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Static and Dynamic Convex Distribution Skl
Network Expansion Planning

Julio Loépez, David Pozo and Javier Contreras

Abstract This chapter presents static and dynamic optimization-based models for
planning the electric distribution network. Based on a branch flow model, two
Mixed-Integer Conic Quadratic Programming (MICQP) convex formulations are
proposed to solve the network expansion planning models including high modeling
fidelity of the intrinsic interaction of the manifold elements of the networks. The
objective of the presented models is to minimize investment and operation costs by
optimally deciding on installing new feeders and/or changing existing ones for
others with larger capacities, installing new substations or expanding existing ones
and, finally, installing capacitor banks and voltage regulators, modifying the net-
work topology. In addition, discrete tap settings of voltage regulators are modeled
as a set of mixed-integer linear equations, which are embedded in an ac optimal
power flow. The presented MICQP models are convex optimization problems.
Therefore globality and convergence are guaranteed. Computational results to
verify the efficiency of the proposed methodology are obtained for a 24-node test
system. Finally, conclusions are duly drawn.
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2.1 Introduction

The rapid increase of renewable power generation connected to electric distribution
networks has complicated their operation. Because this operational complexity, it
could lead to a high impact on the economic efficiency of networks due to the
significant investment costs of new control devices that properly guarantee
appropriate levels of security, quality, and reliability at competitive costs. In this
vein, optimization tools to solve the Electric Distribution Network Expansion
Planning (EDNEP) problem has recently attracted more attention representing a
shifting toward feasible-based to optimization-based planning paradigms. It is clear
that the use of optimization tools in EDNEP represent substantial gains or savings
in planning electric distribution networks. However, it is essential to properly
capture the complexity of the non-linear interactions of the manifolds elements and
physic laws with high fidelity. This chapter is devoted to this propose presenting
convex formulations that could be implemented on off-the-shelf solvers with
globality and convergence guarantee.

In its simplest version, the EDNEP problem consists of determining the
investments that guarantee an economical and reliable distribution network oper-
ation. Technical constraints such as maximum current flows through feeders,
maximum power from substation transformers, voltage magnitude limits in nodes
and network radiality must be considered [1, 2]. The EDNEP problem can be
established as follows: an electric distribution network needs to meet the demands
of a fixed number of consumers due to demand growth, hence, it is necessary to
carry out expansion planning consisting of: installing new feeders and/or changing
existing ones for others with larger capacities, installing new substations or
expanding existing ones and finally, installing capacitor banks and voltage regu-
lators. The objective is to minimize the total costs related to those investments and
network operation costs, subject to a set of physical, operating and economic
constraints [3].

The installation of capacitor banks in electric distribution networks is important,
mainly to maintain the voltage magnitude and energy losses within pre-established
limits. Their optimal sizes and locations make these improvements feasible [4].
Thus, optimal capacitor bank placement aims at placing and sizing them, mini-
mizing the costs associated with capacitor banks and energy losses. Within this
context, another important aspect is the location of voltage regulators [5].

Some works about the EDNEP problem have independently addressed feeder
and substation installation [7-13, 17-20], allocation of capacitor banks [5, 21-23],
allocation of voltage regulators [24—26], and joint allocation of capacitor banks and
voltage regulators [27-30]. However, the EDNEP problem should focus not only
on a single technology—or device-based planning. In this context, an integral
EDNEP problem considering a co-optimization of all the above control devices
could foster benefits to the electric distribution network by reducing operation costs
and losses, increasing flexibility and reliability is proposed.
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However, this problem becomes a large-scale mixed-integer non-linear pro-
gramming (MINLP) problem. The EDNEP problem has been solved using different
techniques, such as heuristic and meta-heuristic algorithms and classical opti-
mization techniques [6]. Heuristic algorithms have produced solutions with a rel-
atively low computational effort, like branch-exchange in [7, 8] and the constructive
heuristic algorithm in [9]. Meta-heuristic algorithms have also been used, like
evolutionary algorithms in [10], genetic algorithms in [11] and [12], ant colony
algorithms in [13], simulated annealing algorithms in [14, 15] and particle swarm
algorithm in [16]. Although metaheuristics are flexible and achieve good results,
they also present many problems, such as a high computational demand, the need
for adjusting and fine-tuning the parameters and the definition of a stopping cri-
terion. In addition, they cannot guarantee convergence to a global optimum, or
indicate the quality of the final solution, because they do not provide a distance
indicator to the optimal solution.

2.2 Time Framework

An important aspect to be considered in the optimal EDNEP problem is the
decision-making process in the planning horizon. According to [31], the EDNEP
problem can be divided into two periods: short-term planning (1 up to 4 years) and
long-term planning (5 up to 20 years), leading to two types of EDNEP optimization
models, static and dynamic.

In a static model, EDNEP decisions are only made at the beginning of the
planning horizon, i.e., at a single point in time, where the load demand data con-
sidered remains constant until the end of the planning horizon. This modeling type
is known as a single-stage model as well and considers the whole planning horizon
in a single period, which is the target period. Since the EDNEP in mainly condi-
tioned by the load demand in the electric distribution network, which usually
increases over time, the reference period is usually selected as the last year of the
planning horizon.

In a dynamic model, EDNEP decisions are made at different points in time. This
modeling type is known as multi-period as well and represents the real behavior of
the electric distribution network. In this approach, the planning horizon is divided
into different time periods, each one comprising a specific number of years [32, 33].

The advantage of using a static approach for the EDNEP problem is that the
resulting model is relatively simple. One of the disadvantages is that the EDNEP is
solved for the last year of the planning horizon. Another drawback is that, if the
EDNEP problem is solved for a long-term planning horizon, the load demand in the
electric distribution network will probably be much higher than the load demand in
the short-term. Therefore, the EDNEP will probably result in an oversize of the
installed components and higher investments.
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2.3 AC Power Flow in Electric Distribution Networks

The analysis of an electric distribution network requires the solution of the power
flow problem to calculate the state of the system represented by voltage magnitudes
in nodes, current flows in feeders, energy losses and other variables of interest.
Therefore, power flow models are widely tools used in the steady-state analysis of
the networks. Most ac power flow models in electric distribution networks are
based on power-mismatch and current-mismatch formulations either in polar or
rectangular formats, mainly using Newton-Raphson algorithms [35]. On the other
hand, radial networks are characterized by a high R/X ratio. This renders the load
flow problem ill-conditioned. Previous research indicates that standard load flow
methods fail to converge in ill-conditioned test systems [36, 37].

In this work, the equations that represent the steady-state of radial networks are
obtained from the branch flow model proposed in [38—40] as

Pe=Y_ (Pin+Rinls,) — > Pi VKkEB (2.1)
jeu(k) jea(k)
Q=Y (Qun+Xwlp,) — > OQx VkeB (22)
jea(k) Jjeo(k)
VE — V2 = 2(RunPin + XimQin) — (R, + X2 ) IE,  Vkm € BR (2.3)
Vol =Py, + 04, Vkm€BR (2.4)

where constraints (2.1) and (2.2) are the active and reactive power injections; (2.3)
describes the forward voltage drop in each line and (2.4) defines apparent power
flow injection at the head bus of each line. Equations (2.1)—(2.4) are frequently
used in the power flow sweep method of radial networks and can be used to
formulate the MINLP model for the EDNEP problem.

Without loss generality, the power flow optimization problem can be formulated
using the above steady-state equations of radial networks, including an objective
function that minimizes real power loss [27]. The compact form of the non-linear ac
power flow problem can be expressed as

min Y Rp.l;, Vkm € BR
Jjea(k)
subject to:
constraints (2.1) — (2.4) (2.5)

Pc=P —P? VkmeB
Ox=QF — 0P VkmeB

where the two last equations are the nodal active and reactive power balancing
conditions, respectively.
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The optimization problem (2.5) is a non-linear and non-convex in the ac power
flow for radial networks due to the quadratic terms in their constraints and objective
function. However, the square terms in (2.1)—(2.4) and the objective function in
(2.5) can be dropped using auxiliary variables that represent those square terms,
d, = V,f and [, = Ifm, and (2.4) can be relaxed to a convex constraint by second
order conic programming (SOCP) [41], where it is relaxed to an inequality con-
straint. The relaxed convex ac power flow problem for radial networks can be
expressed as

min kalkm (26)
Jjea(k)
PE— PP =" (Pun+Rinlin) — Y P VKEB (2.7)
Jj€a(k) jea(k)
iE - QkD = Z (ka +kalkm) - Z ij Vk € B (28)
Jjea(k) jea(k)

dk — dm = 2(kaPkm +kaka) - (R%m +X2

km

Vlm  Vkm € BR (2.9)

dulin > Py, +QF,  Vkm € BR (2.10)

2.4 Convex Model for the EDNEP Problem

In this section, an optimization model is presented that includes the minimization of
investment costs by installing new feeders and/or changing existing ones for others
with larger capacities, installing new substations or expanding existing ones and
finally, installing capacitor banks and voltage regulators, as well as the timing to
add new assets or expand existing ones in case of dynamic (multi-stage) planning,
including the operating costs associated with energy loss. Equations related to each
device considered are depicted to capture the physical laws that govern them. Then,
a convex formulation is derived to build a MICQP optimization problem that
benefits from the advances of off-the-shelf MICQP solvers. It is worth to clarify that
Mixed-Integer Conic Quadratic Programming (MICQP) problems are non-convex
because of the integer nature of some decision variables. However, MICQP reso-
lution algorithms iteratively solve optimization problems where integer variables
are fixed. In this case, our problem is convex. Additionally, in this case, MICQP
theory guarantees global solution of the optimization problem. For further details
about Conic Programming theory, interested readers are referred to [42].
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2.4.1 Capacitor Bank Model

In electric distribution networks, there are two types of capacitor banks: (1) Fixed
Capacitor Banks (FCB) and (2) Switched Capacitor Banks (SCB) [43], as shown in
Fig. 2.1. FCBs are capacitor banks composed of units which, after being installed in
the planning stage, are always connected throughout all load levels; whereas, SCBs
are composed of units which, after being installed at the planning stage, can be fully
or partially connected at every load level. According to Fig. 2.1a, expressions
(2.11)—(2.13) model the allocation and operation of FCBs in the networks.

= 0 Vk € FCB (2.11)
0<n <N Vk e FCB (2.12)
n° €7 Vk eFCB (2.13)

Equation (2.11) represents the reactive power produced by the fixed capacitor
banks installed at node k. Constraint (2.12) limits the number of units to be installed
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Fig. 2.1 Capacitor bank schemes: a FCB. b SCB
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in a fixed capacitor bank and (2.13) establishes the integrality condition for the
number of units installed.

To model SCBs (Fig. 2.1b), it is important to take into account the load varia-
tions in a given period of time, therefore, these equations are modeled considering
the time period and can only be included in the dynamic model. Expressions
(2.14)—(2.16) represent the SCBs installation and operation.

q)) = Q*n), Vk€SCB,VieP (2.14)
0<nm, <Ny VkeSCB,VieP (2.15)
m, €L VkeSCB,VreP (2.16)

where (2.14) represents the reactive power produced by the fixed capacitors banks
installed at node k. Constraint (2.15) limits the number of units to be installed in a
fixed capacitor bank and (2.16) establishes the integrality condition for the number
of units installed.

2.4.2 Voltage Regulator Model

To model the voltage regulator, consider an autotransformer with an automatic
changing mechanism of the tap position (number of turns) of the series winding to
maintain a predetermined level of voltage magnitude along an electric distribution
feeder in case of load level variations. Standard voltage regulators contain a
reversing switch that enables a regulating range, which determines the tap step-size
A (+ increases and — decreases the voltage magnitude), taking into account the
reference voltage magnitude and the maximum number of steps, Ns, as shown in
Fig. 2.2, where A and Ns are known parameters, e.g. 0.00625, 32 steps, respec-
tively, a and #p are the tap setting and tap position, respectively, which are con-
sidered variables in the planning and operation of electric distribution networks.

I/_"x a1 V:., ,_,-«-""'.g_ G’_‘m = l E A-‘mrp.\'m 'y ry
o &
o~ = [} "VS_\'.»:
f |/ 0
W, o 2
X m % 1T P = 0, Ay =1 1 ;'\-"S_\.m
3 "\r‘s.\'m
=]
Q 2
o
=]— v v
- A =1 ‘Axm'rpxm - =

Fig. 2.2 Voltage regulator in operation
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Fig. 2.3 Feeder with a voltage regulator model

Consider the voltage regulator located at node m of branch km, where node x is
the non-regulated voltage magnitude node, as shown in Fig. 2.3, where a partial
electric distribution feeder with a voltage regulator is shown. The voltage regulator
in branch km can be divided into branch kx and branch xm, where branch xm only
contains the tap changer and the impedance kx is the same as branch km. With these
considerations, similar to DistFlow [38], the injected active and reactive power
equations of the voltage regulator can be described as

Pe= > (Pon+Runli,) — > Py VkEB (2.17)
j€a(k) jea(k)

Qk = Z (ka +kaI]3m) - Z ij Vk € B (218)
jea(k) jea(k)

Vl? — Vf = 2(kaPkm +kaka) - (R2

km

+X;,)I;, Vkm € VR (2.19)
VIR =P, +0Q;, Vkme VR (2.20)
V2 =a;, V} Vkme VR (2.21)

where constraints (2.17) and (2.18) are the active and reactive power injections;
(2.19) describes the forward voltage drop in each line, (2.20) defines the apparent
power flow injection at the head bus of each line and (2.21) is the voltage mag-
nitude regulated by the voltage regulator. Equations (2.17)—(2.20) can be convex-
ified in a similar form to the ac power flow in Sect. 2.3.

Equation (2.21) can be transformed into several mixed integer linear expres-
sions. In order to do so, the voltage regulator tap-changer is formulated as

n = 1+ Mutpion Vhkm € VR (2.22)

o )
-

Yk VR 2.23
No m € (2.23)
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Ns km Ns, km
< o <

Vkm € VR (2.24)

ten € Z Vkm € VR (2.25)

where (2.22) is the expression that determines the tap setting, (2.23) computes the
tap step-size, (2.24) limits the number of tap positions and states if it is necessary to
install a voltage regulator in the electric distribution network and (2.25) establishes
the integrality condition to the number of tap positions.

Integer variable #p,, can be expressed by the binary expansion scheme [44] as

_ o Nskm
Din =D | (7= 5" )| Vhm € VR (2.26)
n=0
NS
> Oy =1 Vkm € VR (2.27)
n=0

where o, € {0/1}. Replacing (2.26) in (2.22), yields

Nsim
Nsin
Ay = 1+Akmz [(n— ;k

n=0

)ockmn} km € VR (2.28)

Using the auxiliary variable dy = V7 in (2.21), one obtains
dy = a3, d. Vkm € VR (2.29)

Multiplying both sides of (2.28) by d,, results in

Nsgm
Ay = dy+ N [(n N “;k> ockm,,dx] Vkm € VR (2.30)
n=0

Defining auxiliary variables zj,, = aindy and Xgu, = %mndy, One obtains

NSgn

Nsgn

Zn = d+ D Y Kn - sz")ka,,} Vkm € VR (2.31)
n=0

From (2.29), d,, = ajnzim, and replacing (2.31) yields

Nsim

Nsim

dy = Zm + A E [(n - ;k )ockmnzkm] Vkm € VR (2.32)
n=0

Defining the auxiliary variable yu, = timnZim, One obtains
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Nsgan
Nsim
dm = Ztm + Akm § |:(}’l - 2k
n=0

>ykmn:| Vkm € VR (2.33)

Aucxiliary variables X, and yg,, are the products of binary and continuous
variables, which can be reformulated into an exact linear set of constraints using the
big-M method, resulting in

—Motjn < Xpgnn < Mlyy,n  Vkm € VR, Vi = 0,1,2,..., NSim (234)
—M(l — O(kmn) de — Xkmn SM(I — Ofkmn) Vkm € VR, Vn = 07 1,27 .. .,NSkm

(2.35)

—Mnn < Vienn < Mty Ykm € VR,V =0,1,2, ..., Nsgy (2.36)

_M(l - Ockmn) Szkm — Ykmn SM(I - Ockmn) Vkm € VR7vn = Oa 1a2a .. -aNSkm
(2.37)

2.4.3 Static Convex EDNEP Model

As previously explained, the static model considers the whole planning horizon in a
single target period. In addition, the steady state, capacitor banks and voltage
regulators convex formulations previously developed are taken into account. The
static convex EDNEP model can be formulated as

minf =K. > > Cop Ao elin + Ks Y (CEFo" + CFFo)"F)

kmeBR ceC keSE
+Ke > CIPrli+ K Y CfRay, (2.38)
kEFCB kmeVR ’
+8760C1 »_ (P — PP)+8760) " C° [(Pi"f)2 + (QiE)z}
keB keB
PE PP = 3" N (Pinc+Rimclime) — D > Pre VKEB  (2.39)
kmeBR ceC JjkeBR ceC
QiE - QkD + ka = Z Z (kap +ka,clkm,c) - Z Z ij,c Vk € B
kmeBR ceC jkeBR ceC

(2.40)
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dk S M(l - o‘km) + dm - Z |:2 (ka?cpkm,c +ka,chm,c) - ( km,c +X km. c) lkm,c:|

ceC

Vkm € BR
(2.41)

dk > — M(l - O(km) + dm - Z {2 (ka,cpkm,c + ka,chm,c) (R]%m c + Xfm < ) lkm,c:|

ceC
Vkm € BR
(2.42)
dplim > P} +QF Vkm € BR (2.43)
(V)™ <dp < (V)™ Vkm e B (2.44)
0< lime < (Igm ) o, Vkm € BR,Ve € C (2.45)
Bim = ne <1 Vhm € BR (2.46)
ceC

Z Bkm = |B| - |SE0| - Z afE (247)

kmeBR keSE

(PE)? + (05F)” < (S5290)° + [2S§E°SiE + (S5E) ]aiE Vk € SEOUSE  (2.48)

_ N S Nsion Nsion
Sk <> K i )Wmn} < 2k o) Vkm € VR (2.49)

n=0

Constraints (2.11)—(2.13), (2.23), (2.27), (2.31), (2.33), (2.34)—(2.37) (2.50)

e €{0,1} Vkm € BR,Vc € C (2.51)
Ec{0,1} Vkm e SE (2.52)

tm € {0,1}  Vkm € BR (2.53)

«" € {0,1} Vkm € VR (2.54)

where objective function (2.38) represents the annualized investment and operation
costs. The first term represents the costs associated with the new feeders installation
and/or changing existing ones, the second term represents the costs of installing or
expanding substations, the third and fourth terms represent the costs associated with
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installing fixed capacitor banks and voltage regulators, respectively, and the fifth
and sixth terms represent the costs associated with energy losses and substation
operation, respectively.

Equations (2.39) and (2.40) represent the active and reactive power balance
nodal equations. Equations (2.41) and (2.42) describe the forward voltage drops in
each branch while (2.43) defines the apparent power flow injection at the head bus
of each branch. The limits of voltage and current magnitudes are established in
(2.44) and (2.45). Equation (2.46) accounts for the case when a line with a specific
conductor type is already installed, by setting the corresponding binary variable to
1, or the case when a line is already installed but can have its conductor type
changed by replacing the inequality sign in the summation of (2.46) with an
equality. Equation (2.47), together with power balance constraints (2.39) and
(2.40), ensures that the network has a number of trees equal to the number of
existing and installed substations. Equation (2.48) indicates substation installation
(SPE0 = 0 and S{E # 0) and substation expansion (S§£° = 0 and S§f # 0) and
binary variable o{” is related to the substation capacity limit. Equation (2.49) states
whether it is necessary to install a voltage regulator in the electric distribution
network, i.e.o;;’, = 1. Finally, constraints (2.51)—(2.54) represent the binary nature
of the Varlables. The static model in (2.38)—(2.54) is a convex MICQP formulation
for the EDNEP problem that guarantees global optimum solutions.

2.4.4 Dynamic Convex EDNEP Model

As previously explained, in the EDNEP dynamic model, the decisions are made at
different points in time. In order to do so, the proposed static model in (2.38)—(2.54)
can be extended to a dynamic (multi-period) model by adding the period index and
some constraints, as

minf:KLZ Z Z kmcakm,c7;Lkm+KSZZ (CSEock,—i-CSER SER)

teP kmeBR ceC teP keSE
K)o YL G K Y Y GG Kw)_ Y G,
teP kcFCB tcP keFCB teP kmeVR
2
s DY (r )+ S| (rr) + (2]
t€P keB teP keB
(2.55)
Pi? - Pth = Z Z (Pkm,c,t +ka,clkm,c‘t) - Z Zij‘C’t Vk € B7 Vie P
kmeBR ceC jkeBR ceC

(2.56)
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QiEt - Q]L:t + kc,t + qz;b = Z Z (ka,c,t +ka,clkm,c,t) - Z Z ij,c,t
kmeBR ceC JjkeBR ceC
Vk € B,Vt € P
(2.57)

dk,t S M(l - O(km,t) + de - Z |:2 (ka,cpkm,c,t + ka,chm,c,t) - (Rim,c + X/%m,c) lkm,(,ti|

ceC
Vkm € BR,Vt € P
(2.58)

dktt Z - M(l - (ka«,[) +dm,f - Z {2 (ka,cpkm,qt +kaAchm,¢:,[) - (Rlzmc +X]gm.c) lkm,c,I:|

ceC

Vkm € BR,Vt € P

(2.59)
A ilioms > Py, + Qp,  Vhkm € BR, Vi € P (2.60)
(V") <di, < (VP™)® Vkm € BVt € P (2.61)
2
0 < iy < (I9) 5., Vhkm € BR,Ve € C,Vr € P (2.62)
Bimi = D Unes <1 Vkm € BR,Vr € P (2.63)
ceC -

> Bime =Bl —[SEO| = Yo% VieP (2.64)

kmeBR keSE

2 2
(PEE) + () < (S7%0)" + 258055 + (S{)°| 4% Wk € SEOUSE, i € P

(2.65)
di, = 0, Vk € FCB,Vr € P (2.66)
0<nf, <N{* VkeFCB,VteP (2.67)
gy} = Q*ny, Vk € SCB,VieP (2.68)
0<n), <N} Vk€SCB,VtcP (2.69)
A = (e — ') Vkm € VR (2.70)

Ngkm
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Nsy,

m Ns

Ty = Ay + At Z [(n - %) kanﬁl] Vkm € VRVt € P
n=0

NS/<

= N m

s = Zims + Dim Y Kn - Szk ) ykmm,} Vkm € VR, Vi € P
n=0

_fokmn,z Skan,t < Mdkmn,t Vkm € VR, vt € P, Vn = 07 17 2, .. .,Nskm

- M(l - akmn,t) S dx,t — Xkmn,t S M(l - O‘kmn‘t)
Vkm € VR,Vt € P,Vn =0,1,2, ..., Nsip

_Makmn"[ S)’kmn,t S fokm,u Vkm S VR, Vt S P7 V}’l = O, 1, 2, .. .,NSkm

_M(l - O(kmn.l) < Zhmyt — Ykmn,t < M(l - o‘kmn,t)

Vkm € VR,Vt € P,Vn =0,1,2,..., NS
Nsgn

Z Okmn,r = 1 Vkm € VRVt € P

n=0

N Sy Nk Nisi
- 2’” ali;q,t < Z n— Tm Vimng | < Tma}gﬂ,l Vkm € VR,Vt € P
n=0
> o =1 VteP
tcP
doah=1 VieP
teP
>y, =1 VteP
teP

mS, € Z* VkcSCB,VtcP
g, €Z" Yk € FCBYr € P
Ues €{0,1}  Vkm € BRVc € Cvi € P
oy €{0,1} Vkm € SE,Vt € P

Oy € {0,1}  Vkm € BR,Vr € P

(2.71)

(2.72)

(2.73)

(2.74)

(2.75)

(2.76)

(2.77)

(2.78)

(2.79)

(2.80)

(2.81)

(2.82)
(2.83)
(2.84)

(2.85)

(2.86)
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a,ij;w € {0,1} Vkm e VR,Vt€P (2.87)

where (2.55)—(2.87) represent the convex dynamic (multi-period) EDNEP problem,
which was extended from a convex static EDNEP problem to a study for all time
periods. In this problem, constraints (2.79)—(2.81) has added, limiting the pieces of
equipment (feeders, substations and voltage regulators) to be installed in a specific
branch or node along the planning horizon.

2.5 Numerical Results

2.5.1 Data Specifications

Two cases are used for the solution of the EDNEP problem using the 24-node
electric distribution network [45]: (1) a static test case and (2) a dynamic test case.
The system considered has 24 nodes, 4 substations, 20 load demand nodes and 34
branches, operating at 13.8 kV. For the static model, the planning horizon con-
sidered is 20 years in only one stage. For the dynamic model, the planning horizon
considered is 20 years divided into 4 periods of 5 years each. These models have
been solved using the CPLEX optimization solver [46] in AMPL [47], in a Dell PC
server with 256 GB of RAM memory and 2.27 GHz.

The base topology of the 24-node network is shown in Fig. 2.4. Investment
alternatives for substations and conductors, which were adopted from [20], are
shown in Tables 2.1 and 2.2. Load demand data for each period is shown in
Table 2.3. The costs and data related to the capacitor banks and voltage regulators
are adapted from [27]. The location cost of capacitor banks is US$1500, the cost of
each module is equal to US$1000, the capacity of each module is equal to
300 kVar. For other hand, the location cost of voltage regulators is equal to US
$8400 and 32 steps. The interest rate is set at 13%. The price of energy is equal to
$0.25 /kWh, and finally the minimum and maximum voltage magnitude limits are
0.95 and 1.05 pu, respectively.

2.5.2 Static Test Case

This case is solved in 6 min 45 s, the objective function found is US$118,321,152.
The EDNEP problem is solved taking into account the load demand in the last stage
(year 20), but the decisions are made in the first year. The solutions obtained are as
follows: substations 23 and 24 are built, feeders 2-12, 4-9, 10-16 and 7-19 are
built with conductor type 1, feeders 4-15, 15-17, 1-14, 5-24, 7-23, 10-23, 11-23,
17-22, 18 — 24 and 13-20 are built with conductor type 2 and feeders 1-21 and
6-22 are changed with conductor type 1. In addition, FCB with 1800 kVar are
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[ | Existing Substation
O New candidate substation

o Node
—— Existing feeder

———- New candidate feeder

Fig. 2.4 Base topology of the 24-node electric distribution network

Table 2.1 Conductor’s data

C R c(Q/km) Xim.c(Q/km) Clon(8/km)

1 0.3655 0.2520 20 x 10°

2 0.2921 0.2466 30 x 10°

3 0.2359 0.2402 40 x 10°
Table 2.2 Substations data SE SSE (KVA) SSER (KVA) CSE($) CSER (8)

21 10,000 8000 0.00 1 x 10°

22 15,000 12,000 0.00 1 x 10°

23 20,000 0.00 5 x 10° 0.00

24 25,000 0.00 8 x 10° 0.00
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Table 2.3 Load data (kVA)
Bus t=1 t=2 t=3 t=4 Bus t=1 t=2 t=3 t=4
1 4050 4658 5356 6160 13 0 1350 1553 1785
2 780 897 1032 1186 14 0 3280 3772 4338
3 2580 2967 3412 3924 15 0 1460 1679 1931
4 320 368 423 487 16 0 0 1530 1760
5 280 322 370 426 17 0 2330 2680 3081
6 1170 1346 1547 1779 18 0 0 2310 2657
7 4040 4646 5343 6144 19 0 0 1750 2013
8 720 828 952 1095 20 0 0 4020 4623
9 1140 1311 1508 1734 21 0 0 0 0
10 1560 1794 2063 2373 22 0 0 0 0
11 0 2000 2300 2645 23 0 0 0 0
12 0 850 978 1124 24 0 0 0 0
Fig. 2.5 Solution topology 21 5
of thg 24_t-n0de electﬁc . 3
distribution network in static
case
12
6 7 11

5
L
24

located at nodes 1, 3, 7, 9, 13, 14 and one voltage regulator is located in circuit 4—
15 with a tap position of 6. The topology obtained from the optimization process is
shown in Fig. 2.5.

19
9 4 8
15 17
6 22
20 13
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2.5.3 Dynamic Test Case

This case is solved in 18 min 23 s, the objective function found is US$55,654,205.
In period 1, feeders 4-9, 17-22, 4-16 are built with conductor type 1, while feeders
10-16, 4-15 and 17-22 are built with conductor type 2 and feeder 8-22 is changed
with conductor type 1. FCB with 1200 kVar is located at node 1 and FCB with
900 kVar is located at nodes 3, 7, 9 and 5.

In period 2, substation 23 is built and feeders 2—12, 1-14 and 11-23 are built
with conductor type 1, while feeders 6-13 and 7-23 are built with conductor type 2
and feeder 1-21 is changed with conductor type 1. FCB with a capacity of
1200 kVar is installed at node 14. In addition, one voltage regulator is installed in
branch 4-15 with a tap position of 5.

In period 3, feeder 10-23 is built with conductor type 1 and feeders 7-19, 14-18,
and 13-20 are built with conductor type 2. In addition, the voltage regulator
installed in branch 4-15 in period 2 changes the tap position to 2.

In period 4, substation 24 is built and feeders 24—18, 24-5 and 24-20 are built
with conductor type 1 and feeder 1-9 is built with conductor type 2. In addition, the
voltage regulator installed in branch 4-15 in period 2 changes the tap position to 1.
The topologies obtained from the optimization process in each period are shown in
Fig. 2.6.

The results found for the static and dynamic test cases show that the solutions
obtained using the dynamic model have lower costs than those generated using the
static model. This can be explained by the appropriate execution of investments in
the dynamic model. Note that the cost difference between the static and the dynamic
test cases is US$62,666,947.87, which represents a 47.03% reduction in total
investment cost.

Appendix

The notations used throughout this chapter are listed below:

Sets

B Set of nodes.

BR  Set of branches.

C Set of conductor types.
FCB Set of fixed capacitor banks.
P Set of periods.

SEO Set of existing substations.
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Fig. 2.6 Solution topologies of the 24-node electric distribution network in dynamic case: a In
period 1. b In period 2. ¢ In period 3. d In period 4

SE  Set of new installed substations.
SCB Set of switched capacitor banks.
VR  Set of voltage regulators.

Z™*  Set of positive integer numbers.

Parameters

amx gmin - Upper and lower tap settings of voltage regulator in branch km.
Ckcm_ Installation cost of branch km using conductor type ¢ (US$).
C;fE Installation cost of new substation k£ (US$).

CSER Expanding cost of substation k& (USS$).
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FCB
Ck

SCB
Ck

VR
Ckm
C loss

oS
Ck

max
Ikm,c

Ky
Ks
Kc
Kyr
Lkm
M
NP
Nicb
Ns km
P,
o7,
Q/‘c
Qsc
ka,c
SEEO

SE
Sk

J. Lopez et al.

Installation cost of fixed capacitor bank in node k (US$).
Installation cost of switched capacitor bank in node k (USS$).
Installation cost of voltage regulator in branch km (USS$).

Real power loss cost (US$).

Operating cost of substation k& (US$).

Upper current limit from conductor type c in branch km (pu).
Interest rate for branches.

Interest rate for substations.

Interest rate for capacitor banks.

Interest rate for voltage regulators.

Length of branch km (km).

Large positive number.

Maximum number of fixed capacitors in installed bank & (pu).
Maximum number of switched capacitors in installed bank k& (pu).
Total number of steps of voltage regulator in branch km.

Active power demand at node k in period ¢ (pu).

Reactive power demand at node k in period ¢ (pu).

Rating of fixed capacitors (pu).

Rating of switched capacitors (pu).

Resistance per length of conductor type c installed in branch km (pu).
Maximum apparent power capacity of existing substation k (pu).
Maximum apparent power capacity of newly installed substation

k (pu).

ymin ymax - [ower and upper voltage magnitude limits in substation & (pu).

ka,c
Akm

Reactance per length of conductor type c installed in branch km (pu).
Tap step-size of voltage regulator in km.

Decision Variables

dy,

lkm,c,t

oy
Z

SE
Py

Pkm,c,t
SE
k.t

ka,c,t

Auxiliary variable containing V7,.

Auxiliary variable containing Ifm.m.

Integer variable associated with the number of fixed capacitors installed in a
bank in node & in period z.

Integer variable associated with the number of switched capacitors installed
in a bank in node & in period ¢.

Active power from substation & in period ¢ (pu).

Active power flow by branch km conductor type ¢ in period ¢ (pu).
Reactive power from substation & in period 7 (pu).

Reactive power flow by branch km conductor type c in period ¢ (pu).
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/f? Reactive power injection from fixed capacitor bank in node k in period
' t (pu).
gt Reactive power injection from switched capacitor bank in node k in period
t (pu).
«f . Binary variable associated with installing and/or changing of branch km
~ using conductor type ¢ in period z.
ik Binary variable associated with installing of a new substation & in period .

oER Binary variable associated with expansion of substation k in period .

vr
km,t

Binary variable associated with installing of voltage regulator in branch km
in period .

ouny  Variable used in the calculation of the voltage magnitude drop of branch

km in period .

Bim,  Binary variable associated with radiality in branch km in period .
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