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Editorials

Research and development of intelligent welding technology are a vital part of
intelligent manufacturing, and have continuously attracted researchers’ attention
recently. This second issue of the Transactions on Intelligentized Welding
Manufacturing (TIWM) provides a sample on recent developments in methods and
technologies that lead to innovative intelligent welding applications. It includes a
feature article and other 15 papers selected from 2017 International Workshop on
Intelligentized Welding Manufacturing (IWIWM2017) contributing to intelligent
welding manufacturing through understanding, sensing, and control of welding
manufacturing processes.

The featured article in this volume “Intelligent Weld Manufacturing Role of
Computational Welding Engineering” is contributed by S. A. DAVID, Jian CHEN,
Brian T. GIBSON, and Zhili FENG from Oak Ridge National Laboratory, Oak
Ridge, Tennessee, USA. This feature article discusses the progress in process
modeling, microstructure, properties, and process control and automation and the
importance of ICWE. Also, control and automation strategies for friction stir
welding will be discussed.

The first paper of research papers “A Reinforcement Learning Based Approach
for Welding Sequence Optimization” is contributed by a group of researchers from
Mexico. They develop and implement a Q-learning based Reinforcement Learning
(RL) algorithm for Welding Sequence Optimization (WSO) where structural
deformation is used to compute reward function. It is shown that RL-based welding
optimization technique not only allows the reduction of structural deformation up to
66% but also substantially speeds up the computational time over the exhaustive
search.

For the second paper, “Time-Optimal Path Planning for Dual-Welding Robots
Based on Intelligent Optimization Strategy”, the subject of study is path planning
for dual-welding robots. It is contributed by researchers from East China University
of Science and Technology. An intelligent optimization strategy, i.e., GC-PSO
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algorithm is proposed to realize time-optimal path planning for dual-welding
robots. Simulation results show that the intelligent path planning strategy is
effective and can be used for welding robot path optimization.

The third paper “Improving Stability of Welding Model with ME-ELM” is
contributed by a joint research team from Nanchang Institute of Technology,
Jiangxi Aeronautical Institute, and East China Jiaotong University. A new algo-
rithm named ME-ELM is developed and results show that such algorithm works
more effective than BP and other variants of ELM in reducing influence and has the
highest accuracy in predicting the welding shape.

The fourth selected paper “Study on the Cracks of NiTiNb/TC4 Lap Joints
Welded by Micro Laser Welding” is a contribution from a group of researchers
associated with Nanchang Hangkong University, China. In this paper, the
microstructure and crack in the weld are studied by optical microscope (OM) and
scanning electron microscope (SEM). Results show that the cracks are easy to
generate during the laser lap welding of NiTiNb alloy and TC4 alloy due to plenty
of brittle intermetallic compound of Ti2Ni.

The fifth paper is titled “Research on the Ultrasonic Welding of Titanium Alloy
after Embedding Fiber Bragg Grating Sensor”. The authors are from School of
Mechanical & Electrical Engineering, Nanchang University. In this paper, the
electroplated nickel FBG is embedded in a direct or indirect way and welded by
ultrasonic welding to research the rapid prototyping and sensing properties of the
titanium alloy intelligent structural parts. The experiment of embedding electro-
plated nickel FBG into titanium alloy in the direct way shows that titanium alloy is
not suitable for embedding matrix. On the other hand, the experiment of indirect
way shows that the figure of FBG temperature sensitivity is 2.13 times larger than
that of original bare fiber grating, and is 1.11 times larger than that of direct way.

The sixth paper will be “Analysis of Vacuum Chamber Structure based on
Visual Environment”, in which the feasibility of improving the vacuum chamber
structure of vacuum packaging machine is discussed.

The seventh paper, “Single Channel Blind Source Separation based on EEMD
and Its Application on Arc Sound Signal Processing”, is contributed from Xi’an
Jiao Tong University. A single channel blind source separation (BSS) algorithm
based on the ensemble empirical mode decomposition (EEMD) is proposed to
purify and de-noise the arc sound signals. Principal component analysis (PCA) is
used to reduce the multi-dimensional IMFs to low-dimensional IMFs, and inde-
pendent component analysis (ICA) separates the virtual multichannel signals into
target sources. Experiment results indicated that the source signals of arc sound
were effectively separated despite the environmental noise signals.

Wire and arc additive manufacturing (WAAM) has gained popularity in recent
years due to its unique efficiency and cost advantages. The eighth paper,
“Investigation on Surface Quality in a Hybrid Manufacturing System Combining
Wire and Arc Additive Manufacturing and Machining”, is contributed from a group
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of researchers from Beijing University of Technology. In this paper, the depen-
dence of the machined surface quality (characterized by surface roughness) on the
influencing factors mentioned above is investigated based on quadratic general
rotary unitized design (QGRUD). To reduce the number of experiments, a com-
prehensive factor, namely material removal area (MRA), is introduced to charac-
terize the deposition width, deposition height, and surface waviness. The analysis
results show that spindle speed is the most influential factor, followed by MRA and
feed rate. Furthermore, a high spindle speed and a moderate feed rate are preferred,
which contribute to not only improving the surface quality and the efficiency but
also reducing the demand of geometric accuracy for WAAM.

The ninth paper, “Preliminary Research on Intelligent Mobile Tool Cart for
Industrial Manufacturing in a Factory Environment”, is also contributed from
College of Mechanical Engineering and Applied Electronics Technology, Beijing
University of Technology. This paper presents a preliminary research on intelligent
mobile tool cart (IMTC) for working alongside workers in manufacturing process.

The tenth paper is titled “Microstructure and Mechanical Properties of Friction
Stir Weld of Dissimilar Ti6Al4V Titanium Alloy to AA2024 Aluminum Alloy”.
Dissimilar Ti6Al4V titanium alloy and AA2024 aluminum alloy sheets with a
thickness of 3mm are friction stir welded successfully, and the microstructure and
mechanical properties of the butt joints are investigated. The eleventh paper is from
School of Mechanical and Automotive Engineering, South China University of
Technology. In this paper “Control of Current Waveform for Pulsed MIG Welding
of Aluminum Alloy Sheets”, a simplified model of pulsed MIG welding is estab-
lished and simulated using MATLAB.

The first paper of short papers on “Study of Ultrasonic Phased Array in
Underwater Welding” is contributed by a group of researchers and engineers from
Nanchang Institute of Technology and East China Jiaotong University. Interference
principle of acoustic beam is first analyzed, and the relationship of focusing pre-
cision, phased array (PA) shape, and gap distance between adjacent units, sensor
element number as well as time resolution is revealed with simulation.

In recent years, intelligent robotic welding has been an active research area.
Vision sensors have been widely used in robotic welding systems for information
collection and processing. In the second paper, “Type Identification and Feature
Extraction of Weld Joint for Adaptive Robotic Welding”, an algorithm is proposed
to identify joint type and extract relevant feature values by extracting three feature
lines and two key turning points. Three types of weld joints are inspected and the
results indicate that the algorithm is of high efficiency and robustness.

The last (third) paper, “Kinematic Model Analysis of an 8-DOF Photographic
Robot”, develops a kinematic model and verifies it using MATLAB.

Welding is often served as the final assembly of high value-added product in
critical applications. Continued research effort is needed to establish the foundation
for intelligent welding processes and systems to promise better quality and higher
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productivity. To this end, innovative methods are needed to better understand and
more effectively sense and control welding manufacturing processes.

Yukang LIU, Ph.D., TIWM Regional Editor of Americas
Senior Engineer, Control Design Automation, MathWorks Inc.
yukang.liu@mathworks.com

YuMing ZHANG, Ph.D., TIWM Editor-in-Chief
James R. Boyd Professor of Electrical Engineering, University of Kentucky
Fellow, American Welding Society (AWS)
Fellow, American Society of Mechanical Engineers (ASME)
Fellow, Society of Manufacturing Engineers (SME)
yuming.zhang@uky.edu
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Intelligent Weld Manufacturing: Role
of Integrated Computational Welding
Engineering

S. A. David, Jian Chen, Brian T. Gibson and Zhili Feng

Abstract A master welder uses his sensory perceptions to evaluate the process and
connect them with his/her knowledge base to take the necessary corrective mea-
sures with his/her acquired skills to make a good weld. All these actions must take
place in real time. Success depends on intuition and skills, and the procedure is
labor-intensive and frequently unreliable. The solution is intelligent weld manu-
facturing. The ultimate goal of intelligent weld manufacturing would involve
sensing and control of heat source position, weld temperature, weld penetration,
defect formation and ultimately control of microstructure and properties. This
involves a solution to a problem (welding) with many highly coupled and nonlinear
variables. The trend is to use an emerging tool known as intelligent control. This
approach enables the user to choose a desirable end factor such as properties, defect
control, or productivity to derive the selection of process parameters such as cur-
rent, voltage, or speed to provide for appropriate control of the process. Important
elements of intelligent manufacturing are sensing and control theory and design,
process modeling, and artificial intelligence. Significant progress has been made in
all these areas. Integrated computational welding engineering (ICWE) is an
emerging field that will aid in the realization of intelligent weld manufacturing. The
paper will discuss the progress in process modeling, microstructure, properties, and
process control and automation and the importance of ICWE. Also, control and
automation strategies for friction stir welding will be discussed.

Keywords Intelligent � Weld manufacturing � Sensing � Control
Automation � Weld pool � Geometry � Convection � Solidification
Integration � Modeling � Friction stir welding
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1 Introduction

Welding is a multibillion dollar industry used extensively in the construction of
buildings, bridges, aircraft, ships, automobiles, and electronics. In recent years
welding has emerged as a multidisciplinary activity that involves a large number of
variables and that requires knowledge of basic science and engineering. In the last
four decades, significant advances have been made in taking welding from a job
shop technology to a highly automated, computer-oriented technology [1–7]. To
meet the demands of quality and productivity is a continuing challenge. This is
where intelligent weld manufacturing comes into play. Worldwide significant
amount of work is being done in intelligent weld manufacturing [8].

“Intelligent manufacturing is real-time-based optimization through the entire
value chain.” Welding is ideally suited for intelligent manufacturing. It involves
sensing and control of the heat source, position, weld defect formation, and ulti-
mately microstructure and properties. This involves solution to a problem with
many highly coupled and nonlinear variables in welding. The trend is to use
intelligent control. This enables the user to choose a desired end factor such as
penetration and productivity to drive the selection of process parameters such as
current, voltage, and speed to provide for appropriate control of the process. In
other words, intelligent welding aims at controlling for microstructure properties
and performance of the welded parts. Chen has discussed the frame work for the
science and technology for intelligent weld manufacturing [9]. Important elements
of intelligent weld manufacturing are sensing and control design, process modeling,
and artificial intelligence. The ultimate goal of intelligent weld manufacturing is to
produce high-quality welds with increased productivity. To achieve this, it is
necessary to have a thorough knowledge and understanding of four key elements:
(1) process and process modeling, (2) microstructure, (3) properties, and (4) process
control and automation. Mathematical modeling and simulation are integral parts of
these elements. Details about the four elements are found in the published literature
[10, 11]. Figure 1 shows the importance and integration of these elements. A wealth
of information is available about these four elements in the Proceedings of a series
of two International Conferences, namely, Trends in Welding Research and
Mathematical Modeling of Weldability, held in recent years [10, 11]. The pro-
ceedings of these conferences contain a wealth of knowledge and information on
intelligent control and automation. Although significant advances are being made in
all these four areas, to integrate them successfully for a process that is highly
coupled with a large number of variables is a major challenge. An approach to
solving this problem is integrated computational welding engineering (ICWE).
ICWE is an approach to design and produce welds in materials and by methods
linking process models. ICWE is a major part of intelligent weld manufacturing.
Another emerging field is integrated computational materials engineering (ICME).
Both ICWE and ICME are engineering disciplines that speed up process devel-
opment by integrating materials design, fabrication, and performance using com-
putational process.

4 S. A. David et al.



The paper will address the role of ICWE and ICME models in advanced
intelligent weld manufacturing. It will address the progress made in various aspects
of ICWE and ICME, most importantly in welding processes, microstructure and
properties, and process control and automation. Current state-of-the-art of process
modeling, microstructure and properties modeling, integration of various models,
and sensing and control will be discussed. The paper will also address control and
automation strategies for friction stir welding.

2 Process Modeling

In this section, recent advances in processes and process modeling will be
described.

2.1 Weld Pool Dynamics and Geometry

Two of the most important parameters to control in automation are penetration and
weld geometry. During welding, as the heat source interacts with the metal, several
physical processes occur (e.g., melting, evaporation of elements, solution of gases,
solidification, phase transformation residual stresses). It is important to understand

Fig. 1 Integration of process, microstructure, properties and process control and automation [10]

Intelligent Weld Manufacturing: Role of Integrated … 5



the physical processes and their interactions to develop ICWE and intelligent weld
manufacturing. Direct observation of the process is difficult, time consuming, and
expensive because of the complexities, the large number of variables, and the
presence of plasma. A solution is to model and simulate the process using equations
of conservation of mass, momentum, and energy with appropriate boundary
conditions.

Significant advances have been made in calculating the weld pool geometry [12–
27] since the earlier Rosenthal analysis of heat flow in welds [28, 29], which was an
analytical and a conduction model. Weld pool heat flow and fluid flow are rec-
ognized to be critical in the development of the shape and size of the weld pool and
the macrostructure and microstructure of the weld. Current models address coupled
conduction and convection problems to predict weld pool geometry. Of the various
heat transfer models, the ones with convection play a major role in determining
weld pool geometry and penetration. Convection in the weld pool is driven by
surface tension, buoyancy, and electromagnetic forces [15, 17, 18, 30–36]. In
addition, aerodynamic drag force due to plasma stream is also thought to be a factor
[36]. Various forces are shown schematically in Fig. 2 [36]; convection due to
surface tension is the dominant force contributing to fluid flow in the weld pool.
The presence of a significant temperature gradient on the weld pool surface leads to
spatial gradient of surface tension, also known as Marangoni stress, which con-
tributes to convection in the weld pool. Buoyancy effects due to spatial variation of

Fig. 2 Flow filed in the liquid pool induced by the four forces during arc welding (PA, PB and PC
are electromagnetic force induced pressure; qA and qB are buoyancy force; rA and rB are surface
tension) [36]

6 S. A. David et al.



density of the liquid as a function of temperature and composition can provide
convective flow. Electromagnetic forces are due to the divergent path of the current
and the magnetic field that the current generates.

The reason that a shallow or deep penetration weld forms depends on the
temperature coefficient of surface tension (dc/dT). For pure metals and alloys,
dc/dT is negative (Fig. 3). In a stationary arc weld, the highest temperature is in the
middle of the weld pool. Therefore, the hot liquid flows outward, resulting in a
shallow weld pool (Fig. 3). In the presence of surface-active elements such as
phosphorous and sulfur and sometimes oxygen, the dc/dT is positive, resulting in
the flow of the hot liquid inward, driving the hot liquid downward, and resulting in
a deep weld pool. Figure 4 shows flow fields for pure iron resulting in a shallow
weld pool and a deeper penetration with addition of oxygen. Depending on the
interplay between various forms of driving force, the convective flow can be simple
recirculation or a complex pattern with several convective cells (Fig. 4) [28, 36–
38].

In the past three decades, most of the studies have concentrated on convective
heat transfer, in particular, on the effect of spatial variation of surface tension on

Fig. 3 Different convective
flow pattern produced by
different temperature
coefficient of surface tension
[62]

Intelligent Weld Manufacturing: Role of Integrated … 7



weld penetration. For simplicity, most of the earlier models assumed stationary arc
with a rigid weld pool surface. Recently, the models have been refined to incor-
porate realistic welding conditions such as deformable weld pool surface and
moving heat source. In the last two decades, we have seen an enormous growth in
understanding the physical process of welding. This is in part due to the speed and
availability of computers. The introduction of massively parallel computers is
expected to solve complex problems posed by intelligent weld manufacturing.

DebRoy et al. [39] have developed a computerized analysis for predicting heat
transfer, phase changes, and fluid flow. They describe the use of modeling of the
mushy zone using an ethology-porosity technique [39]. Figure 5 shows the com-
puted convective flow of the weld part during arc welding. The color represents the
temperature (in degrees kelvin), and the dotted lines show the liquid flow field. The
two large loops shown near the surface of the pool are from Marangoni flow; the
other loops below are due to electromagnetic effects [40].

The variable penetration during welding of different batches of a commercial
alloy within a prescribed range has received considerable attention. Studies [39]
have shown that knowledge of the interfacial phenomenon is the key for under-
standing and controlling weld penetration [17, 18, 28, 35–40]. Often the penetration

Fig. 4 Velocity and temperature fields for two different cases: a for pure iron and b for
Fe-0.03 wt% oxygen [38]

Fig. 5 Computed flow fields
in a GTA weld pool. The
color represents the
temperature in the weld pool,
and the dotted lines represent
the liquid flow pattern. Two
loops on the surface are from
Marangoni flow (courtesy of
Prof. DebRoy, Penn State
University) (Color figure
online)
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is determined by the concentration of surface-active elements in the alloy [41–43].
This can affect the temperature/coefficient of surface tension and the resulting
direction of fluid flow [34].

Weld penetration is an important consideration for weld automation. It is one of
the parameters that need to be incorporated in the models. Weld penetration has
been determined extensively by the physical feature of the weld pool such as weld
pool oscillation and geometry [44–46].

2.2 Vaporization and Solution of Gas

During welding, the surface temperature of the weld pool is higher than the liquidus
temperature of the alloy. In a high-energy-density process such as laser and electron
beam welding, the temperature would exceed the boiling point of the alloy [47, 48].
Consequently, vaporization of the alloying elements can occur, changing the
composition and hence changing the microstructure and the properties of the weld.
DebRoy et al. have developed a computer model to describe the vaporization of the
elements in a weld [49–51].

During welding, gases such as hydrogen, oxygen, and nitrogen dissolve in the
liquid pool, causing pinholes and porosity. They also react with elements in the
weld pool to form oxide and nitride inclusions [52]. Hydrogen causes hydrogen
embrittlement, and nitrogen increases the yield strength and reduces ductility.
Realistic modeling of hydrogen absorption and diffusion and their effects on
hydrogen embrittlement is a challenge.

2.3 Artificial Neural Network Modeling

Two of the most important weld features in automated welding are weld pool
geometry and penetration. Over the past three decades, several computational
models have been developed for weld pool shape and penetration. The models have
become more complex and sophisticated and require greater computational power.
Although they are excellent tools for understanding the physical processes in
welding, they are not available for the end users. An alternate process is the use of
artificial neural network (ANN) [53]. A publication by Bhadeshia highlights the
application of neural network in materials science [54]. Neural network models can
be sophisticated, but they are limited to the experimental datasets on which they are
based.

ANN has been used to solve problems in many areas of science and technology.
The neural networks are modeled after the learning process in the human brain.
Such models are empirically based and are capable of providing results rapidly. An
example is the prediction of weld pool shape in a hybrid laser/arc process for which
the physics of the process is not well known. Numerical models exist for laser or arc

Intelligent Weld Manufacturing: Role of Integrated … 9



welding processes. Other examples include prediction of the weld joint penetration
based on the shape of the weld pool geometry [55] and real-time control of weld
penetration based on real-time measurement of the weld pool geometry [56]. It is
difficult to accurately model the hybrid process without knowing the physics of the
process [53]. Figure 6 shows neural network architecture for laser/arc hybrid pro-
cess; Fig. 7 shows prediction of an ANN model and the weld metal. The agreement
is excellent. ANN modeling has been used for a wide variety of investigations [54,
57–60]. Sterjovski et al. have used ANNs for modeling the mechanical properties of
steels in various applications [58] and for predicting diffusible hydrogen control and
cracking susceptible in flux-covered arc welds [59]. Vitek et al. [60] have devel-
oped the Oak Ridge Ferrite Number (ORFN), a new model for predicting ferrite
content in stainless steel welds. For the first time, ferrite content is predicted
quantitatively as a function of alloy composition and cooling rate. The model is
based on a neural network analysis of existing data supplemented with newly
generated data.

Fig. 6 Neural network
architecture for predicting
weld pool shape and
penetration [53]

Fig. 7 Comparison of weld
cross section predicted by
neural network model and the
actual weld pool [53]
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3 Microstructure

As a welding heat source interacts with metal, three distinct regions can be iden-
tified, namely, fusion zone (FZ), heat affected zone (HAZ), and the base material
(BM) (Fig. 8). The microstructural characteristics of the three regions control the
properties and performance of the weld. A weldment is often the weakest link in the
structure. During welding, various physical processes such as thermochemical
reactions in the liquid, solidification, and solid-state transformation that occur in the
weld metal control the microstructural development in the weld. Some fundamental
knowledge of the effect of these physical processes on the microstructural devel-
opment in the weld metal already exists. A review by Babu [61] examines various
models for the development of microstructure in weldments. He analyzes the phase
transformation in metals and alloys due to the weld thermal cycle experience during
welding. The first event to occur when the weld pool cools is liquid transforming to
solid and solid subsequently transforming to single-phase or multiple-phase
structures through a solid-state reaction. The same is true of the HAZ except there is
no melting in the HAZ. All these events are analyzed using computational ther-
modynamics (CT) models and computational kinetics (CK) models that relate to
free energy of phases. The stability of the phases depends on the free energy of
phases. Phases with high free energy are unstable; phases with low free energy are
stable. The rate of phase change is related to diffusion and nucleation rate within the
parent phase that leads to the product phase. However, a generalized integrated
model encompassing our current understanding of the evaluation of microstructure
is just emerging. Such models are needed in the design and successful development
of intelligent weld manufacturing.

Most of our knowledge about weld metal solidification is derived from the
extension of the knowledge of freezing of castings and single crystals in lower
thermal gradients and at slower growth rates [62]. However, various physical
processes that occur during the interaction of the heat source with the metal add a

Fig. 8 Schematic illustration
of interaction of heat source
with metal and three regions
of the weldment, namely FZ,
HAZ and BM
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new dimension to our understanding of weld metal solidification. Conventional
theories of solidification over a broad range of conditions can be extended to
understand weld pool solidification. In certain cases, because of rapid cooling rate
effects, it is not unusual to observe nonequilibrium phases. Recent developments in
the application of computational thermodynamics and kinetic models, studies of
single-crystal welds and advanced characterization techniques have enhanced our
understanding of weld pool solidification behavior. Advanced in situ characteri-
zation techniques such as synchrotron and neutron sources have enhanced our
understanding of phase formation and formation of nonequilibrium phases [63, 64].
Other important factors are the dynamics of weld pool development and steady state
geometry. Weld pool shape is important in the development of grain structure and
the dendrite grain selection process [62].

Several fundamental aspects of solidification processes (nucleation, epitaxial
growth, the growth selection process, growth kinetics, and microsegregation) must
be understood to develop a basic model for solidification microstructure. In the FZ,
the liquid metal transforms to solid. The size and shape of the grains, the distri-
bution of inclusions, and the presence of defects such as hot cracks are controlled
by the solidification behavior. Unlike the solidification of ingots and casting,
solidification of a weld occurs without a nucleation barrier. No significant under-
cooling is required for the formation of the solid. Solidification occurs sponta-
neously by epitaxial growth on the partially melted grains.

Solidification microstructures in welds are often difficult to interpret and are
commonly analyzed with the help of classical theories of nucleation and growth
[62]. The development of microstructural features (morphology) of the solid in the
weld is controlled by the shape of the solid/liquid interface and its stability. Stability
of the interface is determined by the constitution and thermal conditions that exist at
the interface. Theories have been developed for interface stability for equilibrium
conditions at the interface for normal solidification or under extreme nonequilib-
rium conditions prevalent during rapid solidification [65, 66]. These theories can be
extended to weld pool solidification. The parameters that determine the solidifi-
cation microstructures in contrast are growth rate (R), thermal gradient (G) and
undercooling (DT). It is well known that temperature gradient and growth rate are
important in the combined form G•R or G/R. Depending on the conditions, growth
of the solid can be planar, cellular, or dendritic. A dendrite isolated from the liquid
is shown in Fig. 9 [67]. Weld metal grain structure is predominantly determined by
the base metal grain structure [68]. Crystallographic effects and welding conditions
have been found to influence this grain structure. Often the grains during the weld
pool solidification tend to grow along a crystallographic direction that is easy
growth direction. For cubic metals the easy growth directions are <100>.
Conditions for growth are optimal when one of the easy growth directions coincides
with the heat flow direction. Therefore, during welding among the randomly ori-
ented grains in the polycrystalline base metal, those that are favorably oriented will
continue to grow. Unfortunately for the unfavorably oriented grains, the growth will
terminate, thus leading to a grain growth selection process. This grain anisotropy
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was clearly demonstrated by the work of Rappaz and David using a Fe-Ni-Cr
single-crystal weld [69].

Another significant aspect of weld pool solidification is solute redistribution.
During welding, the extensive solute redistribution that occurs in the weld pool results
in segregation that can adversely affect weldability, microstructure, and properties.
Only recently some attention is being given to this important aspect of weld pool
solidification [70–73]. A great deal of work needs to be done in this area. Availability
of software packages to calculate multicomponent phase diagrams will make it easier
to determine models for solute redistribution in multicomponent alloys.

In most of the cases, both the weld metal and the HAZ go through a solid-state
transformation. The transformation and the resulting microstructures control the
properties. Hence modeling of solid-state transformations in the weld is important
to developing an integrated model [61]. In addition to phase transformation in the
weldment, an integrated model should address grain growth, precipitations,
coarsening, and solute redistribution. The transformations can be grouped in four
classes: (1) phase changes involving diffusional processes, (2) solid-state processes
involving grain growth, (3) phase changes involving displacement transformation,
and (4) phase changes such as spinodal decompositions. The driving force for grain
growth and coarsening relates to minimization of interfacial energy. Analytical
models and Monte-Carlo simulations are routinely carried out to analyze these
phenomena [62, 72, 73].

In most of the alloy systems, the development of microstructure depends on a
series of events. In the case of low-alloy steels, the sequences of events that occur
are shown in Fig. 10 [74]. The model for microstructure development in low-alloy
steel has a number of sub-models recorded on the sequences of events that the weld
metal goes through. In low-alloy steel welds the properties of steel are improved by
maximizing acicular ferrite phase constituent in the microstructure. Although

Fig. 9 Scanning electron
micrograph showing the
features of dendrite structure
that develops in a
nickel-based superalloy [67]
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acicular ferrite forms from austenite, the feasibility of acicular ferrite formation
depends on the presence of inclusions and austenite grain size. The microstructure
evolution is controlled by the sequential formation of various phases as shown in
Fig. 10.

4 Sensors, Intelligent Control, and Automation

Intelligent control and automation are critical elements of ICWE and intelligent weld
manufacturing. As welding technology matures, there will be a steady decrease in
manual welding. For increased accuracy and productivity, future welding operations
will require welding systems with effective adaptive control [75]. Adaptive weld
control is a closed loop approach that relies on measurements of relevant physical
characteristics of the weld pool as the feedback and feedback control algorithms that
decide how to respond to the feedback. Chen has discussed the framework for
research and technology for intelligent weld manufacturing [76, 77]. This includes
computer vision systems for visual feedback sensing, and control, neural network
modeling of the process dynamics, and fuzzy logic and neurons self-leaving learning
for control algorithms of arc welding. The machinery, controls, and materials needed

Fig. 10 The sequential
formation of various phase
changes that occur during
cooling of the low-alloy steel
weldment [74]
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for ICWE are becoming more sophisticated, and the industry to produce them is
growing. The needed sensors, controls, and control software, robots, and automatic
machines are constantly being invented and integrated.

Zhang [78] has provided a comprehensive analysis on why a welding process
should be monitored and how they can be effectively monitored for control. In his
analysis, welding process is treated as a system, argued as a complex system,
analyzed for its uncertainty and the necessity for monitoring and control, and is
artificially decomposed for effective monitoring for control.

Naidu et al. [79] have conducted a survey of automatic control strategies for gas
metal arc welding (GMAW) process. His results provide the status of feedback
control techniques as applied to the GMAW process. Naidu’s report describes the
current state of sensing and control techniques involved such as classical control,
neutral network, fuzzy logic control, adaptive control, and expert systems.

One of the critical elements of adaptive control is sensors. The function of the
sensors is to provide information to the control system to face the necessary
changes to the process to produce parts with highest integrity or at least meeting the
specification despite variations in manufacturing conditions. Significant advances
are being made in the development of sensors [44, 45, 80–86]. The sensors that are
available currently are optical, arc, infrared, acoustic, and ultrasonic. For example,
novel optical sensors have been used for observing welding operations and pro-
cesses. Some have the resolution to view the weld puddle and to clearly see the
solidification substructure (dendrites) formed on the pool surface [84].

For weld penetration, den Ouden [44] was able to correlate the weld pool
oscillation frequency to the weld penetration, and Zhang [45] was able to correlate
the weld pool geometry to the weld penetration. Zhang and his group have
developed a real-time sensing and control device to predict weld penetration based
on weld pool surface reflectivity [85]. In that system, the intensity of the weld pool
surface reflectivity increases as the weld penetration increases. That correlation has
been used to control the quality of the weld.

Seam tracking is a critical element in adaptive welding. Dilthey [84] developed a
“through the arc” sensing device for seam tracking. Cook et al. [86] developed a
seam-tracking control system based on fuzzy logic that tracks seams during pulsed
GMAW. To produce welds with good quality and specified geometry, it is nec-
essary to control the positioning of the welding torch. The method of using the arc
itself as a sensor to sense and control the process is called “through the arc”
tracking. Dilthey designed and implemented a fuzzy logic through-the-arc control
system. The system provides an excellent real-time feedback control system for
welding machine R&D.

Lv et al. [87] have developed a real-time arc length control and weld pool
surface height prediction method by acoustic sensing and segmented self-adaptive
proportional–integral–derivative (PID) controller during pulsed gas tungsten arc
welding (GTAW). The experimental validation has demonstrated the feasibility of
weld process control through the acoustic signals from the welding arc.

Recent developments using infrared sensing have demonstrated its potential for
seam tracking [88]. Although these types of sensors are critical for ultimate process
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control, significant emphasis should be placed on sensors for microstructure and
properties [89]. The ultimate goal of the adaptive control is to regulate the process
to make welds with desired quality, performance, and productivity. The current
trend is to use an emerging tool known as “intelligent control.” This will enable one
to choose a desirable end factor such as property, defect control, or productivity
instead of process parameters such as current, voltage, or speed to provide for
appropriate control of the process.

Another intelligent welding approach is automated pass planning. Welders often
take a fairly long time when they use multipass welding to weld large joints. With
appropriate automated pass planning, the sequence and number of passes can be
optimized, and a welding robot can complete the welding process in a much shorter
time [90].

Significant advances are being made to produce parts intelligently through the
development of sensors and feedback control systems. Neural networks are being
applied for seam tracking. Cook et al. have developed neural network fuzzy logic
control system [75].

Tight coupling of the welding variables imposes limitations on the extent of
control that can be exercised. Cook et al. [86] discuss decoupling of welding
variables for improved automatic control. The process considered includes GTAW,
and GMAW. From the point of view of control, the process or the process variant
that gives the most decoupling of the control parameters is desired because it would
make it easier for control system design and would increase the range of control
over the variable parameters.

Sadek and Drews [91] have investigated intelligent systems for welding process
automation. They evaluated the idea and the implementation of two distinct mul-
tiserver systems for automated manufacturing based on a parallel computing
architecture. They have shown that multiserver systems with distributed architec-
tures offer considerable advantages over standard bus-based systems.

5 Friction Stir Welding

The four key elements to intelligent weld manufacturing that enable the production
of high-quality welds with increased productivity, which again are process and
process modeling, microstructure, properties, and process control and automation,
are not unique to arc welding. Other forms of welding, including welding that
occurs in the solid-state, are guided by these principles as well. One form of
solid-state welding, Friction Stir Welding (FSW), in particular, has garnered
attention from researchers in recent years as a highly dynamic, thermomechanical
process with a rich potential for research endeavors into process modeling, control,
and intelligent welding. FSW is relatively a new welding process developed by
Wayne Thomas at The Welding Institute (TWI), Cambridge, UK [92, 93]. It is a
solid-state process and involves plunging and rotating a tool at the joint to be made
between two plates and traversing along the joint line. Heat generated due to
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friction and plastic deformation softens the workpiece, and flow of the metal brings
about a metallurgical bond. A schematic of the process is shown in Fig. 11. It has
great potential for applications in automotive, aerospace, transportation, and energy
industries. While the fundamental underlying theories and methods for modeling of
the weld process, conducting process development, and performing analysis of
weld properties and microstructure are perhaps not significantly different, specific
techniques are tailored to meet the unique details, conditions, and constraints of the
FSW process. With respect to process modeling, researchers have approached FSW
from both analytical and numerical modeling perspectives. DebRoy and his group
[94–97] have carried out extensive modeling and simulation studies of FSW pro-
cesses related to 3D heat and material flow, torque and power, tool durability, and
dissimilar materials joining. Nunes developed a widely utilized analytical model
[98].

5.1 Control and Automation of FSW

In order to achieve high-quality FSW, a well-understood framework for control and
automation is imperative, and the variables to control and automate the process are
different from that of commercial fusion welding processes. Cook [99, 100] and
Smith [101, 102] were among the first to document the challenges and opportunities
associated with robotic FSW. One of the most important relationships to control is
relative tool-workpiece positioning, i.e. the tool plunge depth. This relationship can

Fig. 11 Schematic of friction stir welding process showing the interaction of the tool with the
material (courtesy of TWI)
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impact weld penetration, defect formation, tool wear, heat generation, and resulting
weld properties. Position control alone can be inadequate due to inconsistent
workpiece dimensions, thermal expansion, robot deflection due to high process
forces, or the welding of complex geometries. For these reasons, force or torque
control in FSW has become important for researchers and manufacturers, with
Longhurst et al. [103–107] contributing significantly in this area, along with many
others [108–110]. Force sensing is thus an important capability as well, with
sensing typically accomplished via load cell [111–114], but Smith et al. [115]
demonstrated that axial force can also be sensed via measurement of robot motor
currents and use of the Jacobian [116] relationship.

5.2 Advanced Sensing and Intelligent FSW

Given the success of ‘through-the-arc’ sensing techniques, ‘through-the-tool’
sensing has been explored in FSW as a means of similarly improving process
characteristics. Smith et al. [117] and De Backer et al. [118] documented problems
in robotic FSW, such as planned-path deviations caused by high forces. While,
Soron et al. [119] and Fleming et al. [120] showed that it is possible to compensate
for deviations based on force sensing (and the use of vision systems is an option too
[118, 121]), novel ‘through-the-tool’ joint tracking capabilities have been suc-
cessfully demonstrated [122–124]. Intelligent FSW describes the correlation of
process output data to welding outcomes to augment the knowledge of researchers
and to improve process efficiency. Boldsaikhan et al. have been significant con-
tributors in this area, with a focus on defect detection and with the use of artificial
neural networks [125–128]. Both Fleming et al. [129] and Gibson et al. [130] used
dimensional reduction techniques to classify weld quality, and defect formation
caused by tool wear has been detected as well [131]. Additional efforts in intelligent
FSW by Bhowmick [132], Jene et al. [133], Britos et al. [134–136], and Burford
et al. [137] have included successful attempts to map process input parameters to
welding outcomes and to correlate force signatures with weld features.

6 Integration of Weld Models

To develop an intelligent weld manufacturing, all the four principal elements
defined by various sub-models must be integrated. Integration of all the four
principal elements mentioned early with sub-models is a very challenging and a
monumental task. This can be achieved but it would be costly and time consuming.
Such integration is essential to the development of intelligent weld manufacturing.
Microstructural evolution in low-alloy steel welds is described as an example.
Evolution of microstructures in a low-alloy weld is not defined by a single event. It
occurs over a range of temperatures. First, as the liquid metal cools, the oxygen in
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the liquid steel reacts with the deoxidizing element in the liquid to form an oxide
inclusion that acts as a nucleating agent for solid d-ferrite. This occurs over a range
of temperatures. Figure 9 shows schematic of continuous cooling transformation
showing the development of weld metal microstructure in low-alloy steels. Upon
cooling, d-ferrite forms and with further cooling the d-ferrite transforms to austenite
and austenite transforms to c-ferrite with different morphologies [84]. These
changes occur sequentially. Physical processes that occur at elevated temperatures,
such as plasma–liquid metal interaction, also affect the ultimate microstructure
obtained. Vaporization and dissolution of gases change the composition of the
liquid. This change in composition that occurs at elevated temperatures affects the
microstructural evolution at lower temperatures. Therefore, an integrated model is
necessary to predict the evolution of microstructure in the low-alloy steel welds.

Integrated process models (thermal models) and microstructure models were
developed in the nineties [89, 91, 138, 139]. However, integration of the integrated
process models with the microstructure models has been achieved only recently [39,
89]. The ability to predict microstructural evolution in weld metal is critical to the
development of intelligent manufacturing. Using a CT and CK framework, Babu
[61] describes the phase stability and rates of change during phase transformation
during a weld thermal cycle. The work carried out at universities, national labo-
ratories, and industrial research organizations in the United States, Europe, and Asia
laid the foundation for developing an integrated thermomechanical and
microstructure models. These developments were summarized by Kirkaldy [138] in
a block diagram (Fig. 12). First the thermal model simulates three-dimensional
(3D) temperature distribution as a function of process parameters and time [61].
The materials model uses thermal cycle data to predict the microstructure evolution
and its effect on transient mechanical properties. The transient change in thermal
and mechanical properties is fed into a finite-element structural model to predict
plastic stress distribution. That information is used for prediction of final properties,
residual stress, and distortion.

Pavlyk et al. [140] modeled the coupling of simulated weld-solidification
microstructure with a macroscopic fluid flow model. Several microstructural sim-
ulation techniques have been developed. Pavlyk et al. used a coupled CA-FDM
technique to simulate weld dendrite structure. They determined solidification
conditions during weld pool solidification. As in the case of accurate physical
models, calculations are carried out at microstructural spatial resolution.

DebRoy et al. [39] carried out weld microstructure calculations from the fun-
damentals of transport phenomena in the arc welding of low-alloy steel welds.
A 3D transient heat and fluid flow model was used to calculate the cooling rates in a
manual GTA weld of different compositions of low-alloy steel welds. The weld
metal composition was used to calculate the time temperature and transformation
(TTT) diagram. These TTT diagrams were converted to continuous cooling
transformation (CCT) diagrams. Cooling rates were coupled to TTT diagram to
obtain CCT diagrams, using which the various microstructural constituents were
determined.
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Feng et al. [141, 142] developed modeling approach based on ICWE to predict
the mechanical behavior of resistance spot welds. They devised an incrementally
coupled electric-thermal-mechanical-metallurgical model to predict weld
microstructure and properties as a function of steel chemistry and welding condi-
tions. The resulting microstructure and property distribution in a spot weld is then
used in a damage-mechanics-based structural model to predict the strength and
failure of resistance spot welds of advanced high-strength steels for automotive
applications. With such an ICWE-based model, it is possible to realistically sim-
ulate the effects of welding conditions and steel chemistry on the highly hetero-
geneous microstructure distribution (Fig. 13) as well as the deformation, strength,
and failure of the weld as function of microstructure and property distributions
(Fig. 14).

Fig. 12 Block diagram describing integrated weld modeling methodology by Kirkaldy [138]
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Fig. 13 Prediction of weld nugget formation, grain growth, microstructural constituents and
resulting microhardness distribution of a DQSK steel during resistance spot welding [142]

Fig. 14 Predicted failure mode changes of resistance spot weld of a boron steel [142]
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The ICWE modeling approach taken by Feng et al. is also applicable to arc
welding processes and friction stir welding of steels and aluminum alloys [143,
144]. In the case of a multipass X65 pipeline steel, the coarse grain HAZ exhibited
elevated hardness due to formation of different microstructure constituents in
solid-state phase transformation as a result of grain growth in the coarse grain heat
affected zone (CGHAZ) (Fig. 15). The effect of multiple welding thermal cycles on
the microstructure is also faithfully simulated. Such a model has been used to
optimize the welding process conditions and weld filler metal chemistry to tailor the
weld microstructure and weld residual stress in high-strength steel to eliminate
hydrogen-induced cracking, improve weld fatigue life, and minimize weld distor-
tions [145].

Feng et al. [144] demonstrated that the ICWE model is capable of predicting the
effect of welding process conditions on the microstructure, strength, and defor-
mation and failure of friction stir welded Al6061 alloys. The effect of welding speed
on the temperature, microstructure, strength, and residual stress can be predicted
with high fidelity (Fig. 16). Such a model has been used to guide the welding
process development to improve the properties of friction stir welds.

Doyle and Conrady describe a program for the design, construction, and
demonstration of a prototype programmable automated welding system [146]. The
program, known as the programmable automated welding system (PAWS), was
sponsored by the US Naval Surface Warfare Center. Doyle and Conrady developed
a system with control capabilities to accept, arbitrate, and reach its inputs from
multiple sensors.

Fig. 15 Prediction of microstructure constituents and resulting microhardness distribution in a
X65 pipeline steel [143]
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7 Conclusion

Intelligent weld manufacturing involves sensing and control of the heat source,
position, weld defect formation, and ultimately microstructure and properties. The
ultimate goal of intelligent weld manufacturing is to produce high-quality welds with
increased productivity. Computational modeling and simulation are key parts of
intelligent weld manufacturing. Computational modeling of weld manufacturing
involves solution to a problem with many highly coupled and nonlinear variables. It
requires a multidisciplinary ICWE modeling approach to cover and connect four
major elements—processes, control and automation,microstructure, and properties—
for intelligent weld manufacturing.

Intelligent weld manufacturing is at a crossroads. We are at a point in the
research at which major breakthroughs are possible to enable us to attain the
ultimate goal of intelligent weld manufacturing. Yet significant challenges remain.
In ICWE, it is now possible to perform a detailed simulation with sufficient fidelity
to achieve design and manufacturing optimization of structural welding of vehicles
or welding of nuclear reactor components. However, this type of weld simulation is

Fig. 16 Integrated multiphysics simulations provide realistic predictions of performance and
failure of Al 6061 friction stir welds [144]
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very time consuming with today’s computers. It often takes weeks or months to
perform such a detailed simulation. Research and development to utilize
high-performance computing systems would be a potential direction to drastically
reduce the computational time (by 103 or more) for intelligent weld manufacturing.
Artificial intelligence and deep machine learning would be another potential solu-
tion to integrate ICWE into intelligent weld manufacturing.
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A Reinforcement Learning Based
Approach for Welding Sequence
Optimization

Jesus Romero-Hdz, Baidya Saha, Gengis Toledo-Ramirez
and Ismael Lopez-Juarez

Abstract We develop and implement a Q-learning based Reinforcement Learning
(RL) algorithm for Welding Sequence Optimization (WSO) where structural defor-
mation is used to compute reward function. We utilize a thermomechanical Finite
Element Analysis (FEA) method to predict deformation. We run welding simulation
experiment using well-known Simufact® software on a typical widely used mounting
bracket which contains eight welding beads. RL based welding optimization tech-
nique allows the reduction of structural deformation up to *66%. RL based approach
substantially speeds up the computational time over exhaustive search.

Keywords Reinforcement learning (RL) � Welding sequence optimization
Structural deformation � Finite element analysis (FEA) � Simufact software

1 Introduction

Welding is the most common fabrication process typically used for joining metals
[1]. It is widely used in various industries such as automotive, shipbuilding,
aerospace, construction, gas and oil trucking, nuclear, pressure vessels, and heavy
and earth-moving equipment [2, 3]. Structural deformation of welded structures is a
natural outcome of internal stresses produced while welding due to intrinsic
nonuniform heating and cooling of the joint. Nevertheless, welding deformation
plays a negative role in the process having high impacts in several ways, such as
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constraints in the design phase, reworks, quality cost, and overall capital expen-
diture. Selection of welding sequence could substantially reduce structural defor-
mation. The common industrial practice is to select a sequence by experience using
a simplified design of experiments which does not guarantee an optimal sequence
[4]. Welding deformation can be numerically computed through Finite Element
Analysis (FEA) using thermomechanical models. FEA can provide reasonable
solutions for various welding conditions and geometric configurations. However, it
can be computationally very expensive and time consuming.

The optimal welding sequence can be achieved by using a full factorial design
procedure. The total number of welding configurations (N) is counted by,
N ¼ nr � r!, where n and r are the number of welding directions and seams (beads)
respectively. This is an NP-hard problem and these possible configurations grow
exponentially with the number of welding beads. As an example, the mounting
bracket used in this study has eight weld seams that can be welded in two direc-
tions; hence the number of welding configurations for exhaustive search is
10,321,920. In real-life application, a complex weldment like an aero-engine
assembly might have between 52 and 64 weld segments [5]. Therefore, full factorial
design is practically infeasible even for simulation experiment using FEA.

Here, we develop and implement a Q-Learning based RL algorithm [6] for
WSO. The technical contributions of this paper are as follows. First, a deformation
based reinforcement learning significantly reduces the computational complexity
over extensive search. In this experiment, we achieve the optimal solution through
RL after executing 2 iterations. Second, we exploit a novel reward function for RL
consisting of the inverse of the maximum structural deformation for WSO. Third,
we compare our RL algorithm with both single objective [7] and multi-objective [8]
Genetic Algorithm (GA) and we demonstrate that RL finds a pseudo optimal
solution which is much faster than GA, in both cases.

We conduct simulation experiments for Gas Metal Arc Welding (GMAW)
process through the simulation software Simufact®. The scope of this study is
limited to GMAW process. The average execution time for each simulation
(welding configuration) is 30 min using a workstation with two Intel Xeon®

@2.40 GHz processors, 48 GB of RAM and 4 GB of dedicated video memory. We
conduct our experiment on a mounting bracket which is usually used in telescopic
jib [9] and automotive industries [10, 11].

The organization of this paper is as follows. Section 2 presents literature review.
Section 3 demonstrates reinforcement learning based welding sequence optimiza-
tion method. Section 4 illustrates experimental results and discussions. In Sect. 5
conclusions and future directions of this work are presented. Relevant references
are listed at the end of the paper.
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2 Literature Review

We organize the literature review into two parts. In the first part we present a brief
literature review on WSO using artificial intelligence techniques and then we briefly
introduce the Q-learning based RL algorithm related to WSO.

2.1 Welding Sequence Optimization

Several optimization methods are available in literature for welding sequence
optimization. Among them, GA is one of the most popular methods available in the
literature for welding sequence optimization. Mohammed et al. [12] presented GA
based WSO where the distortion data computed by FEA has been used as a fitness
function. Kadivar et al. [13] also presented GA based solution for WSO where only
the distortion is used in the objective function and they completely neglect the effect
of the welding sequence on the maximum residual stress. Damsbo and Ruboff [14]
incorporated domain specific knowledge into a hybrid GA for welding sequence
optimization. They minimized the robot path length to minimize the operation time
but neglected the effect of welding sequence on deformation and residual stress.
Islam et al. [15] coupled FEA approach with GA where the maximum structural
deformation was used in the fitness function and other design variables such as
welding direction and upper and lower bounds of welding process parameters were
taken into effect in the model. Warmefjord et al. [16] discussed several alternative
approaches to GA in spot welding sequence selection method where they suggested
general simple guidelines, minimize variation in each step, sensitivity, and relative
sensitivity. Kim et al. [17] proposed two types of heuristic algorithms called con-
struction algorithm and an improvement algorithm where heuristics for the traveling
salesman problem are tailored to the welding sequence optimization. However, they
did not consider the inherent heat-caused deformation with the aim of minimizing
the time required to process the task.

Romero-Hdz et al. [18] presented a literature overview of the artificial intelli-
gence techniques used in WSO. The AI techniques reported include GA, Graph
Search, Artificial Neural Networks (ANN) and Particle Swarm Optimization (PSO).
Other popular methods are also described such as Joint Rigidity Method, Surrogate
Models and the use of generalized guidelines. Some of the limitations of these
studies are the lack of experimental validation in real components and ignoring
some factors like residual stress and temperature which are important factors for the
resulting welded quality.

Okumoto [19] presented an implementation of the Q-learning based RL algo-
rithm to optimize the welding route of an automatic machine. The machine uses a
simple truck system and it moves only in one direction until a force is detected. The
fitness function in this work is based on the time, because, this type of machines are
moved from one joint to another manually by the welder. As the amount of welding
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seams increase, the total number of possible execution combinations grows expo-
nentially. So, a bad decision can increase the labor hours that impacts on the cost
and lead time. They used e-greedy based selection method. This method stochas-
tically adopts a lesser reward to avoid the local optima.

In this paper, we proposed a Q-Learning based Reinforcement learning algo-
rithm where we use maximum structural deformation as the reward function that are
described in the next section.

2.2 Reinforcement Learning

RL is a branch of machine learning which has been extensively used in different
fields such as gaming [20], neuroscience [21], psychology [22], economics [23],
engineering communications [24], engineering power systems [25], and robotics
[26]. Some of the algorithms are inspired by stochastic dynamic programming like
Q-learning algorithm which is the base of the proposed algorithm in this paper. RL
techniques learn directly from empirical experiences of the environment. RL can be
subdivided into two fundamental problems: learning and planning. While learning,
the agent interacts with the real environment, by executing actions and observing
their consequences. On the other hand, while planning the agent can interact with a
model of the environment: by simulating actions and observing their consequences.

Figure 1 shows the basic framework of the RL algorithm. An RL task requires
decisions to be made over many time steps. We assume that an agent exists in a
world or environment, E, which can be summarized by a set of states, S. First, the
agent receives observations from the environment E, then the agent solves the
exploration-exploitation dilemma, whether to explore and get new information or

Fig. 1 Basic framework of RL
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act with the information it knows and trust. Then selects an action a, and then it
receives an immediate reward r and then go to next state. The agent again acts
repeatedly so as to receive maximum reward from an initial state to a goal state. It is
an optimization technique that can manage with moderate dynamic change in the
environment through learning by repeating and evaluating the action.

In this paper, we applied Q-learning algorithm, one of the algorithms of RL for
WSO. Q-learning algorithm estimates the value functionQ(s, a) which is obtained by
the agent’s repeating of the action by trial and error, for the environment. Q(s, a)
expresses the expectation of a gain when the agent takes the most suitable action after
having chosen an action in a state s. The most suitable action is defined as the action
a in state s, for which the value of Q(s, a) becomes greatest among all the actions
permissible in state s. The Q value is updated by the following Eq. (1) [19]:

Q s; að Þ  Q s; að Þþ afr s; að Þþ c max
a02A s0ð ÞQ s0; a0ð Þ � Q s; að Þ ð1Þ

where Q(s, a) is the value of action a in state s, Q(s′, a′) is the value of action a′ at
state s′ after transition, a is the learning rate (0 < a < 1), and c is the discount rate
(0 < c < 1). A number of selection methods have been proposed to solve the
exploration-exploitation dilemma and choose one action executed among the many
possible actions that exist. We used e-greedy method in this study. This method
stochastically adopts a lesser reward to avoid the local minima. The e-greedy selects
an action a in state s for which the value of Q(s, a) is maximum at probability (1-e),
0 < e < 1, as illustrated in the equation:

p s; að Þ ¼ 1� e; when Q s; að Þ is maximum
e; elsewhere

�
ð2Þ

3 Reinforcement Learning Based Welding Sequence
Optimization

Figure 2 shows the flowchart and pseudo-code of the Q-learning based RL method on
WSO respectively. We solve the exploration-exploitation dilemma by generating a
randomnumber between 0 and 1 and if it is less thanor equal to0.2 (the value of e is taken
as 0.2), exploration is executed, on the other hand, exploitation will be performed. For
exploration, we choose the second best weld seam and for exploitation we choose the
weld seam with a particular welding direction that gives the minimum of the maximum
structural deformation. In this WSO experiment, the agent is considered as the robot or
human, the actions of the agent are the weld seams that can be placed into the workpiece
along with the direction of the welding, the state is defined as the set of actions already
executed. The reward is defined as the inverse of the maximum structural deformation.
Themost suitable action is defined as the weldingweld seam along a particular direction
that provides minimum of the maximum structural deformation (Fig. 3).
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Fig. 2 Flowchart of Q-learning based reinforcement learning method on WSO

Initialize
Initialize state-transition model

Do until learning end /*finish all the cycles or iterations*/
Do until we reach a goal /*all the seams are welded */
Observe a current state 
Choose an action a from the set consisting of available weld-
ing seams along

all possible directions which are not welded yet 
which provides

Execute action ;
Update Q-value with 

;
Update state-transition model 
Store

End
End
S, A: states and actions consisting of stochastic shortest paths.

Fig. 3 Pseudo-code of Q-learning based RL method on WSO
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4 Experimental Results and Discussions

This section is organized as follows. First we describe the study case. Second, we
mention the values of the parameters used in this study. Third, we illustrate the
results of the FEA for the best and worst sequence found by the proposed RL
method. Fourth, we demonstrate the effects of welding sequence on WSO. Finally,
we show a comparative study among single objective GA [7], multi-objective GA
[8] and Q-learning based RL method.

4.1 Study Case

Figure 4 illustrates some sample geometries of the mounting brackets available in
the market. These geometries are typically used in heavy equipment, vehicles, and
ships. Figure 5 demonstrates a mounting bracket which we chose as a study case in
our experiment as well as the engineering drawing with all specifications.

Fig. 4 Mounting brackets available in the market as an example of welded parts

Fig. 5 Engineering drawing of the mounting bracket with 8 weld beads
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4.2 Parameters Used

Table 1 illustrates values of the parameters of the Q-learning based RL algorithm
used in the simulation experiment. We conduct the RL algorithm up to two itera-
tions to find the pseudo optimal solution. Moreover, Table 2 shows the welding
simulation and real experiment parameters.

4.3 Discussions About the FEA Results

The best sequence found was [−5, −8, +6, −7, −1, +3, +2, −4] with maximum
structural deformation 0.93 mm. On the other hand, the worst sequence found is
[−3, +4, −7, +6, +5, −1, +8, −2] and the corresponding maximum structural
deformation is 2.76 mm as shown in Fig. 6. We conduct the RL experiment for two
iterations. We select e-greedy algorithm strategy where we choose the value of e as
0.2. This indicates that the RL allows exploration 20% time and exploitation 80%
time of the actions chosen. Since the value of our reward function at any stage in
terms of maximum structural deformation cannot be computed by summing the
value of the reward function of the previous stages, the value of the learning rate
and discount factor are inapplicable in our application.

Table 1 RL parameters used
in this experiment

Parameter Value

Epochs (number of iterations) 2

Exploration rate 0.2

Exploitation rate 0.8

Learning rate –

Discount factor –

Selection method e-greedy method

Table 2 Welding simulation
and real experiment
parameters

Parameter Value

Material ASTM A36

Robot speed 50 cm/min

Current 234 A

Voltage 20.5 V
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4.4 Effects of Welding Sequence on Welding Process
Optimization

Normalized frequency of the structural deformation and effective stress values on
the mounting bracket used in this study are shown in Fig. 7. If we consider the
deformation value of the worst sequence as 100%, RL algorithm reduces about 66%
maximum structural deformation over worst sequence (maximum structural
deformation of best and worst sequence are 0.93 and 2.76 mm respectively). These
results clearly demonstrate that welding sequence has significant effect on welding
deformation. However, welding sequence has less effect on effective stress. These
results are consistent with the results reported in the literature [7, 8].

4.5 Comparative Analysis: Reinforcement Learning
Versus Genetic Algorithm

We compare the proposed RL method with the GA methods widely used in the
WSO. In order to due this comparison, we have used the same parameters for GA
reported in our previous work [7]. The structural deformation of the mounting

Fig. 6 Comparison between best (left column) and worst (right column) sequence and their
deformation patterns
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bracket for the best sequence found by the single objective, multi-objective and RL
are demonstrated in Fig. 8. Table 3 illustrates the comparative analysis among
single objective [7] and multi-objective GA [8] and RL method. Table 3 shows that
though RL yields a bit more structural deformation, however, RL converges much
faster than GA. RL finds a pseudo optimal solution in only two iterations whereas
single objective and multi-objective GA require 115 and 81 simulations respec-
tively. Since the average time required for each welding simulation experiment
needs 30 min, RL method for our study case takes 30 h whereas single objective
and multi-objective GA method take 57.5 and 40.5 h respectively to converge the
algorithm. Figure 9 shows the search space (tree) for the best sequence explored by
the RL algorithm.

Fig. 7 Normal distribution of deformation and effective stress for best and worst sequence

Fig. 8 From top to bottom: single objective GA, Multi-objective GA and RL algorithm

42 J. Romero-Hdz et al.



5 Conclusions and Future Works

Structural deformation plays an important role to measure the quality of the welded
structures. Optimization of the welding sequence reduces the deformation of the
welded structures. In this paper, the maximum structural deformation is exploited as
the reward function of a proposed Q-learning based RL algorithm for WSO. RL is
used to reduce significantly the search space of the exhaustive search. Structural
deformation is computed using FEA. We conduct a simulation experiment on a
mounting bracket which is typically used in vehicles and other applications. We

Table 3 Comparative analysis among single objective genetic algorithm, multi-objective genetic
algorithm and reinforcement learning

Method Best sequence Maximum
structural
deformation (mm)

# of
sequences
executed

Time (h)

Single objective
GA

[+6, +5, −1, +8,
−2, −3, +4, −7]

0.55 115 57.5

Multi-objective
GA

[+ 6, −5, −2, +8,
−1, +7, −3, −4]

0.66 81 40.5

Proposed RL [−5, −8, +6, −7,
−1, +3, +2, −4]

0.93 2 30

Fig. 9 Search space for the best sequence explored by Q-learning based RL algorithm
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compare our RL based welding sequence optimization method with widely used
single objective and multi-objective GA. Proposed RL based WSO method sig-
nificantly reduces the search space over GA and thus RL finds the pseudo optimal
welding sequence much faster than GA by slightly compromising the welding
quality. Welding quality could be enhanced by incrementing the number of itera-
tions of the RL method.

This work opens up different avenues for WSO research. In the near future, we
would like to develop a more robust multivariate reward function including
structural deformation, residual stress, temperature, and robot path time for welding
sequence optimization. Information of the deformation, residual stress and tem-
perature after welding each seam in a sequence needs to be investigated for
achieving better reduction of welding deformation and residual stress.
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Time-Optimal Path Planning
for Dual-Welding Robots Based
on Intelligent Optimization Strategy

Xuewu Wang, Bin Tang, Yixin Yan and Xingsheng Gu

Abstract Dual-welding robots are widely used with the industry development, and
dual-welding robots usually have to deal with a large number of weld joints. In this
condition, traditional manual teaching method is time-consuming and inefficient. In
this paper, an intelligent optimization strategy is proposed to realize time-optimal
path planning for dual-welding robots. First, the welding robot path optimization
problem is presented. Then, good diversity and convergence velocity of discrete
group competition particle swarm optimization (GC-PSO) algorithm are tested.
Compared with particle swarm optimization (PSO), genetic particle swarm opti-
mization (GPSO) and chaos particle swarm optimization (CPSO) algorithms,
GC-PSO algorithm shows its better optimization effectiveness. In addition, a
method of collision detection and obstacle avoidance is given. At last, an intelligent
optimization strategy is applied to time-optimal path planning for dual-welding
robots, and the global optimal result can be obtained quickly. Simulation results
show that the intelligent path planning strategy is effective and can be used for
welding robot path optimization.

Keywords Particle swarm optimization (PSO) � Group competition
Welding robot � Path optimization � Obstacle avoidance

1 Introduction

Welding robot is widely used in industrial production process. Welding robot path
planning mostly relies on the experience of engineers. This method is not only
time-consuming and inefficient, but also difficult to find the desired welding path.
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Intelligent optimization algorithm provides a convenient and quick method for the
welding robot path planning. Welding robot path optimization was simplified as the
traveling salesman problem (TSP) problem and the path length was minimized
based on double-global optimal particle swarm optimization (PSO) algorithm [1].
In [2], task sequencing and path planning in remote laser welding were studied
based on TSP and meta-heuristic algorithm. The energy consumption and cycle
time were optimized using restarted simulated annealing algorithm [3].

As widely used intelligent optimization algorithm, PSO is used to solve path
planning problem. PSO [4] was first proposed by Kennedy and Eberhart in 1995.
PSO algorithm has many advantages, such as simple structure, fast convergence
speed and easy implementation. However, PSO has a disadvantage: when the
optimized problem is complex, the dimension is high or there are a lot of local
optimal values in the independent variables. In order to solve the premature
problem of PSO algorithm and accelerate the convergence rate of the algorithm,
many improvements were conducted. The first kind of improvement mostly aims at
the PSO parameters, such as learning factor and inertia weight. In [5], a particle
swarm algorithm with dynamic inertia weight adjustment was proposed to balance
the global and local search ability of PSO. However, this improvement is largely
dependent on the choice of random factors. The improvement of the position and
velocity of PSO belongs to the second category. In [6], a position-weighted PSO
algorithm was proposed to increase the determinacy and directionality of the par-
ticle searching for the optimal value. However, the improved method limits the
search range and reduces the convergence rate of the particle. The third category is
local search PSO algorithm based on the global optimal particle [7], such as chaos
particle swarm optimization (CPSO) algorithm. In [8], the chaos was integrated into
the motion of the particle, and the probability of falling into the local optimum was
decreased. However, the algorithm complexity was increased and the convergence
rate was reduced. The fourth category is based on the fusion of different intelligent
optimization algorithms, such as genetic particle swarm optimization (GPSO)
algorithm [9]. Incorporating the updating strategy into the PSO algorithm is the fifth
category [10]. Improved PSO algorithm shows its advantages, such as fast rapid
convergence and global optimization. Therefore, an improved PSO algorithm based
on grouping and competition strategy is proposed to realize the welding robot path
optimization.

Welding robot path optimization problem is described in Sect. 2. Group com-
petition particle swarm optimization (GC-PSO) algorithm is presented in Sect. 3,
and its discretization is also given. Then, the dual-robot obstacle avoidance strategy
is presented in Sect. 4. Furthermore, time-optimal path planning for dual-welding
robots is conducted based on GC-PSO in Sect. 5.
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2 Optimization Problem Description

Apart of thewhite body is selected asworkpiece in this paper. The shape of theworkpiece
and the position of theweld joints are shown inFig. 1. The robot isABBR2400 robot and
the welding tong is GTAW10. The welding pose will be presented in Sect. 3.3. For
convenience, the pose of thewelding tong is defined as “1” or “−1”.When the longer part
is in the upright position, the pose is defined as “1”, otherwise it is defined as “−1”. In view
of the actual situation of the workpiece and fixture, both poses in welding process can be
applied to some welding joints. Such a condition is defined as “0”.

Efficiency is the critical goal for industrial production process, and welding time
is the most direct efficiency indicator. In actual welding process, welding pose is
related to welding time and obstacle avoidance. Therefore, welding pose is con-
sidered during conducting welding robot path planning.

In this paper, two robots are placed symmetrically and oppositely. Thewelding joints
are assigned based on the following principles. First, the working space of the welding
robots does not overlap. Next, welding joints with the same pose are assigned to the
same robot. Besides, welding joints are divided to obtain the shortest welding time and
the welding time for the two robots is nearly the same. If the welding time difference
between the two robots is greater than the minimum difference, the welding joint with
the farthest distance from the robot is assigned to the other robot until the two robots
have nearly the same welding time and the shortest total time.

The time-optimal path planning for the dual-welding robots requires that the
welding tong walks through all welding joints and the cost time is the shortest.
Suppose that the number of weld joints is M, the number of transition points is N,
and the weld joint order is p(i) (i = 1, 2, …, n). Then, the time-optimal path
planning problem can be regarded as a constraint TSP problem. The welding robot
global path planning problem can be described as

minT ¼
XN�1

i¼1

LpðiÞ; pðiþ 1Þ=v; ð1Þ

Fig. 1 Welding workpiece
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s:t: path pðiÞ pðiþ 1Þ is safe path; i ¼ 1; 2; . . .; n� 1; ð2Þ

where
PN�1

i¼1 Lp ið Þ; p iþ 1ð Þ is the sum of the distances between two welding joints,
v is the welding speed which is set as 2 m/s, and path p(i) p(i + 1) is the path
between two welding joints p(i) and p(i + 1).

3 GC-PSO

3.1 Algorithm Introduction

Because traditional PSO algorithm slowly converges and easily falls into local
optimum, GC-PSO algorithm is proposed in this paper. The algorithm divides the
particle swarm into two parts according to the fitness value of each particle.
Particles with fitness value in the top 20% of the total fitness value are regarded as
leading particles, and the remaining particles are followers. After dividing all
particles into two parts, all the particles are grouped randomly. Each group consists
of a leading particle and some followers, where the followers are randomly assigned
to the leading particles and the number of followers in each group is not unique.
When iteration number satisfies t = 10, the fitness value of the particle is reordered.
Then, the leading particle and followers are defined according to the fitness value.
And all the particles are grouped randomly again.

GC-PSO algorithm adopts different speed updating strategies for different par-
ticles. In order to avoid the particle falling into local optimum, GC-PSO algorithm
introduces intra-group competition and inter-group competition in the speed
updating formula [11].

The velocity updating formulas for leading particles is described as

vtþ 1
i ¼ xvti þ vti Randn 0; r2

� �
; ð3Þ

where

r2 ¼
1; ifi\fk

e
�fi þ fk
fi þ �j j ; otherwise

; k 2 1;Nl½ �; k 6¼ i

(
: ð4Þ

The location updating formula for leading particles is described as

xkþ 1
i ¼ xki þ vkþ 1

i ; ð5Þ

where Randn(0, r2) is a Gaussian distribution function with mean 0 and variance
r2. The parameter Randn(0, r2) expands the searching range of particle and avoids

50 X. Wang et al.



the particle falling into local optimization. e is an infinitely small number which
promises the denominator is not zero. k denotes the number of the other leading
particles which will increase the competition between the particles. This strategy
can make the particle with poor fitness moves closer to the particle with better
fitness. f is the corresponding fitness value of each particle. Nl is number of leading
particles.

The speed updating formulas for follower are given as

vtþ 1
1 ¼ xvti þ s1 Rand ðvtj1 � vtiÞþ s2 Rand ðvtj2 � vtiÞ; ð6Þ

s1 ¼ e
fi�fj1
fij jþ e; ð7Þ

s2 ¼ e fj2�fið Þ: ð8Þ

The location updating formula for follower is given as

xkþ 1
i ¼ xki þ vkþ 1

i : ð9Þ

The velocity updating formula for follower contains two parameters s1 and s2. s1
is the intra-group competition coefficient, and j1 is the number of leading particles
in the group. Follower competes with the leading particle with probability s1. s2 is
the inter-group competition coefficient, and j2 is the number of the leading particles
in other groups. Followers in this group compete with the leading particles in other
groups with the probability s2.

The detailed flow of the algorithm is presented as follows.

Step 1 Initialize the particle swarm, and define the related parameters: the number
of leading particle, the number of following particle, and the particle size
Popsize.

Step 2 Calculate the fitness value of the particles and determine the individual
optimal position pbest and the global optimal position gbest; set t as 1.

Step 3 After iterating G times, the particles are reordered and grouped according to
the fitness value. G = 10 denotes iteration time.

Step 4 Update the position, velocity and fitness values of the leading particles and
followers according to Eqs. (3), (5), (6) and (9).

Step 5 Update the individual optimal position pbest and the global optimal position
gbest of the current particle swarm.

Step 6 Set t = t + 1; stop if the iteration condition is satisfied; otherwise, return to
Step 3.
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The number of leading particles and the value of update coefficient have an
important influence on the convergence precision and convergence speed of the
algorithm. If Nl and G are set too large, the algorithm cannot converge quickly to
the global optimal value. If Nl and G are set too small, the algorithm easily falls into
local optimum. After tests, the following conclusions can be drawn. When Nl is set
as 20% of the total number of particles, and G is set as 10, the convergence rate is
improved obviously and the convergence precision is guaranteed. In addition, x
decreases exponentially from 0.9 to 0.4 with the increase of the iteration for the
convergence accuracy, convergence rate and robustness of the algorithm.

3.2 Algorithm Discretization

Although the GC-PSO shows the ability of fast convergence and optimization, it
can only solve the continuous problem. In order to solve the problem of dual-robot
path planning, the GC-PSO algorithm needs to be discretized.

In discrete PSO algorithm, each particle represents a feasible solution, and the
population is a set of feasible solutions. Like continuous PSO algorithm, xi in
discrete particle swarm algorithm also represents the ith sorting result, vi represents
the velocity of the ith particle, pbest represents the best individual, and gbest rep-
resents the best population sort. Among them, vi is a set of directions the particle
can search; xi, pbest and gbest are the results of optimization. Equations (3), (5), (6)
and (9) are updated as follows.

Velocity and position updating equations for leading particle are respectively
presented as

vtþ 1
i ¼ xvti þ vti Randn 0; r2

� �
; ð10Þ

xtþ 1
i ¼ xti � vtþ 1

i : ð11Þ

Velocity and position updating equations for follower are respectively presented
as

vtþ 1
i ¼ xvti þ s1 Rand vtj1 � vti

� �
þ s2 Rand vtj2 � vti

� �
; ð12Þ

xtþ 1
i ¼ xti � vtþ 1

i : ð13Þ

In the above equations, the operators +, − and � have new definitions. The
definitions include the rule of particle crossover and combination with individual
and global, which is important to transfer continuous algorithm to the discrete
algorithm. Subtraction operator “−” represents the difference set of individual
optimal position and the current position. For the example of xti � vtþ 1

i o, �
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operation refers to conduction exchange order vtþ 1
i for xti, where vtþ 1

i is a set of
particle exchange orders. Addition operator “+” represents the union of two edge
sets. The above discretization method inherits the characteristics of continuous
GC-PSO. The updating process of GC-PSO is the process moving to the global
optimal solution.

3.3 Algorithm Validation

Convergence rate and accuracy among standard PSO, genetic algorithm (GA),
GPSO and GC-PSO algorithms are compared based on four TSPs. Four algorithms
independently run 30 times for each test function, the population size is set as 100,
and the maximum number of iterations for each run is set as 500 x decreases
exponentially from 0.9 to 0.4 with the increase of the iteration. Other parameters for
these algorithms are listed in Table 1.

The average convergence curves of four algorithms are shown in Fig. 2. It can be
concluded that GC-PSO still shows excellent convergence speed and accuracy with
the same parameters and discrete method. GC-PSO algorithm uses the intra-group
and inter-group competitions by the speed updating formula to make each particle
move toward the global optimal position. The group division strategy ensures that
the algorithm does not fall into local optimum. The simulation results show that
GC-PSO algorithm is still feasible and efficient after discretization.

4 Dual-Robot Obstacle Avoidance Strategy

4.1 Three-Dimensional Grid Method Modeling

Working environment model for robot obstacle avoidance is established first. Grid
method can establish an intuitive working environment which is conducive to judge
local environment. Hence, the three-dimensional grid method is selected in this

Table 1 Algorithms parameters

Algorithm Parameter

PSO c1 ¼ 1:49445; c2 ¼ 1:49445; xmax ¼ 0:9; xmin ¼ 0:4

GPSO [12] c1 ¼ 1:49445; c2 ¼ 1:49445; pc ¼ 0:7; pm ¼ 0:05
xmax ¼ 0:9;xmin ¼ 0:4

GA [13] pc ¼ 0:7; pm ¼ 0:05; GGAP ¼ 0:1

GC-PSO c1 ¼ 1:49445; c2 ¼ 1:49445; xmax ¼ 0:9; xmin ¼ 0:4
leading particle percent ¼ 0:2; follower percent ¼ 0:8
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paper to establish the working environmental model. And the steps are given as
follows.

Step 1 Simplify the workpiece as a combination of some triangles. This is because
free grid and obstacle grid are more easily identified through triangles.

Step 2 Create the grid matrix. Grid size affects the accuracy of path planning. The
less the grid is, the better the accuracy of the path is, but this will take a
long time to search the best path. The larger the grid is, the worse the
accuracy of the path is, while the best path can be quickly found. In view of
the searching time and accuracy, the whole space is divided into cubes

(a) (b)

(c) (d)

Fig. 2 The average convergence curves of four algorithms
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with a side length of 5 mm. The center of each cube is used as the starting
point of the search path. Each center point is projected to a plane. If the
projection point is outside the triangle, this triangle is not an obstacle at this
point. If the projection point is inside the triangle and the length of the
vertical line is less than 6 mm, the triangle is an obstacle.

Step 3 Identify the free grids and obstacle grids. If there is an obstacle for the center
point, it means that the point is the obstacle point and the related grid is an
obstacle grid; otherwise, the point is a free point and the related grid is a free
grid. Obstacle points are indicated by *, as shown in Fig. 3.

4.2 Obstacle Avoidance Between Robot and Workpiece

Local searching starts from initial solution, and begins to search the vicinity field. If
particle can find a better solution, then it replaces the initial solution. Ant colony
algorithm is applied to realize local obstacle avoidance path planning [14].

The parameters of ant colony optimization (ACO) are initialized as follows. Based
on the empirical value, the weight a of the pheromone is set as 1, the weight b of
heuristic pheromone is set as 11, the evaporation coefficient q of pheromone is set as
0.9, and the pheromone quality coefficient Q is set as 5. The iteration number N is set
as 50, and the population quantityM is set as 50. The coordinates of the starting point
and the terminal point are initialized. The initialized pheromones for all points are set
as 0.5. Iterator is defined as n. The number of ants is expressed as k.

The local obstacle avoidance path of two robots can be obtained by the local
search algorithm. However, the path obtained by ant colony algorithm is not a
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straight line, so it cannot meet requirement of the shortest welding path. In order to
achieve the shortest and collision free welding path, second optimization is con-
ducted. Principles of the second optimization are presented as follows. Some nodes
are canceled and leaved nodes are connected to obtain a shorter path. In the process,
collision detection is always conducted to promise a collision free path. Welding
joints 12 and 15 are taken as an example. The simulation results are shown in
Fig. 4.

4.3 Obstacle Avoidance Between Robots and Fixture

The obstacle avoidance between robot and fixture needs to be studied. In this paper,
the welding tong is regard as a point, and the distance between welding tong and
fixture is calculated to conduct collision detection.

Collision detection between welding tong and fixture steps is given as follows.
A welding path is obtained by optimization algorithm firstly. Then, the shortest
distance between welding tong and fixture is calculated. If the shortest distance is
less than the safety threshold, geometrical method [15] is used to obtain a transition
point to avoid collision.

Figure 5 shows two welding joint positions in the adjacent region. Starting point
and terminal point are connected in a line which is called Line 1. The intersection of
two planes is called Line 2. Lines 1 and 2 locate on different surfaces. A transition
point in Line 2 is obtained to make the path shortest, which moves from the starting
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Fig. 4 Local obstacle avoidance path planning
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point, the transition point, and reaches the terminal point. This transition point is the
intersection of the line 2 and the middle vertical line of the two lines.

5 Time-Optimal Path Planning for Dual-Welding Robots

Based on the environment modeling and the obstacle avoidance strategy, GC-PSO
algorithm is used to optimize the robot welding time, and realizes the time-optimal
obstacle avoidance path planning. Assume that the welding speed of the robot is
2 m/s, and the welding time of each weld joint is 0.5 s. The steps of time-optimal
path planning are presented as follows.

Step 1 Set the position of two robots which are placed on the two sides of work-
piece, and determine the weld joint coordinates.

Step 2 Initially assign all the welding joints for two robots according to the
assignment principle.

Step 3 Establish weldment and robot workspace model according to the grid
method.

Step 4 Obtain the local collision free path for robot and weldment by ant colony
algorithm.

Step 5 Realize collision free path among the welding tong, tooling fixture and
workpiece based on collision detection and geometry method.

Step 6 Based on the division result of the welding joints, calculate the welding time
of each robot by discrete GC-PSO algorithm.

Step 7 If the welding time difference between two robots is greater than the set time
difference, divide the weld joints again according to the division principle of
weld joints, and return to Step 6. Otherwise, go to Step 8.

Step 8 Output the optimized welding joint order and the welding time of each robot.

Fig. 5 Transition point
solution

Time-Optimal Path Planning for Dual-Welding Robots … 57



In this paper, in order to meet the requirement of the shortest welding time,
welding joints are divided according to the welding pose. This principle can reduce
the welding pose change in welding process. In order to facilitate the calculation,
the welding tong reverses when it arrives at the transition point, and the reversing
time is set as 2 s. For example, there is a pillar between the welding joints 10 and 11
for the robot 2. Hence, geometric method is used to avoid collision between the
robot and fixture. A transition point is selected at the edge of the workpiece. When
the robot 2 finishes the welding of the welding joint 10, it moves to the transition
point. Then, it moves to the welding joint 12 and welds the welding joint 12.

Based on the optimization strategy, welding path lengths for two robots are
70.2914 and 109.29004 mm, respectively. The final optimal welding time is
94.259072s. Global path planning orders are: 19–20–21–22–23–25–24–26–27–28–
31–30–29 and 1–2–3–4–5–8–7–6–9–10–11–12–13–16–15–17–14–18, respec-
tively. The path planning results with obstacle avoidance for dual-welding robots is
shown in Fig. 6.

6 Conclusion

Compared with traditional manual teaching method, intelligent robot path planning
has a high industrial application value. In order to realize intelligent welding path
planning for two robots, GC-PSO algorithm and obstacle avoidance strategy are
studied after the optimization problem is described. Then, the dual-robot
time-optimal path planning is conducted based on the mentioned optimization
strategy. The optimized welding path can help welding engineering by shortening

(a) Dual-robot welding path in RobotStudio (b) Dual-robot welding path in Matlab
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the teaching time. As welding robot application and artificial intelligence tech-
nology increase rapidly, intelligent robot welding path planning will draw more
attention, and will play an important role in welding automation in the future.

It can be seen that only simulation is performed in this paper. Detailed research
works need to be done to improve the optimization strategy. And some experiments
also need to be done to promise the strategy effectiveness.
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Improving Stability of Welding Model
with ME-ELM

Jianxiong Ye, Han Ye, Zhigang Li, Xingling Peng, Jinlan Zhou
and Bo Guo

Abstract Welding shape is important in evaluating welding quality, but accurate
predictive model is hard to achieve, because welding is a complex nonlinear pro-
cess, and the sampled data are inevitably contaminated. Extreme learning machine
(ELM) is used to construct a single-hidden layer feedforward network (SLFN) in
our study, for improving stability of welding model, M-estimation is combined with
ELM and a new algorithm named ME-ELM is developed; researches indicate that it
works more effective than BP and other variants of ELM in reducing influence,
furthermore, it can improve the model’s anti-disturbance and robustness perfor-
mance even if the data are seriously contaminated. Real TIG welding models are
constructed with ME-ELM, by comparing with BP, multiple nonlinear regression
(MNR), and linear regression (LR), conclusions can be gotten that ME-ELM can
resist the interference effectively and has the highest accuracy in predicting the
welding shape.

Keywords Welding shape � Welding model � ME-ELM algorithm
Stability

1 Introduction

There are many kinds of welding methods, such as resistance welding, braze
welding, gas metal arc welding (GMAW), tungsten inert gas (TIG) welding, flux
cored arc welding (FCAW), submerged arc welding (SAW), etc., as a kind of
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hot-working process, welding is widely used in building of marine engineering,
railways, and electrical power plants etc., it is reported that more than 2/3 of the
steel need welding before utilization [1].

The mechanical property after welding is not only determined by composition of
metal, but also by the shape of welding joint [2, 3], the desired welding shape relies
on many factors, such as welding speed, wire feeding speed, welding current,
welding gas flow rate, so it is difficult to construct the model between the shape and
so many welding parameters. Till now, there are at least four kinds of modeling
methods: multi-nonlinear regression (MNR), response surface methodology (RSM),
Taguchi method, and ANN nonlinear mapping [4–7]. Shi et al. [8] used MNR to
predict the bead geometry in wet FCAW, and sensitive analysis is performed later,
this method is also used on SAW to predict the pips bead shape and realize online
control [3]; Palani and Morgan [9] used RSM to develop a model predicting
welding joint shape in FCAW; Taguchi is popularly used and has various forms,
Tarng et al. [10] and Biswas et al. [11] applied grey-Taguchi and PCA-Taguchi to
predict the bead shape in SAW. However, because welding shape relates to many
factors, all methods above can not work efficiently and effectively. ANN and other
similar intelligent calculation methods are widely used now [12–15], but from the
view of mathematics, ANN and its variants still have to face several issues like
time-consuming, over-fitting, or local minima, it is meaningful to find out new
measures to build welding model.

Based on ELM, some hybrid methods are supposed in our research. SA, GS, and
GA are combined with normal ELM to find out better network structures, ME-ELM
is suggested for reducing training data noise to enhancing the model stability and
accuracy.

The rest of this paper is arranged as follows. Section 2 introduces the principle
of basic ELM, points out relevant problems relating accuracy and stability; Sect. 3
focus on enhancing model stability, ME-ELM is introduced in detail, tests on
specific complicated functions indicate that this algorithm has the ability to refrain
the adverse effect of noise; Sect. 4 provides models on real TIG welding, besides
the method proposed in this paper, BP and MNR are also used to create welding
models, the residual errors are compared as well as that of LR(linear regression)
which has been published in references [27] already; in the end, conclusions are
presented in Sect. 5.

2 Introduction of Basic ELM

2.1 Principle of ELM

ELM is a kind of feedforward neural network, it has two types of structure, named
as multilayer structure and single-layer structure. Single-layer structure is an SLFN,
it has an input layer, an output layer, and only one hidden layer, each hidden neuron
has an activation function, the functions may be same or different, just as shown in
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Fig. 1, [x1, x2, …, xN] means input data, [y1, y2, …, yN] means output data,
W = [W1, W2, …, WN] and b = [b1, b2, …, bN] are input matrix and output matrix.
Hidden layer maps data from input space to feature space with input matrix W, and
then convert them into result space with output matrix b, it is clear that they play an
important role in model performance.

The working process is as follows: Given training samples (xi, ti), input vector
and output vector are xi = (xi1, xi2, …, xin) 2 Rn and yi = (yi1, yi2, …, yim) 2 Rm, if
the number of hidden neurons is L and activation function is g(xi), we may have:

yj ¼
XL
i¼1

bigðwixj þ biÞ; j ¼ 1; . . .;N ð1Þ

where wi = (wi1, wi2, …, win) indicates weights from input row to ith hidden
neuron, bi = [bi1, bi2, …, bim] represents rights from ith hidden layer to output
layer.

Equation (1) can be summarized as:

Y ¼ Hb ð2Þ

b means output matrix, H is input matrix and it can be expressed:

Hðw1; . . .;wL; b1; . . .; bL; x1; . . .; xNÞ

¼

gðw1 � x1 þ b1Þ . . . gðwL � x1 þ bLÞ
. . .

. . .

. . .

. . .

. . .

. . .

gðw1 � xN þ b1Þ gðwL � xN þ bLÞ

2
66664

3
77775
N�L

ð3Þ

There is a conclusion in [16] that for a stand SLFNs which has n input neurons,
m output neurons, and L hidden layer neurons, given N distinct observations {xi, yi},
if the activation function g: R ! R is infinitely differentiable in any interval, then we
can randomly get the wi and bi according to any continuous probability distribution
and have the result that the input matrix H is definitely invertible and b can be
analytically calculated out based on least square solution. So we have Eq. (4).

Fig. 1 Network structure of ELM
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b̂ ¼ HyT ¼ min
b
ððHb� YÞ ¼ 0Þ ð4Þ

Judgments can be obtained from Eq. (4) that different H† leads to different
network output, and more, different number of hidden neurons needs different
methods of calculating H† [17], such as singular value decomposition, orthogonal
projection, and iterative methods [18, 19], so how to solve H† is important, a
popular and efficient closed-form solution is:

b̂ ¼ HTðI=CþHHTÞ�1T; if N� L
ðI=CþHTHÞ�1HTT; if N[ L

�
ð5Þ

where C is a parameter used for controlling the trade-off between the training error
and norm of output weights [20, 21], it can improve network accuracy significantly.

2.2 Main Problems in Modeling of ELM

Equation (4) discloses the reason why ELM has fast training speed, but reveals two
problems with accuracy and stability. The first one is about the number L and the
rights of input matrixW, if we can choose proper value of them, the model accuracy
will be improved; the second problem is about matrix b, as the discussion above, b
is essentially decided by H, different H results in different b, but random W and
traditional solving of H† can not guarantee a better b, especially when the training
data is contaminated, so we need a new way for better b.

3 Methods for Improving Model Stability

3.1 Design of ME-ELM

Equations (4–5) illustrate that the simulation results are greatly affected by training
data, noisy data will inevitably lead to poor performance. M-estimator is a kind of
robust estimator which is good at drawing out a reliable conclusion from bad data,
especially outliers. So, M-estimator is tried to combine with ELM to decrease the
noise influence, by adopting estimation function and least square criterion, output
matrix parameters are adjusted during iterations [22], this way is embedded into
training algorithm of ELM and is called ME-ELM.

Considering the training target ðHb� YÞ ¼ 0, formula (4) can be expressed as
follows:
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b̂ ¼ ðHTPHÞ�1HTPT ð6Þ

where P is an adjusting matrix, it can reduce outliers influence by changing its
values adaptively. If samples have no bias, all related coefficients in P will be 1,
which implies ME-ELM works in the same way as ELM; if part of samples are
moderately polluted, the corresponding coefficients in matrix P will be less than 1,
to weaken the noise influence; for samples with gross errors, the relative coefficients
tend to be zeros, therefore the bad impacts can be decreased greatly. So P plays an
important role here, its values are regulated by estimation function w, for clear
description, statistic function (x) is introduced as first.

QðbÞ ¼
XN
i¼1

qðeiÞ ¼
XN
i¼1

qðTi � HibiÞ ð7Þ

where Q(x) is optimization objective function, solutions to Eq. (7) are called
M-estimators:

b̂ ¼ argmin
b
ð
XN
i¼1

qðTi � HibiÞÞ ð8Þ

Define estimation function w xð Þ ¼ @q xð Þ
@b , so the minimum b is:

@QðbÞ
@b

¼ 0 )
XN
i¼1

wðTi � HibÞHi ¼ 0 ð9Þ

There are several popular estimation functions w, similar results can be gotten in
terms of efficiency and deviation with one of them [23], Hurb function is expressed
as Eq. (10) [24].

wðxÞ ¼ x xj j � k
k xj j[ k

�
; qðxÞ ¼ x2=2 xj j � k

k xj j � k2=2 xj j[ k

�
; k ¼ 1:345 ð10Þ

Algorithm of ME-ELM can be designed as follows:

Step 1 Determine the network structure, acquire original value with normal ELM:
b0 = H†T and e0 = T−H†b0

Step 2 Setting initial parameters, such as adjusting factor k = 1.345 and error
variable e = 1

Step 3 Iteration process:

while ((e <1e04) or (N<100))

(a) Standardizing ei as ei = ei/s = 0.6745ei/med(|ei|), med(|ei|)
is the middle of |ei|.
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(b) Adjusting Wi ¼ w uið Þ
ui

and calculate b̂ ið Þ ¼ HTWiHð Þ�1HTWiT with

Huber function.

(c) Renewing variables: ei ¼ T � Hb̂ ið Þ, N = N+1,e ¼ b̂ ið Þ � b̂ i�1ð Þ
��� ���

ei ¼ T � Hb̂ðiÞ; N ¼ Nþ 1; e ¼ b̂ðiÞ � b̂ði�1Þ
��� ���

End while

3.2 Experiments for Stability

To verify the capability of ME-ELM in enhancing stability, some popular algo-
rithms are used for comparison, including ELM, ELM-C, B_ELM, and BP, the
networks are constructed based on noisy samples and tested with non-noise data,
then stability performance can be distinguished by RMSE and DEV. SinC function
is defined as follow:

yðxÞ ¼ sin x=x x 6¼ 0
1 x ¼ 0

�
ð11Þ

First, 5000 groups data are generated randomly, then white Gaussian noise is
added to independent variables, by selecting different noise distribution range of
[−0.2 0.2], [0 2], and [−2 2], three batches of 5000 training data are prepared, after
network models are constructed by various algorithms, stability performance can be
checked out with noise-free data. Comparisons are carried out between ME-ELM
and some other algorithms, such as ELM-C, BP, the number of hidden neurons is
fixed as 20, to examine the universal property of ME-ELM, several linear and
nonlinear multivariable function are tested, results of y = exp(x1/2) x1 + sin(x2) are
also listed in Table 1.

In addition, to avoid rank deficient problem in ME-ELM, random minor value
can be added to the adjusted value on the base of Eq. (10), which is expressed as
follows.

wðxÞ ¼ x xj j\kðk[ 0Þ
kþ 0:1 � rankð0Þ xj j[ kðk[ 0Þ

�
ð12Þ

Obvious difference in stability performance can be seen from Fig. 2, where both
ELM [16] and ME-ELM are used to model SinC function when the training data
have been added Gaussian noise, and the noise distribution interval is [0 2].

It is clear from the comparison above that ME-ELM has good ability of noise
reduction, it can produce a better model which has much better performance than
ELM, ELM-C, and B-ELM.
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4 Study of TIG Welding Modeling and Welding Shape
Prediction

Welding is a complex time-variant process and welding joint shape relates to many
variables [25, 26], furthermore, joint shape is susceptible to interference, even the
fluctuation of electric grid may result in the changing of geometry, and all the
training data will inevitably be contaminated, so how to guarantee the model per-
formance is very important.

4.1 Experimental Design and Data Acquisition

To design experiments, the contributing factors and relative levels should be
determined at first, and then experimental design matrix will be arranged in
orthogonal method, the work is often planned as follows:

1. Identification of important process parameters.
2. Finding the upper and lower limits with different levels of the parameters.
3. Confirm design matrix according to orthogonal table
4. Conducting the experiments as per the design matrix, if needed, repeating the

specific experiment.
5. Specimen preparation, if necessary, measuring the bead shape on different

samples.
6. Treating data with filtering and recording these responses.

For convenient comparison, TIG welding data published in [27] are used, it is
also used in [28] where the TIG welding variables include welding speed (S), wire
speed (WS), cleaning percentage (CP), welding current (C) and arc gap (G), and
weld bead shape parameters comprise front height (FH), front width (FW), back
height (BH), and back width (BW), shown in Table 2.

-10 -8 -6 -4 -2 0 2 4 6 8 10
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0

0.5

1

1.5
ELM Testing Regression Result

ELM Fitness

Testing Data
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ME-ELM Testing Regression Result

Testing Data
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Fig. 2 Testing results of ELM and ME-ELM
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4.2 Models Performance Comparison for TIG

For simplicity, only the comparison between ME-ELM and BP, MNR, and LR are
given out. Welding data are normalized at first and then separated into two groups:
56 records are used for training and the rest 16 records for testing. To begin with
ME-ELM, the number of middle neurons is set as 40 by SA at first, and then, GA is
used to get proper input matrix, M-estimation is used at last to calculate the output
matrix. BP network is created with 40 middle layer numbers and four output
numbers, active function and output function are “tansig” and “purelin”, the
comparison is shown in Fig. 3.

The MNR model is always better than linear regression [29], suppose the input
variables are X1, X2, X3, X4, X5, the output variables indicating the bead shape are
denoted by FH, FW, BH, and BW, the nonlinear regression forms can be given out
as:

FH ¼ g1x
a1
1 x

a2
2 x

a3
3 x

a4
4 x

a5
5

FW ¼ g2x
b1
1 x

b2
2 x

b3
3 x

b4
4 x

b5
5

BH ¼ g3x
c1
1 x

c2
2 x

c3
3 x

c4
4 x

c5
5

BW ¼ g1x
d1
1 x

d2
2 x

d3
3 x

d4
4 x

d5
5

9>>=
>>;

ð13Þ

By proper treating of original data, it can be converted to:

lgðFHÞ ¼ G1 þ a1 lg x1 þ a2 lg x2 þ a3 lg x3 þ a4 lg x4 þ a5 lg x5
lgðFWÞ ¼ G2 þ b1 lg x1 þ b2 lg x2 þ b3 lg x3 þ b4 lg x4 þ b5 lg x5
lgðBHÞ ¼ G3 þ c1 lg x1 þ c2 lg x2 þ c3 lg x3 þ c4 lg x4 þ c5 lg x5
lgðBWÞ ¼ G4 þ d1 lg x1 þ d2 lg x2 þ d3 lg x3 þ d4 lg x4 þ d5 lg x5

9>>>=
>>>;
;Gi ¼ lgðgiÞ;

i ¼ 1; 2; 3; 4

ð14Þ
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Fig. 3 Training errors of BP and ME-ELM
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So the regression model can be achieved according to Least Square principle:

FH ¼ 0:7341 x1
46

� �0:5667 x2
2:5

� �0:3428 x3
70

� ��0:0874 x4
3:2

� ��0:0459 x5
110

� ��1:9754�1

FW ¼ 7:8699 x1
46

� ��0:6622 x2
2:5

� �0:0392 x3
70

� �0:0844 x4
3:2

� �0:1290 x5
110

� �1:4149
BH ¼ 0:7949 x1

46

� ��1:2730 x2
2:5

� �0:7392 x3
70

� �0:3809 x4
3:2

� �0:6715 x5
110

� �2:3903
BW ¼ 7:6050 x1

46

� ��1:0607 x2
2:5

� ��0:0473 x3
70

� �0:01877 x4
3:2

� �0:1341 x5
110

� �2:5845

9>>>>=
>>>>;

ð15Þ

Comparison results between MNR, LR, and ME-ELM are shown in Table 3,
The better values are shown in bold font, it is clear that ME-ELM algorithm has
much more better performance.

5 Discussion of ME-ELM in Underwater Welding

Studies of welding parameters optimization methods have been carried out for a
long time, in which the welding model is very important, especially in underwater
welding [30]. There are three kinds of welding methods for underwater welding,
named as wet welding, dry welding, and semidry welding. Compared with other
two methods, there are many bubbles and turbulent fluid accompany with the wet
welding process, in the meantime, evaporation cooling has a great effect on the melt
zone so as to lead to a bad welding performance, the horizontal resurfacing welding
is shown in Fig. 4. So it is critical to refrain the noises for building the wet welding
model, preliminary study suggested that ME-ELM can work its way effectively and
detail results will be given out in further paper.

6 Conclusion

Methods for improving model accuracy and stability are studied in this paper,
comparison results on benchmark problems, artificial functions, and real TIG
welding process indicate that ME-ELM can work effectively. Further conclusions
can be drawn as follows:
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• Regarding the ability of reducing data noise and improving the simulation
accuracy, ME-ELM is better than BP, normal ELM and its corrective methods,
such as ELM-C, B-ELM, it is suitable for constructing welding model.

• Parameter k of estimation functions in ME-ELM is very important. Small k lead
to small rights for outliers, this will result in a strong suppression on influence.
On the contrary, if k is set to be a big positive number, ME-ELM tends to be the
normal ELM.

• MNR and LR are all prototype-based, their performance relies mainly on type
assumption, generally speaking, and their simulation accuracy is inferior to that
of ME-ELM.
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Study on the Cracks of NiTiNb/TC4 Lap
Joints Welded by Micro Laser Welding

Yuhua Chen, Zilin Zhan, Yuqing Mao, Yangyang Yu and Weiwei Lu

Abstract Dissimilar metal sheets of Ni47Ti44Nb9 (at.%, short for NiTiNb) shape
memory alloy and Ti6Al4V (TC4) alloy with the same thickness of 0.2 mm are
joined by using micro laser welding technology. The microstructure and crack in
the weld are studied by optical microscope (OM) and scanning electron microscope
(SEM). The results show that the cracks are easy to generate during the laser lap
welding of NiTiNb alloy and TC4 alloy due to plenty of brittle intermetallic
compound of Ti2Ni. However, the welding cracks can significantly reduce or dis-
appear by adding filler metal of Ni foil. No-defect joint is obtained when NiTiNb
alloy is located on the upper and 50 lm thick Ni foil is added during the lap
welding process. The crack sensitivity can be decreased because of finer grains and
elliptic boundaries. The shear load of the joint can reach 162 N.

Keywords NiTiNb/TC4 dissimilar metals � Micro laser welding
Filler metal of Ni � Crack control

1 Introduction

The joining of dissimilar materials is of great significance to the modern industry
since single material is unable to meet the needs of a variety of functions for
composite structures, so different materials need to be welded to satisfy the multiple
uses [1–3]. However, it is easy to produce many cracks during welding dissimilar
materials due to the differences in their physical and chemical properties, and the
cracks can severely reduce the weld quality such as strength and plasticity.

Y. Chen (&) � Z. Zhan � Y. Mao (&) � Y. Yu � W. Lu
School of Aerospace Manufacturing Engineering, Nanchang Hangkong University,
Nanchang 330063, China
e-mail: ch.yu.hu@163.com

Y. Mao
e-mail: maoyuqing-8888@163.com

© Springer Nature Singapore Pte Ltd. 2018
S. Chen et al. (eds.), Transactions on Intelligent Welding Manufacturing,
Transactions on Intelligent Welding Manufacturing,
https://doi.org/10.1007/978-981-10-7043-3_5

79



Therefore, the further application of this welded joint with dissimilar materials is
limited [4, 5].

Ni47Ti44Nb9 (at.%, short for NiTiNb) is one of the Ti–Ni shape memory alloys,
and it is widely used in aerospace, nuclear industry, offshore oil, household
appliances, and daily necessities for its excellent specific strength, corrosion
resistance, wear resistance, shape memory effect, and damping properties [6, 7].
Ti6Al4V (TC4) is a kind of titanium alloy that owns both of a and b phases, and it
is widely used in biomedical, aerospace, ships and so on for good strength, cor-
rosion resistance, and high temperature resistant performance [8]. The dissimilar
material welding of ultra-thin NiTiNb to TC4 could be used for reducing the noise
in sound attenuation of aircraft engine components [9]. However, it is easy to
produce plenty of brittle intermetallic compound like Ti2Ni, Ni3Ti, etc. during the
welding process [10, 11]. In addition, Ti alloy can absorb hydrogen from 250 °C,
oxygen from 400 °C, and nitrogen from 600 °C [12], which makes it easy to get the
brittle joint and generate the welding crack. Therefore, the traditional welding
method is difficult to meet the requirements of the TC4 and NiTiNb alloy welding.

Laser welding is one of the important processing methods for the characteristics
of high energy density, high precision and so on. Because the power is lower, micro
laser welding as one of laser welding technologies commonly used in welding metal
sheet, metal wire, and small electronic precision part connection, and it plays an
important role in the field of the micro connection field [13, 14]. Li et al. [15, 16]
studied the welding of NiTi alloy to stainless steel by adding the metal wire of Ni
and Co, and they found that the welding cracks were eliminated. Zoeram and
Mousavi [17] found that the transverse cracks were controlled when 1 mm thick
NiTi alloy and TC4 alloy were welded by adding filler metal of Cu. Moreover,
some high temperature materials such as pure Nb, Ta, and V may also be added to
remove the cracks during the welding of TiNi alloy to TC4 alloy [18–20]. However,
these materials are rare as well as expensive, so their use is limited.

Therefore in the experiment, micro pulse laser equipment is applied to the lap
welding of NiTiNb and TC4 alloy sheets with the same thickness of 0.2 mm, and
Ni sheet as a filler metal is used to control the cracks during the welding. The
microstructure, crack, and fracture surface of the joint is investigated, and the data
can provide the theoretical support for the dissimilar welding of NiTiNb toTC4
alloys.

2 Materials and Methods

In the experiment, 0.3 mm thick NiTiNb hot rolled sheet and 0.2 mm thick TC4
sheet are adopted as a base material. Filler metal of pure Ni foil with a thickness of
50 lm is added in the middle of two alloys during the welding process. Their main
chemical components and physical properties are shown in Tables 1 and 2,
respectively.
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According to ASTM G1-90, NiTiNb alloy sheets are put in a mixed solution
(volume ratio, HF:HNO3:H2O = 1:3:5) to remove the oxide film before the weld-
ing, and then are washed and dried by acetone. The welded NiTiNb alloy sheets
must be controlled within 200 ± 10 lm thickness to keep the same thickness as
TC4 alloy sheet.

SL-80 type Nd:YAG pulsed laser welding machine is used in the experiment.
The laser wavelength is 1.06 lm and the largest laser power is 80 W. The gas
protection device is designed in the experiment to prevent the weld from being
oxidized. The pure argon gas is filled in the gas box and the gas flow rate is
8 L/min. The process parameters were selected as follows: the laser power is 20 W,
the laser spot diameter is 0.3 mm, the pulse width is 6.0 ms, the laser frequency is
5 Hz, and the welding speed is 300 mm/min.

After welding, the microstructure is observed by an optical microscope (OM),
and the crack morphologies and fracture surfaces are analyzed by scanning electron
microscope (SEM) and energy dispersive spectrometry (EDS).

3 Results and Discussion

3.1 Crack Sensitivity for Different Lap Position

Figure 1 shows the cross section of the joint produced by adding the filler metal of
100 lm thick Ni when NiTiNb alloy is placed on the upper. The macrostructure of
the weld presents an onion ring shape which is related to thermal agitation of the
laser. In the bottom of the weld, lots of cracks appear near the side of TC4 alloy,

Table 1 Chemical compositions of materials

Element Mass fraction (%)

NiTiNb TC4

Al – 5.5

V – 4.37

Ti 29 90.13

Ni 60 –

Nb 11 –

Table 2 Physical properties of materials

Material Melting
point (°C)

Coefficient of linear
expansion � 106 (°C−1)

Thermal
conductivity
(W m−1 °C−1)

Specific heat
capacity
(J g−1 K−1)

NiTiNb 1250 11.43 9.8 0.461

TC4 1630 9.1 6.8 0.611

Ni 1453 13.3 5.9 0.456
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and the cracking distance is larger. The main reason is that it is easy to generate a
large number of brittle intermetallic compounds such as Ti2Ni and Ni3Ti in the weld
when NiTiNb alloy and TC4 alloy are welded [21]. What is more, the difference of
the linear expansion coefficients between NiTiNb alloy and TC4 alloy is large,
which makes the weld suffer from large stress concentration. The cracks are easy to
generate because of the effect of residual stress during welding. The physical
properties of Ni are between those of NiTiNb and TC4 alloys, so it can form
metallurgical combination with base material since it can play a buffer action to the
welding crack. During welding, this can change the type and number of brittle
intermetallic compounds by controlling the melting-mixing ratio of Ni to Ti element
according to the Ti–Ni binary phase diagram. Thus, Ni as filler metal can reduce or
eliminate the welding cracks during laser welding.

Figure 2 shows the cross section of the joint when TC4 alloy is located on the
top during welding. It is clearly seen that two cracks expand upwards from the weld
center, the number of cracks significantly decrease and the cracking distance
becomes smaller. Figure 3 shows a magnified graph of the crack in the zone A of
Fig. 2. It is found that the crack originates from the interface of Ni, fusion zone, and
TC4 alloy, and then expands through the grains along the vertical direction. The
analysis is that the solidification shrinkage and thermal contraction increase during
the cooling process due to the difference in thermal expansion coefficients (the
difference of thermal expansion coefficients between TC4 and Ni is bigger than that
of TC4 and NiTiNb). The crack produces along the columnar crystal which can
urge the inhomogeneous deformation of grains, and add the brittleness and crack
sensitivity of the weld.

Fig. 1 Cross section of the
joint when NiTiNb alloy is
placed on the upper and
100 lm thick Ni foil is added

Fig. 2 Cross section of the
joint when TC4 alloy is
placed on the upper and
100 lm thick Ni foil is added
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3.2 Crack Morphology for Adding Filler Metal

Figure 4 shows the macro cross section when TC4 alloy is placed on the upper and
the filler metal of Ni with 50 lm thickness is added during welding. The number of
cracks reduces and the cracking distance of the crack is only about 5 lm. Figure 5
shows the local position of the crack. It is seen that the crack originates from the
bottom of the weld, different phase structures are layered, and the thickness of
compound layers is between 3 and 15 lm in the weld bottom. Lots of shrinkage
pores exist near the area of the zone in Fig. 5. The reason is that there is no enough
liquid metal supplying from the surrounding of the crack. The EDS result shows
that the element proportion of Ti and Ni is 0.83:1 in the zone. However, the element
proportion of Ni and Ti in the area is 65.27:28.71, which is close to the ratio of
brittle phase of Ti2Ni. The crack is easy to generate and expand during the process
of energy release, and the brittleness of the weld increases.

The cracks can be prevented by reducing the generation of brittle compound
[22]. Figure 6a shows the surface morphology of the joint when TC4 alloy is placed
on the upper and 50 lm thick Ni filler metal is added during welding. The longi-
tudinal crack occurs on the surface of the joint. However, a no-defect weld is
produced when NiTiNb alloy is placed on the upper and 50 lm thick Ni foil is
added, as shown in Fig. 6b. Figure 6c shows the cross section of the joint in Fig. 6b
when 50 lm thick Ni foil is added. The local cross section of the weld presents
chrysanthemum shape which may be related to the thermal agitation of laser during

Fig. 3 Magnified graph in
the region A of Fig. 2

Fig. 4 Cross section of the
joint when TC4 alloy is
placed on the upper and
50 lm thick Ni foil is added
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the welding process. Also, the width of the upper molten pool is wider than that in
the bottom. However, it is similar to the “bowl” shape for the whole weld due to
heat transfer. High temperature is produced by laser focusing which can cause the
loss of alloy elements, so the top shape of the weld is concave. The closed met-
allurgical combination is formed, and the defects such as blowholes and cracks are
not found in the weld. Different organizations can be seen in the weld, which
suggests that the macro segregation is coming.

Fig. 6 Surface morphology when TC4 alloy: a or NiTiNb alloy; b is placed on the upper and
cross-sectional morphology; c of the joint in Fig. 6b

Fig. 5 Magnified graph in the region A of Fig. 4
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3.3 Distribution of Element

Figure 7 shows an enlarged map of the area I in Fig. 6c. The layered microstructure
is obvious in the bottom of the melted pool that presents different phase structures.
A transition layer with a width of 10 lm is adjacent to the base material. Table 3
shows the result of EDS analysis in the area in Fig. 6c. The content of Ni in the area
of Point C is the highest, and then reduces with the increase of the distance from
Point C. However, the content of Ti element becomes higher with the increase of
the distance from Point C, and it is close to that of TC4 at Point A and that of
TiNiNb at Point E, respectively. The content of Nb gradually decreases from
Point E to Point A. The reason is that Point C is in the area of Ni sheet. Al and V
elements gradually reduce in the fusion zone along the vertical direction to the weld
surface. The result in Table 4 shows that the black area lacks V element while the
white area contains V element. The content of Al near weld surface reduces and it is
about 0.14% in the area of in Fig. 6c. Point B mainly contains Ni element and Ti
element; the ratio of Ni to Ti is about 31.26:60.21. It is proved that this area is Ti2Ni
phase according to the studies of Song et al. [23] and Chen et al. [24] and Ti–Ni
binary phase diagram. The existence of brittle Ti2Ni phase can increase the crack
sensitivity and reduce the toughness of the weld.

Figure 8 shows a magnified map of the area II in Fig. 6c. In the weld center, the
heat dissipation is slower than that far from this area, which can form the dendrite in
bar shape. However, the supercooling degree of the right area far from the weld
center is larger than that of the weld center because of faster heat dissipation, so like

Fig. 7 Microstructure in the
bottom of the weld

Table 3 EDS analysis in the
bottom of the weld when
NiTiNb alloy is placed on the
upper and 50 lm thick Ni foil
is added

Point Element content (at.%)

Ni Ti Nb V Al

A – 88.89 – 3.81 7.30

B 31.26 60.21 0.48 4.57 3.48

C 59.58 33.68 2.57 1.54 2.63

D 55.04 38.84 6.12 – –

E 40.89 47.30 11.25 – 0.56
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the parent metal on the right, the grain size is finer. Little V element is found at
Point G from Table 4, but Point F lacks V element. The content of Nb element at
Point F is higher than that at Point G. The content of Nb element in the white area is
higher than that in the black area. In general, the black areas are low-melting
eutectic zones, and the gap can be filled by crystal grains, so the crystallization
crack is prevented [25]. The compositions in these regions are uniformly distributed
and the small grain and elliptic boundaries are formed in the weld. These conditions
are very helpful for avoiding the stress concentration. Therefore, the cracks in the
weld obviously decrease even disappear.

3.4 Fracture Surface

When NiTiNb alloy is placed on the upper and 50 lm thick filler metal of Ni is
added during welding, the tensile test of the joint is carried out and the fracture
surface is analyzed. Figure 9 shows the load-displacement curve of the tensile
sample. It is seen that the shear load is about 162 N. Figure 10 shows the SEM
image of the fracture surface of the tensile sample. The macro fracture is flat and the
cleavage stage is found in local region of fracture surface. Also, few micro-cracks
are observed. The main reason is that large stress concentration occurs due to brittle
compounds generated by composition segregation. During the testing process, the
cracks rapidly expand to the surrounding when the load is greater than the yield
strength of the weld and the brittle fracture occurs.

Table 4 EDS analysis when
NiTiNb alloy is placed on the
upper

Point Element content (at.%)

Ni Ti Nb V Al

F 47.45 46.56 5.85 – 0.14

G 43.03 46.59 9.57 0.67 0.14

Fig. 8 SEM image in the
area of Fig. 6c
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4 Conclusion

(1) Lots of cracks are generated when NiTiNb alloy and TC4 alloy are joined by
laser welding due to brittle intermetallic compounds. The decrease and elimi-
nation of the cracks in the joint can be controlled by adding filler metal of Ni
with different thicknesses and a no-defect joint can be obtained.

(2) The crack sensitivity of the joint increases due to the formation of Ti2Ni brittle
compounds. The finer grains and elliptic boundaries are formed when filler
metal of Ni is added during the welding process, which can prevent the crack
from the formation and reduce the crack sensitivity.

Fig. 9 Load-displacement
curve when NiTiNb alloy is
placed on the upper and
50 lm thick Ni foil is added

Fig. 10 SEM image of
fracture surface
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(3) When NiTiNb alloy is placed on the upper and 50 lm thick filler metal of Ni is
added, no crack is found on the surface and the cross section of the weld. The
shear load of the joint can reach 162 N and the fracture mechanism presents a
brittle fracture.
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Research on the Ultrasonic Welding
of Titanium Alloy After Embedding Fiber
Bragg Grating Sensor

Zhengqiang Zhu and Qiankun Xiao

Abstract Fiber Bragg grating (FBG) sensor is a preferred carrier for information
transmission and sensing of smart metal structures. The electroplated nickel FBG is
embedded in a direct or indirect way and welded by ultrasonic welding to research
the rapid prototyping and sensing properties of the titanium alloy intelligent
structural parts. The experiment of embedding electroplated nickel FBG into tita-
nium alloy in the direct way shows that titanium alloy is not suitable for embedding
matrix. The experiment of embedding electroplated nickel FBG in the indirect way
shows that the figure of FBG temperature sensitivity is 2.13 times larger than that of
original bare fiber grating, and is 1.11 times larger than that of direct way. This fact
means that embedding metallized FBG into the titanium alloy structure in the
indirect way is an effective way.

Keywords Metal intelligent structure � Embedded metal
Fiber Bragg grating (FBG)

1 Introduction

Owing to the unique properties, fiber Bragg grating (FBG) has been widely used in
civil engineering, aerospace, shipbuilding, petrochemical and other fields [1]. In
view of the advantages of energy conservation, environmental protection, easy
operation and fast welding of ultrasonic welding [2], embedding FBG sensor into
titanium alloy has a great research value to realize intelligent structure which can
perceive the external environment [3]. Considering that the main component of
ordinary fiber is quartz, and the strength especially the shear stress is poor, it
becomes more fragile after coupling of the fiber grating sensor which is likely to
cause damage to the fracture under the ultrasonic vibration [4, 5]. Therefore, it must
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be effectively protected before being embedded into titanium alloy. This paper
introduces the metal protection method of FBG sensor in detail. Finally, the FBG is
embedded according to the optimized process parameters of ultrasonic welding of
titanium alloy, and the FBG embedded into titanium alloy is tested to determine
whether it loses efficacy after being embedded [6].

2 Related Work on FBG

FBG is the most common fiber grating which belongs to the typical wavelength
modulation type optical fiber sensor [7]. It uses the optical fiber writing technology
to form a space phase grating with the core refractive index periodically changed
along the fiber axes. The schematic diagram of the FBG sensor is shown in Fig. 1.
When the broadband light wave transmits in the raster, the reflection of the light
that satisfies the Prague phase matching conditions is strong, and the light that does
not satisfy the Prague phase matching conditions is reflected back, while light
transmission is not affected [8]. This is the choice of fiber grating light. Bragg was
the first one to explain this tuning wavelength reflection phenomenon [9], so this
kind of grating is named as Bragg grating, and the reflection condition is called
Prague condition.

Due to the high melting point of the metal, the embedded fiber grating sensor has
a lot of difficulties. The methods used are casting, shape deposition manufacturing,
brazing and ultrasonic welding. In the casting method, Hamid et al. [10] cast a tin–
lead alloy with a tin content of 65% (melting point of about 190 °C) in a square low
carbon steel hollow model as a protective layer for optical fibers, and then used the
laser free molding to deposit WC–Co alloy layer on the outer surface of the low
carbon steel model. A high hardness outer cutting tool was obtained to monitor the
temperature and stress of the tool during cutting. Figure 2 shows the FBG
embedded cutting tool in the physical model. In the shape deposition manufacturing
technology, a nickel-plated optical fiber sensor was successfully built into the
stainless steel by laser-assisted shape deposition on the surface of the stainless steel

Fig. 1 Schematic diagram of FBG sensor
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substrate [11]. The FBG temperature sensitivity after the embedding was improved.
In the brazing method, an electroplated nickel FBG was successfully buried into the
low carbon steel, and the buried FBG temperature sensitivity increased by 1 times.
In addition, a metal FBG was successfully crushed and embedded into the
nickel-chromium alloy material by means of vacuum brazing, and the FBG tem-
perature sensitivity increased by 1.1 times.

3 Experiments

3.1 Pretreatment

Fiber is a nonmetal. To coat the metal on its surface, it is necessary to make the fiber
form a clean catalytic transition surface. The specific steps of the pretreatment are
generally to remove the coating and then degrease and sensitize the final activation.
After the pretreatment, it must plate nickel in the fiber to achieve further protection.
Fiber grating plating nickel includes two steps: the first is chemical plating, and the
second is electroplating.

Chemical plating refers to the catalytic reduction of metal ions in the bath on the
substrate of the clean catalytic transition surface, and the reduced metal atoms are
deposited on the surface of the substrate to form a continuous metal coating reaction
process [12]. It has a lot of advantages, including uniform coating, beautiful
appearance, a wide application of substrates (conductors, semiconductors and
non-conductor), no-load current, and so on. The purpose of chemical plating nickel
is to form a thin layer of conductive nickel-phosphorus alloy on the surface of the
non-conductive fiber grating, and it is ready for electroplating nickel. Chemical
plating experiment device is shown in Fig. 3.

Because of the nickel–phosphorus alloy layer is very thin after chemical plating,
it is difficult to protect the fiber under high-frequency vibration grating. Therefore, it
is necessary to electroplate a layer of dense nickel so as to improve the FBG’s

Fig. 2 The embedded FBG cutting tool in a the physical model by casting method and b laser free
molding manufacturing method
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anti-pressure and bending ability [13, 14]. Electroplating is an electro-chemical
process that uses an electrolysis process to reduce the metal ions to metal and
deposit them on the surface. Figure 4 shows the schematic diagram of fiber grating
electroplating nickel.

Besides ultrasonic vibration, the welding temperature and welding pressure are
also the key to embed FBG into titanium alloy under ultrasonic welding [15].
Therefore, it is important to design FBG sensor embedding method. We have
designed two ways, named “direct embedding” and “indirect embedding”. Figure 5
shows three kinds of direct embedding. Figure 6 shows a schematic diagram of
indirect embedding scheme.

Considering that the thickness of the titanium alloy is 0.3 mm, the upper and
lower titanium alloy is 0.6 mm totally. Therefore, the diameter of the FBG after the
direct embedding method should be controlled within 0.6 mm. The FBG diameter
of the nickel after plating is 300–550 lm (the diameter of the bare fiber is 125 lm).

Fig. 3 Chemical plating
device

Fig. 4 Fiber grating
electroplating nickel
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The indirect embedding method is not limited by the FBG diameter, and the
thickness of the plating layer can be increased appropriately. The FBG embedded in
the indirect way has a diameter of 841 lm after nickel plating. In three kinds of
direct embedding, analysis shows that the second is more suitable for this experi-
ment, as shown in Fig. 5.

3.2 Direct Embedding

Interception of Ti6Al4V titanium alloy sheet is completed by using the metal
cutting equipment. The sheet is 150 mm � 40 mm � 0.3 mm. Three upper and
lower grooves are machined into two titanium alloy sheets, as shown in Fig. 5.
After the grooves are machined, alcohol is used to wipe the weld zone and groove
to achieve a cleaner bonding surface and a better bonding strength. Adjust the
ultrasonic welding equipment parameters. The use of ultrasonic welding parameters
is: the operating frequency is 20 kHz, the maximum output power is 4 kW, the
welding time is 45–125 ms, the vibration amplitude is 35 lm, the welding head
area is 4 mm � 4 mm, and the welding pressure is 801.17, 1144.53 and 1487.89 N
respectively. Some low hardness materials are used to position the weld before
welding. The so-called positioning refers to no welding and no ultrasonic vibration,
but the welding head under the welding pressure is in welding test. The purpose is
to ensure the correct location of the welding [16]. Observe the indentation to
determine whether the welding head plane is parallel to the base. Put the electro-
plated FBG into the groove between two flakes, and start pre-welding with a lower
welding time. The purpose is to gradually bury FBG in the titanium alloy matrix,
and to complete the final welding with the increase of the welding time.

Fig. 5 Direct embedding FBG

Fig. 6 Indirect embedding
FBG
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3.3 Indirect Embedding

Interception of Ti6Al4V titanium alloy sheet is also completed by using the metal
cutting equipment. The Ti6Al4V titanium alloy sheet is 150 mm � 20 mm
0.3 mm. With the machining method, the middle part of titanium alloy sheet is
processed into the arc form that needs the plating of a good FBG arc and is
processed into the arc close to coincidence to improve the FBG and titanium contact
area. Then, the titanium alloy and FBG form an organic whole to protect the fiber
grating. Figure 7 shows the arc area diagram. After processing of a good arc is
completed, alcohol is used to wipe the welding area and arc area to obtain a cleaner
surface and a better combination of bonding strength. The ultrasonic welding
equipment parameters need to be adjusted. The optimization process parameters of
the titanium alloy ultrasonic welding are: the operating frequency is 20 kHz, the
maximum output power is 4 kW, the welding time is 125 ms, the vibration
amplitude is 35 lm, the welding head area is 4 mm � 4 mm, and the welding
pressure is 1144.53 N.

After pre-welding, put the plated FBG into the arc between two sheets. Weld one
side of the arc first to reduce a subsequent welding impact on the previous welding
area, and use mechanical method to clamp the welded area. Then, weld the other
side. Welding should be careful to prevent the welding head from felling in the arc
area.

3.4 Ultrasonic Welding

Ultrasonic metal welding [17, 18] as a special connection technology has lots of
advantages, such as energy saving, environmental protection and easy operation. It
has been widely used in the industrial field, especially in the electronics industry
and nuclear energy industry for the preparation of new materials, body welding and
parts packaging.

Ultrasonic metal welding principle is not transmitting the current to the material,
and not applying the flame or arc and other high-temperature heat source to the
material. It uses the ultrasonic high-frequency vibration and static pressure of
the combined effect to clean the oxide film in the surface of material welding area.
The ultrasonic high-frequency vibration energy enters into the material interface
and brings the friction work, deformation energy and limited temperature rise to
achieve the same metal or dissimilar metal connection in a special method [19, 20].
The schematic diagram of welding principle is shown in Fig. 8.

Fig. 7 Schematic diagram of
arc area
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4 Results and Discussion

Embed the FBG sensor after metal protection into the titanium alloy structure
directly, under the optimum welding process parameters (welding pressure is
1144.53 N and welding time is 125 ms). We accidentally find that FBG on both
sides in the edge of the welding head is instantly cut into two sections at the end of
welding [21]. By observing the cross-section and surface of the welded joints, we
find that the joints of the upper and lower surfaces are smooth, and FBG embedding
does not cause bulging. There is no pinhole on the cross-section due to the FBG
embedded. The cross section is repeatedly observed by the metallographic micro-
scope (magnification to 1000 times). Pinhole still cannot be found.

The welding time is gradually reduced. FBG still fails to be embedded. With the
welding time at 105 ms and the welding pressure at 1144.53 N, the welding spot is
peeled off. It is found that there is little black charred powder between the inter-
faces. Adjust the welding time at 85 ms or so. The titanium alloy ultrasonic welding
is not reliable, so there is no need to further reduce the welding time. Figure 9
shows a cross-sectional view of the electroplated nickel fiber which is cut off at the
edge of the weld with the welding pressure at 1144.53 N and the welding time at 85
and 95 ms respectively. When the welding pressure is reduced to 801.17 N, the

Fig. 8 Ultrasonic welding principle diagram

85ms                      95ms

Fig. 9 A cross-sectional view of the nickel-plated fiber cut at the edge of the welding head
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situation is similar as the welding pressure 1144.53 N. With lower welding time,
electroplated nickel FBG is still flattened and the solder interface is not bonded. The
main reason is that the titanium alloy has a high hardness, it is difficult to instantly
press nickel plating FBG into the titanium alloy matrix, and the FBG is flattened by
the welding pressure. Under the optimum welding process parameters, the inter-
facial temperature is as high as 1172.4 °C, while the nickel layer is too softened to
protect the FBG at this temperature, and the yield strength is very low [22].

Considering the above reasons, the titanium alloy sheet is heated to 300 °C by
incubator, and then the FBG is embedded, but the test indicates that there is no
effect. Perhaps, the temperature needs to be heated to above 1000 °C, the titanium
is completely softened, and then low welding energy FBG welding embedding may
be successful. Due to the test equipment problems and considering that the FBG is
not in the best welding process parameters, the welding embedding will lose the
significance of the experiment, so the test stops.

After electroplated nickel FBG is embedded into the titanium alloy, its sensing
performance is tested to determine whether the indirect embedding method is
effective. Fiber grating sensing experiment equipment and fiber grating are pro-
duced by Shanghai Purple Light Photoelectric Technology Co., Ltd. The grating
length is 32 mm, and the fiber grating Bragg center wavelength is 1550.103 nm at
20 °C.

Firstly, the temperature sensing test is taken for naked grating. Fiber coating
stripping plier is used to strip the coating bare side layer of grating at a length of
15–20 mm. After stripping, wipe the fiber with cotton, put the fiber into the fiber
adapter, then connect the light adapter in the fiber grating sensor network analyzer,
and finally put the bare fiber grating into the constant temperature water bath box.
Initial temperature is 20 °C and heated to 90 °C. The interval is 10 °C and stays
10 min. Record 15 reflection wavelengths when the wavelength becomes stable and
take the average. The measured mean wavelength of the reflection is linearly fitted
with Origin 8.5 software. Figure 10 shows the naked grating temperature sensor test
data. We can see that the naked grating temperature sensor linearity is good from

Fig. 10 Temperature
measurement test data for
bare fiber gratings
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the figure, and the intelligent metal structure of the information transmission is the
ideal sensor. The fitting results show the temperature of the bare grating.

Metallize the bare fiber grating after the temperature sensing test, and test its
temperature sensing. The purpose is to analyze the temperature sensitivity changes
after the fiber grating embedded. The steps of the test are the same as those of the
bare grating temperature sensing test. Figure 11 shows the temperature sensing test
data of the electroplated fiber grating. It can be seen from the figure that the
electroplated fiber grating maintains a good linearity. The temperature sensitivity of
the electroplated fiber grating is 18.89 pm/°C. The temperature sensitivity has
greatly improved than that of the original bare fiber grating.

Finally, make a temperature sensing test for the FBG embedded into titanium
alloy in the indirect way. The test steps are the same as those of the bare grating
temperature sensing test. Considering that the buried FBG has hysteresis phe-
nomenon, so a set of temperature sensing tests for cooling down is added. Figure 12
shows the indirect embedded fiber grating temperature sensing test data. It can be
seen from the figure that FBG reflection wavelength and temperature changes still
maintain a good linear relationship, and there exists hysteresis phenomenon but it is
not obvious. From the results of the fitting, it is found that the FBG temperature
sensitivity coefficient in the titanium alloy structure is 20.92 pm/°C (during the
temperature rise) and 20.71 pm/°C (during the cooling process). The temperature
sensitivity has been improved before the fiber grating being embedded.

Due to the electroplated FBG or embedded FBG into the titanium alloy structure,
the temperature sensitivity is improved. The reason is that the fiber grating is
metallized or encapsulated, though the thermal coefficient of the fiber grating is not
changed, but the metallized material or encapsulated FBG material thermal
expansion coefficient is greater than the thermal expansion coefficient of fiber
grating. The temperature changes play the role of thermal stress on the fiber grating,
the grating center wavelength drift is exacerbated, so the fiber grating metallization
or packaging increases the temperature sensitivity.

Fig. 11 Temperature sensing
test data of electroplated fiber
grating
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The main parameters of FBG are provided by Shanghai Purple Light
Photoelectric Technology Co., Ltd. The specific parameters are: Poisson’s ratio is
0.17, thermal expansion coefficient is 0.55 � 10−6 °C−1, elastic modulus is
7.474 kPa, thermal coefficient is 667.8 °C−1, center wavelength is 1550.103 nm,
elastic coefficient is 0.121 and 0.27, and fiber grating diameter is 125 lm.
The nickel plating layer parameters are: thermal expansion coefficient is
1.42 � 10−5 °C−1, Poisson’s ratio is 0.31, and elastic modulus is 1981.56 Pa.
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where a0 is the thermal expansion coefficient of optical fiber, a1 is the thermal
expansion coefficient of Nickel plating, f is the optical fiber thermal coefficient, m0
is the fiber Poisson ratio, m1 is the Poisson’s ratio of the nickel-plated layer, S0 and
S1 are fiber grating cross-sectional area, E0 is the elastic modulus of the fiber, E1 is
the elastic modulus of the nickel plating layer, P11 and P12 are shelling coefficients,
kB is the center wavelength of the grating, and neff is the effective refractive index of
the fiber. The thickness of the coating 358 lm and above parameters are taken into
Eq. (1). The theoretical value of FBG temperature sensitivity is 20.91 pm/°C, while

Fig. 12 Temperature
measurement test data for
FBG indirect embedding

100 Z. Zhu and Q. Xiao



the measured value is 18.89 pm/°C. There is no big difference between the theo-
retical value and the actual value. The main reason is that there is deviation in the
calculated parameters and the actual parameters used.

5 Conclusion

The test of embedding electroplated nickel FBG into the titanium alloy in the direct
way means that the titanium alloy is not suitable for embedding matrix. The tem-
perature sensitivity coefficient of the bare fiber grating is 9.83 pm/°C, and the
sensitivity of FBG is 18.89 pm/°C after nickel plating. The FBG temperature
sensitivity coefficient of the indirect embedding into titanium alloy structure is
20.92 pm/°C (during the temperature rise) and 20.71 pm/°C (during cooling). The
temperature sensitivity of the FBG embedded into the titanium alloy in the indirect
way is 2.13 times larger than that of the original bare fiber grating, and is 1.11 times
larger than that of the FBG sensor after electroplating nickel. It indicates that
indirect embedding is an effective method to embed FBG into the titanium alloy
structure. FBG is not damaged by indirect embedding into the titanium alloy, and
the temperature sensitivity has been improved.
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Analysis of Vacuum Chamber Structure
Based on Visual Finite Element Modeling

Yanhu Wang and Xizhang Chen

Abstract The feasibility of improving the vacuum chamber structure of vacuum
packaging machine is discussed. The finite element software, Visual Environment,
is used to simulate the structures of prime vacuum chamber and improved vacuum
chamber which is built most through weld process. The results show that the
maximum weld residual stress of the improved vacuum chamber changes and the
stress concentration is greatly reduced with finite element analysis (FEA). At
the same time, a path for a particular site is created and the range of stress changes
is found from the original 270–340 to 240–310 MPa. The improved method not
only saves resources but also improves product quality, which is verified by the
actual product.

Keywords Vacuum chamber � Finite element analysis (FEA)
Welding residual stress � Structure

1 Introduction

With the improvement of modern consumption concept, product packaging and
texture gradually arouse people’s attention. The vacuum packaging compared to
other packaging has the advantage to maintain the color and keep fresh in pro-
longed shelf-life items, especially for the packaging of active substances [1]. It
promotes the evolution of the packaging machine. However, the vacuum packaging
machine structure and the process designed by many enterprises are not much
reasonable. Most of them lead the vacuum chamber to crack. A well-known
packaging company named Hualian Machinery Group is good at producing the
vacuum packaging machine. These years it also meets similar quality problem. In
order to advance the vacuum packaging machine, it improves the structure of
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vacuum packaging machine. Consumers very satisfy the improvement vacuum
packaging machine during the use of the product.

With the development of finite element technology, the product structure is
constructed by the simulation to predict product defects and provide important
information for structure optimization [2]. In this work, finite element analysis
(FEA) software Visual Environment is used to analyze two different structures of
vacuum chamber, and provides theoretical basis for the improvement on the vac-
uum chamber structure.

2 Vacuum Packaging Machine

2.1 Composition of the Vacuum Packaging Machine

The vacuum packaging machine is shown in Fig. 1. The vacuum packaging
machine consists of handle, vacuum cover, link, seal assembly, vacuum chamber,
chassis, control panels, vacuum pumps and caster. Eight main parts are shown in
Table 1.

2.2 Working Principle

When the bag is in the vacuum chamber, the vacuum cover is closed, and the
machine starts to build an airtight vacuum space. After vacuuming is completed, it

Fig. 1 Vacuum packaging
machine
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should fill with inert gas firstly if needed. Different pressure is used between the
vacuum chamber and the outside atmosphere to overcome spring force. Let the heat
sealing plate drop with the air bag. The heat sealing plate is installed with an electric
hot flat. When there is a large low-voltage through the flat, heat is generated to seal
the bag. The vacuum cover is cooled and then opened. At last, vacuum packaging
process is completed.

3 FEA of Vacuum Chamber Model

3.1 Prime Machine’s Vacuum Chamber

Material of vacuum chamber is 0Cr18Ni9 alloy. The composition is Cr18.09%,
Ni8.15%, Si0.35%, C0.0344%, S0.003%, Mn1.03% and P0.039%, in addition to
Fe. Table 2 shows some mechanical properties of 0Cr18Ni9 material. There are
many studies on 0Cr18Ni9 stainless steel in stress corrosion, stress fatigue and
fracture [3, 4]. When the material plastic deformation occurs, it is also prone to
deformation which induces martensitic phase transformation. The formation of
martensitic phase improves the strength and hardness of the material but reduces the
ductility and toughness. Therefore, plastic deformation must be limited for this kind
of austenitic stainless steel product to ensure that the products during the service
still have enough plasticity and toughness [5].

The stress and strain parameters of 0Cr18Ni9 materials are obtained by tensile
test. The stress and strain obtained by the experiment are called nominal stress and
nominal strain. True stress and strain are needed during simulating the material
plasticity parameter. Nominal stress rnom and strain enom are transformed into true
stress rtrue and strain etrue by

Table 1 The main parts of
vacuum packaging machine

Number Part name

1 Handle

2 Vacuum cover

3 Link

4 Seal assemble

5 Vacuum chamber

6 Chassis

7 Control panels

8 Caster

Table 2 Some characteristics of 0Cr18Ni9 material

Material Elastic modulus/GPa Poisson’s ratio Yield strength/MPa

0Cr18Ni9 204 0.285 205
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The relationship between true stress and strain is shown in Fig. 2.
The vacuum chamber manufacturing process consists of laser cutting, bending

and welding. Of course, there is another way to build the vacuum chamber through
the stud welding technology which is more advanced and high efficiency [7]. As the
vacuum chamber is the center of the symmetrical pattern and most of the vacuum
chamber manufacturing process are welding, 1/4 model for simulation that can get
the same accuracy on the simulation result is constructed to save time and improve
efficiency, as shown in the Fig. 3.

When one dimension scale is much smaller than other components, FEA can be
carried out using shell element to simplify the calculation. At present, the solid shell

Fig. 2 The stress strain curve
[6]

Fig. 3 The 1/4 model of
vacuum chamber
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element has aroused widespread concern [8]. The shell element is divided into three
categories: general shell, thin shell and thick shell. It is generally considered that if
the ratio of thickness to span of the shell which is made of a single material is
between 1/20 and 1/10, it is thick shell. Because the vacuum chamber thickness is
only 4 mm, much smaller than 1/10 of global size belongs to the typical shell
element. So it is necessary to extract the thin shell of the vacuum chamber. The
features of the suction holes, threaded holes and so on are ignored to reduce the
calculation. The Visual Mesh software is used to clean up the geometry and repair
the surface, as well as to complete the surface modeling. The replanting size is 10
which is greater than thickness. The fine meshes are adopted in the diagonal to
improve the accuracy of computation and the coarse meshes are used in less
important regions where they don’t have problems to reduce the solution time. The
density of mesh has little impact on the mechanical response of crystal plastic
deformation and the mesh quality can be used to analyze three-dimensional elas-
ticity problems [9, 10]. The meshing model is shown in Fig. 4.

The appropriate thickness and assignment material for various parts of the shell
is set according to the thickness of the plate and ribs [11]. The purpose of applying
the boundary constraint is to prevent the rigid displacement during calculation [12].
Boundary conditions are based on the actual working conditions. The vacuum
chamber is fixed at four sides as a fixed constraint. There are 13 welds, the welding
wizard is set according to the number on the grid model. All of the pretreatments
are processed by Visual Weld. The corresponding stress results are shown in Fig. 5.

The stress result with a maximum stress of 350.5 MPa is shown in Fig. 5. The
stress level is high and it exceeds the yield strength of the material. It is seen that
stress concentrates in the bending plate and the channel junction. The stress con-
centration is the main factor affecting the fracture and maybe microstructure
[13, 14]. The test machine shows the location of the crack. A path is built on the
first weld to research the relationship between residual stress and yield strength. The
red line is residual stress line and the green line is yield strength line. The result is
shown in Fig. 6.

It is seen that there is a large fluctuation in residual stress and yield strength at
each channel from Fig. 6. Especially, when there is a large increase in yield strength

Fig. 4 The 1/4 model of the
original vacuum chamber grid
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at each channel and then there is a low fast drop, the residual stress changes slowly.
There is no yield point but the residual stress and yield strength are very close. It is
possible to cause material failure especially in the vacuum chamber of the studio
because the vacuum state is easy to cause greater stress damage. As the number of
welds increases, the much more residual stress is accumulated at the first weld. The
load on the junction between channel iron and bending plate is mainly shared by the
bending plate. Large stress is concentrated in their junction and it easily causes weld
cracks.

Fig. 5 The stress cloud of the vacuum chamber

Fig. 6 The relationship between residual stress and yield strength for the vacuum chamber
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The cause of junction stress for channel iron and bending plate is considered: in
commissioning model, the bending plate height is improved to improve the vacuum
chamber stiffness in design. However, the increase of the bending plate height leads
to fluctuation in the junction, which produces stress non-uniform and causes stress
concentration and plastic deformation. The more the welds are, the worse the
condition will be. As the number of welds increases, the much more stress is
concentrated at the first weld.

3.2 Improved Vacuum Chamber

The test machine model is constructed and the possible cracking of the issues are
proposed to improve the vacuum packaging machine program. The improved
program especially aims at bending plate and reducing the welds. It is not by the use
of welding but the mechanical methods for the vacuum chamber of the central
beam. The bending plate height is reduced through 45° treating at the end of
bending plate so that the junction channel iron has uniform stress. The improved
model is shown in Fig. 7. The same way is used to mesh the improved vacuum
chamber and the grid model is shown in Fig. 8.

The same method is used to analyze the improved vacuum chamber. Because it
is not by the use of welding but the mechanical methods for the vacuum chamber of
the central beam, the number of welds reduces to 10. Compared with the previous
model, this model has decreased three welds. The overall model will reduce 12
welds due to only a 1/4 of the present model. The less welds will shorten the
product completion time and improve the efficiency for the enterprises. The same
method is used to make all pretreatments, and then the file is put to simulate. The
corresponding result is shown in Fig. 9.

The stress is shown on the border of improved model and significant
improvement is got. There is a slight decrease in the maximum stress and the
maximum value is decreased from previous 350.5 to 312.9 MPa. The position of
the maximum stress has changed and the maximum stress concentration area

Fig. 7 The comparison chart
of bending plate before and
after improvements: the
original bending plate (a); the
improved bending plate (b);
the original three-dimensional
model (c); the improved
three-dimensional model (d)
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decreases significantly while the stress distribution has improved a lot. The same
path from top to bottom is built on the first weld to research the path change
relationship between residual stress and yield strength. The location of the path is
the same as that of the test machine’s vacuum chamber, as shown in Fig. 10.

The overall variation curve is consistent with the previous model. The stress is
improved and the maximum value is reduced from previous 340 to 310 MPa, about

Fig. 8 The 1/4 model of the advanced vacuum chamber grid

Fig. 9 The stress cloud of the improved vacuum chamber
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9%. It can be known that the method of reducing welds is working. Compared with
those of the vacuum chamber of tested machine, the residual stress and yield
strength change slowly. It can be deduced from Fig. 10 that the stress of each
channel just decreases, not increases. There is a certain stress reduction at the
junction and the amplitude of fluctuation is relatively small. In each junction, the
stress value is reduced. It shows that the improved channel iron can play a better
supporting role. Bending plate can share the load better.

It is also known that the stress value at the junction of the channel and the
bending plate in the previous stress analysis is the greatest. It is also possible to
infer from Fig. 11. Although the stress value is the largest here in the improved
model, the stress is much large in the yield curve from the yield strength. So the
modified model to improve the stress of this position plays an important role.

In order to research the relationship between stress and yield strength at the
original and improved models, a path in the channel and the first weld at the
bending plate are established. The result is shown in Fig. 11. It can be seen that
the residual stress of the original model is fluctuant. While the residual stress of the
improved model steadily reduces. The residual stress and yield strength are obvi-
ously lower than those of original model. So the improved model is less likely to
yield and has better performance.

4 Conclusion

FEA of the 1/4 vacuum chamber is used to distinguish the positions where stress is
large and relatively concentrated and the stress amplitude changes greatly. These
areas can produce plastic deformation which influences the quality of products

Fig. 10 The relationship between residual stress and yield strength for the improved vacuum
chamber
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seriously. In order to improve the bending plate with 45° treat at the end of bending
plate and to reduce the welds, it is not by the use of welding but the mechanical
methods for the vacuum chamber of the central beam. It can be deduced that the
stress of the improved vacuum chamber has decreased by FEA. At the same time, a
path for a particular site is constructed where the range of stress changes from the
original 270–340 to 240–310 MPa and the stress is greatly improved. The actual
effect will be more obvious if the simulation model is overall. The results of the
simulation provide theoretical basis for improving the vacuum chamber structure.

Fig. 11 The relationship between residual stress and yield strength at the position of channel and
bend plate junction: original model (a) and advanced model (b)
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Single-Channel Blind Source Separation
and Its Application on Arc Sound Signal
Processing

Wenjing Ren, Guangrui Wen, Riwei Luan, Zhe Yang
and Zhifen Zhang

Abstract Welding arc sound signal is an important signal in intelligent welding
diagnosis, due to its informative, noncontact, easy collected. However, due to the
interference of ambient noise, the arc sound signal is highly complex and noisy,
which seriously limits the application of arc sound signals. In this paper, a
single-channel blind source separation (BSS) algorithm based on the ensemble
empirical mode decomposition (EEMD) is proposed to purify and denoise the arc
sound signals. First, EEMD is used to decompose one channel signal to several
intrinsic mode functions (IMFs). Second, principal component analysis (PCA) is
used to reduce the multidimension IMFs to low-dimension IMFs, which are
regarded as the virtual multichannels signals. Finally, independent component
analysis (ICA) separates the virtual multichannels signals into target sources. The
approach was tested by simulation and experiments. The simulated results show
that signals separated from mixed signal using this approach highly match the
source signals that make up the mixed signal. Moreover, experimental results
indicated that the source signals of arc sound were effectively separated with
the environmental noise signals. The statistical characteristics of the spectrum in
5–6.5 kHz band extracted from the arc sound source signals can accurately identify
the two types of weld penetrations.
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1 Introduction

As an accompanying signal of welding process, arc sound signal carries abundant
information of welding physical parameters. Experienced manual welders can
obtain higher welding quality through the feedback of arc sound [1]. Welding arc
sound signal is the interaction of energy change, arc volume fluctuation, protective
gas flow, molten pool shape, and so on [2–5], thus creating a tight correspondence
between arc sound signals and those parameters. Recently, acoustic signals are
widely used in welding process defect detection and welding dynamic monitoring.
Emad [6] reveals the relationship between arc sound signal and such penetration
states as partial penetration, full penetration, and burn through. Power spectrum
density (PSD) features were extracted from arc sound signals, and three welding
states were effectively identified by means of neural network. Lv [7–9] realizes the
recognition of welding arc length and penetration state, using time and frequency
domain characteristics extracted from the sound signals of gas tungsten arc welding
(GTAW). Zhang [10] using support vector machine (SVM-CA) estimate the dif-
ferent weld penetrations, local caving, and porosity of GTAW, based on the fusion
of voltage, sound, and spectral signals. And a set of multi-signals preprocessing,
feature extraction, dimensionality reduction, and fusion defect pattern recognition
methods were put forward.

The key to the accuracy of welding defect detection is the quality of the original
signal. As for the complex working environment, the original arc sound signal is
usually a superposition of many source signals such as arc, welding machine, and
environment. As a result, the original arc sound signals are complex and have low
signal-to-noise ratio. Therefore, effective noise reduction is greatly important to
improve the accuracy of welding defect detection. At present, the widely used
methods for denoising are noise filtering, time domain average, etc. [11]. But these
methods cannot remove the environmental noise whose frequencies are low and
overlapping with arc sound signal. Blind source separation (BSS) is a dominant
technique for separating the multivariate signals into different source independent
components. The independent component analysis (ICA) is the main method for
BSS. ICA separates useful signals from noises and concentrates them into the
corresponding independent components. Then the noises can be easily reduced. It
has been applied in various fields such as rotors fault diagnosis, electroen-
cephalography (EEG), etc. [12, 13], but few literatures report the application on
welding audio signal. The biggest limit of ICA is that if there are fewer channel
signals than sources signals, ICA cannot guarantee efficient separations and useful
information may be lost.

In this paper, a novel approach of single-channel BSS based on EEMD is
presented. To overcome the limitation of the ICA, EEMD has been proposed to
assist ICA for improving the performance of denoising. The single-channel mixed
signal is decomposed first by EEMD to IMFs. Then PCA is used to reduce the IMFs
to principal components (PCs). Finally, ICA separated the PCs into the target
source signals. The effectiveness of the approach is verified by simulation and
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actual arc sound signals. The results proved that the proposed approach is con-
ducive to the characteristics extraction of arc sound signals. Eight statistical char-
acteristics extracted from the spectrum of separated signal u1 can distinguish the
partial penetration from the full penetration effectively.

2 Single-Channel Blind Source Separation

2.1 Blind Source Separation

BSS is used to separate source signals from one or more observations with an
unknown mixture process of sources. ICA is a common method for BSS and is
widely used in many disciplines [14]. In this method, source signals are separated
from observations based on the statistical independence hypothesis of sources,
without any prior knowledge. The ICA mathematical model is shown in Fig. 1.

Where s(t) (sðtÞ ¼ s1; s2; . . .; sm½ �T) is source signals. x(t) (xðtÞ ¼ x1; x2; . . .; xn½ �T)
is original signals, which is linearly combined from s(t) by a mixing matrix,
expressed as x(t) = An�m�s(t).

Under the condition that x(t) is known, An�m and s(t) are unknown, ICA is the
approximate estimation of separating source signals s(t) by optimizing the sepa-
ration matrix Wn�m. The optimal Wn�m should make sure the separated signals have
strongest independence.

Therefore, ICA is essentially an optimization problem, which mainly includes
two aspects: the one is to establish the optimal objective function to determine the
independence standard; the other one is to select the appropriate algorithm to
optimize the objective function. According to these two aspects, a variety of ICA
methods can be derived. Among them, fast independent component analysis
(FastICA) is a widely used and mature algorithm. In this method, the negative
entropy maximization standard is used to obtain the most optimal separation matrix
[15]. The calculation steps are listed in Fig. 2.

2.2 Single-Channel BSS Based on EEMD

Because of the complex environment in engineering practice, the number of signal
sources is difficult to predict. Meanwhile, the multisensors are high cost and hard to

Mixed matrix
A

Source signal
s(t)

Unknown

Mixed signal
x(t)

Separated signal
y(t)

Decomposition
matrix W

Fig. 1 Mathematical model
of ICA
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assembly. So the number of sensors is often less than that of signal sources, and
even only single-channel signal is collected. In order to realize the single-channel
BSS, the single-channel signal should be decomposed to virtual multichannel
signals.

Empirical Mode Decomposition (EMD) is a time-frequency analysis method
proposed by Huang in 1998 [16]. It decomposes the signal into a series of Intrinsic
Mode Functions (IMFs) based on the local time characteristics of signals. Thus, the
complex signal is reformed into multiple single components whose instantaneous
frequencies are meaningful. EMD can adaptively decompose the signals, so it is
quite suitable for decomposing the nonlinear and nonstationary signals.
A significant drawback of EMD is that the decomposed signals have aliasing in
frequency.

EEMD is an improved EMD algorithm [17]. The aliasing is restrained by adding
white noises to original signal before decomposing. The decomposed results, which
have added different white noise, are averaged to eliminate the white noises in
IMFs. Because of the uniform distribution of white noise scale, it can not only

The W is
convergence or not

Start

Uniformization
Processing

Get Mixed 
Signal

Initialize decomposition 
matrix W

Calculate decomposition 
signals through W

Iteration

Update W

End

No

Yes

Fig. 2 Block diagram of
FastICA
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smooth the abnormal disturbances such as pulse interference but also can provide
evenly distributed random scale for signals, and effectively suppress the frequency
aliasing. The steps of the EEMD algorithm are described as follows.

(a) Adding Gaussian white noise x(t) to x(t),

X tð Þ ¼ x tð Þþx tð Þ ð1Þ

(b) Decompose x(t) to IMFs by using EMD,

X tð Þ ¼
XN

n¼1

cn tð Þþ rN tð Þ ð2Þ

where, cn(t) the nth IMF; N is the number of IMFs in each decomposition; rN(t) is
the residual volume after decomposing.

(c) Repeat steps a and b M times, but adding different Gaussian white noise each
time. The final IMFs are the average of M times IMFs:

cn tð Þ ¼ 1
M

XM

i¼1

cin tð Þ ð3Þ

where, cin(t) is the nth IMF decomposed by the ith times EMD. As the final IMFs
decomposed by EEMD are usually multiple, which will cause high iteration
numbers and slow convergence when multiple IMFs are directly used for ICA. To
solve this problem, PCA is used to reduce the number of the IMFs. The principal
components which contribute most are selected and regarded as the virtual multi-
channel signals. Then FastICA is processed on them to obtain the separated source
signals. Then the single-channel BSS is proposed and its total principle is as follows
(Fig. 3):

Single channel
signal

 n IMFs 
decomposation

m principal components 
assumed as virtual multi-

channel signals
m seperated signals

( )x t
1 2 nIMF ,IMF , IMF⋅ ⋅ ⋅ ( ) ( ) ( )1 2 m, ,     m nt t tυ υ υ⋅ ⋅ ⋅ ≤ ( ) ( ) ( ), ,1 2 mu t u t u t⋅ ⋅ ⋅

EEMD PCA ICA

Fig. 3 Total block diagram of single-channel BSS
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3 Simulation Analysis

In order to verify the effectiveness of this proposed method, simulations are carried
out. First, three source signals, labeled s1(t), s2(t), s3(t), are established and mixed
into a single-channel mixed signal x(t).

s1 tð Þ ¼ 5� sin 2� p� 450� tð Þ � e�5000 t�roundðt�15Þ=15ð Þ2ð Þ ð4Þ

s2 tð Þ ¼ sin 2� p� 100� tð Þ ð5Þ

s3 tð Þ ¼ sin 2� p� 50� tð Þ ð6Þ

x tð Þ ¼ 1:1s1 tð Þþ 0:7s2 tð Þþ 0:85s3 tð Þþ 0:1n tð Þ ð7Þ

where n(t) is a noise signal. The signals are simulated at a sampling rate of
2048 Hz. Their time domain and spectrum graphs are shown in Fig. 4.

According to the process scheme showed in Fig. 3, the mixed signal x(t) is
decomposed to nine IMFs by EEMD, in which the variance of the white noise is half
the variance of x(t), and the decomposed times (M) is 100. The nine IMFs are reduced
to three principal components by PCA, and the cumulative contribution rate of the
three principal components is 98.47%. The three principal components are used as the
virtual multichannel mixed signals to be processed by ICA. And finally, three sepa-
rations are obtained, whose time domain and spectrum graphs are shown in Fig. 5.

Comparing the results in Figs. 4 and 5, the separation signals are basically
consistent with the source signals. It is proved that the newly proposed method can
effectively realize the blind source separating of single-channel mixed signals. The
differences of the amplitudes and orders between the separated signals and the source
signals are also consistent with the uncertainty of the results separated by BSS.
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4 The Welding Arc Sound Signal Processing

4.1 Experimental Data Acquisition

The arc sound signal used in this paper is the single-channel arc sound signals
collected during the welding process of aluminum alloy pulsed GTAW. The
experimental conditions are shown in Table 1.

The audio sensing system includes an omnidirectional capacitance microphone
(MP201) to pick audio signals, and a signal conditioner (MC104) to filter and
amplify the signals. The microphone has the frequency response from 20 to
20 kHz. The sound signals are collected with the sampling rate of 40 kHz by a data
acquisition card in the computer.

In order to verify the influence of single-channel BSS on welding quality
diagnosis, arc sound signals in two states of welding, including partial penetration
and full penetration, were collected and processed respectively. Because the base
welding current parts are mainly used to maintain the welding arc and contain little
welding information. The base level signals are discarded and only peak signals are
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Fig. 5 The time domain and spectrum graphs of separated signals

Table 1 Experiment
conditions and welding
parameters

Welding parameters Value

Pulse frequency (Hz) 2

Peak current (A) 260

Base current (A) 50

Ar flow (L/min) 15

Welding speed (mm/s) 3

Feed speed (L/min) 7

Electrode diameter (mm) 3.2

Duty ratio (%) 50

Material type LF6 Al alloy
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reserved for further processing. To meet the requirement of processing efficiency
and accuracy, the signals are divided into several data blocks whose size are 3000
sampling points.

4.2 Arc Sound Signal Processing and Analysis

The time domain graph and spectrum graph of arc sound signals of partial pene-
tration and full penetration are shown in Fig. 6. The frequency spectrum compar-
ison between different penetration states show that the arc sound signal spectrum is
mainly concentrated at 0–15 kHz, and the frequency distributions are complex. The
frequency characteristics under different penetration states are different, but not
significant.

The proposed method of single-channel BSS was used to deal with the welding
audio signals. First, the single data block was decomposed to 12 IMFs by EEMD.
Then PCA was used to reduce the 12 IMFs to three principal components, whose
sum contribution rate was more than 90%. The three principal components were
treated as the virtual multichannel signals. The separated signals are separated from
those three virtual channel signals through FastICA algorithm. The results are
shown in Fig. 7.

Figure 7a, b are spectrums of three separated signals obtained from partial
penetration and full penetration welding acoustic signals, respectively. Due to the

(a) Time domain

(b) Frequency spectrum

Fig. 6 The time domain and spectrum graphs of the partial penetration and full penetration arc
sound signals
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uncertainty of the amplitude and the order of signals separated by BSS, a method is
proposed to identify and order each separation according to their characteristics.
The correlation coefficients between the each separation signal and the original
signal are calculated, and the separation with maximum correlation coefficient is
selected as u1. The remaining two separations are ordered by the frequency of
spectral peaks. The separation with higher peak frequency is selected as u2, and the
other is u3. The separations in Fig. 7 have been sorted. The correlation coefficients
between each separation signal in Fig. 7 and the original mixed signal are shown in
Table 2.

It can be seen from Table 2 that the separation signal u1 has a high correlation
with the original signal, while the separation signal u2 and u3 have very small
correlation with the original signal. In Fig. 7, the spectrum of the separated signal
u1 is similar to that of the original signal, while u2 and u3 greatly differ from the
original signal. These indicate that the separated signal u1 contains the main
welding arc sound information, while u2 and u3 are isolated signals other than the
audio signal. It is obvious that the spectrum in the middle frequency band
(5–6.5 kHz) is remarkable.

Thirty groups of full penetration and partial penetration samples were processed
as mentioned above, 15 common statistical characteristics were extracted from the
frequency spectrum in the 5–6.5 kHz band of signal separation u1 to identify dif-
ferent penetration states. The identification results of characteristics extracted from
the separated signals were compared with that from the original signals. The results
show that the 15 characteristic values extracted from the original signals cannot
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Fig. 7 The spectrum of partial penetration and full penetration

Table 2 The correlation
coefficients between each
separation and source signals

u1(t) u2(t) u3(t)

Partial penetration 0.926 0.022 0.322

Full penetration 0.977 0.123 0.014
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distinguish the partial penetration from full penetration. However, for the charac-
teristics exacted from the separation signals u1, there are eight characteristics can
effectively distinguish the two welding penetration status, including the mean,
amplitude, energy, variance, root mean square, waveform factor, covariance, and
peak value of the spectrum. The identification results of first four characteristics are
shown in Fig. 8.

Figure 8 shows that the characteristics extracted from the original signals are
irregularly distributed and cannot distinguish the two penetration states. The sta-
tistical characteristics of u1 can effectively distinguish two kinds of welding pen-
etration states. The main reason can be analyzed as follow: As is known, sources of
sound emission are ordinarily from the vibration caused by plasma, metal vapor,
and cracking in weld zone. This vibration usually has a higher frequency corre-
sponding to the high-frequency component of the arc sound. When the weld
penetration changes, the vibration’s intensity and features change accordingly,
which cause an obvious change of high frequency in the spectrum of arc sound.
However, the original audio sound signals contain noises produced by environment,
equipment, and so on. The frequency domain information of the welding states is
masked by noise frequency. The separation signal u1 obtained by single-channel
BSS is the source signal of arc. Other source signals of environment and equipment
are filtered out. So the characteristics of high frequency (around 6 kHz) in the

(a) x-Mean  (b) u1-Mean   (c) x-Power                    (d) u1-Power

(e) x-Std        (f) u1-Std       (g) x-Xrms      (h) u1-Xrms

Fig. 8 Statistical characteristics of partial penetration and full penetration arc sound signal
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spectrum are highlighted. The statistical characteristic parameters, such as mean and
variance, etc. can well reflect the spectral intensity and characteristics. That is why
the characteristics mentioned above can be used to effectively identify the welding
penetration states as shown in Fig. 8.

5 Conclusion

The single-channel BSS method based on EEMD is proposed for arc sound signal
to reduce the environmental noises. In the proposed method, the single-channel
signal is decomposed into IMFs by EEMD. Then PCA is used to reduce the IMFs to
PCs. Finally, source signals can be separated from the principal components using
FastICA. The method’s efficiency was verified by simulation as well as real welding
arc sound signals. The main conclusions are summarized as follows.

(a) The simulated results show that the separated signals are basically consistent
with the source signals making up the mixed single-channel signal, but the
order and amplitude of separations are uncertain. Three separated source signals
are obtained from the collected single-channel arc sound signals. The sorted
separation signal u1 which has the largest correlation with the original arc sound
signal is the source signal of arc sound.

(b) Thirty groups of full penetration and partial penetration arc sound signals were
separated by this proposed method, the statistical characteristics of the spectrum
in the 5–6.5 kHz band were extracted from the separated signal u1. Eight
statistical characteristics such as the mean amplitude, energy, and so on, can
effectively distinguish the partial penetration from the full penetration. But, the
characteristics extracted from original signal are irregularly distributed, and
cannot distinguish the different penetrations.

(c) The source signal of arc sound can be effectively separated from single-channel
signal by the single-channel BSS. After that, the frequency domain character-
istics indicating welding conditions become more obviously. High-quality
welding arc sound signals are provided for state detection.
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Investigation on Surface Quality
in a Hybrid Manufacturing System
Combining Wire and Arc Additive
Manufacturing and Machining

Fang Li, Shujun Chen, Junbiao Shi and Hongyu Tian

Abstract Wire and arc additive manufacturing (WAAM) has gained popularity in
recent years due to its unique efficiency and cost advantages. Nevertheless, due to
the stair-stepping effect and the liquidity of molten metal, the achieved geometric
accuracy and surface quality are still very limited. The combination of WAAM and
machining, namely hybrid manufacturing, provides a fundamental solution to the
above problem. Because machining is performed after depositing several layers,
the deposition width, deposition height, and surface waviness have great effects on
the machined surface quality, in addition to the machining parameters including
spindle speed and feedrate. In this paper, the dependence of the machined surface
quality (characterized by surface roughness) on the influencing factors mentioned
above is investigated based on quadratic general rotary unitized design (QGRUD).
To reduce the number of experiments, a comprehensive factor, namely material
removal area (MRA), is introduced to characterize the deposition width, deposition
height, and surface waviness. The analysis results show that spindle speed is the
most influential factor, followed by MRA and feedrate. Furthermore, a high spindle
speed and a moderate feedrate are preferred, which contribute to not only improving
the surface quality and the efficiency but also reducing the demand of geometric
accuracy for WAAM.

Keywords Hybrid manufacturing � Wire and arc additive manufacturing
Machining � Surface roughness � Parametric optimization
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1 Introduction

Metallic additive manufacturing (AM) techniques can be broadly categorized
depending on how the feedstock is supplied (powder bed, powder feeding and wire
feeding) and which energy source is selected (electron beam, laser, and arc) [1, 2].
Among them, wire and arc additive manufacturing (WAAM) [3, 4], employing
metal wire as the feedstock and welding arc as the heat source, has drawn
increasing research interest in recent years. It offers various advantages such as high
productivity, low cost, high material utilization, high energy efficiency, and safe
operation. These advantages make WAAM highly competitive in fabricating
medium to large-scale metal parts. Nevertheless, its inherent drawbacks, i.e., low
geometric accuracy and poor surface quality due to the stair-stepping effect and the
liquidity of molten metal, greatly limit its application in high-precision occasions.
The combination of WAAM and machining, namely hybrid manufacturing, pro-
vides a fundamental solution to the above problem [5]. It enables material
depositing and surface finishing to be achieved in a single setup, thereby making the
best use of the strengths of both processes while avoiding their limitations. Several
effects have been made to develop hybrid manufacturing systems in recent years
[6–10].

The hybrid manufacturing system studied in this paper is illustrated in Fig. 1.
Both the side and the top surfaces are machined after depositing several layers,
followed by subsequent addition and subtraction steps until the final part is created.
Only the quality of the side surface is concerned in this paper because the top
surface will be covered by the subsequent layers. It can be observed from Fig. 1
that the axial cutting depth during machining is determined by the product of the
layer thickness and the number of layers, i.e., deposition height, whereas the radial
cutting depth is determined by the deposition width minus the target width as well
as the surface waviness. Specifically, the surface waviness is in the form of peaks

Fig. 1 Schematic diagram of
a hybrid manufacturing
system
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and valleys resulting from the stair-stepping effect. Therefore, all of the deposition
width, deposition height, and surface waviness have great effects on the machined
surface quality. In addition, the machining parameters such as spindle speed and
federate also have effects on the machined surface quality. As a consequence, it is
more challenging to assess surface quality in a hybrid manufacturing system
compared with individual machining systems.

Surface roughness (Ra) is commonly used to indicate surface quality, which is
related to the part functional performance in terms of fatigue, corrosion resistance,
creep life, etc. Generally, surface roughness depends on several factors, such as
spindle speed, feedrate, radial and axial cutting depths, tool material and geometry,
tool wear, etc. [11]. There have been numerous studies conducted on the prediction
of surface roughness and the optimization of process parameters. Oktem et al. [12]
applied a Taguchi optimization method to find the optimal process parameters
which minimize surface roughness when milling the mold surfaces of 7075-T6
aluminum material. Kilickap et al. studied the influence of machining parameters on
the surface roughness obtained in drilling of AISI 1045 and developed a mathe-
matical prediction model using response surface methodology (RSM) [13]. Oktem
et al. [14] developed an artificial neural network (ANN) to predict the surface
roughness and applied the genetic algorithm to determine optimum cutting
parameter leading to minimum surface roughness.

This paper aims to investigate the dependence of the machined surface quality,
characterized by surface roughness, on the main influencing factors including
deposition width, deposition height, surface waviness, spindle speed, and feedrate
mentioned above, and provide a guide to optimize these process parameters in the
hybrid manufacturing system. The quadratic general rotary unitized design
(QGRUD) is adopted, which is a regression method with rotation and versatility,
thus enabling one to reduce the number of experiments and get more accurate
results [15]. Besides, a comprehensive factor, namely material removal area
(MRA), is introduced to characterize the deposition width, deposition height, and
surface waviness. Thus, the influencing factors involved reduced from five to three,
i.e., spindle speed, feedrate and MRA, and thereby the required number of
experiments is much less.

2 System Description

A hybrid manufacturing system combining WAAM and machining has been
developed at Beijing University of Technology (BJUT), as shown in Fig. 2. It is
based on a two-robot cooperative platform. One robot is IGM RTI2000, equipped
with two Fronius Synergic 5000 welding machines to implement Tandem GMAW
(gas metal arc welding)-based WAAM. In Tandem GMAW, two welding wires are
passed through the same welding torch, thus providing much higher productivity
than conventional GMAW. The other robot is KUKA KR500, which is a
heavy-duty robot that is suitable for milling applications. It is equipped with a
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high-speed electric spindle ES779 with a maximum spindle speed of 22,000 rpm.
The wire material used is Al2325 alloy with the chemical composition of Cu 3.9–
4.8%, Mn 0.1–1.0%, Ti 0.15%, Mg 0.4–0.8%, Zn 0.3%, etc., in addition to Al. The
substrate material is Al2219 alloy. Aluminum alloy has wide applications in civil
aviation and automobile industry due to light weight and favorable properties.

3 Methods

3.1 Definition of Material Removal Area (MRA)

As mentioned above, five factors affecting the surface roughness, i.e., deposition
width, deposition height, surface waviness, spindle speed, and feedrate, are con-
sidered. If the QGRUD is applied directly, 64 sets of experiments are required,
which are extremely time-consuming. In this paper, a comprehensive factor, namely
MRA, is introduced to characterize the deposition width, deposition height, and
surface waviness. Thus, the factors involved reduced from five to three and the
required number of experiments is reduced to 20 according to QGRUD. MRA is
defined as the sectional area of the region that needs to be removed, as illustrated in
Fig. 3. The effects of the three factors on the surface roughness can be reflected
through MRA. It is also known that MRA is an indicator of the geometric accuracy
of the WAAM process. The higher the geometric accuracy, the lower the MRA.

From Fig. 3, we know that MRA can be calculated as follows:

MRA ¼ N � W0 � H0 þ @ �W1 � H0ð Þ ð1Þ

where N denotes the number of layers, H0 denotes the layer thickness, W0 denotes
the deposition width minus the target width and W1 denotes the maximum distance

Fig. 2 Hybrid manufacturing system based on a two-robot cooperative platform
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between the peaks and the valleys on the surface. The coefficient @ is determined to
0.7 based on preliminary experiments. Generally, N is fixed in practice, i.e., the
WAAM process and the machining process are alternated every N layers. In this
paper, N is set to 6.

3.2 Design of Experiments

To apply QGRUD, the predominant factors affecting the response should be
identified and their upper and lower limits should be determined first. In this paper,
spindle speed (A), feedrate (B), and MRA (C) are identified as the predominant
factors and surface roughness (Ra) is the response. The lower and upper limits of
these factors are determined as seen in Table 1, which are divided into five levels
coded by −1.6817, −1, 0, +1 and +1.6817 according to QGRUD.

The 3-factor-5-level QGRUD requires 20 sets of experiments in total, 8 as
factorial points, 6 as star points, and 6 as center points. The resulting design matrix
is generated, as given in Table 2.

Fig. 3 Illustration of MRA

Table 1 Coding for factor and level

Symbol Parameter Level

−1.68 −1 0 1 1.68

A Spindle speed (rpm) 1000 2400 4500 6600 8000

B Feedrate (mm/s) 1 1.8 3 4.2 5

C MRA (mm2) 10 14 20 26 30
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3.3 Experiments

The experiments went through two phases. First, the WAAM experiments were
carried out using the IGM RTI2000 robot to produce wall structures with 6 layers
(i.e., N = 6), as shown in Fig. 4a. The material of the wire and the substrate has
been given in Sect. 2. The travel speed was set to 0.48 m/min, the wire feedrate was
set to 4.3 m/min and the welding voltage was set to 18.4 V. The shielding gas was
Ar at a flow rate of 22 L/min. With the wall structures produced by WAAM, 20 sets
of machining experiments were conducted then using the KUKA KR500 robot
according to the experimental design matrix in Table 2, as shown in Fig. 4b. The
machining tool, made of uncoated carbide alloy, had a diameter of 14 mm with a
helix angle of 55°. The working mode was down milling. No cooling and lubri-
cating agent were used. After each experiment, the surface roughness in the tool
feed direction was measured using a portable roughmeter TR200 with a sensitivity
of 0.01 lm. Specifically, the surface roughness was measured five times at different
locations and repeated twice at each location. The average value was recorded, as
given in Table 2.

Table 2 Experimental design matrix and the response

Exp. No. Coding (A B
C)

Roughness
(lm)

Exp. No. Coding (A B
C)

Roughness
(lm)

1 (−1−1 −1) 1.75 11 (0 − 1.682 0) 1.76

2 (1 − 1 −1) 1.36 12 (0 1.682 0) 1.86

3 (−1 1 − 1) 1.95 13 (0 0 − 1.682) 1.65

4 (1 1 − 1) 1.52 14 (0 0 1.682) 1.78

5 (−1−1 1) 1.99 15 (0 0 0) 1.59

6 (1 − 1 1) 1.51 16 (0 0 0) 1.65

7 (−1 1 1) 2.11 17 (0 0 0) 1.52

8 (1 1 1) 1.81 18 (0 0 0) 1.53

9 (−1.682 0 0) 2.46 19 (0 0 0) 1.67

10 (1.682 0 0) 1.55 20 (0 0 0) 1.63

Fig. 4 Surface: a Surface of
original wall structures
(6 layers). b Surface after
machining
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4 Results

4.1 Regression Model

According to the experimental results given in Table 2, the quadratic regression
model that describes the dependence of the surface roughness on the spindle speed
(A), the feedrate (B), and the MRA (C) was obtained with the aid of the software
Design-Expert 6.0 as follows.

Ra ¼ 1:61� 0:23Aþ 0:069Bþ 0:078Cþ 0:018ABþ 0:005AC

þ 0:0075BCþ 0:12A2 þ 0:054B2 þ 0:02C2
ð2Þ

Then the variance analysis and F value testing were undertaken to validate the
obtained regression model, as given in Table 3.

The F value of Lack of Fit was 4.56, lower than F0.05(5, 5) = 5.05, indicating
that Lack of Fit was not significant. The F value of the regression equation was
11.2, higher than F0.05(9, 10) = 3.137, indicating that the regression model was
significant and therefore fitted the actual system closely. Thus, we can conclude that
the regression model was accurate and credible. At the level of 0.05, P values of A,
B, C, and A2 term were all lower than 0.05, which indicated that their effects on the
surface roughness were significant. In contrast, P values of AB, AC, BC, and B2 and
C2 were higher than 0.05, which indicated that their effects on the surface roughness
were not significant and could be neglected. It is interesting that for any two factors,
their interaction effects were not significant. After omitting the insignificant factors,
the quadratic regression model was simplified to

Table 3 Variance analysis and F value testing results

Source Sum of squares df Mean square F value P value

A 0.72 1 0.72 65.57 < 0.0001

B 0.066 1 0.066 6.02 0.0341

C 0.082 1 0.082 7.50 0.0209

AB 0.00245 1 0.00245 0.22 0.6462

AC 0.0002 1 0.0002 0.018 0.8951

BC 0.00045 1 0.00045 0.041 0.8434

A2 0.21 1 0.21 19.27 0.0014

B2 0.040 1 0.040 3.56 0.0885

C2 0.004888 1 0.004888 0.45 0.5190

Model 1.10 9 0.12 11.2 0.0010

Residual 0.11 10 0.012

Lack of fit 0.090 5 0.018 4.56 0.0607

Pure error 0.020 5 0.003937

Total 1.21 19
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Ra � 1:61� 0:23Aþ 0:069Bþ 0:078Cþ 0:12A2 ð3Þ

4.2 Single Factor Effect Analysis

Based on the obtained quadratic regression model (Eq. 3), the effects of single
factor on the surface roughness were analyzed, as shown in Fig. 5. It was obtained
by varying one factor while keeping the other factors at zero level. It is clearly
obtained that spindle speed is the dominant factor affecting the surface roughness,
followed by MRA and feedrate. It is also observed the surface roughness increases
with the increasing of feedrate and MRA. This is easy to understand because the
material removal rate (MRR) is equal to the product of the feedrate and MRA.
Higher MRR means higher cutting force and therefore higher surface roughness.
On the other hand, the surface roughness decreases with increasing spindle speed
because the corresponding cutting force is much lower.

4.3 Optimization

The reduction of the surface roughness can be achieved either by optimizing the
MRA, i.e., the WAAM parameters or by optimizing the machining parameters.
Figure 6 presents the surface roughness as a function of the spindle speed and the
feedrate when the MRA is 10, 17, 24, and 30 respectively. We can conclude that

Fig. 5 Single factor effect analysis
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when the spindle speed is low, e.g., 1000 rpm, the MRA should be small enough to
reduce the surface roughness. In contrast, when the spindle speed is high, e.g.,
8000 rpm, no matter how large the MRA is, the surface roughness is still very
small. As it is more difficult to accurately control the MRA than the other process
parameters due to the liquidity of molten metal, employing a high spindle speed is
very essential. It helps reduce the demand of geometric accuracy (i.e., MRA) for
WAAM. Namely, if the spindle speed is quite low, the demand of geometric
accuracy for WAAM is much higher. With regard to the feedrate, though lower
feedrate leads to lower surface roughness, its effect is less significant than other
factors. On the other hand, lower feedrate also means lower efficiency. Therefore, in
order to achieve a good balance between surface quality and efficiency, a moderate
feedrate is preferred. In conclusion, in order to minimize the surface roughness,
increase the efficiency and reduce demand of geometric accuracy for WAAM, we
expect a high spindle speed and a moderate feedrate in the hybrid manufacturing
system.

Fig. 6 Surface roughness as a function of spindle speed and feedrate when the MRA is 10, 17, 24,
and 30 respectively
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5 Conclusion

A hybrid manufacturing system combining WAAM and machining has been
introduced in this paper. The dependence of surface quality on deposition width,
deposition height, surface waviness, spindle speed, and feedrate has been investi-
gated based on QGRUD. From the experimental and the analysis results, the fol-
lowing conclusions are obtained:

1. By introducing a comprehensive factor, namely MRA, to characterize the
deposition width, deposition height and surface waviness, the required number
of experiments is greatly reduced.

2. Spindle speed is the most influential factor on the surface roughness, followed
by MRA and feedrate. For any two factors, their interaction effects are not
significant.

3. A high spindle speed is very essential for the hybrid manufacturing system,
which contributes to not only improving the surface quality, but also reducing
the demand of geometric accuracy for WAAM.

4. A moderate feedrate is preferred in order to achieve a good balance between the
surface quality and the efficiency.
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Preliminary Research on Intelligent
Mobile Tool Cart for Industrial
Manufacturing in a Factory Environment

Shengnan Gai, Qiang Luo and Shujun Chen

Abstract Intellectualization of manufacturing is a general trend due to the
development of technology and science. This paper presents a preliminary research
on intelligent mobile tool cart (IMTC) for working alongside workers in manu-
facturing process. Tool cart problem is considered as an exemplary intelligent
mobile tool cart service system. A type of differential-driven mobile cart with a tool
basket which is mounted on the top of the mobile cart compose the intelligent
mobile tool cart. The IMTC is designed to provide workers with remote motion
control and tools positioning services. Daily used instructions are exercised as
commands to control the IMTC in the factory environment by using Leap Motion
sensor for finger/hand position detection. The IMTC provides its real-time position
information to the worker. To fulfill estimating the location of IMTC, QR local-
ization method is proposed. We verified the features of the IMTC and feasibility of
the proposed localization method through experimental trials.

Keywords Service robot � Intelligent mobile tool cart � Position detection
Gesture command

1 Introduction

In recent decades, we realize that the robot helps general public and plays a large
role in our life. It is worth mentioning that the application of mobile robot has
drawn much attention. Till now, researchers designed and implemented many
successful mobile robot systems. Duan et al. [1] proposed a miniature
wheel-track-legged mobile robot to carry out military and civilian missions. Thrun
et al. [2] described an interactive four-guide robot for museum guidance.
Engelberger [3] demonstrate a healthcare robot for convenience of hospital
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assistance. Garingo et al. [4] developed a wireless, mobile, robotic telemedicine
system in the Neonatal Intensive Care Unit (NICU). In service robot area,
researchers always choose human body, face, voice, arm, or leg as the research
objective. Lee et al. [5] implemented human tracking by legs scanning from a
moving robot to monitor a moving target person. Jung et al. [6] set human torso as
research objective to allow a mobile robot track a desired human in front. Gai et al.
[7] introduced daily used instructions as commands through a Kinect to control
mobile shopping cart and provide consumer intelligent shopping services. Chen
et al. [8] presented an interactive mobile robot only based on visual information to
support face-to-face interaction between human and robot. Otsuka et al. [9] utilized
voice for controlling robot head movements to guarantee robot behave the way
human expect it to and offer natural spoken communication between human and
robot. It is probably fair to say that the diversification of information to the mobile
cart makes applicability of the mobile cart more extensive. However, the two legs in
[5], the torso part in [6], the arm in [7] and face and arm combined in [8] provide
relatively sweeping gesture commands to the mobile cart which is not suitable for
an industry application. Besides, noisy industry environment might give rise to
voice control invalidation.

This paper proposes a novel method for workers to control IMTC by employing
hand/finger gestures commands. We attempt to use hands or fingers to express
emotion and give orders. The commercialized Leap Motion sensor mounted on the
operation platform is utilized to achieve the goal. The Leap Motion is able to detect
two hands and ten fingers at once. It is used to provide position information of the
hands and fingers with high precision in real-time and receive hand/finger gesture
commands. Based on customs and understandable of human beings, we defined
seven hand/finger gesture commands using the right hand to control the Intelligent
Mobile Tool Cart (IMTC). Besides, a camera is installed on the bottom of the cart to
detect the QR code from a QR marker streaks labeled on the ground. By decoding
the stored position information from the QR code, the exact location of the cart can
be realized accordingly. The QR localization method is proposed to provide stable
location information to the IMTC. The feasibility of the QR localization method is
verified through experiments.

This paper is organized as follows. The Intelligent Mobile Tool Cart and usage
of Leap Motion sensor are introduced in Sects. 2 and 3, respectively. Section 4
presents and verifies QR localization method based on Wi-Fi network. Section 5
evaluates the performance of the proposed IMTC through experiment trials. Finally,
the conclusion is organized in the last section.
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2 Overview of Intelligent Mobile Tool Cart Service System

2.1 Introduction to Intelligent Mobile Tool Cart Service
System

The Intelligent Mobile Tool Cart Service System is demonstrated in Fig. 1. Several
devices including a Wi-Fi box, a Leap Motion, cart appliances, and QR marker
streaks are interconnected to realize the intelligent service to the worker. The two
major functions of the IMTC are cart remote motion sensing control and cart
location-recognition services. The cart remote sensing motion control is realized by
employing Leap Motion sensor. The Leap Motion provides an interface between
the worker and the IMTC. Commands include Go Forward, Draw Back, Turn Left,
Turn Right, Start/Stop, Acceleration, and Deceleration, which will be executed by
IMTC in the experiment apart. Besides, during this process, IMTC speed adjust-
ment could be achieved by employing Acceleration command and Deceleration
command.

The location information is provided by QR code. A camera installed on the
bottom of the cart attempts to detect the QR code when the cart passes through a
QR code marker streak, and the QR position information will be decoded by
employing ZBar. By implementing hybrid localization algorithm which will be
described in Sect. 4, the worker will receive a real-time location of the IMTC.

2.2 Mechanism and Hardware

A tool basket often refers to a kind of storage to hold tools. The first tool basket was
built in the early nineteenth century made of wool material. Noffsinger [10]
developed a foldable tool cart. Mccauley et al. [11] designed a tool storage and bolt
organizer device. Lately, Lin et al. [12] proposed a cart, which can store tools and
parts in 2016. Nonetheless, those designs applied on the factory can only provide

Fig. 1 Demonstration of
IMTC service system in a
factory environment
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workers with convenience to some extent. Workers still need to interrupt working
and leave the operation platform to take tools from a tool holder located apart from
the operation platform.

To solve the problem, a novel intelligent mobile tool cart is developed as shown
in Fig. 2. In a factory environment, the operation platform is equipped with a Leap
Motion. And IMTC which is comprised of a tool basket, a camera, a LED lights,
and a differential-driven mobile cart will be used in the factory environment to
assist worker with providing intelligent service for industry manufacturing. Two
motors drive the differential-driven wheels and provide the momentum to the
IMTC. The tools, for example, chisels, screwdrivers, pliers, and so on, are hold in
the tool basket which is installed on the top of the cart as shown in Fig. 2. A camera
is installed at the bottom of the cart to detect QR marker and LED lights are fixed
on the differential-driven mobile cart for better illumination. In this paper, the
mounting position of the camera is higher than the LED lights. It will guarantee
capturing at least one integrated QR code that could be detected by the camera in
the range of the LED lights. Besides, a DSP controller for motor control, and two
lead-acid DC batteries for power supply. The parameters of the IMTC are sum-
marized in Table 1.

3 Sensor System

3.1 Description of Leap Motion

The proposed system using Leap Motion could detect the position of the hand/
finger and receive gesture commands. Leap Motion is a motion sensing input device
commercialized by Leap Company. The Leap Motion recognizes and tracks hands
and fingers. The effective range of the Leap Motion extends from 0.025 to 0.6 m in
distance above the device along Y axis and the angle of vision covers 150 degrees in
default. Figure 3 shows the effective range of the Leap Motion.

Generally speaking, the Leap Motion has a webcam-like structure and allows
users to interact with it through a natural user interface by applying hand/finger

Tool 
basket

Differential-driven 
mobile cart

Camera 
& LED

Fig. 2 Intelligent mobile tool
cart
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gesture commands detection. The novel control method of MTC using Leap Motion
depends on advances in entities tracking, such as hands and fingers. If all or part of
a finger is not visible, the finger characteristics will be estimated based on recent
observations and the anatomical model of the hand. The natural user interface could
be done by using kinds of programming language, such as C++, C#, Unity,
Objective-C, Java, Python, JavaScript, and so on. And C++ was adopted in this
paper.

3.2 Commands to Leap Motion

In this paper, the Leap Motion installed on the operation platform is used to detect
hand/finger gesture commands of the worker. To read gesture commands, hand/
finger detection should be set. In our experiment, we use right hand and its three
fingers (index finger, middle finger, and ring finger) to recognize gesture com-
mands. Depending on the effective range of Leap Motion we define seven com-
mands, Go Forward, Draw Back, Turn Left, Turn Right, Start/Stop, Acceleration,
and Deceleration. When the worker places his right hand with three fingers on
seven different regions, shown in Fig. 4, within effective range, the corresponding

Table 1 Main specification of the tool cart

Specification Quantity

Motor DC motor, 90 W, 18:1, Maxon (for driving shopping cart) 2

DC motor, 25 W, 66:1, Faulhaver
(for lifting DDTM)

1

DSP controller dsPIC33FJ128 M 1

Motion controller Leap motion, USB 2.0 1

Battery Lead-acid, DC, 12 V 2

Camera C270, USB 2.0, Logitech 1

Illumination light LED lights 1

W � L� H 0:58 m� 0:9 m� 0:86 m

Wheel radius 0.15 m

Max speed 1.2 m/s

Fig. 3 Effective range of the
leap motion
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gesture command will be recognized and sent to the MTC through Wi-Fi con-
nection. The Mobile Tool Cart responding to Go Forward, Draw Back, Turn Left,
Turn Right, Start/Stop, Acceleration, and Deceleration will be tested in Sect. 5.

4 QR Localization Method

The Quick Response Code (QR Code) is a machine-readable optical label that
contains information about the item to which it is attached. Due to its fast read-
ability and greater storage capacity, the QR code gained more and more popularity.
The famous applications of QR code include product tracking, item identification,
mobile operating, code payment, website login, document management, and gen-
eral marketing. In this work, we use QR code to locate the cart in the given
environment. As described in Sect. 2, a camera is installed on the cart to detect the
QR code from a QR marker streaks labeled on the ground. By decoding the stored
position information from the QR code, exact location of the cart can be realized
accordingly.

Success read and read time should be taken into consideration when we use
camera to detect QR code. During the test trip when the cart passes through QR
marker streaks, the success read is defined as the QR code number that is accurately
scanned. The read time is defined as the total time that is cost to scan a QR code
marker and decode the scanned QR code. Only when a QR code is detected by a
camera successfully and gets precise decoding information at the same time, it is
possible to get effective position information of the shopping cart. However, it is
noted that camera is sensitive to light. In our research, the QR marker streaks are
statically labeled on the ground and the camera is moving with the cart. The cart
velocity affects both the success read and the read time. In order to determine the
influence of lights and shopping cart velocity on the success read and read time, we
performed experiments in the following.

The light condition of experimental environment is set as four cases; adequate
illumination with using LED lights, adequate illumination without using LED
lights, inadequate illumination with using LED lights, and inadequate illumination

Go Forward

Draw Back

Turn Left

Turn Right 

Start/Stop

Acceleration

Deceleration

Fig. 4 Hang/finger gesture
commands within leap motion
effective range
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without using LED lights. The experiment was carried out under these four different
light cases, respectively. As shown in Fig. 5, there are ten QR marker streaks
labeled on the ground. The distance between two neighbor steaks is 0.5 m and the
position of the first steak is (0, 0.5). The cart is initially located at the origin position
(0, 0) marked by green dot in Fig. 5. The cart starts from the origin position and
passes through ten QR marker streaks.

When the cart passes through each QR marker streak, we decode the QR
position value PQR and odometry position value Podo at the same time. However, it
is noted that the odometry position value is greater than the absolute position of the
QR marker streak. This is because camera detection and QR code decoding take
some time which is demonstrated in Fig. 6. Their total time (i.e., time latency) is
defined as read time given by

Trt ¼ Todo � TQR ¼ Podo � PQR

v
;

where Podo is the measured odometry value when QR code position is received, and
PQR is the corresponding QR code position value. v is a constant value at the
desired velocity of the cart for one test trial. In this experiment, five specific
velocities ranging from 0.4 to 1.2 m/s were tested. Each test trial was executed ten
times by setting the same cart velocity under the same illumination case. The
experiment results of success read average under four different illumination cases in
different velocity is shown in Table 2.

From Table 2, adequate illumination condition gives rise to outstanding QR
code success read under the same cart velocity by comparing adequate illumination
condition with inadequate illumination condition. And by using LED lights the
success read is improved by 3–7.6% comparing with without using LED lights.

QR marker streak

Fig. 5 Test environment of
QR code
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The IMTC will be applied to an adequate illumination environment, so in this
paper, we just take adequate illumination case into consideration. By employing
LED lights to improve the performance of QR code detection, the corresponding
read time is summarized in Table 3.

From Table 3, we can see that the read time is relatively stable under the same
velocity of the cart. And as the velocity of the cart increases, the read time grows
slightly as well. All read time in Table 3 are less than 0.4 s in all speeds under
consideration and the cart velocity limitation is low (1.2 m/s), so it is reasonable to
using QR positioning information to provide cart location in real application.

Time (S )trT
odoTQRT

QR code marker

QRP
odoP

Fig. 6 Demonstration of QR
localization method

Table 2 Success read test for different illumination case

Adequate illumination Inadequate illumination

LED (%) Without LED (%) LED (%) Without LED (%)

0.4 m/s 100 100 60 35.46

0.6 m/s 100 100 36.52 0

0.8 m/s 100 100 0 0

1.0 m/s 100 97 0 0

1.2 m/s 100 92.4 0 0

Table 3 Read time test for
different velocities

0.4 m/s 0.6 m/s 0.8 m/s 1.0 m/s 1.2 m/s

1 0.338 0.338 0.325 0.324 0.332

2 0.348 0.295 0.299 0.345 0.372

3 0.353 0.337 0.305 0.347 0.355

4 0.253 0.363 0.326 0.345 0.363

5 0.313 0.358 0.331 0.35 0.39

6 0.32 0.312 0.37 0.356 0.355

7 0.33 0.342 0.346 0.348 0.34

8 0.28 0.335 0.34 0.334 0.361

9 0.288 0.308 0.323 0.327 0.342

10 0.313 0.332 0.329 0.342 0.353

M 0.314 0.332 0.329 0.342 0.356
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5 Experiment

In order to evaluate the effectiveness of the proposed control method of Intelligent
Mobile Tool Cart, two experiment trials are conducted. The first experiment was in
a factory similarly environment and the second experiment was in a real factory
environment. Both of the two environments were Wi-Fi enabled.

5.1 Experiment 1 (Leap Motion Based Control Method
Performance Test in a Factory Similarly Environment)

Initially, the tester stood in front of the operation platform and the Intelligent
Mobile Tool Cart located beside the operation platform. The tester put his right
hand within the effective range of the Leap Motion and gave commands to IMTC
through Wi-Fi communication. We tested each command 50 times. If the tester put
his right hand with three fingers in region 2 of the Leap Motion, the IMTC executed
Draw Back command as shown in Fig. 7. If the tester put his right hand with three
fingers in region 4, the IMTC executed Turn Right command as shown in Fig. 8.
Repeated the experiment procedures mentioned above in the other 5 regions and
recorded the experiment results. The Start/Stop command is used to initialize the
system when it appears at the first time, and call for stop action when the Start/Stop
command appears after the other commands.

The upper three figures of Figs. 7 and 8 demonstrate the reaction of MTC when
the MTC executes Draw Back command and Turn Right command, respectively. In
the bottom three figures, the first figure shows the specific command gesture, the
second figure shows corresponding command region with respect to the Leap
Motion and the third figure shows the interface window. The frame rate of three

Fig. 7 Draw back command of MTC
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cameras of Leap Motion is 290 FPS, the IMTC reaction speed due to the time of
completing the gesture and information transmission through Wi-Fi. A single
commend could be detected and transmitted within 0.5 s which was also confirmed
in the experiment. And the experiment result is summarized in Table 4.

As shown in Table 4, the tester gave IMTC Draw Back command 50 times, the
IMTC executed correct operation command 46 times, incorrect operation 2 times
and no action 2 times. The accuracy of the Draw Back command is 92%. The tester
gave IMTC Turn Right command 50 times, the MTC executed correct operation
command 46 times, incorrect operation 3 times and no action 1 time. The accuracy
of the Turn Right command is 92%. As demonstrated in Table 2, the IMTC exe-
cuted correct operation above 90% among seven commands. Based on the exper-
iment results, we can say that IMTC makes responses effectively when receive
different commands.

Fig. 8 Turn right command of MTC

Table 4 Experiment result

No. Command Correct Incorrect No action Accuracy (%)

1 Go Forward 47 1 2 94

2 Draw Back 46 2 2 92

3 Turn Left 45 2 3 90

4 Turn Right 46 3 1 92

5 Start/Stop 46 1 3 92

6 Acceleration 46 3 1 92

7 Deceleration 47 2 1 94
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5.2 Experiment 2 (Leap Motion Based Intelligent Mobile
Tool Cart Movement Performance Test in a Real
Factory Environment)

Based on the Leap Motion, the performance of the developed Intelligent Mobile
Tool Cart was tested in Engineering Research Center of Advanced Manufacturing
Technology for Automotive Components, Ministry of Education which is located in
Beijing University of Technology. The experiment environment is demonstrated in
Fig. 9.

The tester stood in front of the operation platform and the Intelligent Mobile
Tool Cart was set at initial position beside the operation platform as shown in
Fig. 9. Tester using the proposed hand/finger gesture commands to control IMTC.
The IMTC started to move from initial position and arrived at A, B, C, and D
position in sequence. When IMTC passed through A, B, C, and D, trajectory of the
IMTC was a “S” shape curve which is known as complex path shown in yellow
dashed line in Fig. 9. And all the seven hand/finger gesture commands designed in
this paper were employed during this trajectory. Figure 10 shows experimentation
process in detail. In Fig. 10a–d demonstrate the movement of IMTC from initial
position to A position, from A position to B position, from B position to C position,
and from C position to D position, respectively. During whole experiment process,
the designed hand/finger gesture commands worked sensitively and reliably.
And IMTC could accomplish the desired path from initial position to D position
steadily. From experiment 2, it is marked that the proposed hand/finger gesture
commands could achieve desired function and provide worker with a simple and
new working experience.

B

ITC

TesterInitial Position

Fig. 9 Experiment 2
environment
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6 Conclusion

The paper developed a novel intelligent mobile tool cart (IMTC) to move to an
advance stage in providing assistance to workers. The worker would be serviced by
remote motion control and cart location-recognition services. In this paper, a novel
method for reading hand/finger gesture commands using Leap Motion to control a
mobile tool cart is proposed and implemented. We achieved the task that IMTC
responded to the defined seven gesture commands, such as Go Forward, Draw
Back, Turn Left, Turn Right, Start/Stop, Acceleration, and Deceleration success-
fully. Real industry environment experiment verified stability of the developed
IMTC, reliability and sensitivity of the proposed control method. Besides, a QR
localization method is proposed and verified to provide real-time location infor-
mation of the IMTC to the worker. The response time is controlled within 0.5 s. As
a conclusion, the proposed IMTC with the proposed remote sensing motion control
method and QR localization method achieved anticipated goal of simplifying the
working process and providing intelligent service to workers.

A
B B

B

C

B

D

(a) (b)

(c) (d)

Fig. 10 Demonstration of experiment 2
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Microstructure and Mechanical Properties
of Friction Stir Weld of Dissimilar
Ti6Al4V Titanium Alloy to AA2024
Aluminum Alloy

Yuhua Chen, Wenming Cao, Shuhan Li, Chao Chen and Jilin Xie

Abstract Dissimilar Ti6Al4V titanium alloy and AA2024 aluminum alloy sheets
with a thickness of 3 mm were friction stir welded successfully, and the
microstructure and mechanical properties of the butt joints were investigated. The
results show that: the stirred zone (SZ) exhibits a mixture structure, which is
characterized by fine recrystallized grains of aluminum alloy and titanium particles.
Unfilled defects are observed among titanium particles in SZ. Moreover, at the
aluminum side the thermal-mechanically affected zone (TMAZ) and the heat
affected zone (HAZ) appeared like in the traditional FSW-joints. But, at the tita-
nium side, a recrystallization band with a width of 6–10 lm and a layer with fibrous
structures are found at the joint interface. Also, the Ti–Al compounds layer with
some micro-cracks is presented in the fibrous structure. The hardness distribution of
the joint along the cross-section centerline varies significantly due to the existence
of different broken titanium particles. The ultimate tensile strength (UTS) of the
joint reached 83% of aluminum base metal and the joint failed with a ductile–brittle
fracture mode.

Keywords Ti/Al dissimilar metals � FSW � Microstructure
Mechanical properties

1 Introduction

Compared with other materials, titanium alloys have many advantages such as low
density, high specific strength, and excellent corrosion-resistance, so they are
widely used in automotive, aerospace, and ship industries. Aluminum alloys are
also attractive in these fields due to their low density and good economic features.
In order to meet the special performance requirements for aviation materials,

Y. Chen (&) � W. Cao � S. Li � C. Chen � J. Xie
School of Aeronautical Manufacturing Engineering, Nanchang Hangkong University,
Nanchang, China
e-mail: ch.yu.hu@163.com

© Springer Nature Singapore Pte Ltd. 2018
S. Chen et al. (eds.), Transactions on Intelligent Welding Manufacturing,
Transactions on Intelligent Welding Manufacturing,
https://doi.org/10.1007/978-981-10-7043-3_11

153



structures with high strength and low weight are widely used. The joining of
titanium alloy with aluminum alloy could have a major application in aerospace and
automobile industries where high strength and low weight are desirable. However,
it is difficult to weld these two alloys because of the great differences in physical,
chemical, and metallurgical properties [1–4]. Some welding methods for joining
these two materials such as laser and hybrid laser welding [5–8], solid-state dif-
fusion bonding [9, 10], ultrasonic welding [11, 12], as well as explosive welding
[13, 14] have been reported.

These studies show that the key issue encountered in welding Al alloys to Ti
alloys is the formation of intermetallic compounds in joints. Friction stir welding
(FSW) is a novel solid-state welding technology [15]. It is suitable for welding Al
alloys to Ti alloys due to the lower temperature and shorter time (compared to the
fusion welding process) during the process [16–20].

Although there are a few studies about friction stir welding of Ti/Al dissimilar
alloys, the details of the microstructural evolution of dissimilar joints have not been
fully understood and the ultimate tensile strength of the joint still cannot meet the
industry demand.

In this paper, AA2024 alloy and Ti6Al4V alloy, which are widely used in
industries, are welded by FSW. To make a comprehensive analysis of the joining
mechanism, the microstructure, intermetallic compounds, hardness distribution, and
tensile strength of the dissimilar joints are investigated.

2 Experiment Details

The experiment materials are 3 mm thick of AA2024 alloy and Ti6Al4V alloy
plates with the chemical compositions shown in Tables 1 and 2, respectively.

The butt joints were welded using an FSW tool consisting of a threaded pin of
6 mm diameter and a concave shoulder of 18 mm diameter. The welding tool was
made from nickel base superalloy. The processing parameters were selected as
700 rpm for tool rotation speed and 60 mm/min for travel speed based on the large
number of experiments. A schematic illustration of the dissimilar FSW experiment
was shown in Fig. 1. During FSW process, Ti6Al4V and AA2024 were placed at
the advancing side (AS) and the retreating side (RS) of the tool pin, respectively.
The pin was inserted into the AA2024 aluminum sheet with 2.5 mm offset to the
welding line. The weld sections taken perpendicular to the welding direction were
polished and etched using different kind of etchant (1% HF + 3% HNO3 + 5%
H2O to Al and 3% HF + 10% HNO3 + 87% H2O to Ti). Polished metallographic
cross sections were examined by optical microscopy (OM) and scanning electron

Table 1 Chemical composition of AA2024

Cu Si Mn Mg Fe Zn Ni Ti Al

4.3 1.0 0.73 0.55 0.3 0.08 0.02 0.02 Balance
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microscope (SEM) equipped with an EDX system. Hardness tests were done every
500 lm at the center of the section using a Vickers indenter at a load of 0.2 kg.
Tensile tests were conducted at a crosshead speed of 1 mm/min.

3 Results and Discussions

3.1 Macrostructure and Microstructure of Dissimilar Joint

Since the hardness and melting point of the Ti6Al4V alloy are higher than those of
the AA2024 alloy. In dissimilar FSW, the alumina alloys should have better plastic
flowability due to the welding temperature is not enough to plasticizing the
Ti6Al4V alloy. By in terms of the pin offset technique, Al–Ti dissimilar joints can
be formed. However, it is hard to join the two metals if the pin totally inserted to the
alumina with an offset of 3 mm in this study. Figure 2 shows the surface mor-
phology of the dissimilar welded specimen. The surface of the joint is very smooth
and covered by a layer of aluminum alloy. Curved key sheaths produced by tool
shoulder were not very clear. Figure 3 shows the cross-sectional macrostructure of
the dissimilar weld. Because the welding tool was shifted toward the Al alloy, the
stir zone (SZ) occurs mainly on the Al side of the joint. The stir zone is composed
by Al and Ti, and an onion ring like structure was formed at the bottom of the joint.
The interface between the nugget zone and the Ti base metal is not very straight,
two hook structures are observed at the top and the bottom of the joint, respectively.
They were believed to enhance the joints tensile strength capacity. No pore or other
defect can be found in Figs. 2 and 3, indicating that sound joint could be produced
with the designated experimental parameters.

Table 2 Chemical composition of Ti6Al4V

Al V Fe C N H O Ti

6.0 4.0 0.026 0.015 0.008 0.007 0.06 Balance

Probe Ti6Al4V AA2024

Weling direction 

Ti6Al4V AA2024

Rotation direction Probe 

Fig. 1 Schematic illustration
showing setup of dissimilar
FSW
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Figure 4 shows the optical microstructures of the dissimilar joint. On the retreating
side, there are SZ, TMAZ, andHAZ.While at the advancing side of the joint, there are
no obvious SZ, TMAZ, andHAZ, because themelting point of titanium alloy is higher
than that of the aluminum alloy. As shown in Fig. 4a, the microstructure of aluminum
BM is a typical quenching and nature aging structure which is mainly composed of
aluminum matrix and precipitation strengthening phases. Figure 4b shows the
microstructure of titaniumBM,which is a mixture of a and b phases. Figure 4c shows
themicrostructures ofHAZandTMAZ in theAl side.Noplastic deformation occurred
in HAZ, but the grains in HAZ were heated to growing up during FSW. Compared
with the microstructures of the BM, it could be seen that the grain shape in HAZ does
not change, but the size becomes coarse due to the thermal cycle in the welding
process. Meanwhile, grains in the TMAZ show a curved shape, indicating that these
grains undergo notable plastic deformation caused by the welding tool. Figure 4d
shows the interface between the aluminum alloy and titanium alloy; also it is the
interface of stir zone and advancing side. There is a hook structure inserting into the SZ
firmly hooking the aluminum substrate. During the welding process, titanium alloy
was strongly scratched by the rotation tool. And parts of titaniumwere separated from
the substrate turn to titanium particles flowing with the plastic aluminum; hook
structure was the titanium that not separated completely. Allmeans that the titanium at
the interface undergoes intensively plastic deformation by the tool. Figure 4e and f
show the SZ of the dissimilar joint. Figure 4e is the weld nugget besides the TMAZ in
aluminum side. Due to the dynamic recrystallization caused bywelding tool, grains in
this zone are fine grains and obviously streamlined organization; also part of titanium
particles was observed in this area. Figure 4f shows large number of different forms
titaniumparticles embedded in the aluminumalloymatrix, and alsowithmanyunfilled
flaws between the adjoining titanium particles. The reason for the defects formed is
that the gap formed by two particles is too small to be filled by the plastic aluminum
alloys during theweld processing.Microstructures in the SZ are very complicated and
aluminum grains size in this region is not even, grains besides the particle are smaller
than those offar from it.However, they are all smaller than those of the regionwhere no
titanium particles exist.

Ti

Al 5mm

Fig. 2 Appearances of
dissimilar joint

Ti Al

1mm

Fig. 3 Cross-section
structure of dissimilar joint
prepared by FSW
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3.2 Interface Characteristic of Dissimilar Joints

Figures 5a–d is the interface between the stir zone (SZ) and the Ti alloy side.
Figure 5e is the EDS test result of area M in Fig. 5c and f is micro-XRD test result.
It can be clearly seen from Fig. 5a that there are some titanium particles in the
figure, embedded in the aluminum matrix, the dark part, with different size and

(a) (b)

(c) (d)

(f)(e)

Fig. 4 Optical microstructures of the dissimilar joint: a Aluminum base metal; b Titanium base
metal; c HAZ and TMAZ in Al side; d interface of Al/Ti; e SZ near the Al side; f SZ near the Ti
side
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shapes. Moreover, the titanium particles present flow patterns with the aluminum
alloy matrix. Nevertheless, in Fig. 5a layer of fibrous structure that is not the same
as the two parent materials is observed.

This layer is considered to be the diffusion area because the EDS test result and
the micro-XRD test result show that Ti–Al components were formed in this area.
The EDS test result shows that elements in Ti alloy and elements in Al alloy are
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Fig. 5 SEM picture of the joint interface: a Upper area of the interface; b amplification of zone A
in (a); c middle area of the interface; d amplification of zone B in figure (c); e EDS test of zone M
in (c); f micro-XRD test of interface
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diffusion to each other in this area formed intermetallic compounds (IMC) TiAl3 as
shown in the micro-XRD test result. Further, amplification of the interface as shown
in Fig. 5c, a narrow band adjacent to the fibrous structure is observed in the
titanium parent, where the equiaxed primary a and b grains have been elongated.

The width of this band is about 6–10 lm. Disappearance of remaining lamellar
structures that have been found in the titanium alloy corroborates recrystallization
in the small affected band. The fibrous structure shown in Fig. 5d is a very com-
plicated structure that the titanium alloy and IMC layers appear alternately as
lamellar-structure. Besides, some micro-cracks are found in the IMC layers.

3.3 Mechanical Properties of Dissimilar Joints

As shown in Fig. 6, the hardness level continuously amounts to 120 HV0.2 on the
aluminum side. A sharp increase to approximately 330 HV0.2 occurs at the Ti/Al
transition. Hardness values dramatic changes in the SZ. In spite of the high FSW
process temperature, hardness values in the center of the SZ reach 150 HV0.2.
Probably, this is a result of grain boundary hardening. Individual higher hardness
values (shown point P) occurred in the SZ near the HAZ which occurred when the
indenter hit a titanium particle. On that level, the hardness profile is proceeding on
the retreating side in principle like in conventional FSW-joints, except, the loss in
hardness to aluminum of 90 HV0.2 is caused by the relatively high heat input,
which leads to an over-aging effect. The ultimate tensile strength (UTS) of the
dissimilar joint is 347 MPa that is representing 83% of the UTS of 2024 base
material. Figure 7 shows the fracture location of the dissimilar joint. It can be seen
that the fracture location is between the SZ and the aluminum alloy side.
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Fig. 6 Micro-hardness
distribution of
titanium/aluminum FSW joint
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Furthermore, the failed location was along the 45° direction with respect to the weld
specimen surface at the crown, then, turn to about 90° at the bottom. The unfilled
defects between the titanium particles as mentioned above were the main reason to
explain the fracture direction turned.

Figure 8 illustrates the SEM images of the tensile fracture surface. Figure 8a
shows the appearance of tensile fracture and the fracture features vary appreciably
with the locations across the weld due to the complex microstructures of the nugget.
Figures 8b–d show the magnified micrographs of the fracture surfaces marked in
Fig. 8a. As shown in Fig. 8b, flat surface and small dimples can be observed in this
region. Intergranular fracture patterns exist in some regions, as shown in Fig. 8c
and some cleavage planes can be seen clearly in the region. A large number of
dimples with different depth are observed in Fig. 8d, indicating that a ductile
fracture has taken place in these regions. Therefore, the fracture mode of the dis-
similar joints can be defined as a ductile–brittle mixed fracture.

4 Conclusion

Friction stir welding of Ti6Al4V alloy and AA2024 alloy with a thickness of 3 mm
was conducted. The macro/microstructure, the interface characteristic, and the
mechanical properties of the dissimilar joint were investigated. The results can be
summarized as follows.

1. AA2024 aluminum alloy and Ti6Al4V titanium alloy are joined successfully
through FSW with pin offset technique under a rotation speed of 700 r/min and
a welding speed of 60 mm/min.

2. TMAZ and HAZ occurred at the aluminum side like in the conventional
FSW-joints. Unfilled defects are observed at the SZ. Grains near the titanium
particle are smaller than those of far from it. However, they are all smaller than
those of the zone where no titanium particles exist.

3. At the titanium side, a recrystallization band with a width of 6–10 lm and a
layer of fibrous structure are observed. The Ti–Al compounds layer, including
TiAl3, are formed in the fibrous structure, and also some micro-cracks are found
in the IMC layers.

Al
1.5mm

Ti Al

(a)

(b)

Fig. 7 Specimen after the
tensile test: a Top surface of
tensile specimen; b optical
image of a cross-section of
joint
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4. The hardness of the joint is sharply changed. Sudden drop from average hard-
ness of 330 HV at titanium alloy to average hardness of 120 HV at aluminum
side. The hardness of the forging organization in the SZ was higher than that of
the base metal by 150 HV and the enriched titanium particles regional owns a
hardness level peak during the SZ. The average hardness of 90 HV occurred at
HAZ. The UTS of the joint is 347 MPa which is 83% of the AA2024 alloy and
the joints failed with a ductile–brittle fracture mode.

Acknowledgements The National Natural Science Foundation of China (51265042), the Science
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Fig. 8 Fracture surface from titanium alloy side of the joint: a Overview of the surface; b zone B;
c zone C; d zone D
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Control of Current Waveform for Pulsed
MIG Welding of Aluminum Alloy Sheets

Min Xu and Jiaxiang Xue

Abstract In this chapter, a simplified model of pulsed MIG welding is established
and simulated using MATLAB. In addition, the anti-interference of a current
waveform is simulated using the adaptive neural network feedforward control.
Depending on the “one droplet per pulse” relationship in pulse frequency modu-
lation, faster adjustment of the arc length, compared with the adjustment of the
constant current characteristic, is achieved by increasing or decreasing the base time
of the average current.

Keywords Aluminum alloy � Power supply for pulsed MIG welding
Adaptive neural network � One droplet per pulse

1 Introduction

The base current is the primary factor for maintaining an arc in the welding process,
especially in the control of the low energy input of thin aluminum alloy pulsed MIG
welding. To obtain the ideal base current and time, PID control is employed to
achieve a steady arc and to not burn through the aluminum alloy sheet [1–3]. The
required base current of pulsed welding is the object of this PID control.
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2 PID Modeling and Control Simulation

2.1 Principle of PID Control

In 1922, the use of proportional integral derivative (PID) control [1] in the position
control system was proposed by Nicholas Minorsky. The system block diagram is
shown in Fig. 1.

The incremental PID control algorithm satisfies the DSP programming
requirements and causes less error due to misoperation [2]. Therefore, in this
chapter, the control algorithm is adopted; the subroutine flow chart is shown in
Fig. 2. The formula is developed according to the following recursive principle:

uðk � 1Þ ¼ kp errorðk � 1Þþ TI
Xk�1

j¼0

errorðjÞþ TD errorðk � 1Þ � errorðk � 2Þð Þ
 !

The incremental PID control algorithm is as follows:

DuðkÞ ¼ uðkÞ � uðk � 1Þ
DuðkÞ ¼ kp errorðkÞ � errorðk � 1Þð Þþ TIerrorðkÞ

þ TD errorðkÞ � 2errorðk � 1Þþ errorðk � 2Þð Þ

Taking into account the limits on word length and the operating speed of the
program, the PID control algorithm is combined with the integer operation, but the
operation results in error due to a half adjustment. To reduce the rounding error,
the method of reducing the value of the coefficient k is proposed. It is worth noting
that due to the reluctance of the k value within a certain range in an actual process,
appropriate compensation for the remainder of k is needed. The operation process is
shown in Fig. 3.

2.2 PID Controller Parameters

To obtain the ideal control effect, the optimal values of kp, TI, and TD in the PID
controller algorithm are determined based on a simulation; the simulation waveform

Fig. 1 Schematic diagram of
PID control system
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of the pulse is shown in Fig. 4. The transfer function of the aluminum alloy pulsed
MIG welding power supply is as follows [3]:

G sð Þ ¼ 1
s3 þ 6s2 þ 5s

While adjusting kp, it is found, by comparing (a) and (b) in Fig. 5, that the
smaller the value of kp is, the less the number of shock waves is; hence, the best
value of kp to achieve the maximum output current is 2.2.

Mere adjustment of the kp cannot lead to the desired outcome; therefore, the TI
value must be regulated after the kp is determined. Figure 6 shows that the greater
the value of TI is, the smoother the waveform is and that the overshoot phenomenon
eased significantly when kp = 2.2, TI = 3.

Finally, after the kp and TI values settle, the differential time TD is employed to
avoid the overshoot. Comparing the different results, TD = 20 is determined to be
the best TD parameter, as shown in Fig. 7. To sum up, the best PID parameters
suitable for this chapter are kp = 2.2, TI = 3, and TD = 20.

Fig. 2 Flow chart of PID
control subroutine
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3 Anti-disturbance Control

The aluminum alloy pulsed MIG welding power supply is a piece of electrical
equipment that combines strong and weak current; hence, there are multiple sources
of interference, including the electromagnetic fields, the power grids, and the chip
itself. The disturbance of the current signal, which is the foundation of the control,
can be caused by the above sources of interference. Therefore, the suppression of
interference signals is necessary in thin aluminum alloy pulsed MIG welding [4].

Fig. 3 Proportional and
integral remainder error
complement

yout(t)
rin(t)

1

s  +6s  +5s3 2

PMIG

PID(s)

PID Controller

Fig. 4 PID controller parameter regulation simulation model
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Fig. 5 kp simulation diagram: a kp = 10; b kp = 3

Fig. 6 TI simulation diagram: a TI = 10; b TI = 4

Fig. 7 Current output waveform corresponding to the best PID parameters
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The traditional feedforward controller is based on the size and direction of the
interference and is controlled by the interference so that the original object does not
deviate [5].

According to Hecht Nielsen, the artificial neural network (ANN) is a large-scale
nonlinear adaptive system composed of a number of processing units through a
certain interconnection [6]. The artificial neural network can be used to address
questions in cases with unknown background knowledge and inference rules
because an ANN can offer distributed storage, parallel processing, self-learning,
self-organizing, and adaptive nonlinear dynamic systems [7]. Therefore, in this
chapter, the artificial neural network is used to replace the traditional feedforward
compensator for feedforward control. The control structure model is shown in
Fig. 8.

The pulsed MIG welding power supply of an alloy sheet [8] is equivalent to

M _qþFðq; _qÞ ¼ u; y ¼ qþ d

where M is the unknown system inertia, Q is the ideal output, that is, the external
factors caused by the interference, D is the interference of the output of the system,
u is the input of the system, and y is the output of the system.

The tracking error is expressed as ev ¼ _eþ kce (kc > 0, a scalar), and the for-
mulation can be expressed as:

M _ev ¼ M€eþMkc _e

¼ Fðq; _qÞ � uþM€qd þMkc _e�M€d

Hypothesis 1: Nominal control can guarantee the asymptotic convergence of the
tracking error ev, that is, the Lyapunov function

V1ðevÞ ¼ 1
2
Me2v

Hypothesis 2: The optimal weight W1 is specified on the compact set and is
calculated by solving

z-1

z-2

z-3

z-4

a(k-1) S(a(k-1))

a(k)

a(k-2)

a(k-3)

a(k-4)

S(a(k-2))

S(a(k-3))

S(a(k-4))

S(a(k))a(k)

f̂ f̂

Fig. 8 Neural network compensation structure
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M _ev ¼ Fðq; _qÞ � unominal þ ŵTUðxÞþM€qd þMkc _e� HðxÞ � D/1

¼ Fðq; _qÞ � unominal þM€qd þMkc _e� �wTUðxÞ � D/1 � D/2

The weight estimation error is �w ¼ w� ŵ. The corrected adaptive law [9–12],
based on the parameter w, is as follows:

_̂w ¼ �CUðxÞev � rC evj jŵ

where C[ 0 is the gain matrix; r > 0 is a scalar parameter.

Theorem Considering the control law, the parameter update method, and the
tracking error, and taking the Lyapunov equation into account, the following
calculation can be obtained:

V ¼ 1
2
Me2v þ

1
2
�wTC�1�w

ej j � e1 þ e2 þ r
4M

�2

Qkc

It can be seen that the system is stable.

4 Simulation Results and Analysis

The external disturbance transfer function is as follows:

D sð Þ ¼ 3:757� 10�6s3 þ 0:3077s2 þ 1:381� 104sþ 8:374� 108

s3 þ 1885s2 þ 1:777� 106sþ 8:374� 108

The ideal waveform is selected as qd ¼ 0, _qd ¼ 0, €qd ¼ 0. The external vibration
x = 0.2sin500t is introduced at t = 0. The simulation uses the integral step ts = 1,
and its initial condition is that the nominal controller is PID controller 2. The
structure of the controller is as follows:

u ¼ unominal � wTU aðkÞ; aðk � 1Þ; aðk � 2Þ; aðk � 3Þ; aðk � 4Þð Þ

Among them, w ¼ ½w1 w2 w3 w4 w5 �T, the basis function is S(x) = 1.18/
(1 + e − x), and the network basis function is

U aðkÞ; aðk � 1Þ; aðk � 2Þ; aðk � 3Þ; aðk � 4Þð Þ
¼ S aðkÞ; aðk � 1Þ; aðk � 2Þ; aðk � 3Þ; aðk � 4Þð Þ½ �T
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The tracking error expression ev ¼ _eþ kce, the feedforward input f ¼ wTU xð Þ
and the modified adaptive law are all included in the function module. The algo-
rithm is built within the Simulink environment, as shown in Fig. 9.

According to the simulation model established above and the data in Fig. 9, the
comparison diagram of the waveform in Fig. 10 can be obtained. The results show
that the feedforward control method of the adaptive neural network based on
e correction can effectively suppress the interference by more than 50%.

To facilitate the simulation and description, the current value of the DSP is
compared after A/D conversion, as shown in Fig. 11. Figure 11a shows that the
high-frequency fluctuation waveform is similar to a sawtooth wave, while Fig. 11b
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Fig. 9 Simulation of adaptive neural network feedforward control based on e correction
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Fig. 10 Comparison of simulation waveforms: a Waveform with external disturbance.
b Waveform diagram of adaptive neural network feedforward control based on e correction
method
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shows the anti-jamming waveform with adaptive neural network feedforward
control based on modified e method. Results indicates that the feedforward control
method of the adaptive neural network based on e correction can effectively sup-
press the interference.

The single pulse welding experiment was carried out using the above
anti-interference control. The experimental parameters were as follows: the pulse
peak current Ip = 240 A, the peak time tp = 3 ms, the pulse base current Ib = 53 A,
the base value time tb = 12 ms, and a welding speed of 0.5 m/min. Figure 12 shows
the weld appearance by single pulsed welding with the proposed control algorithm.
Results indicates that the proposed control algorithm can be used to obtain high
quality welds.
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Fig. 11 Comparison of current waveform: a Actual waveform. b Waveform of adaptive neural
network feedforward control based on modified e method

Fig. 12 Single pulse welding experiment
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5 Conclusion

1. Based on the modeling and simulation of PID control, the optimal parameters
are determined to be kp = 2.2, integral time constant TI = 3, and differential time
constant TD = 20. Furthermore, the current value of the DSP is processed for
anti-jamming using a combination of the optimal PID controller and the adap-
tive neural network e correction method of feedforward control.

2. Pulse frequency modulation is employed in the process of welding arc length
adjustment, which returns the arc length back to its original length faster than
controlled variation of the external characteristics of the constant current.
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Study of Ultrasonic Phased Array
in Underwater Welding

Jianxiong Ye, Zhigang Li, Xingling Peng, Jinlan Zhou and Bo Guo

Abstract The popular sensors used in water have a lot of difficulties when com-
pared with those used in land welding automation. It is meaningful to find a new
kind of sensor which is suitable to work in underwater welding. Ultrasonic phased
array (PA) can work in water conveniently and send out required sound beam.
Compared with single-ultrasonic sensor, PA works faster and effectively. In this
chapter, interference principle of acoustic beam is analyzed first. Then, the rela-
tionship of focusing precision, PA shape, gap distance between adjacent units,
sensor element number, and time resolution is revealed with simulation. Proper
physical parameters of PA are determined. At last, high time resolution circuit
based on complex programmable logic device (CPLD) is given out. It works
together with sound-emitting and -receiving circuits to realize fast scan on welding
workpiece, so that the seam line can be deduced with underwater distance detection.

Keywords Underwater welding � Ultrasonic phased array � Sound interference
Circuit design

1 Introduction

Ocean plays a significant role in keeping sustainable development of our world, so
wet welding technology is becoming more and more important with the continuous
increase of marine engineering. The wet welding studies are mainly focused on
welding method, welding stability, and welding material, Gao et al. [1] studied
underwater friction stud welding. Mori et al. [2] studied underwater explosive
welding of tungsten. Hu et al. [3] studied the arc stability of wet manual welding.
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Mazzaferro and Machado [4] studied arc stability in underwater shielded metal arc
welding at shallow depths. Guo et al. [5, 6] studied metal transfer at shallow water.
As for wet welding automation, the biggest problem lies in that almost all the
sensors are hard to work in water. It is well known that the popular welding sensors
are charge-coupled device (CCD) cameras and rotating arc sensors [7, 8], but both
are unsuitable for wet welding. For the cameras, they must be sealed in a trans-
parent box to prevent water, and auxiliary illuminator is always needed for inten-
sifying illumination. Besides these, images are influenced inevitably by arc lights,
vapor bubbles, and substance suspending in water. Regarding the rotating arc
sensors, they cannot work directly in water either. How to confirm the electric
motor to run reliably in water is a big problem to be solved first. Another problem is
that the length of welding arc is affected by water pressure markedly. The arc length
shortens and the arc width attenuates while the water pressure increases. If the
pressure becomes big enough, the welding arc may be extinguished.

Because welding automation is based on high-performance sensor, it is imper-
ative to look for a new one for wet welding. Previous research indicates that
ultrasonic sensor can work directly in water, and sound beam is insensitive to arc
light and steam vapor [9]. In addition, precise distance detection between workpiece
and sensor has been fulfilled in water with ultrasonic sensor by means of
cross-correlation [10–12]. Based on these, ultrasonic phased array (PA) is intro-
duced in our work. PA consists of tens or even hundreds small units. These tiny
parts may also be called transducers or units, and often be arranged in line, in circle,
or other specific shapes. All the units can be driven separately, so the sound beam
may be focused on the expected positions quickly and conveniently without any
mechanical movements. The form of workpiece can be obtained by way of distance
detection. It is clear that PA is much more flexible and effective than
single-ultrasonic sensor in wet welding.

The rest of this chapter is arranged as follows. Section 2 introduces Huygens’
principle which points out the requirements of how to get steady sound wave
interference, and then, by help of software simulation, the proper physical
parameters of PA sensor are determined, including the shape, the number of units,
and the gap distance between adjacent elements. Section 3 introduces electric cir-
cuits which are designed for producing high-resolution time sequence, generating
excitation signal, sending sound wave, and receiving sound wave.

2 Physical Parameter Determination of PA

PA is constructed by a set of small transducers with different shape and size.
Acoustic waves are emitted from these small units and interact with each other in
water. To confirm multi-waves focused on a specific point (generally speaking, this
point is on the surface of workpiece), the beams must meet some conditions.
According to Huygens’ principle, the waves should have the same frequency and
stable phase difference. The synthetic wave has the biggest amplitude when the
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phase difference is an even multiple of p(180°), whereas it has the smallest
amplitude when the phase difference is an odd multiple of p(180°). Then, the
magnitude of the displacement of the summed waves is between the minimum and
maximum values. As shown in Fig. 1a, PA is fixed above the welding material
about 30 cm in water. Acoustic beams are sent out from the selected units with the
same frequency at different moments according to the designed programs, so as to
be focused exactly on the surface of workpiece in a line which is perpendicular to
welding seam. By way of distance detection between PA and these convergences,
material topography can be figured out and welding center for V-groove can be
derived out. Compared with those of single-ultrasonic sensor, the detection speed
and accuracy of PA can be improved greatly due to high working frequency and
mechanical movement elimination.

The physical size of PA, the number of transducers, and the clearance between
units have great effects on the focusing result. As described in Fig. 1b, let the beam
be focused on the point P. The time interval between the elements O1 and O2 can be
calculated out according to Cosine Theorem:

r22 ¼ r21 þ ½ðm� kÞd�2 � 2r1ðm� kÞd cos
p
2
� h

� �
¼ r21 þðidÞ2 � 2r1id sin h:

ð1Þ

From Eq. (1), time delay can be reasoned out as follows:

DTi ¼ Ds=C ¼ ðr1 � r2Þ=C ¼ r1
C

1� 1þ id
r1

�� 2

� 2id sin h
r1

#" 1
2

9=
;

8<
: ; ð2Þ

where Ds is the difference of r1 and r2, C means the sound travel speed in water, and
d is the interval spacing of adjacent units.

On the basis of Eq. (2), ArrayCalc is used to compute the interference patterns
with a graphical method. In this software, individual array elements can be placed
in 3D locations and orientations using a global coordinate system. A sphere cen-
tered on the global axis origin is the surface over which the array patterns are

Fig. 1 Ultrasonic PA working method in wet welding
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calculated. For a linear PA with eight elements, Fig. 2 gives out the interference
results in 2D and 3D array geometry when the main lobe has a flexion of 10°.

Linear PA is selected here for wet welding, because this kind of PA is conve-
nient to form a series of linear focusing points on workpiece surface than other
shapes. Comparison tests are conducted to reveal the relationship between focusing
precision and unit number with ArrayCalc which calculates the distance and
direction from each element to the appropriate points on the surface and sums the
field contributions to the interference patterns. For two different linear PAs with
eight elements and 16 elements, besides 0.2 ls time resolution, other parameters are
set as b = 2 mm and d = 3 mm. The focusing results are shown in Fig. 3.

More tests are carried out and some results are given out in Table 1. It is clear
that more elements lead to better focusing accuracy, result in more converging
strength, so concentrate more energy in main lobe. But in the meantime, more
elements mean more channels, which can make circuits complicated and PCB
board large.

At last, further research is carried out on relationship of time resolution and
focusing accuracy. Beam deflection and focalization depend on time delay
sequence. Erhard et al. [13] have pointed out that time quantizing error leads to
discrete side lobe, which means energy expansion. The percentage of side lobe to
main lobe can be expressed as [13]

S ¼
1� sin c

l

N sin c
l

! 1=2

� p

lð6NÞ1=2
; l � 1; ð3Þ

where N stands for the number of elements and l is the ratio of pulse period time to
minus quantized delay time. Small S value means better power concentration and
high focusing precision. For a certain N, desired S can be achieved by increasing l.
In our study, the time delay is realized by hardware; that is to say, complex devices

Fig. 2 PA focusing and deflection results
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are needed for high time resolution. Therefore, it is important to get the balance
between circuit performance and focusing precision.

As for the working parameters of PA, sound propagation speed in water is
roughly 1340 m/s, focal length is no more than 50 cm, and the minimum time
interval is about 40 ns. It is proper to use a linear ultrasonic PA with parameters
shown in Table 2.

8 elements       16 elements

(a) (b)

Fig. 3 Relationship between the number of PA units and the focusing precision eight elements,
16 elements

Table 1 Focusing accuracy under various number of elements

Element
number

Ideal focusing point
(mm, mm)

Real focusing point
(mm, mm)

Mean square error
(mm2)

4 (5.5, 30) (5.2, 16) 98.045

8 (11.5, 30) (11.1, 20) 50.080

16 (23.5, 30) (23.3, 27) 4.520

24 (32, 30) (31.8, 28) 2.020

32 (47.5, 30) (47.5, 29) 0.500

Table 2 Working parameters of PA

Number
of
elements

Center
frequency
(MHz)

Excitation
voltage
(V)

Gap of
elements
(mm)

Width of
elements
(mm)

Thickness of
elements
(mm)

Height of
elements
(mm)

16 2 120 1.7 1.5 1.1 10
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3 Design of Electric Circuit

Besides generating and amplifying actuating signals, electric circuit is used to drive
transducers according to specific time sequence, so that the sound beam can be sent
out and echo can be sampled. The distance between PA and welding piece can be
figured out by way of cross-correlation. The circuit used here can be divided into
several parts, including control circuit, time delay sequence generator, stimulating
signal amplifier, data acquisition unit, band-pass filter, wave sender and receiver,
etc. It can be seen from Fig. 4 that control circuit contains 16 separate channels.
Each channel has a triple-input control gate implemented by 74HCT11, which
works in “AND” logic. Only when start, excitation signal and sequential signal are
all in effective state simultaneously, the driven channel can become active, and the
sound wave is emitted out.

Complex programmable logic device (CPLD), EPM1270144C5, provides high
time resolution with a high-speed timer. It integrates 1270 logic units, 980 macro
units, 212 users defined I/O pin, and 8192 bytes of flash memory in a single chip
[14]. The steps for triggering each channel can be described as follows.

• Time values are sent to serial communication input buffer of CPLD from
computer. The buffer is 8-bit long, and will be saved in turn to the registers of 16
transducers.

• A hardware accumulator starts to operate and compare the sum value with stored
time. Time delay signal is sent out once the value matches.

• 74HCT11 is a high-speed controller with three input gates, i.e., sync signal
(“start”), time delay signal (out1, out2, …), and actuating signal. Only when all
the input signals are effective, the transducers can be driven.

PA is about 30 cm high above the welding piece. According to Eq. (2), the
needed least delay time is 26.97 ns, and the max time is 1799.69 ns. By selecting

Fig. 4 Structure of control circuit
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an 8-bit accumulator working at 100 MHz clock frequency, minimum 10 ns time
delay and 2550 ns max delay can be attained with CPLD device, so this circuit can
meet the resolution demand completely. But it should be mentioned that the initial
time for each channel should be exactly same, and the wave frequency and original
phase should be equal. To fulfill these requirements, high-frequency synchroniza-
tion pulses are sent out from CPLD to ensure all the channels having the same
original moment. Owing to the same inherent lag characteristic of channels, it can
be guaranteed that the initial time for all the channels is entirely simultaneous.

Figure 5a is an emitting circuit. The exciting signal is amplified by the
high-frequency transfer EE1302. The voltage can be risen to 130 V. The receiving
circuit is shown in Fig. 5b. Echo waves are picked up by transducers, and then be
enlarged by NPN9013. After that, they are adjusted by a band-pass filter which is
constructed mainly by M33078. At last, the treated signal is provided to the data
acquisition board PCI4712 for further processing.

4 Conclusion

In all, PA detects the distance by way of sound beam focusing. Its precision is
mainly influenced by element number, element gap, and time resolution. Some
conclusions can be drawn according to our study.

Fig. 5 Sound wave-emitting and receiving circuit
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The focusing precision is closely related to the PA physical parameters and the
number of elements. More elements lead to high accuracy.

The interferometry phase relies on the accuracy of delay time which is deter-
mined by time resolution, so the focusing precision is also related to time
resolution.

High working frequency is useful for improving time resolution, which can be
achieved with circuit based on CPLD in our research.

Further studies have carried out for PA to work as a sensor in wet welding.
Results indicate that it can work in water conveniently, and the advantage of this
sensor is remarkable.
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Type Identification and Feature Extraction
of Weld Joint for Adaptive Robotic
Welding

Ran Li, Manshu Dong, Xiaochao Zhang and Hongming Gao

Abstract In recent years, intelligent robotic welding has been an active research
area. Vision sensors have been widely used in robotic welding systems for infor-
mation collection and processing. For better welding quality and efficiency, it is
necessary to achieve accurate and fast information processing and intelligent
decision-making for welding robot. For weld joint information processing, most of
the reported works focus on the feature extraction of weld joint concerning a
specific type or a regular shape. In this chapter, an algorithm is proposed to identify
joint type and extract relevant feature values by extracting three feature lines and
two key turning points. Three types of weld joints are inspected and the results
indicate that the algorithm is of high efficiency and robustness.

Keywords Laser vision sensor � Type identification � Feature extraction
Adaptive robotic welding

1 Introduction

Nowadays, with the development of modern manufacturing technologies and
shortage of skilled manual welders, automatic welding becomes an inevitable trend.
However, most of the welding robots applied in the automatic manufacturing are
still primary teaching-playback robots. Their welding path and parameters are set in
advance. The use of welding robots requires sufficient preparation of working
conditions. But in practice, the positions and shapes of weld joint usually vary due
to the workpiece distortion, changing misalignment and changing gap which are
mainly caused by production error, assembly error and welding heat respectively.
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Therefore, this type of welding robots cannot meet the enterprises’ requirements on
high quality and efficiency [1]. In order to address these issues, new welding robot
should have the functions of real-time seam tracking and welding parameter
adjustment to achieve adaptive robotic welding [2]. In an adaptive robotic welding
system, the sensor system gets the information of the weld joint in advance and then
extracts relevant feature values so as to determine the welding path and parameters
[3].

Laser vision sensors are the most widely used sensors in welding manufacturing
because such sensors are insensitive to electrical and magnetic interferences and
robust even in the presence of extreme noise [4]. The principle of laser vision
sensors is primarily based on triangulation technique. The camera captures the
image of target weld joint with the projection of structured light. Then, the captured
stripe is processed to extract the geometrical information of the weld joint.

Although feature extraction has been researched extensively [5–9], most of the
works focus on the specific joint type with horizontal surfaces. The surface
unevenness and misalignment are not considered, while they are inevitable in
practice. The conventional feature values extracted are the trace coordinates used
for path correction and the welding area used for parameter adjustment. These
methods are exclusively applied to specific and well-assembled weld joint, so there
is a need for an intelligent algorithm that can identify joint type (butt, lap or fillet
joint) and extract relevant features even with big noise.

An algorithm for information processing of laser sensors in adaptive robotic
welding is described in this chapter, and it can be used to identify the joint type and
then calculate the relevant feature values in real time for most plate welding.

2 Experimental System

The experimental system (see Fig. 1a) consists of a six-axis industrial robot
(Motoman, HP20D), a smart laser system (META, 50V1), a three-axis motion
platform and a computer. All the components are interconnected by a hub. The
sensor head fixed at the end effector of the robot, in front of the welding torch (see
Fig. 1b), is 65 mm away from the workpiece surface with a 50 mm field of view.
The built-in camera gets an image with a laser stripe projected on the surface. This
image indicates the shape of joint. After interior operation, the joint information in
the form of a series of relative coordinate values is sent to the computer.

3 The Proposed Method

The traditional methods extract feature points through calculating derivative [6] or
turning angle [8]. The number and type of the turning points extracted determine
the type of weld joint [10]. These methods depend highly on the precision of
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extraction of laser stripe, and most of them are applicable to a specific or regular
joint. When the weld joint is irregular or the laser stripe is noisy, these methods may
be not suitable. In order to adjust the welding parameters more sensitively, the
adaptive welding robot system needs to extract feature values as soon as possible.
Therefore, there is a need for an algorithm to quickly identify joint type and extract
relevant feature values.

In practice, the surface of workpiece except the joint is usually flat. Due to the
continuity of seam, the joint part is usually in the middle of the laser stripe.
Therefore, two feature lines which indicate the surfaces of two workpieces can be
extracted from the points at two ends of the laser stripe. Then, the two key turning
points are extracted by calculating the deviation values from points to each line in
the y-axis. The third feature line is extracted by connecting the two key turning
points. The angle values among three feature lines and the distance between two
key turning points determine the joint type, and the relevant feature values are then
calculated according to the joint type. The detailed steps are shown below.

3.1 Type Identification

There is some noise in raw data sent from the laser sensor system due to specular
reflection and arc light. These noise points should be removed first. The laser sensor
system sends 1024 points in order of x-axis, so the valid data (Xi, Yi) should meet
this criterion: (1) Xi−1 < Xi < Xi+1; (2) −40 < Yi < 40, if Yi−1 < Yi > Yi+1 or Yi
−1 > Yi < Yi+1, |Yi − Yi−1| < 3 and |Yi − Yi+1| < 3. The relevant thresholds are
obtained through test. Because of edge distortion, the points at two ends are usually
invalid. Therefore, the former ten points and the last ten points are removed.

The valid data contain nearly 1000 points. Two feature lines L1 and L2 are
extracted from 200 points of both ends first by least square method. K1 and K2 are
the slope values of L1 and L2 in y-axis respectively. D1 and D2 are the max

Fig. 1 Experimental system (a) and sensor head (b)
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deviation values of L1 and L2 in y-axis respectively. Let L1 be the feature line
indicating the surface of left workpiece and L2 be the feature line indicating the
surface of right workpiece. Then, the deviation values in y-axis are consecutively
calculated from the point 201 to the point 800. When the deviation values of ten
consecutive points are beyond D1, the last point close to these points in the left is
regarded as the key turning point A. The point B is got by the same method. L3 is
then extracted by connecting A and B. The slope of L3 is K3. Through K1, K2 and K3

and the distance between A and B, the type of weld joint can be identified.
Basically, there are three types of weld joints: butt joint, lap joint and fillet joint

(see Fig. 2). For butt joint with groove, L1, L2 and L3 are almost parallel. So, the
angle values h12, h13 and h23 should be less than a certain value which is 30° in this
chapter. For butt joint without groove, if L1 and L2 are almost coincident or the
turning points are very close to each other, it is hard to find the accurate turning
points. In this case, the turning points can be got by calculating the max deviation
value in x-axis of consecutive points. If the max deviation value is more than a
certain value which is 1 mm in this chapter, the two consecutive points are regarded
as the turning points. If the max deviation value is less than 1 mm and the two
feature lines are almost coincident, the joint is regarded as flat. If L1 and L2 are not
coincident, the identification criterion is the same as that of butt joint with groove.
For lap joint, L1 and L2 are almost parallel and L3 is almost vertical to L1 and L2. So,
the angle values h13 and h23 should be more than a certain value which is 60° in this
paper. The angle value h12 should be less than a certain value which is 30° in this
paper. For fillet joint, L1 and L2 are almost vertical and the points A and B are
almost coincident. So, the angle value h12 should be more than a certain value
which is 60° in this paper. And the distance between A and B should be less than a
certain value which is 1 mm in this chapter. As the turning points A and B are
almost coincident, h12, h12 and L3 are not considered. Figure 3 shows the block
diagram of the whole algorithm.

3.2 Feature Extraction

As the joint type is identified, a series of feature values are then calculated
according to actual demand. For lap joint and fillet joint, the main feature values are
tracepoint and torch direction. The key turning point located at a low position is the

Fig. 2 Three main types of weld joint: a butt joint; b lap joint; and c fillet joint
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tracepoint, and the relevant feature line which the tracepoint belongs to is the
baseline. For lap joint, the torch vector is between baseline and L3. For fillet joint,
the torch vector is between L1 and L3. For butt joint, the tracepoint is the midpoint
of gap. And the welding area is calculated by summing up the area of the trapezium
composed by every two consecutive points between A and B and their vertical
intersection points with L3. The misalignment value is got by calculating the dis-
tance from the higher turning point to the line through the lower point.

4 Results and Discussion

Three types of weld joints are inspected to examine the performance of this
algorithm.

A butt joint is tested and the raw data are plotted (see Fig. 4a). It is obvious that
there are some distortion points at two ends. After data filtering, valid data are
obtained (see Fig. 4b). Two feature lines are then calculated from 200 points at two
ends by least square method, i.e. L1 (y = − 0.1240x − 2.6884) and L2
(y = − 0.0360x − 2.0666) which are the green and yellow lines in Fig. 4c
respectively. The max deviation values are got: D1 = 0.0662 and D2 = 0.0808. By
calculating the deviation values from other points to these two feature lines in
sequence, the turning points A and B are extracted: A (−4.117, −2.265) and
B (8.462, −2.46) shown in Figs. 4d and e. Then, the feature line L3 is got: L3
(y = − 0.0155x − 2.3288). The angle values are calculated: h12 = 5.0063°,
h23 = 1.4035° and h13 = 6.4075°. According to the above block diagram, this joint
is identified as a butt joint.

A lap joint is tested (see Fig. 5). The feature lines and feature points are got: L1
(y = − 0.1223x − 4.9181), L2 (y = − 0.1279x + 1.4444), L3
(y = 26.7265x − 112.4126), A (4.005, −5.373) and B (4.239, 0.881). The max
deviation values and angle values are: D1 = 0.1804, D2 = 0.4259, h12 = 0.3159°,
h13 = 85.17° and h23 = 84.854°. According to the above block diagram, this joint is
identified as a lap joint.

Fig. 3 Block diagram of the algorithm
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A fillet joint is tested (see Fig. 6). The feature lines and feature points are got: L1
(y = −0.3988x − 11.0133), L2 (y = 2.6580x − 45.5687), A (11.17, −15.34) and
B (11.404, −14.919). So, the angle value of L1 and L2 and the distance between
A and B are got: h12 = 88.875° and DAB = 0.482. According to the above block
diagram, this joint is identified as a fillet joint.

The results indicate that all three types of weld joints are successfully identified.
As shown in Fig. 6, even if the data have some big noise, this algorithm can still
find the appropriate key turning points according to the max deviation values.

Fig. 4 Feature extraction of butt joint: a raw data; b valid data; c feature lines; d the point A; e the
point B; and f gap points

Fig. 5 Feature extraction of
lap joint
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In order to test the accuracy of this algorithm, a standard V-groove is tested with
given dimension (see Fig. 2). The groove is 10 mm wide and 5 mm deep after
machine work. The algorithm identifies the joint type and then gives the feature
values as follows: the groove width is 10.076 mm, the groove depth is 4.932 mm,
the welding area is 25.696 mm2, the misalignment value is 0.02 mm and the angle
value of workpiece is 0.22. In consideration of the lateral resolution of the laser
system, which is 0.05 mm, the errors of these values are acceptable.

5 Conclusion

An algorithm for type identification and feature extraction of irregular weld joints is
presented in a practical and reliable way. The following conclusions can be made.
The proposed algorithm can quickly identify the joint type according to the
extracted three feature lines and two key turning points and the amount of com-
putation is comparatively small due to the simple criterion. Even if the data noise is
big, the set of max deviation value and consecutive deviation point number ensures
the reliability and robustness of the algorithm. This algorithm can give fairly
accurate feature values. And the error is within one-half of the lateral resolution of
the laser system.

Acknowledgements This work is supported by the National Key Technology R&D Program of
China (2015BAF01B01).

Fig. 6 Feature extraction of
fillet joint
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Kinematic Model Analysis of an 8-DOF
Photographic Robot

Xiaowei Xie, Xingang Miao, Su Wang and Feng Zhang

Abstract The photographic robot studied in this chapter is an 8-DOF PRRPR-S
type. In order to obtain a stable and repeatable lens shooting trajectory, it is nec-
essary to balance the robot’s own weight and structural rigidity. First, based on the
structural analysis of the photographic robot, the main parameters of the mechanism
design are extracted. Then, with the help of the photographic robot calibration, the
kinematics model of the robot is established. The DH model is applied on the first
seven axes of the photographic robot. The 6-parameter model is used on the end
actuator attitude adjustment rotation axis. Finally, the motion of each axis is sim-
ulated in MATLAB, which verifies the kinematic model.

Keywords Photographic robot � Kinematics analysis � DH model
6-parameter model

1 Introduction

The photographic robot can accurately reproduce the graphics and export the
shooting trach at the same time, which cannot be realized by the manual operation.
It is an important tool, used for shooting source material, for digital image synthesis
technology, which provides the foundation for the creation of visual effects. At
present, the use of photographic robots requires professional operators to partici-
pate. This approach has been approved to be time-consuming, which is less effi-
cient. The purpose of this chapter is to establish the kinematic model of the 8-DOF
photographic robot. This allows the operator to specify the target position of the end
actuator and simplify the operation mode. The photographic robot controls the
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movement of cameras and can monitor the welding process at a specified location in
real time. This will make photographic robots widely used in welding manufac-
turing. While modeling is the key process of robot kinematics analysis, the DH
modeling method is one of the most commonly used modeling methods [1, 2]. In
this chapter, the first seven axes of the photographic robot are developed by this
modeling method. However, this model acts singularly when the adjacent two joint
axes of the robot are parallel or nearly parallel. Therefore, when parallel axes occur,
the rotation of one y axis will be increased to avoid the singularity problem [3]. The
rotation axis, which is performed by the actuator at the end for attitude adjustment,
uses a 6-parameter S-model [4]. According to the kinematic model established by
this method, the pose matrix of the end actuator can be obtained more accurately,
which in practice has a great application value.

2 Schematics and Zero Status Parameter Tables

In this chapter, the type of photography robot is an 8-DOF PRRPR-S type, with
complete spatial positioning capability. It belongs to the double redundant freedom
robot. Physical prototype and key components are named as in Fig. 1. Compared
with the traditional industrial robots, the arm can be elongated, and the robot body
structure can be moved in a linear orbit. The kinematics model of the robot is
established depending on each link as a rigid body. Kinematics model research
mainly solves the problem of robot positioning, especially for describing the
positional relationship between one connecting rod and another.

In this chapter, the DH method is used to model the photographic robot, while
the 6-parameter model method is used for the end actuator transformation matrix.
The above statement has already taken the calibration requirements into account.
DH modeling methods in different literature are slightly different. The coordinate
system {i} in this chapter is attached to the connecting rod i at the origin of the joint
axis of the connecting rod. The specification of the additional coordinate system of
the connecting rod is summarized as follows:

(1) For the coordinate system {i} of the connecting rod i, the Z axis is pointing in
the axial direction of the joint axis, and for the linear motion axis, the axial
direction is the direction of the motion axis;

(2) The X axis of the coordinate system {i} is the vertical direction of the coor-
dinate system {i−1} Z axis and the coordinate system {i} Z axis. The Y axis of
the coordinate system {i} is determined by the right-hand rule according to the
X axis and Z axis.
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Thus, the establishment of the photographic robot connecting rod coordinate
system is shown in Fig. 2.

There are eight motion axes in the photographic robot, respectively, the bottom
linear motion axis r1, the bottom ring rotation axis h2, the top of the ring structure
rotation axis h3, the top linear motion axis r4, the top line structure distal pitch
rotation axis h5, the end actuator attitude adjustment rotation axis h6, pitch axis h7
and roll axis hee. Considering the zero state of the photographic robot, based on the
DH and 6-parameter models, the kinematic link parameters of the photographic
robot are obtained, as shown in Table 1. When the photographic robot is located in
the zero state, the movement amount of each motor shaft is 0. The position and
attitude of the photographic robot are shown in Table 1.

Fig. 1 Photographic robot movement axes and key parts named
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3 Transformation Matrix

3.1 Transformation Matrix Type 1—DH (h r l a)

The DH transformation matrix means that in the coordinate system {i}, it rotates h
around the current Z axis, then moves r along the Z axis, next moves l along the
X axis, afterward rotates a around the X axis. The formula of the transformation
matrix of DH modeling is

Fig. 2 Connecting rod coordinate system

Table 1 Photographic robot kinematic link parameters table

Parameter

Vary Type i 1 2 3 4 5 6

W–0 1 0 p/2 0 0 p/2 – –

0–1 1 1 0 r1 + r10 0 −p/2 – –

1–2 1 2 −p/2 r2 0 −p/2 – –

2–3 1 3 −p/2 0 l3 −p/2 – –

3–4 1 4 0 r4 + r40 0 p/2 – –

4–5 1 5 p/2 0 0 −p/2 – –

5–6 1 6 0 r6 0 p/2 – –

6–7 1 7 −p/2 0 0 −p/2 – –

7−EE 2 EE 0 0 0 0 0 0
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ADH ¼
cos h � cos a � sin h sin h � sin a l � cos h
sin h cos a � sin h � cos h � sin a l � sin h
0 sin a cos a r
0 0 0 1

2
664

3
775 ð1Þ

3.2 Transformation Matrix Type 2—EE (6-Parameter
Transformation Matrix)

The 6-parameter transformation matrix means that, in the coordinate system {i}, the
following transformation is performed in the new coordinate system after the
transformation, it rotates h around the Z axis, rotates b around the Y axis, rotates a
around the X axis, then moves x along the X axis, moves y along the Y axis and
finally moves z along the Z axis. The EE modeling transformation matrix formula is

:

Aee ¼

cos b � cos h cos h � sin a � sin b� cos a � sin h sin a � sin hþ cos a � sin b � cos h
cos b � sin h sin h � sin a � sin bþ cos a � cos h � sin a � cos hþ cos a � sin b � sin h
� sin b cos b � sin a cos a � cos b

0 0 0

2
6664

z � sin a � sin hþ cos a � sin b � cos hð Þ � y � cos a � sin h� cos h � sin a � sin bð Þþ x � cos b � cos h
�z � sin a � cos h� cos a � sin b � sin hð Þþ y � cos a � cos hþ sin h � sin a � sinbð Þþ x � cos b � sin h

z � cos a � cos b� x � sinbþ y � cos b � sin a
1

3
7775

:

ð2Þ

From the above analysis, the photographic robot transformation matrix is
obtained

A0 ¼
0 0 1 0
1 0 0 0
0 1 0 0
0 0 0 1

2
664

3
775 ð3Þ

A1 ¼
1 0 0 0
0 0 1 0
0 �1 0 r1 þ r10
0 0 0 1

2
664

3
775 ð4Þ

A2 ¼
cosðh2 � p=2Þ 0 � sinðh2 � p=2Þ 0
sinðh2 � p=2Þ 0 cosðh2 � p=2Þ 0

0 �1 0 r2
0 0 0 1

2
664

3
775 ð5Þ
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A3 ¼
cosðh3 � p=2Þ 0 � sinðh3 � p=2Þ l3 � cosðh3 � p=2Þ
sinðh3 � p=2Þ 0 cosðh3 � p=2Þ l3 � sinðh3 � p=2Þ

0 �1 0 0
0 0 0 1

2
664

3
775 ð6Þ

A4 ¼
1 0 0 0
0 0 �1 0
0 1 0 r4 þ r40
0 0 0 1

2
664

3
775 ð7Þ

A5 ¼
cosðh5 þ p=2Þ 0 � sinðh5 þ p=2Þ 0
sinðh5 þ p=2Þ 0 cosðh5 þ p=2Þ 0

0 �1 0 0
0 0 0 1

2
664

3
775 ð8Þ

A6 ¼
cos h6 0 sin h6 0
sin h6 0 � cos h6 0
0 1 0 r6
0 0 0 1

2
664

3
775 ð9Þ

A7 ¼
cosðh7 � p=2Þ 0 � sinðh7 � p=2Þ 0
sinðh7 � p=2Þ 0 cosðh7 � p=2Þ 0

0 �1 0 0
0 0 0 1

2
664

3
775 ð10Þ

Aee ¼
cos hee sin hee 0 0
� sin hee cos hee 0 0

0 0 1 0
0 0 0 1

2
664

3
775 ð11Þ

The position of the end actuator coordinate system in the world coordinate
system is

Tee ¼ A1 � A2 � A3 � A4 � A5 � A6 � A7 � Aee ð12Þ

Among them, r1 = 0, r4 = 0, r10 = 1000, r2 = 300, l3 = 333, r40 = 333, r6 = 963, r1 = 0.
In Fig. 2, r20 = 1969. r20 is the distance from the upper surface of the bottom

linear track to the top of the ring structure rotation axis. It is assumed that the height
of the upper surface of the bottom linear track is used as the origin height of the
world coordinate system. However, under the consideration that the positional
expression of the photographic robot contains interrelated link parameters, the
world coordinate system is placed in the middle of the two tracks, which makes the
height lower than the height of the ring structure’s top.
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Fig. 3 Rotating platform model: a bottom linear motion axis; b top of the ring structure rotation
axis; c bottom ring rotation axis; d top linear motion axis; e top line structure distal pitch rotation
axis; f end actuator attitude adjustment rotation axis; g end actuator attitude adjustment pitch axis;
h end actuator attitude adjustment pitch roll axis
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4 Verification of Kinematics Model

In this chapter, the kinematics model of the photographic robot is displayed
graphically with MATLAB software. It moves as much as possible within the
motion range of each joint of the photographic robot [5]. As shown in Fig. 3, the
green dotted line is the initial zero position of the photographic robot, the blue solid
line is the end state of the motion of the photographic robot, the sky and black is the
posture of the end actuator, and the red dotted line is the end actuator motion
trajectory of the photographic robot. Among them, some photographers at the end
of the kinetic model of movement state and the initial zero state coincidence,
resulting in green dotted line is blocked by a blue solid line.

The figure shows the initial zero state, the motion end state and the end actuator
motion trajectory of each axis of an 8-DOF robot. It can be seen from the figure that
the end actuator of the photographic robot moves continuously from the initial zero
position of the photographic robot to the end state of the motion of the photographic
robot along the trajectory, and it is possible to visually see the eight axes of the
photographic robot during the simulation animation passes through the continuous
points of the trajectory, which fully complies with the requirements of the photo-
graphic robot design.

5 Conclusion

According to the calibration requirements of the 8-DOF photographic robot, both
the DH model and the 6-parameter model has been purposed to establish the
coordinate system and model. Through MATLAB simulation, it is shown that the
kinematics simulation of the photographic robot can be realized by MATLAB
software, which proves that the photographic robot can accurately move along with
the desired trajectory on the computer. Overall, the discussed method has been
proved to be complete, continuous and practical.
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