
123

S P R I N G E R B R I E F S I N E D U C AT I O N

Elaine Khoo
Craig Hight
Rob Torrens
Bronwen Cowie

Software Literacy
 Education and
Beyond

SpringerBriefs in Education

We are delighted to announce SpringerBriefs in Education, an innovative product
type that combines elements of both journals and books. Briefs present concise
summaries of cutting-edge research and practical applications in education.
Featuring compact volumes of 50 to 125 pages, the SpringerBriefs in Education
allow authors to present their ideas and readers to absorb them with a minimal time
investment. Briefs are published as part of Springer’s eBook Collection. In
addition, Briefs are available for individual print and electronic purchase.

SpringerBriefs in Education cover a broad range of educational fields such as:
Science Education, Higher Education, Educational Psychology, Assessment &
Evaluation, Language Education, Mathematics Education, Educational
Technology, Medical Education and Educational Policy.

SpringerBriefs typically offer an outlet for:

• An introduction to a (sub)field in education summarizing and giving an over-
view of theories, issues, core concepts and/or key literature in a particular field

• A timely report of state-of-the art analytical techniques and instruments in the
field of educational research

• A presentation of core educational concepts
• An overview of a testing and evaluation method
• A snapshot of a hot or emerging topic or policy change
• An in-depth case study
• A literature review
• A report/review study of a survey
• An elaborated thesis

Both solicited and unsolicited manuscripts are considered for publication in the
SpringerBriefs in Education series. Potential authors are warmly invited to complete
and submit the Briefs Author Proposal form. All projects will be submitted to
editorial review by editorial advisors.

SpringerBriefs are characterized by expedited production schedules with the aim
for publication 8 to 12 weeks after acceptance and fast, global electronic
dissemination through our online platform SpringerLink. The standard concise
author contracts guarantee that:

• an individual ISBN is assigned to each manuscript
• each manuscript is copyrighted in the name of the author
• the author retains the right to post the pre-publication version on his/her website

or that of his/her institution

More information about this series at http://www.springer.com/series/8914

http://www.springer.com/series/8914

Elaine Khoo • Craig Hight • Rob Torrens
Bronwen Cowie

Software Literacy
Education and Beyond

123

Elaine Khoo
Faculty of Education, Wilf Malcolm Institute
of Educational Research (WMIER)

University of Waikato
Hamilton, Waikato
New Zealand

Craig Hight
School of Creative Industries
The University of Newcastle
Newcastle, NSW
Australia

Rob Torrens
Faculty of Science and Engineering,
School of Engineering

University of Waikato
Hamilton, Waikato
New Zealand

Bronwen Cowie
Faculty of Education, Wilf Malcolm Institute
of Educational Research (WMIER)

University of Waikato
Hamilton, Waikato
New Zealand

ISSN 2211-1921 ISSN 2211-193X (electronic)
SpringerBriefs in Education
ISBN 978-981-10-7058-7 ISBN 978-981-10-7059-4 (eBook)
https://doi.org/10.1007/978-981-10-7059-4

Library of Congress Control Number: 2017956740

© The Author(s) 2017
This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part
of the material is concerned, specifically the rights of translation, reprinting, reuse of illustrations,
recitation, broadcasting, reproduction on microfilms or in any other physical way, and transmission
or information storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar
methodology now known or hereafter developed.
The use of general descriptive names, registered names, trademarks, service marks, etc. in this
publication does not imply, even in the absence of a specific statement, that such names are exempt from
the relevant protective laws and regulations and therefore free for general use.
The publisher, the authors and the editors are safe to assume that the advice and information in this
book are believed to be true and accurate at the date of publication. Neither the publisher nor the
authors or the editors give a warranty, express or implied, with respect to the material contained herein or
for any errors or omissions that may have been made. The publisher remains neutral with regard to
jurisdictional claims in published maps and institutional affiliations.

Printed on acid-free paper

This Springer imprint is published by Springer Nature
The registered company is Springer Nature Singapore Pte Ltd.
The registered company address is: 152BeachRoad, #21-01/04GatewayEast, Singapore 189721, Singapore

Preface

Inspired by the emerging field of Software Studies (Fuller, 2008; Kitchin & Dodge,
2011; Manovich, 2013), this book aims to introduce the notion of ‘software liter-
acy’ as an emerging area of research and practice for educators, researchers and
policymakers. As a cultural artefact, software plays a role in reproducing, rein-
forcing and augmenting existing cultural practices, as well as generating new
practices (Manovich, 2013). Software platforms, such as Facebook and YouTube,
operating systems such as iOS software in iPhones and iPads and everyday
applications such as the Microsoft Office suite are just some examples of how
software has become embedded in everyday personal and professional pursuits. The
role that software plays in our lives is however largely unacknowledged and
invisible. The notion of software literacy directs attention to this influence.
Developing a critical software literacy is, we argue, an essential part of learning and
living in the twenty-first century, and a capacity that transcends the use of any
particular software tool and any particular educational, social and cultural context.

Although our focus is primarily an educational one, our argument has impli-
cations for any field that makes use of software and information and communication
technology (ICT) systems and applications. The book will be of interest to those
engaging with the challenges and opportunities involved in software-based teaching
and learning, and to people who are interested in how software impacts on the
workplace and leisure activities that are part of our day-to-day lives.

The book sets out findings from our two-year university-level study, which is
one of the very few studies that have investigated the nature and development of
software literacy. Specifically, it provides case studies of software use and literacy
demands in university-level engineering, and screen and media studies courses. The
views of lecturers and students are presented—student views are mapped over their
full programme of study to illustrate a possible framework for the development of
software literacy.

The cases provide a forum for our elaboration of the tensions and productive
exchanges between the pragmatic and creative potential of software use. They
illuminate how the nature and use of software are entangled with the history of the
two disciplines. Just as importantly, they illustrate how software shapes and is part

v

of student opportunities to learn and the learning networks that span formal and
informal activities inside and outside the ‘classroom’.

The book concludes by asserting and scoping the need for the general population
to be software literate and for professionals within software-based disciplines to be
critically aware of the way their choice of software enables and constrains their
actions and informs their creative imagination.

Hamilton, New Zealand Elaine Khoo
Newcastle, Australia Craig Hight
Hamilton, New Zealand Rob Torrens
Hamilton, New Zealand Bronwen Cowie

References

Fuller, M. (2008). Software Studies: A Lexicon. Cambridge, MA: The MIT Press.
Kitchin, R. & Dodge, M. (2011). Code/Space: Software and Everyday Life. Cambridge, MA:

The MIT Press.
Manovich, L. (2013). Software Takes Command (International Texts in Critical Media Aesthetics,

Vol. 5). NY: Bloomsbury Press.

vi Preface

Acknowledgements

The authors gratefully acknowledge funding support from the Teaching and
Learning Research Initiative, New Zealand Council for Educational Research,
Wellington, New Zealand.

We also thank all the participants who took the time and made the effort to take
part in the study. The contribution and insights you have provided have been
invaluable to this research and this book.

We also recognise and thank Gareth Ranger for his contribution to this research
project during his time as a University of Waikato Summer Research Scholar.

vii

Contents

1 Introduction: Software and Other Literacies 1
1.1 Introduction . 1
1.2 Software Studies and Its SignificanceWithin

Contemporary Society . 3
1.3 Cultural Software and Agency . 4
1.4 Co-creating with Software Tools . 6
1.5 Software Literacy: Our Framework for Interrogating

Cultural Software . 8
1.6 Moving Forward in This Book . 11
References . 12

2 A Genealogy of Software Applications . 15
2.1 Introduction . 15
2.2 The Development of Digital Non-linear Editing

Systems (DNLE) . 16
2.2.1 The Interface . 18
2.2.2 The Implications of DNLE . 19

2.3 The Development of Computer-Aided Design (CAD) 22
2.3.1 Implications of CAD . 25

2.4 Summary . 28
References . 28

3 The Learning, Use and Critical Understanding of Software
in Media Studies . 31
3.1 Introduction . 31
3.2 Research Design and Context . 32

3.2.1 The Research Design . 33
3.2.2 The Media Studies Case . 33
3.2.3 Data Collection . 34

ix

3.2.4 Limitations and Ensuring Quality of Data Collected 35
3.2.5 Analysis of Data . 35
3.2.6 Participants . 36

3.3 Findings . 36
3.3.1 To What Extent, and How Student Software Literacies

Develop and Impact on the Teaching and Learning
of Discipline-Specific Software . 37

3.3.2 Student Perception of the Software Literacies that
They Learnt as Part of Their Tertiary Coursework 43

3.3.3 How and in What Ways Lecturers Model Attention
to, and Use of Different Affordances in Discipline-
Specific Software . 46

3.4 Summary . 48
Appendices . 48
References . 55

4 The Learning, Use and Critical Understanding of Software
in Engineering . 57
4.1 Introduction . 57
4.2 Research Design and Context . 58

4.2.1 The Engineering Case . 59
4.2.2 The Research Design . 59
4.2.3 Data Collection . 60
4.2.4 Participants . 61

4.3 Findings . 61
4.3.1 To What Extent, and How Student Software Literacy

Develops and Impacts on the Teaching and Learning
of Discipline-Specific Software . 61

4.3.2 Student Perception of the Software Literacies that
They Learnt as Part of Their Tertiary Coursework 69

4.3.3 How and in What Ways Lecturers Model Attention to,
and Use of Different Affordances in Discipline-Specific
Software . 73

4.4 Summary . 75
Appendices . 75
References . 82

5 Comparing the Cases: What Do They Tell Us About
Software Literacy? . 83
5.1 Introduction . 83
5.2 Comparing the Cases . 83
5.3 Considerations and Recommendations for Policy, Practice

and Further Research . 86

x Contents

5.3.1 Support for the Three-Tier Software Literacy
Framework . 86

5.3.2 No One-Size Fits All Approach to Software
Learning . 88

5.3.3 Situated Nature of Software Teaching
and Learning . 89

5.4 Summary . 89
References . 90

6 Software Literacy: Education and Beyond . 91
6.1 Introduction . 91
6.2 Software as a Digital Literacy . 92
6.3 Software, Software Literacy and Education 93
6.4 Software Literacies in a Coded Future . 95
6.5 Concluding Comments: Towards Digital Citizenship 97
References . 98

Glossary of Key Terms . 101

Contents xi

List of Figures

Fig. 3.1 Strategies media studies students used to learn
discipline-specific software (collated ‘useful’, ‘very useful’
and ‘extremely useful’) . 38

Fig. 3.2 Student identification of the affordances of media editing
software . 39

Fig. 3.3 Changes in media studies student assessment on their
ability to use discipline-specific software 44

Fig. 4.1 Strategies engineering students used to learn SolidWorks
(collated ‘useful’, ‘very useful’ and ‘extremely useful’) 62

Fig. 4.2 Student identification of SolidWorks’ affordances
in addressing engineering design tasks . 65

Fig. 4.3 Changes in engineering student assessment on their ability
to use SolidWorks. 69

xiii

Chapter 1
Introduction: Software and Other Literacies

Abstract This chapter outlines the role and significance of software in contemporary
society. Drawing from the new field of Software Studies, it sets outs key concepts
relevant to the study of software, including affordances, agency, human-machine
assemblages, and performance to explain the ways users co-create with software. It
proposes the notion of software literacy as a framework to help readers unpack the
ways the affordances of software can (re)shape the ways we think and act. These
ideas are then grounded in an examination of an educational research project into
the ways in which students become more literate about the nature and implications
of software which they encounter as part of their tertiary studies.

1.1 Introduction

This book addresses a question which we argue needs to be answered in detail and
for a wide variety of contexts: why and how does software matter? The research
presented in this volume responds to the more general prompt of Software Studies, a
comparatively new field of inquiry that Lev Manovich and others have championed
(Fuller, 2003, 2008; Hawk, Rieder, & Oviedo, 2008; Johnson, 1997; Kitchin &
Dodge, 2011; Manovich, 2013). This is a paradigm which derives from an insistence
that software has become the engine of contemporary information society as much
as electricity and the combustion engine made the industrial revolution possible
(Manovich, 2013); code is now part of the infrastructure ofmodern societies. Further,
we are living in a software culture, one which is fundamentally reshaping all areas
of modern life:

I think of software as a layer that permeates all areas of contemporary societies. Therefore,
if we want to understand contemporary techniques of control, communication, representa-
tion, simulation, analysis, decision-making, memory, vision, writing, and interaction, our
analysis can’t be complete until we consider this software layer. Which means that all disci-
plines which deal with contemporary society and culture—architecture, design, art criticism,
sociology, political science, humanities, science and technology studies, and so on—need
to account for the role of software and its effects in whatever subjects they investigate
(Manovich, 2008, p. 8, emphasis in original).

© The Author(s) 2017
E. Khoo et al., Software Literacy, SpringerBriefs in Education,
https://doi.org/10.1007/978-981-10-7059-4_1

1

2 1 Introduction: Software and Other Literacies

This is a startling and provocative series of claims, but nevertheless a useful one
to consider. It is not hard to find examples from everyday life where we engage with
software in various forms: when we are playing gaming apps on our smartphones,
when we are accessing banking systems at an ATM, when we are using recommen-
dation systems to find material on Netflix or YouTube, when using everyday social
media platforms such as Facebook, Twitter and SnapChat, which provide a broader
infrastructure of engagement, or wayfinding in a strange landscape by using a nav-
igation system in our car, or using various apps to track our individual biometric
measures as part of a general effort to improve our health. Despite the diversity
of hardware involved, at base these all involve us as users engaging with differ-
ent kinds of applications, platforms and infrastructures constituted through software
code. In many cases they establish an apparent set of givens for how users, prac-
titioners and citizens can engage, participate and interact (van Dijck, 2013). All
contemporary media practices, and increasingly a range of other social, political
and economic practices, are now clearly embedded within and deeply informed by
their nature as software. At an infrastructural level, for example, the internet and
World Wide Web (Web hereon) are themselves organised through software-based
protocols (Galloway, 2004) that govern largely automated processes that are rarely
visible to everyday users, unless they fail. Once we peel back the layers of contempo-
rary society, we recognise that software also runs in the background of many of our
key institutions and systems, from the information systems of a hospital, the plan-
ning and organisation of schools, the disturbingly sophisticated communication and
targeting capabilities of the military-industrial complex, to the automated financial
exchanges that drive global share markets. It is perhaps useful to think of these kinds
of everyday practices as coded, in the sense that they are deeply embedded within
and enabled computer code; they have been translated into software and augmented
or transformed into something else because of this fact. And, crucially, these are
often now practices which no longer operate or exist outside of programming code.

Manovich (2013) argues that this has profound implications for understanding
aspects of culture such as the emergence of the internet and Web in the 1990s.
The Web is not just a new means for distribution, but also constitutes a medium
itself with distinctive characteristics, and underlies more recent and interconnected
developments within mobile and gaming devices—not least the emergence of entire
software-based ecosystems such as Apple’s iOS and the parallel Android mobile
ecosystem. These are all developmentswhich constitute a rapidly expanding universe
of software culture, fed by recombinatory, evolutionary growth—as a capability, or
function or set of tools become coded they become available to be recombined in
new ways for different platforms and contexts. As new spheres of human activity
become coded, they become part of a broader emergence and dominance of software
culture.

In the earlier quote above, Manovich is dealing with abstract generalisations,
but as our examples illustrate, software needs to be acknowledged as the dominant
cultural technology of our time at multiple levels. Such totalising statements do not
provide sufficient nuance to address the variety of social-cultural, economic and
political contexts in which cultural technologies are embedded, nor do they provide

1.1 Introduction 3

the nuance of insight for us to fully consider the implications of software for the
way we lead our lives and the aspirations we have and pursue. Without investigation
into micro-contexts, we run the danger of technological determinism and utopian or
apocalyptic rhetoric familiar to new technologies (and which educational institutions
are particularly prone to). Our research is one small response to both the wider
provocations of Software Studies, and a necessary empirical corrective to its broader
claims.

1.2 Software Studies and Its Significance
Within Contemporary Society

Software Studies adopts the perspective that the study of software partly involves
investigating the cultural discourses that are embedded in code, together with the
broader implications for users of how these discourses operate through the appli-
cation of that code. Coding (or programming, as these terms tend to be used inter-
changeably) is a form of writing which inscribes types of actions to be performed
using a computer.1 To some extent software is a neglected part of the digital revo-
lution. Software is not always thought of as cultural product, arising from specific
contexts and bearing the legacy of the institutions, practices and personnel who cre-
ated it. Software constitutes a large industry that is not always theorised, considered
and investigated within media, education and other parts of society. Softwarewas not
recognised as a distinct industry until the 1960s, developing in the wake of the emer-
gence of the personal computer age in the 1970s (driven especially by the release
of Apple II in 1977) and now operating across diverse spheres. Practitioners of this
industry now describe themselves as software engineers:

Software engineering describes software development as an advanced writing technique that
translates a text or a group of textswritten in natural language (namely, the requirements spec-
ifications of the software ‘system’) into a binary texts or group of texts (the executable com-
puter programs), through a step-by-step-process of gradual refinement (Frabetti, 2014, p. xx).

The term engineer here usefully obscures one of the key characteristics of soft-
ware; that it is a form of writing that not only has material effects but also often
has unintended consequences. No form of code is perfect; it emerges from human
endeavour and is inscribed with the conditions of its creation as with all cultural arte-
facts. Software is also an evolving part of culture, “an essentially unfinished product,
a continually updated, edited and reconstructed piece of machinery” (Berry, 2011,
p. 39), with components that may have their own life cycle, break down or be recom-
bined towards new ends (Berry, 2011).

Crucially, many software applications also foster other creative acts, as Kitchin
and Dodge outline, “software is itself a medium for intellectual work and invention”
(Kitchin & Dodge, 2011, p. 112).

1In more technical terms, a programmer writes in a language (source code) which is then translated,
or compiled, into another language (object code) the computer can parse.

4 1 Introduction: Software and Other Literacies

For us, software needs to be theorized as both a contingent product of the world and a
relational producer of the world. Software is written by programmers, individually and in
teams, within diverse social, political, and economic contexts. The production of software
unfolds – programming is performative and negotiated and code is mutable. Software pos-
sesses secondary agency that engenders it with high technicity. As such, software needs to
be understood as an actant in the world – it augments, supplements, mediates, and regulates
our lives and opens up new possibilities – but not in a deterministic way. Rather, software is
afforded power by a network of contingencies that allows it to dowork in the world. Software
transforms and reconfigures the world in relation to its own systems of thought (Kitchin &
Dodge, 2011, pp. 43–44).

The notion of software entailing forms of agency is an important insight here.
As we come to rely increasingly on software-embodied practices, as more parts
of society become coded, in a broader sense there are necessary debates over the
extent to which we are collectively as a species ceding creative, conceptual and
communicative agency to platforms and infrastructures, and hence key parts of how
we imagine the possibilities for those practices in the first place.

1.3 Cultural Software and Agency

Within the Software Studies paradigm, Manovich identifies cultural software as
that which is central to cultural production, in its broadest terms. Cultural software
includes the popular and ubiquitous forms of software that we use ourselves in word
processing, image manipulation, and even in gaining access to cultural works such
as through internet browsers and media players.

I am using this term literally to refer to software programs which are used to create and
access media objects and environments. The examples are programs such as Word, Power-
Point, Photoshop Illustrator, Final Cut, After Effects, Flash, Firefox, Internet Explorer, etc.
Cultural software, in other words, is a subset of application softwarewhich enables creation
publishing, accessing, sharing, and remixing images, moving image sequences, 3D designs,
text, maps, interactive elements, as well as various combinations of these elements such as
web sites, 2D designs, motion graphics, video games, commercial and artistic interactive
installations, etc. (Manovich, 2008, p. 13, emphasis in original).

These kinds of software collectively foster a wide range of activities, recognis-
able to most readers of this volume; everything from creating and sharing forms of
media content such as photos or videos, playing computer games, posting content on
Wikipedia or Facebook, communicating with other users through texting, email or
other services, operating a search engine, browsing on theWeb, and so on (Manovich,
2011). This is a list which touches on all forms of computer-based and especially
networked media, and involves a wide variety of software targeted at both everyday
novices and more professional users. (Of this broader category of cultural software,
we are looking in the research presented in this volume at a small sample of desktop
applications deployed in educational contexts, such as the Adobe Creative Suite of
media editors, and Computer-Aided Design software.)

1.3 Cultural Software and Agency 5

At the level we as users encounter an application or platform, our engagement is
both fostered and constrained through the affordances which that piece of software
provides.

An affordance is an action possibility or an offering. Possible actions on a computer system
include physical interaction with devices such as the screen, keyboard, and mouse […] The
application software also provides possible actions. A word processor affords writing and
editing at a high level, but it also affords clicking, scrolling, dragging and dropping. The
functions that are evocable by the user are the affordances in software. Functionsmay include
text-editing, searching, or drawing. The information that specifies these functions may be
graphical (buttons, menus) or it may not exist at all (McGrenere & Ho, 2000, p. 6).

Affordances allow us to do particular things; to select, to view, to manipulate
in specific ways. If we look at a software application as providing a set of these
possible actions, then it is vital to map how these affordances appear within a specific
hierarchy, with some made easily available to its users, and how they are more
generally organised to support or constrain what users can use that application for.

The interface for a piece of software embodies that hierarchy of affordances; these
are the default tools we find most easily on the ribbons or drop-down menus of one
of the Microsoft Office applications, or the buttons that are clustered together on a
social media platform (such as Facebook’s now expanded range of feedback buttons).
At a more fundamental level, if we extrapolate from the set of affordances which a
piece of software provides, we can start to see the underlying conceptual framework
which an application or platform operates within. As particular affordances become
familiar to users, and become naturalised to some extent within specific forms of
practice, they can become associated with specific ways of thinking. When we look
at a specific application,we need to analyse theways inwhich it encourages particular
ways of thinking and working through creative and cultural practices—themanner in
which its design is informing and shaping how we imagine the creative possibilities
for action using that application.

There are key aspects of software culture that are useful to consider when seeking
to understand the contention that software entails a form of agency. A core premise
of Software Studies is the need to move away from seeing software platforms and
applications as neutral, as simply things that you do something with (Fuller, 2003,
p. 16). Programming code needs to be understood broadly as engendering both forces
of empowerment and discipline. Software applications and platforms are attractive
precisely because they are designed toward increasing efficiencies and productivity,
generating entirely new markets, and providing new forms of play and creativity.
However, they also serve as “a broad range of technologies that more efficiently and
successfully represent, collate, sort, categorize, match, profiles, and regulate people,
processes, and places” (Kitchin & Dodge, 2011, pp. 10–11). This tension between
empowerment and discipline offers a broad frame for understanding the layered and
complex role which software plays at a variety of levels, especially within networked
media. At the more micro level, we need to be considering the manner and ways in
which specific pieces of softwarework to both enable and constrain creative practices.

We argue that human agency operates in a complex way within software cul-
ture; we become part of human-machine assemblages where agency becomes more

6 1 Introduction: Software and Other Literacies

contingent on a range of human and non-human factors. The broader plateau of soft-
ware culture has more profound implications than just facilitating the creation of
digital content through desktop applications:

(1) in a way that is completely new, software allows the delegation of mental processes of
high sophistication into computational systems. This instils a greater degree of agency into
technical devices than could have been possible within mechanical systems; (2) networked
software, in particular, encourages a communicative environment of rapidly changing feed-
back mechanisms that tie humans and non-humans together into new aggregates. These then
perform tasks, undertake incredible calculative feats, and mobilise and develop ideas at a
much higher intensity than in a non-networked environment; (3) there is a greater use of
embedded and quasi-visible technologies, leading to a rapid growth in the quantification that
is taking place in society (Berry, 2011, p. 2).

This provides the broader context for analysing the specific forms of software
which are the key focus of this book, the set of applications used as creative tools
within specific disciplines.

1.4 Co-creating with Software Tools

In very fundamental ways, it is important to recognise that we co-createwith cultural
software, exploring and negotiating their potential to enable and constrain specific
practices. There are implications here for our own creative agency, not just in the
more specific affordances provided by applications, but in a broader sense with the
imaginative possibilities which software draws from and in turn helps to inform and
shape.

Contemporary media is experienced, created, edited, remixed, organized and shared with
software. […] To understand media today we need to understand media software – its
genealogy (where it comes from), its anatomy (interfaces and operations), and its practical
and theoretical effects. How does media authoring software shape the media being created,
making some design choices seem natural and easy to execute while hiding other design
possibilities? How does media viewing/managing/remixing software affect our experience
of media and the actions we perform on it? How does software change what “media” is
conceptually? (Manovich, 2011, para 1).

In large part, we are talking in this book about software which waits to be per-
formed, which needs to be interacted with in order to function and realise creative
possibilities.

Software Studies as a field is currently focused more on analysing the logics
embedded within software applications themselves than building convincing models
of how specific groups of users understand and use the affordances of particular
software tools,within specific contexts (Hight, 2015).However, it is obviously crucial
that we recognise that all forms of software need to be initiated, to be run, in order
to function. Programming code only becomes of interest when it is put into action
by users (or perhaps by other software which has been initiated by users elsewhere).

1.4 Co-creating with Software Tools 7

We characterise users’ encounters with software applications using a particular
understanding of the notion of performance. Drawing, in particular, from Brenda
Laurel’s work (1992), Manovich uses the term more generally to describe all of the
ways in which we interact in professional or more everyday settings with software
(Manovich, 2008). At a fundamental level, we are collaborating with programming
code when we engage with, respond to, or create content using an application or
platform. But this is also the point where the empowering or disciplining possibil-
ities of software are actualised. When using the most basic operations of a word
processor, for example, nothing happens without the active intervention of the user.
Generating textual content, as with any creative work involving software, involves
human users in collaborative performances with a machine. A blank page in a word
processor application is in one sense a large set of creative possibilities. However,
the application also obviously informs and shapes what and how we perform options
for navigating, editing and sharing of our content. In this sense, there is assumed
to be a complex interplay between affordance and performance, which potentially
plays out in a unique way each and every time a user engages with any application.

There is an increasing imperative to consider the nature of user performance of
software because so much of contemporary media and other practices entail software
performances in real-time, creating experiences that only exist at the product of
interaction.

In software culture, we no longer have “documents”, “works”, “messages” or “recordings”
in 20th century terms. Instead of fixed documents whose contents and meaning could be
determined by examining their structure and content (a typical move of the 20th century
cultural analysis and theory, fromRussianFormalism toLiteraryDarwinism)wenow interact
with dynamic “software performances.” I use the word “performance” because what we are
experiencing is constructed by software in real time. So whether we are exploring a dynamic
web site, play a video game, or use an app on a mobile phone to locate particular places or
friends nearby, we are engaging not with pre-defined static documents but with the dynamic
outputs of a real-time computation happening on our device and/or the server. […] Therefore,
although some static documents may be involved, the finalmedia experience constructed by
software usually does not correspond to any single static document stored in some media
(Manovich, 2012, para 7, emphasis in original).

These are broad generalisations, but once again they serve as a prompt to consider
in more specific detail how particular pieces of software are used in specific contexts
for specific outcomes or purposes.

Most software have a genealogy we can trace, to consider the assumptions about
users, and about specific practices,which are coded into the possible actions it enables
and constrains. In a broader sense, however, it is also important to remember that soft-
ware evolves in tandem with specific user communities; typically it is early adopters
who help to reinforce, refine or reject particular toolsets through their use. There are
any number of everyday examples which could illustrate this. Word processing is
an early example of application software which became ubiquitous in early personal
computers and helped to define what these machines might allow everyday users to
achieve. There is comparatively little research, however, which engages with Word
processing as software, as a new kind of coded practice. An implication of Word and
other early software-based media editors was their fostering of a cut, copy and paste

8 1 Introduction: Software and Other Literacies

sensibility toward creating media content (Fuller, 2003; Heim, 1987; Johnson, 1997;
Kirschenbaum, 2016).

As an example of how the interface imposes its own logic on media, consider “cut and paste”
operations, standard in all software running under the modern GUI [Graphic User Interface].
This operation renders insignificant the traditional distinction between spatial and temporal
media, since the user can cut and paste parts of images, regions of space, and parts of a
temporal composition in exactly the same way. It is also “blind” to traditional distinctions
in scale: the user can cut and paste a single pixel, an image, or a whole digital movie in
the same way. And last, this operation also renders insignificant the traditional distinctions
between media: “cut and paste” can be applied to texts, still and moving images, sounds,
and 3-D objects in the same way’ (Manovich, 2001, p. 65).

Cut, copy and paste, then, has served as a more profound cultural logic, as these
are affordances now naturalised as part of the wider development of graphic user
interfaces (GUIs) on personal computers, legitimising and embedding this logic
across a variety of software. The diffusion of such tools coincided with the growth of
theWeb,which allowed for easy exchange, sharing and recycling of different kinds of
digital material (Manovich, 2001, p. 131). And, as Manovich notes, this embedding
of cut, copy and paste across a variety of media editors has potential implications
for how users conceive of the possibilities of creating content, and perhaps even
for conceptualising what media are (Manovich, 2013). Such broader implications
of software are aspects of cultural history that we can only address through detailed
longitudinal studies—thework outlined in the following chapters (seeChaps. 3 and 4)
is one small step in this direction.

1.5 Software Literacy: Our Framework for Interrogating
Cultural Software

At the core of our research into the implications of software within educational micro
contexts is a set of assumptions underlying the notion of software literacy. We view
software literacy as an integral and fundamental part of the broader label of digital
literacy, although the current debates around this do not acknowledge software as
an actant in the world (Kitchin & Dodge, 2011). Our arguments here are intended to
contribute to existing bodies of work on digital literacy (see for example, Ala-Mutka,
2011; Alexander, Adams Becker, Cummins, & Hall Giesinger, 2017; Sefton-Green,
Nixon, & Erstad, 2009) and specifically to inform and prompt greater consideration
of the importance of code as a factor in individual action and an infrastructural part
of contemporary society.

Vee articulates a necessarily broad definition of literacy itself as “a widely held,
socially useful and valued set of practices with infrastructural communication tech-
nologies” (Vee, 2017, p. 216). A plethora of definitions of digital literacy have
been put forward, see for example Beetham and Sharpe (2010), JISC (2014), and
UNESCO (2013). One of the most comprehensive definitions, according to Ala-
Mutka (2011), is offered by Martin and Grudziecki (2006, p. 255), that is:

http://dx.doi.org/10.1007/978-981-10-7059-4_3
http://dx.doi.org/10.1007/978-981-10-7059-4_4

1.5 Software Literacy: Our Framework for Interrogating Cultural Software 9

Digital Literacy is the awareness, attitude and ability of individuals to appropriately use digi-
tal tools and facilities to identify, access, manage, integrate, evaluate, analyze and synthesize
digital resources, construct new knowledge, create media expressions, and communicate
with others, in the context of specific life situations, in order to enable constructive social
action; and to reflect upon this process.

Martin (2008), asAla-Mutka note, further elaborates the importance of digital actions
within everyday situations meaning that what constitutes digital literacy will vary
across individuals, contexts and time, and that digital literacy is multidimensional,
involving evaluationof and reflectionondigital action anddevelopment. Thedifferent
definitions place varying emphasises on the cognitive, cultural, socio-emotional and
technical dimensions of digital literacy but on the whole they emphasise digital
literacy as user skills.

Livingstone (2004) offers a contrasting view. Speaking about media literacy,
which is widely seen as part of digital literacy, she argues that it is defined through
people’s “relations with different media rather than defined independently of them”
(p. 8, see also Tsatsou, 2017). Seen this way, digital literacy is conceptualised as user-
technology interactivity. Livingstone emphasises that user-technology interactivity
underpins how users interpret, diverge from, conform to or recreate meanings in the
process of engaging with digital media (Livingstone, 2008). Livingstone’s concep-
tualisation suggests that we need to consider the interactivity between the user and
technology for literacy development, with this interactivity understood as two-way.
The idea of a plurality of media literacies challenges the prevalent perception of
literacy as a static realm of skills, ability and expertise that determines experiences
with technology before use (also see for example Goodfellow, 2011 and a new book
series by Lankshear, Knobel, & Peters, 2016). The ability of access, use, act with,
evaluate and reflect on digital tools and facilities are all types of social practice that
are embedded within and shaped by programming code, and are evolving in tandem
with specific sets of software tools.

Drawing from a software studies paradigm, Vee talks of coding as a form of
literacy which underpins other activities and knowledges but when we look across
these various definitions and bodies of work on digital literacy the role of software
itself in shaping action tends to be taken for granted and is not questioned. Our goal
in putting forward the notion of software literacy is to highlight the interactivity
between users and technologies and then to go further and consider the forms of
agency that technologies exert in mediating and shaping action.

Software is not neutral. Software needs to be viewed as increasingly underpinning
all aspects of how we operate as creative producers (Alexander et al., 2017). The
fact that software is part of the infrastructure of our everyday lives, however, does
not mean that we inevitably develop critical literacies toward its nature, significance
and implications for our lives (also see for example Goodfellow & Lea, 2014). In a
now-dated set of debates, numerous authors argued that ubiquitous access to digital
technologies informed a new net generation of digital natives (Oblinger, 2003) with
the corresponding assumption that access to digital tools had, on their own, facil-
itated the development of new learning skill sets (Tapscott, 2009). Educators thus
often worked with the assumptions that students already possessed the necessary

10 1 Introduction: Software and Other Literacies

computing skills and conceptual frameworks to learn with and through generic soft-
ware packages (Bennett, & Maton, 2010). They consequently tended to neglect the
agency of the software itself in shaping how students performed the software (Adams,
2006). More recent research indicates that such assumptions about students’ digital
proficiencies are unfounded and that digital inequalities and marginalisation persist
around students’ access to and use of information and knowledge (Bennett,Maton, &
Kervin, 2008;Kennedy, Judd,Churchward,Gray,&Krause, 2008).Digital inequality
is not restricted to the issue of physical access to software and hardware. Inequalities
also arise due to differences in the social and cultural support for ICT use; individ-
uals may be more or less able to perform and critique the affordances software and
hardware (Selwyn & Facer, 2007).

We propose the concept of software literacy as the repertoires of skills and under-
standings needed for students to be critical and creative users of software applica-
tions and systems in a software saturated culture. This is a framework developed
from experience in teaching software, the findings from a number of eLearning
research projects, but also informed by (critical) readings of current digital literacy
frameworks which, we argue, insufficiently acknowledge the significance of soft-
ware itself within the ecology of digital literacies. Software literacy, then, inevitably
interacts with other literacies under the ‘digital’ umbrella; how users understand and
perform software tools, such as desktop applications, digital platforms that aim to
foster a range of creative and communicative practices, depends on the host of under-
standings, skills and competencies and experiences that users bring to the moment
of engagement.

We hypothesise that there are three progressive tiers of development towards
software literacy:

1. a foundational skill level where a learner can use a particular software, recognising
anddeploying its key affordances, butwould, for example, bemore likely to rely on
default settings and affordances rather than confidently customising the software’s
interface,

2. an ability to independently troubleshoot and problem-solve issues faced when
using the software, reaching a key threshold where users are more likely to inde-
pendently draw upon a variety of resources in their troubleshooting (i.e. being able
to facilitate their own learning of the softwarewhen encountering affordances they
do not know),

3. and finally, the ability to critique the software, including being able to apply such
critique to a range of software designed for a similar purpose and to use these
understandings for new software learning. The third tier involves the ability to
identify affordances and their implications (including the constraints) of particular
software and identify ways to both apply and extend its use such that it is relevant
and meaningful to a wider range of learning purposes, tasks and contexts. In
learning environments this is often the point, for example, where students feel they
have mastered at least some of a particular software application and can apply
their skills to a variety of purposes (including those not necessarily anticipated by
the application’s designers). Students have encountered similar or complementary

1.5 Software Literacy: Our Framework for Interrogating Cultural Software 11

tools, and start to appreciate what each application is (and is not) most useful for,
and develop the ability to talk back to the software; to critique its limitations and
engage in debates over how it should have been designed.

Our own experience has demonstrated that incoming students to our tertiary insti-
tutions may not be aware of the full implications of the affordances and constraints
offered through particular software. No studies to date that we know of raise the
role of student understanding of how software and its affordances influence knowl-
edge representation, generation and critique. We know very little about how students
develop the skills and expertise needed to attend to the features and use of software (as
application, platform and architecture) to complete everyday tasks. There is evidence
that the ubiquity of software and ICT tools has led students to adopt a range of infor-
mal approaches to meet their learning needs (Khoo & Cowie, in press; Peeters et al.,
2014). Research also indicates that students’ formal software learning backgrounds
are diverse (Khoo, Johnson, Torrens, & Fulton, 2011). Student knowledge and use of
software and technology is highly specific to their formal and informal educational,
social and cultural contexts for learning and use (Jones, Ramanau, Cross, & Healing,
2010; Valtonen, Dillon, Hacklin, & Väisänen, 2010). The challenge is thus posed for
educators to adopt pedagogical strategies that build on this diversity. Our research
(see Chaps. 3 and 4), small and necessarily tightly focused as it is, is intended to
demonstrate the value of detailed empirical work in this area of educational research
(and more broadly the need for investigation into how users acquire the skills and
understandings which inform and shape their ability to co-create with various forms
of software).

Initial baseline studies of our work exploring tertiary student software literacies
associated with Microsoft PowerPoint as a common software package encountered
and used in teaching and learning at the tertiary level indicated that despite a familiar-
ity with PowerPoint and its many affordances, majority of students were not able to
critique the ways the software shaped their understanding of disciplinary knowledge
(i.e. they showed a relative lack of critique at the third level of our software literacy
framework) (Khoo, Hight, Cowie, Torrens, & Ferrarelli, 2014). In this volume, we
draw on findings from an extension of the baseline study to focus on two case studies
of teaching and learning contexts with discipline-specific software learning inMedia
Studies (e.g., Adobe Photoshop, Final Cut Pro), and Engineering (SolidWorks) to
explore the effect of more direct instruction on student software literacy development
and disciplinary understanding.

1.6 Moving Forward in This Book

With this chapter laying the foundations of our thinking regarding the important role
of software and our proposed notion of software literacy, Chap. 2 goes further to
elaborate on these ideas by visiting the genealogy and development of software in
two fields—media studies and engineering, which make use of Digital Non-Linear

http://dx.doi.org/10.1007/978-981-10-7059-4_3
http://dx.doi.org/10.1007/978-981-10-7059-4_4
http://dx.doi.org/10.1007/978-981-10-7059-4_2

12 1 Introduction: Software and Other Literacies

Editing (DNLE) and Computer-Aided Design (CAD) software respectively—and
its impact on the small set of cultural and creative practices which are the focus
of our own research. Based on developments in Chap. 2, in Chaps. 3 and 4, we
describe an educational research project aimed at understanding university students’
software literacy development across two diverse disciplines of study (media studies
and engineering) at one New Zealand institution. These represent disciplines where
most students are expected to develop some understanding or even proficiency in
complex software platforms. The research is important in its investigation of the
extent students develop the knowledge and skills needed for them to use and critique
discipline-specific software. We explored students’ wider practices in learning soft-
ware (formally and informally); how their software literacies were nurtured (or not)
within specific learning contexts (university, and workplace in the case of engineer-
ing students). The media studies and engineering cases provide usefully overlapping
but also contrasting examples of approaches toward the teaching of software and
students’ software learning trajectories. Chapter 5 provides a comparative analysis
of the two case studies reported in Chaps. 3 and 4 to highlight similarities and dif-
ferences in student experiences with learning and using discipline-specific software.
Common themes shared by both cases are highlighted and differences noted in rela-
tion to our software literacy framework. We provide further discussions regarding
the design, support, teaching and learning of students where software plays a central
role in the understanding and application of disciplinary ideas in tertiary contexts.

Finally, Chap. 6 pulls together the key themes from the book, revisits our argu-
ments for the notion of software literacy as an essential part of learning and living
in the 21st century. Put another way, we assert that being aware of the influence of
software itself is central to the digital literacy needed for critical and creative partici-
pation in society and work today. Chapter 6 looks to prompt further research activity
in educational and related research fields.

References

Adams, C. (2006). PowerPoint, habits of mind, and classroom culture. Journal of Curriculum
Studies, 38(4), 389–411.

Ala-Mutka, K. (2011). Mapping digital competence: Towards a conceptual understanding. Seville:
JRC-IPTS. Retrieved from http://ipts.jrc.ec.europa.eu/publications/pub.cfm?id=4699.

Alexander, B., Adams Becker, S., Cummins, M., & Hall Giesinger, C. (2017). Digital literacy in
higher education, Part II:AnNMChorizon project strategic brief (Volume3.4).Austin, Texas: The
New Media Consortium. Retrieved from https://blog.stcloudstate.edu/ims/files/2017/08/2017-
nmc-strategic-brief-digital-literacy-in-higher-education-II-ycykt3.pdf.

Beetham, H., & Sharpe, R. (2010). Digital literacy framework. Retrieved from http://
jiscdesignstudio.pbworks.com/w/page/46740204/Digital%20literacy%20framework.

Bennett, S., & Maton, K. (2010). Beyond the ‘digital natives’ debate: Towards a more nuanced
understanding of students’ technology experiences. Journal of Computer Assisted Learning,
26(5), 321–331. doi:10.1111/j.1365-2729.2010.00360.x.

Bennett, S., Maton, K., & Kervin, L. (2008). The ‘digital natives’ debate: A critical review of the
evidence. British Journal of Educational Technology, 39(5), 775–786.

http://dx.doi.org/10.1007/978-981-10-7059-4_2
http://dx.doi.org/10.1007/978-981-10-7059-4_3
http://dx.doi.org/10.1007/978-981-10-7059-4_4
http://dx.doi.org/10.1007/978-981-10-7059-4_5
http://dx.doi.org/10.1007/978-981-10-7059-4_3
http://dx.doi.org/10.1007/978-981-10-7059-4_4
http://dx.doi.org/10.1007/978-981-10-7059-4_6
http://dx.doi.org/10.1007/978-981-10-7059-4_6
http://ipts.jrc.ec.europa.eu/publications/pub.cfm?id=4699
https://blog.stcloudstate.edu/ims/files/2017/08/2017-nmc-strategic-brief-digital-literacy-in-higher-education-II-ycykt3.pdf
http://jiscdesignstudio.pbworks.com/w/page/46740204/Digital%20literacy%20framework
http://dx.doi.org/10.1111/j.1365-2729.2010.00360.x

References 13

Berry,D.M. (2011).The philosophy of software: Code andmediation in the digital age. Houndmills,
United Kingdom: Palgrave Macmillan.

Frabetti, F. (2014). Software theory: A cultural and philosophical study. London, UK: Rowan and
Littlefield.

Fuller, M. (2003). Behind the blip: Essays on the culture of software. New York, NY: Autonomedia.
Fuller, M. (2008). Software studies: A lexicon. Cambridge, MA: MIT Press.
Galloway, A. R. (2004). Protocol: How control exists after decentralisation. Cambridge, MA: MIT
Press.

Goodfellow, R. (2011). Literacy, literacies, and the digital in higher education. Teaching in Higher
Education, 16(1), 131–144.

Goodfellow, R., & Lea, M. R. (2014). Literacy in the Digital University: Critical perspectives on
learning, scholarship and technology. New York: Routledge.

Hawk, B., Rieder, D.M., &Oviedo, O. (2008). Small tech: The culture of digital tools. Minneapolis,
MN: University of Minnesota Press.

Heim, M. (1987). Electric language: A philosophical study of word processing (2nd ed.). New
Haven, CT: Yale University Press.

Hight, C. (2015). Software studies and the new audiencehood of the digital ecology. In F. Zeller, C.
Ponte, & B. O’Neill (Eds.), Revitalising audience research: Innovations in European audience
research (Vol. 5, pp. 62–79). New York, NY: Routledge.

JISC. (2014). Developing digital literacies. Retrieved from https://www.jisc.ac.uk/full-guide/
developing-digital-literacies.

Johnson, S. (1997). Interface culture: How new technology transforms the way we create and
communicate. New York, NY: HarperCollins Publishers.

Jones, C., Ramanau, R., Cross, S., & Healing, G. (2010). Net generation or digital natives: Is there
a distinct new generation entering university? Computers & Education, 54(3), 722–732.

Kennedy, G., Judd, T. S., Churchward, A., Gray, K., & Krause, K.-L. (2008). First year students’
experiences with technology: Are they really digital natives? Australian Journal of Educational
Technology, 24(1), 108–122.

Khoo, E., & Cowie, B. (in press). Trial-and-error, Googling and talk: Engineering students taking
initiative out of class. In D. Corrigan, C. Bunnting, A. Jones, & R. Gunstone (Eds.), Navigating
the changing landscape of formal and informal science learning opportunities. Berlin: Springer.

Khoo, E., Hight, C., Cowie, B., Torrens. R., & Ferrarelli, L. (2014). Software literacy and student
learning in the tertiary environment: PowerPoint and beyond. Journal of Open, Flexible and
Distance Learning, 18(1), 30–45.

Khoo, E., Johnson, E. M., Torrens, R., & Fulton, J. (2011). It only took 2 clicks and he’d lost me:
Dimensions of inclusion and exclusion in ICT supported tertiary engineering education. In Y. M.
Al-Abdeli & E. Lindsay (Eds.), 22nd Annual Conference for the Australasian Association for
Engineering Education (pp. 166–171). Fremantle, Australia: Engineers Australia.

Kirschenbaum, M. G. (2016). Track changes: A literary history of word processing. Harvard, MA:
University Press.

Kitchin, R., & Dodge, M. (2011). Code/Space: Software and everyday life. Cambridge, MA: MIT
Press.

Lankshear, C., Knobel, M., & Peters, M. A. (2016). New literacies and digital epistemologies.
Retrieved from https://www.peterlang.com/view/serial/NEWLIT?v=toc.

Laurel, B. (1992). Computers as theatre. Reading, MA: Addison-Wesley Pub. Co.
Livingstone, S. (2004). Media literacy and the challenge of new information and communication
technologies. Communication Review, 1(7), 3–14.

Livingstone, S. (2008). Engaging with media – a matter of literacy? Communication, culture &
critique, 1(1), 51–62. doi: 10.1111/j.1753-9137.2007.00006.x

Manovich, L. (2001). The language of new media. Cambridge, MA: MIT Press.
Manovich, L. (2008). Software takes command (online draft). Retrieved fromhttp://softwarestudies.
com/softbook/manovich_softbook_11_20_2008.pdf.

https://www.jisc.ac.uk/full-guide/developing-digital-literacies
https://www.peterlang.com/view/serial/NEWLIT?v=toc
http://dx.doi.org/10.1111/j.1753-9137.2007.00006.x
http://softwarestudies.com/softbook/manovich_softbook_11_20_2008.pdf

14 1 Introduction: Software and Other Literacies

Manovich, L. (2011). Inside photoshop. Computational Culture: A Journal of Software Studies,
Issue One, available from http://computationalculture.net/article/inside-photoshop.

Manovich, L. (2012). How to follow software users. Available from http://manovich.net/content/
04-projects/075-how-to-follow-software-users/72_article_2012.pdf.

Manovich, L. (2013). Software takes command. In International texts in critical media aesthetics
(Vol. 5). NY: Bloomsbury Press.

Martin, A. (2008). Digital literacy and the “Digital Society”. In Colin Lankshear & M. Knobel
(Eds.), Digital literacies: Concepts, policies & practices (pp. 151–176). New York: Peter Lang.

Martin, A., & Grudziecki, J. (2006). DigEuLit: Concepts and tools for digital literacy development.
Innovations in Teaching & Learning in Information & Computer Science, 5(4), 249–267.

McGrenere, J., & Ho, W. (2000). Affordances: Clarifying and evolving a concept. In Proceedings
of graphics interface 2000 (pp. 179–186), May 15–17, 2000, Montreal, Canada.

Oblinger, D. (2003). Boomers, gen-Xers, andmillennials: Understanding the “new students”.EDU-
CAUSE Review, 38(4), 36–45.

Peeters, J., Backer, F. D., Buffel, T., Kindekens, A., Struyven, K., Zhu, C., & Lombaerts, K. (2014).
Adult learners’ informal learning experiences in formal education setting. Journal of Adult Devel-
opment, 21(3), 181–192. doi:10.1007/s10804-014-9190-1.

Sefton-Green, J., Nixon,H.,&Erstad,O. (2009). Reviewing approaches and perspectives on ‘Digital
Literacy’. Pedagogies, 4(2), 107–125. doi:10.1080/15544800902741556.

Selwyn, N., & Facer, K. (2007). Beyond the digital divide: Rethinking digital inclusion for the
21st century. Futurelab. Retrieved from http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.
1.1.101.3384&rep=rep1&type=pdf.

Tapscott, D. (2009). Grown up digital. New York, NY: McGraw-Hill.
Tsatsou, P. (2017). Literacy and training in digital research: Researchers’ views in five social science
and humanities disciplines. New Media & Society. doi:10.1177/1461444816688274.

United Nations Educational, Scientific, and Cultural Organization (UNESCO). (2013). Global
media and information literacy (MIL) assessment framework: Country readiness and compe-
tencies. Retrieved from http://unesdoc.unesco.org/images/0022/002246/224655e.pdf.

Valtonen, T., Dillon, P., Hacklin, S., & Väisänen, P. (2010). Net generation at social software: Chal-
lenging assumptions, clarifying relationships and raising implications for learning. International
Journal of Educational Research, 49(6), 210–219. doi:10.1016/j.ijer.2011.03.001.

van Dijck, J. (2013). The culture of connectivity: A critical history of social media. Oxford, UK:
Oxford University Press.

Vee, A. (2017). Coding literacy: How computer programming is changing writing. Cambridge,
MA: MIT Press.

http://computationalculture.net/article/inside-photoshop
http://manovich.net/content/04-projects/075-how-to-follow-software-users/72_article_2012.pdf
http://dx.doi.org/10.1007/s10804-014-9190-1
http://dx.doi.org/10.1080/15544800902741556
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.101.3384&rep=rep1&type=pdf
http://dx.doi.org/10.1177/1461444816688274
http://unesdoc.unesco.org/images/0022/002246/224655e.pdf
http://dx.doi.org/10.1016/j.ijer.2011.03.001

Chapter 2
A Genealogy of Software Applications

Abstract This chapter outlines a broad genealogy of two areas within software
culture: Digital Non-Linear Editing (DNLE) and Computer-Aided Design (CAD)
software. Emerging from distinct institutional environments, their respective histori-
cal developments and the implications these have generated within their professional
domains provide a broader context for the software at the centre of this educational
research project (see Chaps. 3 and 4). Each of these histories demonstrate how deci-
sive the institutional and industrial contexts of their creation were in inscribing the
affordances, interfaces and conceptual frameworks coded into these software.

2.1 Introduction

Every software application comes with its own history; it emerges from a particular
context. The institutional context and corporate history for its emergence imparts
a legacy, embedded within the code itself which evolves as the software becomes
adopted by the user base and increasingly entrenched within professional and other
practices. These contexts and histories are fundamental to the overall conceptual
framework underlying the software. They also inform and shape its set of affordances
(the set of actions possible within the software) and how these are organised in the
design and configuration of such things as an application or platform’s interface. As
outlined in Chap. 1, these aspects of the software serve to enable and constrain the
possible sets of practices to which such software can be applied by users. In a broader
sense, software and its users evolve together, and a history of their development pro-
vides a necessary wider frame from the research ‘snapshot’ generated through our
specific research project. The software explored in this chapter offer useful illus-
trations of how many applications developed in close partnership with professional
practitioners, evolving into the software which later came to be used more widely,
including becoming embedded into educational and training environments (the focus
of our particular study).

The two disciplinary contexts we explore in our research are media studies and
engineering (see Chaps. 3 and 4). This chapter begins with a (necessarily brief)
narrative of the field of Digital Non-Linear Editing (DNLE) software, which is part

© The Author(s) 2017
E. Khoo et al., Software Literacy, SpringerBriefs in Education,
https://doi.org/10.1007/978-981-10-7059-4_2

15

http://dx.doi.org/10.1007/978-981-10-7059-4_3
http://dx.doi.org/10.1007/978-981-10-7059-4_4
http://dx.doi.org/10.1007/978-981-10-7059-4_1
http://dx.doi.org/10.1007/978-981-10-7059-4_3
http://dx.doi.org/10.1007/978-981-10-7059-4_4

16 2 A Genealogy of Software Applications

of a core set of media editors which have arguably transformed media production
practices over the last 20 years. The second half of the chapter provides an overview
of the development of Computer-Aided Design (CAD) software, which is central to a
rangeofmaterial practices, including thosewithin the engineeringdiscipline. The aim
is not to provide an exhaustive history or genealogy of the specific software discussed
in later chapters, but to suggest something of the trajectory of their development and
outline the implications of their acceptance by practitioners within their respective
creative fields.

2.2 The Development of Digital Non-linear Editing
Systems (DNLE)

The long development of Digital Non-Linear Editing (DNLE) systems arguably rep-
resents a transformation as significant to moving images as word processing was for
writing. However, this development is comparatively poorly researched aswithmuch
of cultural software, to use Manovich’s term (see Chap. 1). In a sense, we are talking
here about a cut, copy and paste approach to the construction of moving images.
Earlier (analog) editing practices entailed a destructive assembly process, where a
film strip was literally cut into pieces and reassembled until there was agreement on
the final edit. While film could theoretically be endlessly recombined, in practice
the materiality of film strips meant this gradually became more and more difficult.
Digital systems, in contrast, allow for the random access retrieval of digital material
in order to build a sequence that exists virtually, and with editing outcomes that
are usually recorded (and outputted) as an edit decision list (EDL) (Murch, 2001).
The key, and quite profound, advancement offered by DNLE systems, was that they
allowed the creation of as many versions of film sequences as a user wanted as all
that was being manipulated were digital files. The penultimate output from a DNLE
system (the final EDL) was used as the blueprint to cut or print the film itself. The
integration of this software into professional film making practices had enormous
implications for production workflows, and arguably ultimately changed the ways in
which audio-visual production came to be imagined by practitioners (as is discussed
below). Despite the significance of this translation of the established practices of edit-
ing into software code, it is important to emphasise that film and television producers
were by no means early adopters of incorporating computer-based tools into their
production practices. The transition to a fully digitised production workflow faced
many obstacles; some of these were technical as ambitions were delayed by the lim-
itations of available technologies while others were more cultural and institutional.
Innovations in this area happened first with small groups of early adopter profes-
sional practitioners, before slowly becoming more widely available as the cost of
specialised editing systems decreased and editors became more accustomed to using
these tools. The Moviola editor, a ubiquitous flatbed system for viewing/cutting
film strips which had served as the standard analogue editing system since the

http://dx.doi.org/10.1007/978-981-10-7059-4_1

2.2 The Development of Digital Non-linear Editing Systems (DNLE) 17

introduction of sound in 1927, survived late into the 20th century, evidence of the
decades it took for DNLE to achieve dominance within the industry.

The technical barriers to a completely digital process were not insignificant and
generated caution from some of those who might have been early adopters. This
reticence derived partly from the division between different physical formats, which
made it difficult for developers of new versions of editing systems to recreate all
editorial workflows. For example, there are key material differences between film
and video editing (used respectively for film and television production) which meant
that initially it was not possible for developers of editing systems to cater to both.
The technical challenges of digitising editing practices also derived from the initial
limitations of computer technology itself, such as storage and processing power. The
distinction between offline and online editing,1 for example, has gradually disap-
peared as available computers have become powerful enough to handle editing at
full resolution. Some technical issues were too deeply embedded within existing
production technologies to immediately solve, such as the distinction between the
standards for European film and video (25 frames per second) versus US film and
video (24 fps + 30 fps). These added costly conversions to and from film or video
media files as part of production workflows—these challenges remain as legacies
within file formats and compression codecs2 today. Other challenges only emerged
after earlier problems had been solved, and are part of a much broader and familiar
trajectory of emerging technologies such as the transition to high definition (HD),
4K video and so on, which are beyond the scope of this overview.

It is important to emphasise that editing practices—that is, the ways in which
editors conceptualised and organised their workflows—developed very much in tan-
dem with each other in incremental ways that entailed a slow transformation of the
nature of editing itself (Thompson, 1994). Rubin’s narrative of this transformation
highlights the key period of 1989–1993 as the real emergence and dominance of fully
digitisedNLE (Rubin, 2000), but there are complex, overlapping developments in this
history with most periods characterised by long time lags as established technologies
survived even when there was rapid development of digital technologies. Even today
there are some film directors who insist on creating motion pictures on film despite
the process of distribution and exhibition having been largely digitised. There are a
number of potentially significant (but largely under-theorised and under-researched)
milestones in the slow reconceptualization of audio-visual editing as a coded practice
(see Dancyger, 2011; Ohanian 1998; Rubin, 2000; Thompson, 1994). The year 1995
is frequently cited as a key year in which digital editing became more widespread
within the more elite editing practices (and budgets) of Hollywood production. This
is marked especially with the dominance of the Avid Film Composer system which
epitomised developments that had been made in solving key technical challenges,

1Offline editing involved transferring film to video, to make it easier for editing systems to deal
with the digitised footage.
2A compression codec (short for coder-decoder) encodes a media file for storage and distribution,
and decodes it for playback or editing.

18 2 A Genealogy of Software Applications

including the problem of video/film footage transfer. Together with Apple’s Film
Cut Pro and Adobe Premiere, these constituted the big three of professional level
editing systems. Most crucially for this history, the unbundling of software from
hardware systems fostered a more competitive environment which resulted in the
rapid widespread adoption of any innovations pioneered by any one vendor. With the
increasing competition between a small number of key players, innovation became
secondary to standardisation, and this is most evident in the emergence of the now
familiar template for editing interfaces.

2.2.1 The Interface

The graphic user interface (GUI) for digital non-linear editing—the interface which
editors engage with on their computer screens—is the what confronts users when
opening any audio-visual editing application, and the elements of its basic design
and key features are replicated across both professional-level applications and those
designed for more novice users. In its layout and terminology, this interface retains
something of the legacy of the physical operations of film flatbeds (such as the
Moviola system). The various elements of this interface gradually came together
in successive iterations of DNLE applications produced by various vendors over a
numbers of years. Ohanian provides a useful summary of the key elements of the
contemporary DNLE system (Ohanian, 1998, pp. 52–56):

• The Clip: the granular component of all editing, derived from the shot in film
editing, which tends to represent a single continuous set of footage, and which is
represented by an icon, text, and frame in the interface.

• The Transition: derived more videotape editing, where there was more of a need
to fill in the space left when a shot was trimmed, but now appearing as a variety
of options for editors to apply across cuts between clips.

• The Sequence: a sequential series of (trimmed) clips, stills and othermaterial (such
as various kinds of audio), which can in turn be combined into larger sequences
and so on. These sequences, a key building block for editing, might be generated
by different editing teams on large productions, and combined later.

• The Timeline: the centre of the interface, where multilayered sequences (com-
bining layers for different video and audio material) can be combined to create
sequences which play out over time.

These essential elements of this interface have been replicated across editing
software and have become deeply integrated with other applications to form the
basis of a profoundly transformational approach to the construction ofmoving-image
media content. This is how editing is now performed and imagined by editors (and
other personnel in the production line).

2.2 The Development of Digital Non-linear Editing Systems (DNLE) 19

2.2.2 The Implications of DNLE

The provision of fully-digital workflows, fostered by software from major players
such as Avid, Apple, and Adobe, prompted an immediate reorganisation of produc-
tion workflows. For many large productions, instead of a single editing team pro-
viding a single bottleneck for all raw footage, there might be a number of machines
operating simultaneously, working on different footage, to be combined later.

The implications of DNLE have been more profound than this; however, the
extent to which editing has been redefined through digital workflows is heavily
debated within industry circles. Walter Murch is one of the few practitioners who
has reflected on the transition from analogue to digital editing practices. His seminal
text In The Blink of An Eye (2001) reveals his enthusiasm as an early adopter of
digitised editing across the film industry. His perspective is an informed one, and
a good illustration of the close and dialectical relationship between professional
practitioners and the evolution of the systems they adopted.

Murch also appears in an interesting case study on the transition to digital editing
practices: Koppelman’s (2005) account ofMurch editingColdMountain (Minghella,
2003) on Apple’s Final Cut Pro (FCP) system. This was a production using film on
location, then the footage was migrated to digital video and came out the other end as
film again for distribution to theatres (with film distribution yet to convert to digital
projection as the norm). Significantly, FCP was considered, even by Apple itself,
as a prosumer application, midway between professional and consumer software.
FCP was widely used to edit documentaries, but not considered robust enough for
feature film production. Murch’s adoption of the system on a big budget feature film
represented both an early example of the convergence of consumer-level digital video
tools and Hollywood film industry, and a fascinating account of a software developer
being pushed to re-imagine an application developed exclusively for digital video,
and which in fact required third-party tools to operate (Koppelman, 2005).

These kinds of accounts reveal how practice evolved in tandem with software
development. Murch’s reflections on the nature of DNLE in his own writing, and as
relayed by Koppelman in his case study, provides a useful summary and reflection of
broader opinion within editing practitioners as a community. Overall, although this
is expressed in different ways, there is a recognition that the shift from themateriality
of film, from the destructive approach of editing film, to a fully digitised system has
meant the adoption of a new conceptual approach. This has played out in different
ways for different kinds of editing practice, but there are some broad observations
articulated by most editors.

DNLE allows for the possibility of increased speed in editing, which itself means
a less considered and methodical exploration of the potential ways to combine and
recombine clips into sequences. This generally means a more efficient editing pro-
cess (and hence less costly, a key driver in the adoption of these systems). These
efficiencies are somewhat mitigated within digital workflows by the vastly increased
volume of footage which is able to be captured using digitised cameras with large
storage capacities. As DNLE allows a system to develop and create multiple versions

20 2 A Genealogy of Software Applications

of an edit, these workflows have also opened up the editing room to the more direct
intervention of directors and other personnel. DLNE also allows for a more inte-
grated approach to how image and sound might work together, rather than the older
production process of adding sound (Murch, 2001). As Dancyger notes, individually
these are all small changes in workflow and the ways in which editing is imagined,
but collectively they represent a significant change in practice (Dancyger, 2011).

Murch himself highlights the changes to the nature of analog film editing as
a physical, embodied practice. His own practice involved standing at a Moviola
flatbed deck, using his whole body to work the viewing and the cutting of film
strips in a way that became intuitive (Murch, 2001). He notes that editing involves
the logistical wrangling of footage, analysis of the structure of sequences together
into a rough edit, and the actual performance of the editing itself, and all three
areas are transformed within DNLE (Koppelman, 2005). He also developed specific
elements to his workflow that are only possible with the materiality of film; for
example, he would physically rewind the editing tape back to the beginning through
the viewfinder, meaning he would watch sequences backwards to get a completely
new perspective on its structure—something that isn’t possible with the scrubbing
feature of digital video players (which allows users to jump ahead multiple frames,
to skip through sequences at high speed).

The overall speed and ease of this cut, copy and paste approach to editing attracted
complaints from some practitioners and commentators that this has degraded the
quality of the considered reflection that needs to be at the heart of distinctive and
innovative editing solutions for each project (Murch, 2001). These accounts point
to the emergence of more formulaic and standardised approaches to editing across
different kinds of media content as a key implication of digitised workflows. Ellis
(2012) argues that accelerating the process of editing has had implications within
broader patterns of accelerated cutting in media content, something he characterises
as a loss of craft and individual editing styles (Ellis, 2012) and a greater density
in cutting styles, such as quicker cutting between multiple perspectives and angles
within the same scene.

Perhaps the most profound transformation associated with DNLE, however, is
not provided by the affordances of the systems themselves, but facilitated by the
ease with which material can be imported and exported to other forms of software.
Now it is often the case that different pieces of software will handle specific kinds
of image and sound construction and editing, which are then combined as layers
within a more generic media editing application. This broader context of exchange
of digitised material means that coded filmmaking processes have taken on very
different qualities to previous eras, and this is manifest in the types of changes
exhibited within media content more generally.

Manovich’s analysis of the Adobe After Effects (AE) application is a useful addi-
tion to debates in this area (AE is part of the package which is taught within univer-
sities as industry-standard, including within the media discipline researched within
our project, see Chap. 3). Manovich writes as a practitioner, noting the changes to
his own practice, and highlights the period 1993–98 where a change in the aesthetics
of particular kinds of media content became noticeable. He uses the term Velvet

http://dx.doi.org/10.1007/978-981-10-7059-4_3

2.2 The Development of Digital Non-linear Editing Systems (DNLE) 21

Revolution (as in the slow drift of revolution in Czechoslovakia in 1989) to describe
this gradual transformation, led by AE and a small number of similar programmes,
which have fostered a new hybrid visual language of motion graphics (Manovich,
2006).

What is the logic of this new hybrid visual language? This logic is one of remixability:
not only of the content of different media or simply their aesthetics, but their fundamental
techniques, working methods, and assumptions. United within the common software envi-
ronment, cinematography, animation, computer animation, special effects, graphic design,
and typography have come to form a new ‘metamedium’. A work produced in this new
metamedium can use all the techniques which were previously unique to these different
media, or any subset of these techniques (Manovich, 2006, p. 10, emphasis in original).

Instead of creating films where an animation sequence was followed by a live
action sequence and so on, these various kinds of media content (generated by quite
different workflows and raw materials) could all operate as layers within a single
overarching timeline, and ultimately begin to interact at a more fundamental level. It
is only over time that he belatedly recognised, even as a practitioner, the implications
for his own imaginative possibilities for creating media content, as motion graphics
began to become the standard for short-form audio-visual content, such as television
commercials, and the opening credit sequences to television programmes.

DNLE itself is now typically packaged within a larger ecosystem of produc-
tion tools, all specialised media editors which are increasingly imagined to operate
together to provide a wide spectrum of possibilities for media producers to play
within. The emergence of these software-based tools suggests a redefinition of audio-
visual practice itself, their collective impact and the emergence of distinctive new
conceptual frameworks. Underlying these changes in organising screen content are
greater uncertainties concerning the organisation of creative labour itself:

Specifically, digitization has facilitated a collapse and confusion of production workflow and
upended traditional labor [sic] hierarchies. Workflow refers to the route that screen content
travels through a production organization and its technologies as it moves from the beginning
(origination, imaging, recording) to the end (post-production, mastering, duplication, exhi-
bition) of the production/distribution process. […] In fact, the once linear sequence through
which filmed material went before being printed and broadcast has fallen apart. Because
of these recent shifts to digital, visualization and effects functions once reserved for post-
production now dominate production, and skills once limited to production now percolate
through post-production (Caldwell, 2011, p. 293).

A host of software-enabled specialisations, such as colour grading, motion cap-
ture, the generation of CGI, and motion graphic techniques, allow for a wider palette
of techniques available tomedia producers. Admittedly, this is a narrative which does
not encompass all of audio-visual production; at the opposite end of the filmmak-
ing spectrum are mobile, amateur and networked practices which have reconfigured
DNLE in quite different directions (Hight, 2014a, b). Overall, however, the students
participating in our research encounter sophisticated, professional-level editing sys-
temswith specific conceptualisations embedded in their hierarchy of affordances and
in their interfaces. Next, we turn our attention to another ubiquitous software, in this

22 2 A Genealogy of Software Applications

case used to facilitate the design of engineering, architectural and other physical arte-
facts in three-dimensional (3D) format. Computer-Aided Design (CAD) is another
part of software culture which has had wide-ranging implications for a reimagining
of creative practices across a number of related industries.

2.3 The Development of Computer-Aided Design (CAD)

As with the discussion on Digital Non-Linear Editing (DNLE), what follows is
necessarily truncated and cursory, as we do not have the space here to delve into
the wealth of literature which attempts to analyse and summarise the implications
of Computer-Aided Design (CAD) practices. In our own small project we engaged
specificallywith an engineering discipline, but it is important to noteCAD is an aspect
of software culture with wide applications within design, architecture and related
practices, where it has become a given set of tools with wide-ranging implications
for the nature of professional practice.

CAD involves the use of software in the creation, modification, analysis or opti-
misation of material design (if we define this broadly, to include a range of practices
from the design of nuts and bolts, through tomore complex forms ofmechanical engi-
neering encompassing everything from automotive to bridge design, and ultimately
to forms of built environments or architecture). Some of the transformation of mate-
rial practices associated with this kind of software has been extensively debated,
particularly within architectural literature. This befits a field which sees itself as
aspects of design practice which transcend the merely functional. In these circles
digitised workflows consequently attracted intense debate over the social, cultural
and political implications of its outcomes.

CAD arose from a very different institutional environment to DNLE (with the
Massachusetts Institute of Technology playing an outsize role), but there are some
parallels and interesting points of comparison in terms of the significance of a number
of new conceptual frameworks which emerging software eventually come to embody
and foster. We are concentrating on architecture and engineering in this account, but
there are obvious areas now where 3Dmodelling and media editing software operate
together within particular kinds of creative practices (the most recent and celebrated
include augmented and virtual reality, but there are deep roots here into forms of
computer graphics and game design). As with all software it is increasingly obvious
that applications and platforms formedwithin one sector of human endeavour quickly
start to become part of the broader incestuous and prolific combinatorial evolution
of software culture (as broadly outlined in Chap. 1).

The development of CAD forms one part of a broader history of engineering
and architectural design practice itself, and is associated with a number of transfor-
mational milestones in these practices. Some of the earliest technical drawings for
machines or devices date back to the 14th or 15th century, among themost famous are
those produced by Leonardo da Vinci. However, if we were to consider these draw-
ings in amodern context they would be described as sketches as they lack dimensions

http://dx.doi.org/10.1007/978-981-10-7059-4_1

2.3 The Development of Computer-Aided Design (CAD) 23

or scales and often have exhaustive text descriptions to help the viewer understand
the intent (Weisberg, 2008, p. 2–1). These early drawings served two purposes: a ref-
erence for skilled craftsmen to construct the device depicted and also as a portfolio
to present one’s work to a wealthy patron (Lefèvre, 2004). Crucially, at this point in
history there was a clear separation in practice between those who offered designs of
material objects and those who actually built such things based on those designs. In
marked contrast to contemporary practice, this was not a collaborative relationship
nor a space where early architects were acknowledged as the drivers of projects.

Leon Battista Alberti is invariably credited with inventing modern architecture,
in the sense that he exploited the new technologies to insist that the designer was the
author of a building and no longer beholden to the craftspeople who actually created
a building. Before Alberti, architects had to contend with builders who interpreted
their designs according to their own practices and the demands of their local contexts.
So the creation of a building was an inherently collective and decentralised process,
relying on oral, material and technical traditions outside of the control of the architect
(Llach, 2015). The Albertian paradigm is a key reference point for understanding the
emergence of CAD. One of the broader ironies of this history is that this software at
first seemed to fulfil the promise of the Albertian approach, but has in more recent
years gradually undermined it.

Using a new notational system, and exploiting the possibilities for the new tech-
nology of print to provide an exact replica of a design, Alberti could insist that the
architect was indeed the author of a building, not just a starting point for a design
which was re-shaped on location by other craftspeople. So in Alberti’s terms, “the
design of the building is the original, and the building is its copy” (Carpo, 2011, p.
26, emphasis in original). Following Alberti, the notational system of architecture
helped to establish a distinct identity for architecture, which in turn eventually helped
to set the conceptual stage for the arrival of computers as tools to serve these masters
(Llach, 2015).

The specific origins of CADare typically seen as locatedwithin theMassachusetts
Institute of Technology (MIT), which produced the first CAD software, Sketchpad,
as part of Ivan Sutherland’s doctoral research in 1959,3 building on a variety of earlier
work by researchers inside and outside the institution (Cohn, 2010; Llach, 2015).
As with early DNLE development, there were very few practitioners who had the
resources to commit to investigating the use of the early prototypical and expensive
systems. Consequently, the early development of CAD, in an engineering context,
was primarily driven by large aerospace and automotive companies. These were
companieswhichwere able to afford the expensive computer equipment required and
were already engaged in such complex design processes that theywere attracted to the
possibilities of the reduction of drawing errors, increased reusability of drawings and
greater efficiencies promised by CAD. It is important to recognise that the adoption
of these systems was driven by a search for greater efficiencies in productivity rather
than a design tool. Instead they offered systems to find drawings more quickly,

3Not coincidentally, Sutherland later emerged as a keyfigurewithin the history of computer graphics.

24 2 A Genealogy of Software Applications

simplifymodifications of drawings and allow the automationof someparts of drawing
practices (CADAZZ, 2004).

As Llach notes, in contrast to the popular conception that Computer-Aided Man-
ufacturing (CAM) is an offspring of Computer-Aided Design (CAD), the opposite is
true. Like filmmaking, engineering and architecturewere comparatively late adopters
of embedding computers into everyday creative practice.CADdeveloped fromexper-
iments to automate manufacturing, and it was only later that the transformational
potential for design itself came to be realised (Llach, 2015).

The ethos and vocabulary of manufacturing gave origin to the first CAD systems
(Llach, 2015, p. 37), but this was also, unusually for software culture, a highly
theorised process. The development of CAD at MIT was complex, and significantly
involved a great deal of debate about the nature and desirability of the human-
machine hybrid practice which might result. MIT not only developed CAD as a tool,
but generated a series of accompanying theoretical reflections that helped to shape
assumptions on how it might operate within industry. These debates centred on the
use of creatively using computers, the need to divide labour between humans and
machines and the implications of re-imagining material design as a kind of data
processing (Llach, 2015).

These debates are quite distinctive from those associated with the development of
DNLE, as they drew upon a broader caution about the nature and role of computers
within material design practice. The term Computer-Aided Design itself reflects the
demand that computers support human creativity, rather than any sense that there
should be a collaboration between human and machine (Llach, 2015). CAD conse-
quently tended largely toward generating efficiencies through the augmentation of
pre-existing practices in the 1970s and 1980s (Llach, 2015). For example, engineer-
ing within aerospace leader Boeing had an all CATIA, no paper4 design strategy.
This led to a substantial reduction in time to market by safely eliminating the need
for physical mock-ups (often required to verify paper designs). The typical impetus
for the adoption of CAD was still the quest for workflow efficiencies. In late 2000
automotive manufacturer Ford showed that 3D CAD, with internet enabled product
data management (PDM), could cut the concept to shelf time to approximately one
third of that required by the more common, non-internet enabled techniques. The
primary advantages of the network enabled method were that they allowed view-
ing and collaboration by geographically dispersed teams on a single digital master,
almost eliminating the misfit and mismatch problems often associated with globally
dispersed manufacturers and parts suppliers.

While MIT was crucial to the broader development of CAD, and succeeded in
actively shaping the popular imagination with design fields and wider (Llach, 2015),
ultimately how CAD developed diverged from this original role. The longevity of its
introduction into everyday practice perhaps aided in this adaptation, as CAD gradu-
ally drifted further from how it was conceived by its creators, as it became diffused
through architectural and engineering practice. As the software itself became more
sophisticated with enhancing computer technologies, there was a gradual shift of

4CATIA is a CAD platform.

2.3 The Development of Computer-Aided Design (CAD) 25

focus from simply automating the practice of drafting into something more trans-
formative: the emergence of a platform facilitating a comprehensive building (and
design) simulation (Llach, 2015). These are all developments which at first glance
appear to provide a narrative of inevitable transformation, a confirmation of the
claims of technological determinism. Initial CAD programs effectively just trans-
lated the blueprinting process onto a digital platform, and it was only as the software
increased capability to allow for the techniques of 3D modelling that its broader
creative capacities became prevalent.

Modern 3D CAD programs include a variety of sophisticated analysis tools that
allow various simulations to be run on the 3D item/structure. This has given rise to
the term virtual product development, where products are developed and prototyped
in an entirely digital medium (CADAZZ, 2004). Today, CAD is used extensively
in most activities in the design cycle, everything from recording product data, to
allowing for remote collaboration between design teams (Bilalis, 2000). The open
co-creation possibilities of CAD software emerged gradually, but also in a highly
theorised way, a reflection of the significance of the university environment as a
breeding ground for its conception and early prototypes.

Interestingly, Llach’s critical perspective draws explicitly from the Software Stud-
ies paradigm, arguing that software needs to be examined “as part of the infrastruc-
tures that condition the design and production of built environments” (Llach, 2015,
p. 23). For commentators such as Llach, what was at stake is the nature of the creative
endeavour itself. Before the widespread use of CAD in the education of engineers,
there was much greater emphasis on drawing and sketching (Buchal, 2002). Hare
(2005) says that sketching is inherently creative, the practicing and sketching fre-
quently leads to more creative thinking; in fact, analog tools, such as pen and paper,
are still viewed as more haptic and intuitive. From this perspective, CAD can guide
an engineer through technical issues, such as dimensions and scaling, but it does not
have the same ability to create quick visualisations like sketching does. Moving to a
CAD workflow, then, might mean losing key elements of design practice.

Llach cautions against making generalisations in this area however, as the use of
the CAD tool has varied greatly and the use of these systems are deeply informed
by practitioners’ own position within debates over the role which computer-based
practice should play.He cites the example of FrankGehry,who continued to construct
actualmodels,whichwere then scanned and inserted into computer form.Theprocess
is complex here, as the potential of the software also clearly informed the imagination
of architects, allowing them conceptual space to potentially re-imagine the nature of
their own practice. The role of the software is still, in everyday disciplines globally,
negotiated and framed by broader agendas and localised practices (Llach, 2015).

2.3.1 Implications of CAD

The overall paradigmatic changes associated with CADworkflows have been neither
universal nor linear. Initially this software represented a confusion of the Albertian

26 2 A Genealogy of Software Applications

perspective, and the emergence of a vision of architectural design as data processing
(Llach, 2015, p. 66), in the process “revealing software as a territory where the
meaning of design itself is negotiated” (Llach, 2015, p. 87). Rather than a slave for
the Albertian paradigm, the computer has sparked a profound refashioning of the
nature of material design practices, such as engineering, with debates now centred
on the nature of the human-machine assemblage that has emerged, and which way
development should now progress.

Just as DLNE is now part of a broader production ecology that challenges under-
standings of what media are (Manovich as cited in Chap. 1), Llach argues that
software is a site for competing theorisations about design, and consequently, “the
technology project of CAD appears as a disciplining project, not an emancipatory
tool, but rather a governing one” (Llach, 2015, p. 102). The broader implications are
complex, and there is (again) notably more detailed and extensive theorising about
these aspects within discourses surrounding CAD than for DNLE.

Robertson and Radcliffe (2009) argue that “there is growing evidence that the
ubiquitousCAD tools that design engineers use in their everydaywork are influencing
their ability to solve engineering problems creatively, in both positive and negative
ways” (p. 136). Positive factors include the ability to visualise and playwith designs,
less time spent on detail (potentially allowing more time on being creative), and
enhanced communication facilitating group creativity. Negative impacts tend to be
vaguer, though Robertson and Radcliffe have identified four general categories:

• Enhanced visualisation and communication: there are obvious positive aspects
to this category. Negative impacts included having clusters of people crowding
around amonitor hampering brainstorming; and the tendencywhen a detailedCAD
model was displayed for it to convey an illusion of completeness and discourage
further creativity.

• Circumscribed thinking: this could either be where the functionality of CAD lim-
ited solutions (either to what was possible to do in CAD, or perhaps worse, what
was easiest to do in CAD); or at the other end of the scale very proficient CAD
users using the functionality of the tool to develop unnecessarily complex designs
because CAD allowed it rather than because these were the best design solutions.

• Bounded ideation: the notion that using CAD for large portions of a day was not
necessarily conducive to creativity (the mundane nature of drafting along with
technical problems and software bugs being a distraction from the process of
designing).

• Premature fixation: as CAD models became more complex (usually as the design
process proceeds) there was greater disincentive to make changes (presumably
due to the amount of work that would be required to make these).

As always, debates centred on whether such new human-machine assemblages
truly enhance innovative and effective design practice. Some commentators insist on
a profound paradigmatic change prompted by CAD, with hints of the technological
determinism underlying some writing on software culture more broadly. Carpo
writes that the “Albertian paradigm is now being reversed by the digital turn”
(Carpo, 2011, p. 27).

http://dx.doi.org/10.1007/978-981-10-7059-4_1

2.3 The Development of Computer-Aided Design (CAD) 27

The idea that the new digital design tools could also serve to make something else – some-
thing that would not otherwise have been possible – may have occurred when architects
began to realize that computer-aided design could eliminate many geometrical and nota-
tional imitations that were deeply ingrained in the history of architectural design. Almost
overnight, a whole new universe of forms opened up to digital designers. Objects that, prior
to the introduction of digital technologies, would have been exceedingly difficult to represent
geometrically, and could have been produced only by hand, could now be easily designed
and machinemade using computers (Carpo, 2011, p. 36).

There is parallelism here with the developments of fully realised CGI-animated
film worlds fostered by media production, but prompted also by the influence of
postmodern theorists such as Gilles Deleuze. He offered a new language of folds in
architectural design (helping to prompt the development of algorithmic affordances
in CAD platforms which could realise these in virtual form). The fold, “a unifying
figure in which different segments and planes are joined and merge in continuous
lines and volumes, is both the emblem and the object of Deleuze’s discourse” (Carpo,
2011, p. 86).

And, crucially, the rigour of the Albertian paradigm is much more compromised
now within this environment. Instead of a firm commitment to the authorship of the
architect, who produced a design and anticipated that it would be exactly replicated
in the building itself, and the early CAD phase where the software was used to imple-
ment broader assumptions of standardisation and automation, today CAD allows for
a more fluid and ever changing re-imagination of the nature of design itself. An
architect’s original plan could once again (as in pre-Alberti times) be endlessly rein-
terpreted using individual explorations at different points in the design process: “In
a digital production process, standardization is no longer a money-saver. Likewise,
customization is no longer a money-waster” (Carpo, 2011, p. 41).

As CAD became more embedded within material design disciplines, such as
engineering, it allowed three-dimensions to become part of the authoring process.
As with DNLE the broader ecology of software development has

made it possible to envisage a continuous design and production process where one or more
designers may intervene, seamlessly, on a variety of two-dimensional visualizations and
three-dimensional representations (or printouts) of the same object, and where all interven-
tions or revisions can be incorporated into the same master file of the project. This way of
operating evokes somehow an ideal state of original, autographical, artisanal hand-making,
except that in a digitized production chain the primary object of design is now an informa-
tional model (Carpo, 2011, p. 33).

A key point was that design representations now became “forms of building”
structured information, engineered rather than drawn (Llach, 2015, p. 67, emphasis
in original). Architects were able to model new constructions in the software itself.
A key shift here is toward the term “modeling, often used by architects to describe
the production of three-dimensional descriptions in software, [which] evokes manual
work in a way that other words, such as simulation, do not” (Llach, 2015, p. 100).
The CAD process has evolved increasingly into an ever-more data-intensive set of
practices, with recent developments of building informationmodelling (BIM) deeply
embedded within automated practices allowing and requiring greater databases of
content to be folded into the design process.

28 2 A Genealogy of Software Applications

The CAD systems currently available for students within disciplines such as engi-
neering (one of the foci of our research in the following chapters), then, are highly
sophisticated, densely designed software-based platforms enabling a wide variety of
material practices. They have evolved from their origins as tools to serve, support
and help implement human creativity, emerging as human-software engines which
are challenging for any practitioner to master, and typically offer a daunting software
environment for novice users to encounter (as we shall see in Chap. 4).

2.4 Summary

This chapter has scoped the genealogy and development of two distinctive forms of
software—DNLE and CAD—commonly taken up within the professional fields of
media studies and engineering today. Obviously, it is not enough to provide such
broad histories, as they reveal little but generalisations and theorising extemporised
from exemplars and case studies at hand. What is required from this point is more
detailed explorations of how and the extent to which these might play out within spe-
cific institutional contexts, whether these broader patterns and generalisations hold
true across different practices, deployed by distinct practitioners, within institutional
variations, and any number of other factors. We turn to this task in the next two
chapters.

References

Bilalis, N. (2000). Computer aided design CAD. Report produced for INNOREGIO: Dissemination
of innovation and knowledge management techniques. Retrieved from http://www.adi.pt/docs/
innoregio_cad-en.pdf.

Buchal, R. O. (2002). Sketching and computer-aided conceptual design. In 7th International Con-
ference in Computer Supported Cooperative Work (pp. 112–119). Design, Brazil: IEEE.

CADAZZ. (2004). CAD software—history of CADCAM. Retrieved from http://www.cadazz.com/
cad-software-history.htm.

Caldwell, J. T. (2011). Worker blowback: User-generated, worker-generated, and producer-
generated content within collapsing production workflows. In J. Bennett & N. Strange (Eds.),
Television as digital media (pp. 283–310). Durham, NC: Duke University Press.

Carpo, M. (2011). The alphabet and the algorithm. Cambridge, MA: MIT Press.
Cohn, D. (2010). Evolution of computer-aided design, digital engineering (December 2010).
Retrieved from http://www.digitaleng.news/de/evolution-of-computer-aided-design/.

Dancyger, K. (2011). The technique of film & video editing: History, theory, and practice (5th ed.).
Burlington, VT: Elsevier.

Ellis, J. (2012). Documentary: Witness and self-revelation. London, UK: Routledge.
Hare, R. (2005). The act of sketching in learning and teaching the design of environments: A
total skill for complex expression. Retrieved from http://www.lboro.ac.uk/microsites/sota/tracey/
journal/edu/hare.html.

http://dx.doi.org/10.1007/978-981-10-7059-4_4
http://www.adi.pt/docs/innoregio_cad-en.pdf
http://www.cadazz.com/cad-software-history.htm
http://www.digitaleng.news/de/evolution-of-computer-aided-design/
http://www.lboro.ac.uk/microsites/sota/tracey/journal/edu/hare.html

References 29

Hight, C. (2014a). Shoot, edit, share: Cultural software and user-generated documentary practice. In
K. Nash, C. Hight, & C. Summerhayes (Eds.), New documentary ecologies: Emerging platforms,
practices and discourses (pp. 219–236). Houndmills, UK: Palgrave Macmillan.

Hight, C. (2014b). Automation within digital videography: From the Ken Burns effect to ‘meaning-
making’ engines’. Studies in Documentary Film, 8(3), 235–250.

Koppelman, C. (2005). Behind the seen: How Walter Murch edited Cold Mountain using Apple’s
Final Cut Pro and what this means for cinema. Berkeley, CA: New Riders.

Lefèvre, W. (2004). Picturing machines 1400–1700. Cambridge, MA: MIT Press.
Llach, D. C. (2015). Builders of the vision: Software and the imagination of design. New York, NY:
Routledge.

Manovich, L. (2006). After effects or the velvet revolution.Millennium Film Journal, 45(46), 5–19.
Minghella, A. (2003). Cold Mountain. Miramax. DVD.
Murch, W. (2001). In the blink of an eye: A perspective on film editing (2nd ed.). Beverly Hills, CA:
Silman-James Press.

Ohanian, T. A. (1998). Digital nonlinear editing: Editing film and video on the desktop. Boston,
MA: Focal Press.

Robertson, B. F., & Radcliffe, D. F. (2009). Impact of CAD tools on creative problem solving in
engineering design. Computer-Aided Design, 41(3), 136–146.

Rubin, M. (2000). Nonlinear: A field guide to digital video and film editing (4th ed.). Gainesville,
FL: Triad Publishing Company.

Thompson, C. (1994). Non-linear editing: A survey. New Technology and Training Series. London,
UK: Skillset, The Industry Training Organisation for Broadcast, Film & Video and British Film
Institute.

Weisberg, D. E. (2008). A brief overview of the history of CAD. In The engineering design revo-
lution: The people, companies and computer systems that changed forever the practice of engi-
neering, (pp. 2–1). Available at http://www.cadhistory.net/02%20Brief%20Overview.pdf.

http://www.cadhistory.net/02%20Brief%20Overview.pdf

Chapter 3
The Learning, Use and Critical
Understanding of Software in Media Studies

Abstract This chapter (as with the next, Chap. 4) reports on the findings from a two-
year funded empirical study (2013–2014) exploring how tertiary students in media
studies and engineering develop the understandings and skills needed to use software
as forms of software literacy. Two case studies were developed. The case studied
experiences of media studies students’ software literacy development is the focus of
this chapter. Two cohorts of media studies undergraduate students were tracked, at
different stages of study and using mixed methods, in their learning of discipline-
specific software, Final Cut Pro, and the Adobe Creative Suite. The findings illustrate
the ways student software literacy develop in a specific tertiary context. The findings
will be revisited in Chap. 5 and discussed to include implications for the wider field
of software teaching and learning.

3.1 Introduction

As highlighted in the first chapter, there is increasing expectation that media studies
students will be able to engage competently and critically with the wide array of
creative media software available in the industry. The rise of digital technologies
have reshaped the nature of media studies as a discipline blurring the lines between
those who are producers and consumers of digital content (Manovich, 2006). In
other words, the boundaries between consumers and producers are being broken
down by increased accessibility to technology and software. Yang (2014) argues that
this is leading to a fusing of producer with consumer, and a new term, prosumer,
may be more apt to describe future digital users. The home user or the creative
maverick are thus increasingly seen as valid outcomes for media literate graduates.
More specifically, engaging with creative media software, either as a teaching or
learning tool, is seen as an essential and almost unavoidable part of modern learning,
particularly when preparing students for adult life. Some go as far as to argue that
creativemedia software (Adobe Creative Suite, Final Cut Pro, Paintshop, etc.) should
be taught to students as early as high school, with many other researchers (e.g.,
Livingstone, Wijnen, Papaioannou, Costa, & del Mar Grandio, 2014) arguing that
learning centred on creative media software should be viewed as an essential literacy,

© The Author(s) 2017
E. Khoo et al., Software Literacy, SpringerBriefs in Education,
https://doi.org/10.1007/978-981-10-7059-4_3

31

http://dx.doi.org/10.1007/978-981-10-7059-4_4
http://dx.doi.org/10.1007/978-981-10-7059-4_5

32 3 The Learning, Use and Critical Understanding of Software …

i.e., media literacy, additional to traditionally taught literacies, such as reading and
writing.

However, a substantial research gap still exists concerning how students learn,
engage with and view discipline-specific creative media software. Few studies have
explored the impact of informal learning networks in relation to learning within
media studies or, similarly, the effects these approaches are having on formal learning
networks. Most studies have concentrated on notions and developments of digital
information literacy, or information literacy skills. See, for example, Hegarty et al.
(2010)who provided a progression for the development of digital literacy skills based
on students’ ability to access and evaluate electronic information in order to critically
manipulate and use such information for their learning purposes in recognition of
the broader social and cultural contexts within which the information is situated. The
study, however, failed to examine the nature of student critique and decision making
around which tools might best serve their purpose. Developing the ability to critique
constitutes an essential characterisation of a 21st century learner (Gilbert, 2005).

This chapter reports on a study which aimed to explore, examine and theorise on
how the notion of software literacy is understood, developed and applied in tertiary
teaching and learning contexts, and the extent to which this understanding is useful
when translated into new contexts of learning with and through software. We view
this understanding as crucial and relevant to ensure all students and lecturers are
better supported in teaching and learning processes that are mediated through and
focused on software. Sociocultural theoretical perspectives are adopted as a basis of
our study. The chapter begins by visiting the research design which case studies the
experiences of undergraduate media studies students before detailing the case and
expanding on the findings as evidence for the ways students engage with discipline-
specific software.

3.2 Research Design and Context

This research draws from data collected in a two-year longitudinal research project
funded by the New Zealand Ministry of Education: Copy, cut and paste (CCP): How
does this shape what we know? (Khoo, Hight, Torrens, & Cowie, 2016), to report
on the views of participating tertiary media studies and engineering students from a
New Zealand university. The research questions guiding the investigation were:

1. To what extent, and how, does student software literacies develop and impact
on the teaching and learning of discipline-specific software in formal tertiary
teaching settings?

2. What software literacy do students consider they learnt as part of the case study
tertiary course(s)?

3. How and in what ways do lecturers model attention to and use of different aspects
of software affordance in a course which utilises discipline-specific software?

3.2 Research Design and Context 33

The research intention was to unpack if and how students develop and use
discipline-specific software literacy, understand the influence of software on the way
they make sense of disciplinary knowledge and whether their learning trajectories fit
with the hypothesised tiers of software literacy (see Chap. 1 for a discussion of the
three-tier software literacy framework).

With reference to digital technology adoption and use, Selwyn (2010) asserts
that the importance of developing deep understandings of local contexts and ICT
practices cannot be underestimated. A qualitative interpretive methodology was thus
adopted to frame the study as it is consistent with the intention of uncovering the
significance of events as experienced by research participants (Bell, 2004; Maykut
& Morehouse, 1994) so that worthwhile improvements to learning can occur. It is
congruent with a sociocultural framework that values the social and cultural contexts
for how knowledge is co-constructed through interaction between individuals and
tools (Wertsch, 1998).

A case study approach was adopted to allow the research team to develop an in-
depth understanding of participants’ lived experiences and transformations through-
out the period of the study (Gall, Borg, & Gall, 1996). Two information rich cases
were purposively selected (Patton, 2002) from two diverse disciplines (media stud-
ies and engineering) within a New Zealand university—the University of Waikato.
Their selection was in part based on collaboration with lecturers who were keen to
examine the notion of software literacy.

3.2.1 The Research Design

Anoverlapping longitudinal study design (also known as cross-sequential or patched-
up design (Arzi, 1988) was adopted to track shifts in equivalent student cohorts’
software literacy development. This design provides the unique opportunity and
advantage for studying change over the long termwhen a full longitudinal study is not
practical (Arzi, 1988). This design was a practical alternative to a longitudinal study
of the same students over the full three or four years of their tertiary programme. It
enabled the research team to map student learning and development across the entire
three or four years of a degree programme in two years. In this way, the tiers in the
hypothesised software literacy framework was tested across the year levels.

3.2.2 The Media Studies Case

The media studies programme generally attracts a large number of enrolments
(100–150 students) from students with diverse backgrounds at the entry level. Stu-
dents are required to engage with discipline-specific software through laboratory-
based work and individual and group-based projects as well as provided with
resources for informal learning. This case study involved collaborations between

http://dx.doi.org/10.1007/978-981-10-7059-4_1

34 3 The Learning, Use and Critical Understanding of Software …

the research team and media study lecturers who were keen to examine the notion
of software literacy through the teaching and learning of commonplace discipline-
specific software—Final Cut Pro, After Effects, and Adobe Creative Suite (a range
of media editing software). Hence within the case, a range of courses focused on the
teaching of disciplinary software were investigated.

Within the media studies first year course, students are generally young school
leavers with 10–15% of these being international students. In the first year of the
media studies case, there were some students who have studied the software package
in a previous course while others have had direct entry to the course. The extent
media studies students can demonstrate advancing software literacy skills and how
this plays out in terms of their interpretation of their discipline knowledge was of
interest in this study. The research team therefore tracked one group of students from
Year 1 into Year 2 and another group of students from Year 2 to Year 3 courses. The
assumption is that, on the whole, students’ software literacy develops as they gain
more experience with a particular software package although a linear progression
was not assumed.

3.2.3 Data Collection

Multiple data were collected to address the research questions through:

• lecturer individual interviews and tutor focus group interviews (up to four per
course) to obtain lecturer/tutor perceptions and awareness of the affordances of
their discipline-specific software and how this influenced the teaching and learning
of the software,

• observations of lectures and laboratory (lab) sessions (up to two observations per
course) to understand students’ learning to use discipline-specific software,

• online student surveys to obtain general student evaluation on the teaching and
learning of software at the end of each course. The survey (see Appendix 3.1)
consisted of three sections asking students about their:

– demographic profile,
– software experience prior to enrolling in their coursework and,
– software learning from their coursework.

• student focus group interviews (one per course) to explore students’ discipline-
specific software literacy,

• student producedwork or reports as part of their learningwith and through software
in their coursework (where applicable in the courses investigated) to obtain an
understanding of their learning outcomes and,

• ongoing informal interviews with lecturers and students as interesting themes
emerge from the observations.

3.2 Research Design and Context 35

3.2.4 Limitations and Ensuring Quality of Data Collected

The data collected is based on voluntary participant participation. The findings there-
fore are a reflection of the extent participantswerewilling to be truthful and to take the
time to carefully consider the questions asked. This is mitigated somewhat through
the steps adopted to add rigour in the design of the different data collection strate-
gies—survey design, interview protocol and observation protocol (see Appendix 3.2
for details).

Although the findings from the case study will not necessarily be generalisable to
the wider university population, the data is sufficiently detailed to show similarities
to other university contexts with similar teaching environments. By providing rich
thick descriptions (Lincoln & Guba, 1985) of the study setting, the findings give
nuanced insights into digital and software issues and practices relating to tertiary
teaching and learning.

3.2.5 Analysis of Data

A sociocultural theoretical framework provided the overarching analytical frame to
guide the data analysis (Wertsch, 1998). A sociocultural view of learning as medi-
ated action (Wertsch, 1991a) was pertinent to this study where the focus was on how
participants learned and used software as a means for accomplishing a range of goals
(Cole & Engestrom, 1993; Wertsch, 1991b, 1998). This allowed the research team
to understand the functioning of the individual in relation to their unique sociocul-
tural setting and how the setting in turn influences and transforms the individual in
significant ways. In this study, the focus was thus on how people-in-action are using
software. The research team drew onMietenen (2001) to view software as an artefact
that carries the “intentions and norms of cognition and form part of the agency of
the activity” (p. 301), and at the same time constrains a person’s agency.

The purpose of the online student survey (paper versions were also made avail-
able for students’ convenience) was to obtain broad brush understanding of student
access to and familiarity with general software and technologies and more specif-
ically their engagement/adoption and understanding of discipline-specific software
(its affordance and constraints).1

The purpose of the interviews was to obtain participants lived experiences and
perceptions of the discipline-specific software they were teaching/learning regarding
its affordances and constraints in shaping how they teach and learn in tertiary settings.
To analyse the interview data, all interviews were transcribed and imported in NVivo
(version 10) qualitative software package. Each transcript was read several times.
A thematic analysis based on the meaning underlying the text as opposed to the
semantics of the text was then conducted. This began with the coding of key ideas

1Responses to student survey were collated within the online survey platform, LimeSurvey. When
the survey closed, the responses captured on LimeSurvey and the paper version of the survey were
entered into Microsoft Excel. Visual representations (charts) of the data were created using Excel.

36 3 The Learning, Use and Critical Understanding of Software …

within each transcript. Coding was guided in part by the sociocultural theoretical
stance of the research project which directed attention to the interaction amongst
and between the participants and the tools/technologies/software that they adopt to
achieve productive goals. After coding each transcript, codes that were similar were
either combined or sub-codes were generated. This cycle of refinement occurred
throughout the analysis process. These codes were regularly revisited by the research
teammembers and discussed for further refinement to eventually become key themes.
Emergent themes were identified through a process of inductive reasoning (Braun &
Clarke, 2006).

The purpose of the videotaped sessions was to obtain audiovisual/multimodal
evidence for the ways lecturers were teaching the use of a particular software. To
analyse the video data, all videotaped observations were imported into the NVivo
10 environment and coded. The videotaped data supplemented and triangulated the
other main forms of data collection.

As part of enhancing the quality and interpretation of the data collection and
interpretation, strategies, such as triangulation across multiple data sources and
researchers, were employed alongside documenting an audit trail, regular teammeet-
ings andmember checking of data by participants to verify their interview transcripts
(Lincoln & Guba, 1985). A collaborative team approach to data analysis was further
adopted to identify patterns, seek explanations for unique findings and ensure col-
lective commitment to emergent findings and their ongoing refinement (Armstrong
& Curran, 2006). Within-case and cross-case analyses were conducted to identify
software literacy skills and understandings unique to and common across each dis-
cipline (media studies and engineering). Overall, the iterative and collaborative data
analysis process added rigour and credibility in the research.

3.2.6 Participants

Details of the media studies courses and participant year levels investigated and
types of data collected are shown in Appendix 3.3. Altogether four media studies
courses were studied (two of which were repetitions of the same courses offered in
different semesters to enable different students to complete their programme). These
courses range from basic to more advanced media studies courses covering introduc-
tory media and digital practices to various levels of video production courses. The
project received human ethical approval from the Faculty of Education, University
of Waikato, and all participants participated on a voluntary basis.

3.3 Findings

The findings are reported according to the research questions (see Sect. 3.2). For
each research question, quantitative data from the survey will be presented first
followed by qualitative data. The quantitative data report on percentages based on

3.3 Findings 37

the proportion of respondents’ response to the survey. Representative participant
quotes are provided to illustrate/evidence key themes emerging from the analyses.

3.3.1 To What Extent, and How Student Software Literacies
Develop and Impact on the Teaching
and Learning of Discipline-Specific Software

The findings for the first research question will be reported in two parts. The first
part will scope the extent and howmedia studies students’ software literacy develops
(Sect. 3.3.1) while the second part reports on the ways students’ software literacy
development impact on the teaching and learning of software in formal tertiary
settings (Sect. 3.3.2).

In order to gauge the extent students developed their software literacy skills, an
understanding of their general background experience with using software and tech-
nology is warranted and will focus on understanding students’ general comfort level
in engaging with technology, their preference for more informal learning strategies
when acquiring software skills, their understanding of core affordances and con-
straints of discipline-specific software applications, and evidence of critical software
literacy exhibited while completing coursework.

3.3.1.1 Student Comfort Level with Technologies

Media studies students’ (n = 102) responses to the survey item regarding their general
comfort level with engaging and adopting new technologies indicated that 37% of
students reported theyusually use technologieswhenmost of their friends do (average
across four papers), 36% reported liking new technologies and using them before
most people they knew did, and another 20% reported loving new technologies and
being among the first to use them. These results illustrate a majority of incoming
students (92%) consider themselves early or quite early adopters of new technologies
and are comfortable in engaging with new technologies.

3.3.1.2 Student Preference for Informal Learning Strategies

Students reported they drewmostly from informal learning resources when acquiring
basic skills to use media studies related software. Figure 3.1 shows findings when
media studies students were asked to identify ‘useful’, ‘very useful’ and ‘extremely
useful’ strategies for learning software.

The three highly valued learning strategies (combined ‘useful’, ‘very useful’ and
‘extremely useful’) by media studies students were “Going online to refer to instruc-
tions” (91%), “Asking a peer” (86%) and “Going online to refer to YouTube videos”

38 3 The Learning, Use and Critical Understanding of Software …

Fig. 3.1 Strategies media studies students used to learn discipline-specific software (collated ‘use-
ful’, ‘very useful’ and ‘extremely useful’). Note Percentages are averaged across four papers (At
the University of Waikato, the term ‘papers’ refer to courses). [Adapted from Khoo et al. (2016),
with permission from TLRI]

(86%) as useful to their learning of discipline-based software. This trend indicates a
reliance on informal learning strategies despite having formal training to learn how
to use a disciplinary-specific software. Drawing from online resources and YouTube
video tutorials, including asking peers and self-taught experts for support, were
preferred over formal learning strategies. The open-ended responses in the survey
affirmed these informal supports over more formal strategies.

I would say the internet is a great, fast database for learning new things/understanding
things, especially video tutorials because you can work on the software whilst watching
tutorial video (Second-year media studies student).

The main available help was from fellow students who were experts. Had they not been
there (it’s not their job) the work produced would have been crap as I wouldn’t have known
what was possible in the software. Online tutorials can be useful (Second-year media studies
student).

In focus group interviews students also indicate a preference for learning at their
own pace, sometimes drawing upon “more expert” peers or approaching learning
collectively. Their responses most typically centred on using online materials such
as YouTube instructional videos, trial-and-error and referring to a software’s help
feature:

Trying to follow a software tutor in class is like watching a YouTube video without pause
and rewind (Second-year media studies student).

Or Google, anything like that and try and find people who have done it before. I think also,
you know, like programmes that when you hover over the button and it comes up with what
it does, are the best programmes I’ve ever come across because at least you can try to find
something and you can do it yourself, you can actually know what every tool and thing does
(Second-year media studies student).

3.3 Findings 39

Fig. 3.2 Student identification of the affordances of media editing software. Note Percentages are
averaged across four papers. [Reproduced from Khoo et al. (2016), with permission from TLRI]

I find you learn how to basically do it and then you start playing around with the settings;
[when you] start playing around with the settings you get your own style (Second-year media
studies student).

I’d have to say… experimentation definitely is a huge part of learning how to use it, because
otherwise you don’t really know what it can do. The tutorials have definitely been helpful
because there’s been things that you wouldn’t have even thought of because you can sit there
and you watch films and you sort of realise now the number of times that they do some of
these things, but it just doesn’t occur to you … and learning from each other. Everyone is
going to work slightly differently and they’re going to come up with slightly different ideas
(Second-year media studies student).

3.3.1.3 Student Understanding of Software Affordances
and Constraints

In line with their perception of being early adopters of technology, media studies
students demonstrated a familiarity with individual disciplinary software in terms of
their core affordances and constraints. Figure 3.2 illustrates students’ responses to a
range of affordances identified in the software that they were learning to use as part
of their media studies coursework and the value of these affordances for addressing
tasks in their discipline.

Students indicated that media editing software such as Final Cut Pro, Adobe
Creative Suite and similar applications importantly enabled them to edit images and
audio files separately (60%), import audiovisual elements to combine with their own

40 3 The Learning, Use and Critical Understanding of Software …

video footage (59%), easily manipulate all elements in a moving image sequence
(56%) and that they could systematically add layers to a moving image (51%) when
they needed to complete a creative project.

Amajority of students installed their course software on their personal computing
devices (across the four media studied paper surveyed) in courses using Windows™
compatible software. Students at the higher levels of university study (e.g., 84% of
Year 3 Video Production students) tended to install course software on their laptop
suggesting that they thought it was important to have personal copies of discipline-
specific software. On the other hand, only a small percentage of first year media
studies (e.g., 17% of Year 1 Video Production students) installed Final Cut Pro on
their personal computers indicating they either did not view personal copies as being
important in the first year, or that most students do not have Macintosh hardware at
home which was sufficiently powerful to run Final Cut Pro.

Students were further able to identify the constraints within these media editing
software. Their response when asked the question ‘what does this software NOT let
you do that you would like to be able to do?’ indicated four key constraints they
had encountered when using media editing software in their coursework. Student
responses in the open-ended responses section of the survey alluded to limits of
functionality, compatibility and difficulty in using the features of a particular soft-
ware. Key examples were:

The drawback is After Effects doesn’t support the way for editing sound as Premiere (Third-
year media studies student).

It’s annoying that I have to go through so many windows to get certain tools. Need more fast
[shortcut] key/icons (Third-year media studies student).

When asked for suggestions to improve/enhance the use of a particular media
editing software, student responses in the open-ended responses of the survey made
reference to enhancing a software’s functionality, including its ease of use, fixing
existing issues and increasing compatibility and its accessibility. These are exempli-
fied in the following quotes:

Maybe to look at the technical flow of the program e.g. make things easier to find (Third-year
media studies student).

[To be able to] edit sound and real-time playing (Third-year media studies student).

Less complicated render settings, and quicker options. Self-set macros for quickly applying
desired effects (Third-year media studies student).

Discover more plug-ins. I think Premiere/After Effects is a much better editor than Final Cut
Pro (Second-year media studies student).

After Effects = [improve on] render time. Premiere Pro = [to improve on] Real time frame
rate/render time (Second-year media studies student).

More freedom! You can create your own transitions and have a wider variety of sound
manipulation (Second-year media studies student).

Easier horizontal scrolling/clip dragging in the timeline window (Second-year media studies
student).

3.3 Findings 41

More automated information on sequence settings when importing footage would be good
(Second-year media studies student).

Making an effects panel easier to use (Second-year media studies student).

Easier integration of projects between programs (Second-year media studies student).

Students’ responses overall showed they were quite knowledgeable and confident
in their basic and troubleshooting skills when engaging with disciplinary based soft-
ware, and quickly started to encounter the limitations of the default set-up of the
application. Their ability to do so corresponds to tier 1 and 2 proficiencies of our
hypothesised software literacy scheme.

3.3.1.4 Relative Absence of Critical Literacy Among Students

Triangulation of data sources suggested that very few media studies students report
being at tier 3 of our software literacy framework (see Sect. 3.3.3 for further details
and possible reasons for the lack of tier 3 observation in our data). Those who were
at tier 3 proficiency level in most cases were already competent on entry to the
course. The following interview excerpt with a third-year student illustrates how he
had begun to develop the ability to critique software as early as high school. He had
challenged his teacher’s insistence on using Final Cut Pro preferring instead Adobe
Creative Suite:

Like in high school we were always told to use Final Cut and every time it was Final Cut
this, Final Cut that. And then there was just a point where I raised my hand to my teacher
and said look, you can talk to me about Final Cut all you want but you’re not going to sell
me that it’s better than Premiere because in my belief it’s just not.

He was already proficient in terms of understanding the affordances of various
software and could identify differences in the conceptual framework between differ-
ent media editing software such as After Effects and Final Cut Pro:

I have very strong views about software. I just don’t think that Final Cut Pro is an acceptable
tool to use at a university [grade] thing … it’s a good video editing tool but it’s good for
stuff like documentaries where it’s just your basics and stuff like that. But if you’re really
studying screen and media studies you should really be using After Effects because that is
what a lot of the screen is about. You can’t look at any films today and see absolutely no
effects needed in it or anything like that.

This was but one example of students gaining tier 3 software literacy proficiency.
He had taken the time, initiative and had interest to experiment and trial a range of
discipline-specific software to understand their nuances to the extent he could critique
their use and recommend the software that is best fit-for-purpose to achieve/complete
a learning task within his discipline.

42 3 The Learning, Use and Critical Understanding of Software …

3.3.1.5 How the Development of Students’ Software Literacy Impacts
on the Teaching and Learning of Discipline-Specific Software
in Formal Tertiary Setting

The development of software literacy occurred at various rates across disciplines
and was strongly shaped by lecturer teaching approaches, student expectations, and
disciplinary assumptions about the need to achieve professional levels of software
competency. Inmedia studiesmore students had prior experience usingmedia editing
software (usually at high school) and hence had a higher familiaritywith the software,
although the diversity in student experiences, knowledge and background meant
lecturers needed to be flexible in their teaching approach. One tutor highlighted this
issue of student diversity in his class:

Because there are students that are at different levels of competency when it comes to even
computer usage let alone program usage—people that are defiant that they have to learn how
to use a computer or learn how to use a program, which is quite rare you would consider,
like, where you’re surrounded by so much technology and it requires technology to produce
such work as what the class is asking (Tutor teaching second-year course).

An aspect that appeared to facilitate students’ learning of discipline-specific soft-
ware was students’ prior engagement with artefacts or software that had a similar
conceptual basis and so provided a pathway for them to engage with new and more
advanced software learning; for example, media studies students with prior experi-
ence with Photoshop found it easier to pick up the skills to use other media editing
software. Second-year media studies students in the Video Production course elab-
orated that having prior experience with similar software such as Adobe Premier
(reported by 52% of students), Final Cut Pro (48%), Movie Maker (45%), After
Effects (41%) and iMovie (38%) was advantageous to their current learning of soft-
ware in their course. From the survey (across all four media studies papers surveyed),
students highlighted four advantages of having prior experience with similar soft-
ware in their learning of current course software: familiar/similar interface (reported
by 31 students), transfer of skills across software (17 students), enhanced awareness
of functionalities (four students) and creativity (one student). Some exemplifying
quotes include:

Almost exactly the same interface. I did not have to learn very much because I already knew
how to use Final Cut Pro (Second-year media studies student).

Even if you were not sure exactly how to do something, you know it could be done and you
just need to do a google search to find out. In other words you know what to type into google
to search for the feature (Second-year media studies student).

It opened my way of thinking … I already knew how to use Photoshop before I used After
Effects but I still feel using After Effects increased my understanding of Photoshop in some
ways even if it was just my understanding of how the Adobe products function (Second-year
media studies student).

There are common capabilities that are not obvious, but knowing they likely exist from other
software means you can find them (Third-year media studies student).

3.3 Findings 43

Adobe products work well together as learning Premiere helped me learn After Effects
(Third-year media studies student).

It has made me more confident with experimenting with more software in the same field
(Third-year media studies student).

It has not helped me understand new things, but understand old things in a new way (Third-
year media studies student).

All editing software is fairly similar so I guess it became easier to navigate through new
software (Second-year media studies student).

Learning other similar software helped students to learn their course software.
Most students reported that a similar interface helped them negotiate the course
software, and this, in turn, meant they could transfer many of the skills gained from
previous software to the course software.

Students also proposed ways lecturers could approach the teaching of discipline-
based software in order to enhance their appreciation of the socioculturally and
historically relevant disciplinary ideas embodied within the software. In media stud-
ies, students raised the need to understand the broader contextual principles and
conceptual framework behind the design of a software application for them to better
appreciate its relevance and potential applications:

Like in Final Cut Pro it features words like “bins” and other words and they go back in history
to, you know, actual bins that you put film footage into and the cutter will bring them out and
cut them. I think that the history of editing and why those terms are used and giving them
a bigger picture might just help them realise the terms. […] it’s just that deeper knowledge
that’s very shallow when you’re coming into software if you don’t know the history of the
industry that goes behind it (First-year media studies student).

Importantly, students described the importance of lecturers using a range of teach-
ing strategies to effectively cater for students’ varying learning needs.

Another suggestion was to raise students’ awareness of the possibilities posed
within a software. Students recognised that some degree of familiarisation with soft-
ware was achieved informally and discussed the value of setting some expectations
of what was possible—to provide some benchmarks and motivations for their own
(informal) learning.

Overall, students recommended that, in order to cater for diverse abilities, expe-
riences and backgrounds, lecturers need to use a range of strategies (formal and
informal) and to be flexible when teaching about and with software to facilitate the
students’ learning and development of software literacy.

3.3.2 Student Perception of the Software Literacies that They
Learnt as Part of Their Tertiary Coursework

In relation to learning and using discipline-specific software as part of their course-
work, a majority of students reported shifting in their ability to use a software at the
end of a course, indicating some gains in software literacy (see Fig. 3.3).

44 3 The Learning, Use and Critical Understanding of Software …

Fig. 3.3 Changes in media studies student assessment on their ability to use discipline-specific
software. Note Percentages are averaged across four papers. [Adapted from Khoo et al. (2016),
with permission from TLRI]

When asked to rate themselves along the categories of ‘I would need help’, ‘I have
the basic skills’ (level 1 of our framework), ‘I can troubleshoot problems’ (level 2)
and ‘I can apply this software’ (level 3), students at the start of their coursework
generally felt they would need help to use a particular media editing software (29%),
or that theywould only have the basic skills to use the software (28%). This decreased
to 6% at the end of the course of students needing help and an increase to 35% of
students who felt they now have the basic skills to use the media editing software
after learning about it in the course. Another 28% of students thought they were able
to troubleshoot problems faced in using the software, an increase from 12% at the
beginning of the course. Gains in these two levels (basic skills and troubleshooting
ability) correspond to the first two levels of our software literacy framework. By the
end of the course, only 29%, however, thought they could apply their skills to a wide
range of tasks, an increase from 12%, an indication of a lack in achieving the third
level of our software framework. Therefore while students reported gains across all
three tiers of our software literacy scheme with approximately similar gains for tiers
2 and 3 (16 and 17% respectively), the overall percentage of gains based on students
achieving the second and third tier was rather low at 33%. Very few students report
achieving tier 3 of our software literacy framework.

Students generally felt that developing up to tier 2 level software literacy profi-
ciency was adequate for when they graduated from the media studies programme.
In a student focus group, final year media studies students explained how tier 2 level
proficiency was adequate to provide them with entry-level skills into the creative
industries which they can further extend if and when needed:

The skills and techniques of software editing stuff that I’m taking from this aren’t going to
be anything equivalent to what someone who’s done a directed focused course in this sort
of thing so I want a basic proficiency so that if I want to do some stuff on my own I could;

3.3 Findings 45

in the future if I have the opportunity to, I can say I can learn it, I know a bit, I can expand
it; just pretty much I want a basic, broad idea of what I can do with it (Third-year media
studies student).

Not like for film grade or production grade kind of stuff. Just broad skills so that I can go
out into the media kind of job scenario and start at the bottom, work my way up (Third-year
media studies student).

This suggests a need for lecturers to consider how they might adapt their teaching
to cater to varying student diversity (those with basic to advanced software literacy
skills) in the programme.

As part of understanding student perception of the software literacies that they
learnt from their tertiary coursework, wewere particularly interested to see the extent
they understood software as influencing and shaping their disciplinary knowledge.
This is unpacked in the next section.

3.3.2.1 How Students Understand Software as an Influence on the Way
They Encounter and Make Sense of Disciplinary Knowledge

As illustrated by Fig. 3.3, only a few students achieve tier 3 of our software liter-
acy framework. Very few students discussed or were aware of how media editing
software shaped their disciplinary knowledge (a key part of software literacy). The
few media studies students who did achieve tier 3 highlighted the general ways their
course software helped them consider aspects of disciplinary practice such as video
production. In their open response in the survey and focus group comments, tier
3 proficient media studies students commented on the freedom and versatility that
their discipline-specific software provided. That is, they thought the software enabled
themmore freedom to create a wider range of aesthetic designs. A representative stu-
dent quote revealed his understanding of the way After Effects’ affordances enabled
him to experiment with and come up with new ideas:

This software [After Effects] allows me to think more non-linearly, so I can place together
footage/audio in new and more interesting ways (Third-year media studies student).

Other student quotes made reference to how discipline-specific software affords
their working across different spaces, modalities and dimensions in new and inter-
esting creative ways:

The ability to work in 3D space adds another dimension of possibilities (Third-year media
studies student).

Gives me more confidence and freedom to manipulate my project (video sequences) in a
more innovative way (Third-year media studies student).

By using the time related tools, I could control the time of the video in an interesting way,
like jump or slow, or accelerate (Second-year media studies student).

The simple interface makes creating a video feel a lot easier to do which makes room for
more creative risk (Second-year media studies student).

I see the shots and sounds in layers, which I slowly process through until they are refined to
an overall aesthetic (Second-year media studies student).

46 3 The Learning, Use and Critical Understanding of Software …

Generally, however, a key reason for the lack of tier 3 software literacy profi-
ciency amongst students was postulated to be due to the complexity of a particular
software and the time needed to gain proficiency with using them. In focus group
interviews, many students highlighted the greater investment in time and attention
that the discipline-based software demanded in order to achieve basic competence
(with some students explicitly commenting that they developedmore intensive learn-
ing strategies in response).Amedia studies student considered that discipline-specific
software was sufficiently complex that work done outside the classroom became an
important part of learning:

… the [lecturers] can give you all the tools but if you’re not motivated to do your own
experimenting, you’re not going to learn the software at all. It’s all about learning something,
going away, doing it, coming back, learning something, going [away], you know—it’s not
just a sort of teach me (Third-year media studies student).

That’s definitely a big part—having the time to actually sit down and play around with it
yourself. I mean, you can’t expect to just be taught the software—it’s something that needs
time, you’ve got to learn it, it doesn’t happen overnight (Second-year media studies student).

His peers affirmed the time investment needed in learning software outside of
class instruction:

In order to get your head around all of the possibilities it presents you do need to do some extra
homework. You do need to do some sort of external work to kind of wrap your head around
everything it can do, just because it covers such a broad range of possibilities (First-year
media studies student).

3.3.3 How and in What Ways Lecturers Model Attention to,
and Use of Different Affordances in Discipline-Specific
Software

When interviewed, media studies lecturers indicated they had a general understand-
ing of the affordances and of best practice for media editing software use. They
could articulate a rationale for their own practices and the relevance of these to their
discipline content knowledge. They adopted a range of teaching strategies to help
students grasp the affordances and relevance of a software to their coursework. How-
ever, the implementation of particular software teaching strategies was tempered by
their assumptions about the level of software literacy that they felt students needed
to be a work-ready graduate. One lecturer explained that he wanted his students to
be able to critique a discipline-specific software (achieve tier 3 software literacy) in
relation to other similar software:

I would love it that they [students] would start [to] become very critical of the pieces of
software that they’re using and actually start trading ideas about what’s the best thing to do,
which tool to use in particular instances and… for them to understand and I guess ultimately
to throw any piece of software at them and they could start to pick it to pieces really quickly.

3.3 Findings 47

Another media studies lecturer felt that, by providing students with a history
of software design, he could encourage them to start asking questions about the
affordances of software and how these affordances fit into the bigger picture software
use. Identifying the affordances of software is presumed to be fundamental to students
developing the ability to critique any software in terms of its use and application:

[The questions I want the students to be able to ask by the end of the lecture are]—how
do people want to use things? How do people want to use the things that you’re making?
Whether they’re media clips or applications or web pages, doesn’t matter. What kinds of
people do you think are going to be using everything you make? What can you expect them
to know? What kind of affordances do you think they’re going to be able to detect?

Lecturers, however, cautioned that preparing students to engage with the range of
possibilities that a discipline-specific software can offer (conceptual and technical)
and to apply it to other contexts (tier 3 software literacy) would require time and
strategies beyond formal direct instruction in their coursework, as highlighted in the
idea of performative learning in the quotes below.

There’s tutorials online, there’s a whole range of stuff that they [students] can explore for
themselves and that’s one of the reasons why software teaching is not about being in a
classroom saying “this is how you do things”; it’s giving them the confidence to open up
this world and explore this world on their own and … that’s what we do with thinking as
well in terms of this whole process. You cannot teach this notion of thinking, actually—they
have to get it through practice and performance. So I see it as a performative idea of learning
through action as opposed to learning through telling (Lecturer teaching third-year course).

It’s like you make connections in your brain …You learn the technicals then you go away
and do something creative and then you have these two ideas in your head then you can link
them. Like everything just seems like to come together. It’s just natural that you find the two
things together then you think ‘oh that might work’… takes exploration because you go out
and ‘Oh this doesn’t seem as great as I thought, how do you modify it to be better’ (Lecturer
teaching second-year course).

Finally, a first year course tutor describes his approach in terms of encourag-
ing students to model their efforts on “exceptionally great” pieces of work as one
approach to students’ learning and becoming aware of a software’s affordances to
harness its technical and creative possibilities:

That is all done by example, so looking through people that have done exceptionally great
pieces of work that exemplify sound, lighting, camera work, cinematography, and talking to
them about if you apply yourself you can produce the same type of things; maybe not with
the equipment that is provided but these are what we want you to try and think of in your
mind and try and maybe conceptualise and actually produce.

These different expectations and assumptions were played out in the teaching
approach to discipline-specific software learning; for example, observations from
the formal lab sessions revealed that some tutors spent more time teaching the basic
functions and affordances of a software while other lecturers focused on higher level
affordances such as teaching the tasks that can be performed within a software, point
out the complexities of the affordances, and how these affordances could potentially
enable and constrain creative practice.

48 3 The Learning, Use and Critical Understanding of Software …

To sum up, lecturers understood that they could not provide fully immersive train-
ing in the applications they introduced at tertiary level. They sought instead to ensure
that students had appropriate learning strategies to empower them to understand how
to begin to apply those strategies to different contexts and to explore the software on
their own terms.

3.4 Summary

The findings from this case study of media studies students’ software literacy devel-
opment highlighted students acknowledgement of being early adopters of technol-
ogy, knowledgeable in the affordances and constraints of their disciplinary software,
and preferred informal learning strategies to supplement their formal learning of
disciplinary software. Students lacked a critical awareness of the role of software
in shaping their learning of disciplinary knowledge. Factors such as the complex-
ity of a particular discipline-based software and the time needed to develop profi-
ciency were perceived to be key hindrances to achieving level 3 software literacy
proficiency. Students who enter the media studies programme, however, came from
diverse backgrounds with varying skills (some already proficient while others less
so), and expectations (with a majority assuming a level 2 software literacy level to be
adequate as an entry level qualification into the creative industry). The few students
who achieved level 3 proficiency were able to critique the uses of a range of disci-
pline specific-software and effectively tap into an appropriate software’s affordances
to extend their creative and critical abilities. The findings and their implications will
be revisited and discussed further in Chap. 5.

Appendices

Appendix 3.1: Software Literacy Survey for Media Studies
Students

Dear students,
We are interested in your learning experiences and opinions of video editing

software packages as part of your university coursework so that we can improve
students’ learning experiences. Your participation is voluntary and will not impact
on your course grade in anyway.Your answerswill be kept confidential. Your lecturer
will not know the identity of students who participated in this survey.
There are 20 questions which should take you approximately 20 min to complete.

Please answer ALL questions. By answering this survey, you give your informed
consent to participate in this survey.
Thank you.
Elaine Khoo, Craig Hight, Rob Torrens, Bronwen Cowie
Research Team

http://dx.doi.org/10.1007/978-981-10-7059-4_5

3.4 Summary 49

Section 1. Your background information

1. Please indicate your age group.
Please choose only one of the following:

� Under 18
� 18–21
� 22–25
� 26–30
� 31–35
� 36–40
� 41–45
� 46–50
� Over 50

2. Please indicate your gender.
Please choose only one of the following:

� Female
� Male

3. Are you a domestic or international student?
Please choose only one of the following:

� Domestic student
� International student

4. What is your first language?
Please choose only one of the following:

� English
� Māori
� Other: _______________________

Section 2: Your software experience before attending this paper

We would like to know more about your experience with software before attending
this paper.

5. Which of the following best describes you?
Please choose only one of the following:

� I love new technologies and am among the first to experiment with and
use them

� I like new technologies and use them before most people I know
� I usually use new technologies when most people I know do
� I am usually one of the last people I know to use new technologies
� I am skeptical of new technologies and use them only when I have to

50 3 The Learning, Use and Critical Understanding of Software …

6. What software have you used for video editing before attending this
course?
Please choose all that apply:

� Final Cut Pro
� Adobe Premiere
� Movie Maker
� iMovie
�Other (please tell us the nameof the software): _________________________

7. Which software are you are using for video editing in this course that you
would consider yourself to be the most skilled?
Please choose only one of the following:

� Final Cut Pro
� Adobe Premiere
� Movie Maker
� iMovie
�Other (please tell us the nameof the software): _________________________

For the next part of this survey, please use the software you had selected in
Question 7.

8. Thinking back, how good were you in using this software before enrolling
in this paper.
Please choose only one of the following:

� I would have needed some help to use this software
� I had the basic skills to use this software
� I could troubleshoot problems when using this software
� I could apply this software to a wide range of tasks

Section 3. Your software learning from this paper

We are interested to know what helped you in your learning of software as part of
your coursework.

9. Please choose which of the following strategies were useful to your learning
of this software.
Please choose all that apply:

� Ask the course lecturer/tutor/an expert
� Ask a friend/peer/senior student
� Refer to the course lab notes
� Read a paper-based manual/step-by-step instruction booklet
� Go online/refer to the Internet for step-by-step instructions
�Go online/refer to the Internet for video tutorials (e.g., YouTube) to watch how

to use it
�Watch someone using it in a face-to-face (physical) setting (not through videos)

3.4 Summary 51

� Discover through trial-and-error/practise
� Join an Internet forum (e.g., a discussion forum to ask other users for help)

10. Please tell us what other additional learning strategies you had used (if any)
to be able to use this software in this paper?

11. What are the THREE most useful capabilities of this software in helping
you to put together a video project?
Please choose only three of the following:

� Allows me to import visual and aural elements to combine with my own
footage

� Allows me to edit images and sound separately
� Allows me to add multiple layers to moving images in a systematic way
�Allowsme to easilymanipulate all of the elements in amoving image sequence
� Allows me to create and preview different combinations of image and sound
� Allows me to export images in a particular format
� Other: __

12. Please tell us how this software supports you to think differently about
constructing a video:

13. Did you install this software on your own computer/laptop?
Please choose only one of the following:

� Yes
� No

14. After learning and using this software in this course, how good would you
rate yourself at using it?
Please choose only one of the following:

� I would need some help to use this software
� I have the basic skills to use this software
� I can troubleshoot problems when using this software
� I can apply this software to a wide range of tasks

15. How has learning the software helped you in your learning to use other
software as a media studies student?

16. What does this software NOT let you do that you would like to be able to
do?

52 3 The Learning, Use and Critical Understanding of Software …

17. Have you encountered any unexpected issues when using this software?
Please choose only one of the following:

� Yes (please describe the main issue): _______________________________
� No

18. Any suggestions on how to improve this software if you had the opportunity
to?

19. Have you used any other software that you consider similar to this software?
Please choose only one of the following:

�Yes (please tell us the name of the software): __________________________
� No

20. If you said ‘yes’ in question 19, in what ways are the two software packages
similar:

Thank you for your time and help!

Appendix 3.2: Ensuring Quality of Data Collected

For the survey design:

1. Questions were crafted by referring to past literature (see for example, Dahlstrom,
2012; Hegarty et al., 2010; Massachusetts Department of Elementary and Sec-
ondary Education, 2013; Pagram & Cooper, 2011; Shih & Chuang, 2013) with
the research question and intentions in mind,

2. All key terms were defined to clarify their meaning in the survey,
3. The survey underwent different cycles of item refinement where the items were

debated and further refined through regular team member meetings and conver-
sations (a form of member checking),

4. The survey was subjected to a pilot study with 26 volunteer students who were
not part of the research to enhance the accuracy, clarity of questions, reduce mis-
interpretation and any cultural bias. Using a combination of closed-likert items,
ranking type questions, and open-ended questions in the survey allowed for more
detailed individual responses,

5. The survey was constructed using LimeSurvey (a free online tool) and made
available online for a period of time to ensure students could access it at their
convenience. Additionally, a paper-based version of the survey was also made
available to students should they prefer to complete a hard copy, and,

6. The survey results were triangulated with other forms of data collection such as
interviews and observations.

3.4 Summary 53

For the interview protocols:

1. Questions were constructed based on the research questions and by referring to
sample questions asked in the literature and refined through several series of
researcher meetings,

2. The interview questions were forwarded to the participants beforehand so they
could prepare/consider them more carefully before the interview session,

3. Notes were taken during the interviews to document key ideas in the conversation
and as a reference point (to form an audit trail),

4. Each interviewwas transcribed and unclear points were re-checkedwith the audio
recordings,

5. Triangulation of the interview data with other forms of data collection was con-
ducted to form a detailed case study of each disciplinary programme.

For the observation protocols:

1. Field notes were taken during the observations that can inform the research ques-
tions (for audit trialling), and,

2. Debriefs (post observation interviews) with the lecturers allowed the research
team opportunities for further clarification and understanding of particular lec-
turers’ motives/actions during the observation (a form of member checking).

Appendix 3.3: Details of the Media Studies Courses
Investigated and Types of Data Collected

Courses surveyed in the first year of the study Data collected from the different participant
groups

Media and digital practices
(Year 2, Media Studies students)
A second-year introductory course on critical
and creative perspectives shaping digital media
practice
Formal learning of creative software (e.g. After
Effects, Photoshop, Premiere Pro, Illustrator) as
examples of digital media practice was through
tutorials, lab-based learning followed by a
group project to create a digital media project

The course had 34 students
Data were collected from:
– 25 student surveys
– 6 student final assignments on Software
Literacy

– pre- and post-lecturer interviews
– lab observations of student learning of
creative software

– class observations of theoretical concepts
teaching and learning, and

– a student focus group interview with 4
students

54 3 The Learning, Use and Critical Understanding of Software …

Video Production Level 1
(Year 1, taken by Media Studies students from
different learning option papers)
A first year introductory paper on the theory
and practice of image production. Formal
learning of software (e.g. Final Cut Pro and
Adobe Premiere) is conducted in labs and
through individual projects with peer and
lecturer feedback

Data were collected from:
– 24 student surveys
– pre- and post-lecturer interviews
– lab observations of student learning of
software—Final Cut Pro

– tutor focus group interview attended by 4
tutors, and

– an individual student interview

Courses surveyed in the second year of the
study

Data collected from the different participant
groups

Video Production Level 2
(Year 2, Media Studies students, offered in
Semester A)
A second-year course covering advanced
practical and critical understanding of the video
production process in order to become more
reflective as creative practitioners. Formal
learning of discipline specific software is
through student group work to write, produce,
direct and edit a short film

Data were collected from:
– survey completed by 9 students
– a tutor individual interview, and
– a focus group interview attended by 9
students

Video Production Level 3
(Year 3, Media Studies students, offered in
Semester A)
A third year paper aimed at developing
students’ critical thinking about their own
creative practice through the production and
post-production of digital video projects
Formal learning of software is through
workshops and use of discipline specific
software such as After Effects, Garage Band,
Sound Track Pro and Studio Pro for
post-production purposes as students develop,
refine and produce individual films

Data were collected from:
– a survey completed by 6 students, and
– a focus group interview with 6 volunteer
students

Video Production Level 2
(offered in Semester B)

Data were collected from:
– a survey of 20 students
– lecturer interview, and
– a focus group interview with 14 students

Video Production Level 3
(offered in Semester B)

Data were collected from:
– a survey of 19 students
– lecturer interview
– tutor interview
– class observation of student presentation of
the project work, and

– individual student interviews with 2 students

References 55

References

Armstrong, V., & Curran, S. (2006). Developing a collaborative model of research using digital
video. Computers & Education, 46(3), 336–347. doi:10.1016/j.compedu.2005.11.015.

Arzi, H. J. (1988). From short-to long-term: Studying science education longitudinally. Studies in
Science Education, 15(1), 17–53. doi:10.1080/03057268808559947.

Bell, P. (2004). On the theoretical breadth of design-based research in education. Educational
Psychologist, 39(4), 243–253.

Braun, V., & Clarke, V. (2006). Using thematic analysis in psychology. Qualitative Research in
Psychology, 3(2), 77–101.

Cole, M., & Engestrom, Y. (1993). A cultural-historical approach to distributed cognition. In G.
Salomon (Ed.),Distributed cognitions: Psychological and educational considerations (pp. 1–46).
New York, NY: Cambridge University Press.

Dahlstrom, E. (2012). ECAR National Study of Undergraduate Students and Technology, 2012.
Educause Center for Applied Research. Retrieved from http://net.educause.edu/ir/library/pdf/
ERS1208/ESI1208.pdf.

Gall, M. D., Borg, W. R., & Gall, J. P. (1996). Educational research: An introduction. White Plains,
NY: Longman.

Gilbert, J. (2005).Catching the knowledgewave? The knowledge society and the future of education.
Wellington, NZ: NZCER Press.

Hegarty, B., Penman, M., Kelly, O., Jeffrey, L., Coburn, D., & McDonald, J. (2010). Digital
information literacy: Supported development of capability in tertiary environments. Welling-
ton, New Zealand: Ministry of Education. Retrieved from http://www.educationcounts.govt.nz/
publications/tertiary_education/80624.

Khoo, E., Hight, C., Torrens, R., & Cowie, B. (2016). Copy, cut and paste: How does this
shape what we know? Final report. Wellington: Teaching and Learning Research Initiative.
Retrieved from http://www.tlri.org.nz/tlri-research/research-completed/post-school-sector/copy-
cut-and-paste-how-does-shape-what-we-know.

Lincoln, Y. S., & Guba, E. (1985). Naturalistic inquiry. Beverly Hills, CA: Sage.
Livingstone, S.,Wijnen, C.W., Papaioannou, T., Costa, C., & delMar Grandío,M. (2014). Situating
media literacy in the changing media environment: Critical insights from European research on
audiences. InN.Carpentier,K.C.Schrøder,&L.Hallet (Eds.),Audience transformations: Shifting
audience positions in late modernity (Vol. 1, pp. 210–227). Routledge, NY: Routledge Studies in
European Communication Research and Education.

Manovich, L. (2006). After effects or the velvet revolution.Millennium Film Journal, 45(46), 5–19.
Massachusetts Department of Elementary and Secondary Education. (2013). Technology Self-
Assessment Tool (TSAT). Retrieved from https://www.surveymonkey.com/r/BGMFNF8.

Maykut, P., & Morehouse, R. (1994). Beginning qualitative research: A philosophic and practical
guide. London, UK: Falmer.

Mietenen, R. (2001). Artifact mediation in Dewery and in cultural-historical activity theory.Mind,
Culture, and Activity, 8, 297–308.

Pagram, J., &Cooper,M. (2011). E-yearning: An examination of the use and preferences of students
usingonline learningmaterials. InT.Hirashima, et al. (Eds.),Proceedings of the 19th International
Conference on Computers in Education. Chiang Mai, Thailand, (pp. 712–716). Retrieved from
https://www.nectec.or.th/icce2011/program/proceedings/pdf/C6_S18_163S.pdf.

Patton, M. Q. (2002). Qualitative research and evaluation methods (3rd ed.). Thousand Oaks, CA:
Sage Publications.

Selwyn, N. (2010). Degrees of digital division: Reconsidering digital inequalities and contemporary
higher education. RU&SC. Revista de Universidad y Sociedad del Conocimiento, 7(1), 33–42.
Available at http://redalyc.uaemex.mx/src/inicio/ArtPdfRed.jsp?iCve=78012953011.

Shih, C.-L., &Chuang, H.-H. (2013). The development and validation of an instrument for assessing
college students’ perceptions of faculty knowledge in technology-supported class environments.
Computers & Education, 63, 109–118. doi:10.1016/j.compedu.2012.11.021.

http://dx.doi.org/10.1016/j.compedu.2005.11.015
http://dx.doi.org/10.1080/03057268808559947
http://net.educause.edu/ir/library/pdf/ERS1208/ESI1208.pdf
http://www.educationcounts.govt.nz/publications/tertiary_education/80624
http://www.tlri.org.nz/tlri-research/research-completed/post-school-sector/copy-cut-and-paste-how-does-shape-what-we-know
https://www.surveymonkey.com/r/BGMFNF8
https://www.nectec.or.th/icce2011/program/proceedings/pdf/C6_S18_163S.pdf
http://redalyc.uaemex.mx/src/inicio/ArtPdfRed.jsp?iCve=78012953011
http://dx.doi.org/10.1016/j.compedu.2012.11.021

56 3 The Learning, Use and Critical Understanding of Software …

Wertsch, J. V. (1991a).Voices of themind: A sociocultural approach tomediated action. Cambridge,
MA: Harvard University Press.

Wertsch, J. V. (1991b). A sociocultural approach to socially shared cognition. In L. B. Resnick,
J. M. Levine, & S. D. Teasley (Eds.), Perspectives on socially shared cognition (pp. 85–100).
Washington, DC: American Psychological Association.

Wertsch, J. (1998). Mind as action. New York, NY: Oxford University Press.
Yang, X. (2014). Teaching and learning fused through digital technologies: Activating the power
of the crowd in a university classroom setting. In D. J. Loveless, B. Griffith, M. E. Berci, E.
Ortlieb, & P. M. Sulivan (Eds.), Academic knowledge construction and multimodal curriculum
development (pp. 77–85). Hershey, PA: IGI Global.

Chapter 4
The Learning, Use and Critical
Understanding of Software in Engineering

Abstract This chapter (as with Chap. 3) details the findings from a two-year funded
empirical study aimed at understanding tertiary students’ development of the under-
standings and skills needed to use software as forms of software literacy. Two case
studies were developed. A case study of engineering students’ software literacy
development is the focus of this chapter. Two cohorts of students were tracked using
mixed methods to explore their learning and understanding of discipline-specific
software (here the Computer-Aided Design (CAD) software SolidWorks). An addi-
tional group of advanced final year CAD students were also interviewed to ascertain
if there were particular nuances in their software learning experience. The findings of
this case study provide insight into engineering students’ software literacy develop-
ment in a specific tertiary context. A discussion of the findings including implications
for what the findings might mean in relation to the wider field of software teaching
and learning is addressed in Chap. 5.

4.1 Introduction

Engineering students are expected to have knowledge and be proficient in discipline-
specific software as part of their learning and becoming a professional engi-
neer. International engineering professional accreditation agreements, such as the
Washington Accord (2013), detail the broad range of graduate attributes and pro-
fessional competencies that today’s engineering graduates need. The Accord states
that the fundamental purpose of engineering education is to build each graduate’s
knowledge base and attributes so they can continue learning and developing the
competencies required for independent practice beyond formal learning contexts. In
engineering, studentsmust be able to visualise and rotate objects in three-dimensional
(3D) space and to pictorially represent complex ideas. Part of the expectation is for
students to develop some degree of discipline-based software competency to com-
municate their ideas clearly in order to remain competitive, and contribute produc-
tively to 21st century engineering workplaces where software-supported engineering
design, process and workflow are integral components. There is evidence that differ-
ent digital technologies can significantly shape how and what millennial engineers

© The Author(s) 2017
E. Khoo et al., Software Literacy, SpringerBriefs in Education,
https://doi.org/10.1007/978-981-10-7059-4_4

57

http://dx.doi.org/10.1007/978-981-10-7059-4_3
http://dx.doi.org/10.1007/978-981-10-7059-4_5

58 4 The Learning, Use and Critical Understanding of Software …

learn (Johri, Teo, Lo, Dufour, & Schram, 2014). This has not been investigated in
the New Zealand context. As detailed in Chap. 1, the notion of software literacy is a
potentially useful framework to understand the ways engineering students come to
understand and develop their software literacy proficiencies.

This chapter, as with Chap. 3, aims to explore, examine and theorise on how the
notion of software literacy is understood, developed and applied in tertiary teaching
and learning contexts, and the extent to which this understanding is useful when
translated into new contexts of learning with and through software. This understand-
ing is crucial and relevant to ensure all students and lecturers are better supported in
teaching and learning processes that are mediated through and focused on software.
Sociocultural theoretical perspectives are adopted as a basis of our study. The chapter
begins by describing the study context—a case study of the experiences of under-
graduate engineering students, and briefly revisits key research design ideas adopted
in the study (see Chap. 3, Sect. 3.2 for details of and rationale for the research design,
data collection methods and theoretical framing used in the analysis of the data). The
findings from the data are detailed next to evidence in the ways students engage with
discipline-specific software.

4.2 Research Design and Context

This research draws from findings from our two-year longitudinal research project
funded by the New Zealand Ministry of Education: Copy, cut and paste (CCP): How
does this shape what we know? (Khoo, Hight, Torrens, & Cowie, 2016), to report
on the views of participating tertiary media studies and engineering students from
a New Zealand university. The research questions framing the investigation of the
case study were:

1. To what extent, and how does student software literacy develop and impact on the
teaching and learning of discipline-specific software in formal tertiary teaching
settings?

2. What software literacy do students consider they learnt as part of the case study
tertiary course(s)?

3. How and in what ways do lecturers model attention to and use of different aspects
of software affordance in a course which utilises discipline-specific software?

The study was underpinned by a qualitative interpretive methodology (Bell, 2004;
Maykut & Morehouse, 1994) which is consistent with a sociocultural perspective in
valuing the social and cultural contexts for how knowledge is co-constructed through
interaction between individuals and tools (Wertsch, 1998). As with the media stud-
ies case reported in Chap. 3, a case study of engineering students and lecturers was
adopted (see Sect. 3.2 for details). The research team collaborated with lecturers
who were keen to examine the notion of software literacy through the teaching and
learning of commonplace discipline-specific software—SolidWorks© (a computer-
aided design (CAD) software that enables 3D drawings and is highly regarded in

http://dx.doi.org/10.1007/978-981-10-7059-4_1
http://dx.doi.org/10.1007/978-981-10-7059-4_3
http://dx.doi.org/10.1007/978-981-10-7059-4_3
http://dx.doi.org/10.1007/978-981-10-7059-4_3
http://dx.doi.org/10.1007/978-981-10-7059-4_3

4.2 Research Design and Context 59

engineering industries). The engineering case study was located within the under-
graduate mechanical engineering programme at the University of Waikato, New
Zealand.

4.2.1 The Engineering Case

The engineering programme is characterised by high enrolments of students with
diverse backgrounds (generally young school leavers with a small proportion of
international students) at entry level (about 180 students). Students attend lectures and
engage in the design principles and process through examining and discussing case
studies of designs. They also attend supervised laboratory-based training where they
are provided with tasks to help them acquire further proficiency with SolidWorks and
work on individual assignments. Students are required to participate in group design
projects as a demonstration of their SolidWorks-supported design understanding and
application. CAD software, such as SolidWorks, is considered an integral component
of modern engineering and is widely used in industry. No familiarity with CAD or
drawing software is assumed for entry into university coursework, although students
are expected to be familiar with the use of computers.

All four-year engineering degrees in New Zealand require the completion of 800
h of appropriate workplace experience. Not all work placements will include the use
of CAD; however, for those that do, it is useful to consider how students transition
or adapt their learning (and learning strategies) from the tertiary environment to the
particular demands of their workplace, including learning alternative CAD appli-
cations. Knowledge of CAD can still be useful for students not actively using the
software to allow them to interpret CAD generated drawings and usefully contribute
to design discussions.

4.2.2 The Research Design

Adopting the overlapping longitudinal study design (Arzi, 1988) in the context of
the engineering case study enabled the research team to map student learning and
development across the entire four years of the engineering degree programme in
two years. Within the engineering case, a range of engineering courses focusing on
the teaching and application of SolidWorks were investigated. The research team
tracked:

• One group of students from Year 2 of engineering design coursework into Year 3
coursework,

• A smaller group of Year 2 students into their work placement to study their ability
to transfer and apply or adapt their SolidWorks software literacy in the more
immersive and/or specialised forms of practice requiredwithinworkplace settings.

60 4 The Learning, Use and Critical Understanding of Software …

The extent engineering students are aware of and can apply their discipline-specific
software literacy in the workplace context and how this, in turn, shapes their
understanding of their disciplinary knowledge is of interest in this study, and

• A separate advanced group of elite Year 4 students selected to represent the univer-
sity at a prestigious Formula SAE-A competition highly regarded by the industry
and considered to have sophisticated software literacy skills. Each elite team must
design, build and race a small high-performance race car.

The overall assumption is that students’ software literacy develops as they gain
more experience with the SolidWorks software although a linear progression was
not assumed.

4.2.3 Data Collection

As with the media studies case, multiple data were collected to address the research
questions through:

• lecturer individual interviews and tutor focus group interviews (one per course)
to obtain lecturer/tutor perceptions and awareness of the affordances of the Solid-
Works software and how this influenced the teaching and learning of the software,

• observations of lectures and laboratory (lab) sessions (up to two observations per
course) to understand students’ learning to use SolidWorks,

• online student surveys to obtain student evaluation on the teaching and learning
of SolidWorks at the end of each course (see Appendix 4.1). The survey consisted
of four key sections asking students about their:

– demographic profile,
– SolidWorks experience prior to enrolling in their course,
– SolidWorks learning from their course, and
– evaluation of SolidWorks.

• student focus group interviews (one per course) to explore students’ SolidWorks
software literacy,

• student produced work placement reports as part of their learning and application
of SolidWorks during their work placements, and

• ongoing informal interviews with lecturers and students as interesting themes
emerged from the observations.

The data collected were based on voluntary participant participation. The findings
therefore are a reflection of the extent participants were willing to be truthful and to
take the time to carefully consider the questions asked.1

1Readers are referred to Sects. 3.2.4 and 3.2.5 for a discussion on the limitation of the study, ways of
enhancing the study’s rigour, the rationale for the sociocultural perspective adopted in the analysis
of the data and the analytical processes undertaken to enhancing the quality and interpretation of the

http://dx.doi.org/10.1007/978-981-10-7059-4_3
http://dx.doi.org/10.1007/978-981-10-7059-4_3

4.2 Research Design and Context 61

4.2.4 Participants

Details of the engineering courses investigated, participant year levels and types
of data collected are shown in Appendix 4.2. Altogether three engineering courses
were investigated with an additional focus group interview conducted with a group of
selected elite final year students. These courses cover increasingly sophisticated ideas
related to engineering design and processes and require compulsory student learning
of the SolidWorks software. The project received human ethical approval from the
Faculty of Education, University of Waikato, and all participants participated on a
voluntary basis.

4.3 Findings

The findings are reported according to the research questions. For each research
question, quantitative data from the survey will be presented first followed by qual-
itative data. The quantitative data report on percentages based on the proportion of
respondents’ response to the survey. Representative participant quotes are provided
to evidence key themes emerging from the analyses.

4.3.1 To What Extent, and How Student Software Literacy
Develops and Impacts on the Teaching and Learning
of Discipline-Specific Software

The findings for the first research question are reported in two parts. The first
part scopes the extent and how engineering students’ software literacy develops
(Sect. 4.3.1) while the second reports on the ways students’ software literacy devel-
opment impacts on the teaching and learning of software in formal tertiary settings
(Sect. 4.3.2).

In order to gauge the extent students developed their software literacy skills, an
understanding of their general background experience with using software and tech-
nology is warranted and will thus focus on understanding students’ general comfort
level in engaging with technology, their preferred learning strategies when acquiring
software skills, their understanding of core affordances and constraints of individ-
ual software applications, and evidence of critical software literacy exhibited while
completing coursework.

data collected. As with the media studies case, within-case and cross-case analyses were conducted
to identify software literacy skills and understandings unique to and common across each discipline.

http://dx.doi.org/10.1007/978-981-10-7059-4_4
http://dx.doi.org/10.1007/978-981-10-7059-4_4

62 4 The Learning, Use and Critical Understanding of Software …

4.3.1.1 Student Comfort Level with Technologies

Engineering students’ comfort level in terms of engaging and adopting new tech-
nologies were elicited. Sixty-seven second-year engineering students out of a class of
140 students responded to the survey. When asked about their general views towards
adopting new technologies, 43% of students indicated they usually use new tech-
nologies when most of their friends do, 31% reported liking new technologies and
using them before most people they know do, and another 10% indicated they love
engaging with new technologies and are among the early adopters to use them. These
results highlight, therefore, that a majority of students (84%) consider themselves
early or quite early adopters of new technologies and are comfortable in engaging
with new technologies.

Next, we report on the strategies and resources the Years 2–4 students described
as supporting their learning and use of SolidWorks.

4.3.1.2 Students’ Preferred Learning Strategies

When asked about their preferred learning approaches when acquiring basic skills to
use SolidWorks, students’ responses tended to favour a combination of formal and
informal learning strategies (see Fig. 4.1).

The three highly valued learning strategies (combined ‘useful’, ‘very useful’ and
‘extremely useful’) by engineering studentswere “Asking the course lecturer” (80%),
“Asking a peer or self-taught experts” (49%), and “Refer to the course/lab notes”
(41%). Other strategies included “Read a paper-based manual” (35%), “Go online
for step-by-step instructions” (30%), “Go online for video tutorials” (25%), “Watch

Fig. 4.1 Strategies engineering students used to learn SolidWorks (collated ‘useful’, ‘very useful’
and ‘extremely useful’). Note Percentages are averaged across four papers (At the University of
Waikato, the term ‘papers’ refer to courses). [Adapted from Khoo et al. (2016), with permission
from TLRI]

4.3 Findings 63

someone using it” (16%) and so forth. Overall, apart from asking the course lecturer,
the reported strategies tend to draw frommore informal resources and own initiatives
that occurred outside of course or lab hours. Possible reasons for engineering students
valuing asking their lecturer for help before relying on more informal strategies as
compared to media studies students could be due to the perceived complexity of
SolidWorks or less exposure/experience at high schoolwithCADsoftware in general.

In the open-ended responses of the survey and focus groups, students elaborated
on drawing from a variety of resources to help them learn to use SolidWorks. They
recognised that the conceptual and technical complexity of SolidWorks demands a
more self-directed and committed investment in time to learn the software, which
required developing informal learning strategies to complement the formal training
providedwithin their tertiary programme.This led students to draw fromSolidWorks’
in-built tutorials, ‘more expert’ peers, practise through using their intuition and trial-
and-error, aswell as usingonlinematerials such asYouTube instructionvideos (which
notably involved developing an expertise in finding instructional material suited to
“their level”). In fact, 76% of participants reported installing SolidWorks on their
personal computers or laptops in order to be able to practise and use the software for
their coursework.

I learnt heaps just by having SolidWorks at home and then just grabbing something and
going, ‘Oh well, I wonder if I can model this?’ And I think everyone learns quite well like
that because then if you’re talking to people and you would be like, ‘I modelled this watch’
and they’re going, ‘That’s cool, how did you do that?’ And then you can just talk through it
and go, ‘Oh, that’s a neat way of doing it.’ (Fourth-year engineering student).

I’ve been working next to a fourth-year I’m friends with and he’s looked at my work and
gone, ‘Whoa, dude, hold on—let me show you how to do this’ and he’s stepped in and shown
me a whole bunch of stuff (Second-year engineering student).

Most of my learning on SolidWorks has been done by working on it at home or playing
around at home, e.g., how to do that, learning from peers and also YouTube videos. Like,
if there’s no one around and you can’t do it, type it into Google, type it into YouTube and
hopefully you’ll get something and if you don’t then get some help (Fourth-year engineering
student).

You’re never going to learn it just by sitting in a class and having someone preach to you …
Because it gets frustrating sometimes, but once someone teaches you the basics of sketches
and you learn those things and then you can start experimenting and troubleshooting and
stuff and then using the different features [in SolidWorks] and that gets you nice and efficient
(Fourth-year engineering student).

This practice of mainly drawing from informal learning strategies continued when
students were in their work placement. For example, learning from peers was com-
mon informal workplace learning practice which added to students’ software literacy
development:

I know that in my work placement, I had a couple of people who knew how to do everything
and I would ask them. There was some stuff that they didn’t know and there were some things
that I’d learnt at uni that they didn’t know existed in SolidWorks (Third-year engineering
student).

Another student affirmed the value of this strategywhen thrown into a challenging
real world context to use the software appropriately:

64 4 The Learning, Use and Critical Understanding of Software …

On my first day I think I was sat down and he was like, ‘Right, make this’ and I made it and
he was like that’s totally wrong and then spent like three days teaching me how to use it, just
how he liked it taught so (Third-year engineering student).

Other students found working alongside engineering professionals offered them
authentic learning experiences to apply their software skills in relevant ways:

And then probably for further development [learning of SolidWorks] was dealingwith indus-
try professionals—working with them, getting them to critique my modelling for some stuff
that I was having manufactured because it’s massive and I learnt a lot about stainless design
(Fourth-year engineering student).

This combination of formal and informal learning strategies adopted in the formal
university context and in real world work placement contexts contribute to students
developing software literacy skills and confidence.

4.3.1.3 Student Understanding of Software Affordances
and Constraints

In line with their perception of being early adopters of technology, engineering stu-
dents demonstrated a basic familiarity with SolidWorks and easily identified its key
affordances and constraints. For example, when asked their views on how Solid-
Works affords their addressing of engineering design issues, students indicated it
allowed them to rotate and manipulate different views of their drawings (81%), to
easily modify their drawings (79%), to draw an object to see what it looks like (or
to share with others my drawing so they know what I mean) (78%) and to design
and draw things before building them (see Fig. 4.2). Their ability to discern the
general affordances of the SolidWorks software correspond with tiers 1–2 of our
hypothesised software literacy framework including identifying the value of these
affordances for addressing engineering design tasks.

Additional student views in the open-ended responses in the survey alluded to the
ways SolidWorks facilitates being able to “communicate my ideas” and to specify
“properties of objects required, e.g., volume, weight” for further exploration.

Students were further able to identify the constraints/limitations within Solid-
Works. Their response when asked the question ‘what does this software NOT let
you do that you would like to be able to do?’ indicated three key constraints they had
encountered when using SolidWorks in their coursework. Over 28% of participants
identified these in the open-ended survey responses in relation to limits with:

1. accessing the software (e.g. affordability, unable to install on their personal lap-
tops, incompatibility in opening saved files on other computers, software crashing
often). Examples of students’ experience were:

Save files: Once I found that some drawing files that I had completed at home couldn’t
be opened elsewhere.

It runs slow and crashes often.

4.3 Findings 65

Fig. 4.2 Student identification of SolidWorks’ affordances in addressing engineering design tasks.
[Reproduced from Khoo et al. (2016), with permission from TLRI]

2. learning to use the software. A student quote included:

SolidWorks has a learning curve which can make things harder to do.

3. using particular features of the software, such as:

The menus are too large, it makes it hard to find the tool you are looking for.

To be able to move my gears after I add one assembly file to another.

When using a circular pattern (during a sketch), the pattern does not copy relations i.e.
being coincident on a circle.

Changing 2D to 3D drawing.

Students offered suggestions to improve/enhance the use of SolidWorks. In focus
groups and the open-ended responses of the survey, they suggested strategies such as
having more technical guidance (e.g., “The programme crashes every hour, need to
be told how to reduce computer requirements”), more in-built user-friendly sup-
port within the software (e.g., “I would like more 3D modelling support to be
implemented”, and, “Too many methods to do same task”) and enhanced function-
ality (e.g., “Applying/bringing real images into SolidWorks”).

4.3.1.4 Relative Absence of Critical Literacy Among Students

Triangulation of data sources suggested that very few engineering students report
being at tier 3 of our software literacy framework.2 The few students who were at

2Note: Also refer to Sect. 4.3.3 for further details and possible reasons for the lack of tier 3 obser-
vation in our data.

http://dx.doi.org/10.1007/978-981-10-7059-4_4

66 4 The Learning, Use and Critical Understanding of Software …

tier 3 proficiency level in most cases were already competent on entry to the course
and sought to continue extending their proficiency level as acknowledged by this
student. He viewed his coursework as providing him with an initial platform to learn
some basic skills which will need further extending through his taking initiative to
do so:

Like, I used AutoCAD a bit before I came to university but not with any depth and it’s
just playing around with things that I was making at home. And then SolidWorks, I did a
lot of when we were doing the basic course. I played with a lot of different ideas in Solid
Works then, not just draw boats and stuff. And then from that I wanted to put it in a practical
sense and got a design job. At that time we were actually using AutoCAD but I’d bring both
softwares together and sort of built the model in SolidWorks and brought it into AutoCAD
and do other manipulation in AutoCAD. If you like SolidWorks you’ll pick it up and use it in
other things, not just at university. But [uni] will give you the base, the essential knowledge
to start using it (Third-year engineering student).

In focus groups, students confirmed that SolidWorkswas a complicated discipline-
specific software which most were not familiar with prior to tertiary study:

It’s entry level for us, it’s [SolidWorks is] super complicated—we should be learning it at
that lower level, then advancing later on; or it should be a paper unto itself, because it makes
the rest of the paper so difficult (Second-year engineering student).

As a result, students were less likely to identify themselves as ‘highly proficient’
or ‘expert’ in using SolidWorks at the completion of their course. Most, nevertheless,
reported confidence in being able to troubleshoot issues facedwhenusingSolidWorks
(tier 2 software literacy).

4.3.1.5 How the Development of Students’ Software Literacy Impacts
on the Teaching and Learning of Discipline-Specific Software
in Formal Tertiary Setting

The development of software literacy occurred at various rates amongst students
and was strongly shaped by lecturer teaching approaches, student expectations and
disciplinary assumptions about the need to achieve professional levels of software
competency. Many engineering students had little prior experience with SolidWorks
(at high school), and this resulted in students learning at different rates, with a reliance
on asking the lecturer as their preferred strategy for learning the software when at
university (see Fig. 4.2).

Lecturer observations on student diversity touched on students’ varying abilities
and aptitudes including international students’ prior software backgrounds:

Some people go through very quickly, gifted students who can follow instructions if [they’ve
used] drawing packages before will pick it up very quickly and they can finish in, I don’t
know, a tenth of the time … We accept that there is going to be a big gap between the best
and the worst students, just like in maths or anything. You get this big distribution between
the best and the worst and I don’t think it’s any different from any other subject.

The difference between … let’s say we have an overseas student come in and they’ve done
someCADbut theymay have done it in a very prescriptivemanner. But when they come here

4.3 Findings 67

and are told, ‘all right, just get on with that bit and we’ll come and help you’. They’re looking
like frightened rabbits at the screen and not knowing what to do, so we spend more time
with them to try and get them going. Whereas others, who haven’t even used the software
either, have just gone off, ‘this is great,’ and because they’ve got that passion for it, they’re
coming back the next week with it [their design] completed. So the gap between the one
who’s struggling and the ones who are at the top is just massive.

An aspect that appeared to facilitate students’ learning of the SolidWorks soft-
ware was students’ prior engagement with artefacts or software that had a similar
conceptual basis and so provided a pathway for them to engage more confidently
with more advanced software such as SolidWorks. One student reflected on the value
of playing with construction sets such as Lego:

Like people that mucked around with Lego and K’nex and that when they were younger,
they’re already on that wavelength, you know what I mean? And you’ll find that helps heaps
when you start going into 3D modelling, just because you sort of understand a little bit of
how things go (Fourth-year engineering student).

Engineering students who had encountered 3D construction applications with
similar sets of affordances to SolidWorks found it easier to pick up the skills to use
SolidWorks. At least 19% of students reported using a range of software that had sim-
ilar features to SolidWorks such as ProEngineer, AutoCAD, Star CCM+, Autodesk
Inventor, TurboCAD, and Google SketchUp. They were able to comment on the
similarities between these and SolidWorks in terms of their function (e.g., “They are
designed for engineering related models/drawings”). Similar features between these
different software were also noted such as “They have logical icons” and they have
“sketch planes, extrudes, features, main interface”.

Interestingly, just over half (54%) of these students were able to elaborate on
the benefits of using these other similar software prior to their learning SolidWorks.
These ranged from how the different software provided them with the “basic skills
and familiarity” (e.g., “Helped to understand and get used to working in 3D on com-
puters”) in using CAD and “how software works in general” including more shared
technical understanding of “reference geometry” and so forth. In focus groups stu-
dents elaborated on the value of having a conceptual understanding of 3D modelling
to be able to transfer skills across different CAD software:

Because SolidWorks is generally the first 3D computer programme that [students] learn and
it’s all about just getting the mindset of how you build something on the 3D programmes.
So once you’ve learned the basics of what you want to do and how it’s normally done you
can find those features … it’ll be called something else in a different programme but they’ll
be there. So in Pro Engineer it can all do the same stuff. In SolidWorks you could extrude a
circle and then it’s the same deal but it’s called ‘protrude’ or something. All 3D modelling
carries the same sort of [understanding] to be able to model stuff (Fourth-year engineering
student).

Students who have had prior learning experience of other similar software there-
fore found the similar interface, logical and conceptual ideas inherent in those soft-
ware helped them negotiate the learning of SolidWorks, and this, in turn, meant they
could transfer many of the prior skills gained over when learning SolidWorks.

68 4 The Learning, Use and Critical Understanding of Software …

Students also proposed ways lecturers could approach the teaching of SolidWorks
to help them demystify and become familiar with the software. Several ways were
suggested. Firstly, as SolidWorks is a complicated application, students suggested a
more in-depth grounding in conceptual frameworks in the learning of the software
could facilitate their understanding and enable them to more effectively troubleshoot
their application of specific affordances they encountered in their more informal
learning. In the focus group, three students alluded to the need to be taught the
overarching principles in terms of engineering design as well as CAD conventions
to guide their SolidWorks use and enhance their understanding of the potential of
the software:

I think there are some things they can probably teach you more, like the use of planes and
construction lines and stuff like that and then from there you can build on a lot of stuff, you
know—if you’ve got a plane in the right place and orientate it to how you want it to be,
it makes life a lot easier rather than trying to figure that stuff out (Fourth-year engineering
student).

It’s the sort of software that you want to be taught right from the start how to do it properly
and so otherwise you could spend so much time going running round in circles and building
a big model, doing it totally wrong and then you spend a lot of time trying to fix it up.
Whereas, you know, if you start from the start it’s actually quite simple. You step back and
think about what you’re going to do and what’s the best way to go about it (Fourth-year
engineering student).

Other suggestions touched on the need to impart an awareness of the software’s
possibilities. Although some of this ’familiarisation’ was achieved informally, stu-
dents discussed the value of setting some expectations ofwhatwas possible to provide
some benchmarks andmotivations for their own (informal) learning. In the following
comment, a second-year student linked this to working with a real-world case:

I think what would be cool is if we had case studies or something; just some problems in
class we could work through, the teacher could go through, like, “this is something that you
may encounter while you’re doing CAD, this is how we’ve gone about it, you could do it
your way but this is the procedure we’ve used” (Second-year engineering student).

Other suggestions included being allowed more open-ended modelling assign-
ments:

Students have definitely got to muck around. They really struggle if they just went in, did the
stuff and then just went home. I reckon a cool assignment would be to just take a household
object and model it. Just give them [students] something and then get them thinking so they
go home and think, ‘Oh, can I model that? How would I do that?’ Then they’re thinking and
then they would have to go and try to do it. Because I think a lot of people do that anyway
but we need to get everybody doing it because I think you catch on real fast (Fourth-year
engineering student).

To sum up, the student comments highlighted that, in order to cater for varying
student abilities, experience and background (and different learning preferences),
lecturers needed to use a combination of strategies (formal and informal) when
teaching about and with software to facilitate the students’ learning and development
of software literacy. They thought that teaching the principles of engineering design

4.3 Findings 69

Fig. 4.3 Changes in engineering student assessment on their ability to use SolidWorks. [Adapted
from Khoo et al. (2016), with permission from TLRI]

as well as CAD conventions and having to apply these understanding to solve real-
world cases can enhance their understanding of the possibilities and potential of the
SolidWorks software.

4.3.2 Student Perception of the Software Literacies that They
Learnt as Part of Their Tertiary Coursework

Engineering students generally agreed that an understanding of CAD was necessary
to comprehend and contribute to the engineering design process relevant to an organ-
isation. Student evaluation of their ability to engage with discipline-specific software
prior to and after completing their course indicated some gains in software literacy
(see Fig. 4.3). Based on the categories of ‘I would need help’, ‘I have the basic
skills’ (level 1 of our software literacy framework), ‘I can troubleshoot problems’
(level 2) and ‘I can apply this software’ (level 3), just over half of the students (52%)
reported needing help to use SolidWorks initially before attending the course. This
decreased to two percent at the end of the course. Also there was an increase from 39
to 45% of students who felt they now have the basic skills to use SolidWorks after
learning about it in the course. Another 37% of students thought they were able to
troubleshoot problems faced in using the software, an increase from the six percent
whowere able to do so at the beginning of the course. Gains in these two levels (basic
skills and troubleshooting ability) correspond to the first two levels of our software
literacy framework. However, by the end of the course, only 16% thought they could
apply their skills to a wide range of tasks, an indication of a lack in achieving the
third level of our software framework.

70 4 The Learning, Use and Critical Understanding of Software …

These results suggest that the formal coursework focused on software learning
helped to develop students’ software literacy so that nearly all students reported a
shift to at least tier 1 (basic ability).

Apart from formal coursework, interestingly, another 27%of engineering students
reported using SolidWorks outside of their formal coursework for a range of pro-
fessional or recreational purposes. Some examples offered in the open-ended survey
responses were:

I have many sketches which I have a hard time imagining in 3D therefore I use it.

[I use] SolidWorks to give me a more detailed version of what I have imagined.

Designing a campus board for rock climbing training, playing around designing cars etc.

Stress analysis of a conrod design for a model engine.

Trying to design/modify something that has been in the market just for fun.

General messing around. Attempting to design Iron Man suit.

Although very few students report achieved tier 3 of the software literacy frame-
work from their coursework, having the basic skills to use and troubleshoot problems
within SolidWorks was nevertheless an important part of preparation for the work
place experience. Beyond the formal learning of SolidWorks in lectures and labs,
the workplace experience offered engineering students authentic contexts to apply
their knowledge of the software to solve real-world engineering design tasks. Two
different students in the focus group explained the value of having at least an entry
level CAD proficiency in the workplace:

It is sort of expected to have some knowledge of CAD when you go into work placement. If
you turn up with no background, it’s a big disadvantage (Third-year engineering student).

Because you’d always come across technical drawings so having an idea of how they’remade
can be a bit of a benefit especially if they’re made wrong (Third-year engineering student).

For most students, their workplace required more specialised learning, faster
and/or more complex levels of SolidWorks application to be more effective in
addressing site-specificmanufacturing/productionprocesses.Hencedifferent aspects
of SolidWorks became more relevant than others for students’ industry design pur-
poses which extended their understanding of the software. This was exemplified
when a student learnt a new application for SolidWorks as part of his workplace
experience:

I needed to do something and the boss pointed out another feature [in SolidWorks] that I
had no idea, which was ‘unpacking’ or something. That opened my eyes to a whole different
part, like there’s an application that I had no idea existed and that I could do so much more
with it (Third-year engineering student).

Another student commented on an example of using the ‘virtual prototyping’
feature in SolidWorks in his work placement to generate simulations of different
design ideas and to allow his work team to discuss and decide on an idea:

Yeah, so we’d use virtual prototyping if we needed to do a simulation to see how it [a design
prototype] might behave under certain conditions. And then it was really good for when we

4.3 Findings 71

had multiple ideas on the table, they were all really good ideas but we needed the final sign-
off by someone else so that’s when it [virtual prototypes] came in (Third-year engineering
student).

Furthermore, some work placements expected students to engage with similar but
different CAD applications to SolidWorks requiring them to transfer their existing
knowledge and proficiency to these contexts. A student gave the example of having
to learn to use AutoCAD and other software such as Inventor as part of his workplace
requirement. He found being exposed to the contrasting features of each software
useful to his software literacy development:

AutoCAD’s got more benefits because you can export your drawing to a Paint file and you
canmake it to a PDF and send it in an email to your boss. You can do all that from SolidWorks
as well, it’s just at university you’re not taught any of that stuff in SolidWorks, there’s limited
knowledge of what you get taught and you only scratch the surface. My boss was saying
using Inventor and AutoCAD, the benefits of AutoCAD is if you have a more complex
model, if you want to make a last minute change to it, it’s easier on AutoCAD (Third-year
engineering student).

Finally, one student reflected on the overall value of learning to troubleshoot and of
persistence when learning and using SolidWorks, be it in more advanced coursework
or while on work placement:

From [first and second year] we pick up all the basic stuff and learn how to do it, but during
that process we learn how to use the troubleshooting method and that’s I think the most
valuable thing that helped me later on … I’m confident with even something I don’t know, I
know how to find it, how to learn it from online resources then I can still make that happen [on
SolidWorks]. I think that’s the most valuable thing, that even later when I go to my fourth
year and do some more complicated thing, I know where to go (Third-year engineering
student).

In sum, students’ reported learning of SolidWorks in their formal coursework, their
own initiatives for using SolidWorks for personal and professional pursuits outside
of university contexts, learning on the job (while on work placement) to use more
specialised SolidWorks features, and transferring their learning of SolidWorks to the
learning of other CAD software were strategies and opportunities that contributed
to students’ increasing sophistication and repertoire of software learning, and hence
their software literacy development. Taken together, these views suggest that having
a tier 1 and 2 level proficiency of SolidWorks was initially taken to be adequate for
passing coursework and entry level into the workplace experience. However, there
is an expectation that students will continue to enhance their software proficiency to
complete specific engineering design tasks in their professional careers.

4.3.2.1 How Students Understand Software as an Influence on the Way
They Encounter and Make Sense of Disciplinary Knowledge

As indicated in Fig. 4.3, a majority of engineering students reported shifting in
their ability to use SolidWorks after learning and using it in their coursework but

72 4 The Learning, Use and Critical Understanding of Software …

had difficulty identifying core disciplinary ideas embedded within software, or felt
they were unable to critique the software they were using. Very few students in
engineering discussed how SolidWorks shaped their disciplinary knowledge—a key
part of software literacy.

However, the very few who are at tier 3 reported on the ways SolidWorks enabled
them to visualise abstract disciplinary ideas, create and manipulate 3D objects, and
communicate their design ideas efficiently to others as indicated in the following
student quotes:

You could say that you can make things in SolidWorks that you can’t make in real life. So
in SolidWorks you could [drill] a hole that was in a spiral and curve round but then you
can’t get a drill and drill that … that was a problem I came into when I was learning because
I was just making models as they looked rather than how they could be made (Third-year
engineering student).

Probably the best thing is the integration, like you know how if you work in different parts
or you’ve got different things you’re working on and very complex things, it might be hard
to put it all together on paper and see how it fits as a whole. [With the software] you can
figure out how everything’s going to work before you actually sort of build it (Fourth-year
engineering student).

And also like the supplier integration [feature]—the fact that you can build a part in Solid-
Works and send it to someone who works with SolidWorks and they can send it for machine
manufacturing, so there’s a lot less chance of errors. And it’s just fast to send things around
… It’s the whole package [from actual plans to the manufacturing process itself], rather than
building a prototype of something, you can model it in 3D. It saves time and speeds up the
process between design and manufacture (Fourth-year engineering student).

One student explicitly raised the need to have a clear plan for designing an artefact
(i.e., an understanding of engineering disciplinary ideas about designs) in parallel
with an understanding of SolidWorks’ affordances in order to use the software pro-
ductively:

Just a clear plan of how it’s [SolidWorks] going to work to do it the best way. Because it’s
only going to do what you tell it to do, and if you tell it to do something in a horrible way
it’s going to end up really messy, unless you’ve got a clear plan from the start. That’s one
key thing you’ve got to think, learn how the programme works and then make sure you’re
thinking along that same line (Fourth-year engineering student).

Generally, reasons for the lack of tier 3 software literacy proficiency amongst stu-
dents was postulated to be due to the complexity of SolidWorks and the time needed
to gain proficiency with using it. In focus group interviews, students considered
SolidWorks to be a complicated, comprehensive and flexible piece of software. It
was therefore not feasible to try and fully understand the breadth and depth of its hier-
archies of affordances during their tertiary programme. Student quotes exemplified
this complexity:

Because there’s so many tiny little individual parts about understanding SolidWorks that you
get past a certain point and suddenly you don’t know how to mirror a 3D part (for example)
(Second-year engineering student).

I don’t think anyone can say that they’ve mastered SolidWorks. You can master it in your
field but there’s just so many different add-ons that you just have to try and get good at stuff
(Fourth-year engineering student).

4.3 Findings 73

4.3.3 How and in What Ways Lecturers Model Attention to,
and Use of Different Affordances in Discipline-Specific
Software

When interviewed, engineering lecturers indicated they had a general understanding
of the affordances and of best practice for SolidWorks use. For example, they pointed
out the value of usingCADsoftware in revolutionising the engineering design process
and practice:

If I went back, say, twenty years and I was drawing, designing something, when I’ve thought
it through and I sketch out that high level design, and I said that’s what we’re making, then
that’s what we make. Well, we go into the detail to make it but I don’t suddenly go round
and change it, because of the effort to change that means everything else has to change, so
we’re locked into a design. It didn’t mean we didn’t design things; we still did then because
those were the tools we had available. But with the modern software, you can have a whole
machine like this and just change one bit, shrink it, you can add this, do this, and it’s sort of
revolutionised things.

They could articulate a rationale for their own practices and the relevance of these
to their discipline content knowledge. However, the use of particular software teach-
ing strategies was tempered by their assumptions about the level of software literacy
they felt students needed to be a work-ready graduate. Different lecturers articulated
the disciplinary assumption that the range of contexts and software applications that
engineering graduates would need to engage with is diverse and sufficiently complex
such that students would be learning various discipline-specific software throughout
their careers. Lecturers highlighted the ways the teaching and learning of Solid-
Works are guided by engineering design principles and industry and customer-focus
demands.

The [engineering] design process is very disparate, everyone comes up with different ideas,
it’s creative and uncontrollable. So we have to apply discipline to it and the discipline is
through a method. So if we follow like these steps through it, it helps us control it … the
thinking process, creative process is just not controlled, it’s not rigid. So unfortunately for
us engineers everyone doesn’t say, ‘Oh well great, you had a lovely time thinking [that]
up’—they want this at the end of the day, it’s got to work. So the idea is to say ‘Look, yes,
you can follow this method that’s internationally accepted as a way that if you go through
your design like this, you can end up with something that works at the end of the day’ and
that was it, really, in a nutshell. And then obviously we’re talking about how much time
they should spend on the project because if they’re graduates, are they on a salary, they have
to justify their existence based on money, what they produce. So we sort of just let them
know about that. We do that right the way through the programme … we give them a lot of
design freedom, but the actual process is quite planned. So it’s creative but within particular
parameters still.

The extent SolidWorks affords students becoming aware conceptually of the way
in which real world engineering as a discipline works was also the result of lecturers
using teaching approaches that related real-world practice with software teaching:

Because the fourth years, they’re designing the car now, they’ve learnt new skills, they’re
now […] companies, they send the […] bits over to the companies that are being made

74 4 The Learning, Use and Critical Understanding of Software …

directly from the design that they’ve drawn in SolidWorks, into the [laser cutters] and then
they come back and they put it together, so there’s a direct link [with manufacturing].

However, student development of software literacy up to tier 2 of our software
literacy framework was generally viewed to be sufficient in preparing students to be
lifelong learners of discipline-based software. Representative tutor/lecturer quotes
were:

I do not believe that we’re going to teach you [address to students] everything here. It’s got
nothing to do with that. You will be doing different projects, different software, and different
things all through your career and you just have to have a mentality that you’ll learn new
things (Engineering lecturer).

The bottom line is we have [students] who are very good at SolidWorks and when they
left [university] they found they weren’t doing SolidWorks anymore because it’s a very
expensive software. Companies were just doing sketching by hand and then sub-contract
that out to specialists in SolidWorks. So it’s not every graduate engineer that has to know
this software—[it’s enough to] know it exists, and have the basics. Once they [students] go
into industry they could be project managers or anything, they know it’s there, they know
its capability and at least some are really good at it and some are ok, and that’s enough for
[working in the] industry (Engineering tutor).

Someone who’s not good at CAD might be still excellent in the design, and fifty per cent of
the paper is on the design. So if you’re really good at design you’re still going to get a good
mark because you’ll pass the examwith lovely ideas. So it’s quite nice, the technicians can be
very good at that technical side of it and get good marks and the person who’s not very good
at CAD could still come up with reasonable CAD to get marks for that, but will do well on
the creative design side of it. So there’s options for both in the paper, there’s opportunity for
both to do well and if you’re good at both then you can really ace it (Engineering lecturer).

These disciplinary expectations and assumptions underpinned lecturers’ practice
and were played out in the teaching approach to SolidWorks learning. Engineering
lectures and labs therefore tended to point out the general affordances of the software
before focusing on the specific tasks and functions that the affordances enabled to
address specific engineering design issues. These included referring to and encour-
aging students to draw from informal learning strategies to supplement their formal
lab learning:

Top three [student learning strategies]… Just by experience, just doing it. That one is number
one. Number two would be they’re Googling a lot of info, using the Internet; so when they
can’t find something they’re just Googling it and going onto YouTube, whatever forum, any
way they can to solve it. Number three … tutors. We’re helping, so they come to the class
and they can put their hand up and ask.

To sum up, engineering lecturers and tutors understood that they could not provide
fully immersive training in SolidWorks at the tertiary level. They sought instead to
ensure that students had appropriate learning strategies to empower them to under-
stand how to begin to apply those strategies to different contexts and to explore the
software on their own terms.

4.4 Summary 75

4.4 Summary

This case study of engineering studies students’ software literacy development indi-
cates that although students considered themselves early adopters of technology,
knowledgeable in the affordances and constraints of their discipline-specific soft-
ware—SolidWorks—they tend to draw from formal learning strategies initially when
learning the software, supplementing these with more informal learning strategies.
Students and lecturers articulated awide range of learning and teaching strategies that
were underpinned by disciplinary assumptions and industry expectations. Students,
however, lacked a critical awareness of the extent software shapes (and reshaped)
their learning of disciplinary knowledge. They raised the fact that the complexity
of SolidWorks and the time needed to develop proficiency hindered their achieving
level 3 software literacy proficiency. Students’ diverse backgrounds and varied soft-
ware skills and expectations meant that flexible teaching approaches were needed to
accommodate their learning needs. Very few students achieved level 3 proficiency
and demonstrated a critical reflexitivity towards using SolidWorks to extend their
engineering design abilities. Chapter 5 revisits these findings and discusses their
implications in the wider field related to software teaching and learning.

Appendices

Appendix 4.1: Software Literacy Survey for Engineering
Students

Dear students,
You are invited to take part in this survey about how students learn software,

specifically, SolidWorks, as part of your coursework. We are interested in your
experiences and opinions so that we can improve student learning experiences. Your
participation is voluntary and will have no bearing on your course grade in any way.
Your answers will be kept confidential. Your lecturer will not know the identity of
students who participated in this survey. This survey is part of a two year research
project funded by theMinistry of Education. The aggregated results from this survey
will be reported to your faculty and in academic journals and conferences.

There are five sections in this survey. It should take you approximately 10–15 min
to complete.

Note: Questions marked with an asterisk (*) are required. We would appreciate your
answering all the questions. Please do not take this survey more than once.

By clicking the “Next” button below you give your informed consent to participate
in this survey.
Thank you.

http://dx.doi.org/10.1007/978-981-10-7059-4_5

76 4 The Learning, Use and Critical Understanding of Software …

Elaine Khoo, Craig Hight, Rob Torrens, Bronwen Cowie
Research Team

Section 1. Your background information

1. Which paper are you currently enrolled in (please select the paper in which
you were invited to participate in this survey)?
Please choose only one of the following:

� Engineering second-year
� Other

2. Please indicate your age.*
Please choose only one of the following:

� Under 18
� 18–21
� 22–25
� 26–30
� 31–35
� 36–40
� 41–45
� 46–50
� Over 50

3. What is your gender?*
Please choose only one of the following:

� Female
� Male

4. Are you a domestic or international student?*
Please choose only one of the following:

� Domestic student
� International student

5. What is your first language?*
Please choose only one of the following:

� English
� Māori
� Other: ________________________

4.4 Summary 77

Section 2. Your SolidWorks experience before attending this course

We would like to know more about your views and experience with SolidWorks
before attending this course.

6. Which of the following best describes you?*
Please choose only one of the following:

� I love new technologies and am among the first to experiment with and use
them

� I like new technologies and use them before most people I know
� I usually use new technologies when most people I know do
� I am usually one of the last people to use new technologies
� I am skeptical of new technologies and use them only when I have to

7. Had you heard of SolidWorks before coming into the Engineering
programme at uni?*
Please choose only one of the following:

� Yes
� No

8. Please tell us how you first heard of SolidWorks:
Please choose all that apply:

� High school/secondary school
� Earlier university courses (e.g. year 1 course)
� Talking to lecturers in my programme
� Talking to more senior students
� Reading about it on the Internet
� Reading about it in books/journals/magazines
� Previous work experience
� Friends or family members
� Other: _____________________________

9. Had you used SolidWorks before coming into the Engineering programme
at uni?*
Please choose only one of the following:

� Yes
� No

10. Please tell us how you first learnt to use SolidWorks.
Please choose all that apply:

� High school/secondary school
� Earlier university courses (e.g. year 1 course)

78 4 The Learning, Use and Critical Understanding of Software …

� Working on projects with more senior students
� Working on personal projects
� Previous work experience
� Watched video tutorials on the Internet
� Other: _______________________

11. Thinking back, how good were you in using SolidWorks before enrolling in
this paper.*
Please choose only one of the following:

� I would have needed some help to use this software
� I had the basic skills to use this software
� I could troubleshoot problems when using this software
� I could apply this software to a wide range of tasks

Section 3. Your software learning from this course

We are interested to know what helped you in your learning of SolidWorks as part
of your coursework.

12. Thinking back to when you were learning to use SolidWorks, please rank
the strategies that were most useful to your learning of this software.
Please rank from 1 to 9 to show the order of usefulness for your learning
(from 1 = most helpful to 9 = least helpful).*
Please number each box in order of preference from 1 to 9

� Ask the course lecturer/tutor
� Ask a friend/peer/other student
� Refer to the course lab notes
� Read a paper-based manual/step-by-step instruction booklet
� Go online/refer to the Internet for step-by-step instructions
� Go online/refer to the Internet for video tutorials (e.g. YouTube) to watch how

to use it
�Watch someone using it in a face-to-face (physical) setting (not through videos)
� Discover through trial-and-error/practise
� Join an Internet forum (e.g. a discussion forum to ask other users for help)

12a. Others (please share with us other strategies or resources you used to help
you learn the software, if any):
Please write your answer here:
__

13. Did you install SolidWorks on your own computer/laptop?*
Please choose only one of the following:

� Yes
� No

4.4 Summary 79

14. After learning about and using SolidWorks in this paper, how good would
you rate yourself at using it?*
Please choose only one of the following:

� I would need some help to use this software
� I have the basic skills to use this software
� I can troubleshoot problems when using this software
� I can apply this software to a wide range of tasks

15. Have you used any other software that you consider similar to Solid-
Works?*
Please choose only one of the following:

� Yes (please tell us the name of the software)
� No

Make a comment on your choice here: _______________________________

16. In what ways are the two software packages similar?
Please write your answer here:
__

17. Did your having used the software you mentioned in Question 15
help in your learning of SolidWorks in this paper?*
Please choose only one of the following:

� Yes (please tell us how being able to use the software helped)
� No

Make a comment on your choice here: ________________________________

Section 4. Your assessment of SolidWorks

18. In what way(s) does SolidWorks help you tackle an engineering problem?*
Please choose all that apply:

� Helps me visualise a solution that was in my mind in 3D format
� Helps me design and draw things before building them
� Allows me to draw an object to see what it looks like (or to share with others

my drawing so they know what I mean)
� Allows me to easily modify my drawings
� Allows me to rotate/manipulate different angles or views of my drawings
� Helps to add details to my drawings so that they could be manufactured from
� Helps me explore effects of changes to measurements in my drawings

Other: _____________________________

80 4 The Learning, Use and Critical Understanding of Software …

19. What does SolidWorks NOT let you do that you would like to be able to do?
Please write your answer here:
__

20. Have you encountered any unexpected issues with SolidWorks?*
Please choose only one of the following:

� Yes (please describe the main issue you have encountered)
� No

Make a comment on your choice here: ____________________

21. Have you used SolidWorks for your own personal interest/purposes out-
side of coursework?*
Please choose only one of the following:

� Yes (please tell us how)
� No

Make a comment on your choice here: ____________________

Section 5. We would appreciate your continued involvement

22. We would like to be able to follow up on how students learn about software
packages in their university course. If you were interested in being part of this,
we will be contacting you to ask a few short questions about your learning
experiences with software within the next year. If you are willing to do this,
please provide your student ID so that we can be in touch. Please note: Only the
research team will see your survey responses. The team will not have access to
any of your personal information or records kept in the university system.

My student ID is: _____________________

23. Would you be willing to take part in a group interview about your learning
of SolidWorks?
Please choose only one of the following:

� Yes (please provide your name and email and/or mobile phone so we can
contact you)

� No

Make a comment on your choice here: ______________________

Thank you for your time and help!

4.4 Summary 81

Appendix 4.2: Details of the Engineering Courses
Investigated and Types of Data Collected

Courses surveyed in the first year of the study Data collected from the different participant
groups

Engineering Design
(Year 2, Engineering students)
A second year course focused on engineering
design, the design process, and group design
projects for students to gain mastery of
SolidWorks. Formal learning of SolidWorks
was through lab-based learning followed by
structured group project work to extend
students’ use of SolidWorks in engineering
design

Data were collected from:
– 69 student surveys
– lecturer interview
– tutor focus group interview attended by four
tutors including the lecturer

– lab observations of student learning of
SolidWorks, and

– a student focus group interview attended by
six students

Engineering work placement
(Year 2, Engineering student work placement in
industry—on the job application of
SolidWorks)

Data were collected from:
– four individual student interviews regarding
student application and evaluation of
SolidWorks in their work placement

– eight student assignments on their reflections
of using SolidWorks in work placements, and

– a focus group student interview attended by
seven students focused on their software
experiences during work placement. Four
other students who were unable to attend the
focus group interview responded to the
interview questions by email elaborating on
their SolidWorks application experiences in
the workplace. These email responses were
coded alongside the individual and focus
group interviews

Selected fourth-year students Data was collected from a focus group
interview with six elite final year students who
have developed sophisticated engineering
design and SolidWorks application skills

Courses surveyed in the second year of the
study

Data collected from the different participant
groups

Mechanical Engineering Design
(Year 3, Engineering students)
A third-year course focused on aspects of
machine design where advanced engineering
drawing and design techniques are further
developed and applied through project work.
Formal learning of SolidWorks involved
advanced individual lab-based structured
exercises and a real-world group project using
SolidWorks

47 enrolled students
Data were collected from:
– a lecturer individual interview
– lab observations of student project work
involving SolidWorks, and

– a focus group interview with seven students

82 4 The Learning, Use and Critical Understanding of Software …

References

Arzi, H. J. (1988). From short-to long-term: Studying science education longitudinally. Studies in
Science Education, 15(1), 17–53. doi:10.1080/03057268808559947.

Bell, P. (2004). On the theoretical breadth of design-based research in education. Educational
Psychologist, 39(4), 243–253.

Johri, A., Teo, H. J., Lo, J., Dufour, M., & Schram, A. (2014). Millennial engineers: Digital media
and information ecology of engineering students. Computers in Human Behavior, 33, 286–301.
doi:10.1016/j.chb.2013.01.048.

Khoo, E., Hight, C., Torrens, R., & Cowie, B. (2016). Copy, cut and paste: How does this
shape what we know? Final Report. Wellington: Teaching and Learning Research Initiative.
Retrieved from http://www.tlri.org.nz/tlri-research/research-completed/post-school-sector/copy-
cut-and-paste-how-does-shape-what-we-know.

Maykut, P., & Morehouse, R. (1994). Beginning qualitative research: A philosophic and practical
guide. London, UK: Falmer.

Washington Accord. (2013). Graduate attributes and professional competencies. Retrieved from
http://www.ieagreements.org.

Wertsch, J. (1998). Mind as action. New York, NY: Oxford University Press.

http://dx.doi.org/10.1080/03057268808559947
http://dx.doi.org/10.1016/j.chb.2013.01.048
http://www.tlri.org.nz/tlri-research/research-completed/post-school-sector/copy-cut-and-paste-how-does-shape-what-we-know
http://www.ieagreements.org

Chapter 5
Comparing the Cases: What Do They Tell Us
About Software Literacy?

Abstract This chapter reports the comparative analysis of the two case studies
on media studies software (see Chap. 3) and engineering software (see Chap. 4).
Common themes emerged across the cases such as students’ tendency to draw from
informal learning strategies to supplement formal learning approaches, the diversity
of student background and software abilities, and students’ general assumption that
a tier 2 software proficiency level (see Chap. 1) would be adequate entry into a pro-
fessional pathway. However, the cases differed in terms of the nature of the nuanced
learning goals and aspirations of each discipline which impacted on the way course
curricular, teaching, learning and assessment strategies were structured. These find-
ings have implications for teaching and learning where software plays a central role
in understanding and accomplishing disciplinary ideas and practices in tertiary and
workplace contexts.

5.1 Introduction

This chapter draws from the findings of two case studies reported in Chaps. 3 and 4
to investigate how discipline-specific software literacy develops in a formal learning
environment and the extent this development fitted with our hypothesised 3 tier
software literacy framework (see Chap. 1). The intention of the study was to unpack
if and how students develop and use discipline-specific software, understand the
influence of software on the way students make sense of disciplinary knowledge
and whether their learning trajectories were consistent with the hypothesised tiers
of software literacy. The chapter begins by highlighting similarities and differences
between our case studies. It then offers recommendations and ideas for consideration
in software teaching and learning practice and policy.

5.2 Comparing the Cases

The project described in Chaps. 3 and 4 of this book aimed at investigating
the notion and development of tertiary student software literacy. We proposed a

© The Author(s) 2017
E. Khoo et al., Software Literacy, SpringerBriefs in Education,
https://doi.org/10.1007/978-981-10-7059-4_5

83

http://dx.doi.org/10.1007/978-981-10-7059-4_3
http://dx.doi.org/10.1007/978-981-10-7059-4_4
http://dx.doi.org/10.1007/978-981-10-7059-4_1
http://dx.doi.org/10.1007/978-981-10-7059-4_3
http://dx.doi.org/10.1007/978-981-10-7059-4_4
http://dx.doi.org/10.1007/978-981-10-7059-4_1
http://dx.doi.org/10.1007/978-981-10-7059-4_3
http://dx.doi.org/10.1007/978-981-10-7059-4_4

84 5 Comparing the Cases: What Do They Tell …

three-tier framework of development as a response to the ubiquitous but often
neglected role that software plays across various sociocultural contexts. Two case
studies were developed for engineering and media studies, based on collaboration
with lecturers whowere keen to examine the notion of software literacy. In both cases
the focus was on the teaching and learning of commonplace discipline-specific soft-
ware—Final Cut Pro and Adobe Creative Suite (media editing applications) in media
studies, and SolidWorks (a computer-aided design, or CAD, software) in engineer-
ing. Both programmes are characterised by medium-sized enrolments of students
with diverse backgrounds at entry level but differed in terms of the professional
pathways for graduates. Both programmes used laboratory-based formal training
in the learning of discipline-specific software, and provide resources for additional
informal learning of software.

The learning and teaching strategies articulated by lecturers were underpinned by
discipline-based assumptions and industry expectations. Within engineering, CAD
has allowed engineers to engage in 3-dimensional modelling as a dynamic collabora-
tive design process. While its use was assumed to enhance visualisation and commu-
nication and at the same time reduceunnecessary abstraction in the designprocess this
was paired with the potential to circumscribe thinking and disincentivise the making
of changes. Knowledge and proficiency of SolidWorks as commonplace CAD soft-
ware is compulsory in our university learning context and would be expected of engi-
neering graduates worldwide. New engineers are expected to develop non-technical
skills such as communication, collaboration and entrepreneurship (see Washington
Accord, 2013) and strategies that will allow them to continue learning outside for-
mal contexts. Consequently, engineering lecturers focused on the need for students
to have reached a level of proficiency (rather than to have mastered) CAD software
when they graduate, which is equivalent to tier 2 in our framework. Lecturer com-
ment indicated that this level was acceptable for graduation given the situated nature
of the diversity of professional work contexts within which new engineers will be
based. In addition, there is an expectation that new/emerging engineers will take up
continual professional development activities to enhance their practice.1 Within the
focus of formal CAD learning some lecturers emphasised the importance of founda-
tion subjects, such as maths and physics, while others emphasised design principles
and industry and customer requirements. This latter focus positions the affordances
of CAD closer to the centre of curriculum and better supported students to reach
tier 3 of our framework. The few students we identified at this level indicated that
CAD assisted them to visualise abstract ideas, create and manipulate 3D objects and
communicate designs efficiently. It would seem these students were able to critically
consider SolidWorks’ affordances and apply this effectively to illustrate disciplinary

1As part of gaining chartered professional status and/or to become a full member of the Institution of
Professional EngineersNewZealand (IPENZ) new/emerging engineers inNewZealand are required
to submit a portfolio of work samples for assessment and undergo further testing to evidence they
have gained sufficient experience. As a full member of IPENZ (commonly achieved 4–5 years
beyond graduation), engineers still need to retain their chartered status by undergoing periodic
reassessment to ensure they keep up-to-date with developments in their field and are adopting
best-practices.

5.2 Comparing the Cases 85

ideas about designs while engineering design and process lecturers offered students
with parameters to guide their learning and experimentation with software.

As pointed out inChap. 2DNLE is nowstandard inmedia production and reframed
ways in which this production takes place. It is located in an ecosystem of production
tools which offer a wide palette of possibilities to media producers. Creative possi-
bilities arise because of the ways various kinds of media can be layered within an
overarching timeline. Additionally, DNLE has redefined the notion of editing allow-
ing for multiple possibilities in the wider field of media studies through more direct
user intervention, an integrated approach to combining sound and image, increased
speed and efficiency in the use of digital workflows for editing audio-visual media.

In media studies (in the university which was the focus of this case study) the
learning of DNLE was an elective. Media studies was depicted as having a more
explicit focus on software literacy to complement a somewhat diffuse set of require-
ments including creativity, innovativeness and accuracy. Notions such as performa-
tive learning and critique of software tended to bemademore explicit inmedia studies
teaching. Tier 3 proficient media studies students (based on our framework) pointed
out the ways their media editing and production software afforded freedom and ver-
satility to create a wider range of aesthetic designs includingworking across different
spaces, modalities and dimensions in new and interesting creative ways. Media stud-
ies lecturers sought to facilitate student developing appropriate learning strategies to
enhance their understanding and application of these strategies to different contexts
and to more independently explore the software’s affordances and possibilities. The
differences in expectations and assumptions played out in sometimes quite distinct
ways for students. For example, students’ engineering projects were more likely to
focus on the design process with the aim of students developing a clear and coherent
design solution, before implementing and testing this in a software environment. In
comparison, media studies students were encouraged to explore creative possibilities
by engaging with software, and to use a software more explicitly as a platform for
experimentation and generating multiple versions of media content.

Irrespective of these differences, students in both disciplines considered them-
selves to be early adopters of technology andwere generally comfortable in engaging
with technology. They could identify and unpack the affordances and constraints of
their discipline-specific software. In both programmes they could reach the stage of
being able to troubleshoot problems they encountered in using the applications, and
even suggest ways such software could be improved to support learning and use.

Students in general tended to draw from informal learning strategies to supplement
more formal learning approaches, though for engineering students this approach was
complicated by the fact that they were less likely to encounter CAD software before
beginning their studies and had less access to these kinds of software off-campus.
Commonly acknowledged informal strategies included asking more knowledgeable
peers, using the internet to look up specific functionalities of a software either through
YouTubeor general searchof specific forumsdedicated to software learning, referring
to a software’s in-built tutorial in the case of SolidWorks, learning through trial-and-
error, and so forth. These findings resonate with thewider scholarly findings examing

http://dx.doi.org/10.1007/978-981-10-7059-4_2

86 5 Comparing the Cases: What Do They Tell …

student digital literacy (e.g. Alexander, Adams Becker, Cummins, & Hall Giesinger,
2017; Peeters et al., 2014).

However, our participating students in general lacked a critical awareness of the
extent software shapes (and reshaped) their learning of disciplinary knowledge. Fac-
tors such as the complexity of discipline-specific software meant that considerable
time was needed for students to learn and develop proficiency with their use. The
few students who reached tier 3 software literacy proficiency were largely those who
had, to some extent, already engaged with artefacts and software that shared some
conceptual underpinnings with the applications they were required to learn in their
coursework. They then had a basis for critique of their course software and were able
to effectively tap into a software’s affordances to extend their creative or engineering
design abilities. Our findings align with the wider body of works from digital literacy
calling for students developing more critical reflexitivity when engaging with digital
and software applications (e.g., Goodfellow & Lea, 2014) although these may not
have an explicit focus of software as an actant in shaping disciplinary knowledge
and action (Kitchin & Dodge, 2011) (also see Chap. 1).

5.3 Considerations and Recommendations for Policy,
Practice and Further Research

Based on the findings from the study, the following recommendations are made for
practice, policy and further research in terms of the potential of the three-tier software
literacy framework, managing student diversity and disciplinary assumptions and
nuanced nature of software teaching and learning contexts. These are elaborated next.

5.3.1 Support for the Three-Tier Software Literacy
Framework

The findings from this small exploratory study support the existence of our hypoth-
esised three-tier software literacy framework. However, student development and
movement between the tiers was more fluid and flexible than we hypothesised. Stu-
dent ability to achieve a higher level of software literacy does not necessarily preclude
them from needing to revisit earlier levels in contexts where they encounter new but
similar software. Developing a relatively sophisticated and critical understanding of
an application or platform does not necessarily transfer directly to the learning of
other forms of software. There are evidently a variety of factors in play here, only
some of which we encountered in our research, such as engineering students report-
ing the need to re-learn certain functions of SolidWorks to complete a new task more
efficiently while on work placement. In practice, the tiers are not necessarily distinct
but rather the boundaries between these are permeable.

http://dx.doi.org/10.1007/978-981-10-7059-4_1

5.3 Considerations and Recommendations for Policy, Practice … 87

Although the shift from basic skills in using affordances (tier 1) to the ability to
independently trouble-shoot applications (tier 2) involved reaching a clear threshold
for most students, the transition to a more critical understanding of software (tier 3)
was less easily demonstrated. As noted above, some students could understand and
critique the conceptual frameworks underlying the applications they encountered in
formal training, but did not always extend these skills to other software they encoun-
tered. As with other forms of digital literacy, much depends on a variety of factors
informing and shaping each students’ learning. This suggests lecturers should not
assume student competency across contexts (e.g., informal to formal, from cam-
pus to workplace settings) or across similar but different media editing software
such as Adobe Photoshop and Adobe After Effects, for example. Nonetheless, our
framework has value as a conceptual tool for practitioners in terms of understand-
ing the role of troubleshooting as an important development stage in learning with
and through software. Understanding how to teach themselves the more complex
possibilities afforded by an application—where and how to tap into resources such
as built-in tutorials, YouTube videos, peers and tutors—is a valuable skill and, we
argue, represents a key threshold for students to reach.

We see value in students’ gaining tier 3 capability, as the ability to critique soft-
ware is fundamental to understanding that software code is never ‘neutral’ (Fuller,
2008; Manovich, 2008); as outlined in Chap. 1 it is a form of writing which informs
and shapes possibilities for action. Students who are able to transfer a critical under-
standing of software affordances have the sophisticated understanding needed for
considering how software enable some kinds of knowledge and actions while also
potentially constraining other forms of knowledge and actions. These students are
able to use new software and familiar software in new contexts and situations because
they understand the conceptual framework that underpins a software. This said,
the affordances and constraints of discipline-based software in shaping disciplinary
knowledge needs further consideration by students and by lecturers with lecturers
needing to be aware of the implications of their choice of software and modelling of
a software application.

Even when evidence of students achieving tier 3 exists, it cannot be assumed that
they have mastered all facets. Compared with tiers 1 and 2, tier 3 is more complex
and therefore difficult to achieve. Its multifaceted demands play out in multiple ways
to the extent that we consider the skills and understandings required for tier 3 literacy
vary according to the demands of the particular discipline and the task at hand. For
example, inmedia studies critical thinking tends to be seen as a core aspect of creative
disciplinary knowledge. Students’ development of reflexivity is as important as the
development of the capacity to produce a creative product. Tier 3 ability therefore is
essential for media studies graduates to be competitive in their profession. Being able
to judge the creative capacities of competing software has implications for the nature
of the practice which is developed, the form and eventual conceptual complexity
of media products themselves, as well as for more practical considerations such as
budget. In contrast, in engineering the disciplinary emphasis is on the quality of
an engineering design—which typically means adhering to objective and external
measures of successful design, not least of which includes the satisfaction of an

http://dx.doi.org/10.1007/978-981-10-7059-4_1

88 5 Comparing the Cases: What Do They Tell …

initial client’s brief. For engineering graduates, design efficiency and effectiveness
is prioritised over the kinds of creative reflexivity observed in media studies (i.e., the
function of a product is more important than the form). Nonetheless, we consider
tier 3 would be needed by experienced engineers charged with selecting and/or
recommending different software as fit for a particular industry’s purpose/task.

Our findings indicate there is value in each discipline examining how discipline-
specific software teaching and learning is positioned in relation to graduate profiles.
Software teaching and learning environments where students encounter a range of
competing software tools would be needed to raise awareness of the affordances
of different discipline-specific software. This, in addition to learning a discipline-
specific software in-depth, can be beneficial to providing students with the breadth
and depth of literacies required to engage successfully with software in their
discipline.

5.3.2 No One-Size Fits All Approach to Software Learning

Multiple learning pathways exist for exploring the affordances of any particular
software, both formal and informal. Students often prefer informal strategies as a
supplement to, and at times above formal strategies for learning discipline-based
software. Learning software can be a complex and challenging undertaking, and is
dependent upon the quality of cases and projects which are the immediate focus of the
learning. Lecturers could usefully be informed by, and take advantage of students’
informal repertoire of learning strategies and networks, including their accessing
web-based resources and discussing with peers. These are all integral to developing
troubleshooting strategies and acquiring an understanding of the creative possibilities
of applications and platforms. Lecturers drawing from students’ already established
informal learning strategies should recognise the relevance of the social and cultural
context in shaping effective technology and software engagement. Our findings indi-
cate international students from cross-cultural backgrounds are acquaintedwithmore
prescriptive methods of software learning, for example, would need more assistance
to become confident users of discipline-specific software as compared to students
who have gained software skills through town initiatives in experimentation with a
range of similar software.

Our findings add to debates over assumptions that young people/current students
are a digitally literate generation. Our participants perceived themselves to be com-
petent and confident early adopters of technologies. Many graduating students were
able to recognise discipline-specific software affordances and acknowledge these
to be central in their engagement with disciplinary knowledge. However, very few
were able to critique how the software might shape their disciplinary knowledge.
In focus groups centred on discipline-based software learning, very few students
demonstrated critical thinking about the nature and role of the software they were
using and most were not able to describe or discuss applications for software beyond
those used in their learning. That is, there was very little evidence of tier 3 software

5.3 Considerations and Recommendations for Policy, Practice … 89

literacy. Lecturers need to explicitly teach and model software critique if they wish
to foster this capacity and/or make this possibility known to students. That is, lec-
turers need to encourage students to engage with and think about the content and
presentation of their designs created with software and how this influences students’
interpretations and engagement with disciplinary knowledge.

As with all learning, the diversity of student cohorts and the range of understand-
ings and the variation in familiarity, skills and experience students bring with them
to the formal software learning context constitute a further challenge for teaching of
and through software. Some students may already have a critical orientation towards
software, or have acquired an understanding of the conceptual framework underpin-
ning an application. Our findings indicate an advantage in terms of more advanced
software learning for those who have prior experience with other software with a
similar conceptual framework. In response to this diversity, lecturers could usefully
direct time and attention to formatively assessing students’ initial software literacy
and adapting teaching activities in light of this. This said, our findings indicate there
is no single best (one-size fits all) approach to teaching discipline-specific software.
Lecturers adopting a range of teaching approaches (formal and informal) and being
flexible to address diverse learning needs represents a crucial part of supporting stu-
dent learning. We recognise tensions in terms of time and depth versus breadth of
ideas that each lecturer will need to address, and hence reiterate our earlier point for
a re-examination of where and how software-based literacies are positioned within
each discipline.

5.3.3 Situated Nature of Software Teaching and Learning

We advise caution in the interpretation of our findings because of the need to consider
the situated nature of our investigation of discipline-specific software learning. The
participants in the study represent a convenience sample of lecturers and students
from one educational institutional setting. They were from two distinctly different
disciplinary contexts, with distinct and different disciplinary foci and expectations
of software teaching and learning. Lecturers were also careful to point out the study
only focused on some courses within a programme and all universities have different
interpretations of how software teaching and learning can be enacted. Although the
findings cannot be generalised, we hope that by providing rich thick descriptions of
the context and action (Lincoln & Guba, 1985) (also see Sect. 3.2.4 for the ways the
study has sought to add rigour in its examination of the cases), readers will be able
to draw insights for their own uses from the study.

5.4 Summary

This chapter synthesised and compared the key findings across two case studies
into students’ software literacy development in formal learning contexts. The key
findings suggest lecturers would be wise to introduce and help students to develop

http://dx.doi.org/10.1007/978-981-10-7059-4_3

90 5 Comparing the Cases: What Do They Tell …

critical awareness of how software can inform and shape their understanding of
disciplinary knowledge and practice. The chapter further offered recommendations
for policy, practice and further research. Limitations of the study were also reported
to highlight the nuanced and situated nature of discipline-specific software teaching
and learning.

References

Alexander, B., Adams Becker, S., Cummins, M., & Hall Giesinger, C. (2017). Digital literacy
in higher education, Part II: An NMC horizon project strategic brief (Vol. 3.4, August 2017).
Austin, TX: The New Media Consortium.

Fuller, M. (2008). Software studies: A lexicon. Cambridge, MA: MIT Press.
Goodfellow, R., & Lea, M. R. (2014). Literacy in the Digital University: Critical perspectives on
learning, scholarship and technology. New York: Routledge.

Kitchin, R., & Dodge, M. (2011). Code/space: Software and everyday life. Cambridge, MA: MIT
Press.

Lincoln, Y. S., & Guba, E. (1985). Naturalistic inquiry. Beverly Hills, CA: Sage.
Manovich, L. (2008). Software takes command (online draft). Retrieved fromhttp://softwarestudies.
com/softbook/manovich_softbook_11_20_2008.pdf.

Peeters, J., Backer, F. D., Buffel, T., Kindekens, A., Struyven, K., Zhu, C., & Lombaerts, K. (2014).
Adult learners’ informal learning experiences in formal education setting. Journal of Adult Devel-
opment, 21(3), 181–192. doi:10.1007/s10804-014-9190-1.

Washington Accord. (2013). Graduate attributes and professional competencies. Retrieved from
http://www.ieagreements.org.

http://softwarestudies.com/softbook/manovich_softbook_11_20_2008.pdf
http://dx.doi.org/10.1007/s10804-014-9190-1
http://www.ieagreements.org

Chapter 6
Software Literacy: Education and Beyond

Abstract Software literacy is an essential part of learning and living in the 21st
century; something which, we argue, transcends the use of any particular tool and
any particular educational, social and cultural context. Software literacy is an increas-
ingly central part of the palette of understandings and skills that comprise the broad-
ening umbrella of digital literacy. It is therefore essential that citizens have a critical
understanding of software to make more informed choices about their use, can trans-
fer this critical understanding to software they have yet to encounter, and understand
that all software has nuanced affordances and limitations. In tertiary settings this
is needed to ensure equitable and critical learning with and through software. This
chapter summarises our key insights from our own research into these issues and
offers recommendations for future research in the field.

6.1 Introduction

The need for a critical understanding of the role and significance of coding needs to
be acknowledged as a core part of the palette of understandings and skills that com-
prise the broadening umbrella of digital literacy. The need to understand software
transcends the use of any particular tool and any particular educational, social and
cultural context. As a cultural artefact, coding plays a role in reproducing, reinforcing
and augmenting existing cultural practices, as well as generating new practices. The
infrastructures in which code is embedded constitute an increasingly pervasive pres-
ence in everyday society, one that mediates, supplements, augments, monitors and
facilitates individual and collective activity. Software such as Google, the iOS soft-
ware in iPhones and iPads, andMicrosoft Office software packages are just everyday
examples reflecting the extent to which software has become embedded in everyday
personal and professional pursuits. It is therefore both desirable and advantageous
that citizens have a critical understanding of software tomakemore informed choices
about their use, can transfer this critical understanding to software they have yet to
encounter, and understand that all software has nuanced affordances and limitations.
Our own small contribution to empirical research in this field demonstrates some
of the implications for education providers, especially universities, in their role in

© The Author(s) 2017
E. Khoo et al., Software Literacy, SpringerBriefs in Education,
https://doi.org/10.1007/978-981-10-7059-4_6

91

92 6 Software Literacy: Education and Beyond

fostering critical thinking and serving as critic and conscience of society. It is crucial
to ensure all students and lecturers are supported in teaching and learning processes
whether these are mediated through and/or focused on software.

6.2 Software as a Digital Literacy

First let us return to, and extend some key principles established in Chap. 1. These
were drawn largely from recent thinking from Software Studies scholars, Manovich
and Kitchin in the main, who argue and illustrate that we are living in a software
culture which is fundamentally (re)shaping all areas of modern life. The principles
are:

• The conceptual framework inherent to software is not neutral, and understanding
this is central to critical literacies across a range of domains. This principle suggests
the need to ask questions such as: Do we understand specific pieces of software,
how they operate, what they do and do not offer us, and are we conscious of how
specific pieces of software inform our imagination of what is possible?

• Our performance of software is intimately connected to our understanding of its
underlying conceptual framework prompting the need to consider: Do we adapt
ourselves to it, do we push it to do things it was not designed for but is capable of
doing (do we hack it?), do we put it aside and look for a better solution, can we
combine it with other software to accomplish the current task and/or to imagine
new things?

• Software translates practice into something new—perhaps in scale, perhaps in
terms of who can and wants to participate and how they can participate, and
perhaps in going beyond the individual to invite others to participate as a collective
with tools like wikis/Wikipedia, and open source codes that allow public/masses
to contribute their thoughts to improve on ideas, tools and practices. Software is
intimately associated with (new) forms of automation (see below) that allow us to
amplify, extend and effectively create new kinds of practices.

• Software evolves, and not in necessarily linear or carefully designed ways—much
of software is combinatorial, where something is coded (an affordance, an inter-
face, a platform, or an interoperability between previously distinct systems) and
this becomes a building block that extends an existing capability or can be com-
bined with other building blocks to possibilities not always anticipated by the
original coders.

Beyond these general principles, in our research and this book we have focused
on software and software literacy in the context of engineering and media studies
education. The term literacy directs attention to how individualsmake use of software
and for what purposes, in what contexts and with what anticipated and unexpected
outcomes.

Our three tier definition of software literacy includes understanding the techni-
cal as well as the conceptual and sociocultural aspects of software use. It includes

http://dx.doi.org/10.1007/978-981-10-7059-4_1

6.2 Software as a Digital Literacy 93

operational aspects, the capacity to problem solve when using software to complete
a task, and a critical awareness of affordances and the implications of these for the
conceptual framing, practical approaches and values a software supports. Whereas
the definitions of other kinds of literacy focus on the general societal, social, com-
municative and creative aspects of literacy, our initial focus within software literacy
is deliberately on applications which have implications for our creative agency, and
play out in concretewayswithin disciplinary and professional practices.As discussed
in Chap. 1, these have consequences for our agency as creative producers. Our con-
ceptualisation of software literacy focuses in on user-software interactivity, more
specifically what the affordances software can enable and constrain and the impli-
cations of this for notions of agency within human-machine assemblages embedded
within software culture. In line with current thinking in Software Studies, our focus
is on how users and these assemblages evolve together in ways that both proscribe
and expand how tasks can be and are conceptualised and accomplished. At its most
sophisticated our conception of software literacy raises the need for users to question
the implications of their use of a particular software where these implications could
be social, ethical, cultural, legal and/or practical and pragmatic.

6.3 Software, Software Literacy and Education

Outside themore general principles developed fromSoftware Studies detailed above,
Kitchin (2015) has set out the variety of ways in which software has become ubiq-
uitous within educational contexts, typically in unexamined ways. He lists these as
teaching materials that are created using software programmes, teaching that is co-
delivered through digital media, and assessments that are conducted using software
packages. Kitchin’s focus is very much on the role software plays in affording differ-
ent approaches to teaching, learning and assessment from a teacher’s point of view.
We are also interested in the implications of software use for curriculum knowledge
and the way these are demonstrated which in turn has implications for what it means
to be a learner and knower. Buckingham (2007, p. viii) argues that, “we need to
be teaching about technologies, not just with or through them”. We agree with him
when he points out: “form, media or platform do not speak”. The way that content
is mediated, framed and shaped by the platform and software selection needs to be
made explicit and critiqued as part of the educational process.

Across Chaps. 3 and 4 we have set out case studies on how the professional
software students use shapes, and frames what is thinkable in a discipline. The vari-
ations in students’ location on our three tier software literacy framework reinforces
that what is critical is the person-software assemblage. Here what is at stake is both
curriculum and what students come to understand as a valid and valued professional
identity.

Our research begs the question of the need for coding skills to be included in
formal curricula. Internationally the answer yes is gaining traction (e.g., Williamson,
2015). Vee (2013, 2017), for example, argues there is a parallel with mass ability to

http://dx.doi.org/10.1007/978-981-10-7059-4_1
http://dx.doi.org/10.1007/978-981-10-7059-4_3
http://dx.doi.org/10.1007/978-981-10-7059-4_4

94 6 Software Literacy: Education and Beyond

read andwrite and predicts equally pervasive changes to societywhenmost computer
users have the knowledge and power to create and modify software. Computational
thinking, a similar idea, refers to the style of thinking used when programming
a computer or developing an algorithm. It includes formulating, representing and
analysing problems in terms of their component parts. At the core of debates over
the need for coding to be taught as a key form of writing is an unease with a future
where inequalities may increasingly centre not just on access to digital technologies
but the ability to operate with meaningful agency in coded environments. This does
not just mean a division between those who can code (i.e. write their own software)
and those who cannot. At a more fundamental level, it involves an effort to prevent
students from being captured by software; from being unable to imagine possibilities
outside of the tools they use on an everyday basis. As with much in this field, we
have more rhetoric than actual empirical evidence to inform educators on concrete
strategies to employ in the classroom. This then is a potential area for development
in our software literacy framework.

As soon as we turn our attention to researching such matters we need to remind
ourselves that just as digital technologies are now entwined with multiple aspects
of educational practice they are also entwined with educational research practices.
This entanglement ranges from the conceptualisation of a project to knowledge dis-
semination efforts. Digital devices, such as voice recorders, digital cameras, and/or
iPads, are used during fieldwork. Dropbox and Google Docs are used for collabora-
tion and data sharing. Software programs such as NVivo and SPSS assist with data
analysis. Social media platforms, such as Facebook and Twitter, are both sources of
data and channels for disseminating research findings. Beer (2012) points out that the
operations these digital devices and interfaces perform, at our behest are powered by
algorithms and codes. And that by “streamlining, making efficient, predicting, mak-
ing decisions for us, doing work on our behalf, [they are] taking some of the agency
from researchers and the research process and making it their own” (para 2). At the
same time these software algorithms and codes are usually black-boxed, meaning
that the calculations, decisions and processes being performed are essentially hidden
from our critical analysis (Roberts, Hine, Morey, Snee, & Watson, 2013). Roberts
and colleagues argue this leads to “insufficient attention tomethodology” (p. 6). They
suggest, and we agree, that the encoding of research practices via digital tools needs
to be brought out of the background to consider how this is shaping—enabling and
constraining—how educational research is performed.

Lynch (2015), in The Hidden Role of Software in Educational Research, adopts
Software Studies as a paradigm to critique the long-standing tendency to adopt
new technologies without considering the deeper implications of their use. Lynch
develops and uses an interesting conception of software space, drawing in particular
from Kitchin and Dodge’s notion of code/space (Kitchin & Dodge, 2011). Lynch
outlines how:

I conceptualize software space to refer to a complex computational assemblage that includes
devices, networking infrastructures, interfaces, code and information systems. Software
space is socially situated between 1) political and economic spaces, which includes actors
that create policy, produce software and promote its adoption as well as 2) educational and

6.3 Software, Software Literacy and Education 95

administrative spaces, which include students, educators, and school leaders. As my evoca-
tion of spatiality is intended to suggest, the interplay between the different spaces is fluid
and, often, inhumanly fast (Lynch, 2015, p. 25).

Lynch outlines a model for critical Software Studies, which he suggests as a
means for investigating the “hidden ways issues of ideology, power, and inquiry
are encoded in educational software spaces” (Lynch, 2015, p. 50), or what he calls
(drawing from Manovich) the softwarization of [U.S.] education. In practice, this
entails looking at software space at a variety of levels; devices, network infrastructure,
interfaces, code, and information systems to consider the hidden political, economic
and epistemological ways it impacts on practice.

The broader lesson here is important; while we have specifically studied examples
of software as applications, as tools that wait to be interacted with, to be performed
toward particular ends,we need to consider future developments of software (not least
those which cede further agency to software-based infrastructures within education
and educational research).

6.4 Software Literacies in a Coded Future

Software is embedded within many, even most, of the activities fundamental to our
lives—work, leisure, social interaction, health andwider well-being. Herewe discuss
just a few of these to provide a context for thinking more broadly about the need for
all of us as citizens to be software literate at the third tier of our literacy framework,
irrespective of whether we have the skills and knowledge to perform software at tiers
1 and 2 (or indeed, any proficiency in coding).

A fundamental facet of software culture, one which facilitates the transformative
potential of coded practices, is automation. Automation enables aspects of a practice
to be translated into algorithmic form, and hence scaled up to whatever size is desired
(limited only by available processing power). By combining different automated pro-
cesses, sequentially or in parallel, software culture can start to exhibit practices that
take on their own distinctive quality, and in ways that eventually become naturalised
for software users (MacKenzie, 2006, p. 44). Semi-automation in Word processing,
for example, includes deleting mistakes, cutting and pasting, counting the number of
words, automated line numbering and basic spell-checking At amore everyday level,
there are many kinds of operations which we only belatedly realise we cannot do
without: the automatic focus on a smartphone camera, customisable notifications for
all sorts of everyday tasks, automated mapping operations, and various forms of file
management. Such automated affordances are central to the seductive power of soft-
ware environments. They are all slowly allowing us to operate in a software bubble
that is not always noticeable unless it fails to function. Our reliance on software-
based automated functions is a key way in which we give some of our own agency
to code.

96 6 Software Literacy: Education and Beyond

At the platform level, Facebook and other social media are examples where users
are engaging with largely automated systems, creating quite distinctive, coded com-
munication practices. van Dijck’s (2013) research into global social media platforms
provides a valuable political economy of key parts of contemporary software culture,
demonstrating that at this level code operates to provide a broader infrastructure of
engagement, a set of givens for how users can engage, participate and interact. For
example, the Facebook platform as a “friendship assemblage” (Bucher, 2013, p. 490)
encourages particular kinds of behaviour, such as gathering large numbers of friends,
and Facebook’s like button shapes how people interact. Looking to the future Web
3.0, which Spivack (2007) defines as connective intelligence, instead of multiple
searches, you might type a complex sentence or two in your Web 3.0 browser and
various forms of personalised search infrastructures will do the rest. These capacities
come with the potential to change howwe conceptualise the shape of knowledge and
what it means to know. At the same time it comes with the need to consider the algo-
rithms that are informing what and how information/knowledge is marshalled and
presented to us as comprehensive whereas the process may amplify certain informa-
tion narratives whilst silencing others. In such scenarios, the ultimate consequence
is arguably the limiting of opportunities for a person to encounter conflicting views
(MacKenzie & Martin, 2016).

The way we have traditionally thought about the internet has been in terms of
pages, but we are about to see this changing to the concept of streams. In essence,
the change represents a move from a notion of information retrieval, where a user
would attend to a particular machine to extract data as and when it was required,
to an ecology of data streams that form an intensive information-rich computational
environment. This notion of living within streams of data is predicated on the use of
technical devices that allow us to “manage and rely on the streaming feeds” (Berry,
2011, p. 143). In this ecosystem, we are in the role of managers of complex streams
of information generated through our engagement with largely automated practices.

Artificial Intelligence (AI) is the end-point of some of this thinking, in terms of
an imagined sentient intelligence which is independent of user input, but there are a
series of milestones along this trajectory that we are already living with—whether
it is the massively complex field of algorithms which constitute the Google search
engine, or YouTube recommendation system, or Apple’s Siri digital assistant, or (less
obviously) the manner in which the global share market system is deeply embedded
within software practices—the economy, to a large extent, is coded. AI-centred
search engines, linked to the Internet of Things, are offering a variety of services,
such as real-time language translation, but also anticipating our requests and actions
through predictive analysis. Military uses for everything from targeting systems, to
AI-centred wearables to enhance the stamina and capability of individual soldiers,
through to the development of gaming forms as training modules (e.g. building from
early prototypes of software-based training environments, such as the America’s
Army first-person shooter (FPS) game: https://www.americasarmy.com/) are part of
our current and prospective landscape.

At the same time the potential for virtual reality (VR) and augmented reality
(AR) applications are only just being conceptualised, but already attract enormous

https://www.americasarmy.com/

6.4 Software Literacies in a Coded Future 97

investment from a variety of technology-centred sectors. The extensions of archi-
tecture and design outlined in Chap. 2 indicate an increasing movement into BIM
(building informationmodelling), which, among other possibilities, allows architects
to use VR platforms to walk through their simulated models. While VR provides a
seamless engagement with a computer-generated environment, AR (and offshoots
such as aural augmented reality (AAR)) aim to add information layers to our land-
scape, using interfaces to networked content through wearable devices such as gog-
gles, headphones and more intuitive devices. The vision here (pun intended) is a
redefinition of everyday space as globally networked, by default.

There are any number of Big Data-driven software developments, for example
within political practices, such as identifying voting patterns, collating voter lists
and their political tendencies, through to the influence of bots designed to disrupt
the communication strategies of opposing campaigns and exploit the power of Twit-
ter and other social media platforms outside of mainstream journalist professional
practices. Further developments in biometric monitoring, knitting together person-
alised wearable devices and coded infrastructures emerging within smart-homes as
part of the Internet of Things, offer the potential for self-surveillance of all sorts of
measures and data on health and illness, ultimately to be networked to automated
diagnostic tools. Any number of other health-related applications of Big Data and
mobile technologies are currently being developed, not least the more efficient and
real-time gathering and analysis of data to identify the emergence of new viruses,
and to assist in rapid responses to restrict their spread. In this environment of intensi-
fying software developments, and crucially the emergence of automated, real-time,
customised and naturalised coded practices, software literacy becomes core to our
civil roles and responsibilities within society.

6.5 Concluding Comments: Towards Digital Citizenship

Digital technologies are introducing new possibilities for what it means to be a
citizen. People are less tied to the demands and restrictions of a specific place. To
be a digital citizen is to be more globally aware, more critical, more willing to
challenge the immediate (Bennett, Wells, & Rank, 2009; Coleman, 2006; Hermes,
2006). Advanced citizenship is highly dependent on agency where the individual
needs to be part of and contribute to a community/multiple communities. In order
to understand the role of individuals in civic life in the shadow of code and all its
manifestations, it is imperative to gain a firmer understanding of what activities it
engenders, the ways it changes the perceptions of public issues, and shapes ways of
working and generating knowledge.

It is difficult to offer predictions about the kind of digital/software environment we
will experience in the next five to ten years without lapsing into science fiction. The
perfect stormof artificial intelligence andmachine learning, for example, is often pre-
dicted to feed into all forms of the economy, and suddenly render entire professions
defunct. There are a host of technologies becomingmature, and feeding off each other

http://dx.doi.org/10.1007/978-981-10-7059-4_2

98 6 Software Literacy: Education and Beyond

to create new possibilities—collectively these offer the potential to deepen and make
more subtle, complex forms of human-software symbiosis. The question of who
controls the software will become an increasingly pressing issue—both immediately
in terms of the effective control of existing operating systems, and software-based
ecosystems represented by corporate entities such as Google, Apple, Facebook and
a comparatively small number of players dominating software culture. This is inti-
mately connected with larger issues to do with the nature of human agency and
accommodation with software-based systems and infrastructures which are assist-
ing with human decision-making. And this in turn feeds into current concerns over
the kinds of skills and competencies that young students should be focusing their
energies and talents into. At the heart of such concerns is an awareness of the power
relations associated with software culture—an aspect which we might put into criti-
cal software literacy. These feed into a host of ethical concerns over how to identify
responsibility for actions within human-machine assemblages (e.g., the debates over
insurance and other issues related to automated driving which is holding up their
release to the market).

Software is only going to becomemore deeply embedded in the fabric of everyday
life with many people predicting increasing deeper and more powerful integrations
of human and machine assemblages. Key questions arising from this are: How are
people making decisions? How empowered are they or not through their exchanges
of software?Ultimately, we return to the broader challengewe posed at the beginning
of this volume: why and how does software matter?

In the immediate context of our research, such questions should serve prompts
for education providers, especially universities, to re-examine their role in fostering
critical thinking and serving as critic and conscience of society. It is crucial to ensure
all students and lecturers are supported in teaching and learning processes whether
these are mediated through and/or focused on software. As an increasing range of
workplaces make use of software and educators move to exploit the potential of
e-learning platforms, and make use of social media and cloud-based and mobile
applications, our research highlights the need for further detailed empirical investi-
gation of software literacy. In tertiary settings, this is needed to ensure equitable and
critical learning with and through software.

References

Beer, D. (2012, October). Algorithms in the academy: The sorting of academic practice [Web
log message]. Retrieved from http://thinkingculture.wordpress.com/2012/10/20/algorithms-in-
the-academy-the-sorting-of-academic-practice/.

Bennett, W. L., Wells, C., & Rank, A. (2009). Young citizens and civic learning: Two paradigms of
citizenship in the digital age. Citizenship Studies, 13(2), 105–120.

Berry,D.M. (2011).The philosophy of software: Code andmediation in the digital age. Houndmills,
UK: Palgrave Macmillan.

Bucher, T. (2013). The friendship assemblage: Investigating programmed sociality on Facebook.
Television & New Media, 14(6), 479–493.

http://thinkingculture.wordpress.com/2012/10/20/algorithms-in-the-academy-the-sorting-of-academic-practice/

References 99

Buckingham, D. (2007). Beyond technology: Children’s learning in the age of digital culture.
Cambridge, UK: Polity.

Coleman, S. (2006). Digital voices and analogue citizenship: Bridging the gap between young
people and the democratic process. Public Policy Research, 13(4), 257–261.

Department of the Army (n.d). America’s Army [computer software]. Available at https://www.
americasarmy.com/.

Hermes, J. (2006). Citizenship in the age of the internet. European Journal of Communication,
21(3), 295–309.

Kitchin, R. (2015). Foreword: Education in code/space. In B. Williamson (Ed.), Coding/learning:
Software and digital data in education (pp. 1–3). Stirling, UK: University of Stirling.

Kitchin, R., & Dodge, M. (2011). Code/space: Software and everyday life. Cambridge, MA: MIT
Press.

Lynch, T. L. (2015). The hidden role of software in educational research: Policy to practice. New
York, NY: Routledge.

Mackenzie, A. (2006). Cutting code: Software and sociality. New York, NY: Peter Lang Publishing
Inc.

MacKenzie, A., & Martin, L. (2016). Developing digital scholarship: Emerging practices in aca-
demic libraries. London, UK: Facet Publishing.

Roberts, S., Hine, C., Morey, Y., Snee, H., & Watson, H. (2013). Digital methods as mainstream
methodology: Building capacity in the research community to address the challenges and oppor-
tunities presented by digitally inspired methods. Retrieved from National Centre for Research
Methods website: http://eprints.ncrm.ac.uk/3156/.

Spivack, N. (2007). The semantic web, collective intelligence and hyperdata. Retrieved from http:
//novaspivack.typepad.com/nova_spivacks_weblog/2007/09/hyperdata.html.

van Dijck, J. (2013). The culture of connectivity: A critical history of social media. Oxford, UK:
Oxford University Press.

Vee, A. (2013). Understanding computer programming as a literacy. Literacy in Composition Stud-
ies, 1(2), 42–64.

Vee, A. (2017). Coding literacy: How computer programming is changing writing. Cambridge,
MA: MIT Press.

Williamson, B. (2015). A hidden computing curriculum. In B. Williamson (Ed.), Coding/learning:
Software and digital data in education (pp. 92–98). Stirling, UK: University of Stirling.

https://www.americasarmy.com/
http://eprints.ncrm.ac.uk/3156/
http://novaspivack.typepad.com/nova_spivacks_weblog/2007/09/hyperdata.html

Glossary of Key Terms

Affordance A person’s perceived opportunity to utilise a particular tool for action;
for example, a doorknob is for turning. Within software, these are typically
organised through user interfaces.

Coding (or programming) A form of writing which inscribes types of actions to
be performed using a computer.

Digital literacy An umbrella term for a number of competencies, skills and
understandings associated with digital infrastructural technologies (we argue
software literacy falls within this same umbrella).

Pedagogy Study and practice of teaching.

Software Machine readable instructions which direct a computer’s processor to
perform specific operations. For everyday software applications, these instruc-
tions are put into operation as computer users run an application.

Software application A computer program designed to perform a set of tasks or
functions. Common everyday examples range from an app on a smartphone, to
desktop computer programs such as a web browser.

Software literacy The repertoires of skills and understandings needed for students
to be critical and creative users of software applications and systems in a soft-
ware saturated culture.

Software platform A coherent programming environment or system which sup-
ports applications. Examples include operating systems such as iOS or Android,
or social media platforms such as Facebook.

© The Author(s) 2017
E. Khoo et al., Software Literacy, SpringerBriefs in Education,
https://doi.org/10.1007/978-981-10-7059-4

101

	Preface
	References

	Acknowledgements
	Contents
	List of Figures
	1 Introduction: Software and Other Literacies
	1.1 Introduction
	1.2 Software Studies and Its Significance Within Contemporary Society
	1.3 Cultural Software and Agency
	1.4 Co-creating with Software Tools
	1.5 Software Literacy: Our Framework for Interrogating Cultural Software
	1.6 Moving Forward in This Book
	References

	2 A Genealogy of Software Applications
	2.1 Introduction
	2.2 The Development of Digital Non-linear Editing Systems (DNLE)
	2.2.1 The Interface
	2.2.2 The Implications of DNLE

	2.3 The Development of Computer-Aided Design (CAD)
	2.3.1 Implications of CAD

	2.4 Summary
	References

	3 The Learning, Use and Critical Understanding of Software in Media Studies
	3.1 Introduction
	3.2 Research Design and Context
	3.2.1 The Research Design
	3.2.2 The Media Studies Case
	3.2.3 Data Collection
	3.2.4 Limitations and Ensuring Quality of Data Collected
	3.2.5 Analysis of Data
	3.2.6 Participants

	3.3 Findings
	3.3.1 To What Extent, and How Student Software Literacies Develop and Impact on the Teaching and Learning of Discipline-Specific Software
	3.3.2 Student Perception of the Software Literacies that They Learnt as Part of Their Tertiary Coursework
	3.3.3 How and in What Ways Lecturers Model Attention to, and Use of Different Affordances in Discipline-Specific Software

	3.4 Summary
	References

	4 The Learning, Use and Critical Understanding of Software in Engineering
	4.1 Introduction
	4.2 Research Design and Context
	4.2.1 The Engineering Case
	4.2.2 The Research Design
	4.2.3 Data Collection
	4.2.4 Participants

	4.3 Findings
	4.3.1 To What Extent, and How Student Software Literacy Develops and Impacts on the Teaching and Learning of Discipline-Specific Software
	4.3.2 Student Perception of the Software Literacies that They Learnt as Part of Their Tertiary Coursework
	4.3.3 How and in What Ways Lecturers Model Attention to, and Use of Different Affordances in Discipline-Specific Software

	4.4 Summary
	References

	5 Comparing the Cases: What Do They Tell Us About Software Literacy?
	5.1 Introduction
	5.2 Comparing the Cases
	5.3 Considerations and Recommendations for Policy, Practice and Further Research
	5.3.1 Support for the Three-Tier Software Literacy Framework
	5.3.2 No One-Size Fits All Approach to Software Learning
	5.3.3 Situated Nature of Software Teaching and Learning

	5.4 Summary
	References

	6 Software Literacy: Education and Beyond
	6.1 Introduction
	6.2 Software as a Digital Literacy
	6.3 Software, Software Literacy and Education
	6.4 Software Literacies in a Coded Future
	6.5 Concluding Comments: Towards Digital Citizenship
	References

	Glossary of Key Terms

