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Abstract Electric distribution networks mainly deliver the electric power from the
high-voltage transmission system to the consumers. In these networks, the R/X ratio
is significantly high compared to transmission systems hence power loss is high
(about 10-13% of the generated power). Moreover, poor quality of power including
the voltage profile and voltage stability issues may arise. The inclusion of shunt
capacitors and distributed Flexible ac transmission system (D-FACTS) devices can
significantly enhance the performance of distribution networks by providing the
required reactive power. D-FACTS include different members such as; distributed
static compensator (DSTATCOM), Distribution Static Var Compensator (D-SVC)
and unified power quality conditioner (UPQC). Optimal allocation of these con-
trollers in the distribution networks is an important task for researchers for power
loss minimizing, voltage profile improvement, voltage stability enhancement,
reducing the overall system costs and maximizing the system load ability and
reliability. Several analytical and optimization methods have been presented to find
the optimal siting and sizing of capacitors and shunt compensators in electric
distribution networks. This chapter presents a survey of new optimization tech-
niques which are used to find the optimal sizes and locations of such devices. This
chapter also presents an application of new optimization technique called
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Grasshopper Optimization Algorithm (GOA) to determine the optimal locations and
sizes of capacitor banks and DSTATCOMs. The obtained results are compared with
different algorithms such as; Grey Wolf Optimizer (GWO), Sine Cosine Algorithm
(SCA).

Keywords D-FACTS - UPQC - Capacitor - DSTATCOM - Optimization

12.1 Introduction

Reactive power compensation can be used for enhancing system power quality,
reducing power loss, improving voltage profile, increasing power factor and net-
work capacity and reliability, reducing power flow in feeder lines, and enhancing
the network’s loadability and stability, as well as minimizing energy cost.

The most conventional devices that have been applied for reactive power
compensation are capacitor banks which include the switched and fixed types, in
addition to phase shifters and shunt reactor. D-FACTS devices have been incor-
porated in the distribution network for reactive power compensation. The main
advantages of D-FACTS devices are fast response, fine controllable and continuous
adjustment compared to conventional devices. Several types of D-FACTS devices
have been presented for enhancing the performance of distribution networks such as
DSTATCOM [1], UPQC [2] and Distribution Static Synchronous Series
Compensator (DSSSC) [3].

Optimal allocation of such compensation devices is an important issue to
maximize the benefits of these devices. Several techniques have been presented for
solving the optimal allocation problem of compensation devices in distribution
networks such as analytical techniques, numerical programming techniques,
heuristic techniques and artificial intelligence techniques [4]. The analytical
methods are based on calculus analytical approaches to determine the maximum of
a certain objective function, and the shortage of these methods is the obtained
capacitor sizes aren’t matched with the standard sizes hence the solution is rounded
up to standard capacitor sizes which may lead to overvoltage or less loss saving
[5-7]. The numerical programming techniques are iterative optimization approach
that can be applied to determine the optimal size and locations of compensation
devices [8—11]. It should point out that the obtained results using these methods are
more accurate compared to the analytical methods, but these techniques could be
trapped in local optimal solution. Heuristic techniques are applied for minimizing
the search space of optimization techniques where heuristic techniques are based on
determining the most candidate nodes for reactive power compensation using
sensitivity analysis [12]. Recently, artificial intelligence (Al) techniques are widely
used for solving the allocation problem of compensation devices in distribution
networks. Most of Al techniques are inspired from the natural phenomena behav-
iors. The AI methods can be applied to the nonlinear and complex problems.
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This chapter introduces an application of Grasshopper Optimization Algorithm
(GOA) for solving problem allocation of compensators in distribution network
where GOA is employed to determine the optimal placement of shunt capacitor
banks for minimizing the total cost (energy loss cost along with capacitor cost)
moreover GOA is applied for assigning the optimal location and size of
DSTATCOM for minimizing the total loss, improving the voltage profile and
enhancing the voltage stability simultaneously.

12.2 Operation Principles of Distributed Compensators

The fixed and switched capacitor types are the most common devices that have been
incorporated for reactive power compensation. Different FACTS devices are imple-
mented for changing the parameters of network such as; transmission line impedance,
the bus voltage, the active and reactive power through networks for enhancing the
performance of electric systems [13, 14]. FACTS devices can be classified as:
(a) series members such as Thyristor Controlled Series Capacitor (TCSC) and Static
Synchronous Series Compensator (SSSC) (b) Shunt connected devices include
Static VAR Compensator (SVC), Static Synchronous Compensator (STATCOM) and
(c) Combined shunt-series controllers like Interline Power Flow Controller (IPFC) and
Generalized Unified Power Flow Controller (GUPFC) [15-18].

12.2.1 Shunt Capacitor

The power flow equations of distribution system can be obtained from Fig. 12.1 as

P j0;
Pn+l:Pn_PL7n+l_Rn = 2n (121)
\a
Vo Vo v, Vit
Po*JQn PitiQu R +JX ‘ n+1+JQn+1 ‘
PLontiQuon PrntiQua PranitiQuan PitjQx

Fig. 12.1 Single line diagram of a radial distribution network
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P +j0;
Oni1=0n— 01— Xy <|V—121 (12.2)
Py +jo,
Vi =V, —2(RP, +X,0,) + (R +X7) <ﬁ (12.3)

where

P,,0, Real and reactive power flows into the receiving end of branch n + I
connecting bus n and node n + 1.

R,. X, Resistance and reactance of the line section between buses n and n + 1.

I’A The bus voltage magnitude at bus n

The active and reactive power loss of the nth line between buses n and n + [ are
given as

Py +jOx
Plus.r(n,n+ 1) = Ry, (2 (124)
[Val
P +i0;
le's(n,n +1) = X (V—|2 (125)

The system security level can be realized using the voltage stability index [19] as
VSI(n+ 1) = |V11|4_4(Pn+ 1 X, — Qn+ an)2_4(Pn+ 1X, + Qn+ 1Rn)|vn|2 (126)

where VI, 1 is the voltage stability index at bus n + 1. Enhancing the voltage
profile depends upon minimizing the voltage deviations as

VD = zk: (Vi = Vis)* (12.7)

n=1

where k is a number of buses and V. is the reference voltage that commonly equals
to 1 pu.

The capacitor banks are included in distribution systems for enhancing the
power quality and minimizing the total cost by injecting reactive power into the
systems. Figure 12.2 illustrates a shunt capacitor that is incorporated at bus n + 1
and the reactive power through the transmission line is given as
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Vo1 Vi Vi Vi
; R X, .
P, +jQ, lvv\,_Jer P, Qi
—
Q. T
Pr,tiQun P i1 tiQuat
Fig. 12.2 Radial distribution system with a shunt capacitor
P40
On+1=0n— O+1 — Xy (% +0cn+1 (12.8)
n

12.2.2 Distributed Static Compensator (DSTATCOM)

New members of FACTS controllers have been emerged due to progress of power
electronic devices. DSTATCOM is a developed controller based on voltage source
converter (VSC). DSTATCOM can inject or absorb both active and reactive power
at a point of coupling connection (PCC) by injecting a variable magnitude and
phase angle voltage at PCC. DSTATCOM is incorporated in electric systems for
enhancing the power quality, improving the power factor, balancing the loading,
mitigating the harmonic, reactive power compensation, reducing the power fluc-
tuations of photovoltaic units minimizing the voltage sag, mitigating the flicker in
the electric system and minimizing the power loss [20-23].

DSTATCOM consists of voltage source converter, dc bus capacitor, ripple filter
and coupling transformer as shown in Fig. 12.3. VSC is constructed by using
insulated gate bipolar transistors (IGBT) and MOSFET where the switching of
component is based on pulse-width modulation (PWM) sequences. The coupling
transformer is utilized for matching the inverter voltage with the bus voltage.
The DSTATCOM topologies are categorized based on three-phase three-wire
(3P3 W) and three-phase four-wire (3P4 W) as illustrated in [24].

DSTATCOM has an ability to exchange active and reactive current with the
network. A steady state modeling DSTATCOM has been presented in [25].

Figure 12.4 shows DSTATCOM controller which included in the radial distri-
bution system at bus n + I where DSTATCOM inject or absorb I at this bus. By
applying KVL, the voltage at bus n + I can be obtained as
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Vi1 0,1 = VaZOy = R+ %) (1 20+ IpZ (001 + g)) (12.9)

where

Vu1140,11 Voltage of bus n + I after inclusion DSTATCOM.
Ip The injected current by DSTATCOM.
1, The line current after inclusion of DSTATCOM

Equation (12.9) represents the essential idea for modeling DSTATCOM which
can be solved by separating it to real and imaginary terms as

Vi 1C08(0n 41) = Re(Va Z0,) = Re(lyZ8(Ry + X)) + XalpSin (0,1 + 2

2
- RnIDCOS (9n+ 1+ g)

(12.10)

Vo 1Sin(0p s 1) = Im(Vy 20,) — Im(I,20(Ry +jX,.)) — XnIDCos<0n+ L+ g)

— RupSin (0n+ " g)

(12.11)
Equations (12.10) and (12.11) can be simplified as
aCosx, = k; — byx;Sinxy — byx;Cosx, (12.12)
aSinx, = ky — box;Sinx; + b1x;Cosx; (12.13)
where
ki = Re(V,20,) - Re(L,L3(R, + jX,))

ky = Im(V,,20,) — Im(1,Z5(R, + jX,,))

a="V,
by = —R,
b, = —X,
x1 =1Ip

X2 = 6n+1
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Equations (12.12) and (12.13) can be rewritten as

aCosxy — ky
X1 = -
—b181nx2 — bgCOS)CQ
aSinx2 — k2
X1

~ Zb,Sinx; + b Cosx,
Solving (12.14) and (12.15) yields
(kiby — kab1)Sinxy + (—k1by — kaby)Cosxy +aby; =0
The previous equation can be simplified as
(&2 +d3)x* + (2dyaby )x + (a®b? — d3) =0

where
x = Sin(x,)

dy = (kiby — kyby)
dy = (—kiby — kyby)

Hence, (12.17) can be solved as

L ~BEVB—4AC
2A
where
A= (di+d5)
B = (2d,ab,)
C= (@b}~ )
Hence

0u41 = Sin~!(x)

M. Ebeed et al.

(12.14)

(12.15)

(12.16)

(12.17)

(12.18)

(12.19)

The value of I, can be obtained from (12.14) or (12.15). The voltage at PCC, the
DSTATCOM current and injected reactive power by DSTATCOM can be found as

—
Vas1 = Vay140, 41

(12.20)
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I = IpZ (001 + g) (12.21)

0p = I (V120041 (12 (0041 + g))) (12.22)

12.2.3 Unified Power Quality Conditioner (UPQC)

UPQC is a powerful controller that has applied for enhancing the power quality of
the electric system where it has the ability to minimize the voltage sags, balance the
system, mitigate the existed harmonics and minimizing the power loss, etc.
UPQC consists of two inverters on of these inverters is connected in series with a
certain transmission line while the other converter is connected in shunt to the
common bus. These inverters are combined thought dc linked bus. The inverters are
connected to the network by coupling transformers as shown in as shown in
Fig. 12.5 [26-28]. The main purpose of the series inverter is injecting an ac series
voltage to system to mitigate the supply voltage flickers or imbalance from the load
and forces the shunt branch to absorb harmonics generated by the nonlinear loads.
The shunt converter is employed for delivering the reactive power compensation for
improving the power factor correction in addition the shunt converter is used to
mitigate of current distortions and adjusting the dc bus voltage. In other words, the
series converter regulates the load voltage to be balanced and sinusoidal while the
shunt converter ensures the balancing of system current and become sinusoidal
(harmonic free). Several types of UPQC have produced which can be classified
based on the converter topology or the supply system or UPQC configuration [28].
Figure 12.5 shows the UPQC controller which included in the radial distribution
system where the series controller is included between buses n, n + I while the
shunt converter is connected at bus n + 1. It should highlight that the series injected

Vo Vou A A\ Vi
. R+ X, .
PO X, y - L l P +Quo I
................... se
Lo
Tse Ly
Series Shunt  Lsh
inverter inverter
Pp.HQun _L || ' Pt Quac
Tah

Fig. 12.5 Schematic diagram of UPQC controller
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voltage is kept in quadrature with current flow. In other words, the series and shunt

current are kept in quadrature with the voltage of bus n + 1 [29]. Referring to
Fig. 12.5, the voltage at bus n + 1 can be given as

w+¢@+“=wz@—ag+ﬂ@@¢5+m4@wy+9)+m¢ae

(12.23)
where
Vie The magnitude of the series injected voltage.
Ose The phase angle of the injected voltage.
I, The current flow through the transmission line.
142 (0, 41+ %) The injected current of the shunt converter
The injected current of the series converter can be found as
— —  —
L, =1, + I (12.24)

However, two equations are obtained by separating the real and imaginary part
of (12.23). Three quantities are unknown (Vi, 0, 1 1, Iy;,). For solving this problem,
it is assumed that the reactive shunt power by shunt converter is represented as the
negative reactive load at bus n + I as shown in Fig. 12.6 [28].

Referring to Fig. 12.6, the injected series voltage can be found as

w¢@f:nﬂzmﬂ+z(yﬁ)—w4m (12.25)
where
. bid ,
O =8+5 <0 (12.26)
. i .
Ou=38-5 6>0 (12.27)
Vo Vo Va ) Vel Vi
I P, HQ, RitiXo y Le | Puitiu |
W se >

Series
inverter
PLatiQra I%._\ PrLai HiQuatt -jQun

Series compansator

Fig. 12.6 Representation of UPQC in a distribution system
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By separating the real and imaginary terms of (12.25) as

Vse€0s(bse) = V1 1c08(0, 1 1) + Re (Zn (i,llé)) — Re(V,£6,)

Viesin(Ose) = V4 1sin(0,1 1) +Im(Zn (I,,éé)) —Im(V,/0,)

Equations (12.28) and (12.29) can be simplified as
VseKl = b3COS(6n+1) +b1

VieKo = b35in(0rhL 1) +by

where
x1 = Ve
X3 = 0,41
Ky = cos (0)

K, = sin (0)

by = Re (Zn (1’”45)) — Re(V,20,)

by = Im (Z,, (inzé)) — Im(V,20,)
by = Vn-H
Solving (12.30) and (12.31), the value of V,, can be given as

_ —BEVB2-4AC
- 24

VS‘E

where

:ﬁ+@

A
b3

Kby + Kby
>< e ——

B= 2
b3

_bi+b

C
b3

331

(12.28)

(12.29)

(12.30)

(12.31)

(12.32)
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The value of 6, can be obtained from (12.30) or (12.31) as

Kix, —b
0,41 =cos ! <%) (12.33)
3
Kox; — b
0,41 =sin”! (%) (12.34)
3

The reactive power of series compensator can be found as

Oseries = Im(Vn+ 120,41 (inzé)*) (12.35)

12.3 Optimization Techniques

Recently, the several optimization techniques are widely applied to determine the
optimal sizes and locations of compensation device in distribution networks.
Variety of optimization techniques have been proposed based on nature-swarm
inspired methods, human-inspired methods, physics inspired methods and evolu-
tionary inspired algorithms. In this section, a survey including the previous tech-
niques for solving the allocation problem of compensation devices is presented.
Table 12.1 shows an overview of application the optimization techniques in radial
distribution systems.

12.4 Problem Formulation

12.4.1 Capacitor Allocation Problem Formulation

The objective of optimal capacitor placement problem of the radial distribution
system is minimizing the total cost including the energy loss cost along with
capacitor cost. The objective function can be formulated as

Minimize ~ Cost = KpPioss + Y KeiQe, (12.36)
i=1
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where

Cost The total cost

Pj,ss  The total active power loss (kW)
Q.  The capacitor reactive power (kVar)
K,  The annual cost of energy losses

K.  The cost of capacitor per kVar

12.4.2 DSTATCOM Allocation Problem Formulation

The objective of optimal placement problem of DSTATCOM in the radial distri-
bution system is minimizing the total loss, improving the voltage profile and
enhancing the voltage stability index simultaneously as

! .
> (P IOSS(l))uﬁer DSTATCOM

fi=Z : (12.37)
> iy (P loss(’))hef‘om DSTATCOM
nb .
>ict (’V(l) - Vr"f|)a_ﬁ‘erDSTATCOM
b= : (12.38)
Doict (|V(l) = Vi |)beforeDSTATCOM
1
fim— (12.39)

Zi:l (| VSI(Z) ‘ )afterDSTATCOM

where nl is the number of branches in electric distribution network while znb is the
number of buses in the network.

12.4.3 System Constraints

The required objective functions are subjected to equality and inequality constraints
related to electric distribution network which can be represented as

— Equality constraints

The equality constraints of the system are the active and reactive power flow
constraints which can be obtained as

n nb
Pslack = ZPL(Z) + Zplosx(j) (1240)
i=1 Jj=1



12 Optimal Allocation of Compensators 337

nc

n nb
Qslack + Z Qc(i) = Z QL(i) + Z Qlasx(j) (1241)
i—1 i—1 =1

where Pguer and Qg are active power and reactive powers supplied from the slack
bus, respectively. P, and Q, are the active and reactive load demands respectively.
nb is the number of branches in the network while nc is the number of compen-
sation units.

— Inequality constraints

I. Bus voltage constraints

Vmin S Vz S Vmax (1242)

where V,,;, and V,,,,, are the minimum and the maximum allowable bus voltage
limit.
II. Total reactive power constraint

Practically, the total injected reactive power using compensation devices is equal
to or less than the reactive load demand.

nc

o)< zn:QL(i) (12.43)
i=1 i=1

where Qj is the reactive load at a certain bus and Q. is compensator reactive power.
II. Thermal limit

The current flow through network branches must be within their allowable
limits as

Li<Ipwi i=1,2,3...Nb (12.44)

Nb is the number of branches in the distribution system.

12.5 Overview of Grasshopper Optimization Algorithm
(GOA)

GOA is a new optimization technique that is inspired form the movement and
migration of grasshopper in natural. The adult insects of grasshopper travel together
over long distance which mimics exploration of optimization technique while the
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Fig. 12.7 The life cycle of grasshopper

nymphs have no wings, so it move in small area which mimics the exploitation of
optimization technique [72].

Grasshoppers are harmful insects that can destroy a wide area of the agriculture
and crops where the grasshoppers swarm consist of million members which can
cover a wide area up to 1000 km. The life cycle of Grasshopper consists of three
stages as depicted in Fig. 12.7. The grasshopper can be found in two phases. In the
first phase the individual of grasshoppers avoids interaction together (solitary
phase) while in the other phase (gregarious phase), grasshoppers became sociable
and form a swarm. The swarm became a flying swarm depends upon environmental
consideration such as air temperature, sunshine and wind speed [73].

The swarm of grasshopper moves in rolling motion where groups are formed in
ground firstly by a collection of individuals of insects which move in the ground or
locally and short flight then these groups became coordinated together, and the
insects share a common spatial orientation. The behavior of grasshopper swarm can
be summarized as

(1) The swarm flies with downwind.

(2) The grasshoppers in front of swarm settle on the ground.
(3) The settled insects start eating and resting.

(4) The swarm starts taking of gain to altitude.

The grasshopper swarm navigation behavior aligned the wind is depicted in
Fig. 12.8.
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Fig. 12.8 Motion of grasshopper swarm aligned with wind

The grasshopper swarm behavior depends upon the social interaction between a
grasshopper, the gravity force and the downwind advection. Hence mathematical
behavior can be represented as [74]:

Xi = rlAi+rzB,~—|—r3Ci (1245)
where
X; The position of ith grasshopper
A; The social interaction
B; The gravity force on the ith grasshopper
C; Wind advection

r1,r,r3 Random numbers

A social forced between two grasshoppers is established biologically where the
repulsion forces are existed in order to prevent collisions over a short length scale
and attraction force is existed for aggregation. The social interaction between
grasshoppers can define as

N PRp— .
A=Y s(Disy) (X’Dij’> (12.46)
j =1 2y
i#]

where Dis;; is the distance between i and j grasshoppers that equals to Dis; =
‘xi — Xj| and the s function represents the social forces which can be represented as

Dis;j

s(Disy) = Fe T — " (12.47)

where F is the intensity of attractive force and [ is the attractive length scale. The
swarm motion is directly affected by the gravity force which can be found as
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B = —ge, (12.48)

where g is the gravitational constant and e, the unity vector towards the center of
earth. The wind advection effect on the motion swarm

C; = ue, (12.49)

Substituting the value of A;, B; and C; from (12.46), (12.48) and (12.49) in
(12.45) yields

N
N (XX
X; = Z s(Dis;j) ( Disij]> —geg +ue, (12.50)
j=1
i 7]

The previous equation is modified to be implemented for optimization problems
and for enhancing the capability global searching of the algorithm it can be mod-
ified as

Xr=C EN: ¢ (Yepertm) —LowerGm) (i) (5= | 4 P, (12.51)
i ) | 2 g Dlsl] best .
J =

[ 7]

where Upper(.) and Lower(.) are the upper and lower limits of the control variable,
respectively. P}, . is the best position (the target position). C is an adaptive coef-
ficient that decrease linearly for enhancing the search capability of GOA which can

be represented as

Cmax - Cni
C = Cpa — TTi”’ (12.52)

where Cyay, Cpin are the maximum and the minimum values of C, respectivly. T
and T, are the current iterations and the maximum iteration, respectively.

Step 1: Determine the input data of GOA algorithm including number of the search
agents (N), maximum number of iterations,Cyin, Cyax, F', L and the upper and lower
boundaries of control variables.

Step 2: Initialize the population of GOA algorithm as

P! = Lower(i,m) + rand * (Upper(i,m) — Lower(i, m)) (12.53)
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Step 3: Calculate the fitness functions for each search agent.

Step 4: Determine the best position (target position) in term of the best fitness
function.

Step 5: Update the position of search agent according to (12.51).

Step 6: Check the boundaries of the updated agents and bring the violated variable
to accepted limit.

Step 7: Calculate the fitness function for the updated positions and determine the
target position.

Step 8: Repeat steps form (12.5) to (12.7) until the stopping criterion is achieved
(current iteration equals to maximum iteration).

Step 9: Obtain the optimal solution by capture the target position and the related
fitness function.

12.6 Numerical Examples

In this section the grasshopper optimization technique is employed to determine the
optimal locations and sizes of shunt capacitors and DSTATCOM in the 69-bus
radial distribution network. The line diagram of the network is shown in Fig. 12.9.
The network data are given in [75] which are also tabulated in Table 12.7.
A program code for optimal allocation of compensators is written using MATLAB
2009a and run on a PC with core i5 processor, 2.50 GHz and 4 GB RAM. The
selected parameters of GOA technique are listed in Table 12.2. The parameters
required for implementation of the proposed algorithm are adjusted by 50 times
running of this algorithm. The obtained results using the GOA algorithm are
compared with compared with other well-known optimization algorithms such as;
Grey Wolf Optimizer (GWO) [76], Sine Cosine Algorithm (SCA) [77] and other
meta-heuristics techniques. The studied cases are presented as

020202020
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Fig. 12.9 The line diagram of the 69-bus system
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Table 12.2 The selected parameters of GOA

Parameter Tonax Search agents NO. Cinax Conin F L
Value 100 30 1 0.00001 0.5 1.5

12.6.1 Case 1

The GOA technique is applied for optimal allocation of the capacitor in the 69-bus
network to minimize the total cost as described in (12.36). The sizes of capacitors
are selected to be standard with the available industrial market. The available sizes
and costs of capacitors are listed in Table 12.3. The Total active and reactive load
demands are 3801.89 kW and 2694.1 kVar respectively. The substation voltage is
12.66 kV and the single line diagram. The system power loss without inclusion
compensation devices equal to 225 kW and the total cost for the system without
any capacitor is found to be 37,800.0 $. The optimal size of capacitors, their
locations and the impact of optimal placement and sizing of capacitors on the
energy loss cost, capacitor cost and total cost of the system by 50 run trials are
given in Table 12.4. Moreover, the best, worst and mean obtained results by GOA
also are listed in Table 12.4. The power loss decreased to 145.405 MW with
incorporating capacitor banks optimally using GOA. Moreover, the value of total
cost is enhanced to 24,820.84 $. From Table 12.5 it can also be found that the
objective value found by the GOA technique is better than those obtained by the
CSA [33], DSA [78], TLBO [58], GSA [2], GWO and SCA. This demonstrates that
the GOA successfully achieves better simulation results than other techniques. The
voltage profiles of all system buses are enhanced significantly with incorporating
capacitor banks optimally using GOA as shown in Fig. 12.10. The average com-
putational time taken by the GOA technique and the other techniques are reported
in Table 12.4. It can be obvious that GOA needs less computational time compared
with other reported techniques. The convergence characteristic of the GOA, GWO

Table 12.3 Available capacitor size and related cost ($/kVar)

Size (kVar) 150 300 450 600 750 900 1050 | 1200 |1350
Cost ($/kVar) |0.5 0.35 0.253 |0.22 0.276 [0.183 |0.228 |0.170 |0.207
Size (kVar) 1500 |1650 |1800 |1950 |2100 |[2250 |2400 |2550 |2700
Cost $/kVar 0.201 |0.193 |0.187 |0.211 |0.176 |0.197 |0.170 |0.189 |0.187
Size (kVar) 2850 | 3000 |3150 [3300 |[3450 |[3600 |3750 |3900 |4050
Cost ($/kVar) |0.183 |0.180 |0.195 |0.174 |0.188 |0.170 [0.183 |0.182 |0.179




343

12 Optimal Allocation of Compensators

0£'1C ST've 99°€T VN L8'9€ VN 08'SZ1 (S) owm NgD 93erony
18°0€6'C 18°0€64C 01'8€6'%C VN VN VN VN ($) 1500 [enuUE UBSN
LI°0¥0°ST LT'0¥0°ST 95°€60°ST VN VN VN VN ($) 1500 [enuUE 1SI0A
¥8°028%C €EVLY YT 9C"8¥8 VT L'T96'YT TEE0'ST ¥'880°ST T'Ly1'ST 0008°LE ($) 1500 Tenuue 159g
1'6L6CT L'ST6'TT 9'166'C1 €L€8°TT 8'99L°T1 9TILTI 6'TS9TI - ($) s3utaes JoN
¥8°078'vT €CVL8 VT 9€"8¥8 YT L'T96'%T T'EE0'ST ¥'880°6T I'Ly1°ST 0008°LE ($) 1500 [enuue [0,
66°LTY YT 86'CEP YT 1S°SSH4T TIISYT 8'98G'YT 969'tC 9°6S8YT 0°008°LE ($) 1500 A31oug
68'76€ SE0Py $8'T6€ SISy Yoy ¥'T6€ S'16T - ($) 1809 s1oyoede)
0081 000T 0081 0SET 0591 008T 0ShT - (TeAY) Te10L
(0sD 12 (0S€) L1 (0s1) 9T (0S01) ST (00€) 79 (0S¥) 09
(0sp) 1 (0SP) 6 (0sp) 1 (0sD €1 (0so1) 19 (0sp) S1 (00z1) 79
(00Z1) 19 (0021) 19 (0021) 19 (0s1) 92 (00€) 2T (006) 19 (0S2) 1T —-|  (r/AY) uoneoor tonoede)
SOv° Syl aasd! 69S°SH1 6'Sh1 SEopl Lyl S6°LY1 00°6TC (MY)™q
6L0E6'0 SP1€60 6L0E6°0 61560 12€6°0 81€6°0 0£60 76060 (md)ip
V0D VIS OMD [c] vsD [ss] og1L [8L] vsa [cel vSD|  aseo aseq

sonbruyo9) uonezrundo JuaRPIp Sulsn WAISAS 1sA) SNQ-69 AY) 10J S)NsAI pauteiqO) I dqeL



344 M. Ebeed et al.

and SCA are depicted in Fig. 12.11. From the convergence graph, it may be
observed that the objective value (total cost) converges and smoothly rapidly at the
15th iteration compared to GWO and SCA. This confirms the convergence relia-
bility of the proposed GWO algorithm.

12.6.2 Case2

In this case, GOA technique is employed to determine the optimal locations and
sizes of DSTATCOMs in the 69-bus network for minimizing the total loss,
improving the voltage profile and enhancing the voltage stability index simulta-
neously as described in (12.37), (12.38) and (12.39). Hence, in this case, the
objective function is a multi-objective function which can be formulated as

fi = wifi +wafa +wafs (12.54)

where wi, w2 and w3 are weighting factors. The value of any weighting factor is
selected based on the relative important on its related objective function with others
objective functions. The sum of the absolute values of the weight factors in (12.54)
assigned to all impacts should add up to one as [79]

(Wil 4 wa| + |ws| = 1 (12.55)

In this chapter, w; is set as 0.5 while w, and ws equal 0.25.1t should point out
that the constraint of injected reactive power of DSTATCOM is restricted as [1]

0 < Qsrarcom < 10,000KVAR (12.56)

nc

Z Ostarcom (i) < z”: 0.(i) (12.57)

i=1

In this case, three DSTATCOM devices are included in the 69-bus system. The
optimal locations and sizes of DSTATCOMs that have been determined using
GOA, GWO and SCA, are listed in Table 12.5. It is obvious that the power loss is
reduced to 145.146 and the summation of voltage deviations is also reduced from
1.8374 to 1.3872 p.u with incorporating of the DSTATCOMs optimally using
GOA. Moreover, the voltage stability is also enhanced to 62.7759 p.u with inclu-
sion of DSTATCOMs. From Table 12.6, it is clear that the obtained results by
GOA are better than those obtained by GWO and SCA.
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Table 12.5 Simulation results of the 69-bus system at different loadings

345

Loading Base case GWO SCA GOA
100% Minimum 0.9092 0.93079 0.93145 0.93079
voltage
Total active 225.00 145.569 145.440 145.405
loss kW
Annual cost | 37,800.0 24,848.36 24,874.33 24,820.84
$/year
Location - 61 (1200) 61 (1200) 61 (1200)
and size 12 (450) 9 (450) 12 (450)
26 (150) 17 (350) 21 (150)
75% Minimum 0.93353 0.94874 0.94873 0.94874
voltage
Total active 121.030 79.971 81.383 79.971
loss kW
Annual cost  |20,333.04 13,722.35 13,959.48 13,722.35
$/year
Location - 61 (900) 61 (900) 61 (900)
and size 12 (350) 9 (350) 12 (350)
50% Minimum 0.95668 0.96569 0.96569 0.96569
voltage
Total active 51.606 35.757 35.757 35.757
loss kW
Annual cost | 8669.808 6139.1694 6139.1694 6139.1694
$/year
Location - 61 (600) 61 (600) 61 (600)
and size
Net Fixed 600 at Fixed 600 at Fixed 600 at
injected bus 61 bus 61 bus 61
kVar Switched 600 Switched 600 Switched 600
at bus 61 at bus 61 at bus 61
Switched 450 Switched 450 Switched 450
at bus 12 at bus 9 at bus 12
Switched 350 Switched 350 Switched 350
at bus 26 at bus 17 at bus 21
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Fig. 12.10 Effect of compensation on system voltages for the 69-bus system
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Fig. 12.11 Change of total cost with iterations for the 69-bus using GOA, GWO and SCA
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Table 12.6 Obtained results for optimal allocation of DSTATCOM using different optimization

techniques
Base case GWO SCA GOA
Vinin (P-10) 0.90919 0.93093 0.93132 0.93121
Vinax (P-1) 0.99997 0.9999 0.99998 0.99998
VSLyin(p.ut) 0.6833 0.7511 0.7523 0.7520
VSLyax(p-ut) 0.9999 1.0000 0.9999 0.9999
S vsI 61.2181 62.6904 62.7154 62.7759
Pioss (KW) 225.00 146.453 145.840 145.146
VD(p.u) 1.8374 1.4105 1.4046 1.3872
Optimal locations and size - 61 (1264.5) 12 (548.01) 11 (374.71)
of DSTATCOM (kVar) 17 (346.9973) |61 (1245.6) |61 (1224.21)
36 (687.7078) |49 (562.84) 18 (242.430)
Appendix
See Table 12.7.
Table 12.7 Data of the 69-bus test systems
S. NO. From bus To bus R (Q) X (Q) PL (kW) QL (kVar)
1 1 2 0.0005 0.0012 0 0
2 2 3 0.0005 0.0012 0 0
3 3 4 0.0015 0.0036 0 0
4 4 5 0.0251 0.0294 0 0
5 5 6 0.366 0.1864 2.60 2.20
6 6 7 0.3811 0.1941 40.40 30
7 7 8 0.0922 0.0470 75 54
8 8 9 0.0493 0.0251 30 22
9 9 10 0.819 0.2707 28 19
10 10 11 0.1872 0.0619 145 104
11 11 12 0.7114 0.2350 145 104
12 12 13 1.0300 0.3400 8 5
13 13 14 1.0440 0.3450 8 5.50
14 14 15 1.0580 0.3496 0 0
15 15 16 0.1966 0.0650 45.50 30
16 16 17 0.3744 0.1238 60 35
17 17 18 0.0047 0.0016 60 35
18 18 19 0.3276 0.1083 0 0

(continued)
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Table 12.7 (continued)
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S.NO. |Frombus |[Tobus |R (Q) X (Q) PL (kW) | QL (kVar)
19 19 20 0.2106 | 0.0690 1 0.60
20 20 21 03416 |0.1129 114 81

21 21 22 0.0140 | 0.0046 5 3.50
22 22 23 0.1591 0.0526 0 0

23 23 24 0.3463 | 0.1145 28 20
24 24 25 0.7488 | 0.2475 0 0

25 25 26 03089  [0.1021 14 10

26 26 27 0.1732  |0.0572 14 10
27 27 28 0.0044 | 0.0108 26 18.60
28 28 29 0.0640  [0.15650 |26 18.60
29 29 30 03978  [0.1315 0 0

30 30 31 00702  |0.0232 0 0

31 31 32 03510 | 0.1160 0 0

32 32 33 0.8390  |0.2816 14 10

33 33 34 1.7080 | 0.5646 9.50 14
34 34 35 14740  |0.4873 6 4

35 35 6 0.0044  [0.0108 26 18.55
36 36 37 0.0640 | 0.1565 26 18.55
37 37 38 0.1053  |0.1230 0 0

38 38 39 0.0304 | 0.0355 24 17

39 39 40 0.0018 | 0.0021 24 17
40 40 41 0.7283 | 0.8509 1.20 1

41 41 42 03100  |0.3623 0 0

42 42 43 0.0410  |0.0478 6 430
43 43 44 0.0092 | 0.0116 0 0

44 44 45 0.1089  [0.1373 39.22 26.30
45 45 46 0.0009 |0.0012 39.22 26.30
46 4 47 0.0034 | 0.0084 0 0

47 47 48 0.0851 0.2083 79 56.40
48 48 49 0.2898  |0.7091 384.70 274.50
49 49 50 0.0822  |0.2011 384.70 274.50
50 8 51 0.0928  [0.0473 40.50 28.30
51 51 52 03319  [0.1114 3.60 2.70
52 9 53 0.1740 | 0.0886 4.35 3.50
53 53 54 0.2030 | 0.1034 26.40 19
54 54 55 0.2842  |0.1447 24 17.20
55 55 56 02813  [0.1433 0 0

56 56 57 1.5900 | 0.5337 0 0

57 57 58 0.7837  |0.2630 0 0

58 58 59 03042 | 0.1006 100 72

(continued)
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Table 12.7 (continued)

S. NO. From bus To bus R (Q) X () PL (kW) QL (kVar)
59 59 60 0.3861 0.1172 0 0
60 60 61 0.5075 0.2585 1244 888
61 61 62 0.0974 0.0496 32 23
62 62 63 0.1450 0.0738 0 0
63 63 64 0.7105 0.3619 227 162
64 64 65 1.0410 0.5302 59 42
65 11 66 0.2012 0.0611 18 13
66 66 67 0.0047 0.0014 18 13
67 12 68 0.7394 0.2444 28 20
68 68 69 0.0047 0.0016 28 20
Tie lines
69 11 43 0.5 0.5 6.0 4.30
70 13 21 0.5 0.5 5.00 3.50
71 15 46 1.0 1.0 39.22 26.30
72 50 59 2.0 2.0 100.0 72
73 27 65 1.0 1.0 59.0 42.0
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