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Preface

The topic of this book is a comprehensive introduction of inerter, a new
two-terminal mechanical element proposed by Prof. Malcolm Smith from
Cambridge University in 2002, and its recent advances in vibration control systems.
One of the principal motivations for introducing inerter is due to a snag in the
correspondence between passive mechanical and electrical networks, as the
capacitor does not have a real corresponding mechanical element. Such a snag has
been removed because of the invention of inerter, and as a result a spring–damper–
inerter mechanical network can be directly transformed into an inductor–resistor–
capacitor electrical network. In this way, the electrical network synthesis theory can
be directly applied to the mechanical network synthesis. Based on this, much
attention has been drawn to the inerter-based mechanical network synthesis, where
the problem of how to realize a positive-real transfer function as specific
mechanical networks while considering the simplicity, cost, and other realization
requirements is of particular interest. Apart from the research interest on
inerter-based mechanical network synthesis, inerter has been applied to a variety of
mechanical systems, such as vehicle suspensions, train suspensions, buildings,
motorcycle steering compensators, landing gears, wind turbines, etc. A common
practice of applying inerters to a specific system is that inerter-based networks,
usually more complex than the traditional networks without inerters, are given and
then optimize the parameters of the inerter-based networks to achieve a better
performance than the traditional ones. Such a procedure is effective to demonstrate
the benefits of using inerters, but the drawback is that the basic function of an
inerter for general vibration systems is concealed. Since all the application scenarios
of inerter are a subset of general vibration systems, it demands a comprehensive
investigation of inerters from a vibration system point of view, which is the main
motivation of this book.

This book is intended to provide a comprehensive summary of recent results
on inerter, and then introduce the recent advances by the author on the application
of inerter in vibration systems. In Chap. 1, the concept of inerter, its physical
realizations, and state-of-art applications are introduced. In Chap. 2, the influence
of inerter on the natural frequencies of vibration systems is discussed. Then, in
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Chaps. 3 and 4, the inerter-based vibration isolators and dynamic vibration
absorbers are introduced, and the parameters’ optimization methods are proposed.
In Chap. 5, the inerter concept is extended to semi-active control by introducing the
semi-active inerter concept, where physical embodiments of semi-active inerter are
also discussed.

The book is intended as a text for graduate students and researchers. A certain
basic level of knowledge of mechanical vibration, control theory, and optimization
theory is a necessary prerequisite in order to follow the material presented here.

The authors are indebted to all those who have contributed to material presented
in this book and whose identities can be deduced from our joint publications that
appear in the bibliography.

Nanjing, China Michael Z. Q. Chen
June 2018 Yinlong Hu
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Chapter 1
Introduction

1.1 Inerter

Inerter is a new mechanical element proposed by Professor Malcolm C. Smith from
Cambridge University, which is defined as a mechanical two-terminal, one-port
device with the property that the equal and opposite force applied at the terminals is
proportional to the relative acceleration between the terminals (Smith 2002a). The
symbol of inerter is shown in Fig. 1.1, where in the notation of Fig. 1.1,

F = b(v̇2 − v̇1). (1.1)

The constant b in (1.1) is called the inertancewith the units of kilograms. The energy
stored by the inerter can be quantified as 1

2b(v2 − v1)2.
The main motivation of proposing inerter is due to the incompleteness of the

force-current analogy between mechanical and electrical systems. It is well known
that the mechanical and electrical systems have very similar dynamics. For the force-
current analogy between these systems, the force and velocity in mechanical systems
can be analogized to the current and voltage in the electrical systems, respectively. In
this way, the fixed reference point in an inertial frame, the kinetic energy, the poten-
tial energy in mechanical systems can be analogized to the electrical ground, the
electrical energy, magnetic energy in electrical systems, respectively. The detailed
force-current analogy is shown in Table 1.1. From the device point of view, the
spring and damper in mechanical systems can be analogized to the inductor and
resistor in electrical systems, respectively. However, it lacks a mechanical device to
analogize the capacitor in electrical systems. Historically, the mass is seen as the
mechanical element corresponding to the capacitor in electrical systems. However,
from Newton’s Second Law, the acceleration of the mass is relative to a fixed point
in the inertial frame. This means the one terminal of the mass is the ground and the
other terminal is the center of the mass. In other words, the mass is not a genuine
two-terminal device. The electrical element that corresponding to the mass is actu-
ally a grounded capacitor. It is straightforward to see that there exists performance

© Springer Nature Singapore Pte Ltd. and Science Press, Beijing 2019
M. Z. Q. Chen and Y. Hu, Inerter and Its Application in Vibration
Control Systems, https://doi.org/10.1007/978-981-10-7089-1_1
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2 1 Introduction

Fig. 1.1 The symbol of
inerter

Table 1.1 The force-current
analogy between mechanical
and electrical systems

Mechanical systems ⇔ Electrical systems

Force ⇔ Current

Velocity ⇔ Voltage

Mechanical ground ⇔ Electrical ground

Kinetic energy ⇔ Electrical energy

Potential energy ⇔ Magnetic energy

Spring ⇔ Inductor

Damper ⇔ Resistor

Mass ⇔ Grounded capacitor

restrictions for the spring-damper-mass networks, as it is equivalent to the electrical
networks composed of inductors, resistors, and capacitors but all capacitors should
be grounded.

Due to the restriction between force-current analogy, the inerter is proposed.
From the definition of inerter, one sees that inerter is a genuine two-terminal device
which has similar dynamics with the capacitor. By proposing inerter, the force-
current analogy is completed, and the spring-damper-inerter mechanical networks
can be directly represented as inductor-resistor-capacitor electrical networks. A new
correspondence after proposing inerter is shown in Fig. 1.2.

Note that although inerter is motivated by the force-current analogy, its properties
are not dependent on this analogy, in the sense that, inerter has some unique functions
formechanical systems such as large equivalentmass (virtualmass), mechanical dual
of the springs as an energy-storing element, etc. Such properties of inerter will be
revealed in the following sections.

1.2 Network Synthesis

The introduction of inerter completes the analogy between the spring-damper-inerter
mechanical networks and the inductor-resistor-capacitor electrical networks. There-
fore, the systematic methods in passive electrical network synthesis can be directly
applied to design inerter-based mechanical networks. In this part, some definitions
and notations in electrical network synthesis are transformed into the mechanical
domain by using the force-current analogy.
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Fig. 1.2 The new correspondence between mechanical and electrical networks

Fig. 1.3 A two-terminal mechanical network in a free-body form with force-velocity pair (F ,v),
where v = v2 − v1

Consider the two-terminal mechanical network shown in Fig. 1.3, the network is
defined to be passive if for all admissible F and v, which are square integrable on
(∞, T ] (Anderson and Vongpanitlerd 1973)

∫ T

−∞
F(t)v(t)dt ≥ 0. (1.2)

The left-hand side of (1.2) indicates the total energy delivered to the network up to
time T . Therefore, for a passive network, no energy is delivered to the environment.

Throughout this book, we define the mechanical impedance Z(s) as the ratio
between velocity and force, that is

Z(s) = v̂(s)

F̂(s)
,

where ·̂ denotes the Laplace transform. The mechanical admittance Y (s) is defined
as the reciprocal of mechanical impedance Z(s), that is

Y (s) = Z(s)−1.



4 1 Introduction

Here, the definitions of mechanical impedance and admittance are the same as the
electrical circuits based on the force-current analogy. The force and current are seen
as the through variables, and the velocity and voltage are seen as the cross variables.
According to the traditional notation of electrical circuits, the impedance is defined
as the ratio between cross variables and through variables.

The passivity of a network is related to the positive realness of the impedance and
admittance of the network. For a two-terminal mechanical network, the network is
passive if and only if its mechanical impedance or admittance is positive real (Smith
2002a). For a real-rational function G(s) to be positive real, the sufficient and nec-
essary conditions are Anderson and Vongpanitlerd (1973), Chen and Smith (2009)

1. Z(s) is analytic and Z(s) + Z(s)∗ ≥ 0 in Re(s) > 0;
2. Z(s) is analytic in Re(s) > 0, Z( jω) + Z( jω)∗ ≥ 0 for all ω, at which Z( jω)

is finite, and any poles of Z(s) on the imaginary axis or at infinity are simple and
have a positive residue.

The traditional electrical network synthesis indicates that any real-rational func-
tion Z(s) which is positive real, there exists an inductor-resistor-capacitor electrical
network whose impedance (or admittance) is Z(s) (Bott and Duffin 1949). Based on
the force-current analogy, it can be deduced that for any real-rational function Z(s)
which is positive real, there exists a spring-damper-inerter mechanical networks with
an impedance (or admittance) as Z(s) (Smith 2002a). Since (Chen and Smith 2009),
there have been a series of new results for mechanical network synthesis (Chen et al.
2013, 2015; Wang et al. 2018).

1.3 The Physical Embodiments of Inerter

The definition of inerter introduces a newmechanical concept. The equally important
issue for such a new concept is how to construct a real mechanical structure or device
possessing the same or at less similar properties with the definition of inerter. The
prodedure of constructing a physical embodiment of inerter is called realization.

Up to now, there are mainly three types of realizations of inerter, that is the rack-
pinon inerter (Smith 2002a, b; Chen et al. 2009), the ball-screw inerter (Wang et al.
2009; Wang and Su 2008; Chen et al. 2009), and the hydraulic inerter (Wang et al.
2011; Gartner and Smith 2011; Tuluie 2010). Moreover, based on whether a flywheel
is employed in the realization, it can classified into two categorizes, that is flywheel-
based inerters (Smith 2002a;Wang and Su 2008; Chen et al. 2009;Wang et al. 2011),
and non-flywheel inerters (Gartner and Smith 2011; Tuluie 2010).

Figure 1.4 shows the schematic and physical embodiments of a rack-pinion inerter
(Wang and Su 2008; Chen et al. 2009). In this type of inerter, a plunger silding in
a cylinder which derives a flywheel through a rack, pinion, and gears. If neglecting
the masses of the plunger, the rack-pinion and gears, the dynamics of this structure
can be approximated as

F = (mα2
1α

2
2)v̇,
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terminal 2 terminal 1gear

rack pinions

flywheel

Fig. 1.4 The schematic of the rack-pinion inerter (Smith 2002a) (left) and the physical embodiment
manufactured in theCambridgeUniversityEngineeringDepartment (CUED)workshops (Chen et al.
2009) (right)

where m is the mass of the flywheel, α1 = γ /r3, α2 = r2/r1, with r1, r2, r3, and γ

denoting the radius of the rack pinion, the gear, the flywheel pinion, and the gyration
of the flywheel. According to the definition, the inertance of the rack-pinion inerter
is

b = mα2
1α

2
2 .

Clearly, if α1 and α2 are larger than 1, the inertance is lager than the flywheel mass
m. This means that the rack pinion has the function of magnifying the mass of the
flywheel. For example. if α1 = α2 = 3, where these quantities can easily be realized
in practice, the inertancewould be 81 times larger than the flywheelmassm. The right
figure of Fig. 1.4 shows a physical embodiment of a rack-pinion inerter manufactured
in the CambridgeUniversity EngineeringDepartment. The total mass of the structure
is approximately 3.5 kg, while the realized inertance is about 725 kg (Smith 2003).

The rack-pinion inerter can bear a large load, and as a result, a large inertance
can be realized. However, the inherent friction and the backlash between the gears
significantly increase the nonlinearities of the inerter. A possible solution is to replace
the rack pinion driving motion by a ball-screw type, then the second generation of
the inerter, namely the ball-screw inerter, is proposed (Wang et al. 2009; Wang and
Su 2008; Chen et al. 2009). Compared with the rack-pinion inerter, the friction is
greatly reduced, and the backlash can be eliminated by pre-loading. Figure 1.5 shows
a prototype manufactured in the Cambridge University Engineering Department,
where the real mass is approximately 1 kg, while the realized inertance is about 180
kg (Smith 2011).

Similar to the rack-pinion inerter, the inertance of the ball-screw inerter can rep-
resented as the product of a transmission ratio and the flywheel’s moment of inertia,
that is

b = Jβ2, (1.3)

where J denotes the moment of inertia of the flywheel, β is the transmission ratio of
the ball screw with β = 2π/p, p (in units of m/rev) is the pitch of the screw (Wang
and Su 2008).
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Fig. 1.5 The schematic of the ball-screw inerter (left) and the physical embodiment manufactured
in the Cambridge University Engineering Department (CUED)workshops (right) (Chen et al. 2009)

Another flywheel-based inerter is the hydraulic inerter proposed in Wang et al.
(2011), as shown in Fig. 1.6, where the hydraulic transmission motion is employed.
The theoretical inertance can be calculated as

b = J

(
A

D

)2

, (1.4)

where J is the moment of inertia of the flywheel, A is the area of the piston, D is
constant in the units of m3 (Wang et al. 2011).

In summary, a common feature of the flywheel-based inerters is that a flywheel is
driven by a transmission structure (the rack pinion, the ball screw, and the hydraulic
type), and the moment of inertia of the flywheel is magnified by the transmission
structure to realize the effect of the inerter. Therefore, there are two requirements for
the transmission structure, that is the ability to transform the rotatory motion into
linear motion for linear motion inerters, and the ability of magnifying the inertia
of the flywheel. From this point of view, it is possible to realize other different
types of inerter by using different transmission structures satisfying the above two
requirements.

Although a flywheel is commonly employed in most of the current realizations
of inerter, the inerter is not equivalent to the flywheel. This means that the flywheel
is not always necessary to realize an inerter. In Gartner and Smith (2011), Tuluie
(2010), non-flywheel inerters were introduced, where the inerter effect is achieved
by rotating the fluids within some helical channels, as shown in 1.7. The theoretical
inertance is represented as Gartner and Smith (2011)

b = ρl
A2
1

A2
2

, (1.5)
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Fig. 1.6 The schematic of the flywheel-based hydraulic inerter (Wang et al. 2011)

Fig. 1.7 The schematic of the non-flywheel hydraulic inerter (Gartner and Smith 2011; Tuluie
2010)

where ρ denotes the density of the fluid, l is the length of the helical channels, A1

and A2 denote the effective area of the piston and the helical channel, respectively.
A unique advantage of the non-flywheel inerters shown in Fig. 1.7 is that different

complex inerter-spring-damper networks can be simultaneously realized, then the
size of realizing such complex networks is significantly reduced (Gartner and Smith
2011). Moreover, the mass of the fluid can be smaller than the mass of the flywheel.
In this way, the real physical mass of the total inerter structure can be further reduced.
For example, the analysis result in Tuluie (2010) implies that 500 kg inertance can
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be realized by using at most 50 g fluid. This means that the magnification scale can
be as large as 10000.

All the above-mentioned inerters are linear motion inerters. Actually, according
to the similar definition and realization methods, rotational inerters can be similarly
defined and realized, where the epicyclic gears can be used to drive a flywheel to
realize a rotational inerter (Smith 2008). In this book, the linear motion inerter is
mainly focused on, and for the detailed description about the rational inerter can be
found in Smith (2008).

1.4 Inerter-Based Vibration Control Systems

Inerter has been successfully applied in FormulaOne racing cars.At the 2005Spanish
Grand Prix, Kimi Raikkonen drove theMcLarenMP4-20 to victory on the first racing
deployment of the inerter. To keep the technology secret from its competitors, a
decoy name “J-damper” was invented for the inerter (Chen et al. 2009). Nowadays,
the inerter has been employed by other Formula One teams (Chen et al. 2009).

From the mechanical control point of view, the introduction of inerter provides
an extra degree of freedom compared with the traditional spring-damper mechanical
systems. This ensures that the performance of the inerter-spring-damper networks is
always better or at least equal to traditional spring-damper networks, as otherwise
one just removes the inerter to simplify the inerter-spring-damper networks into the
spring-damper ones. It has been well demonstrated that inerter can provide signifi-
cant performance improvements for various mechanical systems, including vehicle
suspensions, train suspensions, motorcycle steering systems, build vibration con-
trol systems, wind turbines, landing gears, bridge vibration control systems, energy
harvesters, etc. The interest in passive network synthesis has also been rekindled.

In what follows, the up-to-date inerter-based vibration control systems and the
main research results on inerter will be reviewed. All the results in the literature are
classified from the energy consumption perspective. Therefore, three categories are
obtained, namely, passive vibration control, semi-active vibration control, and active
vibration control. Note that here, the passive, semi-active and active control means
the control devices are passive, semi-active and active, respectively, not the overall
system.

1.4.1 Passive Vibration Control with Inerters

As a passive element, one of the motivations for proposing inerter is to replace the
traditional spring-damper passive vibration control devices as spring-damper-inerter
ones. The methods for designing passive inerter-based vibration control systems can
be generally classified into two categories, that is the fixed-structure method and
the network synthesis method or “black box” method. The fixed-structure method
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is to investigate the performance of some specific structures. The network synthesis
method is to replace the traditional spring-damper networks as a “black box”which is
represented as somepositive real functions.Design these positive real functions based
on the required performance, and then realize the optimized positive real functions
as some specific networks.

Vehicle suspensions are essential parts of a vehicle, determining the overall per-
formance of a vehicle, which is also one of the main application fields of inerter.
In Smith and Wang (2004), the performances of six inerter-based networks applied
as suspension struts were numerically evaluated and compared with the traditional
spring-damper strut, where it was shown that more than 10% improvements can be
obtained by using inerter, in terms of the ride comfort, dynamic type load and han-
dling performance measures. In Scheibe and Smith (2009), analytical solutions were
derived for some inerter-based suspension struts based on a quarter-car model, and
the performance benefits of using inerter in vehicle suspensions were analytically
demonstrated. In Hu et al. (2014), multiple performance requirements including ride
comfort, suspension deflection, and dynamic type load, were analytically investi-
gated, and as a result, the direct comparison method was proposed by formulating
the performance indices of complex networks as a summation of those of some sim-
ple networks and terms relating to the extra elements. In Wang and Su (2008), the
nonlinearities of inerter and their influence on suspension’s performance were stud-
ied. InWang et al. (2014), two series-connected inerter-based struts were numerically
and experimentally tested. In Zhang et al. (2014), an inerter-based configuration was
employed to approximate the sky-hook and ground-hook dampers. In Shen et al.
(2016), the dynamic vibration absorption idea was used to design an inerter-based
suspension strut.

The network synthesis method was also employed in designing passive vehicle
suspension. In Papageorgiou and Smith (2006), positive real synthesis using matrix
inequalities was proposed. The passive suspension design problem was first for-
mulated as a passive controller synthesis problem where the passivity constraint
was described by using matrix inequalities. Then, in terms of the performances of
vehicle suspensions, the H2 and H∞ positive real controller synthesis problem was
described by using bilinermatrix inequalities (BMI).After solving theBMIoptimiza-
tion problem, the obtained positive real controller was realized as specific mechani-
cal networks. The effectiveness of this method was numerically and experimentally
verified (Papageorgiou and Smith 2006), and this method was extended to multi-
ple performance optimization problem in Molina-Cristobal et al. (2006). In Wang
and Chan (2011), mechatronic network strut was proposed, which combined a ball-
screw inerter and permanent magnet electric machinery. One of the main benefits of
this mechatronic strut is system impedance can be realized through a combination
of mechanical and electrical networks. As a result, higher-order system impedance
can easily be realized without occupying large space. The mechatronic strut was
applied to vehicle suspensions via numerical simulations and experiments (Wang
and Chan 2011). In Chen et al. (2012), the performances of inerter-based strut con-
taining one inerter and one damper, obtained by the synthesis procedure in Chen and
Smith (2009), were evaluated. In Chen et al. (2015), a special class of positive real
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controller synthesis problem was investigated, and an efficient H2 optimization
method was proposed for passive vehicle suspensions.

Inerter has also been applied in railway vehilces. InWang et al. (2009), the benefits
of inerter for train suspensions were demonstrated via given-structure method and
network synthesis based on an one-wheel train suspension model. In Wang and
Liao (2010), it was demonstrated that the lateral stability can be improved by using
inerter for train suspensions. InWang et al. (2012), a full-train system was employed
to verify the performance of inerter and the mechatronic strut. In Jiang et al. (2012),
the inerter was demonstrated to improve the lateral and vertical ride comfort, as well
as the lateral body movement. In Jiang et al. (2013), the ride quality improvement
for a two-axle railway vehicle with single-stage suspension due to the employment
of inerter was demonstrated.

The application of inerter in civil engineering and engineering structures consti-
tutes one of the most concerned research areas for inerter. In Wang et al. (2010), in
terms of three different building models, the performance benefits of using inerter
on reducing the vibration of buildings were numerically demonstrated. In Ikago
et al. (2012), a tuned viscous mass damper (TVMD) containing a ball screw mech-
anism and a damper was proposed applied to seismic control systems. The ball
screw mechanism is actually an ball-screw inerter, where the mass of the flywheel
is about 2 kg, and the inertance (in Ikago et al. (2012), it was named as appar-
ent mass) is about 350 kg. The proposed TVMD has been implemented in a real
steel structure in Japan Sugimura et al. (2012). Thereafter, the modal analysis for
TVMD-based mutli-degree-of-freedom systems was conducted. In Takewaki et al.
(2012), an inertial damper which was a ball-screw inerter, was propposed, and the
fundamental mechanism of earthquake response reduction in building structures was
studied. In Lazar et al. (2014), the performance of an inerter-based device, named
tuned inerter damper (TID), was proposed to reduce vibrations in civil engineering
structures subject to base excitation, where the TID is an inerter-based network com-
posed of a series connection of a spring-damper parallel arrangement and an inerter.
In Dylejko andMacGillivray (2014), a transmission absorber was proposed to tackle
the internal resonance problem.

Tuned mass damper (TMD) (or dynamic vibration absorber (DVA)) is widely
used in the fields of civil and mechanical engineering, which is an auxiliary mass
system attached to a vibrating primary system to reduce the vibrations of the pri-
mary system. In the traditional passive TMD (or DVA), the auxiliary mass can be
attached to the primary structure through a spring (proposed by Frahm in 1909 Frahm
(1909)) or a spring-damper arrangement (proposed by Ormondroyd and Den Har-
tog in 1928 Ormondroyd and Den Hartog (1928)). In Hu and Chen (2015), the
inerter-based DVA (IDVA) was proposed, and its performances were evaluated. It
was demonstrated that unlike the traditional spring-damper DVA, three peaks in the
frequency response were depicted for IDVA, and therefore, the optimal frequency
response for IDVA was more flat than the traditional spring-damper DVA (Hu and
Chen 2015). In Brzeski et al. (2015), the dynamics of TMD with additional vis-
cous damper and inerter attached to the pendulum were investigated. In Marian
and Giaralis (2014), a tuned mass-damper-inerter (TMDI) passive vibration control
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configuration was proposed, which connected a traditional spring-damper TMD to
the neighboring mass through an inerter. The vibration suppression for mechanical
cascaded systems by using TMDIwas analyzed (Marian andGiaralis 2014). In Siami
et al. (2018), the inerter-based isolators were applied to improve the isolation per-
formance of the famous statue Michelangelo Buonarroti Pietà Rondanini.

The application of inerter in aircraft landing gears has been investigated to sup-
press the shimmy vibration cased by the interaction between dynamic tire behavior
and landing gear structures. In Dong et al. (2015), the effect of inerters in the shimmy
vibration of aircraft landing gear structures was analyzed, where it was shown the
performances can be improved by using inerters, but also may yield instability prob-
lem which needs to be carefully designed. The nonlinearities in the landing gear
model incorporating inerters were analyzed in Liu et al. (2015). Recently, in Li et al.
(2017), the benefits of using inerter in main landing gear were further demonstrated
by considering torsional-yaw, lateral, torsional-roll motions.

In terms of other applications, in Evangelou et al. (2006, 2007), the inerter-damper
steering compensator was used to replace traditional one to stabilize the “weave” and
“wobble” motions in two-wheel motorcycles. In Hanazawa et al. (2011), Hanazawa
and Yamakita (2012), inerter was applied to flat-footed passive dynamic walkers,
where it was shown that faster and more energy-efficient walking can be achieved by
using ankle springs and inerters. In Graham et al. (2011), Limebeer et al. (2011), the
inerter was employed to address the problem of stabilizing aeroelastic instabilities
in long-span suspension bridges, and to simultaneously suppress buffeting. In Bakis
et al. (2016), the improvement on deck aerodynamic performance by using inerter
for a suspension bridge was investigated. In Zhao et al. (2016), wind tunnel tests
were conducted to compare the theoretical and the experimental results. In Hu et al.
(2015), the isolation property of several inerter-based isolators was investigated, and
parameter tuning methods with respect to H∞ and H2 performances were proposed.

For general cascaded mechanical systems (mass-chain system), in Chen et al.
(2014), the influence of inerter on natural frequencies was investigated, and it was
theoretically demonstrated that the natural frequencies can be reduced by using inert-
ers. In Yamamoto and Smith (2016), the bounded disturbance amplification for mass
chains with passive interconnection was proved, and comparison between spring-
damper interconnection and spring-damper-inerter interconnection was conducted.
In Hu et al. (2018), the natural frequency assignment problem by using inerter was
studied. It was theoretically proved that mass-chain systems with inerters may have
multiple natural frequencies, where an eigenvalue of multiplicity m may occur only
if n ≥ 2m − 1. Besides, it was proved that arbitrary assignment of natural frequen-
cies including multiplicities is not possible, but arbitrary assignment for distinct
natural frequencies is always feasible and requires at most n − 1 inerters for an n
degree-of-freedom system (Hu et al. 2018).
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1.4.2 Semi-active and Active Vibration Control with Inerters

In this section, the inerter-based semi-active and active vibration control systems
will be reviewed. The literatures will be classified into two categories. The first one
is the passive inerter-based systems, in the sense that the inertance of the employed
inerter cannot be controlled online. The second one is the semi-active inerter-based
systems, namely, the inertance of the employed inerter can be controlled online.

The passive inerter-based semi-active and active vibration control systems nor-
mally consist of a inerter-based passive network and a semi-active or active actuator.
For example, in Hu et al. (2012), Chen et al. (2015), the semi-active suspension
system were divided into a passive part and a semi-active part, where the passive
part was an inerter-based mechanical network, while the semi-active part was a
semi-active damper. In Hu et al. (2018), network synthesis was employed to design
the passive part by considering low-order mechanical admittances. In Zhang et al.
(2012), eight inerter-based networks were combined with skyhook controlled and
groundhook controlled actuators to verify the performance benefits of inerter. In Zil-
letti (2016), the performance of an inertial actuator consisting of a spring, a damper,
an inerter and an electromechanical transducer was analyzed, where it was shown
that the natural frequency reduction property of inerter can improve the stability of
the overall system and hence improve the performance. In Alujeviá et al. (2018),
an inerter-based source/receiving two-degree-of-freedom vibration isolation system
was investigated, where the influence of inerter on the stability of the active system
was analyzed, and the performance benefits of using inerter were demonstrated.

Semi-active inerter is an extension of inerter, proposed in Chen et al. (2014),
defined as the inerterwhose inertance can be controlled (adjusted) online (the detailed
definition can be found in Chap. 5 of this book). Draw on the experience of extending
passive damper to semi-active damper, it was natural to propose the semi-active
inerter concept. For example, in Tsai andHuang (2011), a variable-inertia devicewith
a magnetic planetary gearbox was proposed, where the variable inertia property can
be seen as a kind of semi-active inerter. In Li et al. (2014, 2015), vehicle suspension
using an adaptive inerter was studied, where the adaptive inerter was actually a
semi-active inerter. However, in Li et al. (2014, 2015), no physical realization of the
semi-active inerter was given.

The general physical realization of the semi-active inerter was given in Hu et al.
(2017), where it was shown that there are two general solutions to realize the semi-
active inerter. The first one is to adjust the transmission ratio online, and the other one
is to adjust the inertia of the flywheel online. Therefore, although up to now, several
realization methods for semi-active inerter have been proposed, they can always be
classified into these two solutions. For example, the variable-inertia device in Tsai
and Huang (2011) is realized by the first solution, that is using a magnetic planetary
gearbox to adjust the transmission ratio online. Moreover, in Brzeski et al. (2015),
a continuously variable transmission and gear-ratio control system was proposed to
realize the stepless and accurate changes of inertance, and in Brzeski et al. (2017),
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experiments were conducted to verify this kind of semi-active inerters. In Lazarek
et al. (2018), this semi-active inerter was applied to tuned mass damper systems by
considering the parameter identification problem. To use the second solution, in Hu
et al. (2017), a controllable-inertia flywheel was proposed to realize the semi-active
inerter, where the performance of the proposed semi-active inerter was experimen-
tally based on dynamic vibration absorption system.

The performance of semi-active inerter in various vibration systems have been
verified. In Chen et al. (2014, 2016), the force-tracking control strategy for the
semi-active inerter was proposed, and the benefits of semi-active inerter for vehicle
suspensions were demonstrated. In Brzeski et al. (2017), the performance of semi-
active inerter for tuned mass damper system was analyzed. In Hu et al. (2017), the
semi-active inerter-based adaptive dynamic vibration absorber was proposed and its
performance were verified. In Hu et al. (2017), a skyhook inerter configuration was
proposed, and semi-active inerter-based realizations of the skyhook inerter config-
uration were studied. In Zhang et al. (2018), the realization of the skyhook inerter
configuration by using hydraulic device of continuously adjustable inertance was
studied.

1.5 Conclusions

In this chapter, the mechanical element inerter has been introduced, in terms of
concept, physical embodiments, and the inerter-based vibration control systems. The
principal motivation of proposing inerter was for mechanical network synthesis by
completing the “force-current” analogy between mechanical and electrical systems.
However, the inerter has brought significant impact on vibration control systems.

Due to the invention of inerter, the spring-damper-inertermechanical networks can
be systematically designed drawing the experience of electrical network synthesis.
Specially, the overall system can be classified into a given part and an interconnected
part to be designed. Then the given part is seen as the plant, while the part to be
designed is the controller. Then, the controller is deemed as “black box”, and designed
from an admissible space. For example, for passive controllers, the admissible space
is all the passive mechanical networks. Other similar admissible spaces could be
all networks with specific number of elements etc. In this way, the parameters and
the structure of the controller can be simultaneously considered (although maybe not
simultaneously designed). In this way, the overall performance can be improved, and
it is possible to propose new mechanical structures which could have been difficult
to be recognized by the conventional methods (Smith 2002a).

Another unique property of inerter is that a very large inertance (equivalent mass)
can be easily realized by using a small physical mass, which is advantageous for
vibration control systems. On one hand, the mechanical structure from the “black
box” method always require small masses compared with other part of the systems.
For example, for vehicle suspensions, the mass of the suspensions strut should be
smaller than the vehicle body and thewheel. Therefore, it is possible for the traditional
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spring-damper-mass mechanical impedance synthesis (Piersol and Paez 2010) to
yield a large mass, but not practically feasible. On the other hand, inerter can be used
to simulate mass for some circumstances, specially for civil engineering structures
where large masses are beneficial but not feasible in practice.

As a mechanical concept, inerter can also be seen as a standard mechanical ele-
ment, similar to the spring and damper, when modelling, analyzing and controlling
mechanical systems. This means that inerter is not depended on any specific real-
izations, similar to the spring and damper. Actually, when modelling a mechanical
system using springs, we do not always care about the spring is a steel one or a gas
one. Therefore, inerter reveals the internal mechanism of some mechanical struc-
tures which at first sight are not relevant, and inerter is a standard summation of
these mechanical systems.
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Chapter 2
Analysis for Inerter-Based Vibration
System

Abstract This chapter investigates the influence of inerter on the natural frequen-
cies of vibration systems. First of all, the natural frequencies of a single-degree-of-
freedom (SDOF) system and a two-degree-of-freedom (TDOF) system are derived
algebraically and the fact that inerter can reduce the natural frequencies of these
systems is demonstrated. Then, to further investigate the influence of inerter in a
general vibration system, a multi-degree-of-freedom system (MDOF) is considered.
Sensitivity analysis is performed on the natural frequencies and mode shapes to
demonstrate that the natural frequencies of theMDOF system can always be reduced
by increasing the inertance of any inerter. The condition for a general MDOF sys-
tem of which the natural frequencies can be reduced by an inerter is also derived.
Finally, the influence of inerter position on the natural frequencies is investigated
and the efficiency of inerter in reducing the largest natural frequencies is verified by
simulating a six-degree-of-freedom system, where a reduction of more than 47% is
obtained by employing only five inerters.

Keywords Natural frequency · Single-degree-of-freedom system ·
Two-degree-of-freedom system · Multi-degree-of-freedom system ·
Sensitivity analysis

2.1 Introduction

Inerter has been applied in variousmechanical systems. However, among these appli-
cations, inerter always appears in some mechanical networks which possess more
complex structures than the conventional networks consisting of only springs and
dampers. The networks with inerters will surely be better than or at least equal to the
conventional networks consisting of only springs and dampers as they can always
reduce to the conventional ones when the values of element coefficients (spring stiff-
ness, damping coefficient, or inertance) become zero or infinity (Chen et al. 2012). It
is true that inerter can provide extra flexibility in structure, but the basic functionality
of inerter in vibration systems has not yet been clearly understood and demonstrated.

It is well known that in a vibration system, spring can store energy, provide static
support, and determine the natural frequencies, while viscous damper can dissipate

© Springer Nature Singapore Pte Ltd. and Science Press, Beijing 2019
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energy, limit the amplitude of oscillation at resonance, and slightly decrease the
natural frequencies if the damping is small (Tomson1993).As shown inSmith (2002),
inerter can store energy. However, for the other inherent properties of vibration
systems such as natural frequencies, the influence of inerter has not been investigated
before.

The objective of this chapter is to study the fundamental influence of inerter on the
natural frequencies of vibration systems. The fact that inerter can reduce the natural
frequencies of vibration systems is theoretically demonstrated in this chapter and the
question that how to efficiently use inerter to reduce the natural frequencies is also
addressed.

2.2 Preliminary

It is well known that all systems containing mass and elasticity are capable of free
vibration, that is, the vibration occurring without external excitation (Tomson 1993).
Natural frequency of vibration is of primary interest for such systems. For a single-
degree-of-freedom spring–mass system shown in Fig. 2.1, the motion of equation
can be written as

mẍ + cẋ + kx = 0.

In another form,
ẍ + 2ζωn ẋ + ω2

nx = 0, (2.1)

where

ωn =
√

k

m
, ζ = c

2
√
mk

.

Here, ωn is called natural frequency and ζ is the mode damping coefficient.

Fig. 2.1 A single-degree-of-freedom spring–mass system
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Fig. 2.2 Model of a
vibration-based self-powered
system

Since the influence of damping on natural frequencies is well known, only the
undamped conservative systems are considered for simplicity. For the undamped
system, i.e., ζ = 0, the solution of (2.1) is

x(t) = ẋ(0)

ωn
sinωnt + x(0) cosωnt,

where ẋ(0) and x(0) are the initial velocity and displacement. This implies that the
system harmonically vibrates at the natural frequency.

For forced vibration cases, when the frequency of the excitation is equal to one
of the natural frequencies, there may occur a phenomenon known as resonance,
which may lead to excessive deflections and failure (Tse et al. 1979). In practice, it
is always desirable to adjust the natural frequencies of a vibration system to avoid or
induce resonance where appropriate. For example, for vibration-based self-powered
systems (Beeby et al. 2006) (as shown in Fig. 2.2), the natural frequency of an
embedded spring–mass system should be consistent with the environment to obtain
maximum vibration power by utilizing resonance, while for the engine mounting
systems (Yuet al. 2001), the natural frequency should be below the engine disturbance
frequency of the engine idle speed to avoid excitation of mounting system resonance.

The traditional methods to reduce the natural frequencies of an elastic system are
either decreasing the elastic stiffness or increasing the mass of the vibration system.
However, this may be problematic; for example, the stiffness values of an engine
mount that are too low will lead to large static and quasi-static engine displacements
and damage of some engine components (Yu et al. 2001). It will be shown below
that other than these two methods, a parallel-connected inerter can also effectively
reduce natural frequencies.
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2.3 Single-Degree-of-Freedom System

A SDOF system with an inerter is shown in Fig. 2.3. The equation of motion for free
vibration of this system is

(m + b)ẍ + kx = 0. (2.2)

Transformation of the above equation into the standard form for vibration analysis
yields

ẍ + ω2
nx = 0,

where ωn =
√

k
m+b is called the natural frequency of the undamped system.

Proposition 1 The natural frequencyωn of an SDOF system is a decreasing function
of the inertance b. Thus, inerter can reduce the natural frequency of an SDOF system.

Remark 2.1 Note that in Smith (2002), one application of inerter is to simulate the
mass by connecting a terminal of an inerter to the mechanical ground. Observing
(2.2), one concludes that the inerter with one terminal connected to ground can
effectively enlarge the mass which is connected at the other terminal.

2.4 Two-Degree-of-Freedom System

To investigate the general influence of inerter on the natural frequencies of a vibration
system, a TDOF system, shown in Fig. 2.4, is investigated in this section.

The equations of motion for free vibration of this system are

m1 ẍ1 + k1(x1 − x2) + b1(ẍ1 − ẍ2) = 0,

m2 ẍ2 − k1(x1 − x2) − b1(ẍ1 − ẍ2) + k2x2 + b2 ẍ2 = 0,

Fig. 2.3 SDOF system with an inerter
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Fig. 2.4 TDOF system with
two inerters

or, in a compact form,
Mẍ + Kx = 0,

where M is called the inertia matrix and K is the stiffness matrix (Tse et al. 1979),
and

M =
[
m1 + b1 −b1

−b1 m2 + b1 + b2

]
, K =

[
k1 −k1

−k1 k1 + k2

]
.

Note that the inertances b1 and b2 only exist in the inertia matrix M, but the
positions of b1 and b2 are different as b1 exists in all the elements of M while b2
only appears in the last element of M. Since one terminal of b2 is connected to the
ground, b2 effectively enlarges the mass m2, which is consistent with the conclusion
made in Remark 2.1.

The two natural frequencies can be obtained by solving the characteristic equa-
tion (Tse et al. 1979)

Δ(ω) = ∣∣K − Mω2
∣∣

= (m1m2 + m1(b1 + b2) + m2b1 + b1b2)ω
4 − ((m1 + m2)k1 + m1k2 +

k1b2 + b1k2)ω
2 + k1k2 = 0, (2.3)

which yields

ωn1 =
√
k1k2( f1 + f2 −√( f1 − f2)2 + 4d0)

2( f1 f2 − d0)
, (2.4)

ωn2 =
√
k1k2( f1 + f2 +√( f1 − f2)2 + 4d0)

2( f1 f2 − d0)
, (2.5)

where f1 = (m1 + m2 + b2)k1, f2 = (m1 + b1)k2, and d0 = k1k2m2
1.

Proposition 2 For a TDOF system with two inerters, both natural frequencies ωn1

and ωn2 are decreasing functions of the inertances b1 and b2.
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Proof The monotonicity of ωn1 and ωn2 can be proven by checking the signs of the
first-order derivatives of ω2

n1 and ω2
n2 in terms of f1 and f2, respectively.

∂ω2
n1

∂ f1
= − k1k2(q1 − q2)

2(d0 − f1 f2)2
√

( f1 − f2)2 + 4d0
,

∂ω2
n2

∂ f1
= − k1k2(q1 + q2)

2(d0 − f1 f2)2
√

( f1 − f2)2 + 4d0
,

where q1 = (d0 + f 22 )
√

( f1 − f2)2 + 4d0 and q2 = f1(d0 − f 22 ) + 3 f2d0 + f 32 .
Note that q1 > 0 and

q2
1 − q2

2 = 4d0 f
2
2 ( f1 − d0/ f2)

2,

so one obtains |q1| > |q2|, which implies ∂ω2
n1

∂ f1
< 0 and ∂ω2

n2
∂ f1

< 0, that is, both ωn1

and ωn2 are decreasing functions of inertance b2.
Similarly,

∂ω2
n1

∂ f2
= − k1k2(q3 − q4)

2(d0 − f1 f2)2
√

( f1 − f2)2 + 4d0
,

∂ω2
n2

∂ f2
= − k1k2(q3 + q4)

2(d0 − f1 f2)2
√

( f1 − f2)2 + 4d0
,

where q3 = (d0 + f 21 )
√

( f1 − f2)2 + 4d0 and q4 = f2(d0 − f 21 ) + 3 f1d0 + f 31 .
Since q3 > 0 and q2

3 − q2
4 = 4d0 f 21 ( f2 − d0/ f1)2 > 0, one has |q3| > |q4|,

∂ω2
n1

∂ f2
< 0, and ∂ω2

n2
∂ f2

< 0, that is, both ωn1 and ωn2 are decreasing functions of
inertance b1. �

2.5 Multi-degree-of-Freedom System

From the previous two sections, one sees that inerter can reduce the natural fre-
quencies of both SDOF and TDOF systems. To find out whether this holds for any
vibration system, a general MDOF system, shown in Fig. 2.5, is investigated in this
section.

The equations of motion of the MDOF system shown in Fig. 2.5 are

Mẍ + Kx = 0,

where x = [x1, x2, . . . , xn]T , and
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Fig. 2.5 MDOF system with inerters

M =

⎡
⎢⎢⎢⎣
m1 + b1 −b1

−b1 m2 + b1 + b2 −b2
. . .

. . .
. . .

−bn−1 mn + bn−1 + bn

⎤
⎥⎥⎥⎦ ,

K =

⎡
⎢⎢⎢⎣

k1 −k1
−k1 k1 + k2 −k2

. . .
. . .

. . .

−kn−1 kn−1 + kn

⎤
⎥⎥⎥⎦ .

It is well known that the free vibration of the MDOF system can be described by
the eigenvalue problem as follows (Tomson 1993; Zhao and DeWolf 1999)

(K − Mλ j )ϕ j = 0, (2.6)

where j = 1, . . . , n, ωni = √λ j are the natural frequencies of this system, and ϕ j

is the j th mode shape corresponding to natural frequency ωnj and is normalized to
be unit-mass mode shapes, i.e., ϕ j

TMϕ j = 1.
Sensitivity analysis is performed on the eigenvalues and eigenvectors with respect

to each inertance and the following proposition is derived.

Proposition 3 Consider theMDOFsystem shown inFig. 2.5. For anarbitrary eigen-
value λ j , j = 1, . . . , n, and an arbitrary inertance bi , i = 1, . . . , n, the following
equations hold:

∂λ j

∂bi
= −λ jΦi j , (2.7)

∂Φi j

∂bi
= 2Φi j

⎛
⎝−1

2
Φi j +

n∑
l=1,l �= j

λ j

λl − λ j
Φil

⎞
⎠ , (2.8)
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∂2λ j

∂b2i
= 2λ jΦi j

⎛
⎝Φi j −

n∑
l=1,l �= j

λ j

λl − λ j
Φil

⎞
⎠ , (2.9)

where Φi j , j = 1, . . . , n, is defined as

Φi j = ϕ j
T ∂M

∂bi
ϕ j =

⎧⎨
⎩
(
ϕ

(i)
j − ϕ

(i+1)
j

)2
, i �= n(

ϕ
(n)
j

)2
, i = n

Proof The proof is inspired by the sensitivity analysis on natural frequencies (eigen-
values) andmodel shapes (eigenvectors) with respect to structure parameters in Zhao
and DeWolf (1999), Lin and Parker (1999), Lee and Kim (1999).

Sensitivity analysis on natural frequencies:
Considering the influence of the i th inertance bi on the j th natural frequency ωnj ,
the derivative of (2.6) with respect to bi is

(
∂K
∂bi

− ∂λ j

∂bi
M − λ j

∂M
∂bi

)
ϕ j + (K − λ jM)

∂ϕ j

∂bi
= 0. (2.10)

Premultiplying both sides of (2.10) by ϕ j
T and considering the relations that ∂K

∂bi
= 0

(K is independent of bi ), ϕ j
T (K − λ jM) = 0, and ϕ j

TMϕ j = 1, one obtains

∂λ j

∂bi
= −λ jϕ j

T ∂M
∂bi

ϕ j = 0. (2.11)

Note that

∂M
∂bi

=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

0
. . .

1 −1
−1 1

. . .

0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

, i �= n

⎡
⎢⎢⎢⎣
0

. . .

0
1

⎤
⎥⎥⎥⎦ , i = n

(2.12)

where the nonzero elements for the case i �= n locate on the i th, i + 1th rows and
i th, i + 1th columns.

Thus, one obtains
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∂λ j

∂bi
=
{

−λ j
(
ϕ j

(i) − ϕ j
(i+1)
)2

, i �= n

−λ j
(
ϕ j

(n)
)2

, i = n
(2.13)

where ϕ j
(i), i = 1, . . . , n, denotes the i th element of ϕ j .

Denoting

Φi j = ϕ j
T ∂M

∂bi
ϕ j =

⎧⎨
⎩
(
ϕ

(i)
j − ϕ

(i+1)
j

)2
, i �= n(

ϕ
(n)
j

)2
, i = n

where j = 1, . . . , n, one obtains (2.7). �

It is clearly shown in (2.7) that

∂λ j

∂bi
≤ 0,

and the equality is achieved if ϕ j
(i) = ϕ j

(i+1) for i �= n or ϕ j
(n) = 0 for i = n. Since

j and i are arbitrarily selected, (2.7) holds for any natural frequency with respect to
any inertance bi , which means that the natural frequencies of the MDOF system can
always be reduced by increasing the inertance of any inerter.

Note that for a discrete vibration system, λ j > 0, j = 1, . . . , n always holds (if
λ j = 0, the vibration system reduces to a lower degree-of-freedom system), then the
necessary and sufficient condition for ∂λ j

∂bi
≤ 0 is

∂M
∂bi

≥ 0. (2.14)

Thus, one obtains the following proposition:

Proposition 4 1. The natural frequencies of the MDOF system shown in Fig. 2.5
can always be reduced by increasing the inertance of any inerter.

2. The natural frequencies of any MDOF system can be reduced by an inerter if
the inertial matrix satisfies (2.14).

Remark 2.2 The second conclusion inProposition 4means that the vibration systems
of which the natural frequencies can be reduced by using an inerter are not restricted
to the “uni-axial” MDOF system shown in Fig. 2.5, but anyMDOF system satisfying
(2.14), such as full-car suspension systems (Smith andWang 2004), train suspension
systems (Wang and Liao 2009; Wang et al. 2011; Jiang et al. 2012), buildings (Wang
et al. 2010), etc.

Remark 2.3 Proposition 4 is easy to interpret physically. For a small increment of
inertance εbi of a particular inerter bi , one obtains

M = M0 + εbi
∂M
∂bi

, (2.15)
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Fig. 2.6 The permutation of natural frequencies of a three-degree-of-freedom system with mi =
100 kg, ki = 1000 N/m, i = 1, 2, 3 and b1 = b3 = 0 kg, b2 ∈ [0, 600] kg

where M0 is the original inertial matrix. Sine ∂M
∂bi

is positive semidefine, (2.15) can
be interpreted as increasing the mass of the whole system, which will surely result
in the reduction of natural frequencies.

Note that from Proposition 4, it seems that any natural frequency of an MDOF
system will be reduced if an inerter with a relatively large value of inertance is
inserted since the added inertance can always be viewed as an integration of small
increments. However, this is not always true since there exist permutations of two
particular natural frequencies if the divergence between two eigenvalues of the orig-
inal system is not large enough or the increment of inertance εbi is not small enough.
Figure 2.6 shows the permutation of the natural frequencies of a three-degree-of-
freedom system. As shown in Fig. 2.6, if one denotes the eigenvalues in the order
of λ1 ≥ λ2 ≥ . . . ≥ λn all the time, the λi , i = 1, . . . , n, will always decrease when
the inertance increases. Hence, in the following sections, the eigenvalues are always
sorted in a descending order unless otherwise stated.

Remark 2.4 Note that the equality sign can be achieved for some natural frequencies
of a particular system. This means that for some particular system, it is possible to
reduce part of natural frequencies while maintaining others unchanged. This fact can
be demonstrated by using a Two DOF system as shown in Fig. 2.7. Ifm1 = m2 = m,
k1 = k3 = k, b1 = b3 = b, then the natural frequencies of the system are

ωn1 =
√

k

m + b
, (2.16)

ωn2 =
√

k + 2k2
m + b + 2b2

. (2.17)

It is clear that increasing b2 can reduce ωn2 but cannot reduce ωn1.
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Fig. 2.7 A special TDOF system

2.6 Influence of the Inerter Position on the Natural
Frequencies

The fact that inerter can reduce the natural frequencies of any MDOF system sat-
isfying (2.14) has been demonstrated. However, for an MDOF system such as the
“uni-axial” MDOF system shown in Fig. 2.5, the influence of inerter position on a
specific natural frequency is still unknown. In particular, a practical problem is: for
a specific natural frequency such as the largest natural frequency, where is the most
efficient position to insert an inerter so that the largest reduction will be achieved? A
TDOF system shown in Fig. 2.4 will be investigated in detail and analytical solutions
will be derived for the TDOF system.

Considering (2.13) with n = 2, one obtains

∂λ j

∂b1
= −λ j

(
ϕ

(1)
j − ϕ

(2)
j

)2
, (2.18)

∂λ j

∂b2
= −λ j

(
ϕ

(2)
j

)2
, (2.19)

where j = 1, 2.
For a small increment of inertance, to compare the efficiency of reducing natural

frequencies in terms of b1 and b2, it is equivalent to compare the absolute values of
the derivatives in (2.18) and (2.19). Then, the following proposition can be derived.

Proposition 5 For a small increment of inertance and for a specific λ j , j = 1, 2, it
is more efficient to increase b1 than b2 if

k1
2m1 + b1

< λ j0 <
k1
b1

, (2.20)

or
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λ j0 >
k2

m2 + b2
, or λ j0 <

k2
m2 + b2 + 2m1

. (2.21)

It is more efficient to increase b2 than b1 if

λ j0 >
k1
b1

, or λ j0 <
k1

b1 + 2m1
, (2.22)

or
k2

m2 + b2 + 2m1
< λ j0 <

k2
m2 + b2

, (2.23)

where λ j0, j = 1, 2 denote the eigenvalues of the original system.

Proof Considering (2.6), one obtains

ϕ j
(1) − ϕ j

(2) = λ jm1

k1 − λ j (m1 + b1)
ϕ j

(2), (2.24)

= k2 − λ j (m1 + m2 + b2)

λ jm1
ϕ j

(2), (2.25)

where j = 1, 2, and (2.24) is obtained by checking the first row of (2.6) and (2.25)
is obtained by summing the first and second rows of (2.6).

Note that
∣∣∣∣∂λ j

∂b1

∣∣∣∣−
∣∣∣∣∂λ j

∂b2

∣∣∣∣ = λ j
(
(ϕ j

(1) − ϕ j
(2))2 − (ϕ j

(2))2
)
.

Substituting (2.24) and (2.25), separately, one obtains the conditions in
Proposition 5. �

Note that (2.20) and (2.21), (2.22) and (2.23) are equivalent, because (2.24) and
(2.25) are equivalent. Proposition 5 is only applied to the case that the increment of
inertance is small, as it is obtained by comparing the slopes of the tangent lines as
shown in the proof of Proposition 5. If large increments of inertance are allowed for
a given system that can be modeled as Fig. 2.4 and no inerter is employed in the
original system, the question that which is more efficient in terms of b1 and b2 will
be investigated as follows.

To answer this question, one needs to check two situations, where b2 = 0 or
b1 = 0, respectively. If b2 = 0, b1 = b, from (2.4) and (2.5), one has

ωn1 =

√√√√ (m1 + m2)k1 + m1k2 + k2b1 −
√

((m1 + m2)k1 − m1k2 − b1k2)2 + 4k1k2m
2
1

2(m1m2 + (m1 + m2)b1)
,

ωn2 =

√√√√ (m1 + m2)k1 + m1k2 + k2b1 +
√

((m1 + m2)k1 − m1k2 − b1k2)2 + 4k1k2m
2
1

2(m1m2 + (m1 + m2)b1)
.
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If b1 = 0, b2 = b, one has

ω′
n1 =

√√√√ (m1 + m2)k1 + m1k2 + k1b2 −
√

((m1 + m2)k1 − m1k2 + b2k1)2 + 4k1k2m
2
1

2(m1m2 + m1b2)
,

ω′
n2 =

√√√√ (m1 + m2)k1 + m1k2 + k1b2 +
√

((m1 + m2)k1 − m1k2 + b2k1)2 + 4k1k2m
2
1

2(m1m2 + m1b2)
.

The above question can be answered by comparing ωn1 and ωn2 with ω′
n1 and ω′

n2,
respectively. Thus, one has the following proposition.

Proposition 6 Denote

b0 = k1m2(2m1k2 − (2m1 + m2)k1)

(k2 − k1)(m1k2 − (m1 + m2)k1)
.

For the larger natural frequency ωn2:
If k2 ≤ (1 + m2

m1
)k1, b1 is more efficient than b2;

If k2 > (1 + m2
m1

)k1, b1 is more efficient in [0, b0]; b2 is more efficient in [b0,+∞).
For the smaller natural frequency ωn1:
If k2 > (1 + m2

2m1
)k1, b1 is more efficient than b2;

If k1 ≤ k2 ≤ (1 + m2
2m1

)k1, b2 is more efficient in [0, b0]; b1 is more efficient in
[b0,+∞);
If k2 < k1, b2 is more efficient than b1.

Proof Denote b1 = b2 = b,

d1 = 2(m1m2 + m1b),

d2 = 2(m1m2 + (m1 + m2)b),

d3 = (m1 + m2)k1 + m1k2 + k2b,

d4 = (m1 + m2)k1 + m1k2 + k1b,

d5 =
√

(bk2 + m1k2 − (m1 + m2)k1)2 + 4k1k2m2
1,

d6 =
√

(bk1 − m1k2 + (m1 + m2)k1)2 + 4k1k2m2
1,

and

F1(b) = ω2
n1 − ω′2

n1 = d1d3 − d2d4 − d1d5 + d2d6
d1d2

,

F2(b) = ω2
n2 − ω′2

n2 = d1d3 − d2d4 + d1d5 − d2d6
d1d2

.
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Also denote

b0 = k1m2(2m1k2 − (2m1 + m2)k1)

(k2 − k1)(m1k2 − (m1 + m2)k1)
.

By direct calculation, it can be easily verified that both F1(b) = 0 and F2(b) = 0
have solutions at 0 and b0. However, note that F1(b) and F2(b) cannot be zero at the
same time if b �= 0, thus F1(b0) = 0 and F2(b0) = 0 cannot hold simultaneously.
Particularly, since b > 0, one is more interested in the cases that k2 ∈ [k1, (1 +
m2/(2m1))k1] and k2 ∈ [(1 + m2/m2)k1,∞), where b0 ≥ 0.

Next, it is shown that the positive value of b0 in k2 ∈ [(1 + m2/m2)k1,∞) belongs
to F2(b) = 0 and the other one belongs to F1(b) = 0. Denote

Δ2 = m1k2 − (m1 + m2)k1,

Δ2
1 = Δ2

2 + 4k1k2m
2
1.

Then

d5 =
√
bk22 + 2Δ2k2b + Δ2

1 = k2b + Δ2 + 2k1m2
1

b
+ O

(
1

b2

)
,

d6 =
√
bk21 − 2Δ2k1b + Δ2

1 = k1b − Δ2 + 2k2m2
1

b
+ O

(
1

b2

)
.

Hence, one has

F2(b) = d1d3 − d2d4 + d1d5 − d2d6
d1d2

= Δ2(4b2 + 4(m1 + m2)b + 4m1m2)

d1d2
−

4m1(m2k1 − m1(k1m1 − k2(m1 + m2)))

d1d2
+ O

(
1

b

)
.

Note that if Δ2 < 0 and k2 > k1, or k1 < k2 < (1 + m2/m1)k1, F2(b) is always
negative by omitting the higher order item O

(
1
b

)
. This indicates that if k2 <

(1 + m2/m1)k1, then F2(b) = 0 only has the trivial solution 0, while if k2 ≥
(1 + m2/m1)k1, then F2(b) = 0 has solutions at 0 and b0. Consequently, if k2 <

(1 + m2/m1)k1, then F1(b) = 0 has roots at 0 and b0, while if k2 ≥ (1 + m2/m1)k1,
then F1(b) = 0 only has a trivial solution 0.

Besides, since

F1(b) = d1d3 − d2d4 − d1d5 + d2d6
d1d2

,

=
4m1(m1 + m2)(k1 − k2)b − 4m1(m

2
1(k1 − k2) − m2k1(m1 + m2)) − O

(
1
b

)
d1d2

,
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by the relationship of the coefficients and the roots of F1(b) and F2(b), one has
If k2 > (1 + m2/m1)k1, F1(b) ≤ 0 and F2(b) ≤ 0 for b ∈ [0, b0], F2(b) > 0 for
b ∈ (b0,∞);
If (1 + m2/(2m1))k1 ≤ k2 ≤ (1 + m2/m1)k1, F1(b) < 0 and F2(b) < 0;
If k1 ≤ k1 < (1 + m2/(2m1))k1, F1(b) ≥ 0 for b ∈ [0, b0], F1(b) < 0 for
b ∈ (b0,∞), and F2(b) < 0;
If k2 < k1, F1(b) > 0 and F2(b) < 0.

Thus, Proposition 6 and the four cases shown in Fig. 2.8 have been proved. �

Proposition 6 has addressed four cases, which are k2 > (1 + m2/m1)k1, (1 +
m2/(2m1))k1 ≤ k2 ≤ (1 + m2/m1)k1, k1 ≤ k2 < (1 + m2/(2m1))k1, k2 ≤ k1. A
numerical example is performed with m1 = m2 = 100 kg, k1 = 1000 N/m and k2
chosen as 2500, 1800, 1300, 500 N/m corresponding to the four cases in Proposi-
tion 6. The results are shown in Fig. 2.8, where one sees that in terms of the larger
natural frequency, although for small increment of inertance (about 0–250 kg) b1 is
more efficient than b2, for large increment of inertance, b2 tends to be more efficient
than b1.

Note that the above discussion is based on TDOF systems. For a general MDOF
system, a similar argument as in Proposition 5 can be employed to determine the
efficiency of the position of inerter by comparing the absolute values of the deriva-
tives. For example, consider a six-degree-of-freedom system with mi = 100 kg,
i = 1, . . . , 6, and k1 = 1000 N/m, k2 = 1000 N/m, k3 = 2000 N/m, k4 = 2000
N/m, k5 = 3000 N/m, k6 = 3000 N/m. The objective is to find out the most effi-
cient position to insert an inerter so that largest reduction of the largest natural

frequency will be achieved. By direct calculation, one obtains
∣∣∣ ∂λ1

∂bi

∣∣∣, i = 1, . . . , 6 as

2.759 × 10−4, 0.0134, 0.1559, 0.8571, 1.5999, 0.4043, respectively. Note that∣∣∣ ∂λ1
∂b5

∣∣∣ possesses the largest value. Hence, the position between m5 and m6 would be

the most efficient position to insert an inerter, which is consistent with the simulation
shown in Fig. 2.9. Another method to find the most efficient position is by using
Gershgorin’s Theorem (Horn and Johnson 1988), which shows that the largest abso-
lute row sums is an upper bound of the largest eigenvalue. Hence, an efficient way
to reduce the largest natural frequency is to insert the inerter between the mass m j

and m j+1 or m j−1 and m j , where the j th absolute row sum of M−1K is the largest
absolute row sum of M−1K. Taking the same six-degree-of-freedom system as an
example, one obtains

M−1K =

⎡
⎢⎢⎢⎢⎢⎢⎣

10 −10 0 0 0 0
−10 20 −10 0 0 0
0 −10 30 −20 0 0
0 0 −20 40 −20 0
0 0 0 −20 50 −30
0 0 0 0 −30 60

⎤
⎥⎥⎥⎥⎥⎥⎦

.
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(a)(a)

(b)

(c)

(d)

Fig. 2.8 The natural frequencies of the TDOF system. a k2 > (1 + m2/m1)k1; b (1 +
m2/(2m1))k1 ≤ k2 ≤ (1 + m2/m1)k1; c k1 ≤ k2 < (1 + m2/(2m1))k1; d k2 ≤ k1. The red solid
line: ωn1; the blue dashed line: ω′

n1; the red dash-dot line: ωn2; the blue dotted line: ω′
n2
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Fig. 2.9 The largest natural frequency of a six-degree-of-freedom system

The absolute row sums ofM−1K are 20, 40, 60, 80, 100, and 90. Thus, one concludes
that the optimal way is to insert an inerter between m5 and m6, which is consistent
with the simulation shown in Fig. 2.9 as well.

2.7 Design Procedure and Numerical Example

The problem of reducing the largest natural frequency of a vibration system is con-
sidered in this section, where the efficiency of inerter in reducing natural frequencies
will be quantitatively shown.

For the largest natural frequency, considering (2.8) and (2.9), one obtains

∂Φi j

∂bi
≤ 0, and

∂2λ j

∂b2i
≥ 0.

Table 2.1 Structure model parameters

Floor masses (kg) Stiffness coefficients (kN/m)

m1 = 5897 k1 = 19059

m2 = 5897 k2 = 24954

m3 = 5897 k3 = 28621

m4 = 5897 k4 = 29093

m5 = 5897 k5 = 33732

m6 = 6800 k6 = 232
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Fig. 2.10 Procedures. a first step; b second step: b4 = 5000 kg; c third step: b4 = 5000 kg, b2 =
5000 kg; d fourth step: b4 = 5000 kg, b2 = 5000 kg, b5 = 5000 kg; e fifth step: b4 = 5000 kg,
b2 = 5000 kg, b5 = 5000 kg, b3 = 3000; f sixth step: b4 = 5000 kg, b2 = 5000 kg, b5 = 5000 kg,
b3 = 3000, b1 = 1000 kg
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Table 2.2 Procedures and results

Steps Inertance (kg) ωmax (rad/s) Percentages (%)

1st b4 = 5000 118.89 (11.22)

2th b4 = 5000 b2 = 5000 100.19 (25.18)

3th b4 = 5000 b2 = 5000
b5 = 5000

90.49 (32.43)

4th b4 = 5000 b2 = 5000
b5 = 5000 b3 = 3000

78.15 (41.64)

5th b4 = 5000 b2 = 5000
b5 = 5000 b3 = 3000
b1 = 1000

70.95 (47.02)

6th b4 = 5000 b2 = 5000
b5 = 5000 b3 = 3000
b1 = 1000
b6 = 1 × 105

70.91 (47.05)

Note that Φi j ≥ 0 and the equality is achieved with ϕ
(i)
j = ϕ

(i+1)
j when i �= n, or

ϕ
(n)
j = 0 when i = n, which means that for a specific inerter bi , i = 1, . . . , n, the

largest natural frequency will always be reduced by increasing the inertance until the
two masses connected by inerter bi are rigidly connected.

In what follows, an intuitive and simple approach to lowering the largest natural
frequency for a given structure is illustrated by inserting the inerters one byone,where
the inerter in each step is placed at the most efficient position. Here, a procedure is
presented to reduce the largest natural frequency of a structure discussed in Kelly
et al. (1987), Ramallo et al. (2002) with parameters given in Table 2.1. Note that
the largest natural frequency ωmax of this structure is 133.91 rad/s. The procedure to
reduce ωmax is shown in Fig. 2.10 and Table 2.2.

Procedure description:

Step 1 Figure 2.10a shows that b4 is themost efficient regarding the original system
and for b4 > 5000 kg,ωmax decreases slightly, and hence b4 = 5000 kg is selected;

Step 2 Figure 2.10b shows that b2 is themost efficient regarding the original system
and b4 and b2 > 5000 kg, ωmax decreases slightly, and hence b2 = 5000 kg is
selected;

Step 3–Step 6 Similarly, from Fig. 2.10c to f, b5 = 5000 kg, b3 = 3000 kg, b1 =
1000 kg, and b6 = 1 × 105 kg are selected, respectively.

Note that the above-illustrated approach is not optimal as the natural frequencies
of a system can always be reduced by enlarging the inertance until the inertial matrix
M became singular, where all the natural frequencies become zero. However, the
efficiency of inerter in reducing natural frequencies can be clearly demonstrated by
this approach. As shown in Table 2.2, attenuation about 47.05% has been obtained.
It is worth pointing out that the required inertance for b6 is 1 × 105 kg, which is
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quite large. However, the reduction of largest natural frequency is only improved by
0.03%. If the cost factor is considered in practice, b6 can be omitted. In this way,
only five inerters are employed.

2.8 Conclusions

This chapter has investigated the influence of inerter on the natural frequencies of
vibration systems. By algebraically deriving the natural frequencies of an SDOF
system and a TDOF system, the fact that inerter can reduce the natural frequencies
of these systems has been clearly demonstrated. To reveal the influence of inerter on
the natural frequencies of a general system, an MDOF system has been considered.
Sensitivity analysis has been performed on the natural frequencies and mode shapes
to demonstrate that any increment of the inertance of any inerter in anMDOF system
results in the reduction of the natural frequencies. To that end, the effectiveness of
inerter in reducing natural frequencies of a general vibration system has been clearly
demonstrated. Finally, the influence of the inerter position has been investigated and
a simple design procedure has been proposed to verify the efficiency of inerter in
reducing the largest natural frequencies of vibration systems. The simulation result
has shown that more than 47% reduction can be obtained with only five inerters
employed in a six-degree-of-freedom vibration system.
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Chapter 3
Inerter-Based Isolation System

Abstract This chapter is concernedwith the problemof analysis and optimization of
the inerter-based isolators based on a “uni-axial” single-degree-of-freedom isolation
system. In the first part, in order to gain an in-depth understanding of inerter from
the prospective of vibration, the frequency responses of both parallel-connected and
series-connected inerters are analyzed. In the second part, three other inerter-based
isolators are introduced and the tuning procedures in both the H∞ optimization and
the H2 optimization are proposed in an analytical manner. The achieved H2 and
H∞ performance of the inerter-based isolators is superior to that achieved by the
traditional dynamic vibration absorber (DVA) when the same inertance-to-mass (or
mass) ratio is considered. Moreover, the inerter-based isolators have two unique
properties, which are more attractive than the traditional DVA: first, the inertance-
to-mass ratio of the inerter-based isolators can easily be larger than the mass ratio
of the traditional DVA without increasing the physical mass of the whole system;
second, there is no need to mount an additional mass on the object to be isolated.

Keywords Vibration isolation · H∞ optimization · H2 optimization ·
Transmissibility · Analytical analysis.

3.1 Introduction

In this chapter, to further investigate the influence of inerter on vibration systems, the
performance of the inerter-based isolators based on a “uni-axial” single-degree-of-
freedom isolation system is studied. First, to gain an in-depth understanding of inerter
from the perspective of vibration, the frequency responses of both parallel-connected
and series-connected inerters are analyzed. It is shown that an extra invariant point,
which is independent of the damping ratio, can be introduced by using the series-
connected inerter. Then, to further tune the invariant points, three other inerter-based
isolators, each of which incorporates a spring, a damper, and an inerter, are proposed.
To facilitate the practical application, the optimal parameters of the inerter-based
isolators in both H∞ optimization and H2 optimization are analytically derived. An
analytical method is employed to calculate the H2 norm performance measures of

© Springer Nature Singapore Pte Ltd. and Science Press, Beijing 2019
M. Z. Q. Chen and Y. Hu, Inerter and Its Application in Vibration
Control Systems, https://doi.org/10.1007/978-981-10-7089-1_3
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the inerter-based isolators in this paper. In addition, the comparisons of the H2 and
H∞ performances between the inerter-based isolators and the traditional DVA show
the superiority of the inerter-based isolators. Two properties make the inerter-based
isolators potentially more attractive than the traditional DVA: first, a relatively large
inertance can easily be obtained without increasing the physical mass of the whole
system (Smith 2002); second, there is no need to mount an additional mass on the
object to be isolated, as an inerter is a built-in component in the inerter-based isolators.

3.2 Preliminary

Vibration isolation is one of the most common vibration control categories, where
two situations are commonly encountered in terms of the vibrating source. The first
one is to protect the object from vibrating environment. For example, equipments
may be mounted on an isolator to be protected from an environment characterized
by severe shock or vibration. The other situation is the isolation of the vibrating
source. For example, a machine creating significant vibration during operation may
be supported upon isolators such that other parts of the systems or other machines
are less influenced (Piersol and Paez 2010).

In Fig. 3.1, a “uni-axial” isolation system is shown, where the massm is the object
to be isolated, the massm f is the foundation, and Q(s) is the isolator to be designed.
The first situation discussed above can be described as the displacement transmissi-
bility problem and the later one is the force transmissibility problem (Carrella et al.
2012). In some cases, both tasks have to be addressed simultaneously (Rivin 2003).

For the displacement transmissibility problem with harmonic inputs, the absolute
transmissibility from x2 to x1 denoted as μx can be obtained as

μx = | x1 |
| x2 | = | Q( jω) jω |

| Q( jω) jω − mω2 | , (3.1)

where ω is the input frequency and F = 0.
For the force transmissibility problem with harmonic inputs, denoting Ff as the

force transformed from the object to the foundation, the absolute transmissibility
from F to Ff denoted as μF can be obtained as

μF = | Ff |
| F0 | = m f

m + m f

| Q( jω) jω |
| Q( jω) jω − mef ω2 | , (3.2)

where Fi = Ff .
Comparing (3.1) and (3.2), one concludes thatμF = μx if only ifm f = ∞, which

means that for any passive isolator, the force transmissibility problem is equivalent
to the displacement transmissibility problem if only if the mass of the foundation is
sufficiently larger than that of the object.
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Fig. 3.1 Uni-axial vibration
isolation system

For brevity, in this chapter, the assumption thatm f = ∞ is made and the absolute
displacement transmissibility and the absolute force transmissibility are identically
treated as

μ = | Fi |
| F | = | x1 |

| x2 | = | Q(jω)jω |
| Q(jω)jω − mω2 | , (3.3)

where F is the force imposed on the objectm, Fi is the force generated by the isolator,
x1 and x2 are the displacements of the object and the foundation, respectively. Q(jω)

is obtained by replacing the Laplace variable s in Q(s) with jω, where j is a complex
variable with j2 = −1 and Q(s) is the admittance of the isolator, i.e., the ratio of the
applied force Fi over the relative velocity ẋ1 − ẋ2 in Laplace domain.

As shown in Fig. 3.1, Q(s) = k
s + W (s), where W (s) denotes the admittances

of passive networks consisting of finite inter-connections of springs, dampers, and
inerters. For the traditional isolator without inerters, i.e., W (s) is a damper, the
transmissibility can be obtained as

μ = | k + jcω |
| k − mω2 + jcω | =

√
(1 − q2)2 + (2ζq)2

(1 − q2)2 + (2ζq)2
, (3.4)

where q = ω
ωn
, ζ = c

cr
with cr = 2

√
mk.

The frequency response, i.e., transmissibilityμ for the traditional isolator without
inerters is shown in Fig. 3.2, where an invariant point independent of the damping
ratio ζ is depicted. The H∞ optimization aims to minimize the maximummagnitude
of the frequency response, while the H2 optimization aims to minimize the mean
squared displacement of the object under random excitation (Cheung and Wong
2011b).
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Fig. 3.2 Transmissibility μ for the traditional isolator without inerters

Table 3.1 W (s) for configurations in Figs. 3.3 and 3.8, where s denotes the Laplace variable

W1(s) = bs + c W2(s) = 1
1
c + 1

bs
W3(s) =

1
1

k1
s +c

+ 1
bs

W4(s) =
1

s
k1

+ 1
bs + 1

c

W5(s) =
1

1
bs+c + s

k1

In this chapter, five inerter-based isolators will be investigated, as shown in
Figs. 3.3 and 3.8. Their admittances are summarized in Table 3.1.

To obtain a dimensionless representation, ωn =
√

k
m and cr = 2ωnm = 2

√
mk

are used to denote the natural frequency and the critical damping of the isolation
system shown in Fig. 3.1 without W (s), respectively. Also, q = ω

ωn
, ζ = c

cr
, δ = b

m ,

and λ = k
k1
denote the frequency ratio, the damping ratio, the inertance-to-mass ratio,

and the stiffness ratio, respectively.
For the considered configurations as shown inFigs. 3.3 and3.8, the transmissibility

μ can be obtained by substituting Qi (jω) = k
jω + Wi (jω), i = 1, . . . , 5, into (3.3),

respectively, where Wi (jω) are given in Table 3.1 by replacing s with jω.

3.3 Vibration Analysis for Two Simple Inerter-Based
Isolators

This section is to analyze the fundamental properties of inerter from the perspective
of vibration. Note that among all the applications of inerter, the main focus is to
optimize some inerter-based mechanical networks possessing more complex struc-
tures than the conventional networks consisting of only springs and dampers. The
proposed mechanical networks can be obtained either by using networks synthe-
sis (Wang and Chan 2011;Wang et al. 2012, 2014) or by giving some fixed-structure
networks (Smith and Wang 2004; Chen et al. 2014; Hu et al. 2014; Scheibe and
Smith 2009; Marian and Giaralis 2014; Lazar et al. 2014; Dylejko and MacGillivray
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Fig. 3.3 Two simple
configurations as W (s) of the
isolators in Fig. 3.1. a C1; b
C2

2014). Although the benefits of using inerter can be effectively demonstrated by these
complex inerter-based mechanical networks, some fundamental properties of inerter
in vibration are overlooked due to the complexity of the structure. Consequently, it
lacks in-depth understanding of inerter from the perspective of vibration. In Chen
et al. (2014), the property that inerter can reduce vibration systems’ natural frequen-
cies is demonstrated. However, the influences of inerter on other aspects such as the
invariant property in frequency domain are still unclear. This motivated the inves-
tigation of this section based on two simple inerter-based configurations, as shown
in Fig. 3.3. The detailed analysis of the frequency responses of these configurations
constitutes the main contribution of this section.

Analysis of C1

For this configuration, the transmissibility can be obtained as

μ = | k − bω2 + jcω |
| k − (m + b)ω2 + jcω | =

√
(1 − δq2)2 + (2ζq)2

(1 − (1 + δ)q2)2 + (2ζq)2
. (3.5)

Figure 3.4 shows the transmissibility μ with respect to different δ and ζ , where
it is shown that an anti-resonant frequency (a particular frequency where minimum
magnitude is obtained) and an invariant point (a particular frequency where the
magnitude is independent of the damping ratio ζ ) are introduced by using the parallel-
connected inerter. For the undamped case, the anti-resonant frequency qb can be

obtained as qb =
√

1
δ
, and the resonant frequency or natural frequency is qp =

√
1

1+δ
.

Note that the natural frequency qp is a decreasing function with respect to δ, which
is consistent with the result in Chen et al. (2014).

The transmissibility μ in (3.5) can be rewritten as

μ =
√

Aζ 2 + B

Cζ 2 + D
,
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Fig. 3.4 Transmissibility μ for the configuration C1 when ζ ranges from 0.02 to 1.2

where A = 4q2, B = (1 − δq2)2, C = 4q2, and D = (1 − (1 + δ)q2)2. To find the
invariant points which are independent of damping, it requires

A

C
= B

D
,

that is,
(1 − δq2)2

(1 − (1 + δ)q2)2
= 1.

Then, one obtains the nonzero invariant point qi as

qi =
√

2

1 + 2δ
.

Obviously, qi is a decreasing function with respect to δ, which means that the
parallel-connected inerter can effectively shift the invariant point left.

Figure 3.5 depicts the transmissibility μ of configuration C1 when δ = 1 with
some typical ζ . The magnitudes at the natural frequency qp, the anti-resonant fre-

Fig. 3.5 Transmissibility μ for the configuration C1 when δ = 1
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quency qb, and infinity can be obtained as

μ|q=qp = 1

2

√
1

ζ 2(1 + δ)
+ 4, (3.6)

μ|q=qb = 2

√
1

1
ζ 2δ

+ 4
, (3.7)

μ|q→∞ = δ

1 + δ
, (3.8)

where μ|q=q j means the value of μ when q = q j , j denotes p, b, or ∞.
From (3.6) and (3.7), it is clear that μ|q=qp is a decreasing function with respect

to both δ and ζ , and μ|q=qb is an increasing function with respect to both δ and ζ , as
shown in Fig. 3.4. From (3.7), one obtains that for the undamped case, i.e., c = 0 or
ζ = 0, μ|q=qb = 0, the effect of “dynamic absorption” of vibration occurs, which is
uncommon for single-degree-of-freedom systems (Rivin 2003).

Equation (3.8) shows that the transmissibility approaches to an asymptote at the
level of δ

1+δ
when q tends to ∞. For a given δ, by solving the equation

μ =
√

(1 − δq2)2 + (2ζq)2

(1 − (1 + δ)q2)2 + (2ζq)2
= δ

1 + δ
, (3.9)

one obtains that

qδ =
√
2

2

√
1 + 2δ

δ2 + δ − 2ζ 2(1 + 2δ)
. (3.10)

Note that qδ is real if and only if ζ < ζδ =
√

δ2+δ
2(1+2δ) . Since the transmissibility tends

to an asymptote at the level of δ
1+δ

when q tends to ∞, ζδ is a critical value of ζ

in the sense that: if ζ < ζδ , there exists a finite q where the minimum of μ occurs;
otherwise, μ is uniformly larger than δ

1+δ
and approaches δ

1+δ
when q tends to ∞.

The curve with ζ = ζδ is shown in Fig. 3.5.
Note that qp and qb are the natural frequency and the anti-resonant frequency of

the undamped case, respectively. For the damped case, the real natural frequency qpr

and anti-resonant frequency qbr for a specific damping ratio ζ can be obtained by
setting the derivative of (3.5) to zero. Then, one obtains

qpr =
√
1 + 2δ − √

1 + 8ζ 2(1 + 2δ)

2(δ2 + δ − 2ζ 2(1 + 2δ))
, (3.11)

qbr =
√
1 + 2δ + √

1 + 8ζ 2(1 + 2δ)

2(δ2 + δ − 2ζ 2(1 + 2δ))
. (3.12)
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It is clear that if ζ ≈ 0, qpr ≈ qp, and qbr ≈ qb hold, but for a large ζ , it is not
sufficient to use this estimation.

In summary, one obtains the following remarks:

Remark 1 1. The parallel-connected inerter can effectively lower the invariant
point that is independent of the damping ratio ζ ;

2. The magnitude at the natural frequency is a decreasing function with respect
to both the damping ratio and the inertance-to-mass ratio; the magnitude at
the anti-resonant frequency is an increasing function with respect to both the
damping ratio and the inertance-to-mass ratio;

3. The isolation at high frequencies is weakened by using the parallel-connected
inerter, where the magnitude tends to δ

1+δ
when q tends to ∞.

Analysis of C2

For this configuration, the transmissibility can be obtained as

μ = | kc
b − cω2 + kjω |

| kc
b − cω2 − mc

b ω2 + (k − mω2)jω | ,

=
√

δ2q2 + 4(1 − δq2)2ζ 2

δ2(1 − q2)2q2 + 4(1 − (1 + δ)q2)2ζ 2
. (3.13)

By rewriting (3.13) as

μ =
√

Aζ 2 + B

Cζ 2 + D
,

where A = 4(1 − δq2)2, B = δ2q2,C = 4(1 − (1 + δ)q2)2, and D = δ2(1 − q2)2q2,
the invariant points which are independent of damping can be similarly obtained
by setting

A

C
= B

D
,

that is,
1 − δq2

1 − (1 + δ)q2
= ± 1

1 − q2
.

For the case of plus sign, after simple calculation, one obtains δq4 = 0, which leads
to q = 0, a trivial result. For the case of minus sign, one obtains

δq4 − 2(1 + δ)q2 + 2 = 0.

Then, one can obtain the two nonzero invariant points as

q2
P,Q = 1 + 1

δ
±

√
1 + 1

δ2
. (3.14)
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Fig. 3.6 Comparison of the transmissibilities of configurations C1 and C2 when δ = 1. Red bold
lines denote C2 and blue thin lines denote C1. The solid lines denote ζ = 0; the dash lines denote
ζ = ζδ = 0.5774; the dash-dot lines denote ζ = ζr = √

1 + δ = √
2

Denote qP < qQ . It is easy to show that q2
P < 1 and q2

Q > 2, and both qP and qQ
are decreasing functions with respect to δ. This indicates that, similar to the parallel-
connected inerter, the series-connected inerter can also effectively lower the invariant
points. Note that the magnitudes at P and Q are

μ|q=qP =
∣∣∣∣ 1

1 − q2
P

∣∣∣∣ , μ|q=qQ =
∣∣∣∣∣ 1

1 − q2
Q

∣∣∣∣∣ .
Since q2

P < 1 and q2
Q > 2, one obtains

μ|q=qP > 1 > μ|q=qQ , (3.15)

which means that for a finite δ, it is impossible to equalize the ordinates at the two
invariant points.

A comparison of the transmissibilities of configurations C1 and C2 is shown in
Fig. 3.6, where two invariant points P and Q of configuration C2 are depicted. It
is shown that for the same damping ratio ζ , the behaviors of configurations C1 and
C2 are totally different. For example, for the case of ζ = ζr = √

2 (dash-dot lines
in Fig. 3.6), C1 is overdamped while C2 behaves similarly to the undamped case of
C1. This is caused by the series structure of C2, as by varying the damping ratio ζ

from 0 to ∞, the configuration C2 is changed from the configuration with only a
spring to the configuration with a parallel connection of a spring and an inerter.

In summary, one obtains the following remarks:

Remark 2 1. Two invariant points, which are independent of the damping ratio,
can be introduced by using the series-connected inerter, and both the two invari-
ant points are decreasing functions with respect to the inertance-to-mass ratio;

2. For a finite inertance-to-mass ratio, the magnitude at the smaller invariant point
is larger than 1 and the magnitude at the larger invariant point is smaller than
1;



50 3 Inerter-Based Isolation System

3. The series arrangementC2 behaves between the configurationwith only a spring
and the configuration with a parallel connection of a spring and an inerter.

3.4 H∞ Optimization for Inerter-Based Isolators

In practice, in order to achieve good isolating performance, it is always desirable
to minimize the maximum displacement of the object, which is known as H∞ opti-
mization (Cheung and Wong 2011a). In the previous section, it is shown that the
invariant point, the resonant frequency, and the anti-resonant frequency are directly
determined by the inertance-to-mass ratio δ. Therefore, in this section, H∞ tuning
procedures for a given δ will be proposed.

For the configuration C1 in Fig. 3.3, the optimal damping in H∞ optimization for
a given δ is∞, which is a trivial solution, as in this case the object and the foundation
are stiffly connected. For the configuration C2 with a given inertance-to-mass ratio
δ, the optimal damping ratio ζ for the H∞ performance is the one making the curve
horizontally pass through the invariant P , as shown in Fig. 3.6. The rationality is
based on the fixed-point theory (Den Hartog 1985, Sect. 3.3), the most favorable
damping is the one making the curve horizontally pass through the highest invariant
point. As demonstrated in Sect. 3.3, the magnitude of the invariant point P is always
larger than that of the other invariant point Q. Therefore, based on this consideration,
the optimal damping ratio ζ for configuration C2 can be obtained as follows:

Proposition 3.1 For the configuration C2 with a given δ, the optimal damping ratio
ζ in H∞ optimization is

ζopt = 1

2

√
δ(1 + δ −

√
1 + δ2). (3.16)

Proof See Appendix.

Note that two invariant points can be introduced by using the series-connected
inerter, and in order to further tune the two invariant points, an extra spring k1 is
incorporated. Then, three inerter-based isolators are proposed as shown in Fig. 3.8.
The fixed-point theory (DenHartog 1985, Sect. 3.3) is employed to derive the optimal
parameters for these three inerter-based isolators. The fixed-point theory can be
summarized as follows (Den Hartog 1985, Sect. 3.3).

Procedure 1 1. For a given inertance-to-mass ratio δ, find the invariant points
which are independent of the damping ratio ζ , and denote the two smaller invari-
ant points as P and Q;

2. Adjust the spring stiffness ratio λ so that the ordinates at the invariant points P
and Q are equal;

3. Calculate the damping ratio ζP and ζQ so that the curves of transmissibility μ

vs. q horizontally pass through P and Q, respectively;
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Fig. 3.7 Graphical representation of Procedure 1

Fig. 3.8 Three configurations as W (s) of the isolators in Fig. 3.1. a C3; b C4; c C5

4. Obtain the optimal damping ratio as ζ =
√

ζ 2
P+ζ 2

Q

2 .

A graphical representation of Procedure 1 is given in Fig. 3.7, indicating the
required and output parameters in each step. According to this procedure, the optimal
parameters λ and ζ for each configuration are derived subsequently (Fig. 3.8).

Remark 3 The fixed-point theory (Den Hartog 1985, Sect.3.3) actually yields a
suboptimal but highly precise solution as demonstrated in (Nishihara and Asami
2002). The merit of the fixed-point theory is that an analytical solution can be easily
derived, which makes it extensively employed in tuning dynamic vibration absorber
(DVA) (or tuned mass damper (TMD)). See, for example, (Ren 2001; Cheung and
Wong 2011a; Asami et al. 1991) and references therein. This is also the reason why
it is employed in this paper. Please note that the optimal parameters derived in this
section are “optimal” in the sense of the fixed-point theory using Procedure 1, which
would be suboptimal in practice.

Proposition 3.2 The transmissibility for C3 can be obtained as

μ =
∣∣∣∣ 1 − δ(1 + λ)q2 + 2jλ(1 − δq2)qζ

1 − (δ + 1 + δλ)q2 + δλq4 + 2jλ(1 − (1 + δ)q2)qζ

∣∣∣∣ . (3.17)

As shown in appendix, there are three invariant points for C3 which are denoted
as P, Q, and R (qP < qQ < qR), respectively. Following Procedure 1, the largest
invariant point R can be derived as
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q2
R = 1

δ
+ 3

2
+

√(
1

δ
− 3

2

)2

+ 4

δ
, (3.18)

which possesses a relatively large value (q2
R ≥ 3). The optimal stiffness ratio λ can

be obtained as

λ = 2(q4
Rδ(1 + δ) − (1 + 2δ)q2

R + 1)

δq2
R(q4

Rδ − 2(δ + 1)q2
R + 2)

or
2((1 + 2δ)(1 + δ)q2

R − 2(1 + δ))

q2
R(δ(1 + 2δ)q2

R − 2(1 + 2δ + 2δ2))
.

(3.19)
The optimal damping ratio ζ can be obtained as

ζ =
√

ζ 2
P + ζ 2

Q

2
, (3.20)

where ζ 2
P and ζ 2

Q can be obtained as

ζ 2
P,Q =

(
1 − δ(1 + λ)q2P,Q

1 − δq2P,Q

) (
δ(1 + λ)(2 − (1 + 2δ)q2P,Q) − (2δλq2P,Q − 1)(1 − δq2P,Q)

4λ2q2P,Q

)
,

(3.21)
q2
P and q2

Q are solutions of the following quadratic function with respect to q2:

q4 −
(

2

δλ
(1 + λ + δ + λδ) − q2

R

)
q2 + 2

δ2λq2
R

= 0. (3.22)

Proof See appendix.

Procedure 2 In summary, the H∞ tuning procedure for C3 is given below:

1. Obtain qR from (3.18);
2. Obtain λopt by substituting qR into (3.19);
3. Obtain qP and qQ by solving (3.22);
4. Obtain ζ 2

p and ζ 2
Q by substituting qP and qQ into (3.21), respectively;

5. Obtain the optimal ζopt from (3.20).

Note that in (Lazar et al. 2014), a similar tuning procedure was given for the
configuration C3 by following the procedure given in (Den Hartog 1985) as well.
The main difference between the method in this paper and the one in (Lazar et al.
2014) is the approach in calculating the optimal parameters λ and ζ . In this paper, the
analytical solutions of the optimal λ and ζ are given, that is, (3.18), (3.19), and (3.21);
while in (Lazar et al. 2014), the optimal λ and ζ are obtained relying on numerical
iterations. Hence, the procedure in this paper is more convenient and reliable.

The transmissibility μ of C3 for δ = 0.2 is illustrated in Fig. 3.9.
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Fig. 3.9 Transmissibility μ for C3 when δ = 0.2

Proposition 3.3 The transmissibility for C4 can be obtained as

μ =
∣∣∣∣ 2(1 − δ(1 + λ)q2)ζ + jδq

2(δλq4 − (1 + δ + δλ)q2 + 1)ζ + jδ(1 − q2)q

∣∣∣∣ . (3.23)

Following Procedure 1, the optimal stiffness ratio λ can be obtained as

λ = 1

δ
. (3.24)

The optimal damping ratio ζ can be obtained as

ζopt =
√

ζ 2
P + ζ 2

Q

2
, (3.25)

where

ζ 2
P = δ2

(
1 − √

δ/(2 + δ)
)

4
(
(1 + δ)

√
δ/(2 + δ) − δ

) (
(δ + 3)

√
δ/(2 + δ) + δ

) , (3.26)

ζ 2
Q = δ2

(
1 + √

δ/(2 + δ)
)

4
(
(1 + δ)

√
δ/(2 + δ) + δ

) (
(δ + 3)

√
δ/(2 + δ) − δ

) . (3.27)

Proof See Appendix.

The transmissibility μ of C4 for δ = 0.2 is illustrated in Fig. 3.10.

Proposition 3.4 The transmissibility for C5 can be obtained as

μ =
∣∣∣∣ 1 − δ(1 + λ)q2 + j2(λ + 1)ζq

1 − (1 + δ + δλ)q2 + δλq4 + j2ζ(λ + 1 − λq2)q

∣∣∣∣ . (3.28)
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Fig. 3.10 Transmissibility μ for C4 when δ = 0.2

Following Procedure 1, the optimal stiffness ratio λ can be obtained as

λ = 1

2δ

(
1 − 2δ + √

1 − 2δ
)

, (3.29)

which requires δ < 1/2. The optimal damping ratio ζ can be obtained as

ζopt =
√

ζ 2
P + ζ 2

Q

2
, (3.30)

where

ζ 2
P,Q =

(
1 − δ(1 + λ)q2

P,Q

) (
1 + 2δ + 2δλ − 3δλq2

P,Q

)
4(λ + 1)λq2

P,Q

(3.31)

and

q2
P,Q = 1

4δλ(λ + 1)

(
1 + 2λ + 2δ(1 + λ)2 ±

√(
2δ(1 + λ)2 + 1 − 2λ

)2 + 8λ

)
.

(3.32)

Proof See Appendix.

The transmissibility μ of C5 for δ = 0.2 is illustrated in Fig. 3.11.

Comparison between the traditional DVA and the inerter-based isolators

Now, all the optimal parameters for these inerter-based isolators in H∞ optimization
have been derived. In this section, the performance of the inerter-based isolators will
be compared with the traditional DVA as shown in Fig. 3.12. For the traditional DVA,

μ =
√

Aζ 2 + B

Cζ 2 + D
,
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Fig. 3.11 Transmissibility μ for C5 when δ = 0.2

Fig. 3.12 The dynamic
vibration absorber attached
to the object mass

where A = 4λ2q2, B = (1 − δλq2)2, C = 4λ2
(
1 − (1 + δ)q2

)2
q2ζ 2 + (

1 − (1 +
δ + δλ)q2 + δλq4

)2
, and the mass ratio δ and the stiffness ratio λ are defined as

δ = ma
m and λ = k

ka
, respectively.

It is well known that the optimal parameters for the traditional DVA (Ren 2001;
Cheung and Wong 2011a; Asami et al. 1991) are

λopt = (δ + 1)2

δ
, ζopt = δ

1 + δ

√
3δ

8(1 + δ)
.
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Fig. 3.13 Comparison between traditional DVA and inerter-based isolators when δ = 0.2

Fig. 3.14 Comparison of the maximal μ in H∞ optimization

Figure 3.13 shows the comparison between the traditional DVA and the inerter-
based isolators when the inertance-to-mass ratio (or mass ratio for traditional DVA)
δ = 0.2, where it is clearly shown that in terms of the same δ, the configuration C4
provides comparable performance compared with the traditional DVA, whereas both
C3 andC5 perform better than the traditional DVA. Such an observation is confirmed
by Fig. 3.14, where the comparison of the maximal μ with respect to different δ is
shown. The comparison of the optimal stiffness ratio λ and damping ratio ζ with
respect to different δ is shown in Fig. 3.15.

Note that the fundamental difference between the traditional DVA and the inerter-
based isolators is that the inertance-to-mass ratio of the inerter-based isolators can
easily be larger than themass ratio of the traditionalDVA, as large inertance can easily
be obtained without increasing the physical mass of the whole system. For example,
the inertance of a rack–pinion inerter or a ball–screw inerter can be significantly
magnified by enlarging the gear ratios (Smith 2002; Chen et al. 2009). However,
the mass ratio δ for the traditional DVA is practically less than 0.25 (Cheung and
Wong 2011a; Inman 2008). From this point of view, the performance of the inerter-
based isolators can be further improved compared with the traditional DVA, and the
inerter-based isolators are potentially more attractive than the traditional DVA.
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(a)

(b)

Fig. 3.15 Comparison of the optimal parameters in H∞ optimization. a Optimal stiffness ratio λ;
b optimal damping ratio ζ

3.5 H2 Optimization for Inerter-Based Isolators

H2 optimization aims to minimize the total vibration energy or the mean square
motion of the objectmasswhenwhite noise excitation is enforced (Cheung andWong
2011b). In the case of random excitation such as wind loading instead of harmonic
excitation, the H2 optimizationwould bemore practical than the H∞ optimization. In
this section, the analytical solutions for the inerter-based isolators in H2 optimization
will be derived and compared with the traditional DVA.

The performance measure to be minimized in H2 optimization is defined as fol-
lows (Cheung and Wong 2011b; Asami et al. 1991):

I = E
[
x21

]
2π S0ωn

, (3.33)

where S0 is the uniform power spectrum density function. Denoting μ = |H(jq)| ,
the mean square value of x1 of the object mass m can be calculated as

E
[
x21

] = S0

∫ ∞

−∞
|H(jq)|2 dω = S0ωn

∫ ∞

−∞
|H(jq)|2 dq. (3.34)
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Substituting (4.12) into (4.11), one obtains

I = 1

2π

∫ ∞

−∞
|H(jq)|2 dq, (3.35)

which is exactly the definition of the H2 norm of the transfer function Ĥ(s) by
replacing jq in H(jq) with the Laplace variable s.

Therefore, the H2 performance measure is rewritten as

I =
∥∥∥Ĥ(s)

∥∥∥2

2
. (3.36)

In what follows, an analytical approach to calculating the H2 norm of the transfer
function Ĥ(s)will be presented according to (Doyle et al. 1992, Sect. 2.6), which has
been used to derive analytical solutions for vehicle suspensions in (Hu et al. 2014;
Scheibe and Smith 2009).

For a stable transfer function Ĥ(s), its H2 norm can be calculated as (Doyle et al.
1992, Sect. 2.6)

‖Ĥ(s)‖22 = ‖C(s I − A)−1B‖22 = CLCT ,

where A, B, and C are the minimal state-space realization Ĥ(s) = C(s I − A)−1B
and L is the unique solution of the Lyapunov equation given as

AL + L AT + BBT = 0. (3.37)

We can write Ĥ(s) as

Ĥ(s) = bn−1sn−1 + · · · + b1s + b0
sn + an−1sn−1 + · · · + a1s + a0

in its controllable canonical form below

ẋ = Ax + Bu, y = Cx,

where

A =

⎡
⎢⎢⎢⎢⎢⎣

0 1 0 . . . 0
0 0 1 . . . 0
...

...
...

...
...

0 0 0 . . . 1
−a0 −a1 −a2 . . . −an−1

⎤
⎥⎥⎥⎥⎥⎦ , B =

⎡
⎢⎢⎢⎢⎢⎣

0
0
...

0
1

⎤
⎥⎥⎥⎥⎥⎦ , C = [

b0, b1, b2 . . . bn−1
]
.

Note that the analytical solution for the configuration C1 cannot be derived by
using the above method, as the Ĥ(s) for C1 is not strictly proper. Actually, the H2
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norm of Ĥ(s) for C1 is infinity which can be obtained by observing Fig. 3.5, the
area under the frequency response curve of C1 which represents the H2 norm of the
transfer function is infinity.

The procedure to derive the optimal parameters for C2, C3, C4, and C5 can be
summarized as follows:

Procedure 3

1. Analytically calculate the H2 performancemeasure I using themethod discussed
above. Denote the performance measure as I = F(λ)ζ + G(λ)

ζ
, where F(λ) and

G(λ) are functions of λ with F(λ) > 0, G(λ) > 0;

2. Obtain the equations of optimal ζ and I as ζopt =
√

F(λ)

G(λ)
and Iopt = 2

√
F(λ)G(λ),

respectively;
3. Obtain the optimal λ as the one minimizing F(λ)G(λ), denoted as λopt ;
4. Obtain the optimal ζ and I by substituting λopt into the equations obtained in

Step 2, respectively.

Note that in Step 1 of Procedure 3, it includes the case that F(λ) and G(λ) are
constants with respect to λ. Following Procedure 3, the optimal parameters for C2,
C3, C4, and C5 in the H2 optimization will be derived subsequently.

Proposition 3.5 For the configuration C2, the H2 performance measure in (4.13)
is

Ic2 = 1 − δ + δ2

δ2
ζ + 1

4ζ
. (3.38)

For a given δ, the optimal ζ is

ζopt = δ

2
√
1 − δ + δ2

.

After substituting ζopt into (4.23), the optimal Ic2 is

Ic2,opt =
√
1 − δ + δ2

2δ
.

Proof Equation (4.23) can be obtained by direct calculation, and then the optimal ζ
and Ic2,opt can be obtained subsequently.

Proposition 3.6 For the configuration C3, the H2 performance measure in (4.13)
is

Ic3 = 1 − δ + δ2

δ2
ζ + 1 − 2δλ + δ2λ2 + δ2λ

4λ2δ2ζ
. (3.39)

For a given δ, the optimal λ can be obtained as

λopt =
{ 2

δ(2−δ)
, δ < 2,

∞, δ ≥ 2.
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Note that in the case of δ ≥ 2, C3 reduces to C2. For a given δ and λ, the optimal ζ
can be obtained as

ζopt = 1

2λ

√
1 − 2δλ + δ2λ

1 − δ + δ2
.

Then, the optimal Ic3 can be obtained by substituting ζopt and λopt into (4.40).

Proof Equation (4.40) can be obtained by direct calculation. The optimal λ can be
obtained by checking the second part in (4.40). Since both parts in (4.40) are positive,
the optimal ζ can be obtained subsequently.

Proposition 3.7 For the configuration C4, the H2 performance measure in (4.13)
is

Ic4 = 1 − 2δλ + δ2λ2 + 2δ2λ − δ + δ2

δ2
ζ + 1

4ζ
. (3.40)

For a given δ, the optimal λ can be obtained as

λopt =
{

1−δ
δ

, δ < 1,
0, δ ≥ 1.

Note that in the case of δ ≥ 1, C4 reduces to C2. For a given δ and λ, the optimal ζ
can be obtained as

ζopt = 1

2

√
δ2

1 − 2δλ + δ2λ2 + 2δ2λ − δ + δ2
.

Then, the optimal Ic4 can be obtained by substituting ζopt and λopt into (3.40).

Proof The proof is omitted as it is similar to that of Proposition 3.6.

Proposition 3.8 For the configuration C5, the H2 performance measure in (4.13)
is

Ic5 = (λ + 1)2 ζ + δ3λ3 + δ(3δ − 2)λ2 + (1 − 2δ + 3δ3)λ + δ2

4λζ
. (3.41)

For a given δ and λ, the optimal ζ and Ic5 can be obtained as

ζopt = 1

2(1 + λ)

√
δ3λ3 + δ(3δ − 2)λ2 + (1 − 2δ + 3δ3)λ + δ2

λ
, (3.42)

Ic5,opt = (λ + 1)

√
δ3λ3 + δ(3δ − 2)λ2 + (1 − 2δ + 3δ3)λ + δ2

λ
. (3.43)

Let Q be the set of real, positive solutions λ of the quartic equation

4δ2λ4 + (11δ − 6)δλ3 + (2 − 6δ + 9δ2)λ2 + δ2λ − δ2 = 0. (3.44)
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The optimal λ is chosen from the elements of Q as well as 0 that makes Ic5,opt
minimum. If the optimal λ is 0, configuration C5 reduces to C1.

Proof Equation (4.41) can be obtained by direct calculation. Since both parts in
(4.41) are positive, the optimal ζ and Ic5 can be obtained as in (3.42) and (3.43),
respectively in a straightforward manner. In terms of (3.43), by making the derivative
of Ic5,opt with respect to λ zero, the quartic equation (3.44) can be obtained, and then
the optimal λ can be selected from the real, positive solutions of the quartic equation
as well as ∞.

Comparison between the traditional DVA and the inerter-based isolators

Now, all the optimal parameters for the inerter-based isolators in H2 optimization
have been derived. In this section, the performance of these inerter-based isolators
will be compared with the traditional DVA as shown in Fig. 3.12.

For the traditional DVA shown in Fig. 3.12, the H2 performance measure can be
derived as

IDV A = 1 + δ

δ
ζ + (δ + 1)2 − δ(δ + 2)λ + δ2λ2

4λ2δ2ζ
, (3.45)

where themass ratio δ and the stiffness ratioλ are defined as δ = ma/m andλ = k/ka .
Similar to the inerter-based isolators, the optimal parameters can be obtained as

λopt = 2(δ + 1)2

δ(δ + 2)
,

ζopt = 4

√
δ3(3δ + 4)

(δ + 1)3
,

IDV A,opt = 1

2

√
3δ + 4

δ(δ + 1)
.

Figures 3.16, 3.17, and 3.18 show the comparison between the traditionalDVAand
the inerter-based isolators in H2 optimization. As shown in Fig. 3.16, for the same
δ, the inerter-based isolators C5 and C3 perform better than the traditional DVA
when δ is less than 0.44 and 1.2, respectively, and the configuration C3 performs
slightly worse than the traditional DVA. As shown in Fig. 3.16, when δ < 0.44, the
configurationC5 performs best among all the inerter-based isolators. From Fig. 3.17,
it is shown that the damping ratios ζ of the inerter-based isolators are normally smaller
than the traditional DVA. The detailed values of the parameters are given in Table 3.2,
where it is shown thatwhen δ = 0.2, the inerter-based isolatorC3 andC5 can provide
8.75% and 49.06% improvement compared with the traditional DVA.

Similar to the H∞ optimization, the fundamental difference between the tradi-
tional DVA and the inerter-based isolators is that relatively large value of inertance
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Fig. 3.16 Comparison between traditional DVA and inerter-based isolators in H2 optimization

Fig. 3.17 Optimal damping ratio ζ in H2 optimization

Fig. 3.18 Optimal stiffness ratio λ in H2 optimization

can easily be achieved without increasing the physical mass of the isolation sys-
tem (Smith 2002; Chen et al. 2009), whereas the attached mass ma is normally quite
small and the typical mass ratio δ for the traditional DVA is less than 0.25 (Cheung
and Wong 2011a; Inman 2008). In this sense, the performance of the inerter-based
isolators can be further improved by increasing the inertance-to-mass ratio δ even
δ > 0.25, which is a potential advantage of the inerter-based isolators compared with
the traditional DVA.
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Table 3.2 Comparison of optimal parameters in H2 optimization

(a) H2 performance measure I

δ DVA C2 C3 C4 C5

0.1 3.1261 9.5394 2.9787 3.1623 1.0479

0.2 2.1890 4.5826 1.9975 2.2361 1.1152

0.3 1.7723 2.9627 1.5607 1.8257 1.2184

0.4 1.5236 2.1794 1.3077 1.5811 1.3798

0.5 1.3540 1.7321 1.1456 1.4142 1.6015

1 0.9354 1.0000 0.8660 1.0000 3.1087

2 0.6455 0.8660 0.8660 0.8660 6.5065

5 0.3979 0.9165 0.9165 0.9165 16.9393

(b) Optimal stiffness ratio λ

δ DVA C3 C4 C5

0.1 11.5238 10.5263 9.0000 0.0796

0.2 6.5455 5.5556 4.0000 0.1787

0.3 4.8986 3.9216 2.3333 0.2824

0.4 4.0833 3.1250 1.5000 0.3426

0.5 3.6000 2.6667 1.0000 0.3542

1 2.6667 2.0000 0 0.3139

2 2.2500 ∞ 0 0.2815

5 2.0571 ∞ 0 0.2623

(c) Optimal damping ratio ζ

δ DVA C2 C3 C4 C5

0.1 0.2274 0.0524 0.0164 0.1581 0.4495

0.2 0.5837 0.1091 0.0476 0.2236 0.4014

0.3 0.9816 0.1688 0.0889 0.2739 0.3704

0.4 1.3930 0.2294 0.1376 0.3162 0.3827

0.5 1.8053 0.2887 0.1909 0.3536 0.4367

1 3.7417 0.5000 0.4330 0.5000 0.9004

2 6.8853 0.5774 0.5774 0.5774 1.9810

5 13.2637 0.5455 0.5455 0.5455 5.3157

3.6 Conclusions

In this paper, the performance of inerter-based isolators has been investigated by
applying five configurations with inerter in a “uni-axial” isolation system. In the first
part of this paper, the frequency responses of the inerter in parallel connection and the
one in series connection are analyzed. It has been analytically demonstrated that both
the parallel-connected inerter and the series-connected inerter one can effectively
lower the invariant points, and the isolation for high frequencies can be weakened by
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using inerter. In the second part of this paper, both H∞ and H2 performances have
been considered for the proposed inerter-based isolators. The fixed-point theory and
the analytical method in calculating H2 norm are employed to analytically derive the
optimal parameters in H∞ and H2 optimization, respectively. The performances of
the inerter-based isolators have also been compared with the traditional DVA to show
the benefits of the inerter-based isolators. On one hand, it has been shown that for
the same mass ratio or inertance-to-mass ratio, two inerter-based isolators perform
better than the traditional DVA. On the other hand, two unique properties make the
inerter-based isolators potentially more attractive than the traditional DVA: first, a
large inertance can easily be obtained for inerter without increasing the physical mass
of the whole system; second, the inerter is a built-in element and there is no need to
mount an additional mass to the object to be isolated.

In practical applications of the inerter-based isolators, the large transmission ratios
employed in the physical embodiments of inerter will amplify the internal friction
of the rotating device with a gain that is equal to the square of the transmission ratio.
This could lead to an amount of damping at a system level larger than the optimal
one, which may render the proposed inerter-based isolators far from an ideal design.
More research work needs to be carried to find low-friction designs to be used with
high amplification ratio.

Appendix

Proof of Proposition 3.1

Observing Fig. 3.6, it is shown that the curve horizontally passing through P indicates
the optimal damping. This optimal damping can be obtained by solving the following
equation:

∂μ2

∂q2

∣∣∣∣
q=qP

= 0. (3.46)

Denote μ = √ n
m , where n = δ2q2 + 4(1 − δq2)2ζ 2, m = δ2(1 − q2)2q2 + 4(1 −

(1 + δ)q2)2ζ 2. Equation (3.46) can be written in another form as

n′m − m ′n = 0,

where n′ = ∂n/∂q2 and m ′ = ∂m/∂q2. For the invariant point P ,

n

m
= 1

(1 − q2)2
= (1 − δq2)2

(1 − (1 + δ)q2)2
,

therefore,
(1 − q2)2n′ − m ′ = 0.
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Since
n′ = −8(1 − δq2)δζ 2 + δ2,

m ′ = −8(1 − (1 + δ)q2)(δ + 1)ζ 2 + δ2(1 − q2)(1 − 3q2),

after substituting qP into (3.14), one obtains

ζopt = 1

2

√
δ(1 + δ −

√
1 + δ2).

Proof of Proposition 3.2

Denote
A = 4λ2(1 − δq2)2q2, B = (1 − δ(1 + λ)q2)2,

C = 4λ2(1 − (1 + δ)q2)2q2, D = (1 − (δ + 1 + δλ)q2 + δλq4)2.

Then, μ in (3.17) can be rewritten as

μ =
√

Aζ 2 + B

Cζ 2 + D
. (3.47)

To find the invariant points which are independent of damping, it requires

A

C
= B

D
,

that is,
1 − δq2

1 − (1 + δ)q2
= ± 1 − δ(1 + λ)q2

1 − (δ + 1 + δλ)q2 + δλq4
.

With the plus sign, after cross-multiplication, one obtains δ2λq6 = 0,which leads to
the trivial solution q = 0. With the minus sign, after simple calculation, one obtains

δ2λq6 − 2δ(λ + δ + 1 + δλ)q4 + 2(2δ + 1 + δλ)q2 − 2 = 0, (3.48)

which is a cubic form in q2. Therefore, there are three invariant points for the con-
figuration C3.

Denoting these three invariant points as P , Q, and R (qP < qQ < qR), separately,
one obtains
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q2
P + q2

Q + q2
R = 2

δλ
(λ + δ + 1 + λδ), (3.49)

q2
Pq

2
Qq

2
R = 2

δ2λ
, (3.50)

q2
Pq

2
Q + q2

Pq
2
R + q2

Qq
2
R = 2

δ2λ
(2δ + 1 + δλ). (3.51)

Since at points P and Q, the values of μ are independent of ζ , then in the case of
ζ = ∞, one obtains

∣∣∣∣ 1 − δq2
P

1 − (1 + δ)q2
P

∣∣∣∣ =
∣∣∣∣∣ 1 − δq2

Q

1 − (1 + δ)q2
Q

∣∣∣∣∣ .
It can be checked that

1 − δq2
P

1 − (1 + δ)q2
P

> 0,
1 − δq2

Q

1 − (1 + δ)q2
Q

< 0.

Then, one obtains
1 − δq2

P

1 − (1 + δ)q2
P

= − 1 − δq2
Q

1 − (1 + δ)q2
Q

.

After cross-multiplication and simplification, one obtains

2δ(1 + δ)q2
Pq

2
Q − (q2

P + q2
Q)(1 + 2δ) + 2 = 0. (3.52)

Substituting (3.50) and (3.51) into (3.52), one can obtain a quadratic equation with
respect to q2

R as

δλ(1 + 2δ)q4
R − 2(λ + 2δλ + 3δ + 2δ2 + 1 + 2λδ2)q2

R + 4(1 + δ) = 0. (3.53)

Note that qR is the same solution as both (3.48) and (3.53) for the same δ and λ.
Solving λ from (3.48) and (3.53), separately, one obtains

λ = 2(q4
Rδ(1 + δ) − (1 + 2δ)q2

R + 1)

δq2
R(q4

Rδ − 2(δ + 1)q2
R + 2)

, (3.54)

λ = 2((1 + 2δ)(1 + δ)q2
R − 2(1 + δ))

q2
R(δ(1 + 2δ)q2

R − 2(1 + 2δ + 2δ2))
. (3.55)

Equating the solutions and simplifying the results, one obtains

δq4
R − (2 + 3δ)q2

R + 2 = 0. (3.56)

Then, one obtains q2
R as shown in (3.18).
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From (3.18), it is easy to show that q2
R ≥ 3, which is relatively large compared

with the natural frequency. This can explain why only invariant points P and Q are
involved in the H∞ tuning of C3.

In this way, the optimal λ can be obtained by substituting q2
R in (3.18) into (3.54)

or (3.55). After obtaining λ, all the three invariant points can be obtained by solving

q4 −
(

2

δλ
(1 + λ + δ + λδ) − q2

R

)
q2 + 2

δ2λq2
R

= 0,

which is obtained from (3.50) and (3.51).
The procedure of calculating the optimal damping ratio ζ is similar to the proce-

dure in appendix, where the optimal ζ makes the gradients at invariant points P and
Q zero. After calculation and simplification, one obtains (3.21). Taking an average
of ζ 2

P and ζ 2
Q , one obtains the optimal ζopt as in (3.20).

Proof of Proposition 3.3

Denote
A = 4(1 − δ(1 + λ)q2)2, B = δ2q2,

C = 4(1 − (1 + δ + δλ)q2 + δλq4)2, D = δ2(1 − q2)2q2,

and μ in (3.23) can be rewritten as

μ =
√

Aζ 2 + B

Cζ 2 + D
. (3.57)

To find the invariant points which are independent of damping, it requires

A

C
= B

D
,

that is,
1 − δ(1 + λ)q2

1 − (1 + δ + δλ)q2 + δλq4
= ± 1

1 − q2
.

Again, with the plus sign, one obtains the trivial solution zero, and with the minus
sign, one obtains

δ(1 + 2λ)q4 − 2(1 + δ + δλ)q2 + 2 = 0. (3.58)

Then, one obtains the two invariant points P and Q (qP < qQ) as

q2
P,Q = 1 + δ + δλ ± √

(1 + δ + δλ)2 − 2δ(1 + 2λ)

δ(1 + 2λ)
. (3.59)
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Letting the ordinates at invariant points P and Q equal, one has

∣∣∣∣ 1

1 − q2
P

∣∣∣∣ =
∣∣∣∣∣ 1

1 − q2
Q

∣∣∣∣∣ .
It can be checked that 1

1−q2
P

> 0 and 1
1−q2

Q
< 0. Then, one obtains

1

1 − q2
P

= − 1

1 − q2
Q

.

After cross-multiplication and simplification, one has

q2
P + q2

Q = 2. (3.60)

Considering (3.58), one obtains

2(1 + δ + δλ)

δ(1 + 2λ)
= 2,

which leads to (3.24).
Similar to the method in appendix, the optimal ζ can be obtained by making μ to

have zero gradients at invariant points P and Q. After calculation and simplification,
one obtains

ζ 2
P,Q = q2

P,Qδ2

4
(
1 − δ(1 + λ)q2

P,Q

) (
1 + 2δ + 2δλ − δ(1 + 3λ)q2

P,Q

) .

After substituting (3.59) and (3.24), one obtains (3.26) and (3.27).
Taking an average of ζ 2

p and ζ 2
Q , one obtains the optimal ζopt as in (3.25).

Proof of Proposition 3.4

Denote
A = 4(λ + 1)2q2, B = (1 − δ(1 + λ)q2)2,

C = 4(λ + 1 − λq2)2q2, D = (1 − (1 + δ + δλ)q2 + λδq4)2.

Then, μ in (3.28) can be rewritten as

μ =
√

Aζ 2 + B

Cζ 2 + D
. (3.61)
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To find the invariant points which are independent of damping, it requires

A

C
= B

D
,

that is,
λ + 1

λ + 1 − λq2
= ± 1 − δ(1 + λ)q2

1 − (1 + δ + δλ)q2 + δλq4
.

Similarly, with plus sign, one obtains the trivial solution zero, and with minus sign,
one obtains

2δλ(λ + 1)q4 − (
1 + 2λ + 2δ(1 + λ)2

)
q2 + 2(λ + 1) = 0. (3.62)

Thus, one obtains the two invariant points P and Q (qP < qQ) as in (3.32).
Letting the ordinates at invariant points P and Q equal, one has

∣∣∣∣ λ + 1

λ + 1 − λq2
P

∣∣∣∣ =
∣∣∣∣∣ λ + 1

λ + 1 − λq2
Q

∣∣∣∣∣ .
It can be checked that λ+1

λ+1−λq2
P

> 0 and λ+1
λ+1−λq2

Q
< 0. Then, one obtains

λ + 1

λ + 1 − λq2
P

= − λ + 1

λ + 1 − λq2
Q

.

After cross-multiplication and simplification, one has

q2
P + q2

Q = 2(λ + 1)

λ
.

Comparing with (3.62), one obtains

1 + 2λ + 2δ(1 + λ)2

2δλ(λ + 1)
= 2(λ + 1)

λ
,

which leads to
2δλ2 − 2(1 − 2δ)λ + 2δ − 1 = 0.

It can be checked that this equation has real solutions if and only if

δ ≤ 1/2.

Under this condition, the optimal λ can be obtained as in (3.29).
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Note that if δ = 1
2 , from (3.29), one has λ = 0 or k = ∞. In this case, C5 reduces

to C1. Thus, the more reasonable assumption is δ < 1
2 rather than δ ≤ 1

2 .
Similarly, the optimal ζ can be obtained by making μ to have zero gradients at

invariant points P and Q. After calculation and simplification, one obtains ζ 2
P and

ζ 2
Q as in (3.31).
Taking an average of ζ 2

p and ζ 2
Q , one obtains the optimal ζopt as in (3.30).
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Chapter 4
Inerter-Based Dynamic Vibration
Absorption System

Abstract This chapter is concerned with the H∞ and H2 optimization problem
for inerter-based dynamic vibration absorbers (IDVAs). The proposed IDVAs are
obtained by replacing the damper in the traditional dynamic vibration absorber
(TDVA) with some inerter-based mechanical networks. It is demonstrated in this
chapter that adding one inerter alone to the TDVA provides no benefits for the H∞
performance and negligible improvement (less than 0.32% improvement over the
TDVA when the mass ratio less than 1) for the H2 performance. This implies the
necessity of introducing another degree of freedom (element) together with inerter
to the TDVA. Therefore, four different IDVAs are proposed by adding an inerter
together with a spring to the TDVA, and significant improvement for both the H∞
and H2 performances is obtained.Numerical simulations in dimensionless form show
that more than 20 and 10% improvement can be obtained for the H∞ and H2 per-
formances, respectively. Besides, for the H∞ performance, the effective frequency
band can be further widened by using inerter.

Keywords Dynamic vibration absorber · IDVA · H∞ optimization ·
H2 optimization · Dimensionless analysis

4.1 Introduction

Dynamic vibration absorber (DVA) is an auxiliarymass systemattached to a vibrating
primary system to reduce undesired vibration, which is widely used in the fields of
civil and mechanical engineering for its simple design and high reliability (Den
Hartog 1985). In the first DVA proposed by Frahm in 1909 (Frahm 1909), only a
spring was employed, and it was useful only in a narrow band of frequency. In 1928,
the damping mechanism was introduced by Ormondroyd and Den Hartog (1928),
which is a parallel arrangement of a spring and a damper, and as a result, the effective
frequency band was significantly widened. It was also pointed out in Ormondroyd
andDenHartog (1928) that for the spring–damperDVA (in this chapter, it is called the
traditionalDVAorTDVA)andundampedprimary system, therewere two frequencies
called fixed points, where the magnitudes were independent of the damping, and the
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optimal setting of the spring stiffness was the one equalizing the magnitudes at
the fixed points, and the optimal damping was the one making the curves of the
frequency response horizontally pass through the fixed points. Such a tuning method
is still in use today and currently known as the fixed-pointmethod (DenHartog 1985),
which has been demonstrated to be a suboptimal H∞ optimizationmethod (Nishihara
and Asami 2002). The exact solutions were analytically derived in Nishihara and
Asami (2002) and it was also shown that the fixed-point method actually yielded
an approximate but highly precise solution (with less than 0.5% deviation when the
mass ratio less than 1). Another common performance measure of tuning DVA is the
H2 performance measure, which is desirable when the primary system subjected to
randomexcitations. The objective of H2 optimization is to optimize the total vibration
energy of the system over all frequencies (Crandall and Mark 1963). For the TDVA
with undamped primary systems, the optimal tuning frequency and damping ratio
were investigated in Crandall and Mark (1963), and then the analytical solutions
were derived in Asami et al. (1991). For damped primary systems, various design
methods and tuning criteria have been proposed, such as those in Anh and Nguyen
(2013), Asami et al. (2002), Ghosh and Basu (2007), Bekdas and Nigdeli (2013), and
the applications of the TDVA in nonlinear and distributed primary systems have been
investigated (Cheung and Wong 2009; Pai and Schulz 2000; Miguelez et al. 2010).
The active DVAs utilizing feedback control actions have also been proposed (Gao
et al. 2013; Si et al. 2014; Zhan et al. 2013).

Vibration absorption is one of the potential applications of inerter (Smith 2002).
In Smith (2002), the problem of designing inerter-based networks to absorb vibration
at a specific frequency was studied. Thereafter, the suppression of vibration over a
broadband frequency by using inerter has been proposed. In Lazar et al. (2014),
an inerter-based configuration (C4 in this chapter) was employed between adjacent
storeys to suppress the vibration of amultistorey building. InHu et al. (2015), optimal
solutions for several inerter-based isolators (including all the configurations except
C5 in this paper) were algebraically derived based on a “uniaxial” vibration isolation
system. In Marian and Giaralis (2014), a new configuration incorporating an inerter
was proposed and applied to a mechanical cascaded (chain-like) systems. In Brzeski
et al. (2014), the dynamics of a tuned mass absorber with an additional viscous
damper and an inerter attached to the pendulum was investigated.

In this chapter, a novel structure for inerter-based DVAs (IDVAs) is proposed by
replacing the damper in the TDVA with some inerter-based mechanical networks,
and both the H∞ and H2 performances of the proposed IDVAs are investigated. It
is demonstrated in this chapter that adding an inerter alone to the TDVA, no matter
it is in parallel connection or in series connection, provides no benefits for the H∞
performance and negligible benefits (less than 0.32% improvement over the TDVA
when the mass ratio less than 1) for the H2 performance. In contrast, by adding
an inerter together with a spring to the TDVA (e.g. C3, C4, C5, and C6 in this
chapter), both H∞ and H2 performances can be significantly improved. Over 20%
improvement compared with the TDVA can be obtained for the H∞ performance,
and the effective frequency band can also be further widened by using inerter. For
the H2 performance, it is analytically demonstrated that the IDVAs proposed in
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this chapter perform surely better than the TDVA and over 10% improvement is
obtained in numerical simulation. Moreover, a minmax framework directly using the
resonance frequencies is proposed for the H∞ optimization, and an algebraic method
to analytically calculate the H2 norm is employed for the H2 optimization. All these
constitute the main contributions of this chapter.

4.2 Preliminary

The traditional spring–damper DVA is shown in Fig. 4.2a, where the mass M is the
primary mass, i.e., the main structure the vibration of which is to be controlled. The
spring–damper–mass (k, c, m) system is the DVA to be designed. The commonly
used method for parameter tuning is the so-called fixed-point method (Den Hartog
1985), which can be summarized as follows.

The frequency response of the spring–damper DVAwith respect to various values
of absorber damping is shown in Fig. 4.1. It is obvious that if the damping is zero,
the spring–damper DVA reduces the spring-only DVA (Frahm 1909); while is the
damping is ∞, the two masses are rigidly connected together then a single-degree-
of-freedom system is obtain. For both cases, the magnitudes are infinity, as shown
in Fig. 4.1. Therefore, there must exist a value of damping where the peak of the fre-
quency response is minimal. This result can also can be explained by from the energy
dissipation point of view. The amplitudes of the masses are reduced by converting
the kinetic energy into heat via the damper (Den Hartog 1985). The work done by the
damping force can be calculated by the force times the relative displacement. For the
case of zero damping, no work is done, and hence the amplitude is infinity; for the
case of infinity damping, the two masses are clamped together such that the relative
displacement is zero, and hence no work is done either. There must exist a damping
where the work done by the damping force is maximal and then the amplitudes are
minimized.

Fig. 4.1 Frequency response of the primarymasswith respect to various values of absorber damping
for traditional spring–damper DVA (Den Hartog 1985)



76 4 Inerter-Based Dynamic Vibration Absorption System

Observing Fig. 4.1, it is shown that two invariant points independent of the
damping are depicted. Therefore, the most favorable curve is the one which has
equal heights of the invariant points and a horizontal tangent through these invariant
points (Den Hartog 1985). Then, two steps are generally required for the fixed-point
method: first, a proper choice of the spring stiffness where the heights of the two
invariant points are equal; second, a proper choice of the damping coefficient where
the curve passes through the invariant points horizontally. Since it normally not possi-
ble tofind adamping coefficient such that the curve simultaneously passes through the
two invariant points horizontally, some approximations are usually employed (Den
Hartog 1985).

4.3 Inerter-Based Dynamic Vibration Absorbers

Figure 4.2 shows the comparison between the IDVAs proposed in this chapter and the
TDVA, where the IDVA is obtained by replacing the damper in the TDVAwith some
inerter-based mechanical networks. The entire networks employed in this chapter
are shown in Fig. 4.3. The equations of motion for the whole system in the Laplace
domain are

Ms2x = F + Fd − K x, (4.1)

ms2xa = −Fd , (4.2)

Fd = (k + sY (s)) (xa − x), (4.3)

where Y (s) is the admittance of the inerter-based passive mechanical networks and
Fd is the force of the DVA imposed on the primary mass M .

From (4.2) and (4.3), one obtains,

Fig. 4.2 Dynamic vibration absorbers (DVA): a traditional dynamic vibration absorber (TDVA);
b inerter-based dynamic vibration absorber (IDVA)
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(a) C1 (b) C2 (c) C3

(d) C4 (e) C5 (f) C6

Fig. 4.3 The employed inerter-based networks as Y (s) in Fig. 4.2

Fd = −R(s)x,

where

R(s) = (k + sY (s))ms2

k + ms2 + sY (s)
.

Then, one obtains the displacement transfer function as

H(s) = x

xs
= 1

s2
ω2

n
+ 1

K R(s) + 1
, (4.4)

where xs = F/K and ωn =
√

K
M are the static displacement and natural frequency

of the primary system, respectively.
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The admittance of each network in Fig. 4.3 is shown in Table 4.1, where Yi (s),
i = 1, . . . , 6 corresponds to Ci , i = 1, . . . , 6 in Fig. 4.3, respectively. Substituting
each Yi (s) into (4.4), one can obtain the detailed transfer function for each configura-
tion. To obtain the dimensionless representation of each configuration, the following
dimensionless parameters are defined as

μ = m
M : mass ratio

δ = b
m : inertance-to-mass ratio

ζ = c
2
√

mk
: damping ratio

η = ωb
ωm

: corner frequency ratio
γ = ωm

ωn
: natural frequency ratio

λ = ω
ωn

: forced frequency ratio

⎫
⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎭

(4.5)

where
ωm =

√
k
m : natural frequency of the DVA

ωb =
√

k1
b : corner frequency of the DVA

ωn =
√

K
M : natural frequency of the primary system

⎫
⎪⎪⎪⎬
⎪⎪⎪⎭

(4.6)

Remark 4 In this chapter, the force–current analogy between mechanical and elec-
trical networks is employed, and admittance is defined to be the ratio of force to
velocity, which agrees with the usual electrical terminology (see Smith 2002 for
details). Such a definition is consistent with some books (Shearer and Murphy 1967,
p. 328), but not others which use the force–voltage analogy (Hixson 1988).

Remark 5 Since the natural frequencies would be perturbed by using inerter as
demonstrated in Chen et al. (2014), ωm and ωn are not the real natural frequencies
of the whole system. Neither is ωb the real corner frequency. Here, these notations
are employed just for dimensionless representations.

Replacing s with jω in (4.4), the frequency response functions in a dimensionless
form can be obtained as

Hi ( jλ) = Rni + j Ini

Rmi + j Imi
, i = 1, . . . , 6, (4.7)

where Rni , Ini , Rmi , and Imi , i = 1, . . . , 6 are functions with respect to λ, γ , δ, and
ζ . The detailed representations are given in Appendix.
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Table 4.1 Admittance Y (s) for each configuration in Fig. 4.3

Y1(s) = bs + c Y2(s) = 1
1
bs + 1

c
Y3(s) = 1

s
k1

+ 1
c + 1

bs

Y4(s) = 1
1

k1
s +c

+ 1
bs

Y5(s) = 1
1

k1
s +bs

+ 1
c

Y6(s) = 1
1

bs+c + s
k1

4.4 H∞ Optimization for the IDVAs

4.4.1 Minmax Optimization Problem Formulation

The objective of the H∞ optimization is to minimize the maximum magnitude of
the frequency response |Hi ( jλ)| , i = 1, . . . , 6, which is known as the H∞ norm
of Hi (s) with s = jλ. For the TDVA, the fixed-point method (Den Hartog 1985) is
commonlyused to analytically obtain the optimal parameters (DenHartog1985, Sect.
3.3). Since there always exist more than two fixed points with respect to the damping
ratio for IDVAs, it is difficult to obtain simple and analytical representations for
optimal parameters. Given this fact, in this chapter, a minmax optimization problem
is formulated as follows to directlyminimize themagnitude at resonance frequencies.

For a given mass ratio μ, solving the follow minmax problem

min
δ,γ,η,ζ

(
max

λl

(|Hi ( jλl)|)
)

, i = 1, . . . , 6 (4.8)

subject to δ ≥ 0, γ ≥ 0, η ≥ 0, ζ ≥ 0, and λl , l = 1, . . . , N , are the real and positive
solutions of the following equation:

∂|Hi ( jλ)|2
∂λ2

= 0, (4.9)

where i = 1, . . . , 6 corresponds to the six IDVAs in Fig. 4.3, respectively.
The underlying idea of the minmax problem (4.8) and (4.9) is, instead of using

the fixed points to approximately minimize the H∞ norm as done in the fixed-point
method (Den Hartog 1985), here the resonance frequencies are directly used to
exactly minimize the H∞ norm. This is inspired by the method in Nishihara and
Asami (2002), where the two resonance frequencies were employed to derive the
exact solutions for the TDVA. Note that the solution set of (4.9), that is λl , l =
1, . . . , N , contains the resonance frequencies, anti-resonance frequencies, and other
frequencies where the curves horizontally pass through. Since the largest magnitude
of the frequency response, representing the H∞ norm of the transfer function, only
occurs at resonance frequencies, it is sufficient to minimize maxλl (|Hi ( jλl)|), l =
1, . . . , N , to obtain the optimal H∞ norm of the transfer function Hi (s).

Equation (4.9) can be transformed into a polynomial function with respect to λ2

as follows. From (4.7), |Hi ( jλ)|2 can be written as
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|Hi ( jλ)|2 = n

m
,

where n = R2
ni + I 2ni , m = R2

mi + I 2mi . Since

∂|Hi ( jλ)|2
∂λ2

= n′m − m ′n
m2

,

where n′ = ∂n
∂λ2 and m ′ = ∂m

∂λ2 , (4.9) is equivalent to

n′m − m ′n = 0, (4.10)

which is an equation of λ2 with different orders for different configurations.
Problem (4.8) and (4.10) is a constrained optimization problem, and the equal-

ity constraint (4.10) can be transformed into the objective function by employing
λl = f (δ, γ, η, ζ ). In this chapter, a direct search method is employed to solve the
constrained optimization problem (4.8) and (4.10) by using the Matlab solver pat-
ternsearch with multiple starting points.

4.4.2 Comparison Between the TDVA and IDVAs

For the TDVA, the optimal parameters can be analytically obtained as (Den Hartog
1985):

γopt =
√

1

1 + μ
, ζopt =

√
3μ

8(1 + μ)
,

and the optimal height at the two fixed points are
√

2+μ

μ
.

4.4.2.1 Performance Limitation of C1 and C2

In this subsection, it will be demonstrated that configurations C1 and C2 provide no
improvement for the H∞ performance compared with the TDVA.

For configuration C1, by directly using the fixed-point method in Den Hartog
(1985), the optimal parameters for C1 can be analytically obtained as

γopt =
√
1 + (1 + μ)δ

1 + μ
, ζopt =

√
3μ

8(1 + μ)
,

and the optimal height at the two fixed points is
√

2+μ+2δ(1+μ)

μ
. It is obvious that the

optimal δ is 0, which means that the parallel inerter in configuration C1 provides no
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Fig. 4.4 Comparison between the TDVA and C1 when μ = 0.1 with different δ

Fig. 4.5 Comparison between the minmax optimization method in this chapter and the fixed-point
method when μ = 0.1

improvement in the H∞ optimization. Such an observation is shown in Fig. 4.4 with
μ = 0.1.

The minmax optimization method proposed in this chapter is also applicable for
C1 and a comparison between the method in this chapter and the fixed-point method
is shown in Fig. 4.5. As shown in Fig. 4.5, the results by these two methods highly
coincide with each other and the results are consistent with the analytical solutions
in Nishihara and Asami (2002, Table 2), which demonstrates the effectiveness of the
method in this chapter.

In what follows, it will be shown that for configuration C2, the series-connected
inerter provides no improvement for the H∞ performance as well. To show the
influence of δ, the problem (4.8) is slightly modified as: for a given μ and δ,

min
γ,ζ

(
max

λl

(|H2( jλl)|)
)

,

subject to γ ≥ 0, η ≥ 0, ζ ≥ 0, and λl , l = 1, . . . , N , are the real and positive solu-
tions of (4.10). Figure 4.6 shows the comparison between C2 with different δ and
the TDVA when μ = 0.1, where it is clearly shown that the maximum of |H2( jλ)|
is decreased by increasing δ and if δ is sufficiently large, the frequency response of



82 4 Inerter-Based Dynamic Vibration Absorption System

Fig. 4.6 Comparison between the TDVA and C2 when μ = 0.1 with different δ

Fig. 4.7 max(|H2( jλ)|) with different μ and δ

C2 coincides with that of the TDVA. Such an observation is also confirmed by other
choices of μ, as shown in Fig. 4.7. Therefore, it is sufficient to conclude that for a
single series arrangement of an inerter and a damper, the series inerter provides no
improvement for the H∞ performance of the isolation system.

The IDVAs C1 and C2 represent the two ways of adding an inerter to the TDVA,
that is, the parallel connection (C1) and the series connection (C2). Now, it has
been demonstrated that adding a single inerter alone to the TDVA, no matter it is
in parallel connection or in series connection, provides no improvement for the H∞
performance. Therefore, other degrees of freedom should be introduced, which is the
motivation of introducing IDVAs C3, C4, C5, and C6 by adding an inerter together
with a spring to the TDVA.

4.4.2.2 Performance Benefits of C3, C4, C5, and C6

In this subsection, it will be shown that after adding another degree of freedom, that
is the spring k1, the H∞ performance will be significantly improved compared with
the TDVA.

The optimization problem (4.8) with the constraint (4.10) is solved for configu-
rations C3, C4, C5, and C6, separately, where a ninth-order polynomial of equation
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Table 4.2 Maximum magnitude max |H( jλ)| in the H∞ optimization

μ TDVA (Nishi-
hara and
Asami 2002)

C3 C4 C5 C6

0.01 14.1796 11.0330 11.0860 12.9216 11.0351

0.02 10.0530 7.8340 7.9064 9.1498 7.8352

0.05 6.4080 5.0159 5.1194 5.8051 5.0210

0.1 4.5892 3.6175 3.7448 4.1379 3.6208

0.2 3.3254 2.6552 2.7986 2.9877 2.6616

0.5 2.2480 1.8513 1.9941 2.0198 1.8521

1 1.7457 1.4893 1.6127 1.5809 1.4893

2 1.4279 1.2697 1.3629 1.3157 1.2697

5 1.1942 1.1166 1.1702 1.1766 1.1166

10 1.1033 1.0602 1.0918 1.0934 1.0603

(4.10) with respect to λ2 is obtained. The exact solutions of the TDVA in Nishihara
andAsami (2002) are employed for comparison and the detailed parameter values are
shown in Tables 4.2, 4.3, and 4.4. Table 4.2 shows that all the IDVAsC3,C4,C5, and
C6 can improve the H∞ performance compared with the TDVA, where C3 performs
the best and the order of the performance is C3 > C6 > C4 > C5 > T DV A (“>”
means performing better) with an exception for μ >= 1. However, since the mass
ratio is normally quite small and practically less than 0.25 (Inman 2008; Cheung
andWong 2011b), it is sufficient to conclude that C3 > C6 > C4 > C5 > T DV A.
Such a conclusion is also confirmed by Fig. 4.8, where the comparison of the IDVAs
over the TDVA in the range of 0 < μ ≤ 0.25 is shown. As shown in the right figure
of Fig. 4.8, 8 to 26% improvement can be obtained for the IDVAs. The other param-
eters in the range of 0 < μ ≤ 0.25 are depicted in Fig. 4.9. It should be noted that
although the optimal γ and ζ for C3 are almost identical to the TDVA, as shown
in Table 4.3 and Fig. 4.9, over 22% improvement can be provided by C3 compared
with the TDVA. Moreover, the spring k1 is better to be in series connection for the
H∞ performance, given the fact that C3 and C6 are superior to C4 and C5.

The frequency responses of the IDVAs and the TDVA when μ = 0.1 are shown
in Fig. 4.10, where one sees that the magnitudes of the IDVAs around 1 are much
flatter than those of the TDVA, and the effective frequency band is much larger than
that of the TDVA.
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Table 4.3 Optimal natural frequency ratio γ and damping ratio ζ in the H∞ optimization

μ TDVA (Nishi-
hara and
Asami 2002)

C3 C4 C5 C6

(a) Optimal natural frequency ratio γ

0.01 0.9902 0.9900 0.9957 0.9712 0.9842

0.02 0.9802 0.9802 0.9911 0.9493 0.9684

0.05 0.9520 0.9520 0.9766 0.9090 0.9242

0.1 0.9083 0.9083 0.9499 0.8501 0.8642

0.2 0.8319 0.8319 0.8931 0.7538 0.7693

0.5 0.6642 0.6643 0.7514 0.5681 0.5604

1 0.4973 0.4971 0.5882 0.4041 0.3979

2 0.3307 0.3302 0.4100 0.2547 0.2526

5 0.1646 0.1641 0.2145 0.2004 0.1197

10 0.0889 0.0893 0.1198 0.1118 0.0652

(b) Optimal damping ratio ζ

0.01 0.0603 0.0547 0.0025 0.0655 0.0025

0.02 0.0841 0.0769 0.0065 0.0973 0.0073

0.05 0.1276 0.1199 0.0224 0.1477 0.0270

0.1 0.1686 0.1657 0.0505 0.2086 0.0593

0.2 0.2101 0.2244 0.0981 0.2919 0.1180

0.5 0.2402 0.3175 0.2012 0.4294 0.3047

1 0.2235 0.3894 0.2905 0.5359 0.4354

2 0.1749 0.4505 0.3779 0.6325 0.5498

5 0.1002 0.5057 0.4525 0.5163 0.6593

10 0.0581 0.5288 0.4804 0.5313 0.6841

Fig. 4.8 Maximum magnitude comparison between the IDVAs and the TDVA (left figure) and
percentage improvement of the IDVAs with respect to the TDVA (right figure)
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Table 4.4 Optimal inertance-to-mass ratio δ and corner frequency ratio η in the H∞ optimization

μ C3 C4 C5 C6

(a) Optimal inertance-to-mass ratio δ

0.01 0.0238 0.0234 2.2791 0.0228

0.02 0.0473 0.0453 1.8105 0.0448

0.05 0.1156 0.1069 1.6782 0.0989

0.1 0.2208 0.1930 1.5320 0.1538

0.2 0.4082 0.3212 1.1521 0.2126

0.5 0.8256 0.5719 0.6919 0.2426

1 1.2552 0.7785 0.3130 0.2009

2 1.7228 0.9703 0.1423 0.1364

5 2.2540 1.1307 3.9018 0.0627

10 2.4989 1.2089 3.6257 0.0339

(b) Optimal corner frequency ratio η

μ C3 C4 C5 C6

0.01 1.0051 0.9864 1.1242 1.0248

0.02 1.0098 0.9745 1.1982 1.0492

0.05 1.0248 0.9420 1.3341 1.1288

0.1 1.0485 0.9013 1.5181 1.2454

0.2 1.0940 0.8563 1.8754 1.4560

0.5 1.2219 0.7713 2.8856 2.2775

1 1.4061 0.7163 4.9686 3.5386

2 1.7178 0.6629 9.6074 6.0835

5 2.4169 0.6141 0.5009 14.5775

10 3.2632 0.5780 0.4739 27.6261

Fig. 4.9 Optimal parameters in the H∞ optimization: natural frequency ratio γ (up left); damping
ratio ζ (up right); inertance-to-mass ratio δ (bottom left); corner frequency ratio η (bottom right)
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Fig. 4.10 Comparison between the IDVAs and TDVA when μ = 0.1

4.5 H2 Optimization for the IDVAs

4.5.1 H2 Performance Measure and Its Analytical Solution

If the system is subjected to random excitation instead of sinusoidal excitation, the H2

optimization would be more desirable than the H∞ optimization (Asami et al. 1991,
2002; Cheung and Wong 2011a). The performance measure in the H2 optimization
is defined as (Asami et al. 1991, 2002; Cheung and Wong 2011a)

I = E
[
x2

]

2π S0ωn
, (4.11)

where S0 is the uniform power spectrum density function. The mean square value of
x of the object mass m can be calculated as

E
[
x2

] = S0

∫ ∞

−∞
|H( jλ)|2 dω = S0ωn

∫ ∞

−∞
|H( jλ)|2 dλ, (4.12)

where H( jλ) is given in (4.7). Substituting (4.12) into (4.11), one obtains

I = 1

2π

∫ ∞

−∞
|H( jλ)|2 dλ, (4.13)

which is exactly the definition of the H2 norm of the transfer function Ĥ(s) by
replacing jλ in H( jλ) with the Laplace variable s.

Therefore, the H2 performance measure is rewritten as

I =
∥∥∥Ĥ(s)

∥∥∥
2

2
. (4.14)
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The analytical approach provided in Doyle et al. (1992, Chap. 2.6) will be
employed to derive analytical solutions for IDVAs in the H2 optimization, which
is briefly presented as follows.

For a stable transfer function Ĥ(s), its H2 norm can be calculated as (Doyle et
al. 1992, Sect. 2.6)

‖Ĥ(s)‖22 = ‖C(s I − A)−1B‖22 = C LCT ,

where A, B, and C are the minimal state-space realization Ĥ(s) = C(s I − A)−1B
and L is the unique solution of the Lyapunov equation

AL + L AT + B BT = 0. (4.15)

We can write Ĥ(s)

Ĥ(s) = bn−1sn−1 + · · · + b1s + b0
sn + an−1sn−1 + · · · + a1s + a0

in its controllable canonical form below

ẋ = Ax + Bu, y = Cx,

where

A =

⎡
⎢⎢⎢⎢⎢⎣

0 1 0 . . . 0
0 0 1 . . . 0
...

...
...

...
...

0 0 0 . . . 1
−a0 −a1 −a2 . . . −an−1

⎤
⎥⎥⎥⎥⎥⎦

, B =

⎡
⎢⎢⎢⎢⎢⎣

0
0
...

0
1

⎤
⎥⎥⎥⎥⎥⎦

, C = [
b0, b1, b2 . . . bn−1

]
.

4.5.2 Comparison Between the TDVA and IDVAs

For the TDVA, the H2 performance measure can be obtained as

IT DV A = γ (1 + μ)ζ

μ
+ 1 − (μ + 2)γ 2 + (1 + μ)2γ 4

4μγ ζ
, (4.16)

and the optimal γ and ζ are
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γT DV A,opt =
√

μ + 2

2(1 + μ)2
, (4.17)

ζT DV A,opt =
√

(3μ + 4)μ

8(μ + 1)(μ + 2)
. (4.18)

Substituting γT DV A,opt and ζT DV A,opt into (4.16), one obtains the optimal IT DV A,opt

as

IT DV A,opt =
√

3μ + 4

4(μ + 1)μ
. (4.19)

4.5.2.1 Performance Limitation of C1 and C2

The H2 performance measures for C1 and C2 can be obtained as

IC1 = γ (1 + μ)ζ

μ
+ 1

4μγ ζ

(
δ2 − 2((1 + μ)γ 2 − 1)δ + 1 − (μ + 2)γ 2 + (1 + μ)2γ 4

)
(4.20)

= IT DV A + 1

4μγ ζ

(
δ2 + aC1,1δ

)
, (4.21)

IC2 =
(

aC2,2δ
−2 + aC2,1δ

−1 + aC2,0

)
ζ + 1 − (μ + 2)γ 2 + (1 + μ)2γ 4

4μγ ζ
(4.22)

= IT DV A +
(

aC2,2δ
−2 + aC2,1δ

−1
)

ζ, (4.23)

where

aC1,1 = −2((1 + μ)γ 2 − 1),

aC2,2 = γ

μ

(
(1 + μ)3γ 4 − 2(1 + μ)γ 2 + 1

)
,

aC2,1 = γ

μ

(
2 + μ − 2(1 + μ)2γ 2) ,

aC2,0 = γ (1 + μ)

μ
.

The following proposition can be obtained.

Proposition 4.1 For the H2 performance, C1 performs no better than the TDVA.

Proof See Appendix.

Proposition 4.2 For the H2 performance, C2 performs slightly better than the
TDVA, but only at most 0.32% improvement can be achieved when μ ≤ 1.

Proof See Appendix.

Now, we have demonstrated that for the H2 performance, C1 performs no better
than the TDVA andC2 provides negligible improvement over the TDVA. This means
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that adding an inerter alone to the TDVA provides limited improvement for the H2

performance, and therefore, another four IDVAsC3,C4,C5, andC6 are proposed by
adding an inerter togetherwith a spring to the TDVA. It will be shown in the following
sections that in this way, the H2 performance can be significantly improved.

4.5.2.2 Performance Benefits of C3, C4, C5, and C6

In this subsection, it will be analytically demonstrated that for the H2 performance,
IDVAsC3,C4,C5, andC6 perform surely better than theTDVA, and an optimization
problem will be formulated to find the optimal parameters.

By using the method shown in Sect. 4.5.1, the analytical representations of the
H2 performance measures for C3, C4, C5, and C6 are calculated and the detailed
equations are shown in Appendix. Denote the optimal H2 performances of C3, C4,
C5, andC6 as IC3,opt , IC4,opt , IC5,opt , IC6,opt , respectively. The following proposition
can be obtained.

Proposition 4.3 For the H2 performance, IDVAs C3 and C5 always perform better
than the TDVA, that is, the following inequalities hold:

IC3,opt < IT DV A,opt , (4.24)

IC5,opt < IT DV A,opt , (4.25)

and if μ ≤ 1, IDVAs C4 and C6 always perform better than the TDVA, that is, the
following inequalities hold:

IC4,opt < IT DV A,opt , (4.26)

IC6,opt < IT DV A,opt , (4.27)

where IT DV A,opt is the optimal H2 performance for the TDVA given by (4.19).

Proof See Appendix.

Remark 6 The condition μ ≤ 1 for C4 and C6 in Proposition 4.3 is only a sufficient
condition, which means that for the case μ > 1, it is also possible that the inequalities
(4.26) and (4.27) hold. However, such a condition introduces no conservativeness for
DVA applications, as the mass ratio μ is normally less than 1 in practice (typically
less than 0.25) (Inman 2008; Cheung and Wong 2011b).

Since the IDVAs C3, C4, C5, and C6 can always reduce to the TDVA by setting the
spring stiffness k1 (or η) and inertance b (or δ) to 0 or ∞, the conclusions ICi,opt ≤



90 4 Inerter-Based Dynamic Vibration Absorption System

IT DV A,opt , i = 3, 4, 5, 6 always hold. However, Proposition 4.3 demonstrates the
existence of finite η and δ such that the IDVAs C3, C4, C5, and C6 are surely better
than the TDVA.

To determine the optimal values of δ, γ , η, and ζ , the following optimization
problem should be solved.

min
δ,γ,η,ζ

ICi , i = 3, 4, 5, 6, (4.28)

subject to δ > 0, γ > 0, η > 0, and ζ > 0.
Analytical solutions of C3: Problem (4.28) can be analytically solved for C3,

where the optimal parameters for C3 are obtained as follows:

γC3,opt =
√√

17μ2 + 32μ + 16 − μ

4(1 + μ)2
, (4.29)

ηC3,opt =
√√√√ 1 − 2(1 + μ)γ 2

C3,opt + (1 + μ)γ 4
C3,opt

(1 − (2 + 3μ)γ 2
C3,opt + (1 + μ)2γC3,opt64)γ 2

C3,opt

, (4.30)

δC3,opt = −2âC3,2

âC3,1
, (4.31)

ζC3,opt =
√√√√ 1 − (μ + 2)γ 2

C3,opt + (1 + μ)2γ 4
C3,opt

4μγC3,opt (âC3,2δ
−2
C3,opt + âC3,1δ

−1
C3,opt + âC3,0)

, (4.32)

where âC3,2, âC3,1, and âC3,0 are obtained by setting γ = γC3,opt and η = ηC3,opt for
aC3,2, aC3,1, and aC3,0, respectively. For the representations of aC3,2, aC3,1, and aC3,0,
see Appendix.

The analytical solutions δ, γ , and η are derived by successively setting the first
derivatives of IC3 with respect to δ, η, and γ as 0, and then checking the sign of the
second derivatives at stationary points. The optimal ζC3,opt is derived due to the fact
that both parts on the right-hand side of (4.40) of IC3 are positive.

Solutions of C4, C5, and C6: The analytical solutions of C4, C5, and C6 cannot
be obtained due to the high order equations (more than fourth order) involved in the
derivation. However, the optimal solutions of η and ζ can be analytically represented
with respect to δ and γ as follows:

ηC4,opt =
√−(gC4,1δ + fC4,1)(2 fC4,2 + 2gC4,2δ + 2lC4,2δ2)

2( fC4,2 + gC4,2δ + lC4,2δ2)
, (4.33)

ζC4,opt =
√

lC4,2η4δ2 + lC4,1δ + lC4,0

aC4,2δ−2 + aC4,1δ−1 + aC4,0
, (4.34)

δC5,opt = −2aC5,2

aC5,1
, (4.35)
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Fig. 4.11 Comparison
between IDVAs and the
TDVA. a the H2
performance; b Percentage
improvement of IDVAs with
respect to the TDVA

(a)

(b)

ζC5,opt =
√

1 − (μ + 2)γ 2 + (1 + μ)2γ 4

4μγ (aC5,2δ
−2
C5,opt + aC5,1δ

−1
C5,opt + aC5,0)

, (4.36)

ζC6,opt =
√

lC6,2η4δ2 + lC6,1δ + lC6,0

aC6,2δ−2 + aC6,1δ−1 + aC6,0
. (4.37)

Correspondingly substituting the optimal representations above into ICi , i =
4, 5, 6, the problem (4.28) for Ci , i = 4, 5, 6 reduces to a nonlinear programming
problemwith two unknown variables δ and γ forC4 andC5, andwith three unknown
variables δ, γ and η forC6,which can be efficiently solved by using theMatlab solver
fmincon and GlobalSearch in Global Optimization Toolbox.

Figures 4.11 and 4.12 depict the comparison between IDVAsC3,C4,C5,C6, and
the TDVAwhen 0 ≤ μ ≤ 1. As shown in Fig. 4.11b, C3 performs the best, and more
than 10% improvement with respect to the TDVA can be obtained by C3, C4 and
C6. Similar to the H∞ performance, the spring k1 is better to be in series connection
for the H2 performance, given the fact that C3 and C6 are superior to C4 and C5.
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Fig. 4.12 Optimal
parameters: a optimal γ ; b
optimal ζ ; c optimal δ; d
optimal η

(a)

(b)

(c)

(d)

4.6 Conclusions

In this chapter, the performance of inerter-based dynamic vibration absorbers
(IDVAs) has been investigated, where the proposed IDVAs were a parallel arrange-
ment of a spring and an inerter-based mechanical network. Both H∞ and H2 perfor-
manceswere considered.The H∞ performanceoptimization problemwas formulated
in a minmax framework and solved by using a direct search optimization method;
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while in the H2 optimization, an analytical method was employed to calculate the
H2 performance measures. Comparisons between the proposed IDVAs and the tra-
ditional dynamic vibration absorber (TDVA) were conducted. The results showed
that adding one inerter alone to the TDVA, no matter it is in parallel connection (C1)
or in series connection (C2), provided no improvement for the H∞ performance,
and negligible improvement (less than 0.32% improvement over the TDVA when
the mass ratio less than 1) for the H2 performance. This demonstrated the necessity
of introducing another degree of freedom together with the inerter to the TDVA, and
then the IDVAs C3, C4, C5, and C6 were proposed by adding an inerter together
with a spring to the TDVA. Significant improvement was obtained by IDVAs C3,
C4, C5, and C6. For the H∞ performance, numerical simulations showed that over
20% improvement was achieved compared with the TDVA and the effective fre-
quency band can be enlarged by using inerter; while for the H2 performance, it was
analytically demonstrated that IDVAs C3, C4, C5, and C6 were surely better than
the TDVA by carefully choosing the parameters, and over 10% improvement was
obtained in the numerical simulation.

Appendix

Detailed representations of Rni , Ini , Rmi , and Imi , i = 1, . . . , 6.

Rn1 = λ2 − γ 2 + δλ2,

In1 = −2λγ ζ,

Rm1 = (−μδ − δ − 1)λ4 + (γ 2 + μγ 2 + 1 + δ)λ2 − γ 2,

Im1 = 2λγ ζ(λ2 − 1 + μλ2),

Rn2 = δλ(γ 2 − λ2),

In2 = −2γ ζ(γ 2 − (1 + δ)λ2),

Rm2 = δλ(λ4 − (γ 2 + μγ 2 + 1)λ2 + γ 2),

Im2 = −2γ ζ((1 + δ + μδ)λ4 − (γ 2 + μγ 2 + 1 + δ)λ2 + γ 2),

Rn3 = δη2γ λ(γ 2 − λ2),

In3 = −2ζ(γ 4η2 − (1 + δη2 + η2)λ2γ 2 + λ4),

Rm3 = δη2γ λ(λ4 − (1 + γ 2 + μγ 2)λ2 + γ 2),

Im3 = 2ζ(λ6 − (1 + μ + η2 + δη2 + μδη2)λ4 + ((μ + 1)η2γ 2 + 1 + η2 +
δη2)γ 2λ2 − γ 4η2,

Rn4 = −δ(λ4 − (1 + η2 + δη2)γ 2λ2 + γ 4η2),

In4 = −2γ λζ(γ 2 − λ2 − δλ2),

Rm4 = δ(λ6 − (1 + (1 + μ + η2 + δη2 + δμη2)γ 2)λ4 + ((μ + 1)η2γ 2 + (1 + η2 +
δη2))γ 2η2 − γ 4η2),

Im4 = −2γ λζ((1 + δ + μδ)λ4 − (1 + δ + γ 2 + μγ 2)λ2 + γ 2),
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Rn5 = δ(γ 2 − λ2)(λ2 − η2γ 2),

In5 = −2γ λζ((1 + δη2)γ 2 − (1 + δ)λ2),

Rm5 = δ(λ2 − η2γ 2)(λ4 − (1 + γ 2 + μγ 2)λ2 + γ 2),

Im5 = −2γ λζ((1 + δ + μδ)λ4 − ((1 + μ + δη2 + μδη2)γ 2 + 1 + δ)λ2 +
(1 + δη2)γ 2),

Rn6 = −δ(λ4 − (1 + η2 + δη2)γ 2λ2 + γ 4η2),

In6 = 2λγ ζ(λ2 − (1 + δη2)γ 2),

Rm6 = δ(λ6 − (1 + (1 + μ + η2 + δη2 + μδη2))λ4 + ((μ + 1)η2γ 2 +
(1 + η2 + δη2))γ 2λ2 − γ 4η2),

Im6 = −2γ λζ(λ4 − (1 + (1 + μ + δη2 + μδη2)γ 2)λ2 + (1 + δη2)γ 2).

Proof of Proposition 4.1

From (4.21), if C1 performs better than the TDVA, that is IC1 < IT DV A, the second
term of (4.21) must be less than 0, which means

δ2 + aC1,1δ < 0.

Since δ ≥ 0, if γ 2 < 1
1+μ

, the optimal δ denoted as δopt is 0. If γ 2 ≥ 1
1+μ

, the optimal

δopt = (1 + μ)γ 2 − 1, and it can be checked that the optimal γ is 1
1+μ

by substituting
δopt into (4.21), which means that the optimal δ is also 0.

Proof of Proposition 4.2

First, we prove that C2 performs better than the TDVA, that is IC2,opt < IT DV A,opt ,
where IC2,opt denotes the optimal IC2. From (4.23), if C2 performs better than the
TDVA, the following inequality must hold:

aC2,2δ
−2 + aC2,1δ

−1 < 0,

which requires that

aC2,1 < 0 or γ 2 >
2 + μ

2(1 + μ)2
,

as aC2,2 ≥ 0 for any γ ≥ 0. If γ 2 >
2+μ

2(1+μ)2
, the optimal δ−1 is

δ−1
opt = − aC2,1

2aC2,2
,

and IC2 can be represented as

IC2 =
√

(1 − (2 + μ)γ 2 + (1 + μ)2γ 4)(4(1 + μ)2γ 2 − μ)

4μ(1 − 2(1 + μ)γ 2 + (1 + μ)3γ 4)
. (4.38)
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Using IT DV A,opt given in (4.16), one obtains

I 2C2 − I 2T DV A,opt = ((μ + 1)γ 2 − 1)(2(μ + 1)2γ 2 − 2 − μ)2

4μ(1 − 2(μ + 1)γ 2 + (μ + 1)3γ 4)(μ + 1)
,

Clearly, if γ 2 < 1
1+μ

, then IC2 < IT DV A,opt . Since 1
1+μ

>
2+μ

2(1+μ)2
, one can always

find a γ such that IC2 < IT DV A,opt . Since IC2,opt ≤ IC2, one obtains IC2,opt <

IT DV A,opt .
Second, we graphically prove that only at most 0.32% improvement can be

obtained by C2 when μ ≤ 1. The optimal γ can be obtained by solving ∂ I 2C2
∂γ 2 = 0,

which is equivalent to

(2α2γ 2 − 1 − α)(2α5γ 6 + (α4 − 7α3)γ 4 + (8α2 − 2α3)γ 2 − 3α + 1) = 0,
(4.39)

where α = μ + 1. It is easy to check that (4.39) has two real positive solutions
denoted as γ1 and γ2, γ1 < γ2, where

γ1 =
√
1 + α

2α2
,

and γ1 < γ2 <
√
2γ1. Also, γ 2

2 is the unique real solution of equation

2α5γ 6 + (α4 − 7α3)γ 4 + (8α2 − 2α3)γ 2 − 3α + 1 = 0,

and the optimal γ is γ2.
For 0 ≤ μ ≤ 1, a graphical comparison with the TDVA is shown in Fig. 4.13,

where it is clearly shown that at most 0.32% improvement is obtained for C2.

Analytical representations of the H2 performance measures for C3, C4, C5, and
C6

Denote IC3, IC4, IC5, and IC6 as the H2 performance measures for C3, C4, C5, and
C6, respectively. The detailed representations are obtained as follows:

IC3 =
(

aC3,2δ
−2 + aC3,1δ

−1 + aC3,0

)
ζ + 1 − (μ + 2)γ 2 + (1 + μ)2γ 4

4γμζ

= IT DV A +
(

aC3,2δ
−2 + aC3,1δ

−1
)

ζ, (4.40)

IC4 =
(

aC4,2δ
−2 + aC4,1δ

−1 + aC4,0

)
ζ +

(
lC4,2η

4δ2 + lC4,1δ + lC4,0

) 1

ζ

= IT DV A +
(

aC4,2δ
−2 + aC4,1δ

−1
)

ζ +
(

lC4,2η
4δ2 + lC4,1δ + fC4,2η

4 + fC4,1η
2
) 1

ζ
,

IC5 =
(

aC5,2δ
−2 + aC5,1δ

−1 + aC5,0

)
ζ + 1

4γμζ

(
1 − (μ + 2)γ 2 + (1 + μ)2γ 4

)

= IT DV A +
(

aC5,2δ
−2 + aC5,1δ

−1
)

ζ, (4.41)
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Fig. 4.13 Comparison
between C2 and TDVA
when 0 ≤ μ ≤ 1. a the H2
performance; b Percentage
improvement of C2 with
respect to TDVA

(a)

(b)

IC6 =
(

aC6,2δ
−2η−4 + aC6,1δ

−1η−2 + aC6,0

)
ζ +

(
lC6,2δ

2 + lC6,1δ + lC6,0

) 1

ζ

= IT DV A +
(

aC6,2δ
−2η−4 + aC6,1δ

−1η−2
)

ζ +
(

lC6,2δ
2 + lC6,1δ + fC6,2η

−4 + fC6,1η
−2

) 1

ζ
,

where

aC3,2 = dC3,2η
−4 + dC3,1η

−2 + dC3,0,

aC3,1 = gC3,1η
−2 + gC3,0, aC3,0 = γ (1 + μ)

μ
,

dC3,2 = 1

γ 3μ

(
1 − 2γ 2 + (1 + μ)γ 4

)
, dC3,1 = − 2

γμ

(
1 − (2 + μ)γ 2 + (1 + μ)2γ 4

)
,

dC3,0 = γ

μ

(
1 − 2(1 + μ)γ 2 + (1 + μ)3γ 4

)
, gC3,1 = − 2

μγ

(
1 − (1 + μ)γ 2

)
,

gC3,0 = −γ

μ

(
2(1 + μ)2γ 2 − 2 − μ

)
,

aC4,2 = γ

μ

(
1 − (2 + μ)γ 2 + (1 + μ)3γ 4

)
,

aC4,1 = γ

μ

(
2 + μ − 2(1 + μ)2γ 2

)
, aC4,0 = γ (1 + μ)

μ
,

lC4,2 = γ 3(1 + μ)2

4μ
, lC4,1 = gC4,2η

4 + gC4,1η
2, lC4,0 = fC4,2η

4 + fC4,1η
2 + fC4,0,

gC4,2 = γ 3

2μ

(
1 + μ − (1 + μ)3γ 2

)
, gC4,1 = γ

4μ

(
2(1 + μ)2γ 2 − μ − 2

)
,
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fC4,2 = γ 3

4μ

(
(1 + μ)4γ 4 + (μ − 2)(μ + 1)2γ 2 + 1

)
,

fC4,1 = − γ

2μ

(
(1 + μ)3γ 4 − 2(1 + μ)γ 2 + 1

)
,

fC4,0 = 1

4μγ

(
1 − (μ + 2)γ 2 + (1 + μ)2γ 4

)
,

aC5,2 = gC5,2η
4 + gC5,1η

2 + gC5,0

μ(1 + fC5,1η
2 + fC5,2η

4)2
,

aC5,1 = lC5,3η
6 + lC5,2η

4 + lC5,1η
2 + lC5,0

μ(1 + fC5,1η
2 + fC5,2η

4)2
, aC5,0 = γ (1 + μ)

μ
,

gC5,2 = γ
(
(1 + μ)γ 4 − 2γ 2 + 1

)
, gC5,1 = −2γ

(
(1 + μ)2γ 4 − (μ + 2)γ 2 + 1

)
,

gC5,0 = γ
(
(1 + μ)3γ 4 − 2(1 + μ)γ 2 + 1

)
, fC5,1 = −(1 + γ 2(1 + μ)), fC5,2 = γ 2,

lC5,3 = 2γ 3((1 + μ)3 − 1), lC5,2 = −γ
(
4(1 + μ)2γ 4 − 2γ 2 − μ − 2

)
,

lC5,1 = 2γ
(
(1 + μ)3γ 4 + (1 + μ)2γ 2 − μ − 2

)
, lC5,0 = γ

(
μ + 2 − 2(1 + μ)2γ 2

)
,

aC6,2 = 1 − 2γ 2 + (1 + μ)γ 4

γ 3μ
, aC6,1 = 2((1 + μ)γ 2 − 1)

γμ
, aC6,0 = γ (1 + μ)

μ
,

lC6,2 = 1

4γμ
, lC6,1 = gC6,1η

−2 + gC6,0,

lC6,0 = fC6,2η
−4 + fC6,1η

−2 + fC6,0,

gC6,1 = μ − 2 + 2γ 2

4γ 3μ
, gC6,0 = 1 − (1 + μ)γ 2

2γμ
,

fC6,2 = 1 + (μ − 2)γ 2 + γ 4

4μγ 5
, fC6,1 = −1 − 2γ 2 + (1 + μ)γ 4

2μγ 3 ,

fC6,0 = 1 − (2 + μ)γ 2 + (1 + μ)2γ 4

4γμ
.

Proof of Proposition 4.3

For C3, substituting γT DV A,opt and ζT DV A,opt into (4.40), one obtains

I ′
C3 = IT DV A,opt + (

a′
C3,2δ

−2 + a′
C3,1δ

−1
)
ζT DV A,opt ,

where a′
C3,2 and a′

C3,1 are obtained by setting γ = γT DV A,opt for aC3,2 and aC3,1,
respectively. It can be checked that a′

C3,2 > 0 and

a′
C3,1 = −

√
2

2 + μ
η−2 < 0,
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which means that there exist finite δ and η such that I ′
C3 < IT DV A,opt . Since IC3,opt ≤

I ′
C3, then one obtains IC3,opt < IT DV A,opt .

For C4, denote

I ′
C4 = 2

√(
a′

C4,2δ
−2 + a′

C4,1δ
−1 + a′

C4,0

) (
l ′C4,2η

4δ2 + l ′C4,1δ + l ′C4,0

)
,

where a′
C4,2, a

′
C4,1, a

′
C4,0, l

′
C4,2, l

′
C4,2, and l ′C4,0 are obtained by setting γ = γT DV A,opt .

Expanding I ′
C4, one obtains

I ′
C4 = 2

√
a′

C4,0 f ′
C4,0 + fC4,η, (4.42)

where

fC4,η = (
l ′C4,2δ

2 + g′
C4,2δ + f ′

C4,2

)
(a′

C4,2δ
−2 +

a′
C4,0)η

4 + f ′
C4,1(a

′
C4,2δ

−2 + a′
C4,0)η

2 + f ′
C4,0a′

C4,2δ
−2.

Note that
IT DV A,opt = 2

√
a′

C4,0 f ′
C4,0.

Then, we will prove that there exist finite δ and η so that fC4,η < 0. It can be
checked that l ′C4,2δ

2 + g′
C4,2δ + f ′

C4,2 > 0,a′
C4,2δ

−2 + a′
C4,0 > 0, and f ′

C4,1(a
′
C4,2δ

−2

+ a′
C4,0) < 0. The discriminant of fC4,η = 0 is

Δ = (a′
C4,2δ

2 + a′
C4,0)

(
( f ′

C4,1
2 − 4 f ′

C4,2 f ′
C4,0)a

′
C4,2δ

−2 − 4g′
C4,2 f ′

C4,0a′
C4,2δ

−1+

f ′
C4,1

2a′
C4,0 − 4l ′C4,2 f ′

C4,0a′
C4,2

)
.

It can be checked that if μ < 8
√
2−4
7 ≈ 1.045, there exists a finite δ such that the

second term of Δ is positive, which means that if μ < 1.045, there exists a finite η

such that fC4,η < 0. For example, if choosing

δ−1 = 2g′
C4,2 f ′

C4,0

f ′
C4,1

2 − 4 f ′
C4,2 f ′

C4,0

= (3μ + 4)(1 + μ)

4μ(μ + 2)
, (4.43)

and

η =
√

− f ′
C4,1

l ′C4,2δ
2 + g′

C4,2δ + f ′
C4,2

=
√

2(3μ + 4)2(1 + μ)(4 + μ)

(μ + 2)(43μ3 + 204μ2 + 272μ + 64)
,

(4.44)
one obtains
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fC4,η = 1

128

(7μ2 + 8μ − 16)(μ + 4)(3μ + 4)2

μ(43μ3 + 204μ2 + 272μ + 64)(1 + μ)(μ + 2)
< 0.

From (4.42) and for the δ and η given by (4.43) and (4.44), one obtains that if
μ < 1.045,

I ′
C4 < IT DV A,opt .

Since IC4,opt ≤ I ′
C4, one obtains that if μ < 1.045, IC4,opt < IT DV A,opt .

For C5, setting γ = γT DV A,opt and ζ = ζT DV A,opt in (4.41), one obtains

I ′
C5 = IT DV A,opt + (

a′
C5,2δ

−2 + a′
C5,1δ

−1
)
ζT DV A,opt . (4.45)

Then, we will show that there exist finite δ and η such that a′
C5,2δ

−2 + a′
C5,1δ

−1 < 0.
It can be checked that a′

C5,2 > 0. Therefore, we only need to prove that there exists
a finite η such that a′

C5,1 < 0. Since

a′
C5,1 = l ′C5,3η

6 + l ′C5,2η
4 + l ′C5,1η

2

μ(1 + f ′
C5,1η

2 + f ′
C5,2η

4)2
,

it is easy to check that a′
C5,1 < 0 if η2 > (μ + 1)

(
μ + 1 + √

μ2 + 2μ
)
or η2 <

(μ + 1)
(
μ + 1 − √

μ2 + 2μ
)
. For example, if choosing

η =
√
2(1 + μ)2, (4.46)

δ−1 = 2(2 + μ)(μ + 1)2

(1 + 8μ + 4μ2)(4 + 9μ + 4μ2)
, (4.47)

one obtains

fδ = −
√
2(2 + μ)5/2(μ + 1)2

(1 + 8μ + 4μ2)(4 + 9μ + 4μ2)(1 + 3μ + 5μ2 + 2μ3)2
< 0,

which means that for the η and δ given by (4.46) and (4.47), I ′
C5 < IT DV A,opt . Since

IC5,opt ≤ I ′
C5, one obtains IC5,opt < IT DV A,opt .

For C6, setting γ = γT DV A,opt and ζ = ζT DV A,opt , one obtains

I ′
C6 = IT DV A,opt + fC6,η,

where fC6,η = d2η−4 + d1η−2 + d0, with

d2 = a′
C6,2ζT DV A,optδ

−2 + f ′
C6,2/ζT DV A,opt ,

d1 = a′
C6,1ζT DV A,optδ

−1 + (g′
C6,1δ + f ′

C6,1)/ζT DV A,opt ,

d0 = (l ′C6,2δ
2 + g′

C6,0δ)/ζT DV A,opt .
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It can be checked that d2 > 0 for any δ and if μ <
√
2, d1 < 0. Thus, it remains

to prove that there exists a finite η > 0 such that fC6,η < 0. This can be done by
checking the discriminant of fC6,η, which is

Δ = d2
1 − 4d2d0

= 16(μ − 4)(μ + 1)8δ4 − 16μ(4μ3 + 11μ2 + 5μ − 4)(μ + 1)4δ3 +
8μ2(5μ2 + 21μ + 20)(μ + 1)3δ2 + μ3(3μ + 4)2.

It is easy to see that there always exists a finite δ such that Δ > 0. For example, if
choosing

δ = μ(4μ3 + 11μ2 + 5μ − 4 − √
6μ6 + 56μ5 + 253μ4 + 606μ3 + 799μ2 + 568μ + 176)

2(μ − 4)(μ + 1)4
,

which is larger than 0 if μ < 4, one obtains

Δ = μ3(3μ + 4)2 > 0.

Therefore, we can always find a η−2 between the two real positive solutions of
fC6,η = 0 such that fC6,η < 0. A possible choice is η−2 = − d1

2d2
. This means that if

carefully choosing δ and η, the inequality I ′
C6 < II DV A,opt holds. Since IC6,opt ≤ I ′

C6,
one obtains IC6,opt < IT DV A,opt .
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Chapter 5
Semi-active Inerter and Adaptive Tuned
Vibration Absorber

Abstract This chapter presents a novel framework to realize the semi-active inerter,
and proposes a novel semi-active-inerter-based adaptive tuned vibration absorber
(SIATVA). The proposed semi-active inerter can be realized by replacing the fixed-
inertia flywheel in the existing flywheel-based inerters with a controllable-inertia
flywheel (CIF). Then, by using the proposed semi-active inerter, a SIATVA is con-
structed, and two control methods, that is the frequency-tracker-based (FT) control
and the phase-detector-based (PD) control, are derived. The experimental results
show that both the FT control and the PD control can effectively neutralize the vibra-
tion of the primary mass, although the excitation frequency may vary. The proposed
SIATVA can also tolerate the parameter variation of the primary system. As a result,
it can be applied to a variety of primary systems without resetting the parameters.
The performance degradation by the inherent damping is also demonstrated.

Keywords Semi-active inerter · Adaptive tuned vibration absorber ·
Controllable-inertia flywheel · Physical embodiments · Experiments

5.1 Introduction

To date, three types of inerters have been proposed, including the rack-pinion
inerter (Smith 2002; Chen et al. 2009), the ball-screw inerter (Wang and Su 2008;
Chen et al. 2009) and the hydraulic (or fluid) inerter (Wang et al. 2011; Gartner and
Smith 2011; Tuluie 2010). See Chap. 1 for details. Note that for the rack-pinion inert-
ers (Smith 2002; Chen et al. 2009), the ball-screw inerter in Wang and Su (2008),
Chen et al. (2009), and the hydraulic inerters inWang et al. (2011), Gartner and Smith
Tuluie (2011), Tuluie (2010), the inertance cannot be adjusted online. This means the
inertance cannot be adapted according to the variation of the external disturbances
and environmental conditions.

To make the inertance adjustable, in Tsai and Huang (2011), a variable-inertia
device (VID) by using a magnetic planetary gearbox is proposed. The variable-
inertance inerter is actually a semi-active device, similar to the semi-active dampers
and semi-active springs, where parameters (inertance, damping coefficient, and

© Springer Nature Singapore Pte Ltd. and Science Press, Beijing 2019
M. Z. Q. Chen and Y. Hu, Inerter and Its Application in Vibration
Control Systems, https://doi.org/10.1007/978-981-10-7089-1_5
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spring stiffness) can be adjusted online by consuming small amount of energy. From
this point of view, we proposed the semi-active inerter concept in Chen et al. (2014),
which is defined as the inerter whose inertance can be controlled online. Almost at
the same time, other terminologies regarding variable-inertance inerter were inde-
pendently proposed, such as the “adaptive inerter” in Li et al. (2014), Li et al. (2015),
“inerter which enables changes of inertance” (Brzeski et al. 2015). In this chapter, we
uniformly use the term “semi-active inerter” to represent the inerter whose inertance
can be adjusted online. Moreover, note that the term “semi-active inerter” was first
used in Zhang et al. (2010). However, the so-called semi-active inerter in Zhang et al.
(2010) is not a variable-inertance inerter as defined in Chen et al. (2014) and this
chapter, but a semi-active suspension with a passive inerter.

In terms of the physical embodiments of semi-active inerter, inHu et al. (2017), we
proposed a general framework to realize the semi-active inerter, that is the inertance
can be controlled online by adjusting either the transmission ratio or the moment of
inertia of the flywheel. From this point of view, the variable-inertia device in Tsai
and Huang (2011) and the “inerter which enables changes of inertance” in Brzeski
et al. (2015) are realized by adjusting the transmission ratio based on a magnetic
planetary gearbox and a continuously variable transmission (CVT) with gear ratio
control system, respectively. In contrast, in Hu et al. (2017), the method by adjusting
the inertia of a flywheel is demonstrated based a ball-screw mechanism.

In this chapter, the general framework to realize the semi-active inerter will be
introduced in detail. The proposed method is a general framework to realize semi-
active inerters, which means that although the proposed framework is illustrated
based on a ball-screw inerter, other types of semi-active inerters such as rack-pinion
inerters and hydraulic inerters can similarly be constructed. Besides, a novel semi-
active-inerter-based ATVA (SIATVA) is proposed. Two control frameworks for the
SIATVA, that is, the frequency-tracker-based (FT) control and the phase-detector-
based (PD) control, are proposed. The proposed control frameworks are also general
frameworks in the sense that other frequency-tracking and phase-detection tech-
niques can similarly be implemented.

5.2 Preliminary

The tuned vibration absorber (TVA) is an auxiliary spring-mass system connected to
a host structure in order to suppress the vibration of the host structure. It is a classical
vibration control device extensively used inmany fields of civil andmechanical engi-
neering (DenHartog 1985). Note that although the TVAhas the similar structure with
the dynamic vibration absorber (DVA) or tuned mass damper (TMD) (see Chap. 4,
they are normally applied in different situations. For the DVA or TMD, the spring-
mass system is implemented to suppress the vibration of the host structure over awide
range of excitation frequencies, such as the inerter-based DVAs in Chap. 4; while the
TVA is to suppress the vibration at a specific excitation frequency (Bonello 2011;
Brennan 2006). Figure 5.1 shows the schematic of TVA, where the principle idea is
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Fig. 5.1 The schematic of tuned vibration absorber (TVA), where K and M denote the host struc-
ture, k and m denote the spring-mass system

Fig. 5.2 The frequency response of the TVA with different ωm , where ωm =
√

k
m , and ωn =

√
K
M

that if the damping of the auxiliary spring-mass system is neglectable, the vibration
of the host structure at a specific frequency can be totally absorbed. As shown in
Fig. 5.2 with different stiffness-mass pairs, if the stiffness and mass of the TVA are
properly tuned, the vibration at a specific frequency can be totally suppressed.

Note that for the TVA, only the vibration at a specific frequency can be suppressed.
This may be not applicable in practice as the environmental conditions may vary in
time, and if the excitation frequency varies, the TVAwould be not effective. To over-
come this drawback, the adaptive TVA (ATVA) is developed, where the parameters
(stiffness or mass) can be adapted online. A beam-like adjustable-stiffness TVA is
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proposed in Brennan (2006), where the stiffness is adjusted by moving the beams
apart. Other types of ATVA can be realized by using shape memory alloy (Jayender
et al. 2008), piezoceramic elements (Davis and Lesieutre 1999), etc. (see Bonello
2011; Brennan 2006) and references therein). In this chapter, another realization of
ATVA by using the proposed semi-active inerter will be introduced and tested.

5.3 Semi-active Inerter

5.3.1 The Existing Inerters

Most of the existing inerters (Smith 2002; Chen et al. 2009; Wang and Su 2008;
Wang et al. 2011) utilize a flywheel to realize the “inerter effect”, and for all the
existing flywheel-based inerters (Smith 2002; Chen et al. 2009; Wang and Su 2008;
Wang et al. 2011), the inertance can be represented as the product of the square of a
transmission ratio β and the moment of inertia of the flywheel J as follows

b = β2 J. (5.1)

For example, for the ballscrew inerter (Chen et al. 2009; Wang and Su 2008), β

equals (2π/p), where p is the pitch of the screw in units of m/revolution; for the
rack-pinion inerter (Smith 2002; Chen et al. 2009), β is determined by the radiuses
of the gears, pinions and the flywheel; for the hydraulic inerter in Wang et al. (2011),
β is determined by the area of the piston.

Therefore, two means can be utilized to realize the semi-active inerter: the first
one is to adaptively control the transmission ratio β online; the other is to adaptively
control the moment of inertia of the flywheel J online. In this study, the latter is
concerned and themethod by replacing the fixed-inertia flywheel with a controllable-
inertia flywheel (CIF) will be described in the following.

5.3.2 The Controllable-Inertia Flywheel (CIF)

In this study, a CIF is proposed based on the moving mechanical masses method
(Schumacher 1991). Figure 5.3 shows the schematic of the proposed CIF. It involves
at least twomovingmasses, which can radially move along the slots of the flywheel’s
main body. The slots are some channels enforcing the moving masses move radially
and straightly. The moving masses are engaged with the collar through linkages,
where the collar can move along the rotational axis. The position of the moving
masses on the main body can be controlled by adjusting the position of the collar. An
electric motor is mounted on the support structure to adjust the position of the collar,
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Fig. 5.3 The schematic of the proposed CIF

Fig. 5.4 The 3D representation (left) and a prototype (right) of the proposed CIF

and the support structure is fixed and cannot move in any direction. The position
sensor is used to measure the distance between the support structure and the collar.

Different from the CIF in Schumacher (1991), in this chapter, two bearings are
employed among the collar, the main body of the flywheel, and the support structure,
as shown in Fig. 5.3. Thus, during rotation of the flywheel, the upper part of the collar
and the support structure do not rotate with the flywheel, guaranteeing the smooth
movement of the collar when pushed up and down by the electric motor. Figure 5.4
shows the 3D representation and a prototype of the proposed CIF with four moving
masses, where in the prototype, the electrical motor and the position sensor have
been embedded in the linear actuator.

Note that the number of moving masses can be adjusted if necessary. The moment
of inertia of the CIF can be classified into two parts: the static part and the variable
part. The static part includes the main body of the flywheel, the lower part of the
collar, and the bearings, whose moment of inertia remains constant during rotation
of the CIF. In contrast, the moving masses and the linkages constitute the variable
part, whose moment of inertia can be controlled online.

Denote J , Jstatic, and Jvariable as the moment of inertia of the CIF, the static part,
and the variable part, respectively. One has
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J = Jstatic + Jvariable, (5.2)

where Jvariable is determined by the displacement of the linear actuator η. In this
way, the moment of inertia of the CIF can be effectively controlled by varying the
displacement of the linear actuator η.

5.3.3 The CIF-Based Semi-active Inerter

In this study, the proposed framework of realizing semi-active inerter is illustrated
based on a ball-screw inerter, as shown in Fig. 5.5. Note that the CIF is located at
the end of the screw to facilitate the operation of the CIF, which is different from the
existing ball-screw inerters in Chen et al. (2009), Wang and Su (2008).

The inertance of the CIF-based semi-active inerter can be represented as

b = b0 + bv, (5.3)

where b0 and bv denote the static and the variable inertance, respectively, and b0 =
β2 Jstatic, bv = β2 Jvariable.

The variable inertance bv is determined by the displacement of the linear actuator
η. Therefore, the inertance of the CIF-based semi-active inerter can be represented
as

b = Φ(η). (5.4)

Note that Φ(η) is an increasing function with respect to η, which means that the
minimal andmaximal inertances of the CIF are bmin = Φ(ηmin) and bmax = Φ(ηmax),
where ηmin and ηmax are the minimal and maximal η, respectively.

5.3.4 Modeling of the Proposed Semi-active Inerter

The proposed CIF-based semi-active inerter utilizes a linear actuator to adjust the
displacement η, and the linear actuator is driven by a driven voltage V . Denoting the
displacement η as G(V ), the dynamics of the CIF-based semi-active inerter can be

Fig. 5.5 An illustration of
the proposed semi-active
inerter based on a ballcrew
inerter
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summarized as

F = b (ẍ1 − ẍ2) , (5.5)

b = Φ(η), (5.6)

η = G(V ). (5.7)

The details on deriving Φ(η) will be introduced in Sect. 5.5.

5.4 Semi-active-Inerter-Based Adaptive Tuned Vibration
Absorber

5.4.1 Problem Formulation

Figure 5.6 shows the comparison between the TATVA and the SIATVA, where M ,
K , C denote the mass, stiffness, and damping coefficient of the primary system,
respectively. The object is to reject the harmonic force imposed on the primary mass,
where the excitation frequency may vary with time.

Denote F as a sinusoidal force with a time-varying frequency. The transfer func-
tion from the disturbing force F to the displacement of the primary system for the
SIATVA can be obtained as

T = x

F
= bs2 + k1

(Ms2 + Cs + K )(bs2 + k1) + bk1s2
. (5.8)

As shown in (5.8), if the SIATVA is tuned to have ω = √
k1/b, where ω is the

excitation frequency of the force F , perfect cancellation can be achieved. Perfect
cancellation means that the disturbing force F has no influence on the primary mass
M . The perfect cancellation condition only involves the parameters of the SIATVA
and does not rely on the parameters of the primary system.

Fig. 5.6 The comparison of
the traditional adaptive tuned
vibration absorber (TATVA)
and the semi-active inerter
based adaptive tuned
vibration absorber
(SIATVA): a TATVA; b
SIATVA

(a) (b)
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5.4.2 Frequency-Tracker-Based (FT) Control

According to the perfect cancellation condition, for a given stiffness k1 and a given
excitation frequency ω, the required inertance can be obtained as

b = k1
ω2

. (5.9)

Therefore, an intuitive way to control the SIATVA is to track the excitation fre-
quency online, and adjust the inertance according to (5.9). The frequency can be
obtained by using a frequency tracker via the measurement of the acceleration of the
primary mass. Therefore, only one sensor is required in the FT control.

Various techniques can be employed to track the frequency of harmonic sig-
nals online, such as zero-crossing detection (Friedman 1994), Kalman filters (Par-
tovibakhsh and Liu 2014), etc. In this study, a zero-crossing-based frequency tracker
is employed for its simplicity and efficiency in the experiments (for the details on
zero-crossing detection, see (Friedman 1994) and references therein).

5.4.3 Phase-Detector-Based (PD) Control

Another framework to control the proposed SIATVA system is the phase-detector-
based (PD) control. The proposed controller requires two measurements, i.e. the
acceleration of the primarymass and the acceleration of the connection point between
the spring k1 and the inerter b.

Denote the displacement of the connection point as y. The transfer function from
ẍ to ÿ can be obtained as ÿ/ẍ = k1/(k1 + bs2). Assume the excitation frequency is
ω0, and let ẍ = ax sin(ω0t), where ax is the amplitude, then ÿ can be represented as
ÿ = ay sin(ω0t − φ), where ay = axk1/(|k1 − bω2

0|), and

φ =

⎧
⎪⎨
⎪⎩

0 if k1/b > ω2
0,

π if k1/b < ω2
0,

π/2 if k1/b = ω2
0.

It is clear that the phase difference between ẍ and ÿ isπ/2when the perfect cancel-
lation occurs. Therefore, the phase difference between φ andπ/2 can be employed as
the error signal, and a proper controller can be designed to minimize the phase differ-
ence. Note that if φ > π/2, the inertance b should be decreased, and if φ < π/2, the
inertance b should be increased. It is also desirable for the designed controller to have
large adjustments if the difference is significantly different from 0 and have small
adjustments if it is close to 0. Since the inertance is adjusted by the displacement of
the linear actuator η, a control law for η can be derived as
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ηk − ηk−1 = P1
(π

2
− φk

)
+ P3

(π

2
− φk

)3 − Dφ̇k, (5.10)

where k is the sample index, the cubic term is to make the controller have small
adjustments if the phase difference is close to 0, and the derivative term is to improve
the dynamic response of the system.

The phase angle φ can be estimated by the following equation (Brennan 2006)

φ = cos−1

(
1
T

∫ T
0 ẍ ÿdt

ẍrms ÿrms

)
,

where T is the period of signals ẍ and ÿ, and ẍrms and ÿrms are the root-mean-square
(rms) values of the signal ẍ and ÿ, respectively. For a sinusoidal signal, its rms value
equals 1/

√
2 of its magnitude.

5.5 Experimental Evaluation

In this section, the effectiveness of the proposed semi-active inerter and SIATVAwill
be experimentally verified.

5.5.1 Experimental Platform Description

As shown in Fig. 5.7, the disturbing force F(t) imposed on the primary mass M
is induced by the vibration shaker through the intermediate mass and intermediate
spring; the sensors 1 and 2 are two accelerometers, where sensor 1 is used to measure
the acceleration of the primary mass M , and sensor 2 is used to measure the acceler-
ation of the point between the spring k1 and the semi-active inerter b; the spring k1 in
Fig. 5.6 is realized by four parallel springs. The proposed FT control and PD control
are realized by using SIMULINK. Displacements are obtained from accelerations
by performing Fourier transformation and then conducting numerical integration.

The parameters of the experimental platform and the control methods are given
in Table 5.1, where the parameters in the FT control and PD control are chosen by
using the trail-and-error method. According to the perfect cancellation condition in
Sect. 5.4, the effective frequency range for the proposed SIATVA is in [ωmin, ωmax]
where
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Fig. 5.7 The experimental
platform for the proposed
SIATVA

ωmin =
√

k1
bmax

= 6.76 (rad/s), (5.11)

ωmax =
√

k1
bmin

= 12.10 (rad/s). (5.12)

Note that compared with the existing ATVAs (Bonello 2011; Brennan 2006), the
effective frequency range is quite small due to the limitation of the experimental
setup. The approaches to enlarge the effective frequency range can be: enlarging the
stiffness k1, or enlarging the mass of the moving masses, or increasing the number
of the moving masses, etc.

As shown in (5.6), the inertance b is determined by the displacement of the linear
actuator η. The relation between b and η, i.e. the function Φ(η), can be obtained as
follows: from Sect. 5.4, for a given excitation frequency ω, if the inertance satisfies
the perfect cancellation condition, the response of the primary mass acceleration will
beminimized. Since the spring stiffness k1 can bemeasured, one can obtain a relation
between b and η by measuring the specific η where minimal acceleration occurs for
a given frequency ω, and then obtain b by b = k1/ω2.

Figure 5.8 shows the relation between the inertance b and the linear actuator
displacement η from both theoretical calculation and experimental measurement,
where one sees that the theoretical calculation is consistent with the experimental
measurement. The moment of inertia is a quadratic function of the rotary radius, and
the rotary radius is a linear function of η. Therefore, a second-order polynomial is
employed to fit the measured inertance and η in a least squares sense. The obtained
curve fitting equation is

b = −0.0494η2 + 6.5257η + 124.1974, (5.13)

which will be employed as Φ(η) in the experiments in the FT control.
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Table 5.1 The parameters of the experimental platform

Description Value

The primary system Primary mass, M 2.5 kg

Primary spring, K 896 N/m

The intermediate mass 2.5 kg

The intermediate spring 3576 N/m

Semi-active inerter Number of moving masses, n 4

Mass of per moving mass,
mmm

62.60 g

Mass of the CIF main body,
mm

152.30 g

Mass of the collar, mc 60.20 g

Mass of the bearing, mb 24.90 g

Mass of per linkage, mL 3.9 g

Pitch of the ball-screw, p 2 cm

Min. rotary radius of moving
masses

21.75 mm

Max. rotary radius of moving
masses

90.70 mm

Min. linear actuator disp., ηmin 0 mm

Max. linear actuator disp.,
ηmax

42 mm

Static moment of inertia,
Jstatic

0.5452 gm2

Static inertance from
calculation, bstatic

53.81 kg

Min. inertance from
calculation, bmin

99.11 kg

Max. inertance from
calculation, bmax

316.72 kg

Speed of the linear actuator 15 mm/s

Spring k1 Stiffness, k1 14.5 kN/m

FT control Sample time, Ts 10 ms

Zero-crossing number per
evaluation, N

25

PD control Sample time, Ts 10 ms

Linear proportional gain, P1 2.5

Cubic proportional gain, P3 20

Derivative gain, D 6
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Fig. 5.8 Comparison of the relation between inertance b and linear actuator displacement η via
theoretical calculation and experimental measurement

5.5.2 Test Cases

5.5.2.1 Test Case 1

This test is to demonstrate that the proposed SIATVA has the ability to adapt the
inertance and thus to handle the excitation frequency variation by using the FT control
and PD control. In the experiment, the excitation frequency ω varies as follows:

ω =
⎧
⎨
⎩
6.90 t ∈ [0, 50],
10.11 t ∈ (50, 100],
6.85 t ∈ (100, 150].

Figures 5.9 and 5.10 show the experimental results. Since some inherent nonlin-
earities exist in the experimental platform, such as the play in the ball screw, the
friction among the components, etc., the perfect acceleration of the primary system
cannot be achieved. However, compared with the case without the SIATVA, the pro-
posed SIATVA can still significantly reduce the displacement of the primary mass.
As shown in Fig. 5.10, both the FT control and PD control can automatically adjust
the linear actuator displacement η to handle the variation of the excitation frequency.

Moreover, the experimental results show that the PD control tends to be more
fluctuant than the FT control. The reason for this is that in this chapter, the frequency
tracker tracks the frequency more stably than the phase detector detecting the phase,
as shown in Fig. 5.10. Through experiments, it is also found that the FT control
heavily relies on the performance of the frequency tracker, and if the disturbing
force is too noisy (the high-order harmonics are too large), the FT control performs
poorly. In this sense, the PD control is more robust to the variation of the disturbance
than the FT control. However, all these issues can be alleviated by employing more
efficient and more reliable frequency trackers and phase-detector-based controllers,
and the main purpose of this test is to show that both of them are effective to control
the SIATVA.
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Fig. 5.9 The primary mass displacement in Test case 1: top: FT control; middle: PD control;
bottom: without SIATVA

Fig. 5.10 Test case 1: the displacement of the linear actuator (top); the estimated frequency in FT
control (middle); the phase difference in PD control (bottom)
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5.5.2.2 Test Case 2

This test is to show the ability of the SIATVA to tolerate the variation of the primary
system. The excitation frequency ω is 8.19 rad/s. The primary mass experiences a
43.6% sudden change, as represented as follows:

M =
⎧
⎨
⎩
2.5 t ∈ [0, 50],
3.59 t ∈ (50, 100],
2.5 t ∈ (100, 150].

As shown in Fig. 5.11, the variation of the primary mass has a negligible influence
on the performance of the SIATVA, which means that the proposed SIATVA can be
used in a wide range of systems without resetting the parameters. Theoretically, if
the inertance and the spring stiffness k1 are well tuned, the SIATVA can be used in
any primary systems. However, if the disturbing force is relatively much larger than
the stiffness k1, the free terminal of the semi-active inerter will undertake a very large
vibration, which may lead to the stroke of the semi-active inerter to the limit.

Fig. 5.11 The primary mass displacement in Test case 2: top: FT control; middle: PD control;
bottom: without SIATVA
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Fig. 5.12 The SIATVA with inherent damping

5.5.3 The Influence of the Inherent Damping of the
Semi-active Inerter

The physical structure of the semi-active inerter, such as the friction, can introduce
some inherent damping to the proposed semi-active inerter. In this study, the inherent
damping is modeled as a viscous damper with a damping coefficient c. Then, the
SIATVA can be modeled as shown in Fig. 5.12. The transfer function (5.8) can be
rewritten as

x

F
= bs2 + cs + k1

(Ms2 + Cs + K )(bs2 + cs + k1) + k1(bs2 + cs)
,

where one sees that perfect cancellation cannot be achieved for a nonzero c.
Figure 5.13 shows the frequency response of the primary mass’s displacement with
respect to different values of the inherent damping c, where the inertance b is set to
be 200 kg. It is shown in Fig. 5.13 that the larger the inherent damping is, the worse
the performance of the SIATVAwill be, as increasing the inherent damping enlarges
the displacement of the primary mass around the perfect cancellation frequency.

Fig. 5.13 The frequency response of the primarymass displacementwith respect to different inerter
inherent damping
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5.6 Conclusions

In this chapter, a novel framework to realize the semi-active inerter and a novel
semi-active-inerter-based adaptive tuneable vibration absorber (SIATVA) have been
proposed. The proposed semi-active inerter can be obtained by replacing the fixed-
inertia flywheel in the flywheel-based inerters with a controllable-inertia flywheel
(CIF). Two frameworks to control the proposed SIATVA have been presented by
using the frequency information (FT control) and the phase information (PD control),
separately. Experimental results demonstrated that the proposed SIATVA with both
the FT control and the PD control can effectively neutralize the vibration of the
primary mass. The proposed SIATVA can also tolerate the parameter variation of the
primary system, and can be applied to a variety of primary systems without resetting
the parameters of the SIATVA. The fact that the inherent damping can degrade the
performance of the SIATVA system was also demonstrated.

In terms of these two control methods, the FT control requires only one sensor
while the PD control demands two. It was also found in the experiments that the
FT control heavily relied on the performance of the frequency tracker, and the PD
control was more fluctuant than the FT control. Therefore, it depends on the real
applications to determine which method is more suitable in practice, and the main
purpose of this chapter is just to show the effectiveness of these two methods in
controlling the proposed SIATVA.
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Chapter 6
Conclusions

Asanewmechanical element, inerter has been applied in variousmechanical systems.
This book provides an extensive introduction of inerter, from the concept, the physical
embodiments, the state of art research results, to the inerter-based vibration system
analysis and design problems.

There are six chapters in this book. The first chapter presented a detailed
description of inerter, its relation with network synthesis, the physical embodiments,
and the current inerter-based vibration control systems. The inerter-based vibration
control systems were divided into three categories, that is the passive, semi-active
and active systems, based on the property of the control devices. The applications of
inerter were reviewed, including the vehicle suspensions, train suspensions, tuned
mass dampers (or dynamic vibration absorbers), building vibration control, aircraft
landing gears, motorcycle steering compensators, rotors, bridges, etc. The state of
art research on semi-active inerter was also reviewed.

In Chap. 2, the influence of inerter on natural frequencies of vibration systems
was investigated. This is motivated by the fact that the performance benefits of inerter
always demonstrated by using more complex structures comparing with the tradi-
tional spring-damper ones, where the fundamental property of inerter for vibration
is not fully considered. Due to the importance of inerter, the influence of inerter was
studied. It was theoretically proved that inerter can reduce the natural frequency of
vibration systems. The position of the inerter on influencing the natural frequencies
was also studied.

In Chap. 3, the isolating property of inerter was studied by proposing some inerter-
based isolators. The investigation was conducted on two parts. The first part was to
analyze the frequency response of two simple inerter-based networks, that is the
parallel connection of an inerter and a damper, and the serious connection of an
inerter and a damper. The influence of the simple inerter-based networks on the
invariant points, the isolation properties was summarized. The second part was to
present analytical parameter optimization methods for inerter-based isolators. The
H∞ and H2 performance optimization methods were analytically derived.

© Springer Nature Singapore Pte Ltd. and Science Press, Beijing 2019
M. Z. Q. Chen and Y. Hu, Inerter and Its Application in Vibration
Control Systems, https://doi.org/10.1007/978-981-10-7089-1_6

121

http://crossmark.crossref.org/dialog/?doi=10.1007/978-981-10-7089-1_6&domain=pdf
https://doi.org/10.1007/978-981-10-7089-1_6


122 6 Conclusion

In Chap. 4, the application of inerter in dynamic vibration absorption systems was
studied, where inerter-based dynamic vibration absorbers (DVA)were proposed. The
performances including the H∞ and H2 performances were evaluated numerically.
It was demonstrated that only adding one inerter along to the traditional spring-
damper DVA can only provide negligible performance improvements. However, if an
inerter and a spring were added to the traditional DVA, the H∞ and H2 performances
can be significantly improved. The comparison between inerter-based DVA and the
traditional spring-damper DVA was conducted.

In Chap. 5, the semi-active inerter was introduced, and the general methods to
realize semi-active inerter were presented. A physical embodiment of semi-active
inerter by using a controllable-inertia flywheel was proposed and experimentally
tested. The application of semi-active inerter in adaptive tuned vibration absorbers
was considered. Control methods for the semi-active inerter were proposed, and the
performance of the semi-active inerter-based adaptive tuned vibration absorbers was
experimentally evaluated.

In this book, the recent advances in inerter and its related vibration control prob-
lems were introduced. Especially, the inerter-based isolation system, inerter-based
dynamic vibration absorber, the semi-active inerter, and semi-active inerter-based
adaptive tuned vibration absorber were analyzed in detail. Apart from the application
of inerter in vibration control systems, inerter has potentially significant implications
for theoretical and applied research in a broad range of scientific and engineering
areas, such as systems and control fields. Over the longer term, the inerter also pro-
vides researchers with new methodologies and algorithms for application or evalua-
tion in such diverse areas as passivity-preservingmodel reduction, open and intercon-
nected systems, the passivity-based stability criterion, analysis and design of robust
control, dissipative systems, linear-quadratic-Gaussian control of passive networks,
high-precision synthesis, acoustic research, elastodynamic networks, microwave cir-
cuit design, filter deign, the design of electric ship control surface actuation systems,
biometric image processing, and material science.
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