (kg) ωmax (rad/s) Percentages (%)

1st b4 = 5000 118.89 (11.22)

2th b4 = 5000 b2 = 5000 100.19 (25.18)

3th b4 = 5000 b2 = 5000
b5 = 5000

90.49 (32.43)

4th b4 = 5000 b2 = 5000
b5 = 5000 b3 = 3000

78.15 (41.64)

5th b4 = 5000 b2 = 5000
b5 = 5000 b3 = 3000
b1 = 1000

70.95 (47.02)

6th b4 = 5000 b2 = 5000
b5 = 5000 b3 = 3000
b1 = 1000
b6 = 1 × 105

70.91 (47.05)

Note that Φi j ≥ 0 and the equality is achieved with ϕ
(i)
j = ϕ

(i+1)
j when i �= n, or

ϕ
(n)
j = 0 when i = n, which means that for a specific inerter bi , i = 1, . . . , n, the

largest natural frequency will always be reduced by increasing the inertance until the
two masses connected by inerter bi are rigidly connected.

In what follows, an intuitive and simple approach to lowering the largest natural
frequency for a given structure is illustrated by inserting the inerters one byone,where
the inerter in each step is placed at the most efficient position. Here, a procedure is
presented to reduce the largest natural frequency of a structure discussed in Kelly
et al. (1987), Ramallo et al. (2002) with parameters given in Table 2.1. Note that
the largest natural frequency ωmax of this structure is 133.91 rad/s. The procedure to
reduce ωmax is shown in Fig. 2.10 and Table 2.2.

Procedure description:

Step 1 Figure 2.10a shows that b4 is themost efficient regarding the original system
and for b4 > 5000 kg,ωmax decreases slightly, and hence b4 = 5000 kg is selected;

Step 2 Figure 2.10b shows that b2 is themost efficient regarding the original system
and b4 and b2 > 5000 kg, ωmax decreases slightly, and hence b2 = 5000 kg is
selected;

Step 3–Step 6 Similarly, from Fig. 2.10c to f, b5 = 5000 kg, b3 = 3000 kg, b1 =
1000 kg, and b6 = 1 × 105 kg are selected, respectively.

Note that the above-illustrated approach is not optimal as the natural frequencies
of a system can always be reduced by enlarging the inertance until the inertial matrix
M became singular, where all the natural frequencies become zero. However, the
efficiency of inerter in reducing natural frequencies can be clearly demonstrated by
this approach. As shown in Table 2.2, attenuation about 47.05% has been obtained.
It is worth pointing out that the required inertance for b6 is 1 × 105 kg, which is
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quite large. However, the reduction of largest natural frequency is only improved by
0.03%. If the cost factor is considered in practice, b6 can be omitted. In this way,
only five inerters are employed.

2.8 Conclusions

This chapter has investigated the influence of inerter on the natural frequencies of
vibration systems. By algebraically deriving the natural frequencies of an SDOF
system and a TDOF system, the fact that inerter can reduce the natural frequencies
of these systems has been clearly demonstrated. To reveal the influence of inerter on
the natural frequencies of a general system, an MDOF system has been considered.
Sensitivity analysis has been performed on the natural frequencies and mode shapes
to demonstrate that any increment of the inertance of any inerter in anMDOF system
results in the reduction of the natural frequencies. To that end, the effectiveness of
inerter in reducing natural frequencies of a general vibration system has been clearly
demonstrated. Finally, the influence of the inerter position has been investigated and
a simple design procedure has been proposed to verify the efficiency of inerter in
reducing the largest natural frequencies of vibration systems. The simulation result
has shown that more than 47% reduction can be obtained with only five inerters
employed in a six-degree-of-freedom vibration system.
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