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Abstract This chapter investigates implementation of some parking lots for a
plug-in electric vehicle (PEV) aggregator to participate in energy market. Herein,
behaviors of the PEVs’ drivers regarding their cooperation with the aggregator with
respect to the introduced incentive (value of discount on charging fee of PEVs) are
modeled. The considered incentive includes the value of discount on the charging
fee of PEVs’ batteries. In addition, the capability of parking lots for transacting
electrical energy is modeled based on the hourly arrival/departure time of PEVs to/
from the parking lots and the hourly state of charge (SOC) of PEVs’ batteries. Also,
the degradation of PEVs’ batteries is modeled based on the effective ampere-hours
throughput of the PEVs’ batteries due to vehicle-to-grid (V2G). Moreover, the
economic factors such as inflation and interest rates and the technical factors
including the PEVs’ batteries power limit, the depth of discharge (DOD) constraint
of PEVs’ batteries, the yearly maintenance of parking lot, and the yearly replace-
ment rate of the conventional vehicles with the PEVs are taken into consideration in
the problem over the definite planning horizon. Furthermore, due to variability and
uncertainties involved with the energy market prices and the PEVs’ drivers’
behavior, the planning problem is solved stochastically.
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11.1 Introduction

Replacing internal combustion vehicles with plug-in electric vehicles (PEVs) is a
promising strategy to calm the energy security and environmental issues, since
PEVs can be charged by the electricity generated by renewables or clean energy
resources [1]. Nowadays, governments around the world call for the deployment of
PEVs and hybrid PEVs [2–5]. A recent study demonstrates that almost 27% of total
energy consumption and 33% of greenhouse gas emissions in the world are related
to the transportation sector [6]. Based on the studies presented in [7, 8], PEVs
utilization is being increased rapidly in some developed countries due to the
advancement of battery technology. Recently, the role of energy storage has
become more important with development of smart grids [9]. An individual PEV
has a trifle impact on an electric distribution network; however, aggregation of a
large number of PEVs can noticeably affect the network performance [10, 11].
Through effective coordination and communication technologies, the PEVs can be
considered as the mobile energy storage and play an important role in the smart
grids [12]. Nonetheless, replacing conventional vehicles with electric ones may put
the network at risk and bring about new issues such as system overload and spikes
in energy market prices due to uncontrolled charging of the PEVs’ batteries [13,
14]. Herein, a PEV aggregator can play an effective role to calm the above men-
tioned issues, since it can motivate the PEVs’ drivers (by introducing a variety of
incentives to them) to park their vehicles in the specific locations (parking lots) to
manage and coordinate the charging time of the PEVs’ batteries. By implementing
this strategy, the aggregator can take part in different power markets and provide
benefit for itself, for the PEVs’ drivers, and also for the network.

It has been reported that private vehicles are parked at parking lots in idle state
for more than 90% during a day [15]. Therefore, the PEVs as the energy storage
units have a huge potential for doing energy transactions in power market. Since
every individual PEV’s driver is not able to participate in energy market and
compete with other powerful market players, due to a low power capacity, a PEV
aggregator is introduced to aggregate them [16]. A comprehensive literature
overview regarding the economic and technical management of a PEV aggregator
has been given in [17]. In [18], the methods for optimal charging management of
PEVs have been reviewed. Moreover, advantages and disadvantages, and also
economic and technical characteristics of V2G technology have been discussed in
[10, 19–21].

In [22], the feasibility of utilizing Ontario’s grid for charging PEVs has been
analyzed applying a zonal model of Ontario’s transmission network and base-load
generation capacities for the period of 2009–2025. In [23, 24], real-time load
management strategies for coordinating the charging time of PEVs for minimum
energy losses and voltage control have been proposed. In [25], reliability assess-
ment of network considering PEVs fleet has been studied. In [26], feeder recon-
figuration has been used for coordinating V2G of PEVs in a stochastic framework.
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In [27], energy management of one PEV connected to a smart home has been
investigated.

Presence of the PEV aggregator in different power markets has been investigated
in several studies [28–37]. In [28–30], PEVs have been utilized to support smart
grids by offering ancillary service including frequency regulation. In [31, 32],
participation of the PEVs in the spinning reserve market has been studied. In [33],
the PEV charging scheduling by an aggregator in a day-ahead energy market
applying mixed integer linear programming (MILP) has been investigated. In [34],
an optimal bidding strategy of a PEV aggregator participating in day-ahead energy
and regulation markets using stochastic optimization has been presented. The
authors in [35] have presented a method to manage the PEVs charging in real-time
for participation of the PEV aggregators in the energy market. In [36], solar parking
lots have been sized and allocated in an electrical distribution system based on their
optimal power factor applying quantum annealing.

In spite of the numerous studies in the literature about PEVs and their aggre-
gator, the behavior of PEVs’ drivers regarding their cooperation level with the
aggregator with respect to the incentive plans has not been modeled. In this chapter,
in addition to the PEVs’ drivers’ responsiveness level, capability of parking lots for
energy transaction in energy market is modeled. Moreover, model of a battery life
loss presented in [37] is applied for the PEVs’ batteries in the problem simulation.

11.2 Modeling Capability of the Parking Lots for Energy
Transaction

Figure 11.1 illustrates the schematic diagram of a PEV’s battery indicating its
capacity, state of charge (SOC) level, and the defined depth of discharge
(DOD) limit. As can be seen, the value of available grid-to-vehicle (G2V) power
can be determined based on the difference between the PEV’s battery capacity and
its SOC level. Also, the value of available vehicle-to-grid (V2G) power can be
calculated based on the difference between the SOC level of the PEV’s battery and
the given DOD limit for the PEV’s battery. Therefore, in a parking lot, at every

Fig. 11.1 Schematic diagram
of a PEV’s battery indicating
its capacity, SOC level, and
the defined DOD limit
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hour, the total value of available V2G and G2V powers can be computed by
knowing the values of some parameters concerned with the PEVs’ drivers’
behavior. These parameters include the number of PEVs arriving to the parking
lots, the number of PEVs departing from the parking lots, and the SOC level of the
batteries of the PEVs arrived to the parking lots [31]. Figure 11.2 shows the role of
aggregator as an intermediate agent between the energy market and the PEVs
connected to the distribution system through the parking lots. Based on this, the
aggregator can participate in the energy market transactions considering the price
signals and the total available V2G and G2V powers of the parking lots.

The PEVs’ drivers’ behavior and the energy market price are uncertain and they
may have a wide range of variability. Nevertheless, the variability range of every
uncertain parameter can be estimated based on the hourly historical data gathered
by the aggregator. Figure 11.3 shows the upper and lower bands for the possible
value of an uncertain parameter at every hour of the day.

Herein, the data gathered for every uncertain parameter and for every hour of a
day are fitted on a Gaussian distribution function as the most appropriate distri-
bution function, as can be seen in Fig. 11.4 [31]. Then, in order to address the

Fig. 11.2 The aggregator as an intermediate agent between the energy market and the PEVs
connected to the distribution network
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prediction uncertainty, five distinct values are considered for every uncertain
parameter with the probabilities 0.0228, 0.1359, 0.6826, 0.1359, and 0.0228
according to the areas in the related Gaussian distribution function concerned with
the l − 2r, l − r, l, l + r, l + 2r. Figure 11.4 graphically illustrates the above
mentioned approach. After that, in order to investigate the problem stochastically,
15 comprehensive and diverse scenarios are defined for the hourly value of each
uncertain parameter throughout the day, as can be seen in Fig. 11.5. These sce-
narios have been defined arbitrarily; however, it has been tried to design the diverse
and comprehensive scenarios to include the most probable scenarios and eliminate
the similar ones.

Fig. 11.3 The upper and lower bands for the possible value of an uncertain parameter at every
hour of the day

Fig. 11.4 Considering five distinct values for each uncertain parameter at every hour of the day
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11.3 Modeling Cooperation Between PEVs’ Drivers
and Aggregator

In this part, cooperation between PEVs’ drivers (n) and the aggregator with respect
to the value of discount on charging fee (w) is modeled applying linear, power,
logarithmic, and exponential functions. As can be seen in (11.1)–(11.4) in
Table 11.1, these models have been designed for 100% cooperation of the PEVs’
drivers under free charging and no cooperation under zero discount on the charging
fee. The cooperation percentage curves related to the linear model, power model
with exponents 0.1, 0.3, 1.5, and 3, logarithmic model, and exponential model
respect to value of discount on charging fee for the range of (0%, 100%) are
illustrated in Fig. 11.6. As can be seen, the considered models are very compre-
hensive, since they cover all the two dimensional space. Therefore, all the possible
linear and nonlinear behaviors of the PEVs’ drivers are taken into consideration.

Fig. 11.5 The considered scenarios for the values of each uncertain parameter over the day

Table 11.1 Models for cooperation percentage of the PEVs’ drivers with the aggregator as the
function of discount on charging fee

Model Cooperation percentage of PEVs’ drivers (%)

Linear nLin ¼ w (11.1)

Power nPow ¼ 100� w
100

� �n
; n 2 R

(11.2)

Exponential nExp ¼ 100� eM� w
100�1ð Þ; M � 1 (11.3)

Logarithmic nLog ¼ 100� ln w
100 � exp 1ð Þ � 1ð Þþ 1
� �

(11.4)
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11.4 Modeling PEV’s Battery Life Loss Cost Due to V2G

Herein, the value of life loss cost or aging cost of a PEV’s battery is modeled based
on the effective ampere-hours throughput of the PEV’s battery due to the V2G
actions [37], as can be seen in (11.5). In (11.5), Ahb;t is the ampere-hours
throughput of the PEV’s battery due to V2G at hour t, AhTotb is the total cumulative
ampere-hours throughput of the PEV’s battery in its life cycle, PriceBat is the price
of a PEVs’ battery, and k, as the effective weighting factor, is determined using the
model introduced in [37]. As can be seen in Fig. 11.7, in the presented model, the
value of the effective weighting factor has a nonlinear relationship with the SOC
level of the PEV’s battery. For instance, at SOC of 50%, removing 1 A h from the
PEV’s battery is equivalent to removing 1.3 A h from the total cumulative
ampere-hours throughput of the PEV’s battery. However, at SOC of 100%,

Fig. 11.6 Curves of
cooperation percentage of the
PEVs’ drivers with the
aggregator respect to value of
the discount on charging fee
assuming various linear and
nonlinear models

Fig. 11.7 Relationship
between effective weighting
factor and SOC level of a
PEV’s battery [37]
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removing 1 A h results in only about 0.55 A h reduction. This reality indicates that
the PEVs’ batteries should be operated at high SOC levels to optimize their lifetime.

CostLL tð Þ ¼ k� Ahb tð Þ
AhTotb

� PriceBat ð11:5Þ

11.5 Planning Problem Formulation

In this chapter, the PEV aggregator builds and implements some parking lots in a
residential area to participate in the energy market transactions to maximize its
profit over the given planning horizon.

11.5.1 Objective Function

Different terms of the objective function include the income resulted from trans-
actions in energy market, investment cost for structuring and implementing parking
lots and equipping them, yearly maintenance cost of the parking lots, aging cost of
the PEVs’ batteries due to V2G, and cost of considering discount on the charging
fee of the PEVs’ batteries. Herein, some economic factors such as inflation and
interest rates and several technical factors including the PEVs’ batteries’ power
limit, DOD constraint of the PEVs’ batteries, PEVs’ batteries aging due to V2G,
yearly maintenance of the parking lot, and yearly replacement rate of internal
combustion engine based vehicles with electric ones are considered in the problem.
Furthermore, due to variability and uncertainties involved with the energy market
prices and the PEVs’ drivers’ behavior, the planning problem is solved stochasti-
cally considering several comprehensive scenarios for every uncertain parameter.
The uncertain parameters include the energy market price, the number of PEVs
arriving to the parking lot, the number of PEVs departing from the parking lot, and
the SOC level of the PEVs’ batteries arrived to the parking lots. The objective
function of the planning problem is presented in (11.6).

OFpp ¼ Max �CostInvTot � PWV CostM
� �þPWV IncomeT

� �� PWV CostBA
� ��

�PWV CostInc
� ��

ð11:6Þ

The first term of the objective function is related to the total investment cost for
structuring the parking lots and equipping them and the second term of the
objective function is concerned with the present worth value of maintenance cost of
the parking lots over the planning period.
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The third term of the objective function is related to the present worth value of
the aggregator’s income over the planning period because of optimal transactions in
the energy market by doing optimal V2G and G2V actions considering all the
defined scenarios for the uncertain parameters. Equation (11.7) presents the
deterministic value of aggregator’s income per year. As can be seen in Table 11.2,
ua and ub as the binary numbers are used to code the decision of the aggregator for
being in idle state or performing one of the V2G or G2V actions. Equation (11.8)
presents the number of PEVs’ drivers who are willing to cooperate with the
aggregator and connect their PEVs to the parking lots. Herein, NevTot indicates
the total number of PEVs in the area. Also, nModel, as the cooperation percentage of
the PEVs’ drivers with the aggregator respect to value of the discount on charging
fee (w), is determined using Table 11.1 or Fig. 11.6. Equations (11.9) and (11.10)
present the stochastic value of aggregator’s income per year and the present worth
value of aggregator’s income over the planning period, respectively.

IncomeTy ¼
X365
d¼1

X24
t¼1

ua tð Þ

� ub tð Þ�pE tð Þ
XNev
ev¼1

V2Gev;y;d tð Þ� 1�ub tð Þ� ��pE tð Þ
XNev
ev¼1

G2Vev;y;d tð Þ
 !

ð11:7Þ

Nev ¼ NevTot � nModel ð11:8Þ

Stoch IncomeTy
� �

¼
X
i2Sp

X
j2SNarr

X
k2SNdep

X
l2SSOC

IncomeTy
n o

�Prpi �PrNarrj �PrNdepk �PrSOCl

ð11:9Þ

PWV Stoch IncomeTy
� �� �

¼
Xpp
y¼1

Stoch IncomeTy
� �

� 1þ IFR
1þ ITR

� 	y

ð11:10Þ

The forth term of the objective function is related to the present worth value of
aging cost of the PEVs’ batteries over the planning period due to V2G actions
considering all the defined scenarios for the uncertain parameters.
Equations (11.11) and (11.13) give the deterministic value of yearly aging cost of
the PEVs’ batteries, the stochastic value of yearly aging cost of the PEVs’ batteries,

Table 11.2 The binary
variables used to code the
decisions of the aggregator

ua ub Decision

0 0 Idle

1

1 0 G2V

1 V2G
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and the present worth value of aging cost of the PEVs’ batteries over the planning
period, respectively.

CostBAy ¼
X365
d¼1

X24
t¼1

ua tð Þ � ub tð Þ
XNev
ev¼1

CostLLev;y;d tð Þ ð11:11Þ

Stoch CostBAy
� �

¼
X
i2Sp

X
j2SNarr

X
k2SNdep

X
l2SSOC

CostBAy
n o

�Prpi �PrNarrj �PrNdepk �PrSOCl

ð11:12Þ

PWV CostBA
� � ¼Xpp

y¼1

Stoch CostBAy
� �

� 1þ IFR
1þ ITR

� 	y

ð11:13Þ

The fifth term of the objective function is related to the present worth value of
discount on charging fee over the planning period considering all the scenarios
defined for the uncertain parameters. Herein, it is assumed that the cooperative
drivers’ PEVs’ batteries will be charged from the initial SOC level to the full charge
considering discount on the charging fee. Equations (11.14) and (11.16) present the
deterministic value of yearly incentive paid to the drivers, the stochastic value of
yearly incentive paid to the drivers, and the present worth value of incentive paid to
the drivers over the planning period, respectively.

CostIncy ¼
X365
d¼1

X24
t¼1

XNev
ev¼1

1� SOCarr
ev;y;d tð Þ
100

� 	
� Pev � w

100
� pch ð11:14Þ

Stoch CostIncy

� �
¼
X
i2Sp

X
j2SNarr

X
k2SNdep

X
l2SSOC

CostIncy

n o
�Prpi �PrNarrj �PrNdepk �PrSOCl

ð11:15Þ

PWV CostInc
� � ¼Xpp

y¼1

Stoch CostIncy

� �
� 1þ IFR

1þ ITR

� 	y

ð11:16Þ

11.5.2 Constraints

The first constraint of the problem relates to supplying each PEV after daily V2G
and G2V actions. As can be seen in (11.7), the daily energy demand of each PEV
must be supplied considering the daily cumulative values of G2V and V2G done by
the PEV.
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X24
t¼1

ua tð Þ � 1� ub tð Þ� �� G2Vev;y;d tð Þ �
X24
t¼1

ua tð Þ � ub tð Þ � V2Gev;y;d tð Þ

¼
X24
t¼1

1� SOCarr
ev;y;d tð Þ
100

� 	
� Pev ð11:17Þ

8i 2 Sp; 8j 2 SNarr; 8k 2 SNdep; 8l 2 SSOC; 8ev ¼ 1; . . .;Nev; 8y ¼ 1; . . .; pp; 8d
¼ 1; . . .; 365

The second and third constraints concerned with the allowable injectable power
of every PEV’s battery into the grid and the allowable injectable power of the grid
into every PEV’s battery, respectively. These constraints must be regarded at every
hour of the planning period and in every scenario.

V2Gev;y;d tð Þ ¼ Pev ð11:18Þ

G2Vev;y;d tð Þ ¼ Pev ð11:19Þ

8i 2 Sp; 8j 2 SNarr; 8k 2 SNdep; 8l 2 SSOC; 8ev ¼ 1; . . .;Nev; 8y ¼ 1; . . .; pp; 8d
¼ 1; . . .; 365; 8t ¼ 1; . . .; 24

The forth constraint is related to the obligation of the aggregator respect to the
PEVs’ drivers. In order to prolong the lifetime of PEVs’ batteries, at every hour of
the planning period and in every defined scenario, the battery of every PEV must
not be discharged more than the defined DOD limit. In addition, the SOC level
cannot be considered more than 100%.

DODlimit � SOCev;y;d tð Þ� 100 ð11:20Þ

8i 2 Sp; 8j 2 SNarr; 8k 2 SNdep; 8l 2 SSOC; 8ev ¼ 1; . . .;Nev; 8y ¼ 1; . . .; pp; 8d
¼ 1; . . .; 365; 8t ¼ 1; . . .; 24

11.6 Proposed Optimization Technique

In this chapter, the problem is solved by applying genetic algorithm (GA) as the
optimization methodology [38]. Other optimization algorithms could be used in this
problem, however capability of GA for parallel optimization and its competence in
complex and nonlinear environments are the main reasons for utilization of GA in
this problem.

Variables of the optimization problem include ua and ub (the indicator of the
aggregator’s decision regarding being in idle state or performing one of the V2G or
G2V actions) at every hour of a day. Based on this, every chromosome in the
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population is defined as the transaction matrix with 24� 2 as its dimensions.
Figure 11.8 illustrates the structure of the defined chromosome. Herein, the value of
net profit of the aggregator over the planning period is defined as the value of fitness
of the chromosome. Different steps for applying GA in the problem are presented
and described below.

Step 1: Obtaining primary data

Parameters for applying GA: These parameters includes mutation probability of
the genes PMutationð Þ and the size of population Nchð Þ.

Parameters of the problem: The values of all the problem parameters and the
initial data are obtained. Moreover, the value of discount on charging fee and the
cooperation model of the PEVs’ drivers with the aggregator are determined.

Initial population: The chromosomes of the population are initialized with
random binary values.

Step 2: Updating the population

Applying crossover operator: Two crossover points are randomly selected for
every pair chromosomes, and then, crossover operator is applied on every two
chromosomes of the population to reproduce two new chromosomes as the off-
spring, as can be seen in Fig. 11.9.

Applying mutation operator: This operator is applied on every gene of every
chromosome of the population with the definite probability PMutation.

Step 3: Selecting new population

Evaluating fitness of the chromosomes: For every chromosome, the problem is
run and if all the constraints are satisfied, the fitness of chromosome is measured.

Applying selection process: As can be seen in (11.21), new chromosomes are
selected through the probabilistic fitness-based selection process, where the fit-
ter chromosomes are more likely to be chosen. The value of selection probability of
every chromosome is calculated using (11.22) which is proportional to the fitness of
chromosome.

Fig. 11.8 Structure of the
defined chromosome
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ach ¼ 1 PSelection
ch [ rch

0 PSelection
ch \rch



ð11:21Þ

PSelection
ch ¼ fch

Max S fð Þ ; S f ¼ f1; . . .; fch; . . .; fNchf g ð11:22Þ

Step 4: Checking termination criterion

Herein, the convergence status of the optimization procedure is checked. Based
on this, the values of improvements in fitness of the chromosomes of the old and
new populations are measured and if there are no significant improvements (1% of
the fitness of chromosome) in them, the optimization process is finished, otherwise,
the algorithm is continued form Step 2.

Step 5: Introducing the outcomes

The consequences include the best fitted chromosome as the optimal transaction
matrix.

This process is repeated for all possible values of discount on charging fee with a
10% step, and also for every cooperation model of the PEVs’ drivers with the
aggregator. After that, the optimal incentive, the optimal cooperation percentage of
the PEVs’ drivers with the aggregator, and the maximum net profit of the aggre-
gator over the given time horizon are determined.

Fig. 11.9 Applying
crossover operator on two
chromosomes for reproducing
new chromosomes
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11.7 Numerical Studies

11.7.1 Primary Data

The initial data and the value of problem parameters are presented in Table 11.3.
Figures 11.10, 11.11, 11.12 and 11.13 illustrate the variability range of the energy
market price and the uncertain parameters of the PEVs’ drivers’ behavior including
the number of PEVs arriving to the parking lot, the number of PEVs departing from
the parking lot, and the SOC level of the PEVs’ batteries arrived to the parking lots

Table 11.3 The initial data and parameters of the problem

Planning period (y) 20 Total cumulative ampere-hours
throughput of a PEV’s battery
in its life cycle

700,000

Inflation rate (%/y) 10 Power of PEV’s battery (kW)a 10

Interest rate (%/y) 15 Capacity of PEV’s battery (kWh)a 50

Investment cost for a
parking lot ($)

100,000 Charging/discharging voltage
level (volt)a

480

Maintenance cost for a
parking lot ($/y)

1000 DODlimit based on the contract (%) 20

Size of a parking lot 200 Growth rate of PEVs (%/y) 1

Total number of parking lots 10 Charging fee ($/kWh) 0.043

PEVs’ battery price ($) 10,000 Size of population in GA 100

Mutation probability
of genes

0.05

aTESLA, level 3 charging

Fig. 11.10 The hourly upper and lower bands for the possible energy market price
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Fig. 11.11 The hourly upper
and lower bands for the
possible percentage of PEVs
arriving to the parking lots

Fig. 11.12 The hourly upper
and lower bands for the
possible percentage of PEVs
departing from the parking
lots

Fig. 11.13 The hourly upper
and lower bands for the
possible level of SOC of the
PEVs batteries
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at every hour of the day. The average value and the standard deviation of the
Gaussian distribution functions related to the energy market price and the uncertain
parameters of the PEVs’ drivers’ behavior at every hour of the day are presented in
Table 11.4. Also, the scenarios considered in the problem simulation are based on
the details presented in Fig. 11.5.

11.7.2 Results

The curves related to the value of aggregator’s net benefit over the planning period
with respect to the discount value are illustrated in Fig. 11.14 for every cooperation

Table 11.4 The average value and the standard deviation of Gaussian distribution functions
related to the uncertain parameters

Hour Arriving
PEVs (%)

Departing
PEVs (%)

SOC (%) Energy
market price
($/MWh)

l r l r l r l r

1 0 0 0 0 0 0 43 4

2 0 0 0 0 0 0 41 3

3 0 0 0 0 0 0 40 3

4 0 0 0 0 0 0 36 2

5 0 0 0 0 0 0 36 2

6 0 0 5 1 0 0 35 2

7 0 0 55 10 0 0 35 2

8 0 0 40 8 0 0 38 3

9 1 0 0 0 80 20 40 3

10 2 0 0 0 80 20 56 4

11 2 0 0 0 60 10 69 5

12 3 0 0 0 60 10 72 6

13 2 0 0 0 60 10 71 6

14 1 0 0 0 40 5 74 6

15 1 0 0 0 40 5 62 5

16 2 0 0 0 40 5 62 5

17 4 0 0 0 40 5 69 5

18 3 0 0 0 40 5 71 6

19 10 2 0 0 40 5 89 7

20 14 3 0 0 40 5 99 7

21 16 4 0 0 40 5 110 10

22 16 4 0 0 20 0 89 9

23 15 3 0 0 20 0 87 8

24 8 1 0 0 20 0 81 7
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model. As can be seen, by changing the value of discount on the charging fee, the
profit of aggregator over the planning horizon is changed. However, increasing the
value of incentive for raising motivation of the PEVs’ drivers is not always
effective, since the benefit curves do not have pure ascending trend. In other words,
the curves are nonlinear and there is just one optimal value for the incentive in
every model. Moreover, the optimal value of the incentive is different in every
cooperation model. Thus, it can be concluded that assuming an incidental value of
incentive would not lead to the maximum profit of aggregator and even it may
result in detriment for the aggregator in some models.

The detailed results of the problem simulation including optimal value of
incentive, cooperation percentage of the PEVs’ drivers with the aggregator, the
values of income and cost terms of the objective function, and the value of max-
imum benefit of the aggregator over the given horizon for every model are pre-
sented in Table 11.5. As can be seen, the cooperation between the aggregator and
the PEVs’ drivers with power behavioral model (n = 0.1) results in maximum
benefit for the aggregator. In addition, no profit is achieved for the aggregator due
to cooperation of the aggregator with the PEVs’ drivers with exponential behavioral
model. Therefore, this cooperation is not practical and beneficial.

Fig. 11.14 Aggregator’s net
profit curves versus the value
of discount on charging fee
considering a variety of
cooperation models (the
arrows show the peak point of
the curves)
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Appendix

The notation used throughout the chapter is listed below:

Problem parameters and Variables

Ahb :ð Þ Ampere-hours throughput of the PEV’s battery due to V2G
AhTotb Total cumulative ampere-hours throughput of the PEV’s battery in its

life cycle
CostLL :ð Þ Battery life loss cost due to V2G
CostInvTot Total investment cost for structuring the parking lots and equipping

them
CostM Maintenance cost of the parking lots
CostBA Aging cost of the PEVs’ batteries due to V2G
CostInc Cost of considering discount on the PEVs’ batteries charging fee
IncomeT Income resulted from transactions in energy market
G2V :ð Þ Grid-to-vehicle
IFR; ITR Inflation rate and interest rate
OFpp Objective function of the problem over the given planning period
Pev Nominal input or output power of the PEV
PriceBat Price of a PEV’s battery
Prpi Occurrence probability of the ith scenario related to the energy market

price
PrNarrj Occurrence probability of the jth scenario related to number of arriving

PEVs to the parking lot
PrNdepk

Occurrence probability of the kth scenario related to number of
departing PEVs from the parking lot

PrSOCl Occurrence probability of the lth scenario related to SOC level of the
PEVs’ batteries

SOC :ð Þ State of charge of the PEVs’ batteries
SOCarr :ð Þ State of charge of the PEVs’ batteries arrived to the parking lots
DODlimit Depth of discharge limit based on the contract that must be respected

by the aggregator
ua :ð Þ; ub :ð Þ Controlling parameters for indicating decision of the aggregator for

being in idle state or doing one of the V2G and G2V actions
V2G :ð Þ Vehicle-to-grid
w Value of discount on charging fee
n Cooperation percentage of the PEVs’ drivers with the aggregator
pE Energy market price
pch PEV’s battery charging fee
l; r Mean and standard deviation of the uncertain parameter
k Effective weighting factor.
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GA Parameters

PMutation Mutation probability of the genes
Nch Size of the population
ach Binary variable as the indicator for selection of the chromosome for the

new population
rch Random number in the range of 0; 1ð Þ
PSelection
ch Value of selection probability of a chromosome

fch Value of fitness of a chromosome
S f Set of chromosomes’ fitness.
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