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Preface

Electric distribution networks are critical parts of power delivery systems. In recent
years, many new technologies and distributed energy resources have been integrated
into these networks. To provide electricity at the required quality and at the lowest
possible cost, an appropriate control and management of future electric grids is
indispensable. The management system continuously monitors and controls various
equipment in distribution network to reduce long-term operation and maintenance
costs, to satisfy technical constraints of utilities and customers, and to improve
security and reliability of power delivery. Since the integration of new technologies
such as renewables and demand response is increasing the uncertainties in distri-
bution networks, one of the critical challenges of control and management systems is
to tackle such uncertainties. A wide range of approaches along with optimization
algorithms including mathematic- and heuristic-based are utilized for finding the
best configuration of control systems in distribution networks.

Over the last decades, several researches have been carried out around the world on
electric distribution management and control, whose results are available as journal
articles, conference papers, or technical reports. However, to the best of the editors’
knowledge, no single book has covered the different aspects of distribution networks’
management and control so far. The interested readers had to search among several
hundreds of papers on this topic through various databases in order to build up their
knowledge on the subject. This book is the first one entirely focused on the distri-
bution networks’ management and control and is an effort to provide a research-
oriented and a coherent book on the subject for postgraduate students and researchers.

This book is benefited from the inputs and comments of a large number of
researchers and experts from the academia and industry. It contains 12 chapters.
The breakdown of the chapters is as follows:

e Chapter 1 explores existing and emerging flexibility options for facilitating the
integration of large-scale variable renewable energy sources in electric distri-
bution networks.
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e Chapter 2 presents a model for balanced and unbalanced electric distribution
network and then studies their effects on the power flow analysis of practical
networks.

e Chapter 3 presents some advanced methods for demand simulation with the
increased uptake of low-carbon technologies using limited number of
measurements.

e Chapter 4 presents coordinated voltage control methods in active electric dis-
tribution networks by coordinating various control options including power
factor control, on-load tap changers, and generation curtailment.

e Chapter 5 reviews promising concepts for distribution network-oriented demand
response to address local challenges that distribution network operators face in
daily operation.

e Chapter 6 presents the feasibility of using customer coupon demand response in
meshed secondary networks to achieve the objective of optimal operation cost
during network peak periods.

e Chapter 7 describes a transactive approach to the optimal scheduling for pro-
sumers in coupled electric and natural gas distribution networks to improve the
integration of distributed energy resources.

e Chapter 8 introduces the optimal switch deployment in distribution networks
including the mathematical formulation in the form of a mixed integer program.

e Chapter 9 presents a multi-time scale model predictive control approach which
is stochastically applied in the cooperative distributed energy scheduling
problem for microgrids.

e Chapter 10 introduces methodologies to assess the impact of distribution gen-
eration on protection systems within electric distribution networks for an inte-
grated network planning.

e Chapter 11 studies modeling of various types of generators in wind farms for
fulfilling the rules and requirements, set by network operators, to guarantee the
continuity and stability of the interconnected grid.

e Chapter 12 reviews a unified integration solution that enables distribution
management systems to flexibly adapt to various advanced metering infras-
tructure systems with different communication protocols and meter data models.
Also, it discusses graphic processing unit technologies and explores their
applications in distribution networks.

As the editors of this book, we would like to thank all the contributors for their
support and hard work. We also would like to thank the reviewers who provided
valuable comments for improving the quality of this book. Also, we are grateful to
the publisher Springer Nature for agreeing to publish this book. Last but not least,
we would like to thank our families—Ali thanks his wife and son (Behnaz and
Amin), Farhad thanks his parents (Nahideh and Ali) and his spouse (Negar), and
Gerard thanks his family for their continuous encouragement and support.

Perth, Australia Ali Arefi
Perth, Australia Farhad Shahnia
Brisbane, Australia Gerard Ledwich

January 2018



Reviewers

Ahmed Rashad, Aswan University, Egypt, and University of Jaén, Spain
Amir Safdarian, Sharif University of Technology, Iran

Azah Mohamed, University Kebangsaan Malaysia, Malaysia

Carlos F. Meschini Almeida, University of Sdo Paulo, Brazil

Desta Z. Fitiwi, University of Beira Interior, Portugal

Fang Yang, University of Wisconsin Platteville, USA

Francisco Jurado, University of Jaén, Spain

Gabriel Quiroga, University of Sdo Paulo, Brazil

Georgios Giasemidis, University of Reading, UK

Henrique Kagan, University of Sao Paulo, Brazil

Jing Qiu, Commonwealth Scientific and Industrial Research Organization, Australia
Jodo P. S. Cataldo, University of Porto, Portugal

Kazem Zare, University of Tabriz, Iran

Ke Meng, University of Sydney, Australia

Marco R. M. Cruz, University of Beira Interior, Portugal

Mehdi Rahmani-Andebili, Clemson University, USA

Miadreza Shafie-khah, University of Beira Interior, Portugal

Milad Izadi, Sharif University of Technology, Iran

Mohammad Farajollahi, University of California, USA

Mustafa Alparslan Zehir, Istanbul Technical University, Turkey

Mustafa Bagriyanik, Istanbul Technical University, Turkey

Nelson Kagan, University of Sdo Paulo, Brazil

Sérgio F. Santos, University of Beira Interior, Portugal

Stephen Haben, University of Oxford, UK

Salah Kamel, Aswan University, Egypt

Shady H. E. Abdel Aleem, 15th of May Higher Institute of Engineering, Egypt
Tengku J. Tengku Hashim, University Tenaga Nasional, Malaysia

vii



viii Reviewers

Xuejun Zheng, Huazhong University of Science and Technology, China
Zhao Li, LY Grid Innovation, USA

Zhao Yang Dong, University of New South Wales, Australia

Zhechao Li, Huazhong University of Science and Technology, China



Contents

10

Managing Risk in Electric Distribution Networks. . . . .. ... ... .. 1
Marco R. M. Cruz, Desta Z. Fitiwi, Sergio F. Santos,
Miadreza Shafie-khah and Joao P. S. Catalao

Distribution Network Modeling and Management . ............ 37
Fang Yang and Zhao Li

Distribution Network Demand and Its Uncertainty. . .. ....... .. 59
Stephen Haben and Georgios Giasemidis

Coordinated Voltage Control in Active Distribution
Networks. . . ... 85
Azah Mohamed and Tengku Juhana Tengku Hashim

Distribution Network Oriented Demand Response . ... ......... 111
Mustafa Alparslan Zehir and Mustafa Bagriyanik

Achieving Efficiency and Fairness in Dynamic
Demand Response . . . ............ ... ... . ... ... . ... ... 131
Zhechao Li and Xuejun Zheng

Scheduling in Coupled Electric and Gas Distribution
Networks. . . . ... 153
Jing Qiu, Zhao Yang Dong and Ke Meng

Switch Deployment in Distribution Networks . . ... ... ... ... ... 179
Milad Izadi, Mohammad Farajollahi and Amir Safdarian

Cooperative Distributed Energy Scheduling in Microgrids . . . . . .. 235
Mehdi Rahmani-Andebili

Protection System Considerations in Networks

with Distributed Generation . ............................. 255
Gabriel Albieri Quiroga, Carlos Frederico Meschini Almeida,

Henrique Kagan and Nelson Kagan

ix



X Contents

11 Stability of Distribution Networks with Wind Turbines . ... ... .. 281
Ahmed Rashad, Salah Kamel, Francisco Jurado
and Shady H. E. Abdel Aleem

12 Advanced Metering Infrastructure and Graphics Processing
Unit Technologies in Electric Distribution Networks. . . ... ... ... 309
Zhao Li and Fang Yang



About the Editors

Ali Arefi received his Ph.D. in Electrical Engineering in 2011. He is currently a
Senior Lecturer in Power Engineering at Murdoch University, Perth, Australia.
Prior to that, he was a Lecturer and Research Fellow at the Queensland University
of Technology. He also has 6 years’ experiences with electric distribution industry
and has been the supervisor for five industry-funded research projects. His research
interests are in the areas of electric delivery planning, state estimation, power
quality, and energy efficiency. He has published more than 80 research articles.

Farhad Shahnia received his Ph.D. in Electrical Engineering from Queensland
University of Technology, Brisbane, Australia, in 2011. Currently, he is a Senior
Lecturer in Power Engineering at Murdoch University, Perth, Australia. His pro-
fessional experience includes 3 years at Research Office-Eastern Azarbayjan Electric
Power Distribution Company, Tabriz, Iran. Prior to joining Curtin University, he
was a Research Fellow at the Queensland University of Technology, Brisbane,
Australia, and a Lecturer at Curtin University, Perth, Australia. He has authored 1
book, 9 chapters, and over 120 research articles as well as editing 4 books.

Gerard Ledwich received his Ph.D. in Electrical Engineering from University of
Newcastle, Newcastle, Australia, in 1976. He has been the Chair Professor in Power
Engineering at the Queensland University of Technology, Brisbane, Australia, since
1998. Previously, he was with the University of Queensland, Brisbane, Australia,
from 1976 to 1994. His research interests are in the areas of power system operation
and control. He is the supervisor of more than 35 Ph.D. graduates and has published
1 book, 3 chapters, and over 350 research articles.

xi



Abbreviations

ADI
ADMD
AMI
ANN
AR
ARIMA
AVRS
BESS
CB
CCDR
CDF
CG
CGNR
CHP
CPP
CPR
CS
CUDA
CVaR
CWF
DA
DER
DFIG
DG
DisCo
DLC
DLMP
DMS
DNO
DNR

Meter data integration

After diversity maximum demand
Advanced metering infrastructure
Artificial neural network

Automatic recloser

Autoregressive integrated moving average
Automatic voltage reference setting
Battery energy storage system
Circuit breaker

Customer coupon demand response
Customer damage function
Conjugate gradient

Conjugate gradient normal residual
Combined heat and power

Critical peak pricing

Critical peak rebate

Counter sectionalizer

Compute unified device architecture
Conditional value at risk

Combined wind farm

Day-ahead

Distributed energy resource

Doubly fed induction generator
Distributed generation

Distribution company

Direct load control

Distribution locational marginal price
Distribution management system
Distribution network operator
Dynamic network reconfiguration

Xiii



Xiv

DR
DSE
ES
ESB
EU
EV
FSB
G2V
GA
GC
GHG
GPU
GS
GSC
GSF
HEMS
HPC
ISO
KKT
LCE
LMP
LP
LSE
LV
MCS
MCWF
MDMS
MG
MILP
MIP
MM
MPC
MS
NEM
NN
OLTC
OMS
OpenCL
OPF
PC
PCC
PFBS
PFC
PMSG
PMU

Abbreviations

Demand response

Distribution state estimation
Expected shortfall

Enterprise service bus
European Union

Electric vehicle

Front-side bus

Grid-to-vehicle

Genetic algorithm

Gas compressor

Greenhouse gas emission
Graphics processing unit

Gas storage

Grid-side converter

Generator shifter factor

Home energy management system
High-performance computing
Independent system operator
Karush—Kuhn—Tucher

Loosely coupled event
Locational marginal price
Linear programming

Load serving entity

Low voltage

Monte Carlo simulation
Modern combined wind farm
Meter data management system
Microgrids

Mixed integer linear programming
Mixed integer programming
Minimum melting

Model predictive control
Manual switch

Net energy metering

Neural network

On-load tap changer

Outage management system
Open computing language
Optimal power flow

Personal computer

Point of common connection
Probabilistic fitness-based selection
Power factor control
Permanent magnet synchronous generator
Phasor measurement unit



Abbreviations XV

PSO
PV
RCS
RMAE
RPDE
RSC
RT
RTP
SCADA
SCB
SCIG
SG
S-MILP
SP
SPD
SS
STTM
SVC
SVM
TC
ToU
UBLF
ULTC
V2G
VaR
vC
Volln
VPP
vRES
VSC
WES
WLS
WRIG
WT

Particle swarm optimization
Photovoltaic

Remote-controlled switch
Relative mean absolute error
Relative peak demand error
Rotor-side converter

Real time

Real-time pricing

Supervisory control and data acquisition
Switchable capacitor bank
Squirrel cage induction generator
Synchronous generator
Stochastic mixed integer linear programing
Shortfall probability

Symmetrical positive definite
Sectionalizing switch

Short-term trading market

Static VAR compensator
Support vector machine

Total clearing

Time of use

Unbalanced power flow
Under-load tap changer
Vehicle-to-grid

Value at risk

Voltage control

Volatility index

Virtual power plant

Variable renewable energy source
Voltage source converter

Wind energy system

Weighted least squares

Wound rotor induction generator
Wind turbine



Chapter 1 )
Managing Risk in Electric Distribution sk
Networks

Marco R. M. Cruz, Desta Z. Fitiwi, Sergio F. Santos,
Miadreza Shafie-khah and Joao P. S. Catalao

Abstract This book chapter explores existing and emerging flexibility options that
can facilitate the integration of large-scale variable renewable energy sources
(vVRESs) in next-gen electric distribution networks while minimizing their
side-effects and associated risks. Nowadays, it is widely accepted that integrating
VRESs is highly needed to solve a multitude of global concerns such as meeting an
increasing demand for electricity, enhancing energy security, reducing heavy
dependence on fossil fuels for energy production and the overall carbon footprint of
power production. As a result, the scale of VRES development has been steadily
increasing in many electric distribution networks. The favorable agreements of
states to curb greenhouse gas emissions and mitigate climate change, along with
other technical, socio-economic and structural factors, is expected to further
accelerate the integration of renewables in electric distribution networks. Many
states are now embarking on ambitious “clean” energy development targets.
Distributed generations (DGs) are especially attracting a lot of attention nowadays,
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and planners and policy makers seem to favor more on a distributed power gen-
eration to meet the increasing demand for electricity in the future. And, the role of
traditionally centralized power production regime is expected to slowly diminish in
future grids. This means that existing electric distribution networks should be
readied to effectively handle the increasing penetration of DGs, VRESs in particular,
because such systems are not principally designed for this purpose. It is because of
all this that regulators often set a maximum RES penetration limit (often in the order
of 20%) which is one of the main factors that impede further development of the
much-needed vRESs.

The main challenge is posed by the high-level variability as well as partial
unpredictability of vRESs which, along with traditional sources of uncertainty,
leads to several technical problems and increases operational risk in the system.
This is further exacerbated by the increased uncertainty posed by the continuously
changing and new forms of energy consumption such as power-to-X and electric
vehicles. All these make operation and planning of distribution networks more
intricate. Therefore, there is a growing need to transform existing systems so that
they are equipped with adequate flexibility mechanisms (options) that are capable
of alleviating the aforementioned challenges and effectively managing inherent
technical risk. To this end, the main focus of this chapter is on the optimal man-
agement of distribution networks featuring such flexibility options and vRESs. This
analysis is supported by numerical results from a standard network system. For this,
a reasonably accurate mathematical optimization model is developed, which is
based on a linearized AC network model. The results and analysis in this book
chapter have policy implications that are important to optimally design ad operate
future grids, featuring large-scale variable energy resources. In general, based on
the analysis results, distribution networks can go 100% renewable if various flex-
ibility options are adequately deployed and operated in a more efficient manner.

Keywords Demand response - Electric distribution networks - Energy
storage systems - Flexibility options - Mixed integer linear programming
Network reconfiguration - Stochastic programing - Variable renewable
energy sources

1.1 Chapter Overview

It is now widely accepted that integrating variable renewable energy sources
(VRESs) in electric distribution networks is inevitable to meet a growing demand
for electricity, enhance energy security and diminish the heavy dependence on
fossil fuels to produce electricity, which are associated with high carbon footprint.
Many states are now forging ahead with ambitious VRES integration targets aiming
to achieve a substantial reduction of greenhouse gas emissions (GHGs), as in the
European Union (EU). Integration of VRES technologies are expected to lead to
80-95% GHG emissions by 2050 [1]. One eminent fact about these technologies is
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that they depend on the availability of primary energy resources such as wind speed
and solar irradiation, which are unevenly distributed over a wide geographical area.
This means distributed (rather than centralized) development of such resources
could be more convenient, efficient and even -cost-effective despite the
economies-of-scale. The main reason for this is because distributed generations are
installed in places closer to demand, which means they are often connected to
distribution networks. If this is executed in a well-coordinated manner, vRESs can
bring vast benefits to the systems as a whole in terms of improved efficiency,
deferred transmission investments, reduced use of fossil fuels for energy production
and therefore lower GHG emissions [2]. Hence, distribution networks are expected
to accommodate more and more VRESs.

Current trends generally show that the share of VRESs in the overall energy
consumption is rapidly increasing in many electric distribution networks globally
amid a number of barriers. However, the intermittent nature of such resources
means a large-scale integration creates technical problems in the systems. Electric
distribution networks are especially experiencing unprecedented challenges due to
the increasing penetration level of distributed power generation sources of variable
in nature, particularly, wind and solar. In other words, distributed generations
(DGs) are attracting a lot of attention from policy makers and planners to meet the
increased demand for electricity in the future. There is nowadays a growing trend of
adding more new DG capacities than centralized generation capacities. This brings
serious concerns to grid operators, though. The partially unpredictable nature of
power generation from the key renewable type DGs may endanger the stability and
integrity of electric networks as a whole, and at a distribution level in particular.
This may also deteriorate the quality of power delivered to consumers.

Because of these concerns, future distribution networks should be prepared to
handle the ongoing transformation process of power generation from the tradi-
tionally centralized to a more distributed and small power productions. Nonetheless,
conventional distribution networks are not designed to manage this, and as a result,
regulators often impose a maximum penetration limit which does not help further
development of distributed vRESs. But distribution networks are slowly evolving to
smart grids, which are adequately equipped with the necessary tools and mecha-
nisms to accommodate large-scale VRESs while minimizing their side-effects
mentioned earlier. This chapter explores and discusses the flexibility options that
can support the much-needed integration and efficient utilization of large-scale
VRESs in the future distribution networks. The assessment also includes managing
the negative impacts of VRESs, induced by their high variability and uncertainty, by
means of various flexibility options. For this purpose, optimal management of
distribution networks is performed via an appropriate mathematical optimization—
a stochastic mixed integer linear programing (S-MILP) for deploy different flexi-
bility options along with VRESs. This chapter aims to address the operation issues
that can occur in distribution networks due to the high-level variability and
uncertainty of VRESs. The analysis is made from the economic and technical point
of view. In particular, this chapter makes an extensive analysis on the impacts of
VRESs on the overall performance of the system such as voltage profile, losses,
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costs, system reliability stability and power quality. In addition, the contributions of
different flexibility options in enabling high penetration of VRESs and their
wide-range benefits are assessed.

The remainder of this chapter is as follows. The next section presents an
overview of the need for increased flexibility in distribution networks. The sub-
sequent section describes the developed mathematical formulation used to carry out
the required analysis. This is followed by numerical results and discussions. Finally,
the last section summarizes the main findings of this chapter.

1.2 The Need for Flexibility Options in Distribution
Networks

Because of the reasons mentioned earlier, an increasing level of DGs is being
connected to distribution networks. The fact that these are based on erratic power
sources (wind and solar, for example) is creating technical problems in such sys-
tems. Grid operators are especially concerned as the conventional means of over-
seeing the network systems are now becoming insufficient to keep a healthy
operation of such systems. The main reason for this boils down to the partially
unpredictable nature of these energy resources. In such circumstances, proper
management mechanisms need to be put in place so as to seamlessly accommodate
large-scale VRES type DGs. This is critical to address a multitude of global con-
cerns, partially described in the previous section.

In general, there is an increased need for flexibility in distribution networks
counterbalance the continuous fluctuations in RES power production and even
demand [3, 4]. Traditionally, demand-generation balancing is handled by conven-
tional power plants. However, in the presence of high level vRESs, this approach may
be prohibitively expensive or even not sufficient to provide the standard balancing
service level. Therefore, the existence of VRES in the system decreases the effec-
tiveness of existing flexibility mechanisms compared with the traditional system
(without these resources), mainly due to the intermittent nature of renewables. In other
words, the system needs a greater level of flexibility to be able to guarantee the system
reliability as the variation increases (both in supply and demand). This is one of the key
challenges integrating these energy sources. Therefore, new flexibility options are
needed to manage the real-time imbalances in demand and power production. This
way, the security of electric supply, stability and power quality can be guaranteed.

Flexibility can be defined as the ability electric distribution networks to effi-
ciently manage its own resources in the event of continuous changes in power
supply and demand sides. In this regard, voltage and frequency controls are the
primary resources to face uncertainty and variability [5, 6]. In addition, another
resource in electric distribution network useful for handling the imbalances as a
result of unpredictable changes in the system (either from the supply, demand or
both sides) is the network’s reserve capacity. Nonetheless, flexibility in electric
distribution networks can be affected by many factors such as the amount of reserve
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capacity, the ramp rates of generators, the type of generation, the availability of
generation, interconnection with other electric distribution networks, capacity of
interconnections, etc. [7]. These are traditional mechanisms to deal with imbalances
mainly caused by traditional sources of uncertainty and variability. Conventional
power plants can add reserve capacity to the system but the inherent variability and
uncertainty of VRESs definitively change the operation of distribution networks.
Under these circumstances, it may not be economical for conventional power plants
to offer spinning reserves. This would be costly because of a possibly increased use
of fossil fuels for providing the huge requirement of spinning reserves [8].

The fact that the energy sector is transforming to a new paradigm with improved
energy efficiency and environmentally-friendly technologies to produce energy at
reasonably priced tariffs [9] brings both opportunities and challenges. Flexibility
options will be highly needed to address those challenges and reap the benefits. The
system-wide reliability, efficiency, reduction of GHGs and affordability of energy
can be achieved by deploying and coordinating different flexibility options such as
energy storage systems (ESSs), switchable capacitor banks (SCBs), demand
response (DR) and others. These technologies substantially enhance the flexibility
of the system and its ability to continuously maintain a standard service in the face
of large fluctuations in the supply and demand [10, 11].

Given the background given above, the question of having adequate renewables
to meet the electricity demand requires one to have sufficient flexibility technolo-
gies to balance forecasting errors and fluctuations [12]. These flexibility options can
be provided by the energy storage medium, electric distribution networks, demand
and supply sides as shown in Fig. 1.1. For example, from the network side, the

Fig. 1.1 Identifying P e
flexibility options in electric Energy Storage
distribution networks

( System

S~ # i S
2 i

& : 4

(N Kk} &% d\'
etwork § @
» ” "

h e




6 M. R. M. Cruz et al.

system can dynamically change its topology to adapt to changing operational sit-
uations. The more frequent the reconfiguration is, the better the contribution of such
a flexibility mechanism will generally be. From the supply side, the traditional
flexibility service in the form of spinning reserve provided by conventional gen-
erators is one example. Others include curtailment of variable power and reactive
power control. On the demand side, some flexibility options are demand response,
energy efficiency and electric vehicles.

1.2.1 Challenges of Variable Energy Sources Integration

Traditionally, distribution networks are built to serve the peak demand, and fulfill
reliability and quality requirements, in a radial structure [13]. The role of distri-
bution operators has so far been mainly to construct, maintain and manage outages
of their distribution network assets [13]. However, with advent of new technologies
and new consumption forms as well as increasing penetration of DGs, this con-
ventional business model needs to be structurally changed. Under this circum-
stance, distribution grids are expected to support bi-directional power flows, which
is completely different from the way these are designed to. This is increasingly
becoming a concern for grid operators as this new role complicates the operation of
such grids. As a result, the architecture of distribution networks needs to change to
effectively overcome the limitations and address the operators’ concerns. The
systems need to adopt modern technologies after careful planning and be equipped
with necessary tools for their efficient operation. This is important to deal with
compounded issues pertaining to the political, social, economic and environmental
concerns, as well as meet rising demand for energy and sustainable development
goals [14].

Generally, the integration of variable energy sources has several challenges and
barriers, which can be categorized as technical, economic, social, political, finan-
cial, policy and regulatory aspects [15-24]. These are summarized in Fig. 1.2. The
technical challenges and barriers are already discussed. There financial markets,
such as banks, inventors or capital firms are the main contributors for economic
growth; they define the technological trajectories [15]. Because of this, they can
provide a fundamental element to any strategy in the direction of a more sustainable
future. Understanding the importance, profile and information that an investor
needs is critical to formulate renewable energy source (RES) policies and strategies.
In this context, it is expected that the challenges with integration of variable energy
sources are related with cost benefit scenario, policies and social acceptance anal-
ysis as can be seen in Fig. 1.2.

Policies and regulations have unexpected—sometimes counterproductive—
effects on integrating RESs. And, it is necessary for policy makers to study the
system by modeling the interactions between different parts of the system and
different policies adopted in order to accommodate a large-scale integration of
VRESs [25]. Although there are very supportive contributions from different
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e Lack of incentives and unclear VRES policies makes investors skeptical. Although
in recent years renewable integration has grown due to government-supported
programs through subsidies, tax credits and other incentives, more needs to be done
in order to reach targets to reduce 80% to 95% GHG emissions by 2050;

e Current policies do not provide effective VRES implementation, making industry
not fully applying for this technology.

e Lack of appropriate business models, and generating profits also induce some
rejection to invest;

e Huge investment costs, high financial risks, hidden costs and unable to maximize
profit cause investors reluctant to invest;

e The energy sector and the energy technology are very interdependent. By this means,
the viability of new products and processes is dependent on the compatibility with
the energy system and its infrastructure. It can be very difficult to investors to assess
the opportunities of new technological developments;

e There is a heavy involvement of public or semi-public governments. For several
politic and economical motives, energy systems are important policy targets and are
subject to intense public regulations. Consequently, investment opportunities are
deeply reliant on state regulations and the private sector is subjected to high policy
risks;

DRIVE

e Lack of knowledge among the investors is a barrier to invest in VRES technology.
VARIABLE They do not often have a technical team with sufficient knowledge on VRES,
ENERGY becoming very difficult to understand the concept and the business model they need
SOURCE to adopt in order to achieve maximum profits;

INTEGRATION —_— = -
® Problems with large initial investments to build an infrastructure capable of

accommodating the investment in renewable energies also has a relationship with
cost and profit analysis. Firms need to find regulatory sites with valuable resources
and with access to transmission or distribution lines;

e Integration and installation of VRES devices are plug and play systems. It is
important to consider employees’ and society’s security. Successful installation
should be quantifiable;

e Usage of VRES to produce electricity affects the existing location of production and
consumption events. This can cause social and spatial transformations that must be
engaged when considering expansion or planning of such a technology;

Large Scale Integration of Renewable Energy Sources

e Usually negative impacts related with social sustainability is the occupation of land
and the opportunity cost of the occupied area. Related with these is the fragmentation
of the landscape and deforestation, which can impact fauna and flora;

e Emissions associated with mining, transportation and manufacturing for VRES
technologies can also be obstacles because it requires significant fossil energy
contributions;

e The continuously falling oil prices may discourage investments in VRES
technologies;

Fig. 1.2 Challenges of integrating VRESs

nations, we face with a regulatory framework that comprises laws to overall support
RESs but there is no long-term planning because the approaches and framework
conditions are always changing [26]. As the network requires to build and operate
complex systems involving many corporations, this changing conditions does not
permit a system to function effectively [26]. Policies for renewable energy
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integration are being promoted to diffuse renewable energies within electric dis-
tribution networks though their effectiveness to accommodate large-scale integra-
tion remains subject to uncertainty [27]. For instance, states often try to assist
countries that import laws from others and do not adapt the framework to their
reality [26]. The lack of planning combined with inappropriate incentives can result
in financial problems limiting the progress of companies. Lack of qualified persons
combined with the absence of information about markets, operation, planning and
potential customers are other barriers to growth of vRESs. The slow rate of
decentralized energy systems could be purposely due to fear of losing control with
power shifting to new competitors and their pioneering business models [26]. For
example, “investment in oil and gas infrastructure and exploration in 2012 was
about US$ 650 billion, and on the flip side, investments in vRES development was
only US$ 244 billion” [28].

Among the aforementioned challenges, the technical ones present serious
problems in the network systems. In the absence of adequate countering mecha-
nisms, the level of VRES power absorbed by such systems could be insignificant,
which hardly help to achieve the targets sets forth by regulators and policy makers.
This chapter explores ways to address these issues by means of deploying different
flexibility options.

1.2.2 Emerging Energy Consumption Forms

The electric sector is undergoing rapid changes with a paradigm shift in three fronts:
generation, network and demand sides. Much has been said in the previous sections
of this chapter about the growing changes on the generation side. The demand side
is also experiencing rapid transformations. This means that along with the current
evolution of the electric sector and society, new forms of consumptions are
emerging and other forms are moving from parallel sectors to the energy sector. For
example, new and increasing consumption styles include e-mobility (such as
electric vehicles), power-to-X (an initiative to convert electricity to other forms of
energy), etc. These can be broadly grouped into three categories: the demand
response, electric vehicles and power-to-X, as shown in Fig. 1.3. The category of
demand response according [29] can be divided into three new sub categories,
industry intensive energy demand, demand management in services and households
and smart applications. The latter stems from the changes that are being made in the
electricity sector by transforming the traditional networks into smart grid, taking
advantage of the new communication capabilities that are being integrated into the
system. The remaining subcategories arise from the electrification of other sectors
such as, the transportation and the heating/cooling sectors [29]. A more detailed
approach to each of these categories is made in the subsequent sections, where the
main features of the new demand forms are presented together with the challenges
associated with each one.



1 Managing Risk in Electric Distribution Networks 9

ﬁm.l Response Electric Vehicles \

Power to Heat

i 4
éL
=

iy

i

N —

Fig. 1.3 New emerging forms of energy consumption

1.2.2.1 Demand Management in Industrial Installations

One of the subcategories within the demand is the demand management in
industrial facilities. In this subcategory, demand is modeled by the specific
industrial process characteristics, and can vary from one type of industry to another
type. As a result, the demand is not uniform. However, as already explained before,
the energy sector is changing and with the emergence of new concepts related to the
smart grids, some ways can be found inside the demand to enhance system stability.
Therefore, some types of industries have productive processes that offer a certain
level of flexibility, that is, they can change the energy needs of the production
process over a given period of time. Some examples of such processes are the ones
that include electrolysis (very intensive installations), cement and paper industries,
electric boilers, and electric arc furnaces [30]. However, a large number of indus-
tries do not have this flexibility.

In the industry, the factors that determine any action are the costs and gains.
According to the reports in [29, 30], increasing flexibility at a low cost is generally
possible in the cases where the primary process is not disturbed. These costs
generally refer to the workers’ shifts, the installation of communication and control
equipment, and the additional potential storage of intermediate products on-site
[31]. Therefore, this subcategory faces significant challenges that are presented in
Fig. 1.4.
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Demand response is dependent on the electricity costs sensitivity and
market price signals.
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Fig. 1.4 Demand management barriers in industrial installations [29]

1.2.2.2 Small-Scale DR: Demand Management in Services
and Households

Another subcategory is related to the demand response in commercial and resi-
dential sectors, which can be accommodated in the same category because demand
management can be applied to transversal processes such as heating and cooling.
Including different demand electricity price levels, such as refrigeration timing for
refrigerated warehouses, automatic adjustment of demand can be done by refrig-
erators [29].

Other technology types that are transversal to the two subcategories and with
potential in the demand management are the air conditioned, air compression for
mechanical use or even scheduling of washing processes in the dwellings. Several
small load management programs are currently being installed up to 5 kW in
several countries using two directions of communication (coming from the inte-
gration of smart grids) and the potential of these programs is very large [31].
However, existing IT infrastructures as well as primary device control constraints
can present significant challenges. Therefore, demand management can reverse the
game in the electricity markets, since this subcategory can also contribute to the
creation of flexibility in the network systems, being no longer seen simply as a
demand, in terms of flexible demand, by establishing the marginal prices in
wholesale electricity markets [32]. The set of challenges pertaining to demand
management in commercial and households are summarized in Fig. 1.5.

1.2.2.3 Electric Vehicles (EVs)

Electric vehicles are one of the new energy consumption forms. For mobility
purposes, they use energy stored in their EV batteries. The charging process is
carried out by connecting the EV to the grid when the vehicle is parked at an EV
parking lot [33]. Energy can also be transferred the EV to the electricity grid.
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Fig. 1.5 Demand management barriers in services and households

This effectively means that EVs can operate in two modes: power source and
demand. The demand characteristics in the mobility sector makes the EV fleets be
similar to the previous subcategories, as an option not only for demand but also for
flexibility in the energy system that can be presented in two fundamental forms [34]:

e G2V (Grid-to-Vehicle mode, where the fleets of EVs are operated as a demand
side management option, allowing a shift of load among different times).

e V2G (Vehicle-to-Grid mode, where in addition to charging the batteries of the
electric vehicle, EVs could be discharged and feed power back to the grid).

Due to the fact that its primary use is for mobility, the provision of flexibility by
EVs is subject to many constraints. In addition, it is highly uncertain supply source.
However, several studies show that EVs may be competitive flexibility options [33—
36] because they are expected to be largely available overnight (home charging).
During the day, their availability depends on the charging infrastructures that exist
elsewhere (for example, at work). The main advantage of EVs is that they are a
parallel development, i.e., their investment comes from the transport sector [36].
EVs have a potential role to serve as a source of balancing and reserve require-
ments, as well as a solution to solve problems locally [34]. However, EVs face a
significant set of challenges that are presented in Fig. 1.6.

1.2.2.4 Power to Heat

Electricity can be used to replace other fuels such as gas or oil for residential
heating purposes. One of the possible options is the direct heating in a housing,
where the electric current through a resistor converts electrical energy into thermal
energy [37]. Moreover, this subcategory has potential at the flexibility level, which
can be created by selectively energizing heaters and storing the heat generated for
later use. Thermal energy can be stored with relative efficiency in several ways [38],
typically including insulated ceramic type containers and hot water tanks. The heat
is then released as needed by the end users. Electric heat pump technology is one of
the most efficient technologies that convert electricity into heat. The heat pumps
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Fig. 1.6 Electric Vehicles main barriers
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Fig. 1.7 Power to Heat barriers

efficiently move the stored heat energy from a heat source (e.g., ambient air) to the
end use or storage.

Heat pump technology is a part of conditioned air and refrigerators. The prin-
ciple is the same, but the direction of the heat flow is from outside, the ambient air
from the conditioner in cooling applications, whereas in the heating is the inverse
[37]. In fact, heat pumps are reversible and can perform as both heating and cooling
functions simultaneously in some applications.

The electrification of the heating sector also shifts the demand from the heating
sector to the electricity sector, and can add some important flexibility to the system.
The combination of thermal storage with electric heating has the potential to
increase the flexibility of the electric distribution networks as it builds an optional
place to put temporary surges of VRES energy and reduce carbon emissions through
the displacement of heat sources out of fossil fuels [12]. Power to Heat also has a set
of barriers that are summarized in Fig. 1.7.

1.2.2.5 Power to Gas

Power to Gas is a category commonly found in energy storage but can also be
integrated into demand since Power to Gas refers to the storage of chemical energy,
namely the use of electric power to create fuels that can be used in conventional
power plants. The key fuel is synthetic methane (and hydrogen in some cases). The
procedure consists of two steps [39]:
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Fig. 1.8 Power to Gas barriers

e Flectricity is used in electrolysis to divide water into hydrogen and oxygen.
e Hydrogen is combined with carbon to obtain methane.

Methane is the main constituent of natural gas and therefore can be injected into
the existing infrastructure of natural gas (network and storage). The high storage
capacity in the network could then be used for medium and long term storage
purposes.

A first demonstration project at the kW scale was built and operated in Germany,
and a 6 MW German plant also started operating in 2013 [40]. The key to chemical
storage compared to other technologies is their energy density (kWh/I) compared to
most other technologies as well as the long period of change. The key barrier is low
efficiency [41].

The great strength of this category lies in the seasonal storage, probably to be
used in the transport sector in the first place. The technology perspective increases
with the prospect of relying on 100% of renewable resources, storing the surplus of
electric energy in the (central) gas infrastructure when generation from vRES is low
[39]. Some of the challenges of the Power to Gas technology can be seen in Fig. 1.8
[29].

1.2.3 Risk Posed by Increasing Uncertainty and Variability

Variable RESs are not always available when needed. They are subject to high level
variability and uncertainty. Variability is related to the natural variation, for
instance, of wind or sun to produce energy, meaning that the produced energy can
fluctuate in certain quantity over regular time intervals. Uncertainty refers to the
partially unpredictable nature of the uncertain parameters. As a result, daily and
seasonal effects and limited predictability turns vRESs as highly intermittent gen-
eration sources [27]. Hence, as they are intermittent, they are not dispatchable and
their output power cannot be controlled. Because of these reasons, in the absence of
proper strategies, integration of VRESs can pose significant operational risk, making
system voltage and frequency controls very difficult. This is because increasing
penetration of VRESs increases fluctuations and creates big and uncertain
generation-demand imbalances [42]. This leads to power quality and stability
concerns. Grid disturbances, for instance, short-circuit faults can cause voltage sags
and frequency variations, sending them both off the standard limits. Generally,
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increased levels of VRESs may cause more complex and uncertain operation situ-
ations [42]. Accordingly, there is a need for proper planning and decision making to
face uncertainties for achieving optimal VRES integration [43].

Power quality issues when integrating vRES encompass the following important
issues: (1) voltage and frequency oscillations triggered by non-controllable vRESs
and by power grid disturbances, and (2) harmonics that are introduced by the
electronic converters used in VRESs, that are necessary for adapting fluctuating
production with grid requirements [42, 44]. Because of the intermittence of VRESs,
one way to control power output is simply by curtailing the power production.
Nonetheless, it is not an effective way since the curtailed energy could be stored and
used on latter moments, not only for demand supply but also for voltage and
frequency control of the power output.

In order to face voltage and frequency problems, utilities have introduced var-
ious grid codes for connecting VRESs to electric distribution networks. The regu-
latory framework of the grid codes are defined by the system operators to outline
the duties and rights of all loads and power generation connected to the trans-
mission and distribution networks [45]. Previously, the large-scale integration of
VRESs, grid codes did not include regulations for wind and solar systems because
the installed generation was very insignificant compared to the traditional genera-
tion systems. This situation has been changing in recent years as the level of vVRESs
integrated in distribution grids is on the rise. Such a massive integration of vRESs
creates genuine stability concerns in the system due to the negative impacts of large
solar and wind power plants. These concerns are related with voltage and frequency
drops in the presence of a fault or high winds, making wind turbines to stall, that
can lead to outages [45]. Accordingly, rigorous technical requirements are enforced
to protect networks to contrast to these threats. As an example, wind power plants
are required to withstand various grid disturbances and contribute to the stability of
the system and provide ancillary services.

The technical challenges that vRES introduces to electric distribution networks
increases the need for high level flexibility from other parts of the systems and
flexibility through interaction with other energy sectors, like heating sector, natural
gas and interaction between transportation and distribution networks [25].

1.2.4 The Path Towards More Flexible and Smarter Grids

Given the new developments from the demand and supply sides, distribution net-
work systems need to undergo the necessary transition to more flexible and smarter
grids. Future grids will be equipped with different types of flexibility options such
as ESSs, reactive power sources such as SCBs, DR and dynamic network recon-
figuration (DNR). Moreover, a coordinated deployment and scheduling of flexi-
bility options are needed to optimally manage an increased penetration of VRES in
distribution networks. For example, energy storage systems can be added onsite for
frequency control and add quick reserve capacity to the system. ESSs can also
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Fig. 1.9 Flexibility options and smart grids

provide other services. Their fast response means that they can be part of the
ancillary services (frequency control) and suited to black-out restart of the system.
The operation principle of ESSs is to store excessive energy during the demand low
period that will be utilized in periods of high demand.

Load flexibility options like demand response (DR) can also enhance the inte-
gration of VRESs, giving the control of operation of contracted services to a new
competitor, named aggregator. From the network side, one example of potential
flexibility option is dynamic reconfiguration of the distribution network. Dynamic
reconfiguration can play substantial role in improving reliability, increasing RES
penetration and minimizing power losses. Switchable capacitor banks can also
provide adequate flexibility to the system, enhancing stability and RES integration
level.

Flexibility options form important components of electric distribution networks
and play important roles in the transformation of current electric distribution net-
works to smarter grids in the future. Most current systems are based on fossil fuels.
Yet, the recent trend of system evolution shows that future grid systems will be
based on the efficient accommodation of large scale variable renewable energy
sources [32]. The existence of sufficient operational flexibility is a necessary pre-
requisite for the efficient large-scale integration RES energy in such network sys-
tems. Flexibility is not only necessary to mitigate supply variations due to increased
uncertainties but also the variations in from demand side due to new and relatively
unpredictable energy consumption forms. This is graphically illustrated in Fig. 1.9.

Therefore, future power grids need to become smarter, allowing
multi-directional power flows, and allowing consumers to no longer have a passive
role instead to play an active role in the electricity markets [11, 46, 47 p. 21].
Intelligent infrastructures are being developed both at the distribution and trans-
mission levels. Intelligent network projects are being generalized around the world,
where budgets have kept on increasing almost exponentially from 2006 [12].

However, the development of smart grids faces a significant set of challenges. In
particular, standardization of communication and operational protocols, which will
play a key role in future networks, is yet an ongoing process. Energy consumption



16 M. R. M. Cruz et al.

Investment in smart grids Deferred grid investments

'ﬂ gJi 4 | Smart Grids and maintenance Reduced grid losses

Lower investment needs in

! ¥ Cost on location for equipment
storage

Lower need of investments in
Direct central generation capacity

More efficient use of central
generating capacity

More energy savings

Reduced imbalances

Welfare losses due to adaptation ~ Welfare gain due to new services
to new energy demand patterns
Reduced CO, emissions

Indirect and Reduced outage time

External
Reduced curtailment of
distributed generation
Increased grid hosting capacity
\ / for distributed generation

Fig. 1.10 Comparison of potential costs and benefits of developing smart grids and flexibility

optimization should be based on near-real time, which requires well-developed
communication framework to facilitate the active interactions between producers
and consumers. In order to select these communications individually, standardized
protocols already exist. However, these are limited to a single domain [48]. With
regard to the introduction of smart grids, one of the key tasks in the near future is
the establishment of an interactive bidirectional communication system from the
generation to the final consumer.

Having smart grids in perspective, the main ways to introduce flexibility into the
electric distribution networks are through the introduction of fast markets, flexible
generation (e.g., gas and water), demand side management, energy storage systems
and interconnections. The smart grids in combination with all other forms of
flexibility options mentioned previously will considerably increase the flexibility of
the system, overcome congestion in the network systems, either by changing
flexible loads from peak periods to periods with less congestion, or through the
control of the network power flow due to the integration of large-scale renewables
in the near future, among others. This leads to the creation of a more flexible and
manageable network. However, the costs and benefits associated with the devel-
opment of smart grids and network flexibility have direct and indirect effects, as can
be seen in the scheme of Fig. 1.10.
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With regard to integrated solutions for low carbon emissions, Smart Grids will
be a key element in the implementation of modern technologies. The need for
flexibility resulting from the integration of renewable energies, demand and con-
tingencies can be met in different ways, including through flexible generation,
response to demand, energy storage and interconnections of the electric distribution
networks. All this makes it a key component for the emergence of Smart Grids.

1.3 Managing Distribution Networks Featuring
Large-Scale Variable Energy Sources

1.3.1 General Problem Description

This chapter develops an optimization model for carrying out detailed analysis of
optimally operating distribution network systems featuring large-scale intermittent
power sources with the help of various flexibility mechanisms. These mechanisms
include dynamic network reconfiguration, energy storage systems, reactive power
sources and demand response. A coordinated use of these technologies should lead
to increased benefits in distribution network systems such as reduced costs,
increased utilization of renewables and others.

The uncertainty inherent to the problem addressed in this chapter is handled by
means of stochastic programming. In order to ensure solution exactness and
enhance problem tractability, the entire problem is formulated as a stochastic mixed
integer linear programming (MILP) optimization model. The accuracy of the
analysis is guaranteed because this chapter proposes a model that employs a lin-
earized AC power flow model, which strikes the right balance between accuracy
and computational requirement.

1.3.2 Algebraic Formulation

The objective of the formulated DNR problem is to minimize the sum of relevant
cost terms, namely, costs of switching, expected costs of operation, unserved power
and emissions in the system. This is given as

Minimize TC = TSC + TEC + TENSC + TEmiC (1.1)

where TC refers to the expected total cost in the system.

The first term in (1.1), TSC, is related to the switching costs as a result of
dynamic network reconfigurations. A switching cost is incurred when the status of a
given feeder changes from 0 (open) to 1 (closed) or 1 (closed) to O (open). This
leads to the absolute value of difference in successive switching variables. In order
to linearly represent such a module, two non-negative auxiliary variables x;’, and
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X;, are introduced. Thus, TSC can be expressed as a function of the sum of these

variables:
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It should be noted that Q' and Q° refer to the sets of normally closed feeders and
tie lines (which are normally opened), respectively. However, the status of any of
these feeders can change during the course of the day depending on the optimality
of the dynamic network reconfiguration.

The second term in (1.1), TEC, represents the expected costs of producing power
using DGs, operating ESSs and importing power from upstream, which is given as
in (1.5).

TEC = ECP° + EC* + EC%S (1.5)

Each term in (1.5) is calculated as
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The third term, TENSC, captures the expected cost of load shedding. This is
calculated as the sum of the costs of unserved active and reactive power as

TENSC =" p > >~ (o, P, +08,005,) (1.9)

seQ’ he@ neQ"

where Ush and USh are penalty parameters corresponding to active and reactive
power demand curtailment. These parameters should be sufficiently large to avoid
undesirably high unserved power.

The last term, TEmiC, accounts for the expected cost of emissions as a result of
generating power using DGs and importing power through the substation as in (10).
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TEmiC = EmiC"® + EmiC% (1.10)

Each of the terms in (1.10) are determined by
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There are a number of technical and economic constraints that need to be
respected all the time to ensure a healthy operation of distribution networks.
Kirchhoff’s current law states that the sum of all incoming flows to a node should
be always equal to the sum of all outgoing flows at any given time. This constraint
applies to both active (1.13) and reactive (1.14) power flows, and should be
respected all the time:
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As can be seen in (1.13), incoming flows include the active power injected by
DGs, inward active power flows in associated feeders, power discharged from ESSs
and the amount of power imported (if the bus under consideration is a substation).
On the other hand, outgoing flows encompass demand, losses (which are treated
here as fictitious loads), outward flows in feeders and charged amount of ESSs.

Power flows in any feeder should also be governed by Kirchhoff’s voltage law.
This is enforced by including linearized power flow equations, derived by con-
sidering two practical assumptions. The first assumption is related to bus voltage
magnitudes, which is expected to be close to the nominal value V,,, in electric
distribution networks. The second one is related to the voltage angle difference 0,
which is often very small due to practical reasons. The second assumption leads to
the trigonometric approximations sin 0; =~ 0 and cos 0y =~ 1. Given these simpli-
fying assumptions, the well-known AC power flow equations (which are naturally
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complex nonlinear and non-convex functions of voltage magnitude and angles) can
be linearly represented. The linearized active and reactive flows in a line are given
by the disjunctive inequalities in (1.15) and (1.16), respectively.

|Pk,s,h - (Vnom (Avi,s,h - Avj,s,h)gk - V2
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where AV <AV, < AV,
Moreover, power flows in each line should not exceed the maximum transfer
capacity, which is enforced by

PLon+ Qi gn <t (Ser)? (1.17)

The following constraints are related to the active (1.18) and reactive (1.19)
power losses in line k.

PLisi = Re (PR + 03s) Vi (1.18)
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Note that the quadratic flows in (1.17)—(1.19) are linearized using a piecewise
linearization approach, which is widely used in the literature.

Constraints (1.20)—(1.25) represent the energy storage model employed in this
chapter. The amount of power charged and discharged are limited as in (1.20) and
(1.21). Constraint (1.22) ensures that charging and discharging operations do not
happen at the same time. The constraint related to the state of charge is given by
(1.23). The storage level should always be within the permissible range (1.24).
Equation (1.25) sets the initial storage level, and makes sure the storage level at the
end of the time period is equal to the initial level. For sake of simplicity, both nffgh
and n;ff are often set equal.
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Equations (1.26) and (1.27) impose the active and reactive power limits of DGs,
respectively.

P SPoly <P (1.26)
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The reactive power supplied by switchable capacitor banks (SCBs) is limited by
inequality (1.28):

0< 0% p <%einQl (1.28)

where QY is the minimum deployable unit of a capacitor bank.
For stability reasons, the reactive power at the substation is subject to lower and
upper bounds as

— tan(cos™! (pfss))Pii_’h < Qgsvh < tan(cos™" (pﬁv))PSih (1.29)

In order to account for demand response, the following constraints corre-
sponding to the responsive active and reactive power demand are added:
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where PDi’A(,)T and QDif% are the active and reactive power loads before demand
response. Note that, for the sake of simplicity, the flat price is assumed to be equal
to the average electricity price of the day as in (1.32).

Electric distribution networks are normally operated in a radial configuration.
Hence, in addition to the aforementioned ones, the radiality constraints in [16] are
included in the model developed here. It should be also noted that, in (1.15) and
(1.16), the angle difference 0;,; is defined as Oy,n = 0;54 — 0;5, where i and
Jj correspond to the same line k.
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1.4 Case Study, Results and Discussions

A standard IEEE 41-bus test system, whose single-line diagram is shown in
Fig. 1.11, is employed here to perform the required technical and economic anal-
ysis. The total active and reactive power demand of this system are 4.635 MW and
3.25 MVAr, respectively. The nominal voltage of the system is 12.66 kV. Further
details and information of this test system can be found in [49, 50].

The optimal locations and sizes of various distributed energy resources such as
wind and solar type DGs, ESSs and SCBs in [50] are considered in this chapter. The
only exception is at bus 14, where, instead of the optimal DG size (3 MW) reported
in [50], a 2 MW DG is considered throughout this analysis. To make this chapter
self-contained, the input data with regards to reactive power sources, DGs and ESSs
are presented in Tables 1.1, 1.2 and 1.3 [50]. Figure 1.11 also clearly shows the
locations of the considered DGs and ESSs. In addition, the following considerations
are made when carrying out the simulations:

e The operational analysis spans over a 24-h period, with the possibility of hourly
network reconfiguration.

e The maximum allowable deviation of the nodal voltage at each node is set
to £5% of the nominal value (12.66 kV).

e For all simulations, the substation serves as the reference node, whose voltage
magnitude and angle are set equal to the nominal value and 0, respectively.

e The power factor at the substation is set equal to 0.8, and this is held constant
throughout the analysis. The power factor of all DG types is considered to be
0.95.

oy
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Fig. 1.11 IEEE 41-bus distribution network with new tie-lines (square and circle dots represent
the locations of ESSs and DGs, respectively)
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Table 1.1 Locations and Location (Bus) Size (MVATr)
sizes of capacitor banks
7 0.9

14 1.3

24 0.1

25 0.3

29 0.3

30 1

31 0.2

32 0.5

37 0.1

38 2

39 0.1

40 0.6
Table 1.2 Locations and VRES type Location (Bus) Size (MW)
sizes of DGs PV 32 1

PV 38 1

Wind 7 1

Wind 14 2

Wind 29 1

Wind 32 1

Wind 38 1

Wind 39 1
Table 1.3 Locations and Location (Bus) Size (MW)
sizes of ESSs

14 2

30 1

32 1

40 1

e The emission rate at the substation is arbitrarily set to 0.4 tCO,e/MWh while
those of solar and wind type DGs are assumed to be 0.0584 and 0.0276

tCO,e/MWh, respectively.

e The price of emissions is considered to be 7 €/tCOze.

e The tariffs of solar and wind power generation are set equal to 40 and

20 €/MWh, respectively.

Both charging and discharging efficiency of ESSs is 90%.
The variable cost of operating ESSs is considered as 5 €/MWh.
e The cost of load shedding is 3000 €/MW, and any unserved reactive power is

also penalized by the same amount.
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e All feeders (including tie-lines) have a maximum transfer capacity of
6.986 MVA, which needs to be respected.

e All big-M parameters are set equal to 20, which is sufficiently large for the
considered system.

e The number of partitions considered for linearizing quadratic terms in (1.17)-
(1.19) is 5, which is set according to the findings in [51].

e The switching cost parameter is set to 10 €/switching.

e All self-elasticity parameters are set equal to —0.2 while the effect of
cross-elasticities is not accounted for in this chapter. This means that
cross-elasticity parameters are all considered to be zero.

In addition, for the sake of brevity, the energy intensities of solar and wind
power sources is considered to be uniform throughout the system nodes. This
means that the power generation profiles of solar and wind type DGs are the same
in all the nodes where these resources are connected to. Moreover, it is assumed that
the energy consumption patterns at all load nodes follow the same trend.

In order to account for the uncertainty pertaining to demand, wind and solar
power outputs, six different scenarios are considered for each uncertain parameter,
as shown in Figs. 1.12, 1.13 and 1.14. As can be seen in these figures, each scenario
represents possible hourly realizations of the uncertain parameter over the 24-h
period. The individual scenarios are obtained by clustering a larger number of
scenarios (30 in this case). These scenarios are then combined to form a new set of
216 (6”) scenarios that are considered in the analysis.

Electricity prices are assumed to follow a similar trend as demand, varying
between 107 €/MWh during peak and 30 €/MWh during shallow hours. This is
depicted in Fig. 1.15.

The potential of DR in the provision of flexibility for integrating VRESs is
assessed by considering different self-elasticity values. Figure 1.16 demonstrates

1 -
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0.4 4
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Fig. 1.12 Considered demand scenarios
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Fig. 1.16 Flexibility via demand response

Table 1.4 Details of the cases considered in the analysis

Cases Features
DNR DGs SCBs ESSs DR Voltage limits

Base case No No No No No Not imposed
Only DNR Yes Yes No No No Imposed

Plus SCBs Yes Yes Yes No No Imposed

Plus SCBs & ESSs Yes Yes Yes Yes No Imposed

Full flex Yes Yes Yes Yes Yes Imposed

Plus SCBs & DR Yes Yes Yes No Yes Imposed

the impact of DR in the hourly consumption profile. The results section presents the
analysis results for self-elasticities of —0.2.

To ease the aforementioned analysis work, a total of six cases are considered
here. Table 1.4 summarizes the distinctive features of each case. As can be
observed in this table, all cases except the first case have two things in common—
DNR and DG integration but differ in other aspects as clearly shown in Table 1.4.

The first case is related to the “do-nothing” scenario, where no distributed energy
resource is connected and the entire load is met by importing power via the sub-
station at bus 1. And, this is referred to as the “Base case”. The second one
considers DG integration with dynamic network reconfiguration, and is hereinafter
referred to as “Only DNR”. Note that DNR deals with the possibility of optimally
changing the statuses of feeders (on an hourly basis) depending on the operational
situation in the system. This case helps to understand the possible contribution of
DNR in terms of enhancing system flexibility, and thereby increasing vRES uti-
lization level. In addition to DNR, the third case considers switchable capacitor
banks as a means of flexibility option. This is referred to as the “Plus SCBs” case in
the remainder of this chapter. The fourth and the fifth cases are similar in that both
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Fig. 1.17 Average voltage deviation profiles with no flexibility options (base case)

consider the flexibility options provided by DNR, SCBs and ESSs. The only dif-
ference between these two cases is that the former does not have DR integrated as
an additional flexibility mechanism. These cases are denoted as “Plus SCBs &
ESSs” and “Full flex”, respectively. The last case only considers the flexibility
options: DNR, SCBs and DR, and is denoted by “Plus SCBs & DR”. Note that
lower bound of nodal voltage is relaxed in the base case to avoid infeasibility. This
is due to the fact that the original system is poorly compensated. And, under this
circumstance, it is not technically possible to meet the high reactive power
requirement in this system while simultaneously imposing the voltage limits. For
comparison purposes, the average voltage deviation at each bus is presented in
Fig. 1.17. This also displays the minimum and maximum average values corre-
sponding to different operational situations. It can be observed that most of the
voltages fall outside the permissible range, particularly at the nodes located far
away from the substation. The lowest voltage deviation occurs at bus 41, which can
reach 18% in some operational situations.

Table 1.5 compares the objective function values and average losses corre-
sponding to the different cases considered in the analysis. Compared to the base
case, it can be seen that there are substantial improvements in the values of the
designated function and variables. In the “Only DNR” case, for example, the total
cost is reduced by about 9% and average losses by 24%. However, the vVRES
penetration level in this particular case (which stands at 12.2%) is not significant;
solar PV and wind type DG utilization levels are only 0.4 and 11.8%, respectively.
The wind and solar PV power sources are not being utilized because of technical
constraints mainly related to the voltage limits. Since the system is not
well-compensated, more power needs to be imported to support the high reactive
power requirement in the system. Injecting more active power from the DGs,
without proper compensation, would otherwise lead to voltage hikes which is not
acceptable. Figure 1.18 shows the energy mix in the “Only DNR” case. Based on
these results, it seems DNR alone may not contribute enough to enhance vVRES
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Table 1.5 Total expected costs and average losses for the considered cases

Cases Total cost (€) Average losses Voltage limits
(MW/h)
Active Reactive

Base case 6036.281 0.275 0.201 Not imposed

Only DNR 5512.385 0.208 0.158 Imposed

Plus SCBs 2677.782 0.073 0.058 Imposed

Plus SCBs & ESSs 2229.248 0.096 0.075 Imposed

Full flex 2151.926 0.093 0.073 Imposed

Plus SCBs & DR 2522.484 0.072 0.057 Imposed

Bold values indicate the lowest values computed in the optimization process

12345678 9101112131415161718192021222324
Hour

Fig. 1.18 Aggregate energy mix in the system in the “Only DNR” case

penetration level in electric distribution networks. However, this may be
case-dependent. Moreover, some of the assumptions made in this chapter may not
reflect the real potential of DNR as a key flexibility option. For example, the
assumptions on the uniform patterns of electricity consumptions and VRES power
outputs may not encourage more frequent reconfigurations of the network so as to
adapt to varying operational situations.

In the case of “Plus SCBs”, the results in Table 1.5 show that the reduction in
total cost and losses is simply dramatic, and so is the level of VRES penetration.
Compared to the base case, costs are slashed by about 56% while the reduction of
losses amounts to more than 73%. In this case, solar PV and wind cover about 12.6
and 66.8% of the aggregate demand in the system over the whole day. The
energy-mix corresponding to this case is depicted in Fig. 1.19. As seen from this
figure, there are hours where the system operates in island mode (see the first four
hours). This mean the demand in these hours is fully met by locally produced
renewable power. Generally, the results here reveal the substantial benefits of SCBs
in enabling a large-scale penetration of variable energy resources. In other words,
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Fig. 1.19 Aggregate energy mix in the system corresponding to the “Plus SCBs” case

a properly compensated distribution network can manage the technical risk posed
by the intermittent nature of such resources.

As can be observed in Table 1.5, the overall cost is further reduced in the “Plus
SCBs & ESSs” case by 63% in comparison to that of the base case. However, losses
are slightly higher in this case than in the “Plus SCBs” one. This is mainly because
of the fact that some feeders carry more power to charge/discharge the ESSs as
opposed to the “Plus SCBs” case. It should be noted that the losses are yet sub-
stantially lower than that of the base case by 65%. The presence of ESSs in the
“Plus SCBs & ESSs” case further increases the flexibility of the system, and allows
a more efficient utilization of the “cleaner” DG power. This is can be seen in
Fig. 1.20. One interesting observation in this figure is that the system operates
autonomously during peak hours by releasing the cheaper energy stored in the ESSs

5- mm Charging e Discharging
PV e Wind
4.5 = [mported ——Demand

1234567 89101112131415161718192021222324
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Fig. 1.20 Aggregate energy mix corresponding to the “Plus SCBs & ESSs” case
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Fig. 1.21 Aggregate energy mix corresponding to the “SCBs & DR” case
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Fig. 1.22 Aggregate energy mix corresponding to the “Full flex” case

during valley and off-peak hours. Here, solar and wind power contribute 14.3 and
72.2% to the total energy consumption during the whole period. This means the
total penetration level of VRESs reaches 86.5%, which is very high by any standard.

The results in Table 1.5 also demonstrate that the introduction of DR, as in the
“SCBs & DR” case, improves the flexibility of the system, and leads to the lowest
losses (with an approximately 74% reduction in comparison to the base case). This
is because of the relatively reduced amount of flows in the feeders especially during
peak hours. Likewise, the total cost here is reduced by about 58%. This is higher by
2% than that of the “Plus SCBs” case. The aggregate energy mix corresponding to
the “SCBs & DR” case is shown in Fig. 1.21. The shares of wind and solar PV
power production over the whole period are 12.4 and 67.9%, respectively, which
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Fig. 1.23 Comparison of average voltage profiles for the different cases

brings the total VRES penetration level to 80.3%. Because of the absence of a
storage medium, this value is lower than the 86.5% share in the “Plus SCBs &
ESSs” case.

As mentioned earlier, the “Full flex” case jointly deploys all four technologies
that are capable of providing flexibility to the system: DNR, SCBs, ESSs and DR.
As expected, this case leads to the lowest overall cost in the system (i.e., about 64%
lower than that of the base case). As can be seen in Table 1.5, the benefit in terms of
losses reduction is also evident even though this is slightly higher than that of the
“Plus SCBs & DR” due to the same reasons as before. Because of the increased
system flexibility in the “Full flex” case, the amount of imported energy is sig-
nificantly lower than that of any other case. The total share of VRES power pro-
duction reaches 86.6% (see Fig. 1.22). Wind and solar PV type DGs each
contribute 14.4 and 72.2%, respectively.

So far, the analysis has been in terms of cost, energy mix and losses. Obviously,
these are all relevant factors. However, it is also important to analyze the perfor-
mance of the system from the technical point of view. To this end, the voltage
profile is a good indicator. Ideally, voltage deviations in all nodes are desired to be
close to the nominal value. But the nodal voltages often vary within certain per-
missible range (which in this case is 1 &= 5% of the nominal voltage). Figure 1.23
shows average deviations of voltages at every node in the system for all the cases
considered in this chapter. This figure clearly shows that the introduction of flex-
ibility mechanisms dramatically improve the voltage profile within the system. This
is very critical to maintain the healthy operation of such a system. The “Only DNR”
case alone keeps the voltages within the allowable range. For the remaining cases,
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the average voltage deviations for most of the nodes are practically insignificant,
averaging at about 1%.

The benefits of all flexibility options considered in this chapter are evident with
significant impact in achieving minimization of total costs of operation in the
distribution networks. Analysis of jointly or separated operation of ESSs, capacitor
banks, VRES and switching substantially improved voltage profiles. Operation of
distribution networks with DR show the capability that this technology can have in
the utilization of ESSs, making it a more valuable solution during operation, with
less impact on total costs, increasing its utilization.

Appendix

Sets/Indices

c/Q° Index/set of capacitor banks

es/Q% Index/set energy storages

i /Qi Index/set of buses

g/Q¢f /QDG Index/set of generators/DGs

k/QF Index/set of branches

h,h /Qh Index/set of hourly snapshots

s/Q° Index/set of scenarios

c/Q° Index/set of substations

Parameters

SCy Cost of switching of branch k (€ per single switching)

Emin prmax Energy storage limits (MWh)

ER,, ERfS Emission rates of DGs, and energy purchased, respectively
(tCO,e/MWh)

8ks b, SP™ Conductance, susceptance and flow limit of branch k
(Q,Q,MVA)

MP;., MOy Big-M parameters associated to active and reactive power flows
through branch k

OCgisn Operation cost of unit energy production by DGs (€/MWh)

Ni, N Number of buses and substations, respectively

pchmax pdchmax — Charging and discharging power limits of storage system (MW)

es,i s oes,i

Voaom Nominal voltage (kV)

7 Impedance of branch k (Q)

,15}?26 Price of emissions (€/tCO,e)

2 Price of electricity purchased upstream (€/MWh)

,TS Average price of electricity purchased upstream (€/MWh)
deh Cost of energy discharged from storage system (€/MWh)

es,i,s,h
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ch ,dch
Hes o Mes

Pss Tow

Us.h
Sh,i

Variables

PDy;,, QD5
Ees.,i‘s,h

Idch ch
es,i,s,h) “esi,s.h

Pg,i,s,ha Qg,i,s,h
SS SS

Pc,s‘h’ Q;-,s,h

Py, Ok, Ok

PLk> QLk

PLg,s,h7 QL;.s,h
ch ch
es,i,s,h) " es,ish

Charging and discharging efficiency (%)

Probability of hourly scenario s and weight (in hours) of hourly
snapshot group h

Penalty for unserved power (€/MW)

Elasticity of electricity demand

Active and reactive power demand at node i (MW, MVAr)
Reservoir level of ESS (MWh)

Discharging/charging indicator variables

Active and reactive power produced by DGs (MW)

Active and reactive power imported from grid (MW)

Active and reactive power flows, and voltage angle difference of
link k (MW, MV Ar, radians)

Active and reactive power losses (MW, MVAr)

Active and reactive power losses at substation ¢ (MW, MVAr)
Discharged/charged power (MW)

Unserved power at node i (MW)

Reactive power produced by capacitor bank at node i (MVAr)

is,h
v, Unserved power at node i (MW)
Vi; V; Voltage magnitudes at nodes i and j (kV)
Uk Utilization variables of existing lines
Xeh Integer variable of switchable capacitor banks
0, 0; Voltage angles at node i and j (radians)
At Real-time price of electricity (€/MWh)
Functions (all units are in M€)
ECS Expected cost of energy purchased from upstream
ECPC Expected cost of energy purchased from DG
ECES Expected cost of energy purchased from energy storage

ENSC;,  Expected cost of unserved power
EmiCP% Expected emission cost of DG power production
EmiC3S  Expected emission cost of purchased power
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Abstract This chapter first examines balanced and unbalanced electric distribution
network modelling techniques and then tests their effects on power flow analysis
with practical electric distribution networks. Test results show that distribution
network operating conditions obtained from the balanced and unbalanced
model-based power flows may have obvious difference in terms of voltage viola-
tions and overloaded equipment. These results demonstrate the importance of
adopting unbalanced network modelling in improving the accuracy of power flow.
Furthermore, this chapter presents an unbalanced model-based DMS application in
loss reduction, an essential application for the energy efficiency improvement in
electric distribution networks. The loss reduction often involves the control of
reactive power (VAR) resources to optimize the VAR flow in the distribution
network. Based on the unbalanced power flow model, an advanced loss reduction
approach is developed to achieve the optimal control coordination among multiple
capacitors and distributed energy resources such as solar and wind resources. The
effectiveness of the presented approach is demonstrated on practical utility distri-
bution networks with varying degree of unbalance and model complexity.
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2.1 Introduction

Electric distribution network modelling is crucial to various distribution manage-
ment system (DMS) analysis and control applications. Among these DMS appli-
cations, power flow is the most fundamental one to implement many others, such as
Voltage VAR control, network reconfiguration, demand response, and so on.
Therefore, investigating the effects of different distribution network modelling
techniques on power flow analysis plays an important role in improving DMS
applications and achieving more economic and optimal control of smart distribution
networks.

The existing electric distribution network modelling techniques fall into two
basic categories: balanced equivalent single-phase and unbalanced multi-phase
modelling. The balanced single-phase modelling approximates the unbalanced
network with a balanced network and then derives either the positive sequence
network or the decoupled three single-phase networks. The unbalanced multi-phase
modelling explicitly represents the network components and their connection with
single-, two- or three-phase models.

Based on the two types of electric distribution network modelling techniques,
corresponding power flow methods have also been developed. The balanced
model-based power flow mainly adopts the forward backward sweep technique [1],
which takes advantages of the radial network structure and can achieve fast power
flow solution. The unbalanced model-based power flow methods include extended
forward backward sweep [2], Newton-Raphson [3, 4], decoupled [5], distributed
methods [6], and so on.

Although the electric distribution network is well known for its inherent
unbalanced nature caused by the unbalanced network structure and loading, most
academic research and industrial practice still select the balanced single-phase
model and assume it can provide acceptable accuracy in power flow analysis and
other DMS applications [7-9]. In recent years, with the penetration of smart grid
technologies in the distribution network, such as distributed energy resources
(DERs), increasing research and real-world applications begin to adopt unbalanced
multi-phase model to achieve more accurate distribution network analysis and
control [10-12].

With the common recognition that unbalanced model-based DMS applications
(such as power flow) can provide more accurate results than that of the balanced
model, few literature, however, has been found to provide a quantitative compar-
ison on the effects of adopting balanced and unbalanced models on the DMS
applications. Ref. [13] investigates the voltage magnitude errors caused by the
balanced model based on a small scale traditional distribution network without
DERs, in which the oversimplified approximation is made to obtain the balanced
model from the unbalanced model.

Furthermore, power flow analysis results provide basis for many other DMS
applications, one of which is loss reduction. Considering about 4% of electric
energy generated by power plants is lost in the distribution network, loss reduction



2 Distribution Network Modeling and Management 39

is a critical function in the DMS to improve energy efficiency. Traditionally, dis-
tribution utilities place switchable capacitor banks at strategic locations to supply
reactive power (VAR) and reduce loss. In recent years, more and more DERs are
deployed, many of which allow the control of their VAR output within a certain
range and thus become an important VAR resource besides capacitor banks in the
distribution network.

Comparing to the on/off capacitor switching, the control of DER VAR output
has advantages such as no operating time limits and the continuous control of
reactive power to prevent and correct the over-/under-VAR compensation resulting
from the discrete capacitor switching. These advantages make the DER VAR
control a promising means for loss reduction in addition to the capacitor switching.
The availability of DER VAR control presents both new opportunities and chal-
lenges as well.

Some research efforts have been devoted to integrating DERs in the loss
reduction: Ref. [14] decouples the capacitor and DER VAR control into two
sub-problems that are solved in separate steps. References [15, 16] integrate the
impact of DER power injection on the network loss into the optimal power flow
(OPF) model. References [17-21] adopt meta-heuristic techniques to solve
Voltage VAR optimization problems for the loss reduction purpose. References
[22, 23] propose a three-level hierarchical Voltage VAR control structure, in which
DERs are used in both the primary and the tertiary control aiming for day-ahead
planning. These approaches attempt to avoid the complex mathematic modelling
and develop solutions using the oversimplified single-phase balanced network
model. In addition, the developed approaches and solution methods are demon-
strated on small test networks, their effectiveness and performance on practical
large-scale utility networks are unclear.

This chapter examines balanced and unbalanced electric distribution network
modelling techniques and then tests their effects on DMS applications including
power flow analysis and loss reduction with practical electric distribution networks.
The contribution of this chapter includes the following:

This chapter provides a comprehensive comparison for the effects of balanced
and unbalanced models on the power flow analysis. In particular, the investigation
is done for both the traditional network without DERs and the distribution network
with DERs in the smart grid environment. Three practical distribution networks
with representative characteristics in terms of distribution network dimension and
complexity are selected as test platforms. Balanced/Unbalanced model-based power
flow results are examined under different loading levels.

Furthermore, this chapter extends the application of the unbalanced model in one
of DMS applications, i.e., loss reduction. Based on authors’ experience in applying
multi-phase model in the traditional loss reduction approach using capacitors only
[24], this chapter presents an advanced technique to optimally coordinate the
control among multiple capacitors and DERs and take into account the impact of
control actions on the voltage profile. In particular, this chapter (1) integrates the
practical multi-phase model in the loss reduction application to reflect the unbal-
anced nature of the practical distribution network, which enables more accurate loss
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reduction application and provides valuable experience for other DMS applications,
(2) achieves optimal coordinated control among multiple capacitors and DERs that
can take fully advantage of the continuous DER VAR control capability to com-
pensate the over-/under-VAR compensation caused by the discrete nature of the
capacitor switching, and (3) adopts real-world distribution networks to demonstrate
the effectiveness and performance of the presented approach and solution method
on the common personal computer platform.

2.2 Electric Distribution Network Modelling

This section first describes the distribution network multi-phase modelling tech-
nique in detail and then introduces the approximation of the unbalanced network
with a balanced network model.

2.2.1 Electric Distribution Network Multi-phase Modelling

Models for multi-phase distribution network devices, e.g., distribution lines,
transformers with various configurations, loads/capacitor banks in wye/delta con-
nections, and DERs are presented in this section.

2.2.1.1 Distribution Lines

Distribution lines (such as feeders, cables, and laterals) are the backbone for a
distribution network. Not all distribution line sections are built with balanced three
phases, some laterals may include only single or two phases. The pi-equivalent
model is used for both balanced and unbalanced line sections. Figure 2.1a shows a
pi-equivalent model for a three-phase line section, in which each phase is modeled
explicitly with self-impedance, shunt susceptance, and the mutual coupling with
other phases. The detailed mathematical equations of the line model can be found in
[1]. Similar model is developed for unbalanced line sections with only single or two
phases.

2.2.1.2 Transformers

Transformers in the distribution network include substation transformers such as
on-load tap changers (OLTC), transformers along the line section such as voltage
regulators, and service transformers that directly connect to customers. These
transformers may be balanced or unbalanced and present various configurations in
practical distribution networks. The main configuration types include: Wye/Wye,
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Fig. 2.1 a A three-phase distribution line, b a transformer in wye/wye connection, ¢ a three-phase
delta-connected load, d a three-phase wye-connected capacitor bank

Wye/Delta, Delta/Wye, and Delta/Delta. Additional variations also derive from
these types, such as grounded/ungrounded connection based on the grounding
scheme of the wye connected side, leading/lagging Wye/Delta or Delta/Wye con-
nection based on if the primary voltage is leading or lagging the secondary voltage,
and open delta connection which provides three-phase voltages from two
single-phase banks. All these transformer configurations are supported in this
chapter. Figure 2.1b shows a Wye/Wye grounded transformer example.
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2.2.1.3 Loads/Capacitor Banks

Loads and capacitor banks are important components in the distribution network.
They can be single-/two-/three-phase devices and in delta or wye connection. In this
chapter, two types of load models, constant impedance and constant power loads [1],
are adopted to represent different load voltage dependent characteristics. Capacitors
may have either ganged or unganged control. For a capacitor with unganged control,
each phase is modelled with an individual control variable to represent the unganged
control capability. Figure 2.1c, d show a three-phase delta-connected load example
and a three-phase wye-connected capacitor bank with three unganged control
variables (u,, up, and u,) integrated with each phase impedance. These variables can
take values of O or 1, corresponding to the open or close switching of each phase.

2.2.1.4 Distributed Energy Resources

Under smart grid circumstances, distribution networks have increasing penetration
of various types of DERs such as wind turbines, photovoltaic arrays, fuel cells,
micro-turbines, diesel generators, and energy storage devices. Considering that
power flow is a steady state application in DMS, only the steady state characteristics
of DERs are of interest. In this chapter, DERs are represented with the multi-phase
PQ models, and their real and reactive power can be adjusted to simulate different
DER penetration levels in the network.

2.2.2 Approximation of Unbalanced Network with Balanced
Model

Regarding the approximation of an unbalanced distribution network with the bal-
anced model, no standards exist in current academic and industrial practices. The
approximation method used in Ref. [13] is to remove sections that only include
single or two phases and then aggregate the downstream load to the first upstream
bus that has three phases. One major disadvantage of this approximation method is
that the power flow function based on such balanced model does not provide the
voltage and any other information on the unbalanced nodes and lines that are
removed.

In this chapter, a different approximation method that can overcome the draw-
back in [13] is adopted: any unbalanced section that only includes single or two
phases is split into an equivalent three-phase balanced section, which still carries
the same total amount of power/current flow as the original unbalanced section. In
particular, in order to obtain the balanced model, following approximations are
made to the unbalanced sources, lines, capacitors, transformers, and loads,
respectively:
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Unbalanced source/capacitor/load: The power generation or consumption asso-
ciated with each phase of the unbalanced source/capacitor/load is aggregated first
and then divided by three to obtain the power for each phase on the equivalent
balanced model, as shown in Egs. (2.1) and (2.2).

Pb — Zi:l Pub (21)
3
Oy = —Z’j‘ u (2.2)

where

P, equivalent real power for each phase in the balanced model
0O, equivalent reactive power for each phase in the balanced model
P!, real power for phase i in the unbalanced device
i reactive power for phase i in the unbalanced device
n total phase number of the unbalanced device.

Unbalanced line/transformer: The phase impedance of the equivalent balanced
line section and transformer leg (Z,) is calculated by Eq. (2.3), i.e., dividing each
phase impedance in the unbalanced model (Z,;) by the phase number (#Phase)
and then multiplying with three. Furthermore, the positive sequence impedance of
the equivalent balanced model is then calculated based on Z,.

Zup X 3
Zy, = 2.3
b #Phase (23)

where

Z, equivalent phase impedance in the balanced model
Z,» unbalanced phase impedance in the unbalanced model.

2.3 Application of the Unbalanced Model in DMS
Applications

The Newton-Raphson method is applied to solve both balanced and unbalanced
model-based power flow. Balanced and unbalanced power flow results for three test
networks are compared under two scenarios: traditional distribution networks
without DERs and distribution networks with DERs in the smart grid environment.

In this chapter, three practical distribution networks (C1-C3) are selected to test
the effect of different modelling techniques on power flow results. As these dis-
tribution networks originally do not include DERs, a number of PQ mode DERs are
added to the networks at randomly selected locations. The power output of these
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Table 2.1 Power flow test network summary

F. Yang and Z. Li

ID #Feed #Node #Load #Line #DER #Total
Cl 2 363 165 374 3 980
C2 8 2119 1331 2170 5 5904
C3 18 3281 1696 3316 7 8789

DERs varies between 30 and 80% of the total network demand. For each network,
the numbers of feeders (#Feeder), nodes (#Node), loads (#Load), lines (#Line),
DERs (#DER), and total components are shown in Table 2.1. These are the
numbers without counting actual phases. In other words, each component may have
single, two, or three phases. Besides the components listed in the table, each net-
work also includes multiple transformers, capacitors in various configurations, and
many other devices.

All these test networks are typical real-world distribution networks with repre-
sentative features in terms of distribution network dimension and complexity. Test
results based on these networks provide realistic insight to the effects of different
distribution network modelling on power flow results.

2.3.1 Test Results on Power Flow Analysis

In scenario I, both balanced and unbalanced power flows are executed under three
loading levels: 30, 50, and 80%, respectively. In scenario II, the loading level of
50% 1is applied, while balanced and unbalanced power flows are executed under
three different DER penetration levels: 30, 50, and 80% instead.

In each scenario, the impact of different loading levels or DG penetration levels
on the voltage and current unbalance, calculated using Egs. (2.4)—-(2.7), is first
investigated based on the unbalanced power flow results and provided in Tables 2.2
and 2.4. Furthermore, the impact of balanced and unbalanced model-based power
flows on the network operating conditions, especially the operating constraint
violations, is examined and the comparison are provided in Tables 2.3 and 2.5.

ave™

Vi
Vel = 2= 24)

Vil = [Vi]

Vilup= max{‘ Vi ave 100%’, i=1. n} (2.5)
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_ i ]
n

|Il|ave_ (26)
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Table 2.2 Scenario I: voltage and current unbalance

ID | Loading level Max |V| unbalance Range number Current

(%) (%) (%) unbalance

Cl |30 0.285 12.4-13.98 2

Cl 50 0.478 12.4-13.89 2

Cl1 80 0.772 12.4-13.82 2

C2 |30 0.185 0.54-96.96 6

C2 |50 0.314 0.96-98.17 6

C2 80 0.518 1.27-98.86 6

C3 30 0.907 1.6-26.1 16

C3 |50 1.557 1.63-26.05 16

C3 |80 2.614 1.68-25.9 16

Table 2.3 Scenario I: operating constraints violations

ID Loading level (%) Number of phase voltage #Overloaded equipment

violations phases
Balance Unbalance Balance Unbalance

Cl 30 0 0 0 3

C1 50 0 0 6 6

Cl 80 0 0 6 6

C2 30 0 3 0 0

C2 50 911 3 0 0

C2 80 2198 2041 6 18

C3 30 0 0 3 1

C3 50 0 112 6 4

C3 80 701 1025 21 19

1
0= max{ M) = Wil 100%’, i=1.. n} (2.7)
|Il |ave

where

|Vi] voltage magnitude at node-k phase-i

|Vil e average voltage magnitude at node-k

|Vk|,, Voltage unbalance at node-k

14 current magnitude at branch-I phase-i

|| average current magnitude at branch-/

ave

|Il|ub

current unbalance at branch-/.
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Scenario I: Traditonal Distribution Networks without DERs

Table 2.2 shows the maximum voltage magnitude unbalance, the range of
current magnitude unbalance, and the number of branches with the current mag-
nitude unbalance falling in this range for each network under three different loading
levels: 30, 50, and 80%. For each test network, the maximum voltage unbalance
increases as the loading level increases, while the current unbalance remains at the
same level.

Table 2.3 shows the operating conditions including voltage violation and
overloaded equipment information under different loading levels. When the loading
level increases, more operating constraint violations occur to the network based on
balanced and unbalanced power flow results. More importantly, the difference in
the operating conditions reflected by the power flow results based on the two types
of models is not trivial, such as the significant difference in the number of voltage
violations for C2 under loading levels of 50%, the number of overloaded equipment
for C2 under loading level of 80%, and the number of voltage violations for C3
under 50 and 80% loading levels.

Scenario II: Distribution Networks with DERs

In order to test the impact of different DER penetration levels on power flow
results based on balanced and unbalanced models, various number of DERs are
added to three test networks as shown in Table 2.4. All DERs in C1 and C2 and
five DERs in C3 are three-phase balanced, while two DERs in C3 are single phase
unbalanced. Power flows are executed with the total DER power output accounting
for 30, 50, and 80% of the total demand for each network, given 50% loading level.

Table 2.4 shows the maximum voltage magnitude unbalance, the range of
current magnitude unbalance, and the number of branches with the current mag-
nitude unbalance falling in this range for each distribution network tested under
three different DER penetration levels. For C1 and C2, maximum voltage unbalance
values remain the same, while for C3, this value increases with the increasing of the

Table 2.4 Scenario II: voltage and current unbalance

1D DER level (%) | Max |V| unbalance (%) | Range number (%) | Current
unbalance
Cl 30 0.474 16.387-28.343 2
Cl 50 0.471 18.62-123.62 2
Cl 80 0.467 23.4-24.75 2
C2 30 0.316 3-98.17 6
C2 50 0.316 0.84-98.16 6
C2 80 0.317 0.4-98.16 6
C3 30 1.55 3.01-115.3 16
C3 50 2.36 2.1-72.02 16
C3 80 3.56 2.5-25.9 16
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Table 2.5 Scenario II: operating constraints violations

ID Loading level (%) Number of phase voltage #Overloaded equipment
violations phases
Balance Unbalance Balance Unbalance

Cl1 30 0 0 6 6

Cl1 50 0 0 6 6

Cl 80 0 0 6 6

Cc2 30 0 3 0 0

C2 50 0 3 0 30

C2 80 0 3 0 120

C3 30 0 99 6 4

C3 50 0 86 6 7

C3 80 0 35 11 12

DER penetration level. Current unbalance levels for C1 and C3 vary with the
change in DER penetration levels.

The current unbalance level for networks with DERs also increases comparing to
that of without DERs (at 50% loading level). Figure 2.2 shows current unbalance
values (%) on two selected branches for three test networks under different levels of
DER penetration. This figure indicates that the increasing DER penetration may
result in the nontrivial and even significant changes in the current unbalance level.

Table 2.5 shows the number of voltage violations and overloaded equipment
information with different DER penetration levels. When DER penetration level
increases in the network, the number of operating constraint violations does not
change for Cl, increase for C2, and decrease for C3. When the DER penetration
level reaches 50% or higher, balanced and unbalanced model based power flow
results show significant difference for C2 and C3 in terms of overloaded equipment
and voltage violations.

To summarize the results from above two scenarios, the voltage and current
unbalance as well as the difference in operating conditions obtained from balanced
and unbalanced model based power flows are influenced by following factors:
network dimension and complexity, loading level, and DER penetration level.
Tables 2.2 and 2.4 as well as Fig. 2.2 show that the nontrivial current unbalance is
completely ignored when balanced network model is adopted. Furthermore,
Tables 2.3 and 2.5 show the significant difference in the operating conditions
obtained from different models, which will further affect many other DMS appli-
cations such as Voltage VAR control, reconfiguration, demand response and so on
that are implemented on the basis of the power flow results.
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2.3.2 Unbalanced Model-Based Loss Reduction

This section describes a novel loss reduction approach and solution method
developed on the basis of the multi-phase distribution network modeling and
advanced optimization technology.

2.3.2.1 Methodology

Facilitated by the detailed multi-phase network model, an advanced loss reduction
optimization approach is developed to achieve optimally coordinated control
among multiple capacitors and DERs. The formulated optimization problem is
shown in (2.8)—(2.15).

In this optimization problem, controllable devices include DERs besides
switchable capacitor banks. Control variables are the continuous DER VAR output
(uq) and the discrete capacitor switching (u.). Both ganged and unganged control of
these controllable devices are included in this chapter.

In the objective function of the formulated optimization problem, the first term is
to calculate total power loss using real and reactive current components and the
branch resistance. While controlling capacitors and DERs to reduce loss, their
impact on the voltage profile cannot be ignored. Distribution utilities often set
higher priority for the voltage correction over loss reduction in the operating
practice. That is, when the voltage violation exists, utilities desire to correct the
voltage violations while reducing loss or even sacrificing the loss reduction for
voltage correction; when no voltage violation exists, the loss reduction should not
lead to any voltage violations. To address this practice, the objective function also
includes a penalty function for each line-to-neutral/line-to-line voltage violation. By
appropriately selecting the weight factor (wy), the capacitor and DER VAR control
targets to improve voltage violations while achieving the loss reduction.

The constraints in the formulated optimization problem include both current and
voltage operating limits. The calculation of these parameters is based on their base
values plus the estimated changes caused by the control actions. Equations (2.9)—
(2.11) enforce the current magnitude. Equation (2.12) enforces the maximum and
minimum DER VAR output limits. Equations (2.13)—(2.15) are the constraints for
each line-to-neutral/line-to-line voltage magnitudes.

np

Minf = Z{ (14)? } % ri i{vg + Vi b rwg (2.8)
k=1
subject to

I =10 +Z *“*Z g =1, (2.9)
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active/reactive current component of branch-i

number of network branches (lines and transformer windings) in the
network

resistance of branch-i

slack variables associated with line-to-neutral/line-to-line voltage-k
weight coefficient for voltage-k violation

number of line-to-neutral/line-to-line voltages

base case value of the active/reactive current for branch-i
sensitivity value of active/reactive current component of branch-
i with respect to the switching of capacitor-c

sensitivity value of active/reactive current component of branch i
with respect to DER-d

number of controllable capacitors

discrete control variable of capacitor-c

number of controllable DERs

VAR output control variable of DER-d

base case VAR output of DER d

upper/lower limit of the VAR output of DER-d

voltage-k magnitude

base case voltage k magnitude

upper/lower limit for voltage-k magnitude

sensitivity value of voltage k magnitude with respect to control
variables (capacitor switching and DER VAR output)

current magnitude limit of branch-i.

All parameters in the objective function and constraints shown in (2.8)—(2.15),
such as voltages, currents, resistances, are the parameters used in the multi-phase
network model. Two examples are provided below to illustrate how the multi-phase
distribution network model is adopted in the optimization problem formulation.
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In the objective function, based on the detailed multi-phase network model, the
power loss on each existing phase of the distribution line and transformer winding
is explicitly taken into account. For instance, given a lateral section (/) that only
consists of two phases (e.g., phases a and b), which is common in distribution
networks, the two-phase resistances r;,, and rj, as well as the real and reactive
current components on the two phases (IZ‘Z and I, for phase a, Il% and ;] for phase b)
are used to calculate the loss for the lateral section as shown in Eq. (2.16). No
unrealistic three-phase balance assumption is made for this two-phase lateral.

Pr={ (L) 4 (1) ot {05) + (1) + (2.16)

Similar to the objective function, constraints for currents and voltages are also
derived based on the detailed multi-phase network model, i.e., each constraint
reflects the limit for each phase or line variable. For example, if a single-phase load
is connected between two phases of lateral [, the constraint for the line-to-line
voltage at the load location is expressed in (2.17). Again, the impractical
assumption for a three-phase balanced load is not necessary, and the constraint set
only includes one line-to-line voltage for this load.

VMIN <y, < yMAX (2.17)

In a nutshell, both objective function and constraints are formulated based on the
multi-phase network model that can realistically reflect the nontrivial unbalanced
characteristics of the distribution network. No approximation/assumption is made to
represent any practical single-/two-phase component with a three-phase balanced
component to obtain a balanced network model. The unbalanced distribution net-
work model is fully utilized in the optimization formulation in this chapter.

The presented loss reduction approach is formulated as a mixed integer quadratic
optimization problem. The optimization formulation is implemented in the Visual
Studio C++ environment and interacts with the multi-phase distribution network
model unbalanced power flow (UBLF). Third-party solver CPLEX is applied to
solve the formulated optimization problem. The presented optimization technology
can provide online solution speed.

2.3.2.2 Test Distribution Networks

The advanced loss reduction approach and solution are tested with nine practical
distribution utility networks. This section illustrates these networks and test results
based on the presented coordinated control technology. Besides, this section also
presents the test results from a benchmark approach that only includes capacitor
control. The detailed benchmark formulation is provided in the Appendix, which is
derived by removing DER VAR control from the advanced approach formulation in
(2.8)~(2.15). The benchmark approach is implemented and solved in the same
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Table 2.6 Test network ID |#Cap |#DER |#Node |#Load |#Line

information summary Cl 3 5 1560 538 1608
2 |3 2 1740 543 1776
a1 3 1312 402 1339
ca |2 3 837 265 844
cs |4 8 2085 644 2125
c6 |1 5 2465 770 2493
c7 |3 6 1016 307 1035
cs |o 3 790 245 812
c o 10 1760 566 1784

environment and tested with the same nine distribution networks as that of the
advanced approach. Test results from two approaches are compared for the purpose
of investigating the impact of DER VAR control on the loss reduction and voltage
correction.

Table 2.6 lists the information of nine practical distribution utility networks
(C1-C9) used to test both advanced and benchmark approaches. Each network has
multiple feeders, and the average number of feeders is 10. Regarding distribution
lines including both feeders and laterals, about 60% are three-phase and 40% are
single-/two-phase. Voltage levels vary between 4.16 and 23.9 kV. In these net-
works, the number of switchable capacitors (#Cap) varies between zero to four,
which are either ganged or unganged controllable. As these distribution networks
originally do not include controllable DERs, a number of PQ mode DERs are added
to the networks at randomly selected locations. The number of added controllable
DERs (#DER) varies between two to ten. Load models include two types: constant
power and constant impedance model.

The numbers of network nodes (#Node), loads (#Load), and lines (#Line) shown
in Table 2.6 are the numbers without counting the actual phases. In other words,
each node, load, or line may have single, two, or three phases. Each load and
capacitor may connect in delta or wye connection. Besides the components listed in
the table, each network also includes multiple transformers (on-load tap changer,
voltage regulators, etc.) in various configurations.

All these test networks are typical practical distribution networks with repre-
sentative features in terms of distribution network dimension and complexity. The
test results based on these networks provide meaningful information in the effec-
tiveness and performance of the presented loss reduction approach and solution for
practical distribution networks.
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2.3

2.3 Test Results on Loss Reduction

The test results of advanced and benchmark loss reduction approaches on the nine
networks are classified into three categories. The networks in each category exhibit
certain common features in the loss reduction and voltage correction. Tables 2.7,

2.8

and 2.9 present test results for networks in each category, respectively. Each

table includes the following information:

Base Case: no loss reduction function is applied

Cap Only: Apply the benchmark loss reduction approach based on capacitor
control only

Cap + DER: Apply the advanced loss reduction approach based on the coor-
dinated control among capacitors and DERs

Loss: the network power loss in kW

Reduction %: the power loss reduction in percentage with respect to the base
case power loss

#VV: the number of voltage violations

Max|VV]|: absolute maximum voltage violation amount (in pu).

Table 2.7 Category 1: test results on loss reduction and voltage violation correction

1D Loss (kW) (Reduction %) #VV Max|VV| (pu)
Cl Base case 308.1 64 0.02
Cl1 Cap only 308.1 (0%) 64 0.02
Cl Cap + DER 293.3 (4.8%) 3 0.002
C2 Base case 269.9 15 0.09
C2 Cap only 215.4 (20%) 10 0.002
C2 Cap + DER 207.7 (23%) 0 0

C3 Base case 479.3 4 0.04
C3 Cap only 479.3 (0%) 4 0.04
C3 Cap + DER 445.9 (7%) 4 0.02
Table 2.8 Category 2: test results on loss reduction and voltage violation correction
D Loss (kW) (Reduction %) #VV Max|VV| (pu)
C4 Base case 170.0 31 0.01
Cc4 Cap only 170.0 (0%) 31 0.01
C4 Cap + DER 228 (—34%) 0 0

C5 Base case 410.3 199 0.04
C5 Cap only 410.3 (0%) 199 0.04
C5 Cap + DER 442.9 (—8%) 43 0.003
C6 Base case 361.5 (0%) 133 0.05
C6 Cap only 361.5 (0%) 133 0.05
C6 Cap + DER 425.1 (—17%) 6 0.007
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Table 2.9 Category 3: test results on loss reduction and voltage violation correction

1D Loss (kW) (Reduction %) #VV Max|VV| (pu)
C7 Base case 49.9 0 0
Cc7 Cap only 45.5 (8.9%) 0 0
Cc7 Cap + DER 42.1 (16%) 0 0
C8 Base case 51.6 0 0
C8 Cap only NA 0 0
C8 Cap + DER 46.2 (11%) 0 0
Cc9 Base case 130 0 0
C9 Cap only NA 0 0
C9 Cap + DER 120.4 (7.3%) 0 0

Category 1 includes networks 1, 2, and 3 (C1-C3). All three test networks have
voltage violations in the base case. Table 2.7 shows the test results from the pre-
sented and benchmark loss reduction approaches.

When applying the benchmark approach (Cap only): for networks 1 and 3, no
capacitor switching action is available to improve both loss reduction and voltage
violations or just correct voltage violations given its higher priority over the loss
reduction; regarding to network 2, the capacitor switching action can achieve 20%
loss reduction while improving the voltage profile by reducing the number of voltage
violations and the maximum amount of the voltage violation. When applying the
presented approach (Cap + DER): comparing to the benchmark approach, the
voltage violations are further improved for networks 1 and 3 and completely elim-
inated for network 2. In addition more network loss reductions are achieved: loss
reduces 4.8% for network 1, 23% for network 2, and 7% for network 3.

The test results in this category demonstrate that the coordinated control among
capacitors and DERs is able to further reduce loss while eliminating/improving
voltage violations, comparing to the benchmark approach with capacitor control
only.

Category 2 includes networks 4, 5, and 6 (C4-C6). Similar to the networks in
category 1, C4-C6 have voltage violations in the base case. Table 2.8 shows the
test results from the presented and benchmark approaches.

When applying the benchmark approach (Cap only): for all the three networks,
no capacitor switching action is available that can both correct voltage and reduce
loss or just correct voltage violations. When applying the advanced approach
(Cap + DER): given the higher priority of the voltage correction over the loss
reduction, voltage violations are improved (for networks 5 and 6) or eliminated (for
network 4) by sacrificing the network losses for all three networks. Loss increases
34% for network 4, 8% for network 5, and 17% for network 6.

Test results in this category show that the voltage correction and loss reduction
cannot be achieved concurrently due to the contradict impact of capacitor and
DER VAR control on the two targets. Given the high priority of voltage correction,
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Table 2.10 Solution runtimes for benchmark approach

ID Solution time (s) D Solution time (s) D Solution time (s)
Cl 1.38 Cc4 0.9 C7 14
C2 243 C5 2.1 C8 NA
C3 1.09 C6 14 C9 NA

Table 2.11 Solution runtimes for advanced approach

ID Solution time (s) ID Solution time (s) ID Solution time (s)
Cl 2.87 Cc4 2.0 C7 1.6
C2 2.51 C5 6.0 C8 0.9
C3 1.85 C6 3.8 C9 24

the coordinated control between capacitors and DERs is able to eliminate or
improve voltage violation, while cap only control cannot achieve similar results.

Category 3 includes networks 7, 8, and 9 (C7-C9). Different from the networks
in the other two categories, C7-C9 have no voltage violation existing in their base
cases. Table 2.9 shows the test results from the two approaches. Network 7 can
achieve 8.9% loss reduction with the benchmark approach while 16% loss reduc-
tion with the advanced approach. Networks 8 and 9 do not include any capacitors
and can achieve 11 and 7.3% loss reduction with the advanced approach, sepa-
rately. Test results show that advanced approach can reduce loss without incurring
new voltage violation.

In summary, test results from nine typical distribution utility networks show that
the involvement of DER VAR control and especially the optimally coordinated
control among capacitors and DERs can achieve further loss reduction and voltage
correction comparing to the approach with capacitor control only. In particular,
when the impacts of the control action on the loss reduction and voltage violation
do not contradict, the presented approach can improve both aspects effectively.
Otherwise, given the higher priority on the voltage correction, the presented
approach can better improve the voltage profile. When no voltage violation exists in
the base case, the presented approach can further reduce network loss without
incurring new voltage violation.

The solution performance is tested on a desktop computer with following con-
figuration: Intel Core 2 Quad Processor Q9400@2.66 GHz, 4 GB RAM, Microsoft
Windows XP operating system.

Tables 2.10 and 2.11 provide the solution runtimes on the nine test networks
based on two approaches, separately. Most of solution runtimes are less than or
around 3 s. The solution runtime of network 5 is 6 s when applying advanced loss
reduction approach. This network has relatively large dimension and number of
controllable devices (four capacitors and eight DERs). Overall, the solution per-
formance is suitable for online application to handle complex large-scale distri-
bution networks in the real world.



56 F. Yang and Z. Li

Appendix

The benchmark loss reduction problem formulation is derived based on the pre-
sented approach as illustrated in (2.8)—(2.15). The Benchmark approach only
controls capacitor banks for loss reduction and voltage correction. The test results
from this formulation are used as the reference to demonstrate the effectiveness of
the advanced loss reduction approach. The detailed problem formulation is
described in (2.18)—(2.24).

Minf:i{([fl)2+(liq)2}*ri+ i{vk+ +V b swe (218)
i=1 k=1

subject to
d _ qd - gl L
=10+ Sixu i=1,...m (2.19)
c=1
=10+ Shvue i=1,...m (2.20)
c=1
I+ (1) < (™) i=1,...,m (2.21)
OMIN < 04(0) +ug <OMX  d=1,... ngs (2.12)
Vi=Vi(0) = Vim + Ve + ) Slisue k=1,...n, (2.13)
c=1
VMIN <y < YMAX =11, . n, (2.23)
Vr>0,vi >0 k=1,...,n, (2.24)
References

1. William H. Kersting, Distribution System Modeling and Analysis, 2nd edn. (CRC Press, Boca
Raton, FL, 2007)

2. H. Liu, S. Cheng, C. Huang, Y. Hou, Unbalanced power flow calculation for low voltage
distribution systems including DGs, in Innovative Smart Grid Technologies-Asia, pp. 1-5
(2012)

3. A Saemni, A.B. Nassif, C. Opathella, B. Venkatesh, A Modified Newton Raphson Method for
Unbalanced Distribution Systems, in [EEE International Conference on Smart Grid
Engineering, pp. 1-7 (2012)

4. S. Bruno, S. Lamonaca, G. Rotondo, U. Stecchi, M. La Scala, Unbalanced three-phase
optimal power flow for smart grids. IEEE Trans. Industr. Electron. 58(10), 45044513 (2011)



2 Distribution Network Modeling and Management 57

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

. R.D. Zimmerman, Hsiao-Dong Chiang, Fast decoupled power flow for unbalanced radial

distribution systems. IEEE Trans. Power Syst. 10(4), 2045-2052 (1995)

. C.P. Nguyen, A.J. Flueck, A novel agent-based distributed power flow solver for smart grids.

IEEE Trans. Smart Grid 6(3), 1261-1270 (2015)

. U. Leeton, T. Ratniyomchai, T. Kulworawanichpong, Optimal reactive power flow with

distributed generating plants in electric power distribution systems, in International
Conference on Advances in Energy Engineering (2010)

. J.J. Zhao, X. Li, J.T. Hao, C.L. Zhang, J.P. Lu, Wind farm reactive power output optimization

for loss reduction and voltage profile improvements, in Power Electronics and Motion
Control Conference (2009)

. M. Oshiro, T. Senju, A. Yona, N. Uraskaim T. Funabashi, C.H. Kim, Optimal operation

strategy by battery energy storage systems in distribution system, in /PEC (2010)

Isha Sharma, Analysis of unbalanced distribution systems with solar PV penetration, in /EEE
PES GM (2013)

J.F. Franco, A mixed-integer linear programming model for the electric vehicle charging
coordination problem in unbalanced electrical distribution systems, in IEEE Transactions on
Smart Grid, vol. 99 (2015)

F. Yang, Z. Li, Improve distribution system energy efficiency with coordinated reactive power
control. IEEE Trans. Power Syst. 99, 1-8 (2015)

K. Miu, M. Kleinberg, Impact studies of unbalanced multi-phase distribution system
component models, in IEEE Power and Energy Society General Meeting, pp. 1-4 (2010)
Y. Zhu, K. Tomsovic, Optimal distribution power flow for systems with distributed energy
resources. Electr. Power Energy Syst. 29 (2007)

A.A.S. Algarni, K. Bhattacharya, Disco operation considering DG units and their goodness
factor. IEEE Trans. Power Syst. 24(4) Nov. (2009)

A.A.S. Algami, K. Bhattacharya, Utility-owned DG units’ impacts on distribution system
operation, in Power Systems Conference and Exposition (2009)

T. Niknam, A.M. Ranjbar, A.R. Shirani, Impact of distributed generation on volt/var control
in distribution networks, in IEEE Power Tech Conference Proceedings (2003)

T. Niknam, A.M. Ranjbar, A.R. Shirani, A. Ostadi, A new approach based on ant colony
algorithm to distribution management system with regard to dispersed generation, in 18th
International Conference on Electricity Distribution (2005)

U. Leeton, T. Ratniyomchai, T. Kulworawanichpong, Optimal reactive power flow with
distributed generating plants in electric power distribution systems, in International
Conference on Advances in Energy Engineering (2010)

J.J. Zhao, X. Li, J.T. Hao, C.L. Zhang, J.P. Lu, Wind farm reactive power output optimization
for loss reduction and voltage profile improvements, in Power Electronics and Motion Control
Conference (2009)

M. Oshiro, T. Senju, A. Yona, N. Uraskaim T. Funabashi, C.H. Kim, Optimal operation
strategy by battery energy storage systems in distribution system, in /PEC (2010)

F.A. Viawan, D. Karlsson, Coordinated voltage and reactive power control in the presence of
distributed generation, in Conversion and Delivery of Electrical Energy in the 21st Century
(2008)

F.A. Viawan, D. Karlsson, Combined local and remote voltage and reactive power control in
the presence of induction machine distributed generation. IEEE Trans. Power Syst. 22(4),
Nov. (2007)

X. Feng, P. William, F. Yang, Implementation of control center based voltage and var
optimization in distribution management system, in IEEE Transmission and Distribution
Conference and Exposition (2010)



Chapter 3 M)
Distribution Network Demand and Its Check or
Uncertainty

Stephen Haben and Georgios Giasemidis

Abstract This chapter presents some advanced tools for low voltage (LV) network
demand simulation. Such methods will be required to help distribution network
operators (DNOs) cope with the increased uptake of low carbon technologies and
localised sources of generation. This will enable DNOs to manage the current
network, simulate the effect of various scenarios and run load flow analysis. In
order to implement such analysis requires high resolution smart meter data for the
various customers connected to the network. However, only small amounts of
individual smart meter data will be available and such data could be expensive. In
likelihood, smart meter data is only going to be freely available at the aggregate
level. Hence, in general, to implement LV network tools, customer loads will need
to be simulated based on the assumption of limited amounts of monitored data. In
addition, due to the high volatility of LV electric distribution networks, demand
uncertainty must also be captured within a simulation tool. In this chapter, a number
of methods are described for simulating demand on low voltage feeders which rely
only on relatively small samples of smart meter data and monitoring. Firstly, a
method called ‘buddying’ is described for assigning realistic profiles to unmoni-
tored customers by buddying them to a customer who is monitored. Secondly, a
number of methods are presented for capturing the uncertainty on the network.
Finally the uncertainty models are incorporated into the buddying method and
implemented in a load flow analysis tool on a number of real feeders. Both the
buddying and the uncertainty estimation are presented for two different cases based
on whether LV substation monitoring is present or not. This illustrates the different
impacts of monitoring availability on the modelling tools. This chapter demon-
strates the presented methods on a large range of real LV feeders.
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3.1 Introduction

It is becoming increasingly necessary for distribution network operators (DNOs) to
be able to model the demand behaviour at the low voltage (LV) level to improve
network planning and management. With the uptake of low carbon technologies,
such as electric vehicles and photovoltaics, demand is expected to increase and
become more unpredictable [1]. Accurate modelling of network demands is
essential to be able to predict and assess the stability and headroom on the LV
network through power flow analysis [2]. Further, accurate simulation can also
assess the validity of network demand solutions such as battery storage or demand
side response [3, 4]. Such smart grids could reduce the costs from reducing addi-
tional traditional reinforcement, for example, in the UK the potential savings are
around £2.5B—£12B [5].

With the roll out of smart meters, network operators can potentially populate
network modelling tools with the actual load of the connected customer and then it
is trivial to run power flow analysis tools [6, 7]. However, since smart meter data is
proprietary, it is not guaranteed that it will be available to DNOs and if it is, it is
likely to be expensive [1]. For example, in the UK, it has been stated that only
aggregated data may be available, this will save a DNO from having to monitor at
the substation/feeder level but will give no greater visibility of individual customers
[8].

Since an LV network feeder typically represents the aggregation of around 10 up
to 100 customers, the demand is relatively volatile compared to higher volatile
networks, as illustrated in Fig. 3.1. Hence, any modelling of a network must capture
the uncertainty to ensure that the diversity is incorporated and that a fuller under-
standing of the demands is available. Up until recently network operators have
planned networks based around basic measures such as the after diversity maximum
demand (ADMD), or estimated the aggregation of winter period profiles using
assumption of Gaussianity, e.g., such as the specifications of ACE Report
No. 49 (ACE49) for the design of LV radial distribution networks [9].
Unfortunately, although such metrics have been relatively successful, the increased
uptake of low carbon technologies was not anticipated when these tools were
developed and hence they may not be suitable for future network design in a low
carbon economy.

In this chapter, simple and practical methods for modelling realistic profiles for
residential customers on low voltage electric distribution networks are demon-
strated using limited customer smart meter data. Two cases are considered: one
where substation (i.e., aggregate) level monitoring is available and another where
this monitoring is not available. Hence, even with less data resources an (albeit less
accurate) modelling solution can be implemented. The second main topic of this
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Fig. 3.1 Half-hourly demand over 2 days for total gross system demand (red) and the aggregation
of 50 residential customers (black)

chapter is about methods for quantifying LV demand uncertainty. Again, to take
into account the scenario where little data is available, two methods are presented
depending on different quantities of monitoring. Finally, both the customer network
models and the uncertainty quantification are consolidated to show a complete
modelling of an LV network taking into account the diversity of demand. This
should enable a distribution network operator to run informative power flow
analysis for any size LV network.

3.2 Buddying: Simulated Network Demand with Limited
Monitoring

The basic aim of buddying is to simulate, as accurately as possible, the demand
profiles for each customer point on the feeder of an LV network, as well as the
aggregated feeder demand profile using a limited sample of monitored profiles.
Suppose M customers, labelled ¢; for j = 1,...M, are connected to an LV feeder
(or phase) which has no available smart meter data (or other data from advanced
metering infrastructures) but does have a known daily mean usage U; for
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j=1,...M, (say, obtained from their quarterly meter readings which are typically
available to network operators). Further, assume a sample of N customers who are
monitored with smart meters over d days and let

P={p.= (p(1),px(2),....px(48d))" € R®|k=1,... N}, (3.1)

be the set of monitored profiles. Naturally, the mean daily usage for each profile
Py € P is known directly from the profile data, defined as

. 1 48d
Ui :EZPk(h)~ (32)
h=1

Finally, since in some cases monitoring is installed at the substation level, denote
the feeder (or phase) profile by

s = (s(1),5(2),...,5(484))" € R*, (3.3)

for the same time period.

The aim is to assign, as accurately as possible, with the information available, a
profile p; € P to simulate the demand profile of each unmonitored customer c;. This
process is called buddying and the profile p, is referred to as the buddy of the
customer c;. In the methodologies presented in the following sections the assign-
ments are restricted so that both the unmonitored customer and the buddy come
from the same group. The groups are explained in Appendix “Customer Groups”
but are primarily determined by the Elexon profile class and the council tax band of
the property (here viewed as a surrogate for assets) [10]. The groups serve two main
purposes: (1) to ensure that similar customers are buddied and (2) to reduce the
computational cost of the genetic algorithm employed in the optimization. It should
be noted that many other groupings could be equally valid.

The buddying method described above can be considered as a method for cre-
ating pseudo-measurements which are utilized in state estimation methods when
observation data is not available [11]. However, whereas pseudo-measurements are
typically generated from standardized daily profiles, buddying uses the profile from
a monitored household instead [12]. One advantage of the method is that, by
definition, the customers are assigned realistic profiles; this is in contrast to the
methods which use representative profiles, which are smooth due to the averaging
of several similar customers (see Sect. 3.2.6 for descriptions of other potential
methods).



3 Distribution Network Demand and Its Uncertainty 63

3.2.1 Buddying Methodology

Initially it is assumed that the substation is monitored at the same resolution as the
monitored customers (typically network operators own the substation and are free
to monitor the load). In addition, although smart meter data may not be directly
available, some countries are allowing network operators access to aggregated data.
Hence, there are a number of options where substation/feeder level data may be
available for use in optimizing a network model.

In this scenario, the assumption is that all customers are residential. In
Sect. 3.2.5 an extension of the method is presented which allows a mix of both
residential and commercial customers. Since only a low resolution view of indi-
vidual customers’ usage is available (i.e., their quarterly meter readings) the sub-
station level demand is utilized to better match the intra-day (albeit aggregate) level
demand on the network. The aim of the buddying is to find a set of profiles

P={p.pi, - pi,}» where Py, € P is the buddy for unmonitored customer ¢;
for j=1,...,M. This is achieved by minimising the cost function

48d

F( ) ZH“ ||1+ Z

over all possible sets of buddied profiles P. Here a(h) = Zj‘il pi(h) is the

aggregate demand of the buddy, S = Z48d s(h) and D = Z]Ai ; Uj. The weighting

w € [0, 1] allows the buddy to either optimize fully to the substation (w = 0) or
completely to the mean daily usages (w = 1), or a weighted sum of the two. The
optimal choice in w can also be interpreted as the trust in the accuracy of the
quarterly meter readings (since they are generally estimates) as well as their
importance in identifying an accurate buddying.

The optimal buddy is found by a genetic algorithm which optimizes the solution
according to the fitness function (3.4). The genetic algorithm creates updates of
several collections of monitored customers according to how well they score
according to the fitness function. In subsequent generations, solutions are produced
by crossbreeding between the fittest solutions and retaining common buddies.
Mutations (exchanging of some random buddies) ensures that solution retains
sufficient diversity. The genetic algorithm is iterated 100 times or until the solution
converges. Complete details on the genetic algorithm method can be found in
Appendix “Genetic Algorithm”. For w # 1 the buddying is referred to as the GA or
genetic algorithm buddy. In the special case of w = 1, which is described in more
detail in the next section, the buddy is referred to as the simple algorithm or SA
buddy.

HU Uy,

(3.4)
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3.2.2 The Simple Algorithm Buddy

The SA buddy is a special case of the algorithm which simply assigns the profile
which has the closest mean daily usage and can be found quickly and does not
require the implementation of the genetic algorithm. Since no half hourly infor-
mation is used in the SA buddy the algorithm is expected to be less accurate at
assigning buddying profiles than the GA buddy. However, this option is more
attractive to a network operator since it uses the minimal amount of monitoring and
hence reduces potential data costs and storage. The importance of the accuracy of
this method is reduced if the uncertainty is appropriately estimated (see Sect. 3.3).

3.2.3 Assessing the Buddying

To assess the quality of the buddying the accuracy can be considered at both the
aggregate, feeder level or at the individual, household level. This chapter considers
the relative mean absolute error (RMAE), defined by

RMAE = I%MZ||A(i) —EW|,, (3.5)

where A is the actual profile (either individual residential household or substation)
and FE is the estimated profile (either the buddy or the aggregate of the buddies).
Since peaks in demand are also important for DNOs the relative peak demand error
(RPDE) is also considered,

(3.6)

Note that by using relative errors then substations of different sizes and mag-
nitudes are easily compared.

3.2.4 Case Study for 122 LV Substation Feeders

Although this case study will be presented for low voltage electric distribution
networks in the UK, the buddying method can be applied to any network as long as
the mean daily demands of the individual customers (from quarterly meter reads),
and the aggregate demand of all customers (say from substation monitoring) is
available. A grouping of customers for implementation of the genetic algorithm is
also required (see Appendix “Customer Groups”).
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3.2.4.1 Data and Study Specifications

A case study of 122 low voltage substation feeders was considered from the
Thames Valley Vision project, a low carbon network fund project based in
Bracknell, UK [14]. The half hourly demand was monitored from the 20th March
2014 to 22nd September 2015 amounting to around a year and a half of data. An
example of the feeders emanating from the Radcliffe Way substation is shown in
Fig. 3.2. All feeders are connected to residential customers only with an average of
35 households per feeder and a range of 4-109 customers. A sample of N = 242
residential customers is monitored with half hourly smart meter data for the same
time period as the feeder data. In the case study presented all feeders are buddied for

Radcliffe Way

Fig. 3.2 Radcliffe way low voltage substation, Basingstoke, UK. The substation (blue) feeds
residential households using three phase feeders (solid black lines) [13]
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different numbers of weeks and weights starting from the 29th September 2014 but
similar results hold for testing other periods of the year [15]. The accuracy of the
buddying is tested over the yearly period 1st September 2014 to 31st August 2015.

3.2.4.2 Buddying Error Analysis

Figure 3.3 shows an example of the SA and GA (w = 0) buddy for a particular day
(15th January 2015) for individual phases on a feeder. Clearly the genetic algorithm
is more accurate in this example (and later in this section it is shown that this holds
in general) but it also highlights some potential drawbacks to the method. On phase
1 the peak period is missed, this is because the cost function is expressed in terms of
a l-norm and hence the error is typically reduced by capturing the average
behavior. To more accurately model peaks would require a p-norm for p > 2 so that
the optimization focuses on reducing peak errors. However, this is a relatively
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Fig. 3.3 Example of the SA (red) and GA (blue) buddying versus the actual for individual phases
of a particular Feeder
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Buddying started at 29/09/2014
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Fig. 3.4 Average relative mean absolute errors for different numbers of weeks and weights in the
GA buddying [15]

simple adjustment that can be made to the algorithm depending on the needs of the
user. For more information on peak errors see [16].

A plot of the RAME errors of the match between the aggregated GA buddying and
the substation feeder demand for the different numbers of weeks and weights is shown
in Fig. 3.4. The more weeks in the buddying, and the higher the substation weighting
(the smaller the w), the better the match to the substation, even over the entire year test
period. This is perhaps unsurprising, since the buddying is optimized at the feeder
level, however it can be further shown that some small weighting (w = 0.1) is required
to ensure that there is accuracy at the individual level as well [15].

The accuracy, as may be expected, is a function of the number of customers, as
shown in Fig. 3.5, for both the SA and GA (w = 0) buddying methods. The errors
fit a power law distribution quite accurately as a function of the number of
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Fig. 3.5 RMAE errors (normalized by number of customers) against number of customers for
each feeder for both the GA and SA buddying methods [15]
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customers on the feeder. Such plots can be useful for helping a distribution network
operator make planning decisions, in particular understanding which LV electric
distribution networks can be accurately modelled and which may need continuous
monitoring. For example, it is clear that the feeders with more than 40 customers
can be relatively accurately modelled using the simple algorithm and substation
monitoring is not necessary to improve this modelling.

Often a Monte Carlo approach is taken when running power flow analysis on
electric distribution networks [17, 18]. A random sample of the smart meter data is
taken and assigned to the unmonitored customers (subject to customers being in the
same group), and then a power flow analysis is performed. This is repeated a
number of times (e.g., in [17] this is 1000 times) to estimate the potential spread of
behaviors that can be expected on the network. When comparing against the
buddying it is found that for 109 of the 122 feeders one run of the GA buddy is
more accurate than all 1000 runs of random buddies (subject to customers being in
the same group).

The choice of weighting, w, depends on the purpose of the buddying. If the
accuracy of the individual profiles is less important than at the aggregate level the
weighing should be skewed towards w = 0. However, if individual customers must
be accurately modelled then some weighting should be skewed towards the indi-
vidual setting w =1 [15]. The inclusion of the uncertainty in demand in the
modelling (see Sects. 3.3 and 3.4) means that the accuracy at either level is less
important in the power flow analysis.

3.2.5 Incorporating Commercial Customers and Generation

The methods presented so far describe how to model unmonitored customers by
assigning them a profile from a sample set of monitored profiles. This is suitable for
residential customers since, given a large enough sample, their demand can be
largely described by a finite set of behaviors (e.g., see [19]). For commercial
customers this methodology no longer applies. For some larger commercial, that are
already monitored, this will not be an issue since their actual profile can be sub-
tracted from the aggregate/substation demand and buddying can be applied as
normal.

For unmonitored commercial the buddying is more complicated since there is
unlikely to be substantial monitored profiles of other commercial buildings with
similar behavior to find a reasonable match. To deal with these customers, a slight
adjustment is applied to the algorithm. Without loss of generality it is assumed there
is one commercial customer and M residential customers, who need buddies, on an
LV feeder. For the residential customers, the notation of Sect. 3.2.1 are used. The
commercial customer has a standard profile for the particular type of business (e.g.,
church, school, shop), which are part of current profile tools (such as WinDebut).
This standard profile is normalized so that the daily mean usage is 1 kWh, denoted
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as py 1. It is also assumed that the mean daily demand Uy 1| for the commercial
customer is available (from the quarterly meter readings). As well as assigning each
residential customer an appropriate profile from the sample of smart meter data, a
scaling, 0.8 <a < 1.2, is also optimized for the normalized profile. Thus, a set of
profiles P= {pklpkz, .. .,pkM} and a scalar o are now focused on to minimise the
updated cost function of

F(E) = (1w Sl f”l]j_DUk’ L Wl =)

h=1 j=1

(3.7)

here a(h) = Zjﬂilpkj(h)—FocUNHpN+1 is the aggregate demand of the buddy,

S= 228:[11 s(h) and D = Zjﬁilﬂ U;. This can be solved in a similar way to using a
genetic algorithm. This time, the scalar « is sampled randomly from the range [0.8,
1.2] during buddying. At the crossover step, o is randomly chosen between the two
parent genomes. At mutation, if the commercial customer is selected for mutation, a
new « is sampled randomly in the range [0.8, 1.2]. For more details of the genetic
algorithm see Appendix “Genetic Algorithm”. Notice that aUy,; is also an
estimate for the daily mean usage for the commercial customer.

3.2.6 A Note on Other Approaches

This chapter only presents a particular approach for modelling network customers
which has advantages in terms of its simplicity, accuracy and practicality. There are
a number of other methods which could also be incorporated and they fit into
roughly too cases: standardized profiles and bottom-up modelling [20].

For example, in the UK, electricity suppliers tend to use a two-level Elexon
grouping of customers based on whether they have overnight storage heaters or not
and this assigns them a Standard and Economy 7 profile respectively, which is
scaled based on quarterly meter readings and weather data [10]. However, there are
a large number of other standardised profiles which are typically created from
clustering a sample of customer data and linking to household and demographic
data ([19, 21], also see references within [22]). This approach depends on strong
links to such properties but evidence suggests that such links to publically available
(or easily accessible to a distribution network operator) data are not particularly
strong [19, 23-25]. In addition, such profiles are typically quite smooth and
unrealistic since they are based on average data and hence may not give accurate
results via a power flow analysis.

For the bottom up approach realistic profiles can be generated by a statistical
model which combines the profiles and usage of individual household appliances
[26-28]. Hence realistic profiles are assigned but the drawback is that with rapidly
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changing appliances and technologies these profiles could become outdated rather
rapidly and a large sample is required to create the models and ensure that corre-
lations between appliance usages are also captured. In the buddying by using full
profiles the correlations are naturally modelled.

3.3 Modelling Uncertainty on LV Electric Distribution
Networks

In the previous section a method was described for assigning realistic profiles to all
consumers on a low voltage electric distribution network without needing to
monitor all customers. This can be used as a basis for understanding the impact of
different uptakes of low carbon technologies and then power flow analysis can be
performed to understand the current future network headroom [13].

However, in its current form the buddying does not take into account demand
volatility, which can be particularly high at the low voltage network level.
Traditionally, when planning for new building developments or planning new
network connections standards, such as the ACE 49, have been used to estimate the
potential 90% load on a network [29]. However, these standards may not be as
robust as low carbon technologies are introduced on the network. In addition, the
ACEA49 framework is based on assuming the demands are Gaussian (or normally)
distributed which is unlikely to be the case at the LV level and typically will only
make sense at the higher voltages, i.e., larger aggregations of customers, where the
law of large numbers becomes valid.

In this section methodologies for modelling network demand uncertainty are
presented for two main scenarios, based on the amount of monitoring available. In
the first scenario, it is assumed substation level monitoring (or equivalently,
aggregations of the demand at the same level) is available. Methods used in this
case will be more accurate, but more computationally expensive and require data
and/or monitoring. The second scenario does not use substation monitoring but
allows a network operator some insight into the demand variability with a much
lower requirement for data and computational cost.

3.3.1 Monitoring Based Confidence Bound Generation

The first scenario develops a model for specific quantiles using the historical
information from monitors at the feeder level or from aggregations of the demand
from all customers on the feeder. Only a particular model based on quantile
regression is presented but there is a wide range of other possible methods that
could also have been employed, such as kernel density estimation, general additive
models, or any of a vast array of methods which are used in generating probabilistic
load forecasts [30].
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The advantages of the method presented here are that only specific quantiles
(unlike say, kernel density estimation where the entire distribution must be speci-
fied) need to be generated, it is relatively quick, has been successfully implemented
at higher voltage demands and the equations are also relatively simple and hence
easy to interpret [31]. Each half hour is modelled as a separate time series and only
models seasonality, trend and weekend identifiers as the main features of the sys-
tem. Of course, further extensions can be developed including distinguishing
between individual day types (Monday, Tuesday, etc.) and including autoregressive
effects. However, this simple model was found to be quite successful for the pur-
poses of quantile estimation and the considered test case.

Focusing on a particular half-hour of the day, say 5 pm, the individual load L,
ford = 1,...,D is considered at the same hour for the D days of the historical data
set. Now assume a model for a particular quantile of the load data, say t which is of
the form

o~

P
T T T T T T ot 2npd T 27—de
Ly(a") = ay+ajd+a;Wy+ p;bp s1n< 365 ) +cpcos<%>, (3.8)

where W, is the weekend dummy for day d, having value one if the current day is
on the weekend or zero otherwise. Here P is the number of annual period terms to
include in the model. P = 2 was found to be sufficient. In many cases, especially
those countries with high air-conditioning use and hence more bi-annual beha-
viours, P =3 or higher may be more suitable. Then, it is essential to find the
corresponding coefficients, a = (af, al, a5, b, b5, ¢t ¢5)" for each half hour model
and the specified quantile.

The parameters are found through quantile regression which is an analogue of
the usual regression but instead of finding an estimate of the expected value, the
specified quantile is estimated [32]. Much like standard regression the quantile is
found by minimizing a cost function

D
of = arg minz Pr (Ld - ZZ(a)), (3.9)
¥ a=
where
_J(r=1)z if z<0
p‘E(Z) - {TZ lf ZZO . (310)

The minimization can be solved relatively quickly as a simple linear programming
problem. Notice that the confidence bounds can be either estimated within sample
(e.g., within the first D days of historical data) or can be projected forward as a
forecast. If there is insufficient historical information the out of sample forecasts may
be inaccurate if projecting too far forward and hence it is suggested to use the
in-sample estimates if trying to estimate the uncertainty on a particular day of the year.
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3.3.2 Simple Confidence Bound Generation (Limited
Monitoring)

If monitoring data at the aggregate level is limited (either through missing data or
the monitoring has only just recently been installed) or not available then the
method described in the previous section cannot be applied to estimate confidence
bounds on the load. In this case a weaker estimate on the demand uncertainty at the
feeder/aggregate level can be made by utilizing a relatively small sample of cus-
tomer smart meter data from the same historical period. The method is based on a
simple bootstrap method which repeatedly resamples from the sample of metered
data to create several estimates of the aggregated demand [33]. From these boot-
straps, quantiles can then be estimated empirically to give the confidence bounds.

Suppose an estimate of the tth quantile of the load on a feeder is required, on a
particular time period of the year which is connected to M customers, labelled ¢; for
j=1,...M. Further, suppose these customers can be separated into Q distinct
groups, say based on profile types, household types, socio-demographics or
whatever properties are good indicators/distinguishers of demand types. Next,
assume a set of monitored profiles for each customer group for the time period
specified is available, let these be defined as

Pl = {p? = (0 (1), px(2), ..., px(48d))" € R® |k =1,....N,}, (3.11)

forg=1,...,Qand N = Zqul N,. Given there is M, customers from each group

connected to the feeder, one bootstrap estimate can be created by sampling (with
replacement) M, profiles pj ,pj ,...,p}, from the set P forg = 1,...,Q given by
q

=

q

AV =3"N"pt. (3.12)
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—
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This can be repeated a number of times, say 1000, to create several bootstrap
estimates of the aggregate/feeder level demand AW A A0 from which
the empirical quantile can be used as an estimate for the confidence bounds. An
advantage of the technique is that other quantities such as the peak demand or
minimum demands can also be estimated for free from the same bootstraps.

The bootstrapping is a relatively cheap and effective method for estimating
quantities (and the uncertainties associated to those quantities) with limited data
available. There are of course several other ways of estimating quantiles from
bootstraps, including bias correcting versions, but the version described here is
amongst the simplest [33]. The quality of the bootstrap is very much determined by
the representativeness of the sample of profiles available. However, in these cases
there are methods to help increase the diversity of the sample, for example,
decomposing each profile into several main components (e.g., mean daily, weekly
and annual components as well as a residual component). Then bootstrapping can
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proceed as before but samples are taken with replacement on each component and
combined to create new profiles.

3.3.3 Case Study

In the case study 223 residential-only feeders are considered from the Thames
Valley Vision project varying from 4 to 109 customers. For the bootstraps, only two
groups of customers are used based on profile class with 211 customers in profile
class 1 and 30 in profile class 2. These are basic 2 classes for residential customers
in the UK based on standard demand (profile class 1) or those with overnight
storage heaters (profile class 2). See [10] and Appendix “Customer Groups” for
more details on profile classes.

Examples of the half hourly 80% confidence regions (defined by the 90 and 10%
quantiles) and the actual loads are shown for three feeders for the three days 14th—
16th July 2014 in Figs. 3.6, 3.7 and 3.8 with increasing numbers of connected
residential connections. The feeders service 22, 73 and 89 residential customers
respectively with 22, 66 and 87 of those belonging to profile class 1 respectively.
The substation confidence is clearly the better of the two and unsurprisingly the
confidence bounds become smoother as the size of the feeders increase. The
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Fig. 3.6 Three day demand (black dots) for a feeder with 22 residential customers and 80%
confidence (grey) for both the substation method (top) and the bootstrap method (bottom)
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Fig. 3.7 Three day demand (black dots) for a feeder with 73 residential customers and 80%
confidence (grey) for both the substation method (top) and the bootstrap method (bottom)

bootstrap method performs well in a number of cases but occasionally, such as in
Fig. 3.7, the confidence estimates are quite poor. This could be explained by the
fact that this feeder has the highest proportion of profile class 2 customers, with
around 10% from this category. In other words, it is likely there is insufficient
diversity in the profile class 2 samples to create an accurate bootstrap estimate.

In general, the confidence using the substation monitoring data is much more
accurate than the bootstrap method. A measure of the accurate of the two quantiles
from each feeder can be calculated from the continuous ranked probability score
(CRPS) [34]. When normalized by number of households the CRPS = 0.235 for the
bootstrap-based estimate and 0.071 for the substation-based estimate, i.e., using
substation data makes the estimates over 3.3 times more accurate than using the
bootstrap estimate. Much like the buddying there is a relationship between the
accuracy and the number of customers on a feeder. This is presented in Fig. 3.9 for
the substation-based confidence together with a power law fit and confidence on the
power law fit. Similar to the buddy there is a much improved reduction in the error
as the size of the feeder increases. The smoother and more regular demand makes
larger feeders much more predictable and hence produces more accurate confidence
estimates.
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Fig. 3.8 Three day demand (black dots) for a feeder with 89 residential customers and 80%
confidence (grey) for both the substation method (top) and the bootstrap method (bottom)
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Fig. 3.9 Normalized CRPS score per customer for the substation-based method as a function of
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As with the buddying, although the case study is based on UK electric distri-
bution networks the methods are valid for any electric distribution network and only
require, at most, the aggregated demand of the full network.

3.4 Incorporating Uncertainty into the Buddying

In Sect. 3.2 methods were described for assigning realistic profiles to individual
customers on a low voltage feeder which could then be used for power flow
analysis. The drawback to the approach is the buddying only describes one possible
scenario of demand behavior since the buddying does not take into account the
historic diversity on the network. To remedy this, techniques for estimating the
uncertainty were described in Sect. 3.3 via the creation of confidence bounds on the
feeder level demand. In this section methods for combining the uncertainty and
buddying are described to ensure that the models incorporate both realistic profiles
and demand diversity. In the sections that follows, unless specified, most of the
methods are independent of the buddying or confidence generation method
employed. Hence for the rest of the section, assuming a time period of d days is
being considered, the confidence bound (at the feeder level) of interest, say the 90%
quantile, is denoted as C € R*4,

3.4.1 A Simple Update

One of the simplest ways of incorporating the diversity is to look at the difference
between the aggregated demand from the buddy and the confidence to create a
so-called “diversity chunk” which can then be assigned to the end of the feeder. An
advantage of this technique is that it can be simply added to a power flow analysis
of a buddied network and a direct comparison can be made. The drawback is that
the amount of demand at the end of the feeder is likely to be overestimated. Such an
adjusted demand for the final customer is likely to be highly unrealistic and an
inaccurate model of this customer. However, as a first step, such modelling can
highlight feeders which are close to their headroom limit. Note that for the 10%
confidence the confidence chunk would typically be negative. This update would
only be valid for radial LV electric distribution networks.

3.4.2 Uniformly Distributed

To reduce the exaggerated demand of the customer at the end of a feeder the
confidence bound profile could be uniformly divided amongst the M customers,
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giving each customer a profile defined by p = ﬁC. This guarantees that no
household is modelled with an unlikely large demand. Unfortunately, now no
customer has a realistic demand. However, the profiles should be sufficient to give a
good indicator of the thermal constraints on the network after a power flow
analysis.

3.4.3 Buddying to Confidence

Another alternative is to implement the buddying algorithm to the confidence
bound rather than the substation feeder demand. The advantage of this is that now
all customers will be assigned a realistic profile which is constrained to their mean
daily demand. Since the confidence bound is also smoother than the feeder level
demand the optimization within the buddying algorithm (via the genetic algorithm)
should also be a lot simpler to implement. For accurate application, the original
sample of monitored customers must contain a representative collection of larger
demand users. This is because larger customers are likely to be required due to
buddying to larger values. Hence a larger initial sample of smart meter data would
be required.

3.4.4 Uncertainty of Buddying from the Distribution
of Smart Meter Data

Uncertainty on individual buddies can be also estimated from the empirical dis-
tribution of the smart meter data of a given group. For each half-hour, empirical
distributions of load demand can be created from the readings of the smart meters in
a given group. This way, buddies in the same group are assigned empirical dis-
tributions for each half-hour, from which one can estimate confidence bounds. The
empirical distributions may be replaced by parametric ones, e.g., Gaussian, whose
parameters are estimated from the readings of the smart meters in the group. The
parametric approach has the advantage that these distributions can be convoluted to
give the aggregated distribution, hence the uncertainty of the substation/feeder.

3.5 Power Flow Analysis Examples

The main application of this chapter has been to model network loads so that they
could be used as input for a network modelling environment to perform power flow
analysis. Here, simple implementations of a power flow analysis are demonstrated
for the presented methods using the CYME Secondary Network Analysis module
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which implements the full Newton-Raphson method for unbalanced load analysis
[35].

Buddies for the electric distribution network were created using the GA version
as outlined in Sect. 3.2.1 and 90 and 10% confidence bounds were generated using
the method described in Sect. 3.3.1 using substation monitoring at the feeder level.
An example of the confidence generated and the buddied (baseload) versus actual
(Measured) is shown in Fig. 3.10.

First, load flow analysis was performed to show the effect of the upper confi-
dence to the maximum loading factor for 43 feeders on 11 substations. The con-
fidence in these examples was applied using the simple update presented in
Sect. 3.4.1. As Fig. 3.11 shows no feeders are overloaded (i.e., exceed 100%
loading) in this case which is to be expected since the current feeders are all in
working order.

Next the effect of the maximum and minimum loadings (based on maximum and
minimum confidence) on the minimum and maximum voltages respectively are
shown in Figs. 3.12 and 3.13 respectively. The first plot shows that the lower
voltage limit of 216 V could be violated for feeder 42 due to a high load at the end
of the feeder. This is an artifact of the simple update procedure for incorporating the
uncertainty with the buddying and demonstrates the potential complications with
this method, as explained in Sect. 3.4.1.

In Fig. 3.13 the maximum voltage rose to close to the maximum limit of 253 V
(red line) for three of the 43 feeders. This was caused by a large negative load

Load with Confidence Confidence === Buddied « Measured

Feeder load [kW]

1 6 11 16 21 26 31 36 41 46
Time Period (Half-hour) of day

Fig. 3.10 Confidence bound (grey area) for a daily load profile (dots) for a Binfield feeder. Also
included are the buddies (black)
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Effect of Confidence on Maximum Feeder Loading
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comparison when the upper 90% loading (yellow) is applied at the end of the feeder. The
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by maximum loading of buddied loads
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Effect of Confidence on Maximum Voltage
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Fig. 3.13 Maximum voltage analysis on a number of feeders which are buddied (blue), and when
the 10% confidence loading (yellow) is applied at the end of the feeder. The maximum and
minimum voltage limits are shown by the red horizontal lines. Feeders are ordered by maximum
loading of buddied loads

(generation) at the end of the feeder. Again in this case the lower confidence chunk
(Sect. 3.4.1) exaggerated how low the demands were on the customer at the end of
the feeder which was registered as excessive generation. However, although the
assigned profiles were unrealistic they have shown that these feeders could breech
their voltage limits if large amounts of photovoltaics are installed.

The buddying method presented in this chapter can be expanded to incorporate
the impact of the different uptakes of low carbon technologies (LCTs) [13]. The
buddied networks can serve as a baseline demand for which LCTs profiles can then
be assigned and modelled. Further to this, the bootstrap method can also be
expanded to incorporate LCT profiles as another group from which pre-specified
uptakes can be sampled. This way both the behavior uncertainty and the LCT
diversity are simultaneously generated [36, 37]. Load flow analysis can then be
performed, see [37] for examples.
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Appendix
Customer Groups

The customers are split into groups according to their profile class, council tax band
and the presence of photovoltaic equipment. There are eight generic Elexon profile
classes representative of large populations of similar customers. Two classes cor-
respond to domestic customers and distinguish between two tariffs, “Standard” and
“Economy 7”. The latter provides cheaper rates overnight at the expense of
increased day-time charges. Council Tax is a local taxation system used in Great
Britain essentially based on property value. Each property is assigned one of eight
bands (A-H) in ascending property value.

The grouping used for residential customers is shown in Table 3.1. The com-
mercial customers are not listed, but essentially, a separate profile is used for broad
classes of customers (e.g., school, hospital, church, etc.). More details on com-
mercial can be found in Sect. 3.2.5.

Note that the main purpose for the grouping is to reduce the computational cost
of the buddying algorithms. However, many other characteristics could be used to
group the customers, such as MOSAIC socio-demographics classifications, if
profile class and/or council tax band are not available. For other countries similar
socio-demographic/asset based groupings are also valid.

Genetic Algorithm

The genetic algorithm mimics the process of natural selection and proceeds by
creating updates of several collections of monitored customers according to how
well they score according to the fitness function (3.4). The basic steps of the genetic
algorithm are outlined below, which are also summarised in Fig. 3.14.

Table 3.1 Table showing grouping assignment for UK residential customers based on profile
class, council tax band and whether the property has known photovoltaics

Group Profile class Council tax band Photovoltaics? (Y/N)
0 1 A, B, C N

1 1 D N

2 1 E N

3 1 F,G H N

4 2 Any N

5 2 Any Y

6 1 Any Y

>7 Non residential N/A N/A
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Fig. 3.14 A graphical presentation of the genetic algorithm

w

. Initialise the buddy. Create G genomes each consisting of M randomly selected

profiles from P (see Sect. 3.2) for a training period of H half-hours for each
customer c¢;,j = 1,...,M. The selection of the buddies is only restricted so that
the buddies belong to the same group as customer ¢; (see Sect. “Customer
Groups”).

. The fitness of each genome is evaluated using the fitness function (3.4).
. Select the best-scoring (fittest) genomes.
. To create each of the G next generation genomes, two of the current best

G' < G genomes are randomly selected for crossver. Common profiles are
retained while the remaining profiles are selected randomly from one or the
other genome.

. The new genomes are mutated by replacing each profile with a probability

p with a new profile (from the same group).

. Repeat steps 1-3 for 100 generations.

The probability of mutation is free to chose, but is initially set to p = 0.1 and

slowly decreases as the algorithm progresses. A mutation rate too low and the
genomes may lose variation, too high and good solutions may be removed from the
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population. For step 3, after 40 iterations the genomes are reset, whilst retaining the
best genome, to reduce the chances of finding a local minimum.
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Chapter 4 )
Coordinated Voltage Control in Active e
Distribution Networks

Azah Mohamed and Tengku Juhana Tengku Hashim

Abstract With increasing connection of distributed generations (DGs), the power
flow in electric distribution network is no longer unidirectional and the network has
become active distribution network. Thus, the connection of DGs in electric dis-
tribution networks has created a challenge for distribution network operators due to
bidirectional power flow. One of the main technical challenges of an active dis-
tribution network is to maintain an acceptable voltage level in the system. This has
initiated efforts in using various voltage control strategies to regulate the network
voltage profile so that the voltage is maintained at its allowable voltage limits.
A number of voltage control methods have been applied to solve voltage control
problems associated with the connection of DGs in a distribution system. These
voltage control strategies may be classified as decentralized or distributed and
centralized or coordinated voltage control. From the literature, a number of coor-
dinated voltage control strategies have been implemented to provide better and
faster control to the system. This chapter presents an improved coordinated voltage
control method in active electric distribution network by coordinating the three
voltage control methods, namely, power factor control, on load tap changer control
and generation curtailment control. These voltage control methods are coordinated
using fuzzy logic by considering the load bus voltages and DG power as inputs and
the voltage control actions as the outputs. The fuzzy logic if-then control rules
which are generated to build the fuzzy logic control system are based on the
simulations results as well as from the previous works. Results obtained using
the fuzzy logic based coordinated voltage control has shown that the voltages are
able to be kept within its permissible limits.
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4.1 Introduction

The increasing rate of distributed generation (DG) penetration in distribution sys-
tems has resulted in the transition from the conventional passive power network to
the current active power network. The bidirectional power flow in a distribution
network due to the presence of DGs has resulted in a more dynamic and active
system which is known as active distribution networks. In [1], an active distribution
network is defined as a system that adopts integration of control and communication
technologies such that the distribution network operators can manage and accom-
modate the new distribution network. Active distribution network is also defined as
a distribution network with systems in place to control a combination of distributed
energy resources comprising of generators and storage [2]. There are three main
reasons identified as the driving force for the increase in attention to the imple-
mentation of active distribution networks [3]. The first reason is due to the fact that
customers are looking for a more reliable power delivery and high quality of power
supply. Secondly, it is due to the need in exploiting local renewable energy by
facilitating the connection of small DG units into the medium and low voltage
systems. The third reason is the strong desire in having a better management of
assets from the view point of asset utilization, deferral of reinforcement and
strategic replacement of aging assets by the distribution network operators.

The fast growing advancement in new technologies as well as deregulation in the
electric power system sector has resulted in the application of DGs which are small
generation units installed close to load centers with its size ranging from 1 to
10 MW [4]. Due to the connection of DGs in a distribution system, voltage rise
issue has become important due to the fact that excessive voltage in the system will
affect the system’s equipment; increase the system’s losses and poor quality of
voltage delivered [5]. In [6], voltage rise is the main technical issue which needs to
be dealt with when connecting DGs to the distribution network. Hence, for DGs to
be connected to the network, it has become the distribution network operators’
obligation to ensure that the steady state voltage are kept within permissible limits
with limited voltage fluctuations as well as maintaining voltage quality in the
system.

Voltage control in active distribution networks is thus considered important and
needs to be addressed by both customers and electric providers. Generally, when a
DG is connected to a distribution system, the worst case operating scenario is
normally considered so as to ensure that the system and customers are not severely
affected. Currently, there are a few voltage control methods applied in an active
distribution network and these methods may be categorised as coordinated with
centralized control and semi-coordinated with decentralized control [7].
Coordinated control determines control actions based on the information from the
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entire network, which requires data transfer and communication between the net-
work components and devices in the system. Meanwhile, decentralized control
performs its control actions with limited communication with other network devi-
ces, thereby limiting costs. A number of decentralized voltage control methods are
considered, such as power factor control (PFC), on-load tap changer (OLTC)
control, generation curtailment and reactive power compensation.

In line with the development in technology in power systems, more focus is
given to coordinated voltage control. A number of studies related to coordinated
voltage control include the development of centralized distribution management
system controller for voltage control in a distribution network with DGs [8].
Centralized coordinated voltage control usually considers coordination of distri-
bution system devices such as OLTCs, voltage regulators, and switched capacitors.
For example, a coordinated voltage control method was proposed by coordinating
different devices such as the load ratio control transformer, step voltage regulator,
shunt capacitor, shunt reactor and static Var compensator [9]. This book chapter
presents the technique of coordinating the three different decentralized voltage
control methods, namely, PFC, OLTC and generation curtailment using fuzzy logic
to provide voltage control to the distribution system with DGs. The rule based fuzzy
logic coordinated voltage control is useful in coordinating the control methods
because it is able to deal with different ranges of inputs and at the same time giving
the desired output control.

4.2 Voltage Control Methods in a System
with Distributed Generation

Due to the arising voltage rise issue associated with the integration of DGs in a
distribution system, there is a need to opt for a systematic control management
scheme to help manage and provide voltage coordination in the system. This
management scheme which is of interest is known as active network management
which is defined as the use of real-time control and communication systems to
provide a means to better integrate renewable energy based distributed generators
[10]. In particular, the voltage control management scheme may be categorized as
centralized or also known as coordinated control, semi-coordinated and decen-
tralized control strategies. Centralized or coordinated control strategy provides
voltage control from the substation to the rest of the system, which requires using
communication system to coordinate different devices in the system such as the tap
changer, voltage regulator and other voltage compensation devices. From the
review, the centralized voltage control may be also referred to as the distribution
management system which coordinates the distribution system’s components and
using intelligent technique in coordinating the control. On the other hand, the
semi-coordinated and decentralized or distributed control strategies must be able to
control the DG unit locally in an active manner while coordinating it with a limited
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Table 4.1 Comparison between centralized and decentralized voltage control methods

Centralized/Coordinated method Decentralized/Distributed method

Wide coordination, requires communication No coordination, limited communication
High cost Cost saving

Extensive control Local control

number of network devices. Table 4.1 illustrates the comparison between central-
ized and decentralized voltage control methods where the advantages and disad-
vantages of both methods are presented. From the table, it is clearly shown and
substantiated that centralized voltage control method would require extensive and
wide coordination as well as communication, hence implying higher costs in
implementing such method. On the other hand, the decentralized voltage control
manages the voltage rise problem in the system locally with limited communica-
tion. It also gives more cost saving as less equipment are involved. However, this
local control is less efficient in managing the voltage rise in a distribution system as
it does not coordinate or considers the condition of the entire system. Nonetheless,
both centralized and decentralized voltage control methods are applied based on the
requirement of the system and both methods are able to provide voltage support
according to the situation and demand of the system. To date, a number of voltage
control methods have been suggested in the literature to manage voltage fluctuation
in a distribution system with the presence of DGs [11, 12].

4.2.1 Decentralized Voltage Control Methods

Different decentralized or distributed voltage control schemes have been studied to
allow more DG capacity to be connected. The commonly used decentralized
voltage control methods are the PFC, OLTC and generation curtailment control
described as follows:

A. Power Factor Control

Traditionally, it is an obligation for distribution network operators to ensure that
all DGs which are connected to the distribution system must operate using the PFC
method [13]. PFC method is carried out by keeping the ratio of the real power
against the reactive power constant, which is by ensuring that the reactive power
follows the variation of the real power. The main advantage of PFC is that it is less
disruptive compared to using other network devices, such as the OLTC transformer.
However, a disadvantage of the PFC method is that there is only a certain limit of
generation that can be connected to the system, whereby, a further increase in
generation will result in voltage rise. The method of PFC is sometimes combined
with voltage control, hence better known as the Power Factor Control-Voltage
Control (PFC-VC) method [14]. This method incorporates the behavior of the
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generator’s operation in two modes, namely, constant power factor and voltage
control. At normal condition, where the measured voltage is within the statutory
upper and lower limits, the generator will operate in constant PFC mode. However,
at times when the voltage deviates above or below its statutory limits, the generator
will adopt the VC mode, that is, by varying the excitation of the automatic voltage
regulator. In the VC mode, the automatic voltage controller is activated to vary
excitation and move the operating point within the bus voltage limit. This method
which combines the advantages of automatic voltage regulator and PFC is also
termed as automatic voltage/power factor control method. In line with the regula-
tory rules, there are three different modes of power factor operation, namely, uni-
tary, capacitive or inductive power factor adopted by generators to tackle the
voltage fluctuation problem [15]. The PFC control method is implemented by
increasing the input generation to the distribution system while maintaining a fixed
unity power factor operation to control voltage in the system.

B. On Load Tap Changer Control

The OLTC transformers are used to regulate and maintain the voltage which is
supplied to consumers within its statutory limits. The OLTC mechanism is a
transformer component controlled automatically by a relay to increase or decrease
voltage by altering the tap position of a transformer [16]. When the secondary
voltage detected is no longer within its permitted dead-band, the relay issues a
command to the tap changer mechanism to alter its tap position in order to restore
the required voltage level. The OLTC transformer, coupled with its automatic
voltage control relay, regulates the transformer output voltage to keep the voltage
magnitude within limits. One major disadvantage of this scheme is that the oper-
ation of the tap changer is limited to its tapping limits and capability.

With the presence of DG in a distribution network, the automatic voltage control
relay performance may be affected, thus resulting in voltage regulation problems
due to the interference. The DG integration changes the power flow and sometimes
results in reverse power flow as well as voltage increase occurring at the point of
connection. The measured voltage is shifted upwards or downwards depending on
the power factor of transformer current and direction of power flow to the DG and
load [17]. A new voltage control method which controls the voltage relays in OLTC
transformer has also been presented [18]. This method deals with the problems
associated with the connection of DGs such as inaccurate line drop compensation,
increase in voltage level at the point of generator’s connection and impaired voltage
control for paralleled transformers. An advanced automatic voltage control relay
called as the transformer automatic paralleling package schemes is able to control
the tap changer locally [19]. This method was proven to be effective under varying
power factor and load current, hence maintaining the transformers on a suitable tap
position. An automatic voltage reference setting (AVRS) technique which changes
the voltage reference for the existing automatic voltage control relays was presented
in [20]. The AVRS works by measuring two or more essential voltages along the
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multiple feeders. From the obtained minimum and maximum voltages, the new
voltage reference for automatic voltage control relay is then determined.

C. Generation Curtailment Control

Voltage rise can also be mitigated by reducing the active power output of DG.
The main drawback of this method is that when a voltage limit is exceeded, only
rarely a DG owner might find it beneficial to curtail some of its generation. This is
due to the fact that generation curtailment will lead to losses in revenue [8]. The
simplest method to implement generation curtailment is to disconnect the required
number of generating units when the voltage exceeds its limits. It was suggested
that when all the usual means of voltage control have been exhausted, generation
curtailment can be used [21]. In [10], generation curtailment method is also only
implemented to tackle the voltage rise problem as a last resort if the PFC-VC
control mode is not successful. This scheme will reduce a given percentage of the
power output when the voltage at the connection bus exceeds its statutory limits.
Droop based active power curtailment scheme for managing overvoltage issues has
also been presented [22, 23]. Here, the droop control technique is utilized to
manage the operation and power sharing among generators, so as to achieve equal
sharing of output power losses among inverters.

4.2.2 Centralized/Coordinated Voltage Control Methods

Centralized or coordinated voltage control methods determine their control actions
based on information about the whole distribution network and therefore data
transfer between network nodes is required. A number of coordinated voltage
control methods in distribution systems have been developed with different levels
of complexity, effectiveness, communication requirement and investment cost.
Examples of coordinated voltage management for distribution systems that have
been developed include centralized Distribution Management System
(DMS) control and coordinated control of distribution network components such as
OLTC and switched capacitors [24]. The use of artificial intelligent techniques for
coordinated voltage control has been fast growing as these techniques are more
precise and provide automation hence ensuring better voltage control management
as a whole [25].

A. Centralized Distribution Management System Control

Distribution management system is an active management system which can
make control decisions and it can be classified as basic and advanced DMSs. In
basic DMS, simple decisions are made by disconnecting distributed energy
resources in case of severe network conditions. A basic DMS which considers two
new centralized control functions, the volt/Var control and the optimal feeder
reconfiguration was presented in [26]. In [8], advanced DMS is considered by
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controlling all components capable of voltage control through data transfer between
network nodes. The substation voltage and reactive power of DG and also other
components capable of voltage control are regulated in a coordinated voltage
control system. Another method of DMS based voltage control is by using coor-
dinated automatic voltage regulator and OLTC of inter-bus transformers [27].
A DMS coordinated controller that coordinates the OLTC action with the regulation
of reactive exchanges between DG plants and distribution feeders was presented in
[28]. A power DMS which uses state estimation algorithm coordinated with suitable
voltage control equipment was presented in [29]. An advanced DMS incorporating
the use of advanced control system which requires inputs such as status of a
network, technical constraints and also market information on energy trades has
been developed in [30]. The system provides desirable outputs such as amount of
generation curtailment and load shedding, ancillary services from DGs, and net-
work configuration. DMSs have also been developed by considering optimization
and applied for real time applications. The classical optimal power flow is used for
finding the optimal combination of operation options with the aim of minimizing
the operation costs due to energy loss, generation curtailment, reactive power and
ancillary services, load shedding and energy storage while complying with the
technical constraints. In [31], a meta-heuristic optimization technique was devel-
oped for optimal coordinated voltage control using voltage and active/reactive
power information obtained from the distribution state estimation.

B. Coordination of Distribution Systems Components

The simplest method of coordinated voltage management is by controlling the
substation voltage based on the measured or estimated maximum and minimum
voltages in a distribution network. The substation voltage is controlled by changing
the set point of the automatic voltage regulator relay which controls the tap changer
of the main transformer. In [32], a network voltage controller based on statistical
state estimation algorithm is used to control the target voltage of the automatic
voltage control relays at the primary substations. A coordinated voltage regulation
scheme was presented by combining the contribution of generator and the OLTC in
providing voltage control to a distribution system [33]. Coordination between step
voltage regulator and DG operations was also developed for voltage profile
improvement [34]. Control action coordination between OLTC and DG can be
performed by utilizing the priority level of each regulating device through com-
munication [35]. The use of control devices such as step voltage regulator and static
Var compensator (SVC), to keep the voltage in a distribution system at its per-
missible level was presented in [36]. In a related work, the use of voltage regulation
method in the presence of DGs was suggested by implementing proper coordination
among the OLTC, substation switched capacitors and feeder switched capacitors
[37]. In [38], a coordinated control method can be achieved by coordinating dif-
ferent devices such as the load ratio control transformer, step voltage regulator;
shunt capacitor, shunt reactor and SVC. The use of a segment controller was
suggested for generator automatic voltage control relay utilizing OLTC and
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collecting local measurements of feeder loads, and remote measurements of voltage
and load, to form inputs to the state estimator [39]. A state estimation technique is
used to determine the network voltage profile and to adjust the voltage target for the
automatic voltage control relay. The generator automatic voltage control relay is
considered as an innovative technique for improving voltage control and increase
penetration of DGs. An approach for coordinating voltage control of STATCOM
and the under-load tap changer (ULTC) transformer was presented in [40].
The ULTC transformer steps are controlled so as to maximize the STATCOM
capacity margin, hence increasing the dynamic margin during contingency situa-
tions as well as minimizing the number of tap changes. In [41], a coordinated
control using OLTC and distribution STATCOM was presented for voltage control
in a long radial distribution system with a DG located at the end of the line.

C. Coordinated Voltage Control Using Intelligent Techniques

Coordinated voltage control using intelligent techniques is considered as the
most current method in achieving optimal and accurate voltage control in distri-
bution systems with DGs. A number of intelligent techniques have been widely
used and tested for decentralized voltage control. Genetic algorithm (GA) was
applied to determine the optimal dispatch schedules for OLTC settings at substa-
tions and all shunt capacitor switching based on the day-ahead load forecast [42].
The reactive Tabu search was applied in determining the coordinated allocation and
control of step voltage regulators and SVCs [43]. An artificial neural network
(ANN) based control scheme for the management of ULTC transformer and
STATCOM was presented in [44]. In another work, using the combined ANN and
fuzzy logic techniques, a coordinated control for managing the main ULTC
transformer and the SVC reactive power outputs was developed in [45]. In [46],
particle swarm optimization (PSO) technique was applied for solving optimal
coordination of ULTC transformer and capacitors on a modified 29-bus distribution
system of the Thailand’s Provincial Electricity Authority. The findings of this case
study showed that optimal coordination between the ULTC transformer and the
substation and feeder capacitors for volt/Var control to minimize the DG owner’s
daily energy payment and energy loss cost can be achieved. A fuzzy logic based
voltage controller in coordinated voltage control scheme was implemented by
considering the average customer’s voltage as input and the preferred tap changer
setting as output [47]. GA was applied for coordinated voltage control in a three
phase unbalanced distribution system with multiple regulators. Under different load
conditions, the optimal settings of the voltage regulators such as the load ratio
transformer, SVC and DG reactive powers are determined while maintaining the
voltage profile within its specified limits [48]. A non-dominated sorting GA was
used for coordinated control of on-load tap changers and reactive power compen-
sator solving a multi-objective optimization problem to achieve optimal voltage
control [49].

In this chapter, for intelligent control of voltage in an active distribution system,
coordinated control of power factor, generation curtailment of DGs and tap changer
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setting is proposed using fuzzy logic. The power factor of the DGs at different
ranges, tap changer of different settings and amount of DG curtailment are com-
bined and coordinated in the fuzzy logic system. The DG input powers and the
voltages at the load buses are considered as input to the fuzzy logic system and the
controlled variables are the outputs of the fuzzy system. The proposed fuzzy logic
based voltage control method is different from the above-mentioned methods based
on the fact that three different voltage control parameters are coordinated compared
to the previous methods which coordinate only two control parameters.

4.3 Fuzzy Logic for Coordinated Voltage Control
in Active Distribution Systems

In this chapter, fuzzy logic technique is applied for coordinating the three voltage
control methods which have been compared earlier. Fuzzy logic is one of the most
popular technique applied for voltage control in distribution networks with DGs. In
the previous works on voltage control, only a single or two methods of voltage
control using fuzzy logic was implemented. However, in this chapter, the fuzzy
logic is applied to coordinate three different voltage control methods of power
factor control, OLTC control and generation curtailment control in an active dis-
tribution network. Rule-based system based on experience and off-line studies on
the system is the key to implementing fuzzy logic control.

4.3.1 Fuzzy Logic and Fuzzy Inference System

Fuzzy logic is determined as a set of mathematical principles for knowledge rep-
resentation based on the degree of membership rather than on crisp membership of
classical binary logic [50]. Unlike the two-element Boolean logic, fuzzy logic is
multi-valued. Fuzzy logic uses the continuum of logical values between 0 (com-
pletely false) and 1 (completely true) and can also accept things than can be partly
true and partly false simultaneously. The basic idea behind the fuzzy set theory is
that an element belongs to a fuzzy set with a certain degree of membership. The
degree is typically taken as a real number in the interval [0, 1]. Basically, the first
step in designing a fuzzy system is determining the membership functions. The
membership functions are typically created based on the experience and knowledge
of experts about the problems being solved. There are several types of membership
functions of the fuzzy set which can be defined as triangular function, trapezoidal
function, Gaussian function and also sharp peak function.

At the root of fuzzy set theory lies the idea of linguistic variables, which are also
known as fuzzy variables. In 1973, Zadeh outlined a new approach to analyse
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complex systems by capturing human knowledge in fuzzy rules. A fuzzy rule can
be defined as a conditional statement in the form of

IF x is A, THEN y is B (4.1)

where x and y are linguistic variables, and A and B are linguistic values determined
by fuzzy sets.

Meanwhile, fuzzy reasoning includes two distinct parts; evaluating the rule
antecedent (the IF part of the rule) and applying the result to the consequent (the
THEN part of the rule). In fuzzy systems, where the antecedent is a fuzzy statement,
all antecedents are true to a certain degree of membership such that the consequent
is also true to the same degree. A fuzzy system generally incorporates not one but
several rules that describe expert knowledge. Fuzzy logic control uses the principles
of fuzzy logic-based decision making to arrive at the control actions. By selecting a
suitable input-output linguistic variable utilizing rule base, a wide range of desirable
control outcomes can be attained. Control strategies are defined by system operators
based on their experience and offline studies, which are then translated into rules of
hierarchical fuzzy inference system. To obtain a single crisp solution for the output
variable, a fuzzy system aggregates all output fuzzy sets into a single output fuzzy
set and then defuzzifies the resulting fuzzy set into a single number. This process is
known as fuzzy inference and is one of the most popular applications of fuzzy logic
and fuzzy set theory [50]. Fuzzy inference is defined as the process of mapping
from a given input and an output by using the theory of fuzzy sets [51].

There are two fuzzy inference techniques, namely, the Mamdani and Sugeno
methods. The Mamdani method is widely accepted in fuzzy expert systems for its
ability to capture expert knowledge in fuzzy rules. However, the Mamdani method
causes computational burden. The Sugeno method improves the computational
efficiency of the fuzzy inference and works well with adaptive and optimization
techniques, which makes it a suitable choice for controlling dynamic non-linear
systems. Tuning a fuzzy expert system to suit the problem encountered generally
requires more time and effort than determining fuzzy sets and constructing fuzzy
rules. Thus, one has to gather precise knowledge on the system before deciding on
the control rules and membership functions to solve a problem.

4.3.2 Implementation of Fuzzy Logic for Coordinated
Voltage Control

Figure 4.1 presents the implementation process of the proposed coordinated fuzzy
logic based voltage control in a distribution system with distributed generators.
Initially, the voltage is checked at each load bus of the network in which if the
voltage limits are violated at any bus, fuzzy logic actions are taken according to the
control algorithm. Fuzzy logic decides from which of the three voltage control
methods; PFC, OLTC, and generation curtailment is to be activated and applied
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Fig. 4.1 Flowchart for implementing the fuzzy logic-based coordinated voltage control

when voltage is detected to be beyond its permissible limits. If the chosen control
option cannot control the voltage then the fuzzy logic controller decides the next
control option to be activated. In this case, the inputs to the system are the load
voltages and DG power.

A. Selection of Input and Output Parameters

Two inputs and three outputs are selected as parameters for the implementation
of the proposed fuzzy logic inference control system. The two inputs are the amount
of active power at each generator and the second input is the voltage recorded at the
load buses. On the other hand, the outputs selected are the three control methods of
PFC, OTLC and generation curtailment control which must be activated in case the
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voltage exceed its allowable range of 0.95-1.05 p.u. To be more precise, the control
output options are further categorized as described below so as to cater for the
different ranges of input power and input voltages.

B. Fuzzy Logic Input Membership Functions

The input membership functions are shown in Figs. 4.2 and 4.3. The voltages
that are considered as input to the system are classified into four different categories
and are represented in the numerical range as:

i. Low = [0.9, 0.95]

ii. Medium = [0.925, 1.05]
iii. High = [1.03, 1.072]
iv. Very High = [1.05, 1.1]

The second input to the system is the DG input power, which is also divided and
normalised into three categories of low, medium, and high as follows:

Fig. 4.2 Input voltage Input 1
membership functions — Low Mediurn High Very High
o
£
£ o07s]
@
F=1
E
@
=
5 0501
@
e
o
@
O g2
0.00
T T T T T T R | T T T T 1 T ! I T
090 092 094 096 098 100 1.02 104 106 108 110
Voltage Magnitude
Fig. 4.3 Input power Input 2
membership functions 5l Low M High
a
=
2  o07s]
@
F=]
5
@
=
5 0501
-+
o
o
D
O 25
0.00

(REAS RAAL LAAL RRAS RARN RARN RARY | RERS AR AN BARN AL LEAS ALY LELN RARS
090 092 094 096 098 1.00 1.02 1.04 1.06 1.08 1.10
DG Power (normalised)



4 Coordinated Voltage Control ... 97

i. Low = [0.9, 0.98]
ii. Medium = [0.946, 1.034]
iii. High = [1.007, 1.1]
C. Fuzzy Logic Output Membership Functions

The next step in building a fuzzy logic control system is to build the output
membership functions. Here, the output membership functions are the control
output actions which are categorized as power factor values leading or lagging,
OLTC settings and percentage of curtailed generation. Figures 4.4, 4.5 and 4.6
depict the three fuzzy logic control output membership functions which have been
developed. PFC is the first control action that is to be activated in the implemen-
tation of the proposed coordinated fuzzy logic control. This is based on the fact that
a generator normally operates at a certain power factor and has its own reactive
power capability. Power factor indicates the reactive power output of the generating
unit maintained in proportion to the real power output such that the power factor
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remains constant. For example, Tenaga Nasional Berhad (TNB) which is the
Distribution Network Operator (DNO) in Malaysia requires all generators con-
nected to the network to operate at power factors between 0.90 leading and 0.9
lagging. From the simulations carried out, operating a DG at leading power factor
was found to mitigate the voltage rise. This is in accordance with the works in [52]
in which operating a DG at leading power factor was found to mitigate the voltage
rise. On the other hand, operating a DG at lagging power factor will increase the
voltage level at the load buses and therefore it is suitable for managing the lower
voltage. From the simulations carried out on the IEEE 13-bus test system with two
DGs, two operating power factor values of 0.90 and 0.95 leading are found to be
suitable for PFC. Power factor of 0.95 leading is suitable for controlling voltage
in the medium range of permissible voltage limits of +5% (between 0.95 and
1.05 p.u.) as well as for managing the middle range of input power. For voltages in
the range of high and very high range and high input power, power factor of 0.90
leading is used for control.

The next control option to be activated is the OLTC control. This control action
is activated after the limitation of the PFC or reactive power capability has been
reached. Several works related to OLTC control have found that OLTC set point in
the range of 1.02 to approximately 1.033 p.u. is effective in managing voltage
fluctuation and in limiting network losses [53, 54]. Two different OLTC settings;
Tapmax = 1.05 and Tapmax = 1.02 are used as shown in Fig. 4.6 where the latter
was found to be more effective in managing higher levels of voltage as well as high
input power than the setting of 1.05 in managing voltage rise in the system.

The lowest priority or the least preferred option of control is the generation
curtailment control since there are various factors that need to be taken into con-
sideration before opting for this control action. This method is most of the time
implemented to tackle voltage rise as a last resort when the generators have
exhausted their capability of voltage control. In [54], it was suggested that 41% of
DG active power must be curtailed to manage voltage rise. In this work, 0 and 40%
were chosen as the amount of curtailment to be performed. 0% curtailment was
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chosen for lower voltage and lower and medium power. On the other hand, the 40%
curtailment was chosen for higher voltages and higher input power as shown in
Fig. 4.6.

D. Generation of Fuzzy Logic Control Rules

Fuzzy logic control rules were developed based on the two input and three
output variables. The first input variable (V) is defined in terms of its linguistic
variable by using four fuzzy subsets which are symbolized by low (L), medium
(M), High (H) and Very High (VH). The membership functions for the first input
variables are as shown in Fig. 4.2. The second input variable which is defined as the
amount of active power supplied to the DGs is categorized into three fuzzy sets,
namely, low (L), medium (M) and high (H) as shown in Fig. 4.3.

The first output variable is defined by its linguistic variable by using three fuzzy
sets which are symbolized as 0.85 lag, 0.95 lead, and 0.90 lead which represents the
PFC settings as shown in Fig. 4.4. The second output variable is defined by using
two fuzzy sets which are symbolized as 1.05 and 1.02 p.u. to represent the OLTC
settings as shown in Fig. 4.5. The third output is also classified as two fuzzy sets
which is symbolized by 0 and 40 pct to represent the amount of percentage of
active power curtailment. The third fuzzy output membership function is depicted
in Fig. 4.6.

The fuzzy decision table for the coordinated voltage control using voltages at the
load buses and the amount of DG power as inputs and the voltage control methods
of PFC, OLTC and amount of generation to be curtailed as outputs is presented in
Table 4.2. When the fuzzy decision table is translated into the IF-THEN rules,

Table 4.2 Fuzzy decision table for coordinated voltage control

Input 1 Input 2 Outputs (voltage control)

Voltage | DG PFC OLTC Generation
power 0.85 0.95 0.90 1.05 p. 1.02p. |[Opct |40 pct

lag lead lead u. u.

L L v

L M v

L H v

M L v

M M v

M H v

H L v v v

H M v v v

H H v v v

VH L v v v

VH M v v v

VH H v v v
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12 rules are generated to construct the fuzzy logic based coordinated voltage control
system. The samples of rules generated are as follows:

i. If voltage is low and power is low, then PFC is 0.85 lag.
ii. If the voltage is low and the power is medium, then PFC is 0.85 lag.
iii. If the voltage is low and the power is high, then PFC is 0.85 lag.
iv. If voltage is medium and power is low, then PFC is 0.95 lead.
v. If voltage is medium and power is medium, then PFC is 0.95 lead.
vi. If voltage is medium and power is high, then PFC is 0.95 lead.
vii. If voltage is high and power is low, then PFC is 0.90 lead, OLTC is 1.05 p.u.
and generation curtailed is 0%.
viii. If voltage is high and power is medium, then PFC is 0.90 lead, OLTC is
1.05 p.u. and generation curtailed is 0%.
ix. If voltage is high and power is high, then PFC is 0.90 lead, OLTC is
1.05 p.u. and generation curtailed is 0%.
x. If voltage is very high and power is low, then PFC is 0.90 lead, OLTC is
1.02 p.u. and generation curtailed is 40%.
xi. If voltage is very high and power is medium, then PFC is 0.90 lead, OLTC is
1.02 p.u. and generation curtailed is 40%.
xii. If voltage is very high and power is high, then PFC is 0.90 lead, OLTC is
1.02 p.u. and generation curtailed is 40%.

All these rules are generated based on the simulation works carried out on a
distribution test system and also based on other works reviewed in the literature to
test the settings to be used in the implementation of the fuzzy logic based coor-
dinated voltage control.

4.4 Simulation Results of Coordinated Voltage Control
Using Fuzzy Logic

Simulations were carried out using the DigSilent Power Factory Version 14
Software on the IEEE 13 bus test system which has been modified to be a balanced
system as shown in Fig. 4.7. For the 13 bus test system, the system loads are
balanced and considered as spot loads with a total load of 945.3 kW and
873.2 kVar. The data for the 13 bus test system is shown in Appendix 1.A. The
system consists of two DGs of synchronous generator type and inverter based DG
type placed at bus no 634 and 680, respectively and the OLTC is located between
the bus no 633 and 634. The fuzzy logic coordinated voltage control method
implemented on the 13 bus test system is to coordinate the three decentralized
voltage control methods so that it is able to control the voltage profiles at the load
buses within its permissible limits. Figure 4.8 depicts the inputs and outputs cap-
tured from the fuzzy logic coordinated voltage control system which utilizes two
inputs and three outputs. Figures 4.9, 4.10 and 4.11 show the captured images of
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Fig. 4.7 The IEEE 13 bus test system

the surface viewer of the fuzzy logic control outputs which represents the PFC
control output, OLTC control output and the generation curtailment control output.
These 3D images represent the two inputs of voltage and power as well as the
selected output control method. From Fig. 4.8, the sample of input voltage tested is
1.052 while the input power is 0.9695. Looking at the outputs of the rule viewer,
the first output, pfc (power factor setting) is 1.05, second output, oltc (OLTC
setting) is 1.01 and the third output, gencurt (generation curtailed) is 0.976. From
the implementation and development of the coordinated voltage control using fuzzy
logic, the input voltage value of 1.052 falls inside the range of between High and
Very High. On the other hand, the input power of 0.9695 falls inside the range of
between Medium and High. From the output values recorded for the three control
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Fig. 4.8 Rule viewer of the fuzzy logic control system output

methods of PFC, OLTC and generation curtailment, the output values recorded falls
within the permissible level of less than 1.05.

From 3D surface viewer shown in Fig. 4.9, for different ranges of input voltages
and input power given, the first output of the coordinated control method which is
the PFC, still lie within its permissible range of less than 1.05. From Figs. 4.10 and
4.11, the output surface viewer of the second output of OLTC control and the
generation curtailment control also lies within the permissible limits of less than
1.05.

To further prove the successful implementation of the coordinated voltage
control method based on fuzzy logic, the voltage values at the load buses are
compared before and after the implementation of the fuzzy logic technique. First
consider a typical daily load data curve shown in Fig. 4.12.

Figures 4.13, 4.14 and 4.15 depict samples of voltage profile results at buses
634, 680 and 675 of the IEEE 13 bus test system before and after implementing the
fuzzy logic based voltage coordinated control method. The voltage profile is plotted
following the variation in load and the results obtained has proven that the coor-
dinated voltage control using fuzzy logic is able to mitigate the voltage rise and
reduce the voltage at the buses within allowable limits. From Fig. 4.13, the voltage
profile recorded values at bus 634 ranges from 1.06 p.u. to as high as 1.084 p.u.
during the 24 h duration. With the implementation of the fuzzy logic based coor-
dinated voltage control, the voltage values recorded are able to be lowered within
the range of 1.03-1.05 p.u., which are the allowable limits of acceptable voltage.
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Fig. 4.9 Surface viewer of the fuzzy logic control output of PFC

Fig. 4.10 Surface viewer of the fuzzy logic control output of OLTC control
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Fig. 4.11 Surface viewer of the fuzzy logic control output of generation curtailment control
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Fig. 4.12 Load data for 24 h in a day

The same case applies for voltages at buses 680 and 675 which shows
improvement in the voltage profile after implementing the fuzzy logic based
coordinated voltage control. From Fig. 4.14, the voltage profile at bus 680 before
using the fuzzy logic control falls between the range of 1.039-1.07 p.u. With the
implementation of fuzzy logic control, the voltage profile is reduced with values in
the range of 1.015-1.035 p.u., which is within the allowable range.

From the voltage profile shown in Fig. 4.15, the voltage profile at bus 675 has
recorded voltage values which exceeded the permissible voltage value of 1.05 p.u.
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for the duration between hour 1 until hour 7. With the implementation of the fuzzy
logic based coordinated voltage control, the voltage profiles are reduced with

A. Mohamed and T. J. Tengku Hashim

voltage values in the range of 1.01-1.022 p.u.

Appendix

The technical data of the IEEE 13 bus test system under consideration in Fig. 4.2 is

provided in Tables 4.3, 4.4, 4.5 and 4.6.

Table 4.3 Overhead line configuration data of the IEEE 13 bus distribution test system

Configuration Phasing Phase Neutral Spacing
ACSR ACSR D

601 BACN 556,500 26/7 4/0 6/1 500

602 CABN 4/0 6/1 4/0 6/1 500

603 CBN 1/0 1/0 505

604 ACN 1/0 1/0 505

605 CN 1/0 1/0 510

Table 4.4 Underground line configuration data of the IEEE 13 bus distribution test system

Configuration Phasing Cable Neutral Spacing ID
606 ABCN 250,000 AA, CN None 515
607 AN 1/0 AA, TS 1/0 Cu 520
Table 4.5 Line segment data of the IEEE 13 bus distribution test system

Bus number Bus number Length(ft.) Configuration
632 645 500 603

632 633 500 602

633 634 0 XFM-1

645 646 300 603

650 632 2000 601

684 652 800 607

632 671 2000 601

671 684 300 604

671 680 1000 601

671 692 0 Switch

684 611 300 605

692 675 500 606




4 Coordinated Voltage Control ... 107

Table 4.6 Transformer data of the IEEE 13 bus distribution test system

kVA kV-high kV-low R (%) X (%)
Substation 5000 115-D 4.16-Gr.Y 1 8
XFM-1 500 4.16-Gr.W 0.48-Gr.W 1.1 2
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Chapter 5 )
Distribution Network Oriented Demand Check or
Response

Mustafa Alparslan Zehir and Mustafa Bagriyanik

Abstract This chapter reviews promising concepts for distribution network ori-
ented demand response. Current demand response (DR) programs are designed for
wholesale markets and utility level issues, neglecting local challenges that distri-
bution network operators (DNOs) face in daily operation. Deployment of DR to
specific parts of distribution networks can enable additional services and benefits.
The literature hosts promising concepts and methods that gain popularity. However,
there is a number of conflicting cases that require particular consideration. This
chapter presents insight into use of DR in distribution network planning and
operation with special focus on promising service opportunities, developing con-
cepts and integration of local DR programs with utility-driven DR programs.

Keywords Electric power distribution + Demand response - Distribution networks
Incentive-based programs - Price-based programs

5.1 Introduction

Power grids with aged infrastructure and conventional management methods are
having radical changes. Main issues like continuously growing demand with its
peaks, raising concerns on CO, emissions and increasing volatility of consumption
motivate researchers for finding new solutions. The main challenges of today’s
power system are summarized in Fig. 5.1. Although advances in energy storage
technologies and reduction in imported fossil fuels bring a number of advantages,
integration of renewables in generation and electric vehicles into networks are
expected to breed new issues. In Fig. 5.2, the problems that are expected to become
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less critical are colored with green, while possibly growing problems are colored
with red. Because utility scale conventional methods are limited to costly capacity
investments that take long time and dispatch of high cost/low efficiency peaking
plants or periodical avoidance of renewables, electric distribution network operators
need to exploit more flexible and cost-effective, fast responding resources. At this
stage, demand response is one of the topics that researchers put spotlight on.

Demand Response (DR) focuses on achieving consumption changes at the
customer side (either in direct way through remote control by an entity or indirect
way via tariffs and notifications to motivate voluntary participation) according to
the needs of the grid. It is one of the most customer dependent topics of smart grid.
It is mainly located among the applications like microgrids that are enabled through
establishment of proper control and communication infrastructures and structured
upon the valuable experiences gained from smart meter deployments and substation
automation. It also has strong correlations with home energy management systems
(HEMS), grid responsive distributed generation and storage management activities.
Beyond conceptual development, DR has become an essential part of operation in
modernized utilities. According to the sectoral statistics of US in 2014, 9.3 million
customers enrolled in DR actions, saving 1.4 million MWh of energy, reducing
peak demand by 12.7 GW and receiving $1.2 billion of incentives in turn [1]. It is
also noteworthy that, the majority of the participators are residential in number and
energy savings, while industrial customers achieved the highest demand reduction
and incentives.

The research areas for DR can be categorized under two main groups: tech-
nology and non-technology related areas [2]. There are three technology related
areas, namely planning (generation capacity planning, transmission planning and
forecasting), enabling technologies (end-use device capabilities, communication,
measurement, verification, automation and control) and integration (into day-ahead
and intraday grid operations, integration of utility-scale renewable energy).
Non-technology related areas are forecasting (DR potential and valuation), markets
(customer preferences, business models and etc.), methods and policies.
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Fig. 5.2 Expected changes in power system challenges in the near future
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DR applications usually follow a bottom up approach from device level to grid

level with distinctive requirements at each stage (Fig. 5.3).

Today, DR in all areas of application is based on managing flexible demand to
cope with utility scale challenges. On the other hand, there is an increasing interest

for using DR to aid distribution network operation.

This chapter reviews promising concepts for distribution network oriented
demand response to improve knowledge of interested audiences and foster research
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Fig. 5.3 Different levels of DR with distinctive requirements
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activities on the related area of study. Following the discussion of current DR
program characteristics and imperfections, distribution network services that can be
provided by DR are described. The next section comprises enabling concepts for
distribution network oriented deployment of demand response. New approaches
including, developments in network planning methods, innovative programs and
renewable integration focused DR deployment are presented in this section. The
adjacent section is on challenges that can be faced with during concurrent appli-
cation of utility-driven and electric distribution network oriented DR actions and the
last section concludes the chapter.

5.2 Overview of Current Demand Response Programs

Understanding of today’s DR implementation options is important for development
of distribution network oriented concepts and estimation of prospective challenges.
The existing DR programs can be mainly categorized as time-based programs and
incentive-based programs [1, 3]. There are currently 10 program types, 3 of which
are time-based and the remaining 7 are incentive-based (Fig. 5.4).

This section describes the characteristics of each program, provides a general
comparison and emphasizes imperfections.

5.2.1 Time-Based Programs

In time-based programs, changes in daily market prices and main trends to maintain
supply-demand balance are indirectly reflected to prices of different time periods. In

-

Current Programs l

v v
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Programs + Critical Peak Pricing (CPP)
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Fig. 5.4 Current DR programs
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response to changes in electricity pricing rates, the consumers are expected to make
changes in their consumption and ease supply/demand balancing efforts.

Time-based programs mainly differ in frequency of price changes. Performance
of time-based programs depends on how effectively price changes are reflected to
customers and how effectively customers can make changes in relation with price of
each time period. However, advanced programs in which pricing the periods are
small and changes are frequent, require advanced communication, measurement
and control infrastructures.

In transforming utilities, grid operators initially prefer basic programs based on
small number of pricing periods in a day and manual customer responses. In order
to grow benefits, frequency of price changes is increased progressively, while
notification and automation systems are improved. The time-based programs are
described below from the perspective of complexity in ascending order.

5.2.1.1 Time of Use (ToU) Tariff

In this tariff structure, the day is divided into a number of periods. The most basic
ToU tariff include two periods namely peak and off-peak. Electricity prices for each
period are announced well in advance and they are rarely updated more than a
couple of times annually. There are also some other ToU types with more pricing
periods. For instance, in Canada weekdays are divided into three periods, while
weekends and holidays are considered as off-peak periods [3]. Additionally, pricing
periods of weekdays are different in summer and in winter. Although ToU tariffs are
well suitable for manual DR actions, pioneering automated DR activities are
available in the field for maximizing achievable benefits.

5.2.1.2 Critical Peak Pricing (CPP) Tariff

CPP is based on application of a high price during critical peak times that occur for
short periods in a year. It can be applied either individually or together with a ToU
tariff. Unlike ToU, the time periods in which a high price will be applied are not
known before they occur. The price for those periods can either be a certain amount
that is announced earlier or it can differ according to severity of each peak period.

5.2.1.3 Real Time Pricing (RTP) Tariff

In RTP, hourly wholesale market-clearing prices are proportionally reflected to
customers in real time. There are three diversified applications of RTP. In
day-ahead RTP, the hourly prices of the next day are determined and announced to
the customers; while in intraday RTP, the prices are available just a couple of hours
prior to the related hour [4]. In the last type, a demand reference profile is defined
for customers and consumptions covering both under and above of that profile are
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priced expensively. Due to hourly varying dynamic prices, RTP tariffs require
advanced communication and automation infrastructures to be effectively deployed.

5.2.2 Incentive-Based Retail Programs

Time-based programs have limited flexibility, due to their certain operation cycles
and predetermined rates. For more effective use of DR in grid operation, a number
of incentive-based programs have been developed. These programs usually reward
customers using incentives based on the event content (duration, targeted amount of
demand management) and participator performance (achieving the requested
change in demand for the related period). There are also some programs in which
the incentives are paid upon the acceptance of participation or authorization of a
remote demand managing entity.

5.2.2.1 Direct Load Control (DLC)

DLC is based on remote dispatch of manageable loads by an operator through radio
signal, internet and etc. A dispatch action may or may not be announced before the
event. It is one of the most effective programs for reducing peak demand in US [5].

5.2.2.2 Configurable Programs

Similar to DLC, some loads can be remotely controlled by an operator. The dis-
tinctive part of this program is that, device owners can make further changes in
control settings to allow or restrict the actions. It is one of the most popular program

types.

5.2.2.3 Manual Programs

These programs are based on manual control of devices by their owners according
to event notifications. Events can be announced using a home energy management
device, SMS, e-mail, social media accounts, mobile phone application or web
application. Manual programs are not popular except places where the consumers
are automatically subscribed. However, they are low cost, easy to deploy programs
and usually preferred at the initial step of DR implementations in a utility.



5 Distribution Network Oriented Demand Response 117
5.2.2.4 Behavioral Programs

These programs aim to socially motivate consumers to make changes in their
consumption behavior without providing any monetary incentives. Behavioral
programs usually use weekly/monthly reports, real-time feedback using in-home
display and e-mail messages to promote energy management [6]. They can also be
combined with other program types to increase engagement and operational
performance.

5.2.3 Incentive-Based Wholesale Market Programs

The programs that are conducted by the system operator and regulatory organiza-
tions are categorized under this title. Achievable benefits generally depend on
market-clearing prices and demand response success. The use of DR as a tool in a
market mainly reduces the dependency to power plants and other service providers,
resulting in lower market-clearing prices [7].

5.2.3.1 Capacity Bidding

It is based on the manageable power that will be used, when power grid operational
limits have the risk of being violated. Up on the confirmation to provide this
service, a prepayment is settled. If the promised amount of demand reduction is not
achieved during an event, the participators are penalized.

5.2.3.2 Energy Bidding

The customers can either directly (mostly industrial customers) or indirectly par-
ticipate (rather residential and commercial) in the energy market through their bids.
The conventional type is day-ahead market, while intraday markets are also
established at the further stages of grid modernization. Participators’ performances
are evaluated according to the performed changes in their estimated base con-
sumption profiles.

5.2.3.3 Ancillary Services Bidding

The reserve bids are in this program. A prepayment is offered after placing a
contract. This service type requires frequent dispatch of fast responding devices for
short durations of time, offering rather higher incentives compared to other
market-driven programs.
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5.2.4 Characteristics and Imperfections of Current
Retail DR Programs

The existing programs can be compared considering different characteristics. In [5],
a number of important characteristics are provided and the programs are evaluated.
Geographic specificity can be defined as the local or zonal applicability of a DR
request. A system-wide deployment has low specificity, while deployment at
medium voltage distribution scale have medium and low voltage feeder specific
deployments represent the highest. Signal variability is another characteristic that
represents the change in the content of the signal to describe events or requests in a
more detailed way. Signals with only a static value to trigger DR actions have low
variability, while a number of different cases can be represented with predetermined
several signals in medium variability and system/market states are effectively
reflected to DR actions through dynamic signals. Temporal variability, is the ability
of a program to trigger DR actions at specific time periods or whenever needed.
Availability, represents how frequent DR can be deployed and advanced notice
corresponds to time needed for notification before each event. The last characteristic
is automation, representing the level of automation needed to deploy a program
effectively.

The common imperfection of all the programs is geographic specificity. There is
generally medium and high level of signal variability and temporal variability,
while availability is limited except RTP programs. Time needed for notification
before DR events is rather shorter in incentive-based programs, where automation is
not a must except remote control programs.

5.3 Prospective DR Services for Distribution Networks

Distribution network operators (DNOs) have a number of challenges in operation,
which can be aided by DR actions [5].

One of the most critical challenges is overloading. DNOs should always ensure
that electric distribution network equipment and line loadings are inside tolerable
operational limits. Beyond maximum demand forecasting and necessary infras-
tructure investments at planning stage, operational relief mechanisms are deployed
in electric distribution network threatening overloading and peak demand cases.
Maximum Capacity Relief, is a proactive and planned mechanism to prevent
estimated cases in the near future (such as peaks in hot days), while Emergency
Load Transfer is a reactive real-time service to cope with unexpected peaks or
equipment failures. The main strategy is to reduce loading of the related section. It
is achieved through transfer of some loads from one feeder to another, either locally
by directed field personnel or remotely by reconfiguration systems. From the per-
spective of DR, flexible loads at the related area can respond to such cases and aid
capacity relief actions. Compared to many other distribution network services,
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events are infrequent, have up to tens of minutes to prepare and they require
duration of response for a couple of hours.

Another essential issue is to maintain voltage levels inside acceptable bounds. In
Steady State Voltage Management, voltage magnitude is continuously monitored at
substation level and corrective actions are done through on-load tap-changers of
transformers, regulators and capacitor banks. DR can be used in several ways to
help voltage management. One solution is to manage flexible loads regardless of
their type to decrease loading of a feeder, resulting in reduced voltage drop at
consumer nodes. An alternative solution is based on specific management of
inductive loads and inverter-based loads to decrease reactive power consumption or
even to inject reactive power to the electric distribution network. For voltage
management, closeness to the affected area is of importance, requiring high geo-
graphic specificity.

Power quality is also among the challenges in distribution networks. Transients
and harmonics have the risk of affecting devices and processes, causing comfort
reduction and additional expenses. It is not quite feasible for DNOs to use advanced
monitoring devices with high sampling rates continuously to identify severity and
sources of power quality problems. In customer reported cases, specific monitoring
and analysis are conducted at the customer facilities followed by establishment of
compensation or filtering equipment. Inverter-based loads can be a part of the
solution by making changes in the consumption of manageable loads and reducing
the severity of transients.

Phase balancing is a typical problem especially in residential areas with high
percentage of single phase loads (Fig. 5.5). It may have several impacts on the
electric distribution network such as voltage problems, overloading and increased
losses. The theoretical solution, transferring some loads from a highly loaded to
phase to a lightly loaded phase is not widely deployed by DNOs. DR can offer a fast
and significant alternative by reducing or increasing the demand in different phases.
One approach can be reducing the demand of two loaded phases, bringing their
loads closer to the lightly loaded third phase. However, in some cases there may be
a huge gap between the most loaded and the least loaded phases, requiring dispatch
of many loads from one phase. An alternative idea is to make changes in the
loadings of two extreme phases (the most loaded and the least loaded) and bring
them closer to the medium loaded third phase. For the latter option, demand
increment is needed for the least loaded phase, which requires consideration of
inactive loads and active loads with load increment potential. Steady State Voltage
Management, Power Quality and Phase Balancing are frequently occurring events,
needing rapid and continuous response.

Fig. 5.5 A representative
diagram of a distribution +
network with phase imbalance
due to different single phase * * +

loads * +
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Fig. 5.6 A representative diagram of reconfiguration in a distribution network comprising local
generation and storage devices

When a part of the electric distribution network is subject to outage, recovery
times have crucial importance. After a long outage period, thermostatically con-
trolled loads (such as water heaters, air conditioners, refrigerators, deep freezers and
many more) may become undiversified and cause extreme loading during recon-
nection with the rest of the grid. Consequently, outage time and energy not supplied
increases. Conventionally, it is coped with using manual reconfiguration (Fig. 5.6)
and load recovery by field crew. DR can be used for coordinated and staggered load
pickup, reducing recovery time and reconnection issues. The events are infrequent
and usually need a response time of less than 1 h. On the other hand, wide
deployment of DR actions can affect load diversity and rebound effect can cause
unexpected peaks and overloadings.

As explained with details in this section, DR actions can be deployed to provide
many different services in distribution networks. These use cases lead to devel-
opment of enabling concepts comprising effective methods, tariffs and programs.

5.4 Enabling Concepts for Distribution Network
Oriented DR

There is a growing interest towards distribution network oriented DR studies in the
literature. This section provides a number of the promising approaches.

5.4.1 DR Integrated Active Distribution Network Planning

Network expansion and reinforcements are planned considering a number of
worst-case scenarios with future estimations evaluating reliability and security.
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These scenarios include maximum demand during times of minimum supply (from
distributed generators) and maximum local supply during minimum consumption
throughout the network. Rather than single values that represent extreme cases, the
trend is through the use of load profiles, in order to better consider stochastic nature
of aggregated demand and impacts of demand response in network planning [8].
The load profiles are usually organized to represent different days (such as weekday
and weekend) from different seasons. Data resolution may range from 1 min to 1 h.
Customers with similar behavior may be clustered.

During planning stage, one method for taking into account the impact of DR
actions is to reflect the permanent consequences of DR on consumption patterns.
This method requires accurate estimation of DR options on future load profiles.
This can be done through observed percentages of DR effectiveness in pilot field
applications. Another method is to tolerate overload cases with low probability,
assuming certain level of support from DR rarely. It is also important to consider
local participation rates. As indicated in [9], dispersed participation provides more
benefits in rural areas, while concentrated participation is in favor of urban net-
works. The main benefits are deferral or avoidance of network reinforcements.
Economic benefits are heavily dependent on network topology and congestion
level. A study provides an additional perspective by explaining the reduction of
social costs (emissions, losses, occurrence and duration of outages) due to
deployment of DR in distribution network during emergency cases [10]. However,
DR may not always guarantee reduction of energy losses in long term. This is
explained as reinforcements are delayed, some equipment will be loaded more
causing higher energy losses. On the other hand, there are financial benefits for
participating customers as incentives or savings from their energy bills and for the
DNOs as reduced investment need. In another study [11], researchers suggested use
of probabilistic analysis with uncertainty rather than deterministic to better analyze
the promising impact of DR in planning. It is noted in the same study that, DR
payments should be included as financial costs for more effective analysis and
better evaluation of available solutions.

Probabilistic analysis with numerous DR options that can be preferred solely or
in combination with electric distribution network reinforcements, adds complexity
to planning processes. In [12], probability density functions are used together with
Monte Carlo simulations, representing a multi-objective optimization problem. It is
beneficial for planners to make use of iterative or recursive algorithms to optimize
investment strategies [13].

It is also of importance to include negative impact of utility-driven DR on
distribution networks during planning stage. Wide deployment of DR can affect
diversification and cause high simultaneity. Since network equipment is sized
considering maximum coincidence coefficients, critical loading of components and
violation of voltage limits are the major risks. It is stated in [14] that, rural electric
distribution network tend to face voltage problems prior to loading issues, while
urban networks with high load density and short line pairs are more likely to have
loading problems before extension of voltage limits.
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5.4.2 Innovative Retail Programs

Value of different DR services provided by different customers may have dissimilar
values for a distribution network. For this reason, pricing of the services provided
by DR participators to DNOs, needs particular consideration. There are several
options for packaging and pricing DR services [15]. Granular retail rate, based on
discrete pricing of each service is one of the options. The rates for using or pro-
viding a specific service are the same, indirectly motivating customers to deploy DR
actions for achieving savings. The services like peak reduction, power factor
control and voltage support can be rewarded using different rates and monthly
revenues can be summarized to the participators via addition of some details to their
energy bills. Determination of prices according to location and time (such as use of
higher rates in an electric distribution network that requires update in the near
future) is a topic open for debate. An alternative model is buy/sell arrangement
based on different pricing of used and provided services. Payments for provided
services can be in the form of bill credits or direct payments. Similar to Direct Load
Control (DLC) programs, customers can be rewarded for accepting to participate
and additionally for their response performance in each event. As mentioned in
granular retail rate explanations, rates can be location-specific. An innovative model
is procurement, in which third-party aggregators have direct business relationship
with DR participators with competitive pricing. In this model, several aggregators
submit bids to meet procurement needs announced by the network operator.
Aggregators with winning bids have to coordinate their customer portfolio to
achieve successful response. It is mainly done through contracts between the third
parties and customers, including several incentives without strict constraints of
regulations. Another option is to price different devices that provide DR individ-
ually, considering their distinctive response characteristics. This approach can also
be useful to promote grid-responsive products. For instance, customers with con-
trollable electric water heaters can be charged less (or rewarded more) than others.

For design and implementation of new pricing options, a number of issues exist.
The first is design considerations. It is a challenge to keep a balance between
effective feedbacks and simplicity in monthly bills and reports. On the other hand,
customers with advanced monitoring and control options become more interested in
energy management than past. Time-specific and location-specific pricing is also an
important design element. Pricing structure can be one or a combination of fixed
charge, energy based charge, demand based charge including comparisons with
observed peaks or installed capacity. Furthermore, hourly data measurements can
be used to identify permanent high capacity users and rarely peak consumers. The
second is deployment options. DR participators can be considered as a separate
class and benefit from special rates. Moreover, pricing can be mandatory, opt-out
(customers are automatically enrolled with freedom to change their tariff) or opt-in
(customers should apply voluntarily for joining to the new tariff). The third issue is
interactions with existing policies. There may be possible conflicting cases that
need further modifications of pricing programs at the design stage. There are also
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some other implementation issues like feasibility of the new methods, market
structure with competition and long term changes in the value of provided services.
During design stage of new pricing models, evaluation criterions like economic
efficiency, fairness, customer satisfaction, utility revenue stability and customer
price stability should be taken into account.

5.4.3 Distribution Level Energy Market and Locational
Marginal Price

Deregulation of electricity markets and privatization of electricity generation pave
the way for transparent and competitive environments at transmission level. In
modernized day-ahead and intraday markets, utility operator announces needed
amount of supply for specific upcoming time slots and many different market
players place some bids that can fully or partially meet the request. The bids are
sorted according to their prices and a market clearing price occurs when the total
value of bids meet the requested amount. A company with an accepted bid have to
fulfill its goal at the time of event. Otherwise, it should find another supplier with
relatively higher cost of service to fill its gap, or the market operator finds another
supplier and makes the company with accepted bid to pay the expenses. Because of
the lack of proper communication and automation infrastructures, dynamic changes
are not directly reflected to end users, limiting electric distribution network flexi-
bility and demand elasticity.

A promising method is to reflect spot market prices proportionally to the con-
sumers at distribution level. This is expected to facilitate DR in an effective way for
retailer-spot market relations [16]. The second option is to deploy a real time
pricing program based on distribution locational marginal prices (DLMP). In [17] it
is found that DR can reduce peaks and congestions through the use of locational
marginal prices. Another method is a distribution level market, where prices reflect
the state of the local network considering energy costs, losses and congestions [18].
It is assumed to be a real time intraday market, with short time slots. Since it is
totally based on the locational state of distribution network, it can even be used in
islanded microgrid operation cases. Such a market will require automated trans-
active controllers at customer sites for flexible loads. These controllers are expected
to consider current state of the electric distribution network, customer preferences,
flexible device operational settings and price forecasts to bid their manageable
demand. Aggregators are in contact with several houses and bid their aggregated
demand to the local market. The market operator is considered as DNO that will
select suitable bids, announce market clearing price and determine prices of each
bus of the local network. An additional benefit of using locational marginal prices is
observation of the highly loaded and stressed parts of a network for further rein-
forcements and investments [19].
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5.4.4 DR for Maximizing Distributed Generation Hosting
Capacity of Electric Distribution Networks

The concept of distributed generation (DG) grows in popularity throughout the
world. There are numerous technical, financial and environmental advantages that
foster its development [20, 21]. Contrarily, high penetration of renewable-based DG
into electric distribution networks can breed new issues. The prominent challenges
are increasing volatility in daily net load profiles (which is named as duck curve)
[22], extreme surplus supply from DGs [23] and bidirectional power flows [24].
These stimulate the use of high cost/low efficient peaking plants, cause periodical
avoidance of renewables and limit the penetration of DGs in generation mix
[25, 26].

Low voltage (LV) radial distribution networks with high R/X ratios are more
severely affected by DG penetration than the distribution and transmission networks
with higher voltage levels. Conventionally, secondary distribution networks have
been designed for one-way power flow from substation to consumers using a radial
topology (Fig. 5.7).

If a distributed generator is established at one of the busses, it serves as a sending
bus for some neighboring busses (Fig. 5.8).

Whilst bidirectional power flows in a radial network may cause overvoltage and
line overloading problems, they can also increase the electric distribution network
losses. In addition to the point of connection, neighboring busses are also being
affected [24]. Considering penetration levels, distribution networks are affected
even at early stages of DG deployments [27].

Conventionally, distribution network operators consider the most threatening
operating conditions to scale the capacity of new DG installations. However,
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Fig. 5.7 Unidirectional power flow in a radial LV distribution feeder with multiple busses
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Fig. 5.8 Bidirectional power flow in a radial LV distribution feeder with DG
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determination of tolerable DG hosting capacity of electric distribution networks
depending solely on the worst-case scenarios is very constraining for the utilities
[28]. Wind turbines generally operate at a level less than their rated capacities,
because of variation in wind speed. The highest output from wind turbines is
generally provided for a couple of hours after midnight, while photovoltaic
(PV) panels reach their peaks during midday just for a short period of time.
Therefore, peak outputs of wind generation and photovoltaic generation rarely
coincides. Moreover, developments in distributed storage facilities can provide
more uniform generating profiles and more effective utilization of renewable gen-
eration. Besides, common load factors for buildings are approximately 40%,
reducing the occurrence possibility of extreme (minimum generation-maximum
loading) conditions [29].

DR can be used as an additional tool to cope with rarely occurring overloading
and under/over voltage issues due to high integration of renewables in distribution
networks. As stated in [30], impact of DG on a network is dependent on customer
load at the same feeder. Closeness to DGs make DR one of the most effective tools
for mitigating the negative impacts on the network. The main idea is to stimulate
self-consumption or nearby consumption, shortening the path of inverse power flow
on the network, reducing losses and voltage issues. Reference [31] introduced
contribution of DR to wind turbine hosting capacity and to reduction of losses in a
distribution network. Another study shows that load shaping is among the solutions
for solar intermittency problems and flexible loads in a residential house can be
scheduled to operate in synchronization with high generation from PV [32].

5.4.5 Optimal Power Flow Considering DR

Demand response is majorly based on using flexible devices located at distribution
level to serve the need of the transmission level. As DR becomes widespread and
reaches high number of participation rates, it may have unintended impacts on
distribution networks. The possible impacts are reduced diversity of loads, rebound
effect (similar to cold load pickup) after a long DR period, phase imbalances,
uncoordinated voltage regulation related response performance reduction and
increase of energy losses in transformer and capacitors [33]. Therefore, DNOs
should consider impacts of wide DR actions in their analysis to prevent possible
violations. A study that uses optimal power flow at the planning stage of DR is
proposed in [34], demonstrating rebound and location effects.

5.4.6 Demand Response in DC Distribution Networks

DC distribution grid is one of the research areas that gain interest in recent years.
Especially in undeveloped countries, villages far from urban areas and without
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proper infrastructure nearby are electrified through islanded DC microgrids. These
electric distribution networks usually use PV panels, batteries and residential loads
which are connected through a DC bus. Use of DC in small microgrids can
overcome many disadvantages of AC electric distribution networks such as reactive
power flow, synchronization need, phase angle and many more [35]. There are two
pioneer companies that have field applications. BBOXX provides monitoring,
remote control of devices together with home appliances and have activities in
Kenya, Rwanda and Uganda [36]. Another company, SOLshare has modular
devices that allow peer-to-peer electricity trading for rural households [37]. They
have a pilot in Bangladesh. A study investigates DR methods in DC networks, to
keep loading of DC power sources in operational limits and to deliver power fairly
to different locations in a DC network [38]. The researchers develop their approach
for more effective use of energy generated from PV panels in another study [39].
DC microgrids is a promising solution especially for rural and islanded commu-
nities with physical and economical grid connection barriers in Brazil [40].

5.5 Challenges in Concurrent Application
of Utility-Driven and Distribution
Network Oriented DR

Current demand response (DR) programs have the risk of triggering local or
regional problems in distribution networks while providing services to wholesale
markets for the favor of the transmission grid. As an example, responding loads to a
utility scale demand increment action (to balance surplus generation from renew-
ables for a short time) may cause overloading of some critically loaded distribution
lines and transformers. Similarly, a demand reduction to mitigate insufficient supply
may cause overvoltage in some parts of distribution networks with high amount of
generation from distributed generators. Furthermore, simultaneous dispatch of high
numbers of loads in a distribution area can affect their operational diversity and
cause unexpected peaks. Moreover the equipment can be subject to many switch-
ings and transients fastening aging and reducing lifetime.

It may be possible to categorize flexible loads in a local network and assign
different objectives. The flexible loads of a distribution feeder out of the zone of a
prospective local undervoltage issue (Fig. 5.9)—a highly loaded zone, consisting of
a group of loads at the end of the feeder with a group of distributed generators near
it—can be managed to increase their consumption, because of a utility driven DR
case that requires load increment. At the same time, the flexible loads in the zone of
prospective local undervoltage issue can be managed to reduce their consumption to
mitigate the changes in the specific bus voltages and reduce the load of the highly
loaded line pairs. In the case of a local overvoltage (Fig. 5.10) and load reduction
request from utility, a similar combined approach can be preferred. Combined DR
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Fig. 5.9 A general representation of local undervoltage case for a distribution feeder with DG
and/or storage

) "
OO

Fig. 5.10 A general representation of local overvoltage case for a distribution feeder with DG
and/or storage
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applications based on specified load reduction for the utility and specified load
increment for local overvoltage can be implemented.

For responding loads, transition from utility-driven DR to local DR may be
needed in the case that local problems become more severe. For instance, the
flexible loads of a distribution feeder out of the zone of a prospective local over-
voltage issue—a group of distributed generators with high amount of supply,
located at the end of the feeder, followed by a group of loads closer to the sub-
station—can be managed to reduce their consumption, because of a utility driven
DR case that requires load reduction. At the same time, the flexible loads in the
zone with prospective local overvoltage issue can be managed to increase their
consumption to mitigate the changes in the specific bus voltages; but it may not be
sufficient as a solution. In this case, the loads used for utility response can be used
for mitigating the local overvoltage issue by transition to an opposite DR action
(from demand reduction to demand increment).
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Chapter 6 M)
Achieving Efficiency and Fairness sk
in Dynamic Demand Response

Zhechao Li and Xuejun Zheng

Abstract This chapter discusses the feasibility of using customer coupon demand
response in meshed secondary networks. Customers are rewarded by coupons to
achieve the objective of optimal operation cost during peak periods. The interde-
pendence of the locational marginal price and the demand is modeled by an arti-
ficial neural network. The effect of multiple load aggregators participating in
customer coupon demand response is also investigated. Because load aggregators
satisfy different proportions of the objective, a fairness function is defined that
guarantees that aggregators are rewarded in correspondence with their participation
towards the objective. Energy loss is also considered in the objective as it is an
essential part of the electric distribution networks. A dynamic coupon mechanism is
designed to cope with the changing nature of the demand. To validate the effec-
tiveness of the method, simulations of the presented method have been performed
on a real heavily-meshed distribution network in this chapter. The results show that
customer coupon demand response significantly contributes to shaving the peak,
therefore, bringing considerable economic savings and reduction of loss.

Keywords Customer coupon demand response - Fairness - Load aggregator
Locational marginal price -+ Meshed secondary network

6.1 Introduction

In the context of the smart grid, demand response has received great attention in
recent years as it can shave the peak using financial incentives [1-3]. Demand
response programs provide opportunities to balance the supply and demand during
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the peak period [4-7]. Most Load Serving Entities (LSEs) are companies that
purchase electricity at real-time Locational Marginal Price (LMP) from the
whole-sale market and supply electricity at a flat rate to the customers. The risk for
an LSE mainly comes from the uncertainty with the wholesale LMP. Under the
scheme of demand response, the risk of the fluctuating wholesale LMP can be
largely transferred from the LSE to the customers.

Several kinds of time-based rate demand response pro-grams have been inves-
tigated, such as Time-of-Use (TOU) pricing, Real-Time Pricing (RTP), Critical
Peak Pricing (CPP), and Critical Peak Rebates (CPR) [8-13]. CPR has been
implemented in several pilot experiments. However, the rebates paid to the cus-
tomers are pre-determined fixed value, which cannot satisfy different operating
conditions. Therefore, there are some papers proposing another demand response
program called Customer Coupon Demand Response (CCDR), in which the coupon
value can be an optimization variable [14, 15]. Under CCDR, LSEs broadcast the
coupon value to the customers. Customers are rewarded by the reduction of their
demand with a coupon. Note that LSEs have flexibility issuing a dynamic coupon at
the peak period. Customers participating in CCDR pro-gram still pay the residual
demand at a flat rate to be compatible with the existing electricity bill design.

As with other demand response techniques, LSEs would implement the CCDR
program only when the marginal price exceeds the flat rate. LMP is the price of
electricity at different locations and consists of three components: energy, con-
gestion, and loss [16]. The LMP represents the marginal cost of electric demand at
different locations, accounting for the patterns of demand [17, 18]. When imple-
menting CCDR, the demand will be reduced which may have influence on the
LMP. Therefore, the interdependence between the LMP and the demand cannot be
neglected in the CCDR program.

References [14] and [15] calculate the LMP using dc optimal power flow. They
provide a straightforward way to model the relationship between LMP and demand
based on the known network topology. However, in some areas, the network
topology cannot be directly accessed and merely demand bid data is published by
the Independent System Operator (ISO). Therefore, machine learning algorithms
have been developed to model the LMP and demand with-out knowing the network
topology. Among them, Neural Networks (NNs) have received great attention
because of their good resolution to model complex nonlinear relation-ships [19, 20].
It is known that LSE bids and LMP are mutually dependent [21, 22]. There exists a
nonlinear relationship between LSE bids and LMP. Hence, an Artificial Neural
Network (ANN), as a powerful machine learning method, is applied to estimate the
LMP based on the demand data because of its improved accuracy and good per-
formance. Most of the studies estimate the LMP based on the demand of the
specific region and neglect that the LMP of the specific region can be influenced by
other regions. The above issues are discussed in this chapter using an ANN to
estimate the LMP based on the demand bid from several LSEs.

Due to the weak ability of individual customers to re-duce demand, customers
are encouraged to apply CCDR through aggregators unless they are able to reduce
50 kW or more [23]. Therefore, load aggregators are necessary participants in
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CCDR programs. Today, there is no research studying CCDR with multiple load
aggregators. Additionally, the aggregators take different proportions of the opera-
tion cost of the LSE because of the location diversity. Therefore, the coupon for
each aggregator should be differentiated. It would be fair for the aggregators to be
rewarded in accordance to their contribution to the reduction of the operational cost.
In this chapter, a fairness function is defined to determine the coupon values for
multiple load aggregators.

Previous CCDR publications [14, 15] have not paid attention to the energy loss
of the electric distribution networks. Since the CCDR is implemented in an electric
distribution networks, the energy loss should be taken in account because of the
relatively high resistance to inductance ratio of low voltage electric distribution
networks. Most of the demand response pro-grams are implemented in metropolitan
areas which consist of numerous residential and commercial customers. Meshed
networks are commonly used in metropolitan are as in North America because of
the necessary high level of reliability [25, 26]. Therefore, it is essential to inves-
tigate the impact of the demand response program on meshed networks. In this
chapter, the energy loss has been considered in a real meshed secondary network.

The main contributions of the chapter are: (1) to consider the case when multiple
load aggregators participate in the CCDR program. A fairness function is defined to
determine the coupon values for different aggregators; (2) to perform simulations of
the presented method on a real heavily-meshed distribution network, in which the
energy loss is also considered. Existing papers on CCDR have not taken the energy
loss into account; (3) to design a dynamic coupon mechanism considering the
changing behavior of the demand within one day. Existing publications on CCDR
have not discussed the coupon value according to the variation of the demand.
Therefore, none of the methods in exiting publications can determine the dynamic
value of the coupon for an entire day.

Numerical results show that the presented method greatly contributes to shaving
of the peak, which brings significant saving to the operation cost.

6.2 Problem Formulation

In the real-time wholesale market, the price of electricity is determined by the ISO
in a clearing auction. Suppliers provide the exact amount of electricity for a given
price. LSEs choose how much electricity they want to purchase based on their own
load forecast. Then the ISO selects the suppliers with least cost to meet the hourly
load demand with requirements of reliability and efficiency. For the LSEs, the ISO
establishes the price at the specific locations, the so-called Locational Marginal
Price (LMP). LMP can be used to reflect the value of electricity at different loca-
tions considering the cost of loss and congestion under the operating circumstances.

As shown in Fig. 6.1, the ISO collects the demand bids from different LSEs and
determines the LMP for each LSE. Normally, power plants have their own bilateral
contracts with fuel companies to hedge the risk of price variation. Thus, it is
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Fig. 6.1 Operation procedure of the electricity market

assumed that the coefficients for the generation cost are flat in the short time
forecast. It is assumed that all the LSEs in the specific region have been included
and considered. Under this assumption, the LMP of the specific LSE is mainly
correlated with its own demand and the demand bid from other LSEs which can be
formulated as

Crr(1) :f(PI{SE(t)vpl%SE(t)a o 'vPZnSE(t)) (6.1)

where Ci(f) and PJg () are the real-time LMP for LSE m at time ¢ and demand
bid for LSE m at time z.

Note that, although LSE may have a minor impact on the LMP, for complete-
ness, the model of the marketing clearing process of the ISO is provided.

6.3 Data Classification

It is a fact that the CCDR program can only be implemented when real-time LMP is
greater than the flat rate during the peak period [14]. Therefore, it is necessary to
distinguish between the peak period and off-peak period before the LMP estimation.
Due to the different characteristics between peak period and off-peak period, the
peak period can be estimated based on the load data. In this chapter, Support Vector
Machine (SVM) is used to estimate the peak period based on the load characteristic.
SVM is a supervised learning model which is widely applied for classification
analysis [27].

6.4 LMP-Demand Model

Customers participating in the CCDR program would reduce the system demand
depending on the coupon value which may decrease the LMP as a consequence. As
a result, the relationship between the demand and LMP should be taken into
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consideration in the coupon optimization problem. LMP is mostly related to the
network topology of electric distribution networks, load bid data, and generator bid
data. However, some operators do not have direct access to the information of the
network topology. They have to depend on data published by the ISO. Therefore,
machine learning algorithms have been developed to model the LMP and demand
without knowing the network topology.

To calculate LMP after CCDR, first the LMP-Demand model is built. In this
chapter, an ANN is trained to build the LMP-Demand model rather than a market
simulation. Hourly demand bid data of different LSEs are available online from
PJM. The training data is collected from one of the sub-regions served by PJM
Interconnection LLC (PIM) [28]. This sub-region of PJM includes eight LSEs (LSE
1 to LSE 8). For the LMP estimation, the input is the demand from several LSEs at
time ¢ and output is the real-time LMP for LSE m at time ¢ based on (6.1).
Figure 6.2 shows the recorded demand data of these LSEs from July 1st to August
31st of 2015. For simplicity, it is assumed that CCDR is implemented in only one
of the eight LSEs (LSE m). After applying CCDR, the demand bid from LSE m will
change when compared to the recorded data. Other LSEs are still operating inde-
pendently and bidding as per recorded data. Therefore, the ANN method provides
the updated LMP after applying CCDR for LSE m.

As discussed previously, the CCDR program is operated only during the peak
period. After data classification, 74 among the 1488 h can be considered as peak
period which becomes the training set. Figure 6.3 provides estimated results of the
LMP for LSE 5 during the peak period. It proves that a well-trained ANN model is
accurate enough to model the relationship between demand and LMP.
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6.5 Minimization of the LSE Net Loss

The LSE sells electricity at a flat rate to customers and pays for the time-varying
LMP purchasing price from the wholesale market. Therefore, the purchasing cost
has more fluctuation than the selling revenue due to the variation of the wholesale
LMP. During the peak period, the wholesale LMP exceeds the flat rate, which leads
to a loss for the LSE. The LSE net loss equals the purchasing cost minus the selling
revenue. LSE net cost minimization can be formulated as

mm ET: lC}?T (21(: — APX(1)) + Pp(1) +Ploss(f)>

=1

=~

(6.2)

Mw

C?R< — APX(2)) + Pup(t >+ch (1) AP (1)
k=1

k=1

where P§(1), AP (1), and C& (1) are the original demand, demand reduction based on
coupons, and coupon value for load aggregator k at time t. Pyp(t), Cfp, K, and
T represent the time-varying demand which does not participate in the CCDR
program, flat rate for LSE m, total number of aggregators, and total amount of time
periods.

In this chapter, power flow results are obtained using OpenDSS, which is a
comprehensive simulation tool for electric utilities. The electric distribution net-
works is fully modeled and analyzed with OpenDSS. For simplicity, the power loss
in the electric distribution networks at time ¢ is denoted as a nonlinear function G,
where the residual demands after CCDR are taken as input and power flow results
are provided as the output. The updated G function is provided as
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Fig. 6.4 Illustration of the X 104
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Plosx(t) = G[(P(l)(t) - APl (t))7 MRS (Pko(t) - APk(t))aPNP(t)] (63)

where P{‘)(t) is a vector that denotes the original demand of the aggregator k, which
includes the original demand of every end-user within the aggregator k. APk(t) isa
vector that denotes the demand reduction of the aggregator &, which includes the
demand reduction of every end-user within the aggregator k. Pyp(¢) is a vector that
includes the demand of every end-user not participating in the aggregators.
Figure 6.4 gives the hourly purchasing cost and selling revenue without CCDR
for the entire day based on the recorded data of LSE 5 on July 20th in 2015 by PJM
[28]. The shaded region in Fig. 6.4 shows the total net loss during the peak period.

6.6 Fairness Among Multiple Load Aggregators

Electric load aggregator is an organization which clusters customers together to
increase the market power of individual customers. As shown in Fig. 6.5, the LSE
m broadcasts the coupons to different load aggregators to minimize its net loss.
Customers adjust the load consumption pattern and post the demand reductions to
the aggregators. The load aggregators collect the total demand reduction and submit
to the LSE. For simplicity, the CCDR program is assumed to be implemented in the
area served by one LSE and the competition among multiple LSEs is neglected.
Most research papers related to coupon demand response focus on achieving a
system-level optimization objective. However, they neglect the factor of fairness,
which is important for policy makers [24]. In other words, the rewards that cus-
tomers can get are not proportional to their contribution towards the system-level
objective. The aggregators take different proportions of the operational cost of the
LSE because of the location diversity. Intuitively, the contribution is largely
dependent on size and location of the load aggregators. In order to measure the
impact in a mathematical way, the Shapley Value is employed in a cooperative
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Fig. 6.5 Interaction between the LSE and load aggregators

game model. Note that, the CCDR is a top-down scheme and aggregators can be
seen as cooperative participants from the perspective of the LSE.

Without the CCDR program, the net loss of the LSE at time ¢ is derived from
(2) as

M)~

V(1) = Cr (1) <

af

The assuned definition of fairness is that each aggregator gets coupons according
to its impact on V(7). The fairness function is defined as

(P&(1) — AP (1)) + Pyp(1) + P loss(’)>

-
Il

! (6.4)
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-
Il

1

k Al
Ce(t) o S o) (6.5)

where Ck(t) is the coupon value for load aggregator k, ¢*(¢) and ¢/() denote the
impact of load aggregators k and j on V(¢), and N is the total number of aggregators.
When large customers participate independently (not aggregated), they are treated
as other aggregators. In this chapter, (6.5) is presented as an axiomatic index to
measure fairness. It is assumed that it is fair to distribute the coupon value for each
aggregator using (6.5). Under this assumption, the coupons that customers get are
proportional to their impact on the system-level objective (6.4).

To calculate the ¢*(¢), the coupon allocation is modeled as a cooperative game.
Therefore, the Shapley value can be used to distribute the net loss to the players in a
fair way [24]. In the Shapley method, ¢*(¢) can be determined from two scenarios.
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First, is the case when aggregator k is not part of the grid. Second, is the case when
aggregator k is within the grid. Then we can calculate the Shapley value as

) = ST SN = S = D! Vsu gy (1) — V(o) (6.6)
" SEN\{k}

where S is a subset of N not containing aggregator i. Vs, () (¢) and Vs(z) are the net
loss function of subset S with aggregator and without aggregator k, respectively.

6.7 Maximizing the Customer Utility Function

In economics, utility function is used to measure welfare or satisfaction of the
customers over a set of goods and services. In this chapter, it is assumed that the
customers of CCDR choose to reduce the demand with the objective of maximizing
their own utility function [14]. The electric load aggregator is an organization that
clusters customers together to increase their market power. It is assumed that the
customers make commitments with their aggregator. To keep fairness among
customers within one aggregator, the amount of demand reduction of customers is
assigned in proportion to their size with the same coupon value.

Economists use the demand curve to model the relationship between price and
quantity demanded [30]. The quantity demanded is the amount of the good that
customers are willing to purchase. Figure 6.6 shows the typical elastic demand
curve. CK, PX(1), Pk, . PX(f), and P§(t) are the price that customer k is charged,
quantity demanded of customer k at time #, the minimum demand value of customer
k which is the inelastic demand amount, the optimal demand value of customer k at
time ¢ under the CCDR program, and the initial demand value of customer k at time
t without the CCDR program, respectively. Based on theory of economics [30], the
CCDR will shift the demand curve to the left because it gives the customer
incentive to reduce the demand. Therefore, the LSE will have less demand while

Fig. 6.6 Impact of CCDR on cka .
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keeping the flat rate. It has been demonstrated that the CCDR is effective in
encouraging customers to reduce load voluntarily [14].

Price elasticity of load aggregator & is defined as the relative change in demand
that results from a relative change in the price [31, 32]. In general, measuring price
elasticity ¢ is a complex task and includes large uncertainties. Reference [33]
defines short-run and long-run price elasticity. In this chapter, only short-run
elasticity is considered which can be expressed as

AP* | Pk
= (6.7)
AC /Cref

8k

where AP*, AC*, P}, and Cj, denote the variation of demanded quantity of
aggregator k, price variation for aggregator k, reference demand of aggregator £,
and reference price for aggregator k, respectively.

From [33], the function of demand curve can be formulated as

P = db - (k)" (6.8)

where a* is the coefficient for the demand curve that can be calculated by putting
reference values P}, and Cy,, into (6.8).

From the view of an economist [30], the area below the demand curve and above
the price measures the customer surplus in a market (see the shaded region in
Fig. 6.6). Besides, the customers get the reward from the demand reduction which
should be also taken into account. Note that, the coupon should be greater than the
specific value (flat rate of electricity), otherwise customers will not give up the
comfort for less than the flat rate they consume. In this chapter, the customers’
utility function is defined as the sum of the surplus and the coupon reward.
Maximizing the utility function can be formulated as

t 1/¢
max "f/< ) (Pk(t)> dP — Clio (PE(t) — PE,) + (CX(t) — Coin) (P (1) — PA(1))

P |\ df
(6.9)
subject to
Pr(1) = Py(1) — APK(2) (6.10)
Pt <P 1) <P (6.11)

Cnin < CX(1) < Crua(2) (6.12)
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where Ci, and Cp,.,(2) are the flat rate of electricity and the wholesale electricity
prices at time ¢, respectively. This is because the LSEs would not pay for the
demand reduction at a price that is more expensive than the wholesale price.

Due to the convexity of (6.9), (6.11), and (6.12), the global optimal solution can
be found by the Karush-Kuhn-Tucher (KKT) condition [34]:

PA(1) = d - (Clg + C(8) — Con + 21 — 22)" (6.13)
- (P — i) =0 (6.14)

o+ (P, — PE(0) =0 (6.15)

J1,72 >0 (6.16)

where A, 4, are Lagrange multipliers.
Hence, the optimal demand value of customer k at time ¢ under the CCDR
program is determined as

&k

d - (Cig + CE(t) = Coin)” 41,22 =0
k "
Pk 1) = Pmin Al :0722#0 6.17
X( ) P](;(t) A 7& 0722 =0 ( )
@ /11 7&0722 #O

6.8 Overall Procedure

As discussed in previous sections, the objective of the CCDR program is to min-
imize the net economic loss of the LSE and maximize the utility function of
customers. The objectives of the co-optimization (or bi-level optimization) problem
can be formulated as (6.2) and (6.9), subject to (6.10), (6.11), and (6.12).

As shown in Fig. 6.5, the LSE broadcasts the coupon value CX(f) to the
aggregators. As a result, the consumers within aggregators reduce demand AP*(z).
The demand reduction AP*(¢) in (6.2) is decided by the utility function of cus-
tomers (6.9), however, the coupon value Cf, () depends on the net economic loss
function of LSE (6.2). Therefore, (6.2) and (6.9) form a bi-level optimization
problem with correlated variables in both levels. Note that, the real-time LMP for
LSE Cy¥,(f) depends not only on its own demand bid but also demands on bids
from other LSEs, which is illustrated by Fig. 6.1. Therefore, C};(¢) in (6.2) could
be obtained from a well-trained ANN, as (6.1). The demand bid P} (f) of LSE
m in (6.1) can be calculated by
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P (1) kzl_(; — APX(2)) + Prp (1) + Prows (1) (6.18)

In this chapter, the bi-level optimization problem is regarded as a mathematical
program with equilibrium constraints (MPEC). First, the lower level optimization
(6.9) is solved with KKT optimality condition and then an analytic solution is
obtained using (6.17). Subsequently, the solution is employed in the upper level
optimization (6.2). Therefore, the multi-objective optimization problem is con-
verted into a single-objective optimization problem, as

Crr(1) (ZK: (PE(1)) + Prp(t) + Progs (¢ ) cr (ZK: ) + P ))

k=1 k=1
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By replacing PX(#) in the objective function (6.2), the coupon value Ck(z) has
become the only decision variable of the optimization problem (19). To reduce the
search space, practical conditions are established: (1) the lower bound is set to the
flat rate ($100 /MWh) and the upper bound is set to the wholesale price. This is
because the LSEs would not pay for a demand reduction at a price that is cheaper
than the flat rate or more expensive than the wholesale price; (2) the coupon value is
set to be an integer variable. Therefore, the step size of the coupon AC’& is chosen as
$1 /MWh. To solve the optimization problem, an exhaustive method is used:
Increase coupon value by fixed increment AC’é and then calculate the objective
(6.19) iteratively until the maximum value is reached. Finally, the optimal value of
coupons are defined for the load aggregators that maximize the objective function
of the LSE.

Several main steps are involved as follows:

Step 1: For a given coupon value of load aggregator k, the fair distribution of
coupon for the other aggregators can be determined. Initial coupon value is Cy;y.
Step 2: Customers participating in the CCDR program choose to reduce their
demand to the optimal value to maximize their utility function.

Step 3: Based on the residual demand, the LSE employs SVM to estimate whether it
is still peak period. If it is still peak period, it is possible for LSE to distribute more
coupons. Then, proceed to step 4. If not, the LSE would not distribute more
coupons and stop iterating. The coupon of this iteration is chosen as optimal coupon
value.

Step 4: ANN is applied to estimate the LMP based on the characteristics of load. To
highlight the effect of CCDR, it is assumed that the program is only implemented
by one LSE and other LSEs remain with the original demand profiles.
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Fig. 6.7 Flowchart of the presented method

Step 5: Calculate the objective function of the LSE under the given coupon value.
Step 6: Increase coupon value by fixed increment AC and then iterate from step 1
to step 6 until reaching the maximum value C,,,. Finally, the optimal value of
coupons are defined for the load aggregators that maximize the objective function
of the LSE.

The steps above are executed based on one hour of the day. Hourly CCDR can
be determined by repeating the above steps. The flowchart of the above steps is
illustrated in Fig. 6.7.

6.9 Practical Implementation

The two-settlement mechanism, which includes day-ahead market and real-time
market, is widely used in North American electricity markets. Most LSEs would
lock the energy price in forward or day-ahead markets to hedge the risk of real-time
price variation. However, due to the space limitations, this chapter focuses on
CCDR under real-time markets. As references [14, 15] point out, the energy cleared
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in the real-time market is around 2-8%. Although the percentage seems small, it is
significant for a demand response program. To diminish the risk of real-time price
volatility, the LSEs would encourage the consumers to reduce demand by financial
incentives such as CCDR when real-time price spikes occur. With the smart grid
technology such as smart meters, the consumers’ response to the CCDR could be
realized close to real-time.

Figure 6.8 gives a better illustration on the time scale of the presented coupon
based operation. First, the LSE prepares to broadcast the coupon to the consumers
when a wholesale price spike occurs according to the updated report by ISO. Due to
the huge data processing pressure in practice, it is impossible for LSEs to interact
with consumers to determine the optimal coupon value iteratively. Hence, LSEs
should be aware of the approximated optimal coupon value so that the iterations
between LSEs and consumers can be minimized. The pre-operating interval of the
real-time markets is set to 60 min by the Electric Reliability Council of Texas
(ERCOT) [14, 15, 35]. Therefore, if the peak period is one hour long, there will be
approximately one hour for the consumers to adjust their electricity usage. In
addition, facilitated by enhanced communication technologies, consumers’
response to the coupon price could be realized in near real-time (e.g., 10—15 min).

6.10 Simulation Results

Simulations of the presented method have been performed on a real heavily-meshed
distribution network that has 1905 buses, 5 substation transformers, and 210 sec-
ondary transformers (4 transformer connected with spot loads at 480 V and 206
transformers connected with secondary network at 208 V, see Fig. 6.9. The peak
demand is 97.9 MW at 0.91 power factor (lagging). The substation supplies power
through several MV radial feeders. The secondary network is fed by the radial
feeders through network transformers. Most regular loads are connected to the
secondary network at 208 V and a few large customers (so-called spot loads) are
supplied at 480 V.

The method is illustrated when three load aggregators are present with per-
centage of the total load given in Table 6.1. Note that the situation that some
customers are not willing to participate in the CCDR is also considered.

Interaction between
consumers and LSE

1 1 1

Coupon price Coupon price Settlement
broadcast preparation determined

| Pre-operation Real-time operation

> Time

Fig. 6.8 Timeline of the CCDR implementation
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Fig. 6.9 Structure of the meshed network used in the study

Table 6.1 Characteristics of the load aggregators

Load type Aggregator 1 Aggregator 2 Aggregator 3 Others not in CCDR
Percentage (%) 24.58 31.20 21.19 23.03

Fig. 6.10 Demand profile on
July 20th, 2015 [28] 3000
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LSE 5 is assumed to be the only one that participates in the CCDR program.
However, estimation of the LMP for the LSE 5 needs the demand data from other
seven LSEs. To evaluate the effectiveness of the presented method, the load profile
and the LMP curve of the LSE served by PJM is investigated [28]. The period of
July 20th of 2015 is selected as the study period which has a typical summer load
pattern. The load profile and the LMP profile for the LSE 5 on that day are
presented in Figs. 6.10 and 6.11. The demand data of the other seven LSEs can be
found in Fig. 6.2. As shown, the LMP and the demand behave in a similar manner
during the day. The peak of the LMP is almost coincidental with the peak of
demand (around 7:00 PM). Since the LMP has direct and positive correlation with
demand, the LMP has good possibilities to be reduced when the demand is
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stimulated to decrease under the implementation of CCDR. This will largely relieve
the burden of purchasing electricity at peak period for the LSE, which gives the
CCDR great potential to be implemented.

6.10.1 Base Case

A system operating under flat rate without the CCDR program is chosen as base
case. The electricity retail rate is set to $100 /MWh [29]. As shown in Fig. 6.11, the
peak period lasts 2 h from hour 19 to hour 20. As expected, the peak of demand is
coincidental with the peak of LMP. Therefore, the LSE will suffer a great economic
loss by charging customers less than the purchasing cost.

Table 6.2 gives the hourly system operation cost for the peak period. The
demand has a smooth variation during the peak period. However, the LMP has a
large spike at hour 19 which expands the gap between the purchasing cost and
selling revenue. One can find that the LMP rather than the demand is the key factor
to the purchasing cost. Yet, electricity selling revenue has a strong relationship with
the demand as the LSE charges the customers a flat rate regardless of peak or
off-peak period. The calculations of the operation cost during peak period and the
entire day are shown in Tables 6.3 and 6.4. At peak, the average wholesale LMP
($329 /MWh) has exceeded the flat rate ($100 /MWh) which causes a net loss of

Table 6.2 Operation cost for  pour 19 20
the base case at each hour of
. Total demand (MWh) 96.33 93.01

peak period
Wholesale LMP ($/MWh) 348 310
Electricity purchasing cost ($) 34,409.43 29,594.78
Electricity selling revenue ($) 9632.54 9300.61
Energy loss ($) 883.08 757.96
Net loss ($) 24,776.89 20,294.17
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Table 6.3 Comparison of the operation cost between base case and ccdr for peak period

Without CCDR | With CCDR Reduction rate (%)
Total demand (MWh) 189.33 165.52 12.58
Average wholesale LMP ($/MWh) 329.00 327.00 0.61
Electricity purchasing Cost ($) 64,004.21 55,557.25 13.20
Electricity selling revenue ($) 18,933.15 16,552.22 12.58
Energy loss ($) 1641.04 1422.51 13.32
Net loss ($) 45,071.06 42,870.07 4.88

Table 6.4 Comparison of the operation cost between base case and ccdr for the entire day

Without CCDR With CCDR Reduction rate (%)
Total demand (MWh) 1910.96 1887.15 1.25
Average wholesale LMP ($/MWh) 68.80 68.64 0.24
Electricity purchasing Cost ($) 150,893.33 142,446.36 5.60
Electricity selling revenue ($) 191,096.29 188,715.35 1.25
Energy loss ($) 3901.86 3683.33 5.60
Net loss ($) -40,202.96 —42.,403.95 -5.47

$45,071.06. Because of the short-lasting peak, the profit made during the off-peak
period can fully compensate for the loss during peak, which leads to $40,202.96 of
net profit.

6.10.2 CCDR

As shown above, the LSE suffers losses because of the gap between the LMP and
flat rate at peak period. This leads to the CCDR program implementation. In this
case, hour 19 to 20 are considered as the valid CCDR implementation interval. The
coupon value Cf. for aggregator 1 changes from flat rate ($100 /MWh) to wholesale
price with $1 /MWh incremental steps. As discussed previously, coupon value
should satisfy (5) to achieve fairness. Thus, the coupon value for aggregators 2 and
3 can be calculated once C. is known. The price elasticity reflects the peoples’
willingness to adjust their demand pattern based on the price variation. In general,
measuring the elasticity is a complex and uncertain task. Therefore, the price
elasticity of load aggregators 1, 2, and 3 are chosen as: —0.35, —0.25, and —0.22
based on experience [33].

Figure 6.12 provides the relationship between the coupon value Cl and six
factors including demand, coupon payment, energy loss, purchasing cost, selling
revenue, and total cost at hour 20. As coupon value increases, the customers are
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Fig. 6.12 Six factors of the operation cost versus coupon value; a relationship between the
demand and coupon value; b relationship between the coupon payment and coupon value;
c relationship between the energy loss and coupon value; d relationship between the purchasing
cost and coupon value; e relationship between the selling revenue and coupon value; f relationship

between the total cost and coupon value

more willing to reduce the demand which also leads to the growth of coupon
payment as shown in Figs. 6.12a, b. This will result in a decrease of energy loss and
purchasing cost, see Figs. 6.12¢, d. However, it also leads to a reduction of selling
revenue as the consequence of losing a part of demand as illustrated in Fig. 6.12e.
Therefore, the net loss curve of the LSE will have a minimum. Figure 6.12f shows
that the net loss reaches the optimal point, when the coupon value is $147 /MWh.
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Table 6.5 Operation cost of the ccdr case at each hour of peak period

Hour 19 20
Coupon for aggregator 1 ($/MWh) 162 147
Coupon for aggregator 2 ($/MWh) 176 160
Coupon for aggregator 3 ($/MWh) 151 137
Demand reduction within aggregator 1 (MWh) 5.00 3.95
Demand reduction within aggregator 2 (MWh) 5.44 4.43
Demand reduction within aggregator 3 (MWh) 3.17 2.38
Total demand reduction (MWh) 13.61 10.76
Residual demand (MWh) 83.00 82.52
Wholesale LMP ($/MWh) 346 308
Coupon payment ($) 2249.44 1615.60
Electricity purchasing cost ($) 29,471.70 26,085.54
Electricity selling revenue ($) 8299.77 8252.44
Energy loss ($) 754.50 668.01
Net loss ($) 23,421.37 19,448.70

Fig. 6.13 Impact of CCDR
on the demand variation at
peak period
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The system optimal operation cost for the peak period is shown in Table 6.5.
One can find that the optimal coupon value keeps increasing with the increase of
LMP. This is because the LSE has the motivation to give out higher coupon values
when the wholesale LMP is much higher than the flat rate. The calculations of
operation cost during peak period and the entire day are shown in Tables 6.4 and
6.5. At peak period, the demand and average LMP have been reduced by 12.58 and
0.61% compared to the base case, which brings 4.88% reduction of the net loss
including 13.32% reduction of energy loss. The comparisons of demand between
the base case and the CCDR at peak period are shown in Fig. 6.13. Because the
LSE would not implement the CCDR program at off-peak period, the total demand
and the average LMP reduction is 1.25 and 0.24% for the entire day. Note that, the
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LSE can have a greater profit ($42,403.95) than net profit ($40,202.96) of base case
due to the large reduction of losses at peak period (4.88%).
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Chapter 7 )
Scheduling in Coupled Electric and Gas ki
Distribution Networks

Jing Qiu, Zhao Yang Dong and Ke Meng

Abstract This chapter presents a transactive approach to the optimal scheduling
for prosumers in coupled electric and natural gas distribution networks, to help the
integration of various distributed energy resources (DERs). DERs are co-ordinately
operated in the form of a virtual power plant (VPP), which actively participates in
the day-ahead and real-time electricity markets, as well as the wholesale gas market.
In the day-ahead (DA) electricity and wholesale gas markets, a VPP aims to
maximize expected profits by determining the unit commitments and hourly
scheduling of DERs. In the real-time (RT) balancing market, a VPP adjusts DER
schedules to minimize imbalance costs. This chapter addresses the energy con-
versions between electric power and gas loads and investigates the interacting
operations of electric and gas distribution networks. The simulation results show
that hierarchical, coordinated power and gas scheduling can identify more accurate
operation plans for coupled transactive energy networks.

Keywords Optimal scheduling - Distributed energy resources - Transactive
energy - Prosumer

J. Qiu (X))

Energy Flagship, Commonwealth Scientific and Industrial
Research Organization (CSIRO), Sydney, Australia
e-mail: qiujing0322 @gmail.com

Z.Y. Dong

School of Electrical Engineering and Telecommunications,
University of New South Wales, Sydney, Australia
e-mail: zydong @ieee.org

K. Meng

School of Electrical and Information Engineering, University of Sydney,
Sydney, Australia

e-mail: kemeng@ieee.org

© Springer Nature Singapore Pte Ltd. 2018 153
A. Arefi et al. (eds.), Electric Distribution Network Management and Control,
Power Systems, https://doi.org/10.1007/978-981-10-7001-3_7


http://crossmark.crossref.org/dialog/?doi=10.1007/978-981-10-7001-3_7&amp;domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-981-10-7001-3_7&amp;domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-981-10-7001-3_7&amp;domain=pdf

154 J. Qiu et al.

7.1 Introduction

Renewable energy sources, such as wind and solar power, play a critical role in the
effective transition towards a low-carbon energy economy. Both bulk injection and
the penetration of small-scale distributed renewable power generation at the dis-
tribution level (e.g., rooftop solar panels) have increased markedly over the past few
decades [1, 2]. However, the intermittency of renewable energy can cause severe
power supply-demand imbalances and put the stability of the electric distribution
networks at great risk, particularly if strategic ex-ante schedules and proper ex-post
backups are lacking [3]. As a result, more controllable loads, distributed generators
(DG) (e.g., micro gas turbines) and battery energy storage systems (BESS) are used
to actively manage distribution networks and balance renewable power fluctuations
[4]. Meanwhile, market-based transactive approaches are emerging as contenders
for orchestrating coordinated operation of these distributed energy resources
(DERsS).

To help integrate numerous flexible DERs into the electric distribution networks,
the concept of a virtual power plant (VPP) has been proposed. A VPP manages a
large set of DERs (including renewable energy sources), the total capacity of which
is comparable to that of a conventional power plant [5, 6]. Thus a VPP allows small
owners of DERs to participate in the electricity market in a collective way, and to
mitigate the unexpected power fluctuations of renewable sources and demands
through the coordinated operation. Within smart-grid architecture, transactive
approaches to integrating VPPs promote a new vision for electric distribution
network operations [7]. Depending on the energy transactions between participants,
a grid customer becomes a mix of consumer and producer: i.e., a prosumer.
Therefore, coordinated scheduling for prosumers is a topic needing scientific
advancement.

The literature contains several studies on the scheduling of VPPs or microgrids.
Generally speaking, these studies can be divided into focusing on energy markets
only, such as [8, 9], or focusing on joint energy and reserve markets, such as [10,
11]. A number of references are briefly described here. Reference [1] presents an
internal operation scheduling model for microgrid operation. Reference [3] presents
a model to optimize the day-ahead (DA) thermal and electrical scheduling of a large
scale VPP, aiming to maximize daily profits. Reference [4] studies the optimal
scheduling of microgrids, aiming to minimize the expected operational cost and
power losses. Reference [12] studies the least-cost unit commitment and the dis-
patch of renewable-powered microgrids. Reference [13] presents two control
strategies for the optimal scheduling of distributed solar, wind and diesel generators
with BESS. Reference [14] presents a risk-constrained mean-variance model to
manage microgrids in the RT balancing market. Reference [15] investigates the
aggregation of DERs in a distribution network to participate in joint energy and
reserve markets. Reference [16] presents a price-based market mechanism to alle-
viate possible electric distribution network congestion. Most of the studies men-
tioned above have demonstrated the benefits of coordinated scheduling of DERs in



7 Scheduling in Coupled Electric and Gas Distribution Networks 155

a market environment, but failed to investigate the role of distributed thermal units
(e.g., gas-fired micro turbines) in backing up renewable energy. Reference [17]
presents a DA scheduling model for hybrid thermal/electrical grid-connected
energy system, including a fuel-cell with combined heat and power (CHP) and
BESS. Reference [18] presents the planned scheduling of a CHP-based microgrid,
and considers the optimal siting and sizing of DERs. Reference [19] presents an
optimal 24-h scheduling of CHP-based microgrids, aiming to maximize the
expected profit of the market. Unfortunately, these references have not taken into
account the complex gas network models, and hence gas availability is assumed to
be unconstrained. Moreover, the two-stage optimization approach is often used for
the scheduling of DERSs in electricity markets [20]. For instance, Ref. [7] presents a
two-stage stochastic mixed integer linear programming model to address the opti-
mal operation of a VPP in DA and RT balancing markets. The scenario based
modeling technique is applied to control the risk of profit variability in relation to
renewable energy and DA electricity prices. In [21], a two-level microgrid
scheduling model is presented. The upper level minimizes the total cost of the
microgrid, while the lower level maximizes renewable power use and minimizes
power deviations in the DA and real-time (RT) markets. In [22], the power
scheduling and bidding problem of a microgrid is formulated as a two-stage
stochastic programming problem. Uncertainties are captured using the Monte Carlo
simulation approach. The thermal dynamic characteristics of buildings are mod-
elled, and the formulated model can flexibly help to achieve different tradeoffs
between economics and thermal comfort. Reference [23] has investigated how total
and surplus profits of a VPP are affected by risk aversion using a two-stage
stochastic programming approach. Uncertainties of renewable energy outputs,
loads, calls for reserve service and prices in DA market, the spinning reserve market
and the RT balancing market are taken into account. However, models of DERs
such as BESS or distributed renewable generation are not well presented. Reference
[24] presents a two-stage stochastic framework for DA scheduling of microgrids
under uncertainties of renewable power generation, RT prices and loads. Different
scenarios are generated by the autoregressive moving-average method and then are
reduced using the fast-forward technique. The network constraints have been
neglected and the reliability of the microgrid is not evaluated. Reference [25]
presents a two-stage stochastic programming model for the scheduling DERs.
Grid-enabled electric vehicles (EVs) are modelled as energy storage devices, but the
ramping limits of distributed thermal units are neglected. Reference [26] presents a
bi-level optimization model for a VPP, including the upper level VPP profit
maximization problem and the lower level independent system operator (ISO) DA
market-clearing problem. Reference [27] presents the risk-based profit allocation to
DERs that are integrated as a VPP. A two-stage stochastic programming approach
is used and the cooperative Game theory model is presented. In most of the ref-
erences mentioned above, the conditional value-at-risk (CVaR) is a commonly used
risk measure to compute the risk aversion levels of DERs. However, none of them
have modelled the risk in relation to gas prices, let alone the operating costs of
gas-fired micro turbines.
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To sum up, four main research gaps are found in the existing literature, as
follows. (1) Most of the models use linear programming and only consider the
energy balance constraints, thereby neglecting some important parameters of net-
work constraints (e.g., reactive power and gas pressure). (2) The unit commitment
issue of DERs appears extremely simplified. (3) The demand conversion between
thermal and electric energy is not well addressed. (4) The interacting operations of
electricity and natural gas networks are not modelled (e.g., the fuel prices and
requirements of gas-fired micro turbines are based on assumptions).

To address these gaps, this chapter presents here a hierarchical optimal
scheduling of prosumers to fulfill the transactive integration of various DERs in
coupled electric and gas distribution networks. The operational decisions of DERs
are made through a VPP, which acts as an agent to participate in the DA and RT
markets. In the upper level, the VPP aims to maximize its expected profits con-
sidering a risk metric, while in the lower level, the VPP aims to minimize the power
deviations, thus reducing imbalance costs in the RT balancing market. The complex
electricity and gas network constraints are explicitly taken into account, and the
integrated behavior of coupled transactive electric and gas distribution networks has
been investigated. Specifically, the fuel price and availability of gas-fired micro
turbines can be modelled. Also, the risk of profit variability in relation to electricity
and gas prices, thermal and power demands as well as renewable energy outputs
can be analyzed. Therefore, more accurate operational decisions can be made
through a market-based coordination mechanism (i.e., coordinated energy
transactions).

The remaining chapter is organized as follows: Sect. 7.2 describes the problem
formulation, followed by the key mathematical models in Sect. 7.3. The detailed
two-stage scheduling model for prosumers is presented in Sect. 7.4, followed by the
solution algorithm in Sect. 7.5. Case studies are given in Sect. 7.6. Finally, con-
clusions are given in the last section.

7.2 Problem Description

The electricity market structure studied in this chapter is a joint DA and RT market
[16]. The gas market is organized in accordance with the Short Term Trading
Market (STTM) in Australia [28]. The STTM is a market for the trading of natural
gas at the wholesale level, and operates three gas hubs: Sydney, Adelaide and
Brisbane. Gas is traded a day ahead of the actual gas day (a 24-h period) and the
day-ahead price is applied to all gas that is supplied according to the schedules on
the gas day. The difference between the scheduled and actual quantity of gas is
called deviation. Any gas deviation will result in a deviation charge or a deviation
payment, i.e., a dual pricing scheme for gas imbalances.

The coupling of the electricity and gas networks is illustrated in Fig. 7.1. DERs
in the electricity network are composed of renewable sources, BESS, and con-
trollable loads such as electric vehicles (EVs) and demand response (DR) programs.
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Fig. 7.1 Paradigm of prosumers in coupled electric and gas distribution networks

Thermal (heating) demands are jointly satisfied by electricity and gas. The fuel
availability of micro gas turbines (termed as DG) is also investigated by involving
parameters and variables of the two networks in a transactive energy framework.
The DERs are coordinated in the form of a VPP, which is responsible for managing,
monitoring and controlling the DERSs in its portfolio (e.g., unit commitment, energy
dispatching and trading decisions). The VPP actively participates in market oper-
ations, but is considered as a price-taker.

7.3 Mathematical Models
7.3.1 Price Model

In the DA market, the prosumer submits the hourly bid PB¥ (i.e., quantity of power
consumption or production) for the next trading day. If P’ > 0, it is a producer; if
PPid <(), it is a consumer. Because of the variations in power production and load,
there will be a deviation between the bid and the forecasted power. The deviation
AP™ at time 7 is:

AP™ = pFer _ pBid (7.1)

The forecasted power PF" can be formulated as
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where Pgwir, PSESS, Ppgi denote outputs of wind power, BESS and DG at time

t bus i; Pp, and P5L"““" denote non-thermal power load (e.g., lighting) and electric
thermal load, respectively; P/ denotes interrupted load (IL) (i.e., incentive-based
DR); and Qgw, Qpess, Qpc and Qp denote sets of wind power, BESS, DG and
energy demand respectively.

Thus, the imbalance cost C}mb is calculated as

R+ Imb Imb
mb | pr T - AP™, AP™ <0
Ct - {pf— . Apgmb7 AP}mb > 0 (73>
where pf+, pR= denote regulation prices for purchasing (up-regulation) and selling
(down-regulation) electricity in the RT balancing market at time #, respectively.
The regulation price can be calculated as a proportion of the DA market price
pPA, since the DA and RT prices are usually correlated [9]:

R+ _ (] +Y). DA
U 20 7

where Cf and {; denote the relative differences between the DA price and the up
and down-regulation prices.

Therefore, market price uncertainty can be modelled by a random vector,
including random DA price and random differences between DA up and
down-regulation prices. The distributions of market prices can be obtained by
time-series forecasting techniques, such as autoregressive integrated moving aver-
age (ARIMA) or artificial neural network (ANN) models, which have been well
addressed in [29, 30].

7.3.2 Gas System Models

(a) Linepack model

Linepack is the pressurized gas stored in pipelines throughout the gas networks
[31, 32]. It is proportional to the average pressure in a pipe [33]; increasing the
average pressure of a pipe can increase linepack. Gas in pipes can be described by
four variables: gas pressure p (kPa), volume H (m®), density (kg/m3) and tem-
perature I'(K). According to Boyle’s law, gas variables are expressed as [34]:
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where R%* and Z%® are the gas constant and the gas compressibility factor,
respectively; and po, Hy, ¥, and T’y are gas pressure, volume, density and tem-
perature under normal conditions, respectively. In a pipe, gas volume is equal to the
pipe volume capacity: i.e., H;j = nDiszij /4 and Dy, L;; are the internal diameter and
length of pipe i — j. The steady-state average pressure of a pipe can be expressed as

pgver:,/l/z(p?+p}).

In a steady state, the initial linepack measured in energy (GJ) (denoted by
Hl’.;’i’i“l) under normal conditions is [34]:

Hl{;litial —A- pgver ij/w()r()ZGasRGas (77)

where A denotes the constant that converts gas volume under the normal condition
to energy (GJ/m®).

In dynamic situations, based on the law of conservation of mass, linepack
changes with the initial gas stored in pipes, and the net difference between the
supplied and consumed gas in a pipe [33]. Gas suppliers include gas producer in gas
wells and reserves, liquefied natural gas regasification terminals and gas storages.
Gas consumers are compressor loads, non-electric gas loads, DG gas loads and gas
storages [35]. Dynamic linepack is described by [34]. Note that other gas storages
can be modelled by

Hijvt+1 == Hij',l +P$L;AAI (7.8)

Gas __ pGas Gas Gas,Comp
PijAt - PGijt - PDzjjr - Pijz (7'9)

where Pg#, Pt and P,?,“‘V‘C”m” denote supplied gas, gas demands, and gas con-
sumed by gas compressors between i — j, respectively, and Ar denotes a factor that
converts power to energy, i.e., time duration.

(b) Flow Equation

Gas flows in a steady state can be modeled by Weymouth’s formula. Gas flows,
S‘Z-“S, and directions, sgn;, are dependent on nodal pressure differences. The
steady-state pipeline flow equation for a horizontal pipeline is given as [36]

2 2 5
Iy (Pi _pj)Dij

59 — gon K — L /. 7.10
y Sgnl] Do Sgnl] FijGLijr‘ans ( )
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K = /2R 64 = 3.2387 (7.11)
_ )+l ifpi—pi >0
sgnij{_l o p 20 (7.12)

where K is an air constant in relation to R"; G denotes the specific gravity ratio as
Ruir/Reqs (usually RA" = 1; RO = 0.6) [36]; p;,p; is the pressure at nodes i or j;
and F; is the dimensionless friction factor depending on Dj;.

(c) Compressor Station Equation

The energy consumed by a compressor depends on the amount of gas flows, and
the difference between outlet and inlet gas pressures, as shown in empirical
equation of [33]

Gas,Com, b
Slj P = Sgn(php]) r:ax(p-p-) 73,ij (713)
yl,ij - y2,ij . |:min(p,'.p,'):|
POSC (HP,) = S 4 oS P+ HP(714)

Gas,C . ..
where ;""" denotes gas flow in compressor between i — j; HP;; denotes horse

power for gas compressors; 7y ;;, 7, ; and y3 ; denote coefficients for the compressor

Comp Comp Comp

between i — j; a; Yo Gy s Q3 are horse power coefficients of the gas com-

Comp - .
pressor; and P§“*""" is the gas consumption of the compressor. The compressor

Comp

pressure ratio CPR;; ™™ is also bounded as

(pi ) pj) —5pComp

min(p;, p;

CPRZ™ < < CPR; (7.15)

7.3.3 Models of Other Uncertainties

In this chapter, power and thermal demands, electricity and gas market prices, and
wind speed are considered as uncertainties. The historical data in the DA market is
used as correlated scenarios; hence, the correlated probability distributions can be
estimated based on the statistical correlations among these uncertainties. More
detailed information can be found in [9], which comprehensively discusses a variety
of time-series-based methods to generate correlated scenarios.
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7.4 Optimal Scheduling for Prosumers
7.4.1 Upper Level Day-Ahead Scheduling

In the DA market, the prosumer optimizes its bidding strategy (e.g., hourly based)
to maximize the total profit over the scheduling horizon. The decisions made in this
stage may affect its operational strategies in the second stage. Thus, it is necessary
to consider the decision variables pertaining to the RT market while optimizing the
bidding strategy in the DA market. However, the second-stage decision variables
are not actually implemented in the first stage. The optimal scheduling model in the
DA market is formulated as

T . T . ~
= PBAL+ Yl (m» P 5 P;L> y

=1 =1 i€Qp
T T T T
LDIDIPLEDNCLED DD IR EDIEDDINE 1
max fl — 1T:1 i€Qp =1 =1icQp 1=1i€Qpgss (7.16)
=2 2 (CPORC +SUCRe Y + SDCROP)

t=1ieQpg

T
Gas Gas
- Z:l Py - Pgy
=

where p?e”‘"’ denotes the retail electricity price for customers; p,G“s denotes the gas
pool price; SUCYC and SDCLC denote start-up (including cold and hot start-up)
cost and shut-down cost, respectively; T denotes the total DA scheduling horizon;
and 09, 73U and y3P are binary variables denoting commitment status, start-up and
shut-down decisions for DG at time ¢ bus i, respectively. In (7.16), the first term
represents the cost (revenue) by purchasing (selling) electricity from (to) the upper
stream networks. The second term represents the revenue by selling electricity to
customers, while the third term represents the revenue by selling gas for thermal
demand. The remaining terms in (7.16) represent costs of power imbalance, IL,
BESS, DG and gas purchase.

The cost of IL C/ is assumed to be a function of adjusted load PIL at time # bus i,
and is modelled by a quadratic polynomial function as [11]

Cli = dif - (P)" + a5 - PIf (7.17)
where alt and @ denote cost coefficients of IL. Note that negative IL (i.e., load
increase) can be used to balance underestimated renewable energy outputs.

The operational cost of BESS C2£55 at time ¢ bus i generally refers to mainte-
nance cost [37], which can be modelled by a linear function as
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CgESS _ ﬁ?ESS X PgESSA[-i- ﬁBESSEgESSﬂLAl (718)

l

where PBESS denote the charged or discharged BESS power at time ¢ bus i; EBESS
denotes energy stored in BESS; 5 denote leakage loss factor of BESS; and ﬁ?ESS is

the cost coefficient of the BESS lifetime degradation, which is calculated as [38]:

ﬁBESS _ IcBES S

PSS — 7.19
it EllgESS . (LCN) ( )
where ICBESS| EBESS and LCN denote investment cost, rated energy capacity and
total life cycle number of BESS, respectively.
The revenue of selling gas for thermal R is formulated as
H
Riteal — ,0

Gas,retail Gas,heat
1 “Ppi (7.20)

where P59 denotes gas thermal demand (GJ/hour), and pZ®"““! denotes gas

retail price at time #($/GIJ).
Here DG is only termed as distributed gas-fired units. The DG cost C2¢ can be
modelled by a quadratic function:

CY¢ = aP%  Phgy +d5C - Ppgin + a5 (7.21)
where aPC, aB¢ and ¢ denote cost coefficients of DG at bus i, which are
dependent on gas price and the efficiency of the gas generator; and Ppg;; denotes
active power output at bus i time ¢.

Given the uncertainties in energy markets, (7.16) should be formulated as a
probabilistic version. To improve computational efficiency, the initial set of sce-
narios is reduced to several representative scenarios using an appropriate technique,
such as importance sampling, used in [39]. The risk associated with the profit
variability is explicitly captured by the model through incorporating the CVaR
metric:

1
max fy = Y Prfi +w<VaR - m) > P (7.22)

keQg keQg

where f, denotes the objective function with the CVaR metric; Pr; denotes the
probability of scenario k; Qg denotes the set of all scenarios; @w € [0, + o) is a
weighting factor for the incorporation of risk in the objective function [40]; VaR
denotes value-at-risk; o € (0, 1) is the confidence level denoting the risk preference;
and @; denotes an auxiliary, continuous, non-negative variable defined as the
maximum between zero and the difference between the VaR minus the profit of
each scenario realization [30]. The higher the value of @, the more risk averse the
scenario.
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For each scenario, the complete constraints of (7.22) are given below. To avoid
repeated information, the subscript k is removed for variables below.

(1) Supply-demand balance constraint

Elec,heat
Ppi+ > Py

> Powit > PES 4+ Y Ppgi = PR I
Qo i€Qppss €O — iezQ:D Pif +Pll +Pl 0SS
el:T
(7.23)
where PLo% denote power loss at time 1.
(2) Wind power constraint
0 < Powir < Powi; Vi € Qgw
WNVrel: T (7.24)

Powit/ / Phwi, + Q5w = constant

where (e) denotes the upper limit, and Qgw;; denotes reactive power output of
wind at time t bus i.
(3) DG constraint

X?GBDGi SPDGit < X?G]_:’DG,',VZ‘ cl: T, Vi e QDG (725)
ﬁDGi < Pg?[s’DG - HRY* . At (726)
Ppciy — Ppgi—1 < Rampg’&ﬂ if Ppgii > Ppgii-1
(7.27)
PpGis—1 — Ppciy < Ramppd™, if Ppiy—1 > Ppciy
[Tignq - MUT,} : {X:D,rﬂ - X?G] >0 (7.28)
o )
(700, — MDT;) - [ 188, 2] 20
e Ay
1o = e <uP (7.29)

,DG _ .DG . SU _ .SD
Xix — Xiaor < Xir Lit

where Rampgﬁ;i, Ramph2™ denote ramping up and ramping down limits of DG at

bus i; Pg?f’DG denotes DG gas demand (GJ/hour); HRS® denotes gas heat rate
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(MW/GJ); (e) denotes the lower limit; Tg’l , and Tg@ | denote number of hours for
which DG unit has been on or off at time ¢ bus i; and MUT; and MDT; denote
minimum up and down time limits of DG in hours at bus i. Equation (7.26) states
the outputs of DG are subject to gas availability in the gas network. Note that the
energy efficiency of DG has been implicitly taken into account in the heat rate.

(4) Interruptible load constraint

1L
it ?

|PF| <P,/ NVtel:T,VieQ (7.30)

{PDit_Pll‘;L>PDit7 if Pif >0 (7.31)

Ppi — PIE < Ppy, if PIL<0

i —

Equations (7.30) and (7.31) state the maximum amount of IL and ensure that IL
is within the upper and lower bounds.

(5) BESS constraint

EPEY = EPFSS — PRFSS At — | PP |nC A — EPFSnt At Vi € 1: T, Vi € Qpgss

it+1

(7.32)
SOC;, = EBESS |EBESS (7.33)
S0C,, <S0C; <S0C; (7.34)

+BESS,Chr +BESS.Dis
P < PPESS <P} (7.35)
I—J?Ess,cm >0, F?ESS,Dix >0 (7.36)
EG" = B Eir > > Ejna (7.37)
where 1€ denotes charging/discharging loss factor, and F?Ess’ms, F?ESS‘CI" denote

the maximum discharge and charge power limits of BESS. Equation (7.32) states
the energy balance of BESS, which includes net energy difference, energy losses
during charging or discharging, and leakage loss. Equations (7.33)—(7.36) represent
state-of-charge constraints, and maximum charging or discharging power capacity
[38]; and (7.37) defines the initial and final energy stored.
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(6) Electricity network constraint

Py(0;,V;) — Pgir + Ppiy + Phcc™ — 0 V1 € 1: T,Vi € Qy (7.38)
Qit(6t7 Vz) - QGit JFQDiz = O»Vt el: T»Vi € QN (7'39)
Sijt(0r, Vi) <S;,Vt € 1 : T,Vi,j € Qy (7.40)
V.<V,<V,Vtel:T,ViecQy (7.41)

where P;(6,,V;), Qi;(0,,V,) denote active and reactive power injection time 7 bus i;
Pgir and Qg;, denote active and reactive power production, while Pp; and Qp;
denote active and reactive power demand; and S;;(0,, V;) denotes complex power
flow between i — j at time ¢, with voltage angle 0, and amplitude V.

(7) Gas network constraint

Pga 4y " sger =y " sher 4 plas 4 PO i€ Qy (7.42)
PG = pGusPe . plashea 'y 11 T Vi € Qy (7.43)
pliear — pGaseat | pFlecheat ;pypGas (7.44)

phlecheat pGasheat — 4y it e 1. T,Vi € Qy (7.45)

IT,;, < TIT; <TIy (7.46)

Iy = Z 1L pnitiar; Z Il > g (7.47)

where PS% and P$% denote supplied gas and gas demand at time ¢ bus
i. Equation (7.42) states gas nodal balance; (7.43) states gas demand that includes
DG gas and gas thermal demands; (7.44) states thermal demands can be satisfied by
power and gas; (7.45) states the ratio of electric and gas thermal demand is bounded
by the dual fuel ratio [41]; (7.46) states linepack is within the upper and lower
limits; and (7.47) states the initial and final linepack of the day.

(8) Interconnection exchange constraint

pExch < pBid < PP yre 11T (7.48)
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Equation (7.48) states the lower and upper limits of interconnection exchange
between the prosumer and the upstream grid.

(9) Steady security reserve constraint

Z Ppciya¢— Z Ppcuy2° + Z Pgwir

i€Qpc i€Qpg i€Qaw
—=IL
Y Ry (B ) )
i€Qpegs i€Qp
+ (foch . P?id) > P, _’_Pgltec,heat . Z P,ItL -I-RSV(I)
i€Qp

Equation (7.49) states the system reserve requirement Rsv(z) for static security
and adequacy.

(10) Conditional value-at-risk constraint

VaR — f; <® (7.50)

®>0 (7.51)

Equations (7.50) and (7.51) state the constraint of CVaR at the a-confidence
level, i.e., « — VaR [40].

7.4.2 Lower-Level Real-Time Balancing

RT scheduling maintains the power balance. The frequency of RT clearing is very
high (e.g., every 5 min). In this chapter, the time-series forecasting techniques,
ARIMA, is used to capture the persistent behavior of uncertainties [30].

The expression of the ARIMA (n, m) model is as [30]

n m
Ve = Zgliyt—l + A — ZZZj;“tfj
i=1 =

Xe = W+ 0y

(7.52)

where y, is the time series value at time #; £y;, £»; are the auto-regressive and moving
average parameters, respectively; {4} is a normal white noise process with zero
mean and variance (a normal distribution); x; is simulated correlated uncertainties at
time ¢, which can be obtained from the mean y, and standard deviation ¢, multi-
plying the time series y;.
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The objective is to minimize the imbalance cost.

NT

minfy = » ™ (7.53)

t=1

where NT denotes total number of scheduling intervals in the RT market, and C™”
denotes imbalance cost due to the deviation between the contracted commitment in
the upper level and the actual consumption (production) in the lower level.

Note that the symbol (@) is used to distinguish the variables in the lower level
from the variables in the upper level. The detailed calculations of C'}m” are given in
(7.54)—(7.56).

APmb — pRT _ pBid (7.54)
Z pGW't + Z pBESS 5 »Elec,heat
PRT __ i€Qew l i€QpEss ! PD[A_‘_ PD’ N
Pt = p — +P£‘oss _ Z PIZL (755)
+ ie%;m DGit o,

. R+ . A pImb Imb
C}mb_{f’r AR, AP <0 (7.56)

pR= - AP AP >

The complete constraints of (7.53) include (7.23)—(7.27), (7.30)—(7.35) and
(7.38)—(7.47).

7.5 Solution Algorithms

7.5.1 Solution to Day-Ahead Prosumer Scheduling

The formulated hourly prosumer scheduling in the upper level is a mixed-integer
nonlinear programming problem. The model is a here-and-now decision-making

process. The decision variables in (7.22) include P5, pIL pBESS, Pﬁ’;“he“’, Ppéirs
PGas yDG U 3P The enhanced particle swarm optimization (EPSO) algorithm is
employed to solve the upper level optimization model [42]. The key operators of

EPSO are briefly introduced below.

Step 0: Input data.

Input data, such as network, wind speed, load, price.

Step 1: Initialization.

Initialize the population within their value limits by employing a uniformly dis-
tributed random vector.
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Step 2: Start constraint check and fitness calculation.

Step 2.1: Adjust the elements of the individual to satisfy the operational require-
ments. The ON/OFF commitment constraint handling algorithm in [43] is applied
to adjust the binary states of DG and BESS to satisfy constraints in (7.28)—(7.29)
and (7.35)—(7.36). Based on the given values of DG output Ppg;;, BESS output

PBESS_electric thermal demand P5<"“ and IL amount P/, the power flow function
[2] is run to calculate the power losses, the value of exchanged power with the
upstream power grid and the gas purchased from the gas pool market. The
exchanged power is equal to the bid Pfid at time ¢. Other constraints, such as the
network security and adequacy constraints in (7.38)—(7.41), bid constraint in (7.48)
and reserve constraint in (7.49) are also checked, based on running the power flow
function. After obtaining the power flow results for all intervals, the risk constraints
in (7.50)—(7.51) are checked.

Step 2.2: If there is any violation of the constraints, a variable penalty is assigned.
The variable penalty is defined as a function of the distance from the feasible area
[21]. The summation of absolute distances of violated constraints is scaled by a
large penalty factor and is combined with the objective to constitute the fitness
value [11].

Step 3: Individual selection and global best update.

Find and update the best individual of the current generation. This step involves
comparing individuals with each other and selecting the best one whose fitness
value is the highest.

Step 4: Offspring generation.

Step 4.1: Produce the offspring generation according to the evolution rule in EPSO.
Typical evolution operations include mutation, recombination and crossover.
Step 4.2: The two particles with the lowest and highest fitness values are selected.
Using these two particles as the start values, apply the IP method to generate two
local optima, and add them to the offspring generation [42].

Step 5: Check the termination criterion.

If the termination criterion is satisfied, stop the computation and export the best
individual as the final solution. Otherwise, repeat the evolutionary algorithm from
Step 2.

7.5.2 Solution to Real-Time Prosumer Scheduling

After solving the optimal bidding model in the upper level, the ON/OFF status of
DG and BESS are determined. The prosumer needs to adjust DERs in real time to

compensate for the energy deviations. The lower-level model is a nonlinear pro-

gramming problem with continuous variables. Variables such as P, PBESS and
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PDG” are wait-and-see decisions made after the actual realization of the stochastic
processes. The commercial solver AMPL/IPOPT 3.8.0 is used to solve the for-
mulated lower-level problem.

7.6 Simulation Results

The presented scheduling approach is tested on an 18-bus radial electric and gas
distribution network. As seen in Fig. 7.2, the electricity and gas networks are
coupled at each bus. There are three wind turbines (WT), three BESS, three
gas-fired DG units, one gas compressor (GC) and one gas storage (GS). The total
generation capacity is 1500 kW, including 600 kW of wind power and 900 kW of
DG. It is assumed that IL is located at every load bus, and up to 10% of the system
load can be adjusted if necessary. For simplicity, the resistance and reactance of
power lines are 0.01 and 0.04 p.u., respectively, and the distance between each bus
is 10 km. For gas pipelines, the diameter is 660 mm and the safety pressure is
140 kPa. The capacity of power interconnection between the VPP and the main grid
is set at 800 kW. The power curve of a Vestas V27 wind turbine is used [37]. The
rated, cut-in and cut-out wind speeds are 14.0, 3.5 and 25.0 m/s, respectively. Also,
the wind power output is calculated using the power-speed curve as

Power

Main grid

—-—- QGas

111

- — - —

A

AA

Fig. 7.2 One-line diagram of 18-bus coupled electric and gas distribution networks
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07 v S UIn, U Z Vout
V=V, P

Pow = 4 v v, Pow v Sv<vg (7.57)
Pew VR <0 < Vou

where Pgw, v denote wind power output and wind speed respectively; vp,, Vour, Ug
denote cut-in, cut-out and rated wind speeds; Pew denotes rated wind power.

The parameters of each BESS are shown in Table 7.1. The start-up and
shut-down costs are assumed to be $70 and $20, respectively. Other DG parameters
are shown in Table 7.2. The correlated scenarios of energy prices, wind speed, and
electricity and gas demands are modeled based on the Australian Energy Market
Operator historical data from 2015, which are publically available [28]. The his-
torical wind power production data from Wattle Point wind farm (coordinates
35° 07’ 21"S, 137° 42' 55"E) are used. The historical spot, up-regulation and
down-regulation prices are used to capture the cross-correlation between the market
prices. The simulations were completed by a PC with Intel Core i7-6600 CPU @
2.80 GHZ with 8.00 GB RAM. In total 512 scenarios are generated after using the
importance sampling scenario reduction technique.

Three cases are used to verify the presented scheduling approach. (i) Case 1:
separated gas and electricity scheduling. (ii) Case 2: without the lower-level RT
balancing problem. (iii) Case 3: the presented approach. The confidence level o is
set at 0.95 and the weighting factor is set at 0.8. Thus, CVaR denotes the expected
value of the 5% scenarios with lowest profit.

As seen in Fig. 7.3, linepack plays a critical role in balancing the deviations
between gas supply and demand. When gas supply is greater than demand
in off-peaks, linepack is replenished; when demand is greater than gas supply in
on-peaks, linepack is depleted. For separated gas and electricity scheduling in

Table 7.1 Parameters of each battery energy storage system

Power capacity 100 kW Self-discharge 3% per month
Energy capacity 400 kWh Life cycles 1000

Energy efficiency 91.4% Initial energy 40 kWh
Investment cost 800 EBESS Final energy 40 kWh

Table 7.2 Parameters of distributed generation

# Min. (kW) Max. (kW) Ramp up Ramp down MUT (h) MDT (h)
(kW/min) (kW/min)

10 200 2 2.5 3 3
2 25 250 2.5 3
3 35 450 2 2 3 2.5
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Fig. 7.3 Gas supply, demand and linepack variations for Cases 1 and 3

Case 1, more gas is purchased at evening peaks (6—10 pm). In contrast, in Case 3,
more gas is purchased from 1-5 am and 12-2 pm, when gas prices are relatively
lower. In other words, linepack is more efficiently used in Case 3 to reduce gas price
volatility.

The detailed financial indicators for Cases 1 and 3 are given in Table 7.3.
Compared with Case 1, in Case 3 the revenue (Rev.) from selling gas to customers
is higher, while the cost of purchasing gas is lower. Thus the profit to the gas sector
for Case 3 is higher ($647.90 for Case 3 and $459.73 for Case 1). For the power
sector, the revenue in the DA market is higher for Case 3. However, the revenues
from selling electricity are very similar for Cases 1 and 3. The imbalance cost and
the costs paid to DERs (e.g., IL, BESS and DG) are lower for Case 3. Therefore, the
presented approach in Case 3 can achieve much higher profits in both the gas and
power sectors. The total net profits for Case 1 and 3 are $1758.20 and $2565.56,
respectively.

Figure 7.4 illustrates the imbalance costs and exchanged power between pro-
sumers and the main grid for Cases 1-3. Since the separated scheduling of power
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Table 7.3 Detailed financial indicators for Cases 1 and 3 ($)

Case 1 Revenue of gas 1522.42 Rev. in DA 571.01
Gas purchase cost —-1065.69 Rev. of electricity 2984.47
Imbalance cost -555.85
Cost of DERs -1701.26
Profit gas sector 459.73 Profit power sector 1298.47
Total net profit in both sectors 1758.20
Case 3 Revenue of gas 1658.82 Rev. in DA 895.72
Gas purchase cost -1010.92 Rev. of electricity 2981.25
Imbalance cost -290.05
Cost of DERs -1669.52
Profit gas sector 647.90 Profit power sector 1917.56
Total net profit in both sectors 2565.56

and gas faces more uncertainties, Case 1 incurs the highest imbalance cost in
general. More deviations between the scheduling in the DA and RT markets (solid
and dotted lines) are observed in Case 1. Without the RT balancing in Sect. 7.4.2,
the deviations in Case 2 are still higher than Case 3, particularly during the after-
noon and evening hours. Table 7.4 shows the scheduling results for Cases 1-3. The
expected profits in the DA market are $2.3140, $2.5493 and $2.8556 K for Cases
1-3, respectively. Case 3 incurs the lowest imbalance cost and trades the least
energy in the RT market ($290.05 and 291.34 kWh), and hence obtains the highest
total net profit. Meanwhile, the CVaR for Case 3 is the highest, followed by Case 2
and then Case 1. This implies that Case 3 incurs the lowest risk in the market. The
presented approach is effective in hedging against the risk of profit variation. It is
noteworthy that the amounts of purchased gas for Cases 1-3 are similar.

The compositions of gas and power demands for Case 3 are shown in Fig. 7.5.
The electric thermal demand is flatter than the gas thermal demand, and it accounts
for about 20-25% of the total power demand. The majority of purchased gas is used
as DG fuel, particularly between 2 and 10 pm. More gas thermal demand is
observed during the early morning (1-6 am). The load and energy profiles of DERs
for Case 3 are shown in Fig. 7.6. Figure 7.6a shows that BESS is discharged to
meet the morning and evening peaks, and hence BESS is almost empty at 9 am and
10 pm. In the early morning, prosumers rely on power imports from the grid (see
the green dashed line at 4 am). During peak hours (8—10 am and 6-10 pm) the
power surplus is sold back to the grid, since energy prices are relatively high in the
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Fig. 7.4 Imbalance costs and exchanged power for Cases 1-3
Table 7.4 Results of Scheduling for Cases 1-3
Case |Expected |CVaR |Imbalance cost ($) | Gas Energy traded in Net
# profit (k$) purchased | RT (kWh) profit ($)
(k$) (G))
1 2.3140 0.86 | -555.85 189.38 672.11 1758.20
2 2.5493 1.19 | -422.03 187.31 608.17 2127.28
3 2.8556 1.75 -290.05 187.52 291.34 2565.56
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markets and prosumers try to make a higher profit. Figure 7.6b shows that wind
power (WP) generates more energy in the morning but not in the evening peaks.
DG is used at almost full capacity in peak hours (nearly 900 kW). Load increment
(negative IL) balances the sudden increase in WP outputs, while load decrement is
mainly used in peak hours. Furthermore, the probability distributions of expected
profits in DA markets for Cases 1-3 are shown in Fig. 7.7. It can be seen that Case
3 is superior, since the expected profit is the highest ($2855.61), while the risk is the
lowest (CVaR is $1750.44). Note that a higher CVaR value means a lower risk of
profit variation due to uncertainties.
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Chapter 8 )
Switch Deployment in Distribution e
Networks

Milad Izadi, Mohammad Farajollahi and Amir Safdarian

Abstract This chapter presents the optimal switch deployment in distribution
systems. First, an explanation regarding different types of switches and their
functionality is introduced. Then, a fundamental description of fault management
procedure in distribution networks is presented. Thereafter, the mathematical for-
mulation of optimal fault management process is described. Optimal switch
deployment problem is formulated in the format of mixed integer programming
(MIP). The impact of remote controlled switch (RCS) and manual switch (MS) is
scrutinized on the interruption cost once they are installed either individually or
simultaneously. The concept of switch malfunctions is explained and the influence
of this issue on the optimal solution of the problem is discussed. Finally, the effect
of uncertain parameters such as failure rate and repair time on the solution of switch
deployment problem is investigated. It was shown that the uncertainty imposes a
significant risk on distribution companies (DisCos).
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8.1 Introduction

Nowadays, the tight dependency of social life to electricity makes the users much
further desire to receive electrical services with high level of reliability, appropriate
service quality, and enough safety and security. Since a great share of interruptions
in power systems is originated from faults in distribution networks, improving the
service reliability in distribution level has motivated distribution planners to
establish different strategies. To this end, various methods have been proposed,
among them deploying monitoring and control devices has caught more attention of
distribution companies (DisCos). Sectionalizing switches (SSs), both in remote
controlled switch (RCS) and manual switch (MS) types, play a fundamental role in
the improvement of service reliability in distribution systems. SSs enable network
reconfiguration in both normal and abnormal conditions. In normal conditions,
network reconfiguration done through SSs can be applied to enhance network
efficiency, while in abnormal conditions, prompt network reconfiguration is con-
ducted to mitigate violations in operational constraints and to restore service to
interrupted customers. The principle benefit of the switches corresponds to their
ability for the reduction in interruption duration of affected customers. Although
both of the switch types are effective in fault management process, RCSs outdo
MSs in much faster restoration. Remote switching actions performed by RCSs take
few minutes, which is mainly needed for detecting the fault location and making a
decision for suitable maneuvers. On the other hand, MSs just can be used for field
switching actions, which may take several minutes. From fault management point
of view, once a fault occurs in an electric distribution network, field crews can
determine the location of the fault by patrolling the suspicious fault zone. Once the
fault is located, the customers whose connection point is out of the fault zone are
restored by switching RCSs and MSs. The rest of customers should remain inter-
rupted until the fault section is repaired. Although applying SSs brings numerous
advantages to DisCos, they impose some costs comprising of investment costs,
installation costs, and maintenance costs. In addition, issues such as budget limits
prevent the wide deployment of these devices in distribution networks. Also, it is
neither necessary nor financially justifiable to fully equip a network with such
devices. Hence, cost/benefit analyses are required to determine the optimal number
and location of SSs. In the literature, the switch deployment problem was attacked
via several optimization approaches including classical optimization methods like
mixed integer programming (MIP) and heuristic methods like genetic algorithm,
simulated annealing algorithm, particle swarm optimization algorithm, and coop-
erative agent algorithm.

In addition, there are numerous significant parameters with considerable impacts
on the optimal solution of the switch deployment problem such as the interruption
cost function of each customer, the switch malfunction probability, and the
stochastic nature of contingency events in distribution systems. Customer damage
function (CDF) plays an important role in the number of installed SSs such that
DisCos are enthusiastic to install more devices when CDF is increased. In case of
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high value of CDF, the benefits of SSs installation justify the relevant switch costs.
The second parameter concerns with switch reliability, assuming the full reliable of
SSs is not rational. Hence, considering the impact of SSs malfunction can tamper
the cost/benefit analysis of switch deployment problem and leads to change in the
final solution of the problem. The last but not least parameter is uncertainties with
high volatility in distribution networks. The uncertain behavior of contingencies in
practical systems such as stochastic nature of contingency events, uncertain repair
time, and failure time impose remarkable financial risk and detract from the worth
of SSs installation. Therefore, a risk-averse or a risk-taker behavior of the planners
can change the final optimal solution of the problem. To consider this issue, the
financial risk evaluation of SS in distribution networks is presented.

8.2 Switching Devices and Types

The most common used switching devices in distribution networks include circuit
breaker, automatic recloser, sectionalizing switch, and counter sectionalizer. The
explanations regarding their characteristics and functionality are described in the
following subsections.

8.2.1 Circuit Breaker (CB)

A circuit breaker (CB) is designed to immediately isolate the faulted feeder from the
rest of network. CBs are usually installed inside the distribution substation where
transmission high voltage is converted to distribution medium voltage. CB may be
equipped with various protective relays such as overcurrent and earth fault relays
which send signals to CB in order to operate properly. This may cause a consid-
erable interruption in the feeder since customers who are located in downstream of
the CB are de-energized.

8.2.2 Automatic Recloser (AR)

Automatic recloser (AR) acts as CB and is also able to distinguish and clear
transient faults in addition to permanent faults. According to field observations and
experiences, a bulk portion of fault occurrences in distribution systems are related to
transient faults which are originated from assorted sources such as temporary tree
contact, flashover initiating from lighting strike, conductor clashing, and bird
contact, to name just a few. AR is able to interrupt the electric power for a short
duration, and then to restore electrical energy. This process can be done for several
times and the interruption duration is increased consecutively in order to make sure
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that the interruption duration is enough to clear the transient fault [1]. For instance,
once a fault occurs at the downstream of an AR in an electric distribution network,
the AR operates after a short delay in order to check if the fault is transient or
permanent. This step is known as the first operation. The AR remains open for a
specific duration (i.e., near 0.2 s) and is closed for a predetermined duration again.
If the fault current still flows, the AR would disconnect the electric distribution
network, which is known as the second open-action (i.e., near 2 s). The described
process is iterated for specific number of open-close actions (most of the time at
most three iterations are sufficient). In case the AR clears the fault before reaching
the maximum number of iterations, the fault is determined as a transient fault,
otherwise the fault is permanent and the AR isolates the electric distribution net-
work. Since substantial share of faults in distribution systems are transient, instal-
ling AR would play a prominent role in reducing the interruption duration due to
transient contingencies and consequently, enhancing the service reliability of dis-
tribution networks.

8.2.3 Sectionalizing Switch (SS)

Sectionalizing switches (SSs), both in RCS and MS types, enable network
reconfiguration in both normal and abnormal conditions. In normal conditions,
network reconfiguration can be applied to enhance network efficiency, while in
abnormal conditions, prompt network reconfiguration is conducted to mitigate
violations in operational constraints and to restore service to interrupted customers.
The principle benefit of SSs corresponds to their ability in isolating healthy zones
from faulted section and consequently, shortening interruption duration of affected
customers. It is worth mentioning that SSs cannot operate under the excess current
like short circuit fault current. Although both types of SS are effective in fault
management process, RCSs outdo MSs in much faster restoration. Remote
switching actions performed by RCSs take few minutes, which is mainly needed
for detecting the fault location and making a decision for suitable maneuvers. On
the other hand, MSs just can be used as field switching actions, which may take
several minutes.

8.2.4 Counter Sectionalizer (CS)

Counter sectionalizers (CSs) are installed downstream of ARs. They cannot operate
under fault or load currents. Rather, they are equipped with a fault counter device in
order to count the number of current interruptions made by the upstream AR. These
switches are opened once the AR operates and the counter reaches a predefined
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value. Appropriate coordination of ARs and CSs can limit fault consequences if the
fault is permanent and occurs downstream of the CS. When a fault occurs in an
electric distribution network, the AR iterates reclosing process and CS counts the
number of interruptions. If the fault is permanent, the CS is opened once the counter
reaches the preset value. If the fault is located downstream of the CS, the AR does
not sense the fault current anymore. So, the customers downstream the CS are
interrupted while the upstream customers are isolated from the fault. If the fault is
located upstream of the CS, the AR operates and all customers are interrupted.

8.3 Fault Management Process

Fault management process is defined as the set of actions conducted in order to
alleviate the consequences of an unexpected fault. Fault management includes
several sequential processes including fault occurrence notification, locating the
faulted section, isolating the fault from the healthy sections, and remedial actions to
restore the interrupted customers. In this regard, the flowchart of fault management
process is shown in Fig. 8.1.

[ Fault Identification ]
[ Fault L+ocation ]

Restore

_[ Service Restoration via RCS
Remotely?

> [ Precise Fault Location ]

Restore

_[ Service Restoration via RCS
Manually?

;[ Service Restoration via Repair ]

v

[ Return to Normal State J

Fig. 8.1 Fault management process flowchart
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8.3.1 Step 1: Fault Notification

The first step in fault management process is to notice that a fault occurred in the
system. The following indications enable operators to become aware of fault in
distribution systems:

e Customers contact
One of the typical ways to identify fault occurrence is contacts from customers
whose services are interrupted. In this regard, a system is established in distri-
bution control center to receive information of interruption events that are
provided by customers. The contacts can be in different types such as calls,
email services, and web-based event recorders.

e Status change of protection devices
Distribution operator can check the status of the system-wide protection and
control devices through monitoring systems [2—4]. Once the status of a
switching device changes, the first point bears in mind is that a fault has
occurred somewhere downstream the device.

e Condition change in network operation
Any significant deviation in network operation can be considered as an indi-
cation of fault occurrence [5]. As an example, an abrupt change in loading of a
feeder points that a protection device within the feeder is opened following a
downstream fault.

e Receiving notification from monitoring devices
Modern distribution networks are equipped with different monitoring devices
such as line sensors. These devices send signals to the control center whenever
predefined conditions such as overload are sensed. Fault indicators are among
line sensors which are particularly designed for fault identification.

e State-of-art system monitoring
Distribution systems are going to become further equipped with sophisticated
devices such as smart meter. These devices are able to record the interruption
and provide prompt notification for the operator. In addition, because of the
great benefit of system monitoring through synchronized measurements, the
distribution systems intend to become equipped with Phasor Measurement Units
(PMUs) [6]. These devices monitor the system in time-series manner and give
insight regarding the abnormal event in the system.

8.3.2 Step 2: Fault Location

After the operator recognized that a fault is occurred somewhere in the system, it is
necessary to determine the fault location suspiciously. There are various fault
location approaches as follows:
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e Customers contact
Once an interrupted customer reports an interruption event, the distribution
operator can estimate the likely location of the fault. Although this is a typical
way to identify the suspicious location of fault, it is not an effective and accurate
way.

e Fault distance estimation
There exist different methods for fault location identification based on fault
distance estimation. Broadly speaking, the existing methods to identify fault
locations at distribution grid can be categorized into two main groups: impe-
dance based methods and wide-area monitoring. The former class of methods
work based on calculating the line impedance between the fault location and
sensor location. These methods usually come up with multiple possible loca-
tions for the fault. The second group of methods, e.g., the wide-area monitoring,
work based on the fact that voltages and currents along the feeder fluctuate
following fault events. In this regard, these methods use the pre-event and
post-event states of the grid to identify the exact location of the fault [7, 8].

e Fault indicator
Fault indicator is among line sensors which provide substantial chance to esti-
mate the fault location. Fault indicators which are equipped with communication
module, send signals once fault current is sensed. Hence, the operator recog-
nizes that the fault is somewhere downstream the fault indicator whose signals
are received. Fault indicators without communication modules are equipped
with light bulbs whose blinking lets the field crews understand that the fault is
somewhere downstream of the device. This information usually limits suspi-
cious fault area and thus, eases fault location process [9].

e Advanced metering infrastructure (AMI)
By propagating AMIs in distribution system, DisCos are of great interest to take
benefits of these state-of-art infrastructures. One of the most advantages of
AMIs is their ability in assisting in fault management process. AMIs installed at
the customer level are able to capture the interruptions and immediately report
them. Control center collects all the reported interruptions and determine the
likely zone of the fault. In particular, an especial type of these devices can
provide the voltage sag initiated by a fault. The collected voltage sages can be
used in various fault location methods to identify the precise fault location.

Although the above-mentioned approaches provide utmost effect in finding the
suspicious location of fault, neither determines the precise location. So, it is always
necessary to employ field crews to patrol the suspicious area in order to determine
the exact location of fault.
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8.3.3 Step 3: Service Restoration

Once the fault is detected and its location is determined, different remedial actions
are accomplished to reduce the interruption duration of affected customers. In this
situation, the distribution operator should make his/her best decision in order to
restore the customers as soon as possible. The interrupted customers can be divided
into two main groups. The first group contains the customers whose connection
point can be isolated from the faulted area. The second group contains customers
who are directly connected to the faulted area. The following steps should be
conducted for restoring service to the interrupted customers.

8.3.3.1 Step 3-1: Remote Switching Action

After determining the approximate location of the fault, field crews start patrolling
the suspicious area. However, since finding the precise location may take consid-
erable time, it makes sense to remotely change the status of available RCSs adjacent
to the faulted section. By doing so, some customers would be restored in a short
duration. These customers experience interruption duration required for RCS
switching action.

8.3.3.2 Step 3-2: Precise Fault Location

By restoring some customers via installed RCSs, field crews should find the precise
fault location. This process also extends the fault location duration. Finding the
precise location depends on several factors such as the geographical location of the
electric distribution network (i.e., mountain or residential area, harsh or soft valley,
etc.), types of the feeder (i.e., overhead or underground), the number of field crews,
and other possible factors which might vary from one distribution system to
another.

8.3.3.3 Step 3-3: Manual Switching Action

Once the faulted section is located, some customers whose connection points are
out of the faulted area can be manually restored through available MSs. To do so,
field crews determine boundary MSs and change their status. The customers
restored via MSs experience interruption with longer duration that is needed for
manual switching action and fault location.
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8.3.3.4 Step 3-4: Repair Action

After finding the faulted equipment and restoring service to customers out of the
faulted area, repair crews repair the faulted section. The time takes to repair a
system element depends on various factors such as the type of the element (e.g.,
transformer, switch, and line), the number of repair crews, the required tools for
repairing, etc. The customers in the faulted area should remain de-energized until
the faulted section is repaired. These customers experience the interruption duration
associated with the repair time and fault location time.

8.3.3.5 Step 3-5: Returning to the Initial State

Conducting various remedial actions alters the network operation from the optimal
condition. So, it is necessary to return the status of switches to their normal con-
dition. To do so, depending on the switches, the customers who were previously
restored via appropriate switching actions may be de-energized for a short duration
again.

Example 8.1 The interruption duration of load points fed through a typical feeder
following a fault are determined here. The feeder and other required information are
shown in Fig. 8.2.

Assumptions The feeder is equipped with a CB at the beginning and a tie
switch (TS) at the end. Without loss of generality, it is presumed that the time takes
to change the status of CB and TS is trivial. The time takes for fault location is
assumed to be 20 min. Also, the switching times associated with RCS and MS are
considered to be 5 and 60 min, respectively. It takes 180 min to repair the faulted
section. Also, it is assumed that operators can recognize the suspicious fault section
and consequently, the suspicious fault location duration is neglected. The locations
of MS and RCS are determined with circuit and square, respectively.

CASE I This case provides information regarding the feeder not equipped with any
SS. This case is a comparison benchmark to show the effectiveness of SS
deployment.

S R S e
: De-energized load
LP1 LP2 LP3 LP4 LP5
: closed CB @ :closed TS ® :closed MS B : closed RCS  Re-energized load
:open CB (3 :openTS O :open MS [] : open RCS

Fig. 8.2 Representative feeder of Example 8.1
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Step I. The operators recognize that a fault has occurred somewhere in the
network by the information obtained from either of the above-mentioned
ways (e.g., customers contact).

Step II: The operators recognize that the fault has happened in the illustrated
feeder. In this way, the approximate fault location is determined by the
above-mentioned approaches, e.g., fault indicator, (Fig. 8.3).

Step III: The repair crews patrol the suspicious area in order to identify the faulted
section (Fig. 8.4).

Step IV: The repair crews start repairing the faulted section. The repair action
takes 180 min (Fig. 8.5).

Step V: After repairing section 3, the CB is closed to restore all customers.
Therefore, the customers who are fed through this feeder remain inter-
rupted for 200 (= 20 + 180) min (Fig. 8.6).

The restoration times for the load points are represented in Table 8.1.

CASE 1II In this case, just MS deployment is considered and the allocation of
RCS:s is ignored. The configuration of the feeder is depicted in Fig. 8.7. The fault
management steps are as follows:

Table 8.1 Restoration time and mode of the load points in CASE I of Example 8.1

Load point no. Restoration time (min) Restoration type

1 200 Fault location + repair action
2 200 Fault location + repair action
3 200 Fault location + repair action
4 200 Fault location + repair action
5 200 Fault location + repair action

I I,*I I I
I R R A

Fig. 8.3 Representative feeder of Example 8.1 in CASE I

YT T 1T

LP1 LP2 LP3 LP4 LPS

Fig. 8.4 Representative feeder of Example 8.1 in CASE I-step 11
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T T

LP1 LP2 LP3 LP4 LP5

Fig. 8.5 Representative feeder of Example 8.1 in CASE I-step III

S L

LP1 LP2 LP3

Fig. 8.6 Representative feeder of Example 8.1 in CASE I-step V

T

Fig. 8.7 Representative feeder of Example 8.1 in CASE II

Step I: The operators recognize that a fault has occurred somewhere in the
network by the information achieved from the above-mentioned ways
(e.g., customers contact).

Step II: They identify that the fault has happened somewhere in the feeder
below. In this way, they are able to determine the approximate faulted
zone by the above-mentioned approaches, e.g., fault indicator, (Fig. 8.8).

Step III: The repair crews patrol the suspicious area in order to identify the faulted
section. By doing so, the crews determine the faulted section (Fig. 8.9).

Step IV: The repair crews manually open MS1 and MS2. Then, CB and TS are
closed in order to restore load points 1, 2, 4, and 5. Since the time to
arrive the MS location and change its state takes 60 min, the load points
remain interrupted for 80 (= 20 + 60) min. Hence, the interruption
duration of load points 1, 2, 4, and 5 is equal to 80 min (Fig. 8.10).

Step V: The repair crews commence repairing the faulted equipment. This pro-
cess takes 180 min.

Step VI: Since load point 3 cannot be restored prior to repair action, it should
remain interrupted until section 3 is repaired. So, the customers con-
nected to this load point experience 200 (=20 + 180) min of
interruption (Fig. 8.11).

The restoration times for the load points are represented in Table 8.2.
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Table 8.2 Restoration time and mode of the load points in CASE II of Example 8.1

Load point no. Restoration time (min) Restoration type

1 80 Fault location + manual switching
2 80 Fault location + manual switching
3 200 Fault location + repair action

4 80 Fault location + manual switching
5 80 Fault location + manual switching

MS1 MS2
LP1 LP2 LP3 LP4 LP5

AT

Fig. 8.9 Representative feeder of Example 8.1 in CASE II-step III
MSI1 MS2
LpP2 LP3

LP1 LP4 LP5

Fig. 8.10 Representative feeder of Example 8.1 in CASE Il-step IV

T 111

LP5

Fig. 8.11 Representative feeder of Example 8.1 in CASE IlI-step VI

CASE III In this case, just RCS deployment is considered and the allocation of
MSs is ignored. The feeder is portrayed in Fig. 8.12. The fault management steps
are as follows.
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R

Fig. 8.12 Representative feeder of Example 8.1 in CASE III

RCSI1 RCS2
YUY T T
LP1 LP2 LP3 LP4 LP5

Fig. 8.13 Representative feeder of Example 8.1 in CASE Ill-step II

S I I

Fig. 8.14 Representative feeder of Example 8.1 in CASE Ill-step III

Step I: The operators diagnose a fault occurrence in the network by the infor-
mation obtained from the above-discussed approaches (e.g., customers
contact).

Step II: The operators recognize that the fault has happened in the shown feeder.
In this way, they are able to determine the fault zone by the
above-mentioned approaches, e.g., fault indicator, (Fig. 8.13).

Step III: The operators may use trial and error approach to determine the suspi-
cious area. To do so, they first open RCS1 remotely and close the CB. In
this situation, since the fault has occurred downstream of RCS1, the CB
does not operate. Hence, the operators recognize that the fault is
somewhere after RCS1. This circumstance is shown in Fig. 8.14.

The next trial is to close RCS1, open RCS2, and close the CB. By doing
so, the CB operates. Therefore, the operators recognize that the fault is
somewhere between RCS1 and RCS2. This circumstance is shown in
Fig. 8.15. The trial and error approach does not take considerable time
which is neglected here.

Now, load points 1, 2, 4, and 5 can be restored remotely via the RCSs.
This process takes 5 min. So, the customers whose connection points are
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RCS1 RCS2
YT
LP1 LP2 LP3 LP4 LP5

Fig. 8.15 Representative feeder of Example 8.1 in CASE Ill-step III

Table 8.3 Restoration time and mode of the load points in CASE III of Example 8.1

Load point no. Restoration time (min) Restoration type

1 5 Remote switching

2 5 Remote switching

3 200 Fault location + repair action
4 5 Remote switching

5 5 Remote switching

RCSI RCS2
LP1 LP2 LP3 LP4 LP5

Fig. 8.16 Representative feeder of Example 8.1 in CASE IlI-step VI

upstream of RCS1 and downstream of RCS2 experience 5 min
interruption.

Step IV: The repair crews precisely patrol the suspicious area. By doing so, the
crews determine the faulted section. This process takes 20 min.

Step V: The crews repair the faulted equipment which takes 180 min.

Step VI: Load point 3 should remain interrupted during the repair action. So, by
taking into account the previous remedial actions, load point 3 retains
interrupted for 200 (= 20 + 180) min. Finally, the network returns to the
normal condition (Fig. 8.16).

The restoration times for the load points are represented in Table 8.3.

CASE IV In this case, both RCS and MS deployment is considered. The feeder is
depicted in Fig. 8.17. The fault management steps are as follows:

Step I: The operators recognize that a fault has occurred somewhere in the
network by the information obtained from the above-mentioned ways
(e.g., customers contact).

Step II: The operators figure out that the fault has happened in the illustrated
feeder. In this way, they are able to determine the fault zone by the
above-mentioned approaches (e.g., fault indicator) (Fig. 8.18).
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| f{:;,u " | e
!

Fig. 8.17 Representative feeder of Example 8.1 in CASE IV

MS

-

JTL

RCS
LP1 LpP2 LP3

LP4 LP5

Fig. 8.18 Representative feeder of Example 8.1 in CASE IV-step 11

-

| - o | e
11

Fig. 8.19 Representative feeder of Example 8.1 in CASE IV-step III

Step III:

Step IV:

Step V:

Step VI
Step VIL:

The operators apply trial and error approach to determine the suspicious
area. To do this, the operators send a signal to RCS to be opened and
close the CB. In this condition, the CB does not operate and load points
1 and 2 are re-energized, which means that the fault has originated from
sections downstream the RCS. So, the RCS capability enables the
operators to reduce the suspicious area and consequently to decrease the
fault location duration. This circumstance is shown in Fig. 8.19.

Load points 1 and 2 are restored via remote switching action which takes
5 min. So, the customers whose connection points are upstream of the
RCS experience 5 min interruption.

The repair crews determine the faulted section by patrolling the suspi-
cious area.

The crews restored load points 4 and 5 through opening the MS and
closing the TS at the end of the feeder. In this situation, the load points
experience 80 (= 20 + 60) min interruption (Fig. 8.20).

The repair crews repair the faulted equipment, which takes 180 min.
Finally, the network should return to its normal state. By doing so, load
point 3 remains interrupted for 200 (= 20 + 180) min (Fig. 8.21).
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Table 8.4 Restoration time and mode of the load points in CASE IV of Example 8.1

Load point no. Restoration time (min) Restoration type
1 5 Remote switching
2 5 Remote switching
3 200 Fault location + repair action
4 80 Fault location + manual switching
5 80 Fault location + manual switching
RCS MS
LP1 LP2 LP3 LP4 LPS

Fig. 8.20 Representative feeder of Example 8.1 in CASE IV-step V

T T 1T 11

Fig. 8.21 Representative feeder of Example 8.1 in CASE IV-step VII

The restoration times for the load points are represented in Table 8.4.

Table 8.5 summarizes the simulated cases. As can be seen, all customers should
stay de-energized for a long duration in CASE 1. In CASE II, the customers should
be interrupted for shorter interval compared to the customers in CASE I. However,
load point 3 experiences the same interruption duration in all of the cases.
According to the results, the customer interruption duration of load points 1, 2, 3,
and 4 is diminished by 120 min by installing MSs in CASE II. While, in CASE III
where RCSs are employed in the feeder, the interruption duration of customers out

Table 8.5 Customer

. - h Load point Customer interruption duration (min)
pemm i o CASE 0" case casecase case
1 11 I v

1 200 80 5 5
2 200 80 5 5
3 200 200 200 200
4 200 80 5 80
5 200 80 5 80
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of the faulted section is reduced by 195 min. Also, in CASE IV, the same situation
happens for load points 1 and 2 due to the capability of RCS by isolating these load
points from the faulted section. Nevertheless, the customers who are fed through
load points 4 and 5 should experience longer interruption time. More accurately,
75 min increment in interruption duration of these customers is the penalty of
exploiting MS instead of RCS. The results of CASE I-CASE 1V clearly demon-
strate the significant impact of deploying RCS and MS on interruption duration
decrement.

8.4 Switch Deployment Model

In the previous section, the impact of employing RCS and MS on customer
interruption duration was explained. The purpose of this section is to present a
mathematical model for SS deployment in distribution networks. SSs bring great
benefits in diminishing system interruption costs through reducing customer
interruption duration and decreasing the fault location time. However, deployment
of SSs imposes considerable costs such as capital investment costs, installation
costs, and maintenance costs. In this regard, employing of SSs in all possible
locations in the system is neither essential nor cost-effective. In this regard, it is
necessary to consider a trade-off between the benefits and costs of SS deployment.
To do so, various heuristic and mathematical approaches have been developed in
the literature. Most of the proposed methods try to minimize the system costs
including interruption and SS deployment costs. In [10], the fuzzy decision
approach was applied to solve the problem. In [11-13], heuristic optimization
techniques such as genetic algorithm, simulated annealing algorithm, and ant col-
ony algorithm were used to find the number and location of SSs. In [14], the authors
extended the previous models by taking into account CBs in the problem. The
relocation problem was proposed in [15] to locate SSs in a system. Reference [16]
divided the candidate SS locations into several independent sets and the problem
was solved for each set separately. The bellmen’s principle was taken into account
in [17] to determine the place of RCSs. Besides, the mathematical approaches were
used in the format of MIP in [18-20]. In [18], authors determined the optimal
number and location of RCSs by minimizing aggregated system costs. In addition,
by extending the proposed model in [18], the impact of earth faults was taken into
account in [19]. Furthermore, the budgetary limitation was considered in [20] by
proposing a multi-stage planning model to determine the location of RCSs in each
year. In addition, the joint RCS and MS placement is considered as reported in [20,
21]. The optimal number and location of SSs in switch placement problem are
defined such that the overall system costs comprising of system interruption costs
and related SS costs are reduced as [21]:
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Minimize Cost™ + Cost>s (8.1)

where Cost™ and Cost>S are respectively system interruption and SS costs, which
are explained as follows.

8.4.1 Customer Interruption Costs

The customers’ interruption costs depend on various parameters such as element
failure rate, average customers’ demands, and customers’ damage function.
Customers’ damage function relies on the type of affected customers and the
interruption duration. So, the system interruption costs are formulated as

—1
Cost™ = ZZZZZ 1+ng L Ly jkCDFyijuldpyy) — (8.2)

teT feF i€l jeJ kekK

where /;; is the failure rate of an element at location i in feeder f. Ly, is the
average demand of customers with type k at location j in feeder f. The CDF is
represented with CDFy ; ;x which indicates the damage costs of customers with type
k who are connected to load point at location j in feeder f when section i is failed.
d’"’ i« 1s the interruption duration of customers with type k at load point j of feeder
f durmg failure in section i. The annual discount rate (g, ) is deemed here to
consider the present value of investment. In addition, without loss of generality, a
constant load growth rate (g);) is assumed here. In (8.2), the reliability data of
network equipment and load data are assumed to be predetermined parameters.
However, interruption duration and hence, CDF are function of the restoration
mode. So, the relation between the location of the installed SSs and load points
plays a fundamental role in determining CDF. Figure 8.22 shows a representative
feeder for the developed mathematical model. As shown, CB is installed at the
beginning and end of the feeder. Also, both sides of sections are candidate locations
for SSs.

’}' i:25-1 s:20-1) 2] i:2j+1

LP;, LP;.,

: closed CB @ :closed TS

® : Candidate SS location
: open CB (3 :open TS

Fig. 8.22 Sample feeder to illustrate the impact of switch location on interruption duration
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According to the fault and customer locations in the system as well as the
deployed SSs in the system, affected customers can be categorized into three
groups. In case of existing any RCS between customers and the fault, they can be
promptly isolated from the fault and re-energized through remote switching actions
in a few minutes, while other customers would stay for fault location process. After
locating the faulted section, other customers who can be isolated from the fault
through MSs can be restored by proper switching actions. The rest of customers
ought to tolerate interruption duration associated with repair time of the faulted
section. Therefore, interruption duration of customers can be calculated based on
the configuration of the SSs as

di > TTSES; Nf e F.Viel,Vje ) VkeK (8.3)

i—1
> (TTij + Wsﬁff) [1 =Y XFS| NfeFViel V2j<iVkeK

s=2j

(8.4)

2j—1

. > (TTLf,i + TTS;{SS) l1 =Y XfS| VfEeFNiel V2 >iVkeK

(8.5)
i—1 i—1
int RCS MS | .
dgiie = (TTLy;+ TTRy;) |1 — zz:Xf,s - Z;Xf,s ; (8.6)
s=2j s=2j
VfeF,Yie LV2j<i,Vk € K
2j—1 2j—1
int RCS MS | .
dii i > (TTLy;+ TTRy,) |1 — ZX}".S - Zst ; (8.7)
Vf e F,Yie€l,V2j>iVkeK
A > TTLy i+ TTRy;; Nf € F,Vie ,V2j =i,Vk € K (8.8)

where X;SSCS and X;"IJS are the binary variables associated with existence of RCS and
MS in location s in feeder f. In case MS or RCS is installed in a location, the
relevant binary variable will be set equal to 1, otherwise it takes the value of zero. In
the above formulations, TTS}'fS, TTSJ’){SS, TTLy,;, and TTR;; are respectively related
to remote switching, manual switching, fault location, and repair time for inter-
rupted customers restoration. Formulation (8.3) belongs to customers who can be
isolated through remote switching action. The interruption duration of customers
who can be isolated from fault point by manual switching is determined through
expressions (8.4) and (8.5). These two formulations are respectively related to the
customers whose location is upstream and downstream of the faulted section.
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Constraints (8.6) and (8.7) are associated with customers who cannot be isolated
from the faulted section through RCS and MS and should remain interrupted until
the repair action is carried out. In addition, constraint (8.8) is related to faults occur
in customers sections, thereby making sure that the customers are interrupted
subsequent to repair time.

8.4.2 SS Costs

SS costs consist of capital investment, installation, and maintenance costs of
deployed MSs and RCSs, which is expressed as

Cost™s = CI+IC +MC (8.9)
=33 (XfScrfs + xpsens) (8.10)
feF seS§ '
_ RCS y,RCS MS 7,~MS
cF s&
MC =S F S o (MM X ECE)  (12
teT feF seS§ 1+6] ’

where lefs , ICffS , and MCRCS are the capital investment cost, installation cost,
and annual maintenance cost of a RCS, respectively. cI* f e ICf >, and MC"»TISS are the
capital investment cost, installation cost, and annual maintenance cost of a MS. The
mentioned SSs cost can vary for different locations. The capital costs can highly
depend on the types of line (i.e., overhead or underground). Also, the installation
costs are related to factors such as the geographical location (i.e., mountain region)
and the types of the line. Moreover, RCS requires specific communication facilities
to be controlled remotely from control center, thereby raising the RCS installation
cost as the distance between the RCS location and control center increases.

8.4.3 Problem Constraints

DisCos own limited financial sources for equipping their system with SS. So,
budget limitation plays a fundamental role in the optimal solution of the deploy-
ment problem. In this regard, to alleviate the DisCo’s concerns regarding the
financial restriction, some constraints are considered as



8 Switch Deployment in Distribution Networks 199

3D XFS <N (8.13)

feF seS§
Z fom < Nmax (8.14)
feF seS§

CI + IC < budget (8.15)

Yy > ”‘]\;O’mf;'f"<SAIDI (8.16)

feF i€l jeJ kek

Yy vy k}f]léiijdf”k<AENS (8.17)

feF i€l jeJ keK

where the first and the second constraints define the maximum number of allocated
RCSs (Npgs) and MSs (Ny5*) in the system, and the third one limits the investment
cost, including capital investment and installation costs, to the company budget
limitation (budget). In addition, the last two constraints consider the system reli-
ability requirements. Broadly speaking, the system reliability indices serve to
appraise the efficiency of a grid in emergency situations, e.g., fault occurrence, and
DisCos are concerned to keep these indices below a defined level to avoid getting
fined. In this regard, constraint (8.16) is associated with the SAIDI index. This
index determines the expected value of customer interruption duration per year. N;
denotes the number of customers in load point j with type k, and N represents
the total number of customers in the network. Also, the expected value of energy
not served by customers per year, defined as AENS, is regarded in constraint (8.17).

Example 8.2 In this example, the proposed method is applied to Roy Billinton Test
System (RBTS) bus 4, shown in Fig. 8.23, which has been broadly used for SS
deployment problem [18-22]. This system consists of 7 feeders which feed 38 load
points. The required data associated with load points, failure rates, and feeders’
configuration are given in [23]. In addition, three types of customers including
residential, small-user, and commercial are accommodated into this system.
The CDF and other related information regarding the customers are provided
in [24].

In this example, the capital investment and installation costs of RCS and MS are
considered to be US k$4700 and US $500, respectively. The annual maintenance
costs of RCS and MS are supposed to be 2% of capital and installation costs (i.e.,
US k$94 and US $10). The annual load growth rate and discount rate are set equal
to 3 and 8% for a 15-year study horizon. In addition, remote and manual switching
actions are assumed to take 5 and 60 min. The fault location time is deemed to be
20 min. Without loss of generality, it is presumed that TS, located at the end of the
feeders, immediately operates whenever it is necessary. Also, the repair action for
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Fig. 8.23 Single line diagram of RBTS-Bus4

each section takes 3 h. According to the test system shown in Fig. 8.23, the total
number of candidate places for SSs is equal to 51.

CASE I This case provides information regarding original network not equipped
with any SS. This case is a comparison benchmark to show the effectiveness of the
developed model for SS deployment.

CASE II The optimal number and location of MSs in the network are determined.
In this case, just MS deployment is considered and the allocation of RCSs is
ignored. The results are represented in Table 8.6. As can be seen, 5 MSs are
allocated to feeders 2, 5, and 6 where small-user customers are fed. In other words,
MSs are installed in all possible locations. However, 4 MSs are deployed in other
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Table 8.6 Optimal location Feeder MSs location
of MSs in CASE 1T

1 3,5,7,9

2 1,2,3,4,5

3 3,5,6,9

4 3,4,6,9

5 1,2,3,4,5

6 1,2,3,4,5

7 3,5,6,9

Total 31
Table 8.7 Optimal location Feeder RCSs location
of RCSs in CASE III

1 5,9

2 1,234

3 5.9

4 4,9

5 1,3,4,5

6 1,2,3,4,5

7 5.9

Total 21

feeders where both residential and commercial customers present. In these feeders,
MSs are installed with approximately uniform distribution.

CASE III The optimal number and location of RCSs in the network are deter-
mined. In this case, the simulation is iterated to find the number and location of only
RCSs without considering MSs. The results are provided in Table 8.7. As can be
seen, 2 RCSs are installed in feeders 1, 3, 4, and 7 such that one of them is located
in middle of the feeders and the other one is located at the end of the feeders where
commercial customers are fed. However, at least 4 RCSs are utilized in feeders with
small-user customers.

CASE IV The simultaneous placement of RCS and MS is simulated in this case.
Table 8.8 gives the location of RCSs and MSs in each feeder. According to the
table, 3 MSs are installed in each feeder. In feeders 1, 3, and 4, the first MS is
installed in location 3 where the total load and CDF are higher than other feeders.
However, the first MS is deployed in location 1 in other feeders. Regarding the RCS
location, RCS is employed at the end of feeders 1, 3, 4, and 7 (location 9) where the
commercial customers are fed.

The system costs including system interruption cost and switch costs are pro-
vided in Table 8.9. As can be seen, employing SSs in CASE II and CASE III leads
to US k$459.58 and US k$721.62 reduction in system interruption costs (by 50.41
and 79.15%), respectively. Based on the results, using RCS provides higher
achievements in system interruption costs instead of MS installation due to its
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Table 8.8 Optimal location of RCSs and MSs in CASE IV

Feeder MSs location RCSs location
1 3,57 9

2 1,2,5 34

3 2,5,6 9

4 3,4,6 9

5 1,3,4 2,5

6 1,2,4 3,5

7 1,5,6 9

Total 21 10

Table 8.9 System costs (US k$) in CASE I-CASE IV of Example 8.2

CASE | Equipment Interruption Total
Number Number of | MSs RCSs (US k$) (US k$)
of MSs RCSs (US k$) (US k$)

I - - - - 911.72 911.72

I 31 - 18.37 - 452.14 470.51

I - 21 - 118.11 190.10 308.21

v 21 10 12.44 56.25 208.10 276.79

significant capability in prompt isolating the healthy part from the faulted section.
Applying simultaneously RCS and MS reduces the interruption cost from US k
$911.72 to US k$208.10 by 77.18% saving in total interruption costs. Furthermore,
although the system interruption costs in CASE III and CASE IV are roughly equal,
the equipment costs in CASE IV are US k$49.42 smaller than that of CASE IIL
Hence, the DisCo can reduce system interruption costs by installing MS coupled
with RCS without any increment in investment costs.

8.5 Affecting Parameters and Sensitivity Analyses

According to the SS deployment method, explained in the previous section, various
parameters may affect the solution of SS deployment problem. This section intends
to investigate the impact of key parameters on the SS deployment problem. To do
so, the simulation is repeated to find the impact of different prominent parameters
including CDF, failure rate and repair time of elements, financial constraints
associated with number of allowable SS, and budget limitations.
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Fig. 8.24 Optimal number of SSs versus different CDFs

8.5.1 Customer Damage Function (CDF)

Here, the effect of CDF on the optimal solution of SS placement problem is
scrutinized. In this regard, the simulations are conducted for different CDFs by
considering a multiplier varying from 1 to 10. The optimal numbers of RCSs and
MSs are depicted in Fig. 8.24. As can be seen, the number of RCSs increases as the
CDF rises, thereby diminishing the customer interruption costs. However, the
number of MSs does not follow the same pattern, because the number of MSs has a
close relation with the number and location of RCSs. As the number of RCSs
increases, the number of MSs decreases.

8.5.2 Failure Rate

Elements in distribution networks are not exposed to failure with the same prob-
ability, such that sections with higher failure rates are more likely to undergo a
fault. In this regard, it is valuable to investigate the impact of different failure rates
on the solution of the problem. Also, according to the previous section, SSs are
more likely to be installed in locations where the majority of customers can be
isolated from sections with higher failure rate. With this in mind, the presented
model of switch placement is simulated for different failure rates. The optimal
numbers of RCSs and MSs are illustrated in Fig. 8.25. As can be seen, the number
of RCSs is generally increased as the failure rate rises. Also, the more RCSs
considerably restrict the suspicious fault area and thereby reducing the customer
interruption time for customers whose connection point can be isolated prior to
repair action. However, the number of installed MSs relies on the number and
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Fig. 8.25 Optimal number of SSs versus different failure rate multiplier

location of RCSs such that as the failure rate is doubled, the number of MSs is
extremely reduced while the number of RCSs is increased.

8.5.3 Repair Time

According to several out of control factors such as geographical location (i.e.,
mountain regions and snow areas), the type of line (i.e., overhead and under-
ground), and the number of repair crews, the repair time can varies in different
systems. Therefore, as an affective parameter in SS deployment problem, the impact
of repair time should be investigated on the SS allocation. In this regard, the
simulation is repeated for different repair times. The numbers of allocated RCSs and
MSs are depicted in Fig. 8.26. As can be seen, the optimal number of MSs is
increased while the number of RCSs is constant as the repair time increases. In this
regard, deploying more MSs remarkably reduces interruption duration of customers
whose connection point cannot be restored via manual switching action. Hence, the
customer interruption costs significantly waned when the repair time waxed.

8.5.4 Limited Number of SSs

Although employing optimal number of SSs provides the cost effective solution,
most DisCos may not be able to equip the system at the beginning of the planning
due to the considerable expenses of switches. In this regard, they are interested to
understand the extent to which their system efficiency increases as a limited number
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Fig. 8.26 Optimal number of SSs versus different repair time

of SSs getting installed in the system. To this end, the SS deployment problem is
run by restricting the number of available MSs and RCSs separately as shown in
Figs. 8.27 and 8.28. The maximum number of SSs, i.e., RCSs or MSs, is gradually
increased from O to 51. According to Fig. 8.27, installing the first MS leads to
considerable reduction in customer interruption costs while the reduction is grad-
ually declined when the solution converges to the optimal solution. As was men-
tioned in CASE II of Example 8.2, the optimal number of MSs is equal to 31, which
is shown in the figure. Figure 8.28 represents the impact of the maximum number
of RCSs on the system costs. As can be seen, the system interruption cost signif-
icantly decreases when the first RCS is installed. The problem is converged when
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Fig. 8.28 Impact of the maximum number of RCS on the system costs

the optimal solution reaches. According to the results, the optimal solution in this
case is equal to 21 as was calculated in CASE III of Example 8.2.

8.5.5 Restricted Budget

Budget holds an utmost key in economic planning, such that most of companies are
concerned about their financial resources for equipping their system. In this regard,
in order to investigate the impact of budget limitation on the SS deployment
problem, the economic constraint associated with a range of budget limitation is
taken into account. The relevant results are shown in Fig. 8.29. As can be seen,
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Fig. 8.29 Impact of budget limitation on SS placement solution
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only MSs are deployed in the system once allocated budget is less that US k$10.
However, by allocating higher budget for equipping system with SS, the number of
RCSs gradually increases, while the number of MSs does not follow a regular
pattern. Broadly speaking, RCSs, due their quick operation for restoring customers,
have greater ability than MS in decreasing customer interruption cost. However,
they are more expensive than MSs, which might restrict their allocation in the
system. In some cases, it might be more profitable to allocate several MSs than a
few number of RCSs to improve the system reliability. As shown in Fig. 8.29, for
some cases, by rising in the budget, the number of RCSs does not change, while
more MSs are deployed in the system.

8.6 Switch Malfunction

Heretofore, it was assumed that SSs always operate properly. However, sometimes,
SSs are not able to function as they are expected, which is referred to as SS
malfunction. SS malfunction may degrade the SS worth for fault isolation proce-
dure and consequently affects the optimal solution of the SS deployment problem.
Various types of malfunction can be considered for SSs. Isolation capability mal-
function of MS and RCS is referred to as their inability in isolating the faulted zone
from the rest of system. In addition, the RCS may not respond to the signals sent by
control center, referred to as remote controllability malfunction. In this type of
malfunction, although RCS is not capable of operating remotely, the switching
action can be done manually by the repair crews, treated as a MS. This section is
aimed at considering the impact of the SS malfunctions on switch deployment
problem. First, the impact of SS malfunction on the SS deployment problem is
illustrated by an example. Then, the SS deployment problem, explained in
Sect. 8.4, is reformulated by considering SS malfunctions. Finally, the relevant
results are presented.

Example 8.3 This example intends to describe the impact of various SS mal-
functions, including MS and RCS isolation capability as well as RCS remote
controllability malfunction, on the SS deployment problem explained in CASE IV
of Example 8.1 (Fig. 8.30).

CASE I: MS isolation capability malfunction.

I AS E e

Fig. 8.30 Representative feeder in Example 8.3
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Table 8.10 Restoration time and mode of the load points in CASE I of Example 8.3

Load point no. Restoration time (min) Restoration type

1 5 Remote switching

2 5 Remote switching

3 200 Fault location + repair action
4 200 Fault location + repair action
5 200 Fault location + repair action

In this case, it is assumed that the MS is not able to isolate the faulted section,
while RCS operates properly. Since RCS can function successfully, steps from I to
IV in this example are the same as those in Example 8.1. Therefore, the customers
connected to load points 1 and 2 are assumed to be restored after remote switching
action. However, after the field crews find the faulted section, load points 4 and 5
cannot be disconnected from the faulted section due to the failure in MS isolation
capability. Hence, these load points should be kept interrupted during the repair
action similar to load point 3. The restoration times for the load points are provided
in Table 8.10.

As shown in Table 8.10, MS isolation capability malfunction leads to 120 min
increment in customer interruption duration of load points 4 and 5. Hence, in this
case, considering the MS malfunction can be interpreted as the absence of MS in
the feeder. In addition, the interruption time of load points 1 and 2 does not change
due to the successful operation of RCS between the load points and the faulted
section. Also, the MS malfunction does not affect the interruption duration of load
point 3 which already tolerates repair time without considering MS malfunction.

CASE II RCS isolation capability malfunction.

In this type of RCS malfunction, the RCS is not able to isolate faulted section.
Therefore, it can be presumed that the RCS does not exist. In this regard, load
points 1 and 2 cannot be isolated from the faulted section, and should remain
interrupted subsequent to clearing the fault. However, the malfunction of RCS does
not affect load points 4 and 5, and they can be disconnected from section 3 through
the MS and restored from the adjacent feeder. With this in mind, Table 8.11
summarizes the interruption times of the load points.

As can be seen, the isolation capability malfunction of RCS increases the
interruption duration of load points 1 and 2 by about 200 min. Accordingly, the

Table 8.11 Restoration time and mode of the load points in CASE 1I of Example 8.3

Load point no. Restoration time (min) Restoration type

1 200 Fault location + repair action

2 200 Fault location + repair action

3 200 Fault location + repair action

4 80 Fault location + manual switching
5 80 Fault location + manual switching
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Table 8.12 Restoration time and mode of the load points in CASE III of Example 8.3

Load point no. Restoration time (min) Restoration type

1 80 Fault location + manual switching
2 80 Fault location + manual switching
3 200 Fault location + repair action

4 80 Fault location + manual switching
5 80 Fault location + manual switching

RCS isolation capability malfunction highly increases the interruption duration of
customers whose connection points are supposed to be restored quickly, which
results to a costly interruption.

CASE III RCS remote capability malfunction.

In this type of malfunction, it is assumed that the RCS cannot operate remotely,
while it can isolate the fault manually, acting like a MS. Here, due to this type of
malfunction, the RCS cannot receive the remote control signals, and the operator
cannot limit the suspicious fault area. So, the field crews have to patrol all the feeder
sections in order to find the faulted element. After determining the faulted section,
the field crews open RCS and MS manually in order to restore load points 1, 2, 4,
and 5 through manual switching actions. At the end, load point 3 is re-energized
after that the faulted section is repaired. Table 8.12 gives the results in this case.

According to the table, due to the RCS remote controllability malfunction, the
interruption duration of load points 1 and 2 increases by about 80 min. Although
this growth in interruption duration is less than that of isolation capability case, i.e.,
200 min, it is still much greater than remote restoration time, i.e., 5 min.
Accordingly, RCS remote controllability malfunction can burden system with
higher interruption costs.

By taking into account the results of the example, all types of SS malfunctions
cause the interruption durations of some customers increase, thereby resulting in
higher customer interruption costs. Therefore, malfunctions degrade SSs worth for
reducing interruption cost and enhancing system reliability.

8.6.1 Switch Placement Model Considering Malfunctions

As discussed in previous section, malfunctions detract from the SS worth in cus-
tomer interruption cost reduction and improving service reliability. The effect of SS
malfunctions on the system reliability and operation has been investigated in sev-
eral literatures. The effect of devices failure in distribution networks was taken into
account in [25]. In [26], the effect of malfunction of protective and automatic
apparatuses in fault indicator deployment problem was deemed. The impact of SS
malfunction on service reliability and SSs benefit was reported in [27].
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As explained earlier, SS malfunction could rise the interruption duration of some
customers which might result in higher interruption costs. Therefore, considering
SS malfunctions can change the solution of SS deployment problem as it affects the
interruption costs. To extend the SS deployment problem for considering SS mal-
functions, the effect of different types of SS malfunctions on customers’ interruption
duration should be modeled. Here, three types of SS malfunctions including MS
isolation capability malfunction, RCS isolation capability malfunction, and RCS
remote controllability malfunction are considered. The impact of each type of
malfunction on customers’ interruption duration is expressed as follows.

8.6.1.1 MS Isolation Capability Malfunction

As mentioned earlier, in MS isolation capability malfunction, the MS is not able to
isolate the faulted section from the rest of the feeder. With this in mind, the fol-
lowing formulations calculate the customer interruption duration in case of MS
isolation capability malfunction.

i = DX Y EFNVIEL ELVREK  (8.18)
s'es
Al o 2 TTSFC: Nf e FViel,Yjel VkeK (8.19)

i—1

A > (TTLf,i + TTS}{E) l1 =X
s=2j

;. YfeF,Viel,V2j<i,Vke K

(8.20)

2j—1
o = (TTLe;+ TTS)) [1 — Y xR

s=i

; VfeFNiel V2j>iVkekK

(8.21)
i—1 i—1
int RCS MS | .
dftye > (TTLp+ TTR) | 1= Y XES = 30 XpP 8.22
s=2j § = 2] ( . )
s# s i
Vf e F,Viel,V2j<i,Vk € K
2j—1 2j—1
in RCS MS | .
Aty > (TTLp+ TR ) | 1= XES = 3 XpP 8.23)
=i s=1i '
s#£ s ]

VfeFYiel,V2j>iVkeK
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Ay >TTLei+TTRp;; Nf € FVi€ 1,V2j =i,Vk € K (8.24)

where d}”i’ % Tepresents customer interruption duration when SS in location s’

encounters isolation capability malfunction. Also, d}'ﬁ’ﬁ;{m is total customer

interruption duration with considering all MSs malfunction in feeder f. The MS
malfunction indicates that the MS cannot be able to disconnect customers from
faulted section before repair action. Hence, for this type of malfunction, it can be
assumed that the MS is not installed. So, to consider the malfunction of MS in
location s/, X%‘? is supposed to be excluded from (8.22) and (8.23).

8.6.1.2 RCS Isolation Capability Malfunction

Similar to the MS isolation capability malfunction, the impact of RCS isolation
capability malfunction on the interruption duration can be formulated as

dii " =Y X Sdl s MfEFVIELjeLVkEK  (8.25)
ses
. >TTSES, YfeFVielVjeJ Vkek (8.26)

i—1
dt = (TTL+TTSYS) (1= - XFS |5 vf e Fvie 1 Wj<i vk € K

s=12j
s#£ s
(8.27)
A 2j—-1
> (TTLf,i n ngfﬂ.{f) 1= > XfS|, YfeFVielV2j>ivVkek
s=1i
s#£ s
(8.28)
i—1 i—1
int MS RCS MS | .
df'ijrs > (TTLf-,i+TT5f,s) - ZZZ XS =D X (8.29)
$=4] §s=2j
s#£s'

Vf € F,Ni € I,¥2j<i,Vk € K
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2j—1 2j—1
"y > (TTL;+ TTRy;) | 1 — Z X;SES—ZX]%S :

= (8.30)
s#s
Vf e FVieLV2>iVkeK
Ao > TTL i+ TTRy ;. Nf € F,Vi € 1,¥2j = i,Vk € K (8.31)

In (8.25), d;"f;’,f;Rcs represents customer interruption duration with considering
RCS isolation capability malfunction. In this type of malfunction, RCS is not able
to disconnect fault, so it can be presumed that RCS does not exist. Therefore, to
consider the malfunction of RCS in location ', XfRf,S should be removed from the
RCS summation as shown in constraints (8.27)—(8.30).

8.6.1.3 RCS Remote Controllability Malfunction

The impact of RCS isolation controllability malfunction on the interruption duration
can be calculated as

At RS =N xR Sart, i NfeFNielYje VkeK (8.32)
s'es
Al o 2 TTSFS; Nf e FVielVjel VkeK (8.33)

i—1
ate = (T + TTSES) 1= 30 XFS |3 W e Fvie 1 w2j<i Wk e K

s=2j
s#£ s
(8.34)
] 2j—1
dtie = (TTL+ TTSIS) 1= 30 XES|S f e FVie 1,v2) > i, vk € K
s=1i
s# s

(8.35)
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where d}’f,."’j’,’,’fiTRCS is designed as customer interruption duration corresponding to
consider RCS remote controllability malfunction in location s'. In this type of
malfunction, the RCS fails to remotely isolate by the control signal from the control
center. Hence, the customers who were supposed to be isolated through remote
switching actions should remain interrupted until manual switching actions are
done by the field crews. With this in mind, in order to consider the RCS with
remote controllability malfunction in location s', X5® should be excluded from the
RCS summation as shown in (8.34) and (8.35). It is worth mentioning that the RCS
which is not able to be isolated remotely should be included in RCS summation in
constraints (8.36) and (8.37) since they can be opened manually and isolate the
faulted section.

8.6.1.4 Total Interruption Duration

So far, the customer interruption duration associated with all types of SS mal-

functions was calculated. By considering the malfunction probability of the men-

tioned malfunctions, the following equation determines the total customer
interruption duration.

tot—int _ ~MS [—RCS R—RCS\ qint

dpigi = (1= Py ) (1= P = PE)dy

_’_mefMS(l _ P]r{llfRCS _ P}’(lR*RCS)d}l;"lil‘;‘?]ifMS

—-MS I—RCS jint,mI—RCS
R

+ (1 _ P}nfMS ) P}nR—RCS d)z;r,zit;;‘r]:{R—RCS

(8.39)

where Pp~MS, PpoRCSand PPRRCS represent the probability of MS isolation
capability malfunction, RCS isolation capability malfunction, and RCS remote
controllability malfunction, respectively. According to (8.39), the total customer
interruption duration is the summation of four terms. The first term relates to the
mode that no SS malfunction is considered, referred to Sect. 8.4. The second term is
associated with MS isolation capability malfunction. Also, the third and fourth
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terms belong to RCS isolation capability and RCS remote controllability mal-
function, respectively. Accordingly, the SS deployment problem can be extended to
consider SS malfunction through considering the calculated customers interruption
duration in (8.39).

To find the optimal number and location of SSs, it is necessary to minimize the
system cost comprising of system interruption cost and SSs cost is minimized as

Minimize Cost™ + Cost> (8.40)

where CostS is calculated according to (8.9)—(8.12). Cost™ is determined as

Cost™ =3 > > > > lffj gLy CDF s (841)

teT feF i€l jeJ kekK

Above expression is similar to (8.2) except that the total interruption duration
(e ~In) by considering the impact of SSs malfunction is taken into account.

Example 8.4 In this example, the effect of SS malfunction on the SS deployment
problem in RBTS-Bus4 is investigated using the extended model.

CASE I This case has to do with MS deployment problem by considering the MS
isolation capability malfunction. The probability of MS malfunction is assumed to
be 0.05. The optimal location of MSs is provided in Table 8.13. As can be seen, the
number of installed MSs is reduced from 31, referred to CASE II of Example 8.2, to
21 in this case. Therefore, it can be concluded that considering MS malfunction
causes the number of allocated MS in the system declines.

CASE 1II In this case, the optimal deployment of RCSs with considering RCS
malfunctions is examined. The probabilities of RCS isolation capability malfunc-
tion and isolation controllability malfunction are considered to be equal to 0.015
and 0.02, respectively. The optimal location of RCSs is given in Table 8.14.
According to the results, when RCSs fail to isolate the faulted section remotely or
manually, the optimal number of RCSs does not change and is equal to the number
of RCSs when they are able to operate properly.

Table 8.13 Optimal location  peeder MSs location
of MSs in CASE I of Example
1 7,9
8.4
2 1,2,3,4
3 59
4 59
5 1,2,4,5
6 1,2,3,4,5
7 59
Total 21
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Table 8.14 Optimal location

Feeder RCSs location
of RCSs in CASE II of
Example 8.4 1 5.9
2 1,234
3 5,9
4 5,9
5 1,2,4,5
6 1,2,3,4,5
7 59
Total 21
Table 8.15 Optimal location  peeqer MSs location RCSs location
of RCSs and MSs in CASE IIT
of Example 8.4 1 3 ?
2 1,2,5 34
3 5 9
4 5 9
5 1,2,5 34
6 1,24 35
7 5 9
Total 13 10

CASE III In this case, the optimal number and location of MSs and RCSs are
determined with considering all types of SS malfunction. The malfunction proba-
bilities of MS and RCS are considered the same as in previous cases. Here, the
optimal placement of RCS and MS is taken into account and the optimal solution is
presented in Table 8.15. As can be seen, the optimal number of MSs is decreased
from 21 to 13, while the optimal number of RCSs does not change and is equal to
the number of RCSs when they operate properly.

Tables 8.16 and 8.17 summarize the number of SSs and system costs for the
cases of considering and not considering SS malfunctions in SS deployment
problem. By comparing the results, it can be noticed that considering the SSs
malfunction reduces the number of deployed SSs and increases the customer
interruption costs. Also, according to expression (8.39), the SSs benefit for
enhancing system reliability relies on the malfunction probability of SSs and has

Table 8.16 System costs (US k$) in CASE I-CASE III of Example 8.4

CASE | Equipment Interruption Total
Number Number of | MSs RCSs (US k$) (US k$)
of MSs RCSs (US k$) (US k$)

I 21 - 12.44 - 472.04 484.48

I - 21 - 118.11 197.59 315.70

I 13 10 7.70 56.25 225.55 289.50
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Table 8.17 System costs (US k$) in CASE I-CASE IV of Example 8.2

CASE | Equipment Interruption Total
Number Number of | MSs RCSs (US k$) (US k$)
of MSs RCSs (US k$) (US k$)

1 - - - - 911.72 911.72

I 31 - 18.37 - 452.14 470.51

11 - 21 - 118.11 190.10 308.21

v 21 10 12.44 56.25 208.10 276.79

significant impact on the number of SSs. So, the SSs benefits wane as the mal-
function probability is increased and consequently the allocated SSs are reduced.

8.7 Uncertainty and Financial Risk

In previous sections, the optimal solution of switch placement was determined by
comparing the expected interruption costs and switch costs. The initial investment
is known before the deployment of SSs while the system interruption costs rely on
several parameters which are a function of uncertain parameters. The uncertainties
alter the benefits of SSs in reducing the customer interruption costs which interprets
that they impose undeniable financial risk on the investor as a private company. The
purpose of this section is to assess the financial risk when the SSs are utilized in the
network. To do so, the step by step algorithm is presented in the following sections.
At the beginning, the main sources of uncertainties are defined which have direct
correlation with the system interruption cost. Then, several scenarios are generated
representing the status of selected uncertain parameters. Next, the optimal fault
management, similar to optimal switch placement except that here, the location of
SSs is known, is applied to each of the scenarios in order to calculate the system
interruption cost. Finally, the final indices including DisCo profit and risk are
reported. The financial risk is calculated through a pragmatic index which is
commonly used in risky situations. The proposed approach is thoroughly discussed
in the following subsections.

8.7.1 Uncertain Parameters

The uncertainties in distribution systems are originated from various sources like
the load forecast error, uncertain characteristic of renewable energy resources,
stochastic nature of fault occurrence, and variable duration of repair actions. Among
the proposed factors, stochastic nature of contingencies as well as repair time hold a
substantial impact on the SSs achievements. In order to take into account the
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uncertainties, several approaches like mathematical and scenario based model, to
name just a few, were presented. The mathematical approaches take the advantages
of fuzzy concept or probability density function. The fuzzy approach is used when
the values of uncertain parameters are not accessible. While, the other one considers
the probability density function for each uncertain parameter in order to achieve the
probability density function of the objective. The scenario based approach utilizes a
set of scenarios that represent the status of uncertain parameters. Although the
mathematical methods provide more precise solutions, their complexity leads to
significant computation impediments. To avoid this issue, the scenario based
approach is taken into account in this section. Also, the enough number of scenarios
are generated to assure the accuracy of the method. It is worth mentioning that
scenario reduction techniques can decline the number of generated scenarios with
negligible impact on the accuracy of the final solution. In order to keep the reduced
scenarios close to the original scenarios, they are determined based on the proba-
bility distance concept. The most common probability distance is the Kantorovich
distance which is defined between two probability distributions. In [28], two sce-
nario reduction techniques based on the Kantorovich distance were proposed.
Among them, fast forward selection algorithm is taken into account in this chapter.
The algorithm is a repetitive process where, at each iteration, one scenario is
selected such that the Kantorovich distance between the original and the selected
scenario sets is minimized. The algorithm is terminated when the number of
selected scenarios reaches a predefined number. Finally, probability of the
non-selected scenarios is transferred to the selected scenarios [29].

8.7.2 Financial Risk Indices

As was mentioned heretofore, the uncertain parameters alter the RCS profit from
the expected value and thus, induce financial risk. In this regard, various risk
measures have been introduced to evaluate the financial risk [29]. The most com-
mon risk indices are volatility index (Volln), shortfall probability (SP), expected
shortage (ES), value at risk (VaR), and conditional value at risk (CVaR) to name
just a few. The description and formulation of the mentioned indices are presented
hereinafter.

8.7.2.1 Volatility Index (Volln)

Volln represents the variance of the profit from the expected value. In order to
determine the Volln, the expected value of the difference between the profit and the
expected profit should be calculated. By assuming as the profit of each scenario,
Volln is formulated as
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Volln = s{(Profito, - a{Profitm})z} (8.42)

where ¢ is the expected value calculator and &{Profit,} is the expected profit.
According to the definition of the index, the situation is more risky when Volln
value is higher.

8.7.2.2 Shortfall Probability (SP)

SP represents the cumulative probability of profit smaller than a predefined profit.
By considering the predefined value of profit as 5, the mathematical formulation of
SP can be expressed as

SP,; = P(w|Profit, <n); Vn € R (8.43)

where P is the cumulative probability of profit. As can be observed from the above
formula, the situation is more risky when SP converges to 1. However, if SP value
is near 0, the situation is less risky. Hence, the higher the index, the more risky is
the situation.

8.7.2.3 Expected Shortage (ES)

ES measures the expected profit for the scenarios with the profit less than a pre-
defined value. In other words, ES is similar to SP, except that it calculates the
expected profit while SP measures the probability. The formulation of ES is shown
as

ES, = ¢{Profit, |Profit, <n}; Viy €R (8.44)

According to the above formula, it is clear that the situation is less risky when
ES value is higher.

8.7.2.4 Value at Risk (VaR)
VaR indicates the maximum value of profit within a predefined percent of the worst

scenarios. The worst scenarios have the least values of profit. VaR can be formu-
lated as

VaR, = sup{n|P(w|Profit, <n) <1 —ua}; Voe (0,1) (8.45)
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where sup and o are the supreme value of a set and the predefined percent,
respectively. VaR formulation reveals that the situation is less risky when its value
is higher.

8.7.2.5 Conditional Value at Risk (CVaR)

CVaR donates the expected value of profit in a predefined percent of the worst
scenarios. CVaR can be expressed mathematically as

CVaR, = ¢{Profit,|Profit, <VaR,}; Va € (0,1) (8.46)

As can be expected, the financial risk decreases when CVaR value is increased.

By taking into account the above explanations, both SP and ES are calculated
based on predefined values of profit while VaR and CVaR measure the risk based
on predefined values of probability. Since determining the predefined value of profit
is difficult, it is logical to consider a predefined percent of the most severe scenarios.
Also, making decision based on the expected value is more comparative than the
maximum value. So, the financial risk is represented with CVaR in this chapter.

8.7.3 Scenario Generation

Here, the introduced uncertainties, i.e., fault occurrence and repair time, are con-
sidered to compose the situation of the system in each scenario. Then, several
scenarios are generated by iterating the method presented in this subsection.
A scenario represents the up/down status of elements in the system. Once a com-
ponent fails to operate properly, its status changes from up to down. The time that
the element fails has a direct correlation with the probability distribution function of
the element failure. Various probability distribution functions have been employed
to calculate the time to failure such as exponential, gamma, lognormal, and passion.
Without loss of generality, the exponential distribution function is taken into
account here. The Monte Carlo Simulation (MCS) is taken in use to generate
scenarios. To do so, the following steps represent this approach [30].

Step 1: Time to failure of an element located in section i and feeder f is as
TTFfJ' = 7MTTFf’,' X ln(u) (847)

where MTTF}; is the mean time to failure of the element and u is a
random variable with standard distribution. Time to failure indicates the
time that the element fails to work properly. In other word, the status of
the element changes from up state to down state.
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Fig. 8.31 Up/down status of sample element

Step 2:

Step 3:

Step 4:
Step 5:

Step 6:

After calculating time to failure of the faulted element, the time to repair
of the element is calculated as

TTRf’i = —MTTRfJ' X ln(u) (848)

where MTTRy; refers to mean time to repair of the element.

Steps 1 and 2 are iterated for a period equal to or greater than the length
of horizon study. Then, the up/down status of each element during the
study horizon is determined. As an example, Fig. 8.31 shows the up/
down status of a sample element.

Steps 1-3 are repeated for all elements in the networks.

In this step, the up/down status of elements is compared together to
determine the up/down status of the network. By doing this, the location
of faulted sections, time to failure as well as time to repair of them can be
obtained from the up/down status of system.

Steps 1-5 are repeated for specific number of scenarios.

The following example clarifies the scenario generation to product a scenario.

Example 8.5 The up/down status of the feeder shown in Fig. 8.32 within a 15-year
horizon is determined. Assume that time to failure and time to repair of the elements
are 5 years and 3 h, respectively. To avoid complexity of the solution, it is

fo——————+

2 4
LP1 LP2
@8 :closed CB () :openTS

Fig. 8.32 Representative feeder for scenario generation in Example 8.5
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Table 8.18 Time to failure and time to repair (h) of sections in the sample feeder in Example 8.5

Section | Time to Time to Time to Time to Time to Time to
failure repair failure repair failure repair

1 43,800 5 87,600 1 - -

2 61,320 3 43,800 2 70,080 2

3 175,200 1 - - - -

4 78,840 2 52,560 3 - -

presumed that the random values are calculated and the corresponding time dura-
tions are determined.

To diminish the complexity of the MCS procedure, steps 1 to 3 of MCS is
summarize in this example. So, random numbers are generated for each section and
time to failure and time to repair for sections 1—4 are calculated. Since the length of
study horizon is 15 years, the up/down status of elements should be calculated until
the total time of each section reaches 15 years. Table 8.18 represents the up/down
information of the sections.

According to the table, the first fault in section 1 occurs in time 43,800 h. The
section requires 5 h to be repaired. Since the second fault in this section happens in
time 131,405 h (= 43,800 + 5 + 87,600) which is larger than the length of the
study horizon (131,400 h), just the first fault is considered in the up/down status of
this section. In section 2, the first and the second fault occur in time 61,320 and
105,123 h (= 61,320 + 3 + 43,800), respectively. In section 3, since the first fault
occurs after the length of study horizon, the status of the section remain up state
during the study horizon. Finally, only one fault happens in section 4 which is in
time 78,840 h and it takes 2 h to be repaired. By taking into account aforemen-
tioned points regarding the up/down status of sections, the up/down status of the
sample system can be determined. In this regard, the first fault occurs in section 1 at
time 43,800 h and the repair action takes 5 h long. The second one happens in
section 2 at time 61,320 h and the repair action takes 3 h long. The third fault
occurs in section 4 at time 78,840 h and 2 h is required to be repaired. The forth
and the final fault happens in section 2 at time 105,123 h which 2 h is required to
be repaired.

According to the example, generating time to failure and time to repair is based
on the random values. So, it is possible that different scenarios have different
numbers of fault. In order to achieve the proper accuracy in financial risk assess-
ment, it is necessary to generate enough number of scenarios. When a fault occurs
in the system, the fault management process should be conducted to reduce the
consequences of fault occurrence. Hence, the next section presents the optimum
fault management problem once a contingency occurs.
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8.7.4 Optimum Fault Management Problem

By taking into account the points in Sect. 8.3, the aim of fault management process
is to reduce the interruption duration of the customers once a contingency happens
in the system. Also, the reduction in customer interruption duration is translated to
reduction in customer interruption cost. In this regard, it is necessary to minimize
the customer interruption cost when a contingency occurs in the system [31]. The
optimum fault management problem for each contingency is as

COS[W ZZZZ 1+qlg LkaCDFfuk(dfuk) (8.49)

feF iel jeJ kek

As can be seen in (8.49), the minimization of customers interruption cost is
solved for each contingency. The costumer interruption cost depends on the average
load of customers and the CDF. The average load is constant except that it grows
with a predefined growth rate. However, the CDF relies on the customer inter-
ruption duration. The interruption duration depends on the correlation between the
faulted section and the load point that feeds the customer. In case any RCS is
present between the two, the customers can be isolated from the faulted equipment
via remote switching actions. In this situation, the interruption duration is equal to
remote switching action time. Other customers who can be isolated through manual
switching actions will remain interrupted after locating the precise location of fault
and prior repairing the faulted section. So, the interruption duration for these cus-
tomers is longer than the customers whose service is restored remotely. Finally, the
other customers who cannot be isolated from the faulted section should be kept
interrupted until the faulted equipment is repaired. So, the customers can be restored
in three ways as formulated in the following:

i, > TISFS; NfeFVielVjeJ VkeK (8.50)
i—1
s=2]

(8.51)

Aty > (1T + 7T5)1) [1 -S| wervienyz ek

s=i

(8.52)

i—1 i—1

1=D X5 -3 X7

= pu ’ (8.33)
VfeFViel V2j<i,Vk e K

;nltj > (TTLf, + TTRf 1)
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2j—1 2j—1
dfju = (TTLpi+TTR) | 1= 3 XES = Xp0;
s=i s=i

VfeFYiel,V2j>iVkeK

(8.54)

d > TTLy i+ TTRy;; Nf € F,Vie I,V2j =i,Vk € K (8.55)

The above expressions have the same meaning as (8.3)—(8.8) in Sect. 8.4. In this
regard, to avoid repetition of what was discussed, the explanation of these equations
is avoided. It is worth mentioning that X*¢® and X** are among known parameters
whose values are obtained from the optimal SS placement problem in Sect. 8.4. By
solving the fault management problem, the customer interruption cost is determined
for each contingency. Then, the system interruption cost is calculated by summing
up the customer interruption costs of contingencies within the scenario. Heretofore,
scenario generation and interruption cost calculation methods were introduced. In
the following, an approach is presented to achieve financial risk.

8.7.5 Financial Risk Evaluation Approach

In order to evaluate the imposed financial risk on a DisCo, it is necessary to obtain
the probability density function of its profit. To do so, the profit of SS deployment is
defined as the reduction in system interruption cost before and after SS deployment
minus the SS costs. The step by step framework for deriving PDF of system
interruption cost is shown in Fig. 8.33 [31]. The approach to calculate financial risk
is as follows.

8.7.5.1 Step 1: Preparing Input Data

The first step is to prepare input data including network data, study horizon,
financial assumptions, and CDFs. The network data consists of failure rate and
repair time of equipments, number and types of customers, the average load of
customers, and the location of MSs and RCSs in the network. The location of SSs is
known and it is determined from the optimal SS placement problem presented in
Sect. 8.4. Study horizon is the time that the benefit of SS deployment is studied.
Financial assumptions consist of switch costs, discount rate, and load growth rate.
CDFs for different types of customers as function of interruption duration should be
prepared in this step.
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Fig. 8.33 The proposed
algorithm to calculate the
financial risk under power ¢
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8.7.5.2 Step 2: Scenario Selection

In this step, a scenario is selected from the generated scenarios. The scenario
selection is iterated until the number of sampled scenarios reaches the maximum
number of scenarios.

8.7.5.3 Step 3: Contingency Selection

After a scenario is selected in previous step, a contingency within the sampled
scenario is selected. According to the selected contingency, the location and the
time to repair the faulted section are determined.

8.7.5.4 Step 4: Optimum Fault Management Problem

Once the location and repair time of the faulted section are determined, the fault

management problem is solved in order to minimize the system interruption cost.
To do so, the proposed model of fault management is applied. It is worth
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mentioning that customers interruption duration and interruption costs are outputs
of the problem.

8.7.5.5 Step 5: Determining Probability Density Function

As mentioned heretofore, each scenario comprises of several contingencies within
the study horizon. To calculate the system interruption costs, Steps 3—4 should be
repeated for all contingencies within the sampled scenario. The system interruption
cost for each scenario is the combination of interruption costs. Then, the process
continues from Step 2 to iterate over all generated scenarios. Doing so, the prob-
ability density function of system interruption cost is obtained.

8.7.5.6 Step 6: Calculation of Profit and Financial Risk Index

The previous steps should be conducted before and after installing SSs. The dif-
ference of the two PDFs is the PDF of gross profit of SS deployment. The PDF of
net profit is calculated by subtracting SS costs from the gross profit. Then, the
financial risk of SS placement can be calculated by taking into account the obtained
PDF.

Example 8.6 PDF of RCS profit for the network considered in Example 8.2 is
determined here. To do so, 10,000 scenarios are generated to guarantee accuracy of
the results. It is assumed that « in CVaR index calculation is equal to 0.99. Also, the
location of RCS is determined based on the results of Example 8.2 as represented in
Fig. 8.34.

Applying the presented approach for financial risk assessment, PDF of the profit
is calculated and represented in Fig. 8.35. As can be seen, although the expected
profit is US k$496.64, the profit varies from US k-21 to US k$1800. The wide
range of the profit variation imposes a significant risk which should be taken into
account in decision making.

The cumulative density function of the SS profit is depicted in Fig. 8.36. As can
be seen, in 0.22% of the scenarios (i.e., 22 out of 10,000 generated scenarios),
installing RCS leads to negative profits which means that the DisCo is confronted to
loss.

The results associated with system costs with and without RCS deployment,
RCS profit as well as risk index are provided in Table 8.19. As can be seen, the
expected profit is 4.2 times the RCS cost. Also, the CVaR is 90% smaller than the
expected profit which indicates the RCS deployment strategy as a risky investment
plan.

As was mentioned, installing RCS reduces the interruption costs when a con-
tingency occurs in the system. In this regard, it can be anticipated that the higher
interruption costs prior to RCS installation, the more RCS profit is achieved.
Besides, the interruption cost chiefly depends on several factors such as the number
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Fig. 8.34 Location of installed RCSs in RBTS-Bus4

of fault occurrences, the repair action duration, and the energy curtailment. In this
regard, the impact of the mentioned factors on the RCS profit is scrutinized and the
results are shown in Fig. 8.37. As can be seen, the expected profit is near US k$340
when 16 faults occur or the interruption duration is about 48 h. Also, the profit is
almost US k$650 when 26 faults occur or the interruption duration lasts 77 h.
Furthermore, when the energy curtailment and interruption costs are 185 kWh and
US k$520, respectively, the profit is near US k$270. Also, when the energy cur-
tailment and interruption costs are 385 kWh and US k$1025, respectively, the net
profit is near US k$700. Hence, the finding results indicate the positive relationship
between the mentioned factors and RCS profit. It is worth pointing that although the
RCS installation provides considerable profit, it is possible that the DisCo
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Fig. 8.36 Cumulative density function of RCS deployment profit
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Table 8.19 Financial results (US k$) with and without RCS installation

Costs without RCS Costs with RCS Expected CVaR
RCS | Interruption | Total RCS Interruption | Total profit
- 779.72 779.72 | 118.11 164.96 283.07 |496.64 47.69

encounters with undeniable negative profit (loss). For example, the profit is nega-
tive when the number of faults is less than 7, system remains interrupted for less
than 11 h, total energy curtailment is smaller than 40 kWh, or the interruption cost
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Fig. 8.37 RCS deployment profit versus number of faults, interruption duration, energy
curtailment, and interruption cost

is less than US k$118 (i.e., RCS costs). So, the results reveal that several factors
should be considered for making decision regarding RCS placement.

8.7.6 Sensitivity Analyses

Heretofore, it was revealed that installing RCS imposes significant risk on the
DisCo. Here, the impact of key parameters such as the number of installed RCSs,
length of study horizon, system size, RCS costs, CDF failure rate and repair time of
equipments on the expected profit and financial risk is scrutinized.

8.7.6.1 Number of Installed RCSs

In previous simulations, it was assumed that 21 RCSs are allocated to the system.
Here, in order to study the impact of the number of RCSs, the simulation is repeated
for different number of RCSs. To do so, the number of RCSs is increased from 1 to
30 according to the priority order developed in Sect. 8.4. The expected profit and
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CVaR versus the number of embedded RCSs are depicted in Fig. 8.38. As can be
seen, the maximum expected profit and CVaR are obtained when 21 and 7 RCSs
are installed in the network, respectively. The maximum value of CVaR indicates
the minimum value of financial risk. In this regard, the risk-taker DisCo prefers to
install 21 RCSs in order to achieve the highest profit. However, the risk-averse
DisCo allocates 7 RCSs in order to decline the imposed financial risk. So, the
compromiser DisCo equips the system with any number of RCSs from 7 to 21 in
order to achieve a tradeoff between the profit and risk. So, the DisCos with different
risk awareness may make different decisions to equip their system.

8.7.6.2 Length of Study Horizon

In order to determine the impact of the length of study horizon, the simulation is
repeated by increasing the study horizon duration. To do so, a set of scenarios is
produced for 45 years and the impact of study horizon is observed from 15 to
45 years. For example, in case of study horizon equal to 30 years, the simulation is
accomplished for contingencies occur before the 30th year and other contingencies
are missed. The expected profit and CVaR for different lengths of study horizon are
provided in Table 8.20. According to the results, the expected profit and CVaR are
increased as the study horizon is extended since more contingencies are likely to
occur for longer study horizons. Also, the value of CVaR is more sensitive to the
study horizon than the expected profit. For example, when the study horizon is
increased from 15 to 30 years by 2 times, the expected profit and CVaR are aug-
mented by almost 1.6 and 5.4 times. So, considering financial risk in RCS
deployment planning is essential in studies for short study horizons.
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Table 8.20 Impact of study horizon on financial results

Planning RCS cost Interruption cost Expected profit CVaR
horizon (year) (US k$) (US k$) (US k$) (US k%)
Without With
RCS RCS
15 118.11 779.72 164.96 | 496.64 47.69
20 120.97 940.14 198.15 621.01 134.20
25 12291 1061.96 223.99 715.06 205.38
30 124.23 1155.56 243.78 787.5 257.21
35 125.13 1229.05 259.34 844.58 305.69
40 126.75 1286.89 270.61 889.53 346.40
45 127.16 1331.82 280.16  [924.51 376.63

8.7.6.3 System Size

Since the size of typical networks is much larger than the size of the network used
in this simulation, the effect of system size on the result of SS deployment is
studied. To do so, a few RBTS-Bus4 networks are connected together to achieve
larger networks. It is worth mentioning that the number and location of RCSs in
each of them are based on the presented configuration of RCS in a single
RBTS-Bus4. For example, 42 RCSs are installed in a system comprised of 2
RBTS-Bus4 networks. So, the investment costs of RCS is directly increased as the
size of system is increased. In this regard, the simulation is repeated by increasing
the system size and the results are provided in Table 8.21. As can be seen, the
expected profit and CVaR wane as the system size wax. So, considering the
financial risk is critical in small distribution systems while it is negligible in
practical systems which have larger size (in several orders of magnitude). More
accurately, when the system size is 2 times larger than the test system, the expected
profit and CVaR are about 2 and 6.6 times, respectively. Also, when 4 RBTS-Bus4
networks are joined together, the expected profit and CVaR are near 4 and 20 times,
respectively. Hence, the CVaR is more sensitive than the expected profit to the size
of the system.

Table 8.21 Impact of system size on financial results

Number of RCS cost Interruption cost Expected profit CVaR
connected systems (US k9$) (US k$) (US k$) (US k$)
Without With
RCS RCS
1 118.11 779.72 164.96 496.64 47.69
2 236.22 1560.01 325.94 997.85 315.63
3 354.33 2339.10 482.87 1501.90 625.41
4 472.45 3118.81 642.87 |2004.31 954.86
5 590.5 3898.58 800.99 |2507.02 1345.10




8 Switch Deployment in Distribution Networks 231
510 =C 5000
= /'
238 - "= _ Expected profit 4009 4
\‘“\ Expected profit -
34 - 3018 - P -’
5% - o -’
-~ \“\ < /,
2306 - " 2027 A o
CVaR 7 g
4
-578 1 1036 A CVaR
-850 45 -
1 3 5 7 9 1 3 5 7
RCS cost multiplier CDF multiplier
Fig. 8.39 Profit and CVaR versus RCS costs and CDF multipliers
8.7.6.4 RCS Costs

In order to scrutinize the impact of RCS costs, the simulation is iterated for different
RCS costs and the results are shown in Fig. 8.39. As can be seen, the expected
profit and CVaR are decreased when the RCS costs are increased. This means that
the financial risk is less critical in future since the trend of RCS costs is decreasing.

8.7.6.5 Customer Damage Function (CDF)

Here, the impact of CDF on the result of the simulation is studied. The results are
depicted in Fig. 8.39 by increasing the CDF. As can be expected, higher CDF
increases the expected profit and decreases the financial risk. According to
Fig. 8.39, the expected profit is changed dramatically compared to CVaR. So, it is
necessary to consider the financial risk in the system with less sensitive customers
to interruption events.

8.7.6.6 Failure Rate and Repair Time

There are several factors which have positive influence on the failure rate and repair
time such as geographical conditions and type of lines used in the system, to name
just a few. In this regard, the impacts of failure rate and repair time are individually
studied in this subsection and the results are provided in Fig. 8.40. As can be seen,
the expected profit is increased and financial risk is decreased when the failure rate
and repair time are increased individually. So, considering financial risk is less
important in system which is difficult to access the sections (e.g., mountain) or
difficult to repair the equipments (e.g., underground system). In the other hand,
considering risk in the network with smaller failure rate and repair time is critical.
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Chapter 9 )
Cooperative Distributed Energy e
Scheduling in Microgrids

Mehdi Rahmani-Andebili

Abstract This chapter introduces a multi-time scale model predictive control
(MPC) approach which is stochastically applied in the cooperative distributed
energy scheduling problem of the microgrids (MG). The cooperative distributed
approach is preferred, since a centralized one is not applicable in a competitive
power market environment because it requires all the data of all the MGs, which is
impractical. In this chapter, in order to deal with the variability and uncertainties
associated with output power of the renewable energy resources (RES) and load
demand, stochastic MPC is applied in distributed energy scheduling problem of
MGs. Additionally, considering multi-time scale approach in the stochastic MPC is
capable of simultaneously having vast vision for the optimization time horizon and
precise resolution for the problem variables. Herein, each MG with a different set of
sources is able to transact power with the electricity market and the neighboring
MGs. The numerical study demonstrates that cooperation of the MGs in the dis-
tributed energy scheduling problem is beneficial, and also the multi-time scale MPC
is advantageous compared to the single-time scale MPC in both non-cooperative
and cooperative distributed energy scheduling problems.

Keywords Cooperative distributed energy scheduling - Microgrids
Multi-time scale approach - Stochastic model predictive control (MPC)
Renewables

9.1 Introduction

A microgrid (MG) is a group of interconnected loads and distributed energy
resources with clearly defined electrical boundaries that acts as a single controllable
entity with respect to the grid and can connect and disconnect from the grid to
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enable it to operate in both grid-connected or island mode [1]. MGs have received
considerable attention in the recent years because they can mitigate the growing
problems in energy supplies [2]. In order to efficiently utilize an energy storage in a
MG, the amount of energy generated or consumed in the MG in the current time
step should not be independent of value of the energy generated or consumed in the
previous and next time steps. In other words, the energy scheduling problem of a
MG should be a multi-step decision making problem.

Due to presence of renewable energy resources in a system, the net generation of
system has a lot of variability and uncertainty [3]. Therefore, to operate the MG in
an efficient way, the generation sources and the energy storages must be optimally
and dynamically scheduled considering value of the uncertain states of the MG over
the optimization period as well as the technical constraints of all the sources.

In most of the previously published papers, the energy scheduling and economic
dispatch problems have been investigated applying the centralized optimization
approaches [4-12]. However, the centralized optimization techniques are not
applicable in the restructured electricity industry due to lack of economic and
technical information about all the market players [13, 14]. Moreover, the cen-
tralized optimization techniques are unable to solve huge and complex optimization
problems due to a large number of variables and parameters of the problem [15].
Additionally, they are generally more vulnerable to single point failure that may
stop the entire system from working [16].

Because of the above mentioned issues, distributed optimization techniques have
been proposed to replace the centralized optimization approaches [17-21].
Table 9.1 presents a comprehensive summary of the literature review regarding the
energy scheduling problems with both centralized and cooperative distributed
optimizations. The literature review has been characterized based on several aspects
and criteria. These aspects include type of control strategy (centralized or cooper-
ative distributed), considering or ignoring stochastic nature of the uncertain states of
the problem (solving the problem stochastically or deterministically), adaptively
controlling the problem variables or avoiding it, multi-step or single-step decision
making, multi-time scale or single-time scale approach, the duration of each time
step, and modeling or disregarding the technical factors of the energy storages and
generators.

In order to efficiently utilize an energy storage in a MG, the amount of energy
generated/consumed in a MG in the current time step should not be independent of
the value of energy generated/consumed in the previous and next time steps. This
type of optimization problem is called multi-step decision making problem, since
the value of system states and problem variables in different time steps of the
optimization procedure are correlated.

In addition, in a multi-time scale optimization approach including more than one
time scale, the optimization problem is solved for each time scale. In other words,
the system state and problem variables are changed with different time scales.

As can be seen in Table 9.1, [4—12] have applied the conventional optimization
technique; however, these techniques have several issues that hinder them to be
applied in the power market and smart grid infrastructure. The studies done
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Table 9.1 Summary of the literature review regarding the energy scheduling problems

Refs. | Optimization | Stochastic | Adaptive | Multi Duration | Modeling Modeling

type approach control step of time technical technical
decision | step aspects of aspects of
making energy storage | generator

[4] Centralized v One hour |V

[51 Centralized v One hour v

[61 Centralized One hour v

[71 Centralized v One hour v

(81 Centralized 5- v

15 min

9] Centralized v One hour v

[10] | Centralized v v One hour | v v

[11] | Centralized v v v One hour | v

[12] Centralized v v One hour |V v

[17] | Cooperative One hour v
distributed

[18] | Cooperative One hour v
distributed

[19] | Cooperative v One hour v
distributed

[20] | Cooperative v v One hour v
distributed

[21] | Cooperative v One hour | v v

distributed

in [17-21] include cooperative distributed optimization techniques. Nevertheless,
the above mentioned criteria have not been considered simultaneously in these
studies. In addition, no study has applied multi-time scale approach. Furthermore,
in most of the studies, the duration of the time step has been considered to be about
one hour that is not realistic due to high variation of load demand and renewables
power within a one hour period of time.

In this chapter, the cooperative distributed optimization technique is applied in
the energy scheduling problem of MGs taking into account all of the above men-
tioned criteria and aspects. In order to deal with variability and uncertainties con-
cerned with the power of the renewables and the load demand, stochastic model
predictive control (MPC) technique is applied. In addition, in order to have vast
vision for the optimization time horizon and precise resolution for the problem
variables, MPC is considered to be a multi-time scale MPC (with both small and
large time scales). Herein, the scale of time steps are considered about one-minute
and one-hour and the duration of the optimization time horizon with any time scale
is assumed to be ten time steps. Moreover, the investigated energy scheduling
problem is a multi-step decision making problem, since value of the energy gen-
erated or consumed in different time steps of the optimization time horizon are
correlated. Furthermore, several technical and economic factors for the generators
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and the batteries are considered. In this chapter, a combination of genetic algorithm
(GA) and linear programming (GA-LP) is applied to solve the energy scheduling
problem of each MG. Herein, the GA addresses the non-convexity and nonlinearity
of the problem and the LP quickly finds the optimal solution.

The chapter is organized as follows. In Sect. 9.2, the proposed technique for
solving the energy scheduling problem of the MGs is presented. In Sect. 9.3, the
problem is formulated. The numerical study is accomplished in Sect. 9.4.

9.2 Proposed Technique

In this section, the proposed technique for solving the energy scheduling problem of
the MGs is described.

9.2.1 Stochastic Approach

9.2.1.1 Forecasting the Value of Uncertain States

In this chapter, in every MG, values of the wind turbine power, the PV panel power,
the load demand, and the market electricity price as the uncertain states of the
problem are predicted for every time step of the optimization time horizon and for
every time scale (m+1,....m+ Nt and h+1,...,h+ N7) using neural network
trained with Levenberg-Marquardt back-propagation algorithm available in
MATLAB. Every applied neural network uses the historical data of the uncertain
state as its entries. The set of predicted values for every uncertain state of the
problem in every MG over the optimization time horizon are presented in (9.1).

5)04 pwW
}jmg,t+l s ?mgﬁ+Nr
> PV ... PPV
Xngs = &' et tN S mg € SM9 vr e {SM. 87} (9.1)
8> DL DL ’ ’ )
mg,t+1 mg,t+Nt
~M ~M
i1 e 4Nt

MG = {1,...,NMG}, S™ = {1,...,NM}, $" = {1,...,NH}

9.2.1.2 Modeling Uncertainties of the Forecasted Data

Figure 9.1a illustrates the predicted and measured data for the current time step and
for the past time steps, and also the predicted data for every time step of the
optimization time horizon. As can be seen in Fig. 9.1a, the forecasted data are
compared with the real data (measured data) and value of the error of the
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Fig. 9.1 a Predicted data, measured data, and value of prediction error b Redundancy of the
prediction errors respect to the value of the prediction errors. ¢ Gaussian probability density
function related to the prediction errors

predictions are calculated. Then, as can be seen in Fig. 9.1b, redundancy of the
prediction errors respect to the value of the prediction errors are plotted on a chart.
After that, an appropriate probability density function curve is fitted for the pre-
diction errors, as can be seen in Fig. 9.1c. It is observed that the predication errors
can be precisely fitted on a Gaussian probability density function with an appro-
priate mean (y£") and standard deviation (¢£") [22]. Finally, the curve is divided
into four areas to define four distinct values for the prediction inaccuracy with
occurrence probabilities about 15.87, 34.13, 34.13, and 15.87% related to
—ufr —20F —uFr, —pFr, and —uf" +26%", respectively. The values of the —uf"
and ¢ are updated in the next predictions in the optimization procedure of the
problem.

Although considering more scenarios in every problem results in more accurate
outcomes for the problem, it may lead to an unmanageable optimization problem in
some cases. With presence of renewables, this phenomenon happens because of
short time step (one minute) considered in the optimization procedure of the
problem, and also because of application of MPC (the problem must be optimized
at every time step). Therefore, in order to avoid dealing with an unmanageable
optimization problem, four scenarios corresponding to X, — u — 20" X, —
1E X, 4w X, + i + 26" with occurrence probabilities 15.87, 34.13, 34.13,
and 15.87%, respectively, are considered for every uncertain state of the problem.
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9.2.2 Multi-time Scale Model Predictive Control

MPC as a well-established method in control engineering is capable of controlling a
multi-variable constrained system by taking the control actions from the solution of
an online optimization problem and predicting the system behavior repetitively
[23]. The multi-time scale MPC with one-minute and one-hour scales and ten time
steps as the optimization time horizon is illustrated in Fig. 9.2. As can be seen, at
every time step, the optimization time horizon for both one-minute and one-hour
scales is updated, and then the problem is solved for the updated time horizons;
however, just the signals of the next time steps are accepted as the candidates for
the decision signals. This procedure demonstrates the adaptability and dynamism
features of the MPC.

Next, the decision signals for the problem variables are identified by comparing the

value of one-minute scale stochastic forward-looking objective function (ng m) and

the value of weighted one-hour scale stochastic forward-looking objective function
( x FFL .. h) as can be seen in (9.2). This process is repeated for every minute of the

operation period (1,. . ., 1440). Considering small time scale (one-minute scale) and
large time scale (one-hour scale) in the multi-time scale MPC contribute to have vast
vision in the optimization time horizon and precise resolution in values of the vari-
ables, respectively. A forward-looking objective function with any time scale is
presented in (9.3). As can be seen, the forward-looking objective function is sum of the
value of the time step objective functions over the optimization time horizon.

— Ymg,n1 Fg‘é m IE‘mg h MG M
Ymg,m — { Ymg7h else Vmg es Vm S\ (92)
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[ —© [
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Fig. 9.2 Concept of the multi-time scale MPC
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where

Nt
FIL =" Fpgiio, Vmg € S vr € {s¥ 5"} (9.3)

mg,t
=1

9.2.3 Cooperative Distributed Optimization

In this chapter, a cooperative distributed optimization technique is applied instead
of a centralized optimization approach. Since in a competitive market environment
the economic and technical data about all the market players is not complete,
application of a centralized optimization is not practical [13, 14]. Moreover,
applying the cooperative distributed technique can remove the curse of dimen-
sionality that arises in the optimization of huge and complex problems due to large
number of variables, parameters, and multiple inputs and outputs [15]. In fact,
cooperative distributed optimization significantly reduces the complexity of prob-
lem and makes it scalable. Furthermore, it is robust for single point failure com-
pared to a centralized optimization technique [16].

Figure 9.3 illustrates implementation and application of the cooperative dis-
tributed optimization for a system with five MGs. In this chapter, it is assumed that
just the neighboring MGs can cooperate with one another. Thus, based on this
assumption and the given sequence in Fig. 9.3, first, MG 1 solves its own energy
scheduling problem for the given optimization time horizon with any time scale
(t+1,...,t+Nz,Vt € {SM S"}) considering the proposed electricity price and
available power of MG 2 (as its neighbor) in every time step of the optimization
time horizon. Then, MG 1 reports its proposed electricity price and available power
in every time step of the optimization time horizon to MG 2. To complete one loop
of the cooperative distributed optimization, this process is done for every MG based
on the given sequence, that is, MG 1, MG 2, MG 3, MG 4, and MG 5. Next, the
loop is repeated several times until no significant improvement is observed in value
of the objective function of every MG.

e s eseeeee - MGS <= = Loop of sequence and repetition =

<+ MGI1 === MG2 -= MG3 - MG4 =

Fig. 9.3 Applying cooperative distributed optimization on a system with five MGs
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9.2.3.1 Optimization Tool

The cooperative distributed energy scheduling problem of each MG is a
non-convex problem. In this chapter, a combination of genetic algorithm and linear
programming (GA-LP) is applied to solve the energy scheduling problem of each
MG for one-minute and one-hour scales. In fact, the GA is applied to address the
non-convexity and nonlinearity of the problem and the linear programming is
applied to quickly find the optimal solution. Herein, the GA and the linear pro-
gramming techniques deal with the discrete variables and the continuous variables
of the problem, respectively.

The discrete variables of the problem handled by the GA include statuses of the
generator and the battery in every time-step of the optimization time horizon for the
given time scale, as can be seen in (9.4). Herein, y° indicates the status of generator
that values “0” and “1” mean “off” and “on”, respectively. Also, y? indicates the
status of battery, where values “—1”, “0”, and “1” mean charging, idle, and dis-
charging, respectively. Based on this, the dimensions of the defined chromosome in
the GA are considered to be Nt x 3, as can be seen in Fig. 9.4. Herein, one bit for
indicating status of the generator (“on” or “off”’) and two bits for indicating status of
the battery (charging, idle, or discharging) are considered.

G G
Ymga = { Ymee e Imgayie },Vmg € SY¢ vr e {s¥, 5"} (9.4)
ymgvt e ymg,t+N‘L’

Also, the continuous variables of the problem optimized by the LP include the
value of power of the generator, the value of generated or consumed power of the
battery, the value of transacted power with the neighboring MGs, and the value of
transacted power with the electricity market in every time-step of the optimization
time horizon for the given time scale.

G G

ng,t e ng.tJrN‘r

PB ... PB N MG M o

Yng = Pl@é’l(z; Px§41G+ ‘ 7vmg €S ,Vt € {S s N }

mg.t e mg,t+Nt
M M

ng,t e ng.,tJrN‘r

Fig. 9.4 Structure of the Generator Battery

defined chromosome in GA
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In the following, different steps for applying the GA-LP in the cooperative
distributed energy scheduling problem of a MG for the given time scale
(one-minute scale or one-hour scale) are presented and described.

e Step 1: Obtaining the primary data

Parameters for applying GA-LP: These parameters include mutation probability
of the genes (0*) and size of the population (N4).

Parameters of the system under study: The values of all the system parameters
and value of the defined scenario over the optimization time horizon for every
uncertain state of the problem are obtained.

Initial population: The chromosomes of the population are initialized with
random binary values.

e Step 2: Updating the population

Applying crossover operator: Three crossover points are randomly selected for
every pair chromosomes, and then crossover operator is applied on the two chro-
mosomes to reproduce two new chromosomes as the offspring.

Applying mutation operator: This operator is applied on every gene of every
chromosome of the population with the definite probability 6",

o Step 3: Selecting new population

Evaluating fitness of every chromosome: For every chromosome, the LP is
executed and if all the constraints are satisfied, fitness of the chromosome (the
inverse of value of the forward-looking objective function) is measured.

Applying selection process: As can be seen in (9.6), new chromosomes are
selected via the probabilistic fitness-based selection (PFBS) technique, where fitter
chromosomes are more likely to be chosen. The value of the selection probability of
every chromosome is determined using (9.7), which is proportional to fitness of the
chromosome.

0 sy,
Acp = { 0 HZI:«“BS <run (9-6)
grrss — Sl g0 g _ {fit fitnen} (9.7)
ch - Ma.x(SFit) bl - 2 1y« 4 Nch .

e Step 4: Checking termination criterion

In this step, the convergence status of the optimization procedure is checked.
Based on this, values of the improvements in fitness of the chromosomes of the old
and new populations are measured and if there are no significant improvements in
them, the optimization process is finished, otherwise, the algorithm is continued
from Step 2.
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e Step 5: Introducing the outcome

The consequences include optimal value of the discrete and continuous variables
for every time step of the optimization time horizon.

9.3 Problem Formulation

The goal of each MG is minimizing value of the stochastic forward-looking
objective function over the optimization time horizon with one-minute and
one-hour scales. As can be seen in (9.8), value of the stochastic forward-looking
objective function is determined by summing value of the forward-looking objec-
tive functions weighted by the corresponding occurrence probability. The
forward-looking objective function with any time scale has been presented in (9.3).
The different cost and benefit terms of the time step objective function is presented
in (9.9). These terms include fuel cost of the generator, carbon emission cost of the
generator, start up cost of the generator, shut down cost of the generator, switching
cost of the battery, cost or benefit due to power transactions with the energy market,
and cost or benefit because of power transactions with the neighboring MGs.

minF}% 7mmZZZZF,’Z§, Vox Y x QP x QF Vmg € SMC vt € {S¥, 5"}

SclV SePV ScP o Scf

9.8)
[ rﬁngFCmgl] [vr(lzngECmgl]
+ {(17)3‘5},7[) xv(fg xS’IUCm5:|
+ ,\’ngilx(l—yn )XS‘HDCmg
Fret — L[ et Vmg € SM6 vt e {s" s7}  (9.9)
+ [P;"X’g ’xnﬁw} + Z (PNMG MG )
mg’eSMG mglt mglt
mg'F#mg
where
0 B _ B
Bos = { | mg e M0 v {$Y.sT) (9.10)
ymg t—1 mg t
M M
M TCt Pt >0 M oH
7l _{q)xng‘f P <0 Vre {sM s} (9.11)

In (9.11), ¢ is the coefficient used to determine the price of selling power to the
grid based on the net energy metering (NEM) plan [24]. In the NEM plan, every
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MG can deliver its extra power to the grid and sell it to the market at a lower price
compared to the market price [24].

The value of electricity price proposed by every exporter MG at every time step
is determined based on the marginal cost of the installed generator in the MG.
However, if there is no generator in the exporter MG, the proposed price is
determined based on the marginal cost of the installed generator in the
importer MG.

o(FCS,, +ECS,,)
Mgt = L Ymg € SM6 vr € {sM, 57} 9.12)
, PG,

The fuel cost function and carbon emission function of each generator are
considered quadratic polynomials presented in (9.13) and (9.14), respectively.

2
FCf,ng = Zibfng x (ng_,) +Z£l:ng X (Pff,g,t) +Z3F_‘:ng,Vmg € S0 v e {sM st}
(9.13)

2
ECS,, = " x (Zﬁ;g x (PG, )+ < (PY) +z§';;g> Vimg € $"9 Vi
e {s¥, s}
(9.14)

The value of switching cost of each battery is determined based on value of total
cumulative ampere-hours throughput of the battery in its life cycle and value of the
initial price of the battery. In fact, considering this cost term prevents the battery
from unnecessary switching that is harmful to its life span.

B
s
Swcy, = éT’f’g,vmg c sM6 (9.15)

mg

In the following, the technical constraints of the problem that must be held in
every MG and at every time step of the operation period with any time scale
(one-minute scale or one-hour scale) are presented and described.

Supply-demand balance: The sum of power of generator, the power of wind
turbine, the power of PV panel, the power of battery, the transacted power with the
neighboring MGs, and the transacted power with the electricity market must be
equal to the demand of load in every MG and at every time step of the operation
period with any time scale. Herein, the transacted power with the neighboring MGs
is considered positive if the MG is importing power and it is negative if the MG is
exporting power. Moreover, the transacted power with the electricity market
is considered positive if the MG is purchasing power from the market and it is
supposed to be negative if the MG is selling power to the market.
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G G w PV B B NMG
ymg,t X ngJ + ngj + ngj +ymg,l X ng,t + ng,t + Plr‘n/IgJ

e {s". 5"}

= Dfng.’,,Vmg € SMG,Vt

(9.16)

Power limits of the generator: The maximum power and minimum power limits of
every generator is presented in (9.17).

P <Viga X Pog, S PG, Vmg € 6. vr € S, 57} (9.17)
Minimum up/down time limits of the generator: The duration that the generator is

continuously “on” and “off” must be more than the defined minimum up time and
minimum down time, respectively.

A= > MUT,;,, Vmg € S"¢ (9.18)
A0 > MDT,, Vmg € S"° (9.19)

Power limits of the battery: The installed battery in the MG can act as a load or
generator by being charged or discharged, respectively; however, value of power of
the battery must be in the defined range.
DB B DB MG M GH
—PZ, Sy)‘;g,t x P, <P, Vmge S vt e {s¥, 5%} (9.20)
Minimum up/down time limits of the battery: The duration that the battery is

continuously “on” and “off” must be more than the given minimum up time and
minimum down time, respectively.

AN > MUT),  Ymg € SM6 (9.21)
AL > MDT?  Vmg € SM¢ (9.22)

State of charge limits of the battery: In order to prolong the life time of the battery,
the battery must not be discharged more than the allowable depth of discharge
(DOD). Moreover, the battery has a definite capacity that cannot be charged more
than that.

DOD%, <SOCh, < 100,Vmg € $¥¢ v € {S¥, 5"} (9.23)

Zero-net-energy constraint for the battery in the optimization interval: This
constraint is considered to use the battery only for an energy storage and not for
generation or load source. In other words, the cumulative value of charged energy
must be equal to the cumulative value of discharged energy in every optimization
interval with any time scale.
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(9.24)

Maximum accessible power from a neighboring MG: The power that the MG can
import from a neighboring MG must be less than the available power of the
neighboring MG at every time step of the optimization period with any time scale.

PZZ,G < P':\,,‘;/J,Vmg,mg' € SM6 vr e {sM s}
where
G G G B _
PAV . ymg’,t X (ng’ - ng’,t) +P§1g’ - ng’,t yrB;tg’,t =1
mg't —
yﬁg’,t X (ng’ - Pﬁg’,t) yrb;lg’,t 7é 1

9.4 Numerical Study
9.4.1 Characteristic of the System Under Study

(9.25)

(9.26)

Figure 9.5a illustrates the configuration of distribution system under study that
include five MGs with different set of sources. Moreover, Fig. 9.5b shows the
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Fig. 9.5 a Configuration of the distribution system under study, b Communication topology of

the system
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Table 9.2 Technical data of the generators

Parameter MG 1 MG 2 MG 3
2 (¢/kWh?) 0 0 0

" (¢/kWh) 4.50 7.70 11.96
2" () 0 0 0

2 (kg/kWh?) 0 0 0
ZEm (kg/kWh) 0.610 0.890 1.356
Z" (kg) 0 0 0

P (kW) 20 15 10
PG (kW) 120 100 70
MUTS (min) 5 5 5
MDTC (min) 5 5 5
STUCC (¢) 100 100 100
SHDCC (¢) 100 100 100

Table 9.3 Value of the parameters of the system and problem

NM 1440 ﬁ (kW) 40 MUT? (min) 5

NH 24 PIV (kW) 30 MDT? (min) 5

Nt 10 PIV (kW) 30 78 ($) 0.000

® 0.5 PE (kW) 10 &8 (Ah) 100.000
B (¢/kg) 1 PE (kW) 20 0" (%) 5

W kW) 40 ITSB kW) 30 NGA 50

PY (kW) 40 DOD® (%) 20

communication topology exist between the neighboring MGs. The communicated
data include value of the proposed electricity price and value of the available power
of the MG at every time step of the optimization period.

The technical data of the generators are presented in Table 9.2. Furthermore,
value of other parameters of the system and problem are presented in Table 9.3.
The value of penalty for carbon emission is considered to be about the introduced
value by California Air Resources Board auction of greenhouse gas emissions [25].
The values of the average and standard deviation related to prediction errors of
power of wind turbine, power of PV panel, and load demand are considered about
5 kW and 3 kW, respectively. In addition, the value of the average and standard
deviation related to prediction errors of the electricity market price are considered 5
and 3 ¢/kWh, respectively. Figure 9.6 illustrates the predicted electricity market
price in every minute of the operation period (one day).
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9.4.2 Problem Simulation

The results implementing the proposed method on the test system is illustrated in
Figs. 9.7, 9.8, 9.9, 9.10 and 9.11. As can be seen in Fig. 9.7a and b, MG 1 prefers
to keep its generator off and purchase electricity from the market and import power
from the neighboring MGs between the 1st-405th minute of the operation period.
For the rest of the operation period, MG 1 starts up the generator and exports power
to the neighboring MGs and sells power to the market.

As can be seen in Fig. 9.8a, MG 2 starts up its generator in the 545th minute and
keeps it on for the rest of the operation period; however, in some periods, sets the
power of the generator at minimum power limit and avoids shutting it down. Also,
as can be seen in Fig. 9.8b, before the 945th minute, MG 2 purchases the needed
power from the market and the neighboring MGs and after that, MG 2 mainly sells
power to the market and exports power to the neighboring MGs. Moreover, the

optimal charging and discharging pattern of the installed battery in MG 2 can be
seen in Fig. 9.8a.
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Fig. 9.6 Predicted electricity market price in every minute of the operation period (one day)
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Fig. 9.7 a The demand and power of wind turbine and generator installed in MG 1 at every

minute of the operation period. b The transacted powers with the neighboring MGs and market by
MG 1
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Fig. 9.8 a The demand and power of wind turbine, generator, and battery installed in MG 2 at
every minute of the operation period. b The transacted powers with the neighboring MGs and
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Fig. 9.9 a The demand and power of PV panel and generator installed in MG 3 at every minute of
the operation period. b The transacted powers with the neighboring MGs and market by MG 3
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Fig. 9.10 a The demand and power of wind turbine and battery installed in MG 4 at every minute
of the operation period. b The transacted powers with the neighboring MGs and market by MG 4
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Fig. 9.11 a The demand and power of PV panel and battery installed in MG 5 at every minute of
the operation period. b The transacted powers with the neighboring MGs and market by MG 5

As can be seen in Fig. 9.9a and b, MG 3 defers using its generator until 1002th
minute and, in return, purchases power from the market and imports power from the
neighboring MGs. After that time, MG 3 mostly sells power to the market and
exports power to the neighboring MGs.

The demand level and power of different sources at every minute of the oper-
ation period related to MG 4 and MG 5 are illustrated in Fig. 9.10a, b and in
Fig. 9.11a, b, respectively. As can be seen in Figs. 9.10b and 9.11b, these MGs
import power from the neighboring MGs and the market during most of the
operation period. In addition, the optimal charging and discharging pattern of the
installed battery in MG 4 can be seen in Fig. 9.10a.

The value of total operation cost of the system for the non-cooperative and
cooperative distributed energy scheduling problems by single-time scale MPC
(one-minute and one-hour scales) and multi-time scale MPC are presented in
Table 9.4. As can be seen, applying multi-time scale MPC technique in the energy
scheduling problem of the set of MGs has better result in both non-cooperative and
cooperative distributed optimizations. In addition, cooperation of the MGs in the
distributed energy scheduling problem results in lower operation cost for the set
of MGs.
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Table 9.4 The operation cost of the system ($) for non-cooperative and cooperative distributed
optimizations by single and multi-time scales MPC

Type of distributed Type of Time scale Operation | Batteries usage (%)
energy scheduling MPC cost MG |MG |MG
($/day) 2 4 5

Non-cooperative Single-time | One-minute 318.31 0 0 0
scale One-hour 285.50 66 |83 |66
Multi-time | One-minute and | 281.76 41 66 58
scale one-hour

Cooperative Single-time | One-minute 199.81 0 0 0
scale One-hour 189.12 66 66 66
Multi-time | One-minute and | 184.62 75 100 |75
scale one-hour

Appendix

System parameters and variables

DF Load demand (kW)

DOD? Depth of discharge limit for battery (%)

ECC Emission cost of generator (¢)

F Time step objective function

FfL Forward-looking objective function

FFL Stochastic forward-looking objective function

FCC@ Fuel cost of generator (¢)

MUT Minimum up time of generator or battery (minute)
MDT Minimum down time of generator or battery(minute)
Nt Number of time steps in optimization time horizon
PAY Available power of a neighboring microgrid (kW)
PB PP Power and rated power of battery (kW)

PC PG Minimum and maximu power limits of generator (kW)
PV PW Power and rated power of wind turbine (kW)

PPV pPV Power and rated power of PV panel (kW)

PNMG Transacted power with neighboring microgrids (kW)
P Transacted power with electricity market (kW)
soct State of charge of battery (%)

STUCC Start up cost of generator (¢)

SHDCC Shut down cost of generator (¢)

(continued)
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(continued)

SWcCE Switching cost of battery (¢)

A Fuel cost coefficients of generator

ZEm Emission coefficients of generator

M Predicted value for electricity market price (¢/kWh)
M6 Proposed electricity price of microgrid (¢/kWh)

nB Initial price of a battery (¢)

ubr, gt Mean and standard deviation of prediction errors

Q Occurrence probability of a scenario (%)

Q Market price coefficient based on the NEM plan

i Total cumulative ampere-hours throughput of battery in its life cycle (Ah)

GA-LP parameters

a Acceptance indicator of a chromosome

fit Fitness of a chromosome

NGA Number of chromosomes in population

r A random number between [0,100]

SFit Set of fitness of chromosomes of population

Mt Value of mutation probability of genes (%)

OPrBs Value of selection probability of a chromosome (%)
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Chapter 10 )

Protection System Considerations Skl
in Networks with Distributed
Generation

Gabriel Albieri Quiroga, Carlos Frederico Meschini Almeida,
Henrique Kagan and Nelson Kagan

Abstract This chapter presents methodologies to assess the impact of distribution
generation on electric distribution network protection systems for an integrated
network planning. The distributed generation (DG) alternative is seen as a shift in
the paradigm of energy generation in the world. The adoption of renewable sources
of energy for residential or commercial production brings not only environmental
benefits, but also an opportunity to ease the supplying difficulties found in many
countries. Despite solving some of the energy suppling problems, this paradigm
change caused by the insertion of DG in electric distribution networks can bring
some undesired technical impacts. The typical impacts assessed in the electric
distribution networks planning involve the expansion of the network, such as los-
ses, power factor, line loading, and voltage profiles, among others. However, a
massive insertion of DG may also cause significant problems to the network pro-
tection, which involves the protection planning. In this way, it is necessary to
identify potential protection issues and design means to model, diagnose and
mitigate such issues. This chapter aims at describing the importance of predicting
the potential impacts of high penetration of renewable sources on the protection
system from electric distribution networks, in order to achieve an integrated net-
work planning. Thus, in the beginning of this chapter it is discussed the main
protection system issues that may arise from the high penetration of distributed
generation, such as loss of protection coordination, overvoltage, loss of protection
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sensitivity, directional false tripping, unwanted fuse blowing, beside others. The
chapter than demonstrates possible models utilized to assess those impacts, such as
network modeling and renewable sources modeling, possible approaches such as
the probabilistic and deterministic perspectives, regarding DG allocation algorithms
and the possible methodologies for assessment such as scenarios or sensitivity
analysis. The methodologies evaluate the protection impacts and are based on
several short circuit calculations and for the probabilistic approach, the Monte Carlo
Method. The results shown in the chapter may represent the calculation of such
impacts for electric distribution networks. Those may contain loss of sensitivity,
directional false tripping and unwanted fuse blowing impact calculations for some
networks to illustrate the methodologies. To conclude the chapter, there will be
more discussions regarding the results presented and the potential benefits of
including this analysis on the integrated distribution network planning. In the end,
the chapter illustrates the application of the presented methodologies with a case
study using a real distribution network.

Keywords Distributed generation - Protection planning - Integrated planning

10.1 Introduction

The DG may introduce new possibilities for the electric distribution networks,
while making planning and operation activities more challenging. Among these
possibilities, the DG allows commercial consumers to enjoy an extensive set of
Reliability versus Price combinations. Therefore, the DG could appear as an
autonomous electric distribution network, which meets consumer requirements
such as reactive power and harmonic compensation, peak shaving and power factor
correction, as well as providing reserve generation means and improvement in
reliability [1]. However, the existing electric distribution networks were not
developed to accommodate these new technologies. So, the connection of DG to the
electric system may violate existing planning and operating practices. In this sense,
it should be noted that the integration of DG, as well as other storage devices, in the
distribution networks can alter the existing practice of having a unidirectional
power flow, and this considerably affects the coordination of the utilities’ protection
systems [2—4].

In the context of the DG impact on the utilities’ protection system, several
protection problems, such as unintentional islanding, overvoltage, loss of sensi-
tivity, directional false tripping, and unwanted fuse blowing were identified and
documented [2—4]. Yet, critical issues, such as DG insertion limits, considering the
influence of location, capacity and technology remains unanswered. The criticality
of this issue stems from the enormous infrastructure of the related utilities, which
contribute to making any large-scale change impractical in order to promote the DG
accommodation. Thus, the development of a generic procedure for determining the
impact on energy distribution practices, as well as for the evaluation of the insertion
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limits in terms of location, capacity, and technology of DG becomes interesting.
This will help to facilitate the secure integration of DG units into existing electric
distribution networks by better understanding the requirements and enhancements
needed to achieve this goal. The direct result of this development is the financial
savings expectation to the utilities by capturing the main aspects in the imple-
mentation of DG in existing networks.

The innovation presented in the chapter is based on the use of a probabilistic
methodology to create scenarios for insertion of small scale DG units into the LV
networks and to analyze the possible impacts on the MV networks protection
systems. The typical methodologies used to analysis the DG impact are presented
initially and serve to guide the evaluation of possible impacts on the protection
system. Commonly, these methodologies are based on a deterministic analysis,
evaluating the impact of a few large generating units, usually with a nominal power
of more than 1 MW as seen in [5-9].

In the chapter the approach is different, showing that the same analysis tech-
niques can be used to assess the impacts of the massive penetration of small
distributed generation units scattered over the network. Thus, the innovation relies
on the probabilistic approach given to the problem, since in the planning of dis-
tribution networks; it becomes interesting to have a methodology capable of sim-
ulating different scenarios of penetration of small DG units, usually with a nominal
power between 1 kW and 1 MW.

10.2 DG Protection Impact Assessment
for an Integrated Planning

In the context of the electric distribution networks old paradigm, network planning
consists of solving the impacts caused by the demand growth. In this way, planning
horizons are used to assess the impact on electric distribution networks that may
arise in electric distribution networks, such as voltage problems and line over-
loading issues. They usually range from 5 to 10 years, and consider horizontal and
vertical demand projections.

These projections consist of statistical studies to predict the demand growth.
Thus, in the planning problem, the planner evaluates the impact of the demand
growth, within a planning horizon, and projects necessary reinforcements, expan-
sion of existing networks or the development of new networks in order to solve
those issues.

The typical impacts assessed in the electric distribution networks planning are
line loading, voltage profiles, and losses. The usual solutions to these impacts
consist of cable replacement, transformer replacement, installation of voltage reg-
ulators, installation of capacitor banks and even the construction of new feeders and
new substations, among others, in order to meet the new demand for electric power.
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However, in the new smart grid paradigm, there are other factors that must be
taken into account in electric distribution network planning, such as distributed
energy resources (DER), more specifically the appearance of the DG. So now, in
addition to the projection of demand growth, there is a necessity to project the
supply growth, which derives from the DG insertion.

It is known that DG causes not only impacts to the network expansion, but also
to the network protection. Therefore, during the network planning, it is important to
quantify the actions to solve protection issues. The main impacts to the protection
of electrical distribution networks, which are discussed in this chapter, are loss of
protection coordination, overvoltage, loss of protection sensitivity, directional false
tripping, and unwanted fuse blowing. Thus, the main electric distribution network
protection planner actions to solve such impacts are the elaboration of plans that
aim at the possible sensitivity adjustment of protection devices, the installation of
protection devices with directional function, the replacement of fuses, the modifi-
cation of coordination and selectivity studies, and even the development of
restriction of DG size in certain network areas. This chapter presents the main
impacts caused by DG to the protection of electrical distribution networks,
methodologies to assess such impacts, electrical models that aid in the assessment
and possible approaches that can be used in the process of protection planning.

10.3 Potential DG Impacts on the Protection System

The main protection system issues that arise from the high penetration of distributed
generation must be defined and addressed in order to determine the limits of DG
insertion that can trigger it. Thus, the main issues that come with the DG insertion
are discussed in this section. Those are loss of protection coordination, loss of
protection sensitivity, directional false tripping, overvoltage, unwanted fuse blow-
ing and unintentional islanding. This section also presents a generic method to
evaluate the impact of DG on the protection of electric distribution networks. In
order to guide the impact assessment, each protection problem is discussed indi-
vidually, making possible the determination of the insertion limits that trigger the
issues addressed.

10.3.1 Loss of Protection Coordination

In normal operation, protective devices are coordinated so that the primary pro-
tection scheme operates before the rear scheme. The interconnection of DGs
increases the level of short circuit. Depending on the initial coordination parame-
ters, along with the location, size and type of DG, it is possible to reach a situation
where the coordination cannot be achieved anymore. In such cases, the back-up
protection device operates before the primary protection, resulting in inadequate
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operation for part of the network loads. The main protective devices used in the

protection coordination are fuses, reclosers and relays. To illustrate the loss of

coordination, it will be shown the effects of the DG in the fuse-fuse coordination.
The Following Two characteristics determine the behavior of a fuse:

e The fuse minimum melting (MM);
e The total clearing (TC).

The MM determines the time from the initiation of an overcurrent to the instant
arcing begins inside a fuse. The TC is the total opening time of a fuse from the
occurrence of an overcurrent until the fuse stops current flow. This is the sum of link
melting and arcing time. To illustrate this behaviour, it is shown in Fig. 10.1 how
fuse-fuse coordination is traditionally done in aradial distribution system without DG.

In order to be coordinated for any fault downstream of fuse 2, fuse 2 should
operate before fuse 1. This would be achieved if TC characteristic of fusel 2 is
below the MM characteristics of fuse 1 by a safe margin for any fault. The coor-
dination graph shows that the fuses are coordinated for all fault currents within the
coordination range. The coordination range is the range between the minimum and
maximum fault current for any fault downstream of fuse 2.

The DG impact into the protection system point of view derives from the change
in the values of fault currents flowing in the system for any given fault. Even a
“back-flow” is possible to happen, resulting in other problems such as directional
false tripping and unwanted fuse blowing, which will be addressed in the following
sections. Due to the insertion of the DG, the minimum and maximum fault current
values may increase from source side due to all upstream DG [10]. In this case,

Fig. 10.1 a Schematic (a) SOURCE
diagram of a traditional
fuse-fuse coordination
without DG. b Coordination
graphs of a traditional
fuse-fuse coordination
without DG FAULT
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Fig. 10.2 a Schematic (a) DG
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the back-up protection ends up opening, instead of the main protection. To illustrate
this behaviour, it is shown in Fig. 10.2 how fuse-fuse coordination can be affected
in a radial distribution system with DG.

In order to be coordinated for any fault downstream of fuse 2, fuse 2 should
operate before fuse 1. The coordination graph shows that the fuses are no longer
coordinated for all fault currents within the coordination range, since the maximum
fault current may sensitize fuse 1 instead of fuse 2. Depending on the configuration
of the system, loss of coordination may occur between any pair of protection
devices, i.e., recloser-fuse, fuse-fuse, and so on. In each case, the minimum short
circuit current causing the loss of coordination helps in identifying the penetration
level allowed for the installation of DGs.

10.3.2 Directional False Tripping

The DG installation on electric distribution networks can lead to directional false
tripping of protection devices. This problem is the malfunction of protective devices
caused by unwanted operation of a protection device and the disconnection of a
“healthy” part of the system which is unnecessarily interrupted. The directional
false tripping is easily observed in mesh systems supplied by a same source.
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Moreover, this problem is relevant in radial systems, since it allows the fault to be
supplied by DG installed in adjacent side electric distribution networks.

To illustrate such a situation, consider two parallel radial electric distribution
networks fed from the same source (same HV/MV substation transformer). Without
the DG, if a short circuit occurs in one of the two electric distribution networks, the
short circuit will be completely fed by the utility substation transformer and the
other electric distribution network will not contribute to the short circuit current as
shown in Fig. 10.3. The current direction in the circuit breaker CB 2 will not be
reversed and its relay will not operate in response to the short circuit in the electric
distribution network EDN 1.

Alternatively, if a DG is installed in the “healthy” electric distribution network
(END 2), the contribution of END 2 to the short circuit current in END 1 will not be
null, as shown in Fig. 10.4. In this case, if the circuit breaker CB 2 has a protection
tripping curve faster than circuit breaker CB 1, the circuit breaker CB 2 can respond

Substation Bus-Bar
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B2

I_I EDNZ
L

Fig. 10.3 Short circuit current through an adjacent electric distribution network without DG,
EDN: electric distribution network
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Fig. 10.4 Short circuit current through an adjacent electric distribution network with DG, EDN:
electric distribution network
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Fig. 10.5 Short circuit current through an adjacent electric distribution network with DG,
considering recloser effects, EDN: electric distribution network

faster to short circuit in the electric distribution network END 1, unnecessarily
interrupting electric distribution network END 2.

Additionally the directional false tripping can occur in the presence of reclosers.
To illustrate that, consider two electric distribution networks supplied by the same
source, as shown in Fig. 10.5. Both electric distribution networks contain
circuit-breakers and reclosers to prevent unnecessary fuse blowing downstream due
to temporary faults. If there is no DG in electric distribution network EDN 2, both
circuit breaker CB 2 and recloser RA 2 will not respond to a fault in the electric
distribution network EDN 1. However, if there is a DG in the electric distribution
network EDN 2, the DG will contribute to the short circuit current. This contri-
bution to the short circuit current can be perceived by the recloser RA 2, which
responds rapidly to current levels above its tripping level. Thus, the recloser RA 2
may operate before the recloser RA 1, causing an unnecessary interruption of a
“healthy” portion of the system.

10.3.3 Unwanted Fuse Blowing

Fuse saving strategies are usually applied by utilities to prevent fuses from burning
due to temporary faults. For this purpose, the automatic reclosers de-energized and
re-energized the line, in order to disable fuse blowing. This strategy is widely
adopted in electric distribution networks with suburban or rural characteristics.
Many faults are temporary by nature, so the role of the recloser is to try to eliminate
the temporary faults without the need of a permanent interruption, in addition to
saving fuses, avoiding unnecessary fuse blowing.

However, the DG installation in electric distribution networks could affect the
coordination between the recloser and the fuses due to the additional DG
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Fig. 10.6 a Fault contribution upstream the fuse F2 without DG. b Fault contribution upstream
the fuse F2 with DG

contribution to the short circuit current. In such cases, the coordination between
recloser and fuses may be lost and fuses may burn before the recloser operation. Or
both the fuse may burn and the recloser may operate at the same time, adding more
difficulty to fault location.

To illustrate such a situation, consider two circuits. The first circuit is a radial
network supplied by a single source. The second circuit is the same network, but
this time supplied by both the source and a DG as shown in Fig. 10.6.

Without the DG, a fault upstream the fuse 2 is supplied only by the network
source and no coordination between the recloser R1 and fuse F2 is needed, since
there is no current passing through fuse F2. In the second situation the short circuit
contribution comes both from the network source and the DG. This may cause a
loss of coordination between the recloser R1 and fuse F2 and to fuse F2 to blow
without necessity.

10.3.4 Loss of Sensitivity

The addition of a DG in a distribution system may reduce short circuit current
contribution from the network main source. This affects the operation of network
protection devices, such as circuit breakers, reclosers and fuses, disturbing their
ability to “sense” the fault current. This aspect is quite dependent on the type, size
and location of DG.

To illustrate the DG installation impact on the protection devices sensitivity,
consider a generic radial system, as shown in Fig. 10.7. A generic radial system
without the installation of any DG is shown in Fig. 10.7a. In this network, under
short circuit conditions, the short circuit current is completely supplied by the
utility’s substation. In this case, the network protection relay must be set to respond
to the lowest short circuit current value.

It is shown in Fig. 10.7b the same circuit with a DG installed. For a fault after
the DG location, the short circuit current is supplied by both the substation and the
DG. The contribution of each source will depend on the impedances between the
source and the point of failure.
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Fig. 10.7 a Fault supplied only by the main source. b Fault supplied by both the main source and
the DG located between the substation and the fault. ¢ Fault supplied by both the main source and
the DG located afterward the fault

For a fault located between the substation and the DG, as shown in Fig. 10.7c,
the contribution of the substation to the short circuit current is independent of DG.
The extreme effect of DG is to decrease the network’s sensitivity to a limit where it
does not “sense” the fault.

10.3.5 Opvervoltage

The main problems related to overvoltage and associated with DG include [4, 11]:

e Temporary overvoltage due to phase-to-ground short circuit conditions caused
by improper application of DG grounding or coupling transformer connection.
e Overvoltage originated on the utility and adjacent environment, which affects
the distributed generation scheme.
Resonant overvoltages that may arise during islanding conditions.
Surges that may arise due to high power injection by distributed resources.
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Temporary overvoltages occur due to ground faults, caused by improper DG
grounding conditions or coupling transformers. The correct dimensioning of the
lightening arresters can prevent damage to the DG installation caused by the high
voltage surges originated in the adjacent environment.

Resonant overvoltages can arise due to the interaction between the combination
of the coupling transformer and the DG inductance and the system capacitance.
This is a complex operational problem, which must be approached in a different
context using detailed dynamic simulation programs such as EMTDC or
EMTP. Similarly, overvoltages caused by a high power injection by the DG are also
a complex operational problem, which must be approached in a different context.

There are five typical transformer connections widely used for the coupling of
DG to utility systems, as seen in Table 10.1.

For the first three connections, the main advantages are:

There are no impacts on the coordination of the utility neutral relay;
Any ground fault on the DG side will not be perceived by the utility’s protection
system, i.e., coordination involving ground faults will not be affected.

However, the major concern of coupling transformer connections with the
ungrounded side of the utility is that after opening the utility network’s circuit
breaker due to a permanent fault, the system will be powered by a non-grounded
supply. This submits the undamaged phases to surges that will approach the line
voltage level of the system.

Regarding the fourth type of connection, grounded wye (MT)/Delta (DG), for a
ground fault on the DG side, the utility does not contribute to the zero sequence
current. This prevents the utility protection to act without necessity. However, the
disadvantage of this type of connection is that it acts as a source of zero sequence
current, thus establishing a zero sequence current for faults involving the ground in
the distribution system. This can significantly impact the coordination of the relay
responsible for the utility neutral protection.

In addition, the zero sequence current flow in the coupling transformer primary
(utility side) will cause a high current to flow in the secondary (DG side) and this
may lead to heating problems in the transformer. One solution commonly used to
overcome this problem is the installation of ground impedances on the neutral side
of the primary side, in order to limit the excessive flow of current. In such cases, the
ground impedance must be high enough to limit current flow but low enough to
ensure the effectiveness of DG grounding.

Table 10.1 DG coupling

X MV—Utility side LV-DG side
transformer connections
Delta Delta
Delta Grounded Wye

Wye

Delta

Grounded Wye

Delta

Grounded Wye

Grounded Wye
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Another impact refers to the presence of unbalanced loads in the distribution
circuit. Normally, the currents of these loads return to earth through the utility
transformer neutral grounding, located in the substation. With the insertion of a
coupling transformer with this type of connection, the current due to this imbalance
will be divided between the utility transformer and the DG coupling transformer.
During drastic unbalance conditions, such as fuse blowing at electric distribution
network branches, the charging capacity of the coupling transformer can be
reduced. The use of grounded wye connection on the utility side and a delta
connection on the DG side has the advantage of limiting overvoltages that may be
caused when the utility’s circuit breaker opens, thereby preventing lightning
arrestors and loads from being damaged.

The fifth type of connection, the grounded wye (MT)/grounded wye (DG side),
has the advantage that surges will not be originate when the utility circuit breaker
opens (Considering the neutral solidly grounded). However, the major disadvantage
is that this type of connection functions as an undesirable source of zero sequence
current, similar to that described for the prior connection type.

10.4 Electric Models

The objective of this chapter is, in addition to demonstrate possible impacts of the
DG in the protection of distribution networks, offer alternatives for the analysis of
such impacts. With this purpose, power flow and short circuit tools are used. Thus,
in order to evaluate the impact of the insertion of distributed generators into dis-
tribution networks, it is necessary to model the distribution networks as well as the
prosumers. The models used will be presented below.

10.4.1 DG Electric Modelling

The methodology considers the use of traditional tools for electric distribution
networks analysis such as the power flow and short circuits simulation. It is known
that the contribution of inverters during faults is not zero and varies by design. For
most fault conditions, several inverters continue supplying current to the network,
subsequent to a fault for a period ranging from 4 to 180 ms. For most
vendor-specific inverter models, the inverter current during the fault may range
from 100 to 200% of the inverter-rated current [12, 13]. Thus, the DG model for a
source coupled by inverters, considers a short circuit contribution of 2 times its
nominal current ratio, while the ratio considered for rotating machines is 10 times
its nominal current as defined in [13].

The short circuit sequence model used to represent the inverter based DG
considers no contribution from negative or zero sequence as seen in [14], while
model used to represent the machines considers its connection, such as delta or wye.
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Fig. 10.8 Client characteristic load curve

10.4.2 Network Electric Model

The methodology require the electric model of network equipment such as MV and
LV networks, MV and LV distribution transformers, protection devices and con-
sumers as represented in [15]. The MV and LV networks are modeled based on the
symmetrical components theory of a PI circuit model. The MV and LV transformer
are modelled based on the symmetrical components theory.

The clients in the distribution network model are based on load curves. The load
curves are calculated based on the clients typical load behavior and their monthly
energy consumption as seen in [15]. A residential characteristic curve is detailed in
Fig. 10.8.

10.5 DG Impact Methodologies

The methodologies to assess the impacts on the network protection are based on the
risk of not considering the DG contribution to the fault currents. To asses this risk, it
is necessary to evaluate each of the impacts previously introduced, with and without
the presence of the DG. Thus, the next sections will present generic procedures to
assess the penetration limits of DG for each one of the protection issues raised.

10.5.1 Generic Procedure for Assessing the DG Limits
for Loss of Coordination

The objective of this section is to develop a generic procedure to guide the
determination of the penetration limits of DGs in terms of size, location and
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technology from the point of view of the loss of coordination. The procedure
consists in five steps as it follows.

1. In a given system, define different coordination paths. A coordination path may
be defined as the set of protection devices located along the circuit path from the
main circuit breaker to the protection device located further downstream of the
network. Since most of the side fuses (or sub-side) are selected to be similar (in
order to facilitate maintenance), the number of coordination paths are limited.

2. Do the coordination study and the construction of the coordination diagrams for
the different coordination paths determined for the network studied.

3. Observe the smallest short circuit current value at which loss of coordination can
occur between the coordination paths. This current value may be the intersection
of the coordination curves of two successive protective devices. It should be
noted that such a current value may not exist if there is no intersection between
the coordination curves. In these cases, there will be no limit to the installation
of any DG capable of promoting the violation of the system coordination.

4. Define candidate points where the DG could be installed. Insertion limits should
be calculated for these specific points. The candidate points could be defined by
means of planning studies, whose objective would be the optimal allocation DG,
or determined by the consumers, or even be located randomly to calculate the
risk of the DG installation.

5. Simulate the installation of the DG at the candidate points. Increasing the DG
penetration level until it achieves the smallest short circuit current that promotes
loss of coordination. It is necessary to repeat this step for every candidate point.
To understand the influence of the DG technologies it is necessary to repeat this
step to other technologies such as: synchronous generators, inverter generators
and induction generators.

10.5.2 Generic Procedure for Assessing the DG Limits
for Directional False Tripping

The objective of this section is to develop a generic procedure to guide the
determination of the limits of DG insertion in terms of size, location and tech-
nology, from the point of view of protection devices directional false tripping. The
procedure is very similar to the one developed for coordination and can be sum-
marized as follows.

1. Define the different coordination paths in the system under study.

2. Conduct the coordination study and the construction of coordination diagrams
for the different coordination paths determined for the study system, without
considering the presence of DG.

3. Define candidate points where DG can be installed.
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4. Simulate the DG installation in the candidate points by increasing the DG
insertion level until the lowest short circuit current that prompts the occurrence
of the directional false tripping problem occurs. It is necessary to repeat this step
for every candidate point.

10.5.3 Generic Procedure for Assessing the DG Limits
Jor Unwanted Fuse Blowing

The purpose of this section is to develop a generic procedure to guide the deter-
mination of the DG insertion limits, from the point of view of the unexpected
burning of fuses. The procedure can be summarized as follows.

1. Define the different coordination paths in the system under study.

2. Run the protection study and construct the coordination diagrams for the
coordination paths without considering the DG installation.

3. Observe the short circuit level for which unexpected fuse blow-off may occur.
This current value is obtained by observing the intersection between the fast
recloser curve and the arc extinction curve of the fuse.

4. Define the candidate points for the installation of DG.

5. Simulate the DG installation at the candidate points, and then increase the DG
insertion level until the current reaches the value for unexpected fuse firing. It is
necessary to repeat this step for every candidate point.

10.5.4 Generic Procedure for Assessing the DG Limits
Jor Loss of Sensitivity

The objective of this section is to develop a generic procedure to guide the
determination of the DG insertion limits from the point of view of loss of sensi-
tivity. The procedure can be summarized as follows.

1. Determine the pick-up currents (three-phase and phase-to-ground) for the each
circuit breaker and relay.

2. Determine the protection zone of each protection device. This can be approxi-
mated by the point with the lowest short circuit current that is protected by the
protection device.

3. Define the candidate points where a DG could be installed. Insertion limits
should be calculated for these specific points. The candidate points could be
defined by means of planning studies, whose objective would be the optimal
allocation DG, or determined by the consumers, or even be located randomly to
calculate the risk of the DG installation.
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4. Simulate the DG installation in the candidate points and establish the fault
conditions for the points defined in Step 1. Then increase the DG insertion level
until it reaches the level of sensitization (pick-up value). It is necessary to repeat
this step for every candidate point. To understand the influence of the DG
technologies it is necessary to repeat this step to other technologies such as:
synchronous generators, inverter generators and induction generators.

10.5.5 Generic Procedure for Assessing the DG Limits
Jor Overvoltage

As can be seen from the discussion presented in Sect. 10.3.5, not grounding the DG
coupling transformer exposes the network and consumers connected to it to dan-
gerous temporary overvoltage levels. On the other hand, solid groundings may limit
the sensitivity of the protection to unacceptable levels during ground faults. The
increase in ground impedance must meet these two aspects simultaneously. That is,
increasing the ground impedance can be done in such a way that the dimensioned
value allows the overvoltage levels to be acceptable (about 25% higher than the
nominal value) with a small reduction in sensitivity (around 5%) for the smallest
fault current. Reference [3] suggests that a reactor installed at the interconnection
transformer ground with a typical value between 1.0 and 1.5 of the zero-sequence
impedance value of the transformer itself may be the point of equilibrium between
the overvoltage levels and loss of protection sensitivity. A generic procedure to
guide the determination of the DG insertion limits from the point of view of
temporary overvoltages can be summarized as it follows.

1. Define the candidate points where the DG can be installed, including the details
for the interconnection transformer and for grounding.

2. For not grounded coupling transformers the second step is to define the DG
protection scheme, which must ensure that the DG is disconnected from the
system before the circuit breaker opening, for each candidate point.

3. For grounded connections, the second step is to simulate the phase-to-ground
short circuit and calculate the percentage change in ground fault sensitivity. If
the sensitivity change is greater than 5%, insert a grounding reactor into the
coupling transformer grounding.

4. For grounded connections, the third step is to calculate the overvoltage due to
the insertion of the grounding reactor and check if it is within the acceptable
range (e.g., 25% higher than the nominal voltage). Then repeat the second step
until the sensitivity and overvoltage level are acceptable, for each candidate
point.
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10.6 Insertion Level Approaches

The methodologies presented take into account the concept of raising the pene-
tration levels as means to increase the generator power or the allocation of more
generators in the distribution networks. This occurs in order to achieve the pene-
tration limits that are harmful to the protection system. The following sections will
demonstrate mechanisms for raising these levels of penetration with both deter-
ministic and probabilistic bias.

10.6.1 Deterministic DG Allocation Approach

In the deterministic DG allocation approach the raising of the penetration levels
means the increase of a DG power installed at the network. But this only is not
enough to evaluate the DG impact, since the location is an important variable to the
analysis.

Thus, in the deterministic DG allocation approach, the location of the DG in
determined by arbitrary means. One possibility of the DG allocation proposition is
to define the candidate points by means of planning studies, whose objective would
be the optimal allocation of DG to promote the minimization of losses and to
improve the voltage profile.

For the generic procedure for assessing the DG limits for loss of sensitivity, one
can allocate the DG in the place of greater impact. In that way one can get the most
conservative analysis possible. The conservative point can be defined analytically.
Thus, an example of how to calculate the optimal position for the generator allo-
cation is shown in Fig. 10.9.

It is shown in Fig. 10.9 a circuit breaker and its protection area, the defined point
of shortest short circuit current, as point B and a generator unit, with delta wilding,
to be allocated without a coupling transformer, in point A. The equivalent impe-
dance of the supply is defined as Zsupply (Ohm), the DG impedance is defined as

. A B
- | i =,

Zsupply FAULT

ZoG

Fig. 10.9 Example of conservative allocation for loss of sensitivity impact analysis
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Fig. 10.10 Short circuit model

Zdg (Ohm) and the line impedance is defined as Zline (Ohm/km). For a three-phase
short circuit at point B, the short circuit model is shown in Fig. 10.10, the equation
that defines the short circuit current seen by the circuit-breaker is given by (10.1)
and the maximum impact point is defined in (10.2).

I \%
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2 line line line * Lsupply LINE supply
@ ( ZpG ) tax ( Zpg ) + ( ZpG +ZL1NE * L +ZS“I’I’U’)
(10.1)
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For the generic procedure for assessing the DG limits for directional false
tripping and unwanted fuse blowing, one can allocate the DG in the place of greater
impact. In that way one can get the most conservative analysis possible. The
conservative point of connection in this case is always the closest point to the fault
between the protection device and the point of highest short circuits current pos-
sible. Thus, an example of optimal position for the generator allocation is shown in
Fig. 10.11.

In the deterministic approach the increase in the DG insertion level can be
interpreted as the growth in the DG power. It should be noted that increasing the
DG size, the coupling transformer inherently increases the short circuit capacity.
The impedance of the DG as well as the transformer’s connection can be estimated
according to procedures seen at [11].

Despite its practicality, this approach is not always enough to assess the influ-
ence of the DG location on the impacts addressed. In this way, the following section
deals with this topic with a statistical point of view to define the influence of the
location of DG on the impact of DG on network protection.
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10.6.2 Probabilistic DG Allocation Approach

In the probabilistic DG allocation approach the raising of the penetration levels
means the increase of DG installed at the network. The DG insertion level can be
determined as a factor of the prosumer energy consumption. In that way, any
generic procedure to define the network DG insertion limit is a sensitivity analysis.

In the deterministic DG allocation approach, the location of the DG in deter-
mined randomly among the network consumers. The first possibility of DG allo-
cation proposition is to define the same probability to each DG consumer as a
candidate points.

Other possibility is, in order to model the assignment of the DG to distribution
networks clients, create a probabilistic assumption based on the attractiveness of the
DG alternative for each client. Such assumption is capable of creating a distinction
on the prosumers probability of adoption. In [16, 17], this assumption is made
observing the distribution network consumer disparities, such as type of load (rural,
residential, commercial, industrial, etc.) and energy consumption. Therefore the
attractiveness function developed was sensitive not only to the client’s economic
profile, represented by its consumption, but also to financial benefits from the
installation of distributed generation, which may vary for different types of clients.
It is shown in Fig. 10.12 the probability of DG adoption for each consumer of a real
network, represented by a probabilistic attractiveness function.

The purely probabilistic simulation, as presented before, is not necessarily
accurate, since the location of the DG influences in a relevant way the impacts
assessed. In that way, two simulations with the same insertion level can result in

Fig. 10.12 Example of a Probability
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insertion limits as seen in [16] ot
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Fig. 10.13 Example of the
Monte Carlo method
utilization in a sensitivity
analysis
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different results. At this point the Monte Carlo method can help significantly. The
Monte Carlo method is utilized by the massive random sampling of the simulated
fault currents, in order to obtain the distribution of these currents to a certain level
of penetration. An example of the Monte Carlo method utilization in a sensitivity
analysis for the loss of sensitivity assessment can be seen in Fig. 10.13.

10.7 Case Study

The case study presents an application of the methodologies discussed in the pre-
vious sections. Thus, this section illustrates the application of the presented
methodologies, considering a probabilistic approach to the analysis of the impact
caused by the massive penetration of small DG units scattered across a real net-
work. The main characteristics of the case study are:

e It uses a real electric distribution network, composed by MV and LV networks
and all its possible prosumers.

e [t addresses three main issues presented in this chapter that are the directional
false tripping, the unwanted fuse blowing and the loss of sensitivity.

e [t considers the DG electric models addressed in the sections before, both the
inverter coupled and the rotating machine models.

e The approach used is the probabilistic approach where probabilistic assump-
tions, based on the attractiveness of the DG alternative for each client, are
utilized.

e The scenarios simulated correspond to a sensitivity analysis considering the
insertion levels of 0, 1, 3, 5, 10, 20, 30, 40 and 50%.
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10.7.1 Electric Distribution Network Data

The network data utilized to build the MV and LV networks was obtained from a
Brazilian utility’s GIS system. The case study’s simulation environment was a real
electric distribution network, which has approximately 26.589 bus bars, 9.481
clients, the peak demand of 10.5 MW and 154 km of extension. The electric dis-
tribution network is shown at Fig. 10.14. The blue lines show the MV networks
while the red lines detail the LV networks.

Vargem
Grande : e _
Paulista JiF . o0 Teveres Cotia

Fig. 10.14 Real electric distribution network used in the case study



276 G. A. Quiroga et al.

10.7.2 Assessment Methodology

In the study case, three main issues are assessed. They are the directional false
tripping, the unwanted fuse blowing and the loss of sensitivity issues.

For the loss of sensitivity issue, several short circuits are calculated at points
downstream of the device protection zone, in scenarios with and without the
presence of DG. Then, the minimum short circuit current is compared to the pick-up
current of the protective device. In the case where a minimum short circuit current
is inferior to the pick-up current, there may be a loss of sensitivity problem.

The circuit breaker of the electric distribution network is used to exemplify the
case study made for the loss of sensitivity. The circuit break is located in the
beginning of the electric distribution network and can be seen in Fig. 10.15.

For the directional false tripping and the unwanted fuse blowing issues, a short
circuit calculation is made at a point upstream of the protective device in scenarios
with and without the presence of DG. Then, the reverse short circuit current is
compared to the pick-up current of the protective device. In the case where a reverse

0600DIVGRO1E

-
0600IVGRO1E

Fig. 10.15 Circuit breaker located in the beginning of the electric distribution network
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Fig. 10.16 Fuse located in a branch in the middle of the electric distribution network

short circuit current is higher than the pick-up current, there may be a directional
false tripping or an unwanted fuse blowing problem, depending on the protective
device observed.

The circuit breaker of the electric distribution network is also used to exemplify
the case study made for the directional false tripping issue. A fuse used to protect a
network branch is used to exemplify the case study made for the unwanted fuse
blowing issue. The fuse is located in the middle of the electric distribution network
and can be seen in Fig. 10.16.

10.7.3 DG Electric Model

In the study case, only small scale DG where considered. The DG installed capacity
where defined by the prosumer chosen to install the technology. The DG installed
capacity should be such that the energy produced would meet the prosumer
monthly energy consumption.

Furthermore, both technologies presented in this chapter, inverter coupled and
rotating machine, were assessed in this case study.
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10.8 Results

The first analysis studied was the loss of sensitivity assessment. This analysis
compared the minimum short circuit current, calculated for a contingency down-
stream of the electric distribution network circuit breaker, to its pick-up current.

For this analysis, it was observed that for any insertion level tested, the inverter
coupled DG technology does not raise any issues. Meanwhile, the minimum short
circuit current seen for the rotating machine technology crosses the circuit breaker
pick-up current threshold between the insertion levels of 5 and 10%. This indicates
that if all the DG connected to the electric distribution network where rotating
machines, the circuity breaker could have a possible loss of sensitivity problem.
This would indicate that for such insertion level, it would be advised that a new
protection study would be done, to determine the necessity of adjustment of the
protection device sensitivity. These results are detailed at Fig. 10.17.

The second analysis studied was the directional false tripping assessment. This
analysis compared the maximum reverse short circuit current, calculated for a
contingency upstream of the electric distribution network circuit breaker, to its
pick-up current.

For this analysis, it was observed that the maximum reverse short circuit current
seen for the inverter coupled DG technology crosses the circuit breaker pick-up
current threshold close to the insertion level of 30%. This indicates that if all the DG
connected to the electric distribution network where inverter coupled, the circuity
breaker could have a possible directional false tripping problem. Meanwhile the
rotating machine technology crosses the threshold for a significant small insertion
level, between 0 and 3%. This would indicate that for such insertion level, it would
be advised that a new protection study would be done, to determine the necessity
the installation of protection devices with directional protection. These results are
detailed at Fig. 10.18.
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Fig. 10.17 Circuit breaker loss of sensitivity assessment
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Fig. 10.18 Circuit breaker directional false tripping assessment
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Fig. 10.19 Fuse directional false tripping assessment

The third analysis studied was the unwanted fuse blowing assessment. This
analysis compared the maximum reverse short circuit current, calculated for a
contingency upstream of the electric distribution network fuse, to its pick-up
current.

For this analysis, it was observed that the maximum reverse short circuit current
seen for the inverter coupled DG technology crosses the circuit breaker pick-up
current threshold close to the insertion level of 10%, while the maximum reverse
short circuit current seen for the rotating machine technology crosses the threshold
between the insertion levels of 1 and 3%. This would indicate that for such insertion
level, it would be advised that a new protection study would be done, to determine
the necessity the fuse replacement. These results are detailed at Fig. 10.19.
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Chapter 11 )
Stability of Distribution Networks Skl
with Wind Turbines

Ahmed Rashad, Salah Kamel, Francisco Jurado
and Shady H. E. Abdel Aleem

Abstract This chapter presents modeling of generators that are used in wind farms
such as squirrel cage induction generators (SCIG), doubly fed induction generators
(DFIG) and, permanent magnet synchronous generator (PMSG). Installing wind
farms must fulfill some rules or requirements. These requirements are developed by
transmission system operator in order to guarantee the continuity and stability of the
interconnected grid. This chapter presents the stability of two different types of
combined wind farms. The first type is based on a combination of SCIG and DFIG
wind turbines and known as combined wind farm (CWF). CWF collects the benefits
of SCIG and DFIG where SCIG is cheaper compared with DFIG and PMSG.
Despite DFIG is expensive, DFIG is more stable than SCIG. CWF is more suitable
for developing countries. The second type is based on a combination of modern
generators DFIG and PMSG and known as modern combined wind farm (MCWF).
MCWEF collects the benefits of DFIG and PMSG where DFIG features by its ability
to control the active power independently of reactive power while PMSG can
operate used for small and medium powers. This chapter discusses the impact of
CWF and MCWEF on the stability of interconnected electric distribution networks
during single line to ground and double lines fault as examples of unsymmetrical
and during three phase fault and three phase open circuit fault as examples for
symmetrical. Also, this chapter discusses the impact of CWF and MCWF on the
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stability of interconnected electric distribution networks during different types of
operation conditions of electric distribution networks such as voltage sage and over
voltage.

Keywords Squirrel cage induction generator - Double fed induction generator
Permanent magnet synchronous generator « Wind farm

11.1 Introduction

By the end of twentieth century, the utilization of wind energy system
(WES) became one of the important aims of all countries. This is because WES
depends on natural source so that it can keep national income by reducing the
expenditure on fuel that is used in traditional method of electricity production. The
importance of WES can be tangible if that the total installed capacity of WES is
increased from 236,733 MW by the end of 2011 to 456,486 MW by the end of
June 2016 [1]. Figure 11.1 shows the total capacity installed from the end of 2011
till the end of 2016 [1].

The utilization of WES differs from one country to another. According to
statistics and information of World Wind Energy Association (WWEA) China,
USA, Germany, India and, Spain, produce 67% of total global wind capacity.
Figure 11.2 shows the wind power production of several countries [1].

Figures 11.1 and 11.2 show the rapid increase in wind power production in last
five years. This could be due to the great and rapid progress in wind technology.
The wind turbine rating can be taken as an example of this progress; where in 1980
wind turbine rating began with 50 MW and reached 10 MW by 2012 [2].
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r 250000
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Fig. 11.1 Total capacity installed from the end of 2011 till the end of 2016
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Fig. 11.2 Wind power production of several countries

This chapter begins with modeling of SCIG, DFIG and, PMSG then modeling of
two different types of combined wind farms. One of them is combine wind farm
(CWF) based on combination between SCIG and DFIG while the another one is
modern combine wind farm (MCWF) based on combination between DFIG and
PMSG. The of chapter studies the stability of electric distribution networks inter-
connected CWF and MCWF during different types of grid faults.

11.2 Modelling of Wind Turbines

The wind turbines compose of two main components: drive train and, generator.
Drive train or wind turbine rotor consists of the hub, blade and, gear box.
Figure 11.3 shows the main components of wind turbines. The blade is used to
convert the wind energy to rotational motion. The hub is used to connect the blade
to the gear box. The gear box is used to convert the speed of wind turbine rotor to
the rated speed of generator.

The ratio between speed of turbine rotor and speed of generator rotor is called
the gear box ratio (G,) and is given by.

o, (1—15)120f
G, =—2=~ """ 11.1
w1 P(JJT ( )
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Fig. 11.3 Main components Drive train
of wind turbines

Generator

Stator

where fis the frequency, P is the number of pair, S is the slip of the generators, w,
is the generator speed and, w7 is the speed of turbine rotor. § it is usually 1% for
induction generator and zero for synchronous generators. The drive train model of
wind turbines is expressed by [2, 3].

d
Tye — T, = 2Hg% (11.2)

where T,,.. is the mechanical torque of generator shaft, T, is the generator electrical
torque, and, H, is inertia of generator shaft [2, 3].

From (11.1) it can be observed that any change in wind speed will change the
rotor speed and hence fluctuation in the generated power. This fluctuation in
generated power should be reduced as much as possible. The first step starts with
controlling the speed of wind turbine rotor (w7). w7 is controlled by two means stall
effect and pitch angle control system. The simple definition of stall effect is phe-
nomena where aerodynamic efficiency decreased with the increase of wind speed.
The good design of blade according to stall effect will save the wind turbine from
damage if the wind speed exceeds the rated speed.

The pitch angle (f5) can be defined as the angle between the wind speed direction
in wind farm site and the blade’s axis. The pitch angle is shown in Fig. 11.4.
Figure 11.5 shows a simple diagram of pitch angle control system.

The output power (P) and rotors speed w, is measured the compared with
reference of P and w,. The error is injected to pitch angle actuator to generate the
new pitch angle. The blade will rotate with the new pitch angle to produce the
desired output power and w,.

f plays an important role in the value of the power that can be capture from the
wind. This captured power from the wind can be given by



11 Stability of Distribution Networks with Wind Turbines 285

Fig. 11.4 Angle plays an
important role control system

Fig. 11.5 A simple diagram
of pitch angle control system

1
Py :EPAVSCp(/la[))) (11.3)

where C, is the power coefficient and is function into parameters: pitch angle f tip
speed ratio 4. The tip speed ratio is the between the rotor speed and wind speed.
Both of The C, and A can be calculated from

116 Y
C,(7B) = 0.517( ——0.4f - S)e S +0.0068 (11.4)
116 1 0.035
_ _ 11.
A A+0.088 41 (1L.5)
g =l (11.6)
= ,

where m, is the rotor speed and [, is the blade length or rotor radius.

The wind energy market divided the wind turbines into two types according to
rotational speed: fixed speed and variable speed wind turbines. The expiration fixed
speed wind turbines mean that the wind turbines generate its maximum power at
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Fig. 11.6 The division of wind turbines according to the rotational speed

certain wind speed. Over this speed, the output power of fixed wind speed will start
to decrease. The main advantages of fixed wind speed are cheap easy to maintain
robust and simple. Variable wind speed wind turbines can operate over wide range
of wind speed. In this type, the rotor speed can be adjusted in accordance with wind
speed. This advantage allows extracting maximum power at different wind speed
[4, 5]. SCIG is the most suitable type of generators for fixed speed wind turbines.
Wound rotor induction generators (WRIG) and PMSG are the most suitable gen-
erators for the variable speed wind turbine. WRIG include two types: WRIG with
variable rotor resistance and WRIG with rotor converter (doubly fed induction
generators DFIG). Also, PMSG can be divided into directly driven PMSG wind
turbines and, indirectly driven PMSG wind turbines [2]. Figure 11.6 shows the
division of wind turbines according to the rotational speed.

11.2.1 Fixed Speed Wind Turbine

As mentioned before, SCIG is the most suitable type of generators for fixed speed
wind turbines. Figure 1.7 shows a Schematic diagram of SCIG wind turbines

Gear box
Two winding
transformer

| Capacitor bank I

Electrical distribution system

Fig. 11.7 Schematic diagram of SCIG wind turbines (SCIG-WT) interconnected electric
distribution networks
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(SCIG-WT) interconnected electric distribution networks. From Fig. 12.7 it can be
observed that the SCIG-WT is connected to electric distribution networks through
two wind transformer. The active power is transferred from directly the stator to the
system through the transformer. The capacitor bank is used for reactive power
compensation. This simple construction features by reliability and cheapens. The
direct connection between the SCIG-WT and the interconnected system allows
exchanging the active and reactive power between them. SCIG-WT has two mean
disadvantages: the active power of SCIG-WT fluctuates with the variation of wind
speed, also and SCIG-WT draws a significant amount of the reactive power from
the system during any system disturbances [6, 7].

11.2.2 Variable Speed Wind Turbine

Variable speed wind turbine can operates at wide range of wind speed due to its
construction. There are two types of generators that are suitable for this mission:
WRIG and PMSG. The operation of variable speed wind turbine depends mainly on
power converters. Power converters give the ability to control the active power
independent of reactive power. Using power converters increase the cost of variable
speed wind turbine.

11.2.2.1 WRIG Wind Turbines (WRIG-WT)

The main idea of WRIG-WT is controlling the rotor current in order to control the
rotor speed and hence increase the range of operation speed. This aim can be
achieved two means: controlling the rotor resistance or using DFIG with the power
converter. Figures 11.8 and 11.9 show the Schematic diagram of WRIG with
controlled rotors resistance and DFIG-WT respectively.

As shown in Fig. 11.8, the value of rotors resistance of WRIG with controlled
rotors resistance is varied using variable resistance. The value of variable resistance

Gear box

Electrical distribution system

Fig. 11.8 Schematic diagram of WRIG with controlled rotors resistance
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Gear box
Three winding
transformer ;¢

Electrical distribution system

( ac/dc/ac Control System )

Fig. 11.9 Schematic diagram of DFIG-WT

is controlled through a controlled converter. The main disadvantage of this type is
the increased in rotor losses due to the additional resistance, the increase in cost due
to the additional power converter and WRIG with controlled rotors resistance is still
used capacitor bank for reactive power compensation. Figure 11.9 shows that the
power of DFIG-wind turbines is transmitted to the system through three winding
transformers. Two winding transfer the power from the stator wind to the system
while the third winding transfer the power from the rotor to the system through ac/
dc/ac converter. The ac/dc/ac converter consists of two voltage source converters
(VSC) connected to each other through dc bus. One of the two VSC connects the
rotor to the dc bus and called rotor side converter (RSC). The other VSC connects
the dc bus to the third winding of the three winding transformers and it called grid
side converter (GSC) (Fig. 11.7).

Rotor side converter (RSC) control system is shown in Fig. 11.10a. RSC is used
to control the output power and voltage at the at point of common connection
(PCC). The output can be controlled by adjusting the quadratic component of rotor
voltage (V,,). V,, can be obtained by comparing the total output power (the power
at grid terminal+power losses) with the reference power (P,.p). The voltage at PCC
can be controlled by adjusting the direct component of rotor voltage (V,,). V,, can
be obtained by comparing the grid voltage (V,) with the reference voltage (V).
Both V,, and V,, are injected to a PI current regulator to reduce the error [8—10].

Figure 11.10b shows the grid side converter (GSC) control system. GSC is used
to control or regulate the voltage of the dc bus. This function can be accomplished
by comparing the voltage of the dc bus with the dc reference voltage. The PI current
regulator is used to reduce the error [8—10].
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11.2.2.2 PMSG Wind Turbines (PMSG-WT)

The main advantage of this type is the indirect connection between PMSG and the
system. The stator of PMSG is connected to ac/dc/ac converter then the output
power is transferred to the system through two winding transformer. This type of
construction decreases the impact of system disturbances on PMSG-WT.

The rotor of PMSG-WT can be divided into two types: direct-drive synchronous
generators and converter driven synchronous generator. Figures 11.11 and 11.12
show a Schematic diagram of direct-drive synchronous generators and converter
driven synchronous generator respectively [11].

As shown in Fig. 11.11, in the direct-drive synchronous generators type the rotor
of the generator is directly connected to the rotor of the wind turbine. Due to this
direct connecting, a low-speed multi-pole synchronous is used. The main advantage
is decreasing the mechanical losses and cost because there is no need to the gear box.
As shown in Fig. 11.12 the difference between direct-drive synchronous generators
and converter driven synchronous generator is the gear box. The gear box allows
using lower pole and high-speed synchronous generator [11-13]. The control system
of PMSG is similar to the control of DFIG where the rotor side converter (RSC) is
used to adjust the speed of PMSG’s rotor and the grid side converter is used to adjust
the voltage of dc bus. RSC adjust the rotor speed in order to extract the maximum
power from the wind at operating wind speed and delivered it to the dc bus. GSC
adjust the dc bus voltage in order to guaranty the unity power factor and keep the
voltage at the common connection point on is steady-state level [11-13].

Blade

Stator Two winding
transformer v, &I,

RSC + GSC —(ZD > / \

4 ui
T T Ved I L
ac/de/ac Control System | Electrical distribution system

Fig. 11.11 Schematic diagram of direct-drive synchronous generators
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s &1, r Ve &l *
| Rrsc ] % GSC y
\ & O, T N 4 ‘ui

't
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/dc/ac Control Syst ——
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Fig. 11.12 Schematic diagram of converter driven synchronous generator
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11.3 Mathematical Modeling of Wind Turbine Generator

11.3.1 Modeling of Induction Generator

This section presents the mathematical modeling of wind turbine induction gen-
erator and wind turbine synchronous generator. The modeling of induction gen-
erator plays an important role in the controlling system of wind turbines. As it can
be noted from the previous section, the control system of wind turbines depend on
the direct and quadratic components of current and voltage of the system. It is
already known that rotational motion of generators is resulting from the interaction
between the flux of stator ¢, and flux of rotor ¢,. The Schematic diagram of
induction generators is shown is Fig. 11.13. The first step to conclude the mathe-
matical modeling of induction generator, let us assume that the stator rotates in the
space with speed equal to the synchronous speed w; and the rotor rotate in the same
space, but with speed equals to ®,. The slip S represents the relation between wy
and w, and can be denoted by
W5 — O

=— 11.7
e (11.7)

SWg = Wy — Wy (11.8)

¢, and ¢, rotate with the same speed of stator and rotor respectively. Both of ¢,
and ¢, consist of two elements: self-inductance of their coils (L, and L,) and the
magnetizing inductance (L,,). L, and L, composed of two other parts: the leakage
inductance between stator and rotor coils and the magnetizing inductance (L;; and
L;, respectively). The equations describing ¢, and ¢, can be concluded by using
vector representation of the parameters of stator and rotor (voltage and current) as
shown [2-5]:

Fig. 11.13 Schematic g
diagram of induction %‘ﬁ;
generators \
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The equivalent circuit of induction generator can be drawn (according to the
synchronous speed) by using (11.7)—(11.10). Figure 11.14 shows the equivalent
circuit of induction generator according to the synchronous speed [2-5].

The equivalent circuit of induction generator is shown in Fig. 11.14 can be used
to determine the voltage and current of stator and rotor.

V=R AP by o b, (11.11)
V=R Ap &, s, (11.12)

where p = % and R, i and v are resistance current and, voltage, the of the stator and
rotor

The next step is converting the equation of flux and voltages from the vector for
to direct and quadratic transformation from; as

Gas = Lisias + Linias + Liniar (11.13)
®ys = Lisiqs + Ligs + Linigr (11.14)
bar = Liriar + Liniar + Linigs (11.15)
by = Lirigr + Linlgr + Linigs (11.16)
Vas = Ryias +phay — 05y (11.17)

Vgs = Ryigs + PPy + 504, (11.18)
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Fig. 11.15 Equivalent circuit of induction generator according to the steady-state farm

Var = Ryl + gy — Sogby, (11.19)
Vgr = Riigr +pdg, + Swsdy, (11.20)

The second step represents converting the vector model to steady-state model.
This step can be obtained by applying the next steps:

1. Putting p = % =0
The vector quantities
V2
3. Transfer the flux linkage ¢ to leakage reactance X where X=w ¢

2. The steady stat quantities =

These steps can be applied to (11.9)—(11.11) and the results are as
Vs = Rl 4 jIXi5 + jLu X (11.21)
V., = =R, — jl,sXis + jLusX, (11.22)

These equations can be used to draw the steady-state equivalent circuit of
induction generator in general. Figure 11.15 shows the equivalent circuit of
induction generator according to the steady-state farm [2-5].

The equivalent circuit that is shown in Fig. 11.15 can be used for both SCIG and
DFIG. The main difference between SCIG and DFIG is the rotor of SCIG is short
circuit while the rotor of DFIG is connected to power converter. The magnetizing
parameters can be neglected for simplicity and to obtain the equivalent circuit of
SCIG and DFIG as shown in Fig. 11.16a and b.

11.3.2 Modeling of Synchronous Generator

In synchronous generators (SG), the rotating flux or magnetic field is produced by
two manners: dc excitation system and permanent magnet filed as shown in
Fig. 11.17.

In these two types because the flux generation depends on dc excitation system
or permanent magnet field so that both of the quadratic components of rotor current
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Fig. 11.16 Equivalent circuit of induction generator in steady-state: a SCIG and b DFIG
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Fig. 11.17 Schematic diagram of synchronous generators: a SG with dc excitation system and
b SG with permanent magnetic field

and rotor voltage will be zero. In mathematical modeling of SG, both dc excitation
system and permanent magnet field are presented by source current (/) and the rotor
speed is equal to synchronous speed w,=w;. Also. the magnetizing inductance is
decomposed to it direct and quadratic components 1, =14, +I,,. The mathematical
equation of SG can be obtained by rewriting the equation from (11.13) to (11.20) as
[2-5, 14]

b5 = —Lisias — Lamias + Lamly = Lamly — ias(Lis + Lam) = Lamly — iasLiam
(11.23)

where lldn1:lls+ldm
bgs = —Lisiqs — Lgmiqs = —igs(Lis + Lgn) = —igsLign (11.24)

where g, =i+ gm
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Fig. 11.18 Equivalent circuit of SG: a equivalent circuit of the direct component and b equivalent
circuit of the quadratic component

Vds = p(,bds — Ryigs — wr¢qs = pd)d; — Rgigs — wriqsqum (1125)
Vgs = —Ryigs +pdys + 0y = —Rsigs +pd s + O Lamly — 0pigsLigm  (11.26)

Equations (11.25) and (11.26) can be used to investigate the equivalent circuit of
SG as shown in Fig. 11.18. The equations of steady-state and the steady-state
equivalent circuit of SG can be concluded by the same way that is used in induction
generators. The steady-state equations of SG are given by [2-5, 14]

Vas = —Rylas + Xqly
Vqs = delf - Rslqs - X(lIdS

where X, = @, Lign, Xgm = @,Lgn and Xg = w,Ligy,

11.4 Performance of Electric Distribution Networks
Interconnected Wind Farm

This section presents some examples of electric distribution networks intercon-
nected to different types of wind farms. These wind farms are based on different
types of generators or based on a combination of these generators. In this case, a
25 kV electric distribution network consists of 10 buses to deliver power to four
loads of 1 MW. The studied wind farm is connected to bus B1. The performance of
electric distribution network interconnected the studied wind farm is examined
during different types such as unsymmetrical faults and, symmetrical faults. The
fault occurs at Bus B6 and occurred at a time equal to 25 s and end at a time equal
to 25.15 s. The studied electric distribution network is shown in Fig. 11.19.



296 A. Rashad et al.

120KV/25KV B7 Bs B2 Bl
D | F—QDH
I [y J
510 & & 25KV/575V
I{,/ < < —
e s Wind farm - -
~ 5]
< <

B4 B3

AP O/AMST
AP O/AMST

IMW IMW

IMW IMW

Fig. 11.19 The studied electric distribution networks

11.4.1 Studied Case of Induction Generator Wind Turbines

The studied wind farm produces 9 MW at 9 m/s wind speed. The example studied
the different wind farms: SCIG wind farm (SCIG-WF), DFIG wind farm
(DFIG-WF) and, combined wind farm (CWF). The combined wind farm
(CWF) composed of a combination of SCIG wind turbines (SCIG-WT) and DFIG
wind turbines (DFIG-WT). This combination allows collecting the advantages of
SCIG and DFIG. The SCIG-WT is cheap and DFIG-WT is more stable and pro-
vides voltage sport to the system.

11.4.1.1 Impact of Single Line to Ground Fault

Figure 11.20 shows the impact of a single line to ground fault on the studied
system. The voltage is mentored at load buses B3, B4, B8 and B9. Also, the
voltage, active and, reactive power of the three wind farms is also mentored at point
of common connection (PCC).

From the results, it can be observed that the three wind farms improve the
voltage of load buses. The voltage of nearest load buses B3 and B4 to the wind
farms has been improved more than the furthest load buses B8 and B9. The CWF
represents an intermediate case between SCIG-WF and DFIG-WF where SCIG-WF
has the lowest parameters’ values (voltage, active power and reactive power at
PCC) and DFIG-WF has the highest parameters’ values. Also, it can be observed
that the improvement of wind farms depend on the type of generator that is used in
wind farms. The improvement of CWF is much better than the improvement of
SCIG-WF and is near the improvement of DFIG-WF. This is because the CWF
collects the advantage of SCIG and DFIG.

11.4.1.2 TImpact of Line to Line Fault

In this case, the impact of line to line fault on the performance of the three wind
farms (SCIF-WF, DFIG-WF and, CWF) is studied. Figure 11.21 shows the impact
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Fig. 11.20 Shows the impact of single line to ground fault on the studied system

of single line to line fault on the studied system. As it can be observed from
Fig. 11.21, the impact of line to line is tougher than the impact of single line to
ground fault on electric distribution networks. Despite the severity of the line to line
fault, three wind farms improve the voltage of load buses. The voltage of nearest
load buses B3 and B4 to the wind farms has been improved more than the furthest
load buses B8 and B9.

CWF shows the best performance compared with SCIF-WF and DFIG-WF.
The CWF has the highest values of active power and, voltage. The CWF does not
suffer from complete disconnection such as SCIG-WF or instantaneous discon-
nection such as DFIG-WF. The CWF remains connected to electric distribution
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Fig. 11.20 (continued)

networks and injects its active power to the system during fault time. This is
because the CWF collects the advantage of SCIG and DFIG.

11.4.1.3 TImpact of Three Phase Fault

Figure 11.22a—c show that voltage at B3 and B4 has the best improvement when
the system is interconnected to CWF compared with SCIG-WF and DFIG-WF.
This performance of voltage at B3 and B4 is due to the impact of generators that are
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Fig. 11.21 The impact of single line to ground fault on the studied system

used in the wind farm on the electric distribution networks. This impact can be
explained by monitoring the performance of the three wind farms at the PCC.

Figure 11.22 shows the impact of three-phase fault on the studied system. As
shown in Fig. 11.22d the active power of both SCIG-WF and DFIG-WF drop to
zero while the active power of CWF is still greater than zero. This means that the
SCIG-WF is disconnected from the system and DFIG-WF suffers from instanta-
neous disconnection while CWF is never disconnected from the grid. From
Fig. 11.22e and f it can be observed that CWF has the highest voltage’s value at
PCC because it has the highest injected reactive power at PCC. This reactive power
is used to regulate the voltage and at the same time compensate reactive power
demanded by SCIG wind turbines in CWF. This performance prevents CWF from
complete or instantaneous disconnection from the system such as SCIG-WF and
DFIG-WF.
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Fig. 11.22 The impact of three phase fault on the studied system

11.4.1.4 TImpact of Open Circuit Fault

In this section, the impact of the open circuit faults on the electric distribution
networks interconnected different types of the wind farms (SCIG-WF, DFIG-WF
and CWF) is discussed. The open circuit faults can be occurred due to the failure of
one or more phase of the circuit breaker or failure of one or more phase of cables
and overhead lines. In this case, a three phases open circuit fault occurs at B8 and
remains for 0.15 s. Figure 11.23 shows the impact of the open circuit on the studied
system. However, the wind farms improve the voltage of buses B3, B4 and B9
during the fault duration time. Figure 11.23 also shows that the CWF can almost
provide the same performance of DFIG-WF during open circuit fault.
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Fig. 11.23 The impact of open circuit on the studied system

11.4.2 Studied Case of Modern Wind Turbines

Nowadays DFIG and PMSG wind turbines represent the modern technology in
wind energy market. In this case, the impact of these modern types on the previous
electric distribution networks is studied (Fig. 11.19). In the previous case, the
combination has been accomplished between SCIG and DFIG to collect their
advantage. In this case, the combination is between PMSG and DFIG to collect
their advantage. The wind farm obtained from this combination is known as modern
combined wind farm (MCWF). The impact of the three wind farms (PMWF,
DFIG-WF and, MCWF) on studied electric distribution networks is examined
during different types of faults.
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Fig. 11.24 The voltages at the load buses during line to line fault

11.4.2.1 Line to Line Fault

Figure 11.24 shows the voltages impact of line to line on the electric distribution
networks during line to the line fault. As shown in Fig. 11.24, three wind farms
improve the voltage of load buses especially buses B3 and B4. Also, the active
power of MCWF at PCC is greater than the active power of PMWF and lower than
the active power of DFIG-WF. The voltage of the voltage of MCWF at the PCC is
greater than the active power of DFIG-WF and lower than the active power of
PMWE. The MCWF presents an intermediate stage between PMWF and DFIG-WF
and collects the advantages of both of them.



11 Stability of Distribution Networks with Wind Turbines 303

Voltage in pu
. =
Voltage in pu

0.15 02 0.25 03 035 04 015 02 025 03 035 04

Time in s Time in s
(g) Voltage of PMWF at PCC (h) Voltage of DFIG-WF at PCC
2 10 =P of DFIG-WF,
§ ¢ 1 =P of MCWF
2 z =P of PMWF
g 5 6 N\
i R N
s 2 \
> £
<
2 0
0.15 0.2 025 0.3 035 04 015 02 025 03 035 04 045 05
Time in s Time in s
(1) Voltage of MCWF at PCC (j) Active power of the three wind farms
10
Z
>
Z ———
g
5
H
2 4
£ 5 [==Q of DFIG-WF|
)51 =(Q of PMWF
= o[=QorMCWF
015 02 025 03 035 04 045 05

Time in s

(k) Reactive power of the three wind farms

Fig. 11.24 (continued)

11.4.2.2 Three Phase Fault

The impact of the three wind farms (PMWF, DFIG-WF and, MCWF) on studied
electric distribution networks is examined during three phase fault. The three phase
fault occurs at a time equal to 0.2 s, has duration times equal to 0.15 s and is
cleared at a time equal to 0.35 s. The results are shown in Figs. 11.25 and 11.26.

Figure 11.25 shows the voltages at the load buses during the three phase fault.
The voltages of B3 and B4 are almost the same. Also, the voltages of B8 and B9 are
almost the same. As shown in Fig. 11.25, the three wind farms improve the voltage
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Fig. 11.25 The voltages at the load buses during the three phase fault system

at the nearest load buses. Figure 11.25 shows that after fault clearance the MCWF
returns to stability much faster that PMWF and DFIG-WF with lowest voltage
distortion. This performance of voltage at load buses can be explained by moni-
toring the voltage, active and, reactive power of the three wind farms at the PCC.

Figure 11.26 shows the voltage, active and reactive power of PMWF, DFIG-WF
and MCWF at the PCC during the three phase fault. From Fig. 11.26 it can be
observed that the distortion in voltage at load buses in cases of PMWF and



Voltage in pu

Voltage in pu

Time in s

(a) Voltage of PMWF at PCC

0.35
Time in s

(¢) Voltage of MCWF at PCC

0.3

Stability of Distribution Networks with Wind Turbines
2
1 2
=
°
0 g
i
1 >
-3.15 0.2 0.25 0.3 0.35 0.4 0.‘45 0.5 0.15

Active power in MW

305

0.45

0.35

0.25 0.3 0.4 0.5

Time in s

(b) Voltage of DFIG at PCC

. 7\
‘ /

=P of PMWF

5 =P of MCWF Voo W
1o l=D o DFIG-WF
02 025 03 035 04 045 0.5
Time in s

(d) Active power of the three wind farms

= 15
< =Q of PMWF
S 0 == of MCWF
= =Q) of DFIG-WF. I
5 5 :
3
2
o 0 7777777
2
g s N/
~ h
10 i 1
0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5
Time in s

(e) Reactive power of the three wind farms

Fig. 11.26 The impact of three phase fault on the modern wind farms interconnect studied

DFIG-WF after fault clearance is due to the disturbance in voltage of these wind
farms at PCC. As shown in Fig. 11.26 the MCWEF has the highest value of active
power equal to 1.3 MW and the highest value of injected reactive power during the
fault. Active power of MPWF and DFIG-WF produce are equal to 0.6 MW. After
fault clearance, both active and reactive power of PMWF suffers from large dis-
turbance. This disturbance in the voltage, active and reactive power of PMWF
causes the disturbance in voltage at the load buses.
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Fig. 11.27 The impact of the open circuit on the studied system

11.4.2.3 Impact of Open Circuit Fault

In this case, three phases open circuit fault occurs at B8 and remains for 0.15 s.
Figure 11.27 shows the impact of the open circuit on the studied system. The wind
farms improve the voltage of buses B3, B4 and B9 during the fault where the
voltage values of these buses are equal to 1 pu without any distortion in voltage
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Fig. 11.27 (continued)

profile. Figure 11.27 also shows that in the beginning of the open circuit fault and
after fault clearance the voltage at B8 of MCWF is smoother than the voltage at B
of PMWF and DFIG-WF.
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Chapter 12 )
Advanced Metering Infrastructure ki
and Graphics Processing Unit

Technologies in Electric Distribution

Networks

Zhao Li and Fang Yang

Abstract The advanced metering infrastructure (AMI) has been recognized as a
key communication mechanism in the modern distribution grid. As a result, inte-
grating AMI with distribution management system (DMS) has become the focal
point of distribution utilities during the past several years with the objective of
enabling new applications and enhancing existing ones. In addition, with influx of
massive real-time and near real-time measurements, speed up electric distribution
network applications using graphic processing unit (GPU) technologies becomes
attractive. Hence, the purpose of this chapter is two-fold: First it reviews a unified
integration solution that enables DMS systems to flexibly adapt to various AMI
systems with different communication protocols and meter data models. The fea-
sibility and effectiveness of the integration solution are demonstrated through
practical test scenarios. Second, it discusses GPU technologies and explores their
applications in terms of state estimation and power flow computations. It concludes
that GPU has significant potentials in improving the performance of distribution
network applications. However, to unleash its power, the applications in distribu-
tion network need to be re-architected toward a GPU friendly architecture.
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12.1 Advanced Metering Infrastructure

The distribution management system (DMS) [1] is an online tool running in the
utility control center for the distribution system monitoring, analysis, and control.
To enable a DMS system, a two-way communication network is required to connect
DMS applications and monitored/controlled devices in the field. Traditionally,
DMS mostly depends on the distribution supervisory control and data acquisition
(SCADA) as the communication net-work. However, limited measurements (usu-
ally from the feeder head) collected by distribution SCADA inevitably constraint
the DMS applications.

Developed from automatic meter reading (AMR) [2], advanced metering
infrastructure (AMI) offers a two-way communication network, connecting millions
of smart meters and sensors to utility control centers, transporting substantial data
between them in real-time or near real-time. In the past few years, motivated by fast
developing of smart grid, deploying AMI has been a critical event in utilities. The
estimated installations of smart meters is about to reach 1 billion worldwide by
2020 [3].

With increased deployment in the distribution utilities, AMI has been gradually
recognized as a primary two-way utility communication network. Therefore, the
integration of AMI and DMS is expected to bring promising advancement in
various DMS applications [4—12]. However, integration of AMI and DMS faces the
following challenges: (1) adaptation of various communication protocols
(Table 12.1) and information models (Table 12.2); (2) influence of substantial AMI
load overwhelming the normal execution of DMS.

This chapter reviews an AMI and DMS integration solution and the evaluation
of the integration solution under practical load conditions and realistic test sce-
narios. The overall simulation system that simulates the AMI meter load generated
by millions of smart meters is discussed and test results have been presented, each
focusing on individual quality attributes from the software architecture’s aspect.
The rest of this chapter is organized as follows: Sect. 12.2 introduces DMS

Table 12.1 Transportation protocols and interfaces adopted by major AMI vendors

Company | AMI data server Transportation Transportation
protocol interface
Elster EnergyAxis Metering SOAP over Proprietarily defined
[35] Automation Server (MAS) HTTP XML format
Itron [36] OpenWay Collection Engine SOAP over Proprietarily defined
WCF XML format
Trilliant Unity Application Suite Web Service Interface defined by
[37] Web 2.0 AJAX
Sensus FlexNet Standard or Regional Network
[38] Customized Interface (RNI)
Ecologic Ecologic MDMS IMS Common Information
[39] Model (CIM)
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Table 12.2 Major meter data models

Name Functionalities Format Domain Market
ANSI C12.19 | Model and transport Standard Tables and Electricity, | North
[40] meter data and control in | procedures defined by gas and American
tables TDL and EDL (XML) | water
IEC62056-62 | Model and transport Interface classes Electricity, | European
[41] meter data and controls gas and
in a series of interface water
classes
IEC61968-9 Transportation meter XML based schema of | Electricity | N/A
[42] data between utility meter measurement,
applications format of messages and
event
MultiSpeak Data Exchange and XML based model and | Electricity | North
[43] integration in the utility | event message interface American
enterprise

applications enhanced by real-time or near real-time AMI measurements.
Section 12.3 briefly presents the design of the ADI layer. Section 4 evaluates the
ADI layer design.

12.1.1 Smart Distribution Management System

To enhance distribution system monitoring, analysis, and control, a traditional
passive operation needs to evolve into a more proactive pattern through various
smart applications. The transition becomes feasible with the availability of large
amount of real-time or near real-time measurements and controls across the dis-
tribution grid brought by AMI technologies. This section briefly illustrates these
advanced DMS applications and their dependency on the AMI system.

12.1.1.1 Distribution State Estimation (DSE)

The awareness of grid states not only facilitates the timely and accurate monitoring
of the distribution system operating conditions but also provides an essential
foundation to implement various other smart grid technologies that would rely on a
statistically accurate snapshot of the system states. Voltage/Var control, feeder
reconfiguration, and post-disturbance service restoration are some examples.
Practically, due to financial and/or technical constraints, metering devices can
only be installed in very limited locations in the field. Most system states have often
been estimated through the load allocation and power flow applications, which are
vulnerable to measurement errors and suffered from the lack of measurement
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redundancy. Even though residential level AMI measurements reflect a detailed
state of the distribution grid, hindered by deficiencies of measurement facilities and
errors in the data transmission, the collected measurements are sometimes inac-
curate, unreliable, and delayed.

Based on a three-phase system network model and a set of redundant distribution
system measurements from SCADA, AMI meters, and other sensors, DSE effec-
tively eliminates above defects and provides best estimates of the system states. In
particular, DSE implements following functionalities: (1) determining whether the
system state can be computed from the existing measurements; (2) detecting,
identifying, and rejecting bad measurements; (3) filtering out measurement errors
and computing system state with minimum error; (4) evaluating the quality of the
state estimation results.

12.1.1.2 Advanced Outage Management

As a fundamental function in the outage management system (OMS), outage
scoping analysis (OSA) determines the efficiency and effectiveness in dispatching
crew for fault reparation and service restoration tasks. Traditionally, due to the very
limited real-time SCADA information available in the distribution network, the
main outage information source for conducting the OSA is customer trouble calls,
which usually results in prolonged OSA procedure and inaccurate OSA result due
to the absence of customers and limited number of trouble calls.

For an electric distribution network equipped with AMI, smart meter data can be
used as an additional outage information source for OSA. Specifically, the precise
outage information carried by last gasp, sent by smart meters before they lose
voltage during an outage, can be very beneficial in detecting the outage root and
scope. In addition, the communication network of the AMI system also enables the
on-demand polling of meter status for the purpose of outage/restoration confirma-
tion. During an outage event, a large amount of meter data load is pushed to the
OSA in a very short period of time. The DMS system is expected to be able to
timely handle such a load.

12.1.1.3 Demand Response

Demand response (DR) is a semi-emergency preventive action taken by the utility
(or the demand response service provider) that is normally executed during peak
load hour whenever the system capacity gets close to being fully utilized. The result
of DR is a change in the level of energy consumption of the end customers in
response to the changes in electric distribution network loading and/or energy
prices. The energy consumption can be either reduced or shifted (postponed) to a
different time to reduce the total demand at peak load hour. As a result, the utility
can avoid purchasing power from the spot market or having to impose forced
outages on customers [13].
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Successful implementation of DR requires an efficient two-way communication
system between the utility and the individual customers. The utility would need to
poll meter data from the customers, process it in the DR engine, and generate
signals accordingly to be transmitted to the appropriate customer meters. The
timeframe required for demand response varies from one event to another. While
there are cases where the event is scheduled well in advance, there are cases where
demand needs to be reduced immediately (i.e., emergency demand response).
Nonetheless, the meter poll is usually performed over a very large geographical
area, retrieving data from thousands of customers at once. All these underline the
importance of an efficient and reliable communication network between the cus-
tomers and the control center.

In summary, all the advanced applications discussed above and many other
typical applications that facilitate a smart distribution system have one common
feature: their implementation is largely dependent on real-time or near real-time
meter information provided by the AMI system. Regardless of the type of the
application and its timeframe, it is easy to see that the dependency of these
applications on the AMI system imposes a substantial challenge on the AMI
communication system and its interface with the DMS. Finding an efficient way to
handle this large amount of meter data in DMS becomes a major task. This chal-
lenge and its solution will be further discussed in the next section.

12.1.2 The ADI Layer—The Solution for AMI and DMS
Integration

The purpose of AMI and DMS integration is twofold: (1) to exchange meter data
and control information between the two systems and (2) to architecturally mini-
mize the impact of the information exchange on both systems. As the mid-layer
between AMI and DMS, the ADI layer, as shown in Fig. 12.1, implements the
above two objectives.

DMS and AMI are two separate systems, which have different business goals
and architectures. The purpose of AMI and DMS integration is to exchange meter
data and control information between the two systems, at the same time to minimize
the influence of the integration on both the AMI and DMS system in terms of
performance and engineering cost.

To reach the above goals, an AMI and DMS integration solution, called the AMI
and DMS integration layer (ADI), is described in this section. The ADI layer can be
viewed as a middleware between the AMI and DMS systems. Some major business
considerations of the ADI layer are summarized below:

e Different DMS applications use different approaches to import external data. For
example, some DMS applications utilize Enterprise Service Bus (ESB), and
others rely on the SCADA system. In this sense, the ADI layer should be easily
adapt to both ESB and SCADA interfaces.
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Fig. 12.1 The context of AMI DMS integration

Generally, utilities have deployed (or are currently developing) AMI systems
with different types of meter data servers, such as MDMS, meter data collection
systems. These AMI systems are usually built by different AMI vendors.
The ADI layer should be adaptable to the diverse AMI systems.

Meter data models in AMI systems are designed for applications in different
domains (i.e., electricity, water, and gas); however, DMS applications primarily
require a dedicated meter data model (i.e., IEC61968-9). The ADI layer should
consider information gaps between a general domain meter data model and a
distribution network specific meter data model, and match these gaps while
exchanging meter data between an AMI system and a DMS system.

As of today, the commercial requirement for regular meter reading is at an
interval of 15 min. With the development of AMI technologies, the interval is
getting shorter and shorter. However, even handling meter data generated by
millions of smart meters in every 15 min can pose substantial challenges to
DMS systems. The original architecture of most legacy DMS systems was not
designed for heavy AMI meter data load conditions. Therefore, the ADI layer
has to minimize the influence of the meter data load on a DMS system by
caching the meter data and adjusting the meter data stream throughput to a level
that can be accepted by the DMS system when necessary.

AMI and DMS systems are usually developed by different vendors. Thus, it is
likely that each uses a different dialect in both meter models and meter trans-
portation protocols to describe even the same grid network. The ADI layer
should harmonize these dialects.

Major requirements for the ADI layer are listed as follows:

As a unified solution, the ADI layer should adapt to the communication pro-
tocols used by different DMS systems.
The ADI layer should adapt to various AMI communication protocols.
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Fig. 12.2 The architecture design of ADI

e The ADI layer should bridge gaps between the data model used in AMI and
DMS when exchanging information between them.

e The ADI layer should architecturally minimize the impact of the heavy AMI
meter data load on the DMS system, which was not originally designed for
handling such type of heavy load.

To design the ADI layer, the following challenges should be addressed from the
software architecture’s aspect: Performance: The ADI layer’s capabilities in timely
processing both scheduled (expected) meter reads and burst occurred (unexpected)
outage reports, especially the worst case scenario, where a regular meter reading
session coincides with an outage session consisting of large-scale outage-reporting
events.

Scalability: The ADI layer’s capabilities in adapting to a wide range of load
conditions without losing its performance by only adjusting its hardware configu-
rations rather than modifying its source code.

Adaptability: The ADI layer’s capabilities in adapting to different AMI systems
deployed by utilities in the current and the future, which potentially use different
meter data models and communication protocols.

The components of the ADI layer, as shown in Fig. 12.2, can be classified into
four categories: the AMI adaptors, the AMI information translation and verification
infrastructure, the loosely coupled event (LCE) infrastructure, and the DMS
adaptors.
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e AMI adaptors. AMI adaptors are used to accommodate different types of AMI
data sources (e.g., the MDMS and the meter data collector), transferring meter
data streams either from the AMI to the DMS or the other way around. In
practice, each integrated AMI system should have an associated AMI adaptor in
the ADI layer, processing information bilaterally between the corresponding
AMI and the DMS systems.

e The structure of aggregating, caching, and translating information. The primary
goal of the infrastructure for aggregating, caching, and translating information,
as illustrated in the middle part of Fig. 12.2, is to bridge the information gaps
between AMI and DMS. In addition, it also aims to architecturally isolate the
influence of the load of AMI meter data on the DMS by temporarily caching the
meter data load into the Temp DB.

e loosely coupled event infrastructure. The loosely coupled event
(LCE) infrastructure is the publish/subscribe infrastructure. All components
(e.g., AMI and DMS adaptors) in the ADI layer are coordinated by publishing
and subscribing messages to the LCE infrastructure. The coordination by
messages makes the ADI layer scalable.

e DMS adaptor. Generally, most design considerations for AMI adaptors are also
applicable to those of the DMS adaptors. The unique feature of the DMS
adaptors is their capability of adapting to the throughput limitation of DMS data
channels when delivering meter data to the DMS system.

Dynamically, the ADI layer supports the following three types of activities or
events: (1) the AMI pushing meter data (e.g., outage report and meter reads) to the
DMS, (2) the DMS pushing meter control commands to the AMI, and (3) the DMS
polling meter data from the AMI (e.g., verifying outage and requiring meter
measurements from certain meters).

e AMI pushing meter data to the DMS. The workflow of the ADI layer processing
meter data pushed by the AMI is as follows: Upon receiving a meter data
package from the AMI, an AMI adaptor parses and temporarily caches the
parsed meter data to the Temp DB for further translation and verification; Then
it publishes a message to the LCE infrastructure and notifies subscribers (e.g., a
DMS adaptor) that the AMI meter data has arrived. After receiving this notice,
the DMS adaptor picks up the verified and translated meter data from the
TempDB, packs it based on the message format required by the DMS system
and delivers to it.

e DMS pushing meter control commands to the AMI. The work-flow of pro-
cessing meter control commands pushed by the DMS to the AMI is the same as
the workflow of processing meter measurements pushed by the AMI but the
direction of information flow is from the DMS to the AMI.

e DMS polling meter data from the AMI. The workflow of DMS polling meter data
from the AMI consists of the following processes: (1) The DMS pushes meter
control commands to the AMI and (2) the AMI pushes the meter data back to the
DMS. The details of two processes were discussed earlier in this section.
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12.1.3 The Evaluation of the ADI Layer

This section develops a simulation system and five test scenarios to comprehen-
sively evaluate the quality of the ADI layer architecture.

The simulation system consists of two AMI simulators and two ADI layers,
deployed to four physical servers as shown in Fig. 12.3. To make the simulation
more practical, the authors have used the 100 Mbps network, instead of the 1 Gbps
network, to link these servers. The AMI simulator has the following functionalities:
(1) Simulate various meter loads (e.g., regular meter reads and large scale outage
report), (2) Respond to the control commands sent by the DMS (e.g., meter poll
commands, outage verification request, and demand response request).

The AMI simulator supports two communication interfaces to exchange data
with external systems: a standard web service (i.e., SOAP) and a Java Message
Service (i.e., JMS). Accordingly, to interface with the AMI simulators, the web
service adaptor and the JMS adaptor are developed in the ADI layer. In addition, to
clarify the analysis, all the messages are packaged into the format of IEC61968-9.

The AMI simulator, as shown in Fig. 12.4, consists of the meter farm, the meter
management layer and various load generators. The meter farm manages the 63,445
self-spinning objects of smart meters, simulating various smart meter events (e.g.,
regular meter reads, outage and demand response). The meter management layer

AMI Simulator 1 ADI Layer
ANSIC12.19
Hardware:
CPU: Intel Xeon X3220 Hardware:
2.4G, Quad Core

Memory: 4G
Hard disk: 250G, 7,200

Software:
Windows 2008 Server

AMI Simulator 2
IEC61968-9

Hardware:

CPU: Intel Core 2 Quad
9550

2.7G, Quad Core
Memory: 4G

Hard disk: 750G, 7,200

Software:
Windows 2003 Server

CPU: Intel Xeon X3220
2.4G, Quad Core
Memory: 4G

Hard disk: 250G, 7,200

Software:
Windows 2008 Server

E 100Mbps switch

ADI Layer

Hardware:

CPU: Intel Xeon X3220,
2.4G, Quad Core
Memory: 4G

Hard disk: 250G, 7,200

Software:
Windows 2003 Server

Fig. 12.3 The evaluation system with two AMI simulators and two ADI layers




318 Z.Liand F. Yang

Load Generator Web Service
¥ |€—2| forregular meter >
g read
T
Smart Meter B Queue
Objects <> % € LO?:rC;izsritor >
(65,536) g g
%
3 TCP/IP
% <> Interface for >
Demand Respond

Fig. 12.4 The infrastructure of the AMI simulator

provides interfaces for external applications to access meter objects. The meter read
load generator, the outage generator, and the interface for demand response sim-
ulate the data required by related DMS applications.

12.1.3.1 Test Strategies

(1) Performance. The throughput of the ADI layer is the major focus in the
performance test. Constrained by the capacity of the simulator, which can
maximally simulate 63,445 smart meters, the following assumptions are made:
if the ADI layer can process meter data load generated by 63,445 smart meters
in 1 min, the throughput of the ADI layer is about one million meters
(15 x 63,445 = 0.95 M) in 15 min.

(2) Scalability. Without the loss of generality, both the scale up and the scale out
are tested. The scale up test is to verify capability of the ADI layer to handle the
extra load by improving the utilization of its existing hardware setup. While the
scale out test is to verify whether the ADI layer can be extended to multi-server
configuration without revising the source code.

(3) Flexibility. The flexibility is to verify the capability of the ADI layer to adapt to
diversified communication protocols used by AMI systems.

(4) Security. The security is to verify the influence of security tools (e.g., Microsoft
and McAfee Enterprise Anti-virus applications) on the performance of the ADI
layer.

The above quality attributes are examined by the following five test scenarios
summarized in Table 12.3. Performance is tested by the scenarios 1-4, in which
either a single simulator serially or two simulators concurrently push outage reports
or meter measurements to ADI layer. The throughput of the ADI layer in 15 min is
measured in each case. Scale-up is tested by the scenarios 2 and 4, in which two
simulators concurrently sending outage reports and/or meter measurements to the
ADI layer. The CPU utilization are measured. Scale-out is tested by the test
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Table 12.3 The quality attributes and the designed test cases

Test scenario Performance Flexibility Scale-up Scale-out Security
1 v v
2 v v v
3 v v
4 v v v v
5 v v

scenario 5, which extends a system with one ADI layer to a system with two ADI
layer without changing the source codes. The flexibility is tested in the scenario 4,
in which two types of communication protocols are selected to trans-port meter
data. Finally, as industrial standard security tools (e.g., McAfee Enterprise
Anti-virus tools) are installed in the ADI layer, the performance overhead of these
security tools is automatically examined through the test cases 1-4.

12.1.3.2 Test Results

The permutations and combinations of the AMI simulators and the ADI layers, as
shown in Fig. 12.3, produce the following five test scenarios:

Test Scenario I: one AMI simulator pushes meter outage reports formatted as JMS
to one ADI layer.

The objective of this test case is to verify if the ADI layer can handle outage load
pushed by one million smart meters in 15 min. The outage reports, containing meter
id, the service transformer id, and the timestamp, are simulated by AMI simulators
1 and 2 separately. On the ADI layer, to handle the incoming outage reports, the
ADI layer conducts the following two tasks: (1) unpack and parse the outage reports
sent from the AMI simulator, and (2) validate the integrity of the carried meter
information against the current DMS meter asset.

The AMI simulator 1, which has more advanced hardware configuration than the
AMI simulator 2, on average takes about 27 s to generate and send 63,445 outage
reports to the ADI layer, the throughput is 2.1 million per 15 min; while the AMI
simulator 2 takes about 67 s to transport the same amount of data, the through-put is
0.8 million per 15 min.

The test scenario 1 demonstrates that the ADI layer server can process 0.8-2.1
million outage reports in 15 min.

Test Scenario 2: Two AMI simulators concurrently push meter out-age reports in
the JMS format to one ADI server.

The objective of the test scenario 2 is to test the scale-up capability of the ADI
layer design. To fulfill this test, AMI simulators 1 and 2 concurrently push
2 x 63,445 outage reports to the ADI Layer server. The test results demonstrate
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that AMI simulator 1 spends 27.8 s to process the meter data; while AMI simulator
2 spends 61.2 s to do the same amount of work. Compared to the test scenario 1,
two AMI simulators concurrently pushing the meter data to the ADI layer barely
influence its performance. This demonstrates that AMI adaptors are well isolated in
terms of performance and can concurrently receive data from various data sources.

Comparing to the test scenario 1, in which the CPU utilization is 40-50%, the
test scenario 2 has higher CPU utilization rates, which is about 60-70%. This
demonstrates the well-designed scale up capability by the fact that the ADI layer
handles the outage reports pushed by 3.1 million smart meters in 15 min with
scaling up the utilization of the hardware resource in the ADI layer.

Test Scenario 3: the AMI simulator 1 pushes meter measurements to the ADI layer
through web service remote call.

Test scenario 3 examines the capability of the ADI layer in receiving the regular
meter measurements through the web service. The regular meter measurement
package contains: AMI meter id, AMI transformer id, measurement time, fre-
quency, voltage (Va, Vb, Vc), current (Ia, Ib, Ic), phase angle (ANGa, ANGb,
ANGc), real power (kWa, kWb, kWc), reactive power (kVAa, kVAb, kVAc),
power factor, and energy (kWha, kWhb, kWhc).

On average, it takes 31.4 s to transport and process the 63,445 m measurement
packages. The throughput is about 1.8 million packages per 15 min. Even though
the time spent on the test case 3 is similar to that of the test scenarios 1 and 2, as the
size of the meter read package is much larger than the size of the out-age package,
the transportation through web service over HTTP is much faster than that through
the WebSphere MQ regardless other advanced features of WebSphere MQ (e.g.,
security and transaction based transportation). The test scenario 3 shows that the
ADI layer can process the regular meter reads, carrying major engineering mea-
surements generated by 1.8 million smart meters in 15 min.

Test Scenario 4: AMI Simulator 1 pushes meter measurements and AMI Simulator
2 pushes the outage reports to the same ADI layer simultaneously.

Test scenario 4 simulates the worst-case scenario, in which the regular meter
reads and outage reports happen simultaneously: AMI simulator 1 pushes the
regular meter reads and AMI simulator 2 pushes the outage packages to the same
ADI layer. The ADI layer takes about 41 s to process the 63,445 regular meter
measurement packages sent from simulator 1 and takes about 68 s to handle the
63,445 outage reports sent from simulator 2. Hence, in 15 min, the ADI layer can
concurrently handle 1.4 million smart meter reads and 0.8 million outage reports.

Test Scenario 5: Scale out test.

The test scenario 5 is intended to examine the scale out attribute, focusing on
extending a system with one ADI layer to a system with two ADI layers with no
changes of source codes.
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Table 12.4 The measurements of test scenarios 1-4

Scenario Simulator | Load type Throughput (M) CPU utilization (%)
1 1 Outage reports 2.1 40-50
2 1+2 Outage reports 3.1 60-70
3 1 Meter reads 1.8 40-50
4 1+2 Meter reads + Outages 2.2 60-70

In order to build the above system, the following tasks are con-ducted: (1) in the
ADI layer 1, configure the AMI adaptor 1 hosted in Internet Information Service
(IIS) and connect it to the AMI simulator 1 through web service over HTTP; (2) set
up a new queue in IBM WebSphere MQ 7 and in the ADI layer 2, configure and
connect the AMI adaptor 2 to the AMI simulator 2 through the new queue con-
figured in the WebSphere MQ 7.

The above procedure verifies that constructing a system with two AMI simu-
lators and two ADI layers can be achieved by only updating the hardware/software
configuration and demonstrates that the ADI layer can be well scaled out by adding
more ADI servers without modifying the source codes (Table 12.4).

12.2 Graphics Processing Unit (GPU) Technologies

As the states of distribution network change continuously, its operations require
constant monitoring and control to balance the power production and consumption.
The deployment of smart grid technologies exacerbates this situation because of the
increasing uncertain behaviors in both power generation (e.g., the intermittency of
renewable resources) and the power consumption (e.g., the randomly charging
behavior of electric vehicles). To effectively manage these uncertainties, smart grid
needs continuously executing distribution network monitoring, simulation, control,
and analysis applications such as the short-term planning, state estimation, and
voltage var control. These applications are generally computation intensive and
inevitably incur substantial amount of computational load.

In literature, large computation load is commonly handled by mainframe or
specially designed high performance computation (HPC) facilities, which are
equipped with hundreds or even thousands of CPUs and a large amount of memory.
These HPC facilities are mostly deployed in universities and national research labs
[14]. However, the high cost of constructing and maintaining these facilities prevent
them from being adopted by a distribution network control center. Hence, identi-
fying affordable HPC solutions suitable for deploying practical distribution network
applications becomes attractive.

The HPC solutions in the affordable personal computer (PC) market fall into two
categories: the multi-core CPU and the many-core GPU (Graphic Processing Units)
[15, 16]. The latter, which was originally designed to exclusively boost graphic
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functionalities in the PC platform, has been accessible for general computation
through C++ APIs (e.g., CUDA or OpenCL) [17] since 2007. From the technical
standpoint, the number of computational cores is the primary criterion to distinguish
the above two HPC platforms: a GPU has thousands of computational cores; while
a multi-core CPU has less than 20 cores. As of today, a CPU with four cores and a
GPU with 2700+ cores (e.g., NVIDIA GTX Titan [18]) dominate the current
market.

Equipped with excessive computational cores, GPU offers more computation
power than multi-core CPU does, particularly suitable for parallelizable massive
computations (e.g., matrix calculations). For instance, the main stream GPU can
concurrently run thousands of computation tasks, fulfilling more than one trillion
floating-point operations per second. Its computation capability is equivalent to that
of a mainframe computer could offer a few years ago. The recent literature is seeing
that GPU tremendously boosts the performance of applications in various domains
[19, 20].

Motivated by the GPU’s performance potentials, considerable research efforts
have been devoted to the application of GPU technologies to power system. For
example, in [21], the GPU was applied to accelerate transient stability simulation of
the large-scale power system and achieved a speed improvement of 345 times for a
power system with 320 generators and 1248 buses; in [22], authors comprehen-
sively studied the shared memory computational infrastructure and implemented a
GPU based iterative solver, which is around 50 times faster than its CPU
counterpart. The above results theoretically demonstrate the potentials of using
GPU technologies to improve the performance of power system applications.

This chapter investigates the potential enhancement of the GPU technologies on
power grid analytic tools along both the theoretical direction and the practical
direction. The rest of this chapter is structured as follows: Sect. 12.2 takes a closer
look at the computation architecture of multi-core CPU and many-core GPU.
Section 12.3 prototypes the GPU version of CGNR algorithm, an iterative solver
that has been widely applied to distribution network applications, and evaluate it
against the data sets abstracted from large scale estimation problems and power
flow problems. Section 4 studies the potentials of applying the GPU technologies
on accelerating a real-world application.

12.2.1 Potentials of GPU on Accelerating Sparse Linear
Solvers

This section reports the experience of using the main stream computation archi-
tecture to improve performance of solving a system of linear equations, the key part
of most power system applications, using iterative methods. Since Conjugate
Gradient (CG) algorithms [23] have been applied to power system applications in
the literature with a suggested benefit from parallelization, they are selected and
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evaluated against the mainstream computation architectures (i.e., multi-core CPU
and many-core GPU) in the context of both power system state estimation and
power flow applications. The evaluation results show that solving a system of linear
equations using iterative methods is highly memory bonded and multi-core CPU
and GPU computation architecture have different impacts on the performance of
such an iterative solver: unlike multicore CPU, GPU can greatly improve the
performance of CG-based iterative solver when matrices are well conditioned as
typically encountered in the DC power flow formulation.

12.2.1.1 A Closer Look at GPU Architecture

From an architecture’s aspect, both multi-core CPU and many-core GPU package
several cores into one die, sharing the same memory channel. For this type of
computation architecture, having a high-speed memory bandwidth, through which
data can be quickly fed into computational cores, is necessary to keep the com-
putation structure in high performance.

To measure the performance of computation architecture, two concepts, the
computational power and speed of data channel, are introduced. The former are
measured by GFLOPS, billions of floating point operations per second that a
processor can perform; while the latter are evaluated by memory bandwidth, the
data transportation rates between computation cores and main memory.

Figure 12.5 illustrates the major differences between multi-core CPU and GPU: a
multi-core CPU has a larger cache system and stronger control capabilities; while
GPU has significant number of computational cores (ALUs). Table 12.5 further
explains the above differences. Overall, a multi-core CPU has total 10 M cache
(L1 cache + L2 cache + L3 cache), 67 times larger than the capacity of the GPU’s
cache system. On the other hand, GPU has numerous computational cores (i.e.,
GTX480 that has 480 cores), which is far more than the number of cores of multi-core
CPU has.

CPU GPU

Arithmetic Logic Unit Control

I various types of Memory (Cache, DRAM)

Fig. 12.5 The models of multi-core CPU and GPU
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Table 12.5 Multi-core CPU versus many-core GPU

Number |L1 cache L2 cache L3 Memory
of cores cache bus (GB/s)
Intel Bloomfield 4 32 KB(Instruction) | 256 KB/Core |8 M for 25
Core i7 950 32 KB Data all cores
(June, 2009)
Intel Yorkfield 4 4 x 32 2x3M oM 10
Core 2 Quad (Instruction) shared by two
Q9400 4 x 32 (Data) cores
(Aug. 2008)
AMD Phenom II 6 N/A 3M 6 M 37
1090T shared
(Apr. 2010)
AMD Phenom 4 64 KB + 64 KB 2M 2M 33
X4 9950 Data + Instructions
(Mar. 2008)
Femi NVDIA 480 64 KB (16 + 48) 768 KB 768 KB | 180
GTX480
(Apr. 2010)

Key 1/0 bus includes front side bus (FSB), quick path structure and hyper transport bus

As more transistors are devoted to data processing rather than caching and flow
control, the computation power offered by GPU is significantly larger than the one
offered by a multi-core CPU. For instance, the GTX480 from NVIDIA offers 576
GFLOPS computing power, 20 times more than the cotemporary six-core
Intel CPU Westmere does.

Increasing the computing power by assembling many computational cores into
one die, however, escalates memory I/O requests and overuses the existing memory
channel. The increased memory I/O requests blocks the memory channel, makes
computational cores starving for data and eventually eliminates the benefit of
additional computation power. Hence, memory bandwidth is the key factor that
influence the performance of both multi-core CPU and many core GPU computa-
tion architectures and is usually refers in the literature as the “memory wall”
problem.

To mitigate the overuse of the memory channel in multi-core CPU, different
types of cache (L1, L2 and L3 cache) are placed along the path between individual
cores and main memory. Since the most frequently used data can be put into the
caching system, reading/writing data can, therefore, be done through the cache
rather than through the main memory. This strategy effectively reduces the con-
sumption of the expensive memory bandwidth, however, it requests an application
having a regular memory usage pattern in order to efficiently utilize the caching
infrastructure.

Unlike CPU, GPU hides the memory latency by driving many threads to con-
currently access multiple memory locations. This strategy is particularly suitable for
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the data parallel computation, in which the same operation is executed on many
data in parallel. Most matrix calculations (i.e., Matrix multiplication) that dominate
power system calculations fortunately fall into this category.

Technically, it is easier to implement the GPU’s strategy of hiding memory
latency through concurrent accesses. This leads to GPU having higher memory
bandwidth growth rates than multi-core CPU does in the past decade. For instance,
from 2003 to 2009, the GPU memory bandwidth has been improved from 20 to
180 GB/s; while during the same time frame, the multi-core CPU’s bandwidth has
just improved from 10 to 25 GB/s, which is six times slower than the growth rates
of the memory bandwidth in GPU.

In summary, efficient utilizing the limited memory bandwidth is the key to
unleash the computation power of both multi-core CPU and many-core GPU
computation architectures. An application with a regular memory access pattern is
more suitable for the multi-core computation architecture, in which most memory
footprints can be cached; on the other hand, an application with simple logic
controls, but bulk concurrent data calculations, fits in the many-core computation
architecture, in which concurrently transportation of data effectively hides the
memory latency.

12.2.1.2 Features of the Numerical Methods Applied to Distribution
Network Calculations

In this section, the serial implementation of Conjugate Gradient Normal Residual
(CGNR) against the power system state estimation application is evaluated as an
instance to identify the features of distribution network calculations in terms of
GFLOPS and memory bandwidth. The CGNR method is a general technique to
solve a Weighted Least Squares (WLS) based system of linear equations and it is
built upon on the concepts of the Conjugate Gradient (CG) method. Both CG and
CGNR involve similar computational operations such as matrix-vector multipli-
cation, vector dot products and vector updates.

A. CGNR and CGNR + Jacobi preconditioner

Consider the problem where the solution to the system of linear equations
Ax = bis sought, A is an n X m real matrix, b is a known real vector of dimension
n x 1 and x is an unknown real vector of dimension m X I. Also, n > m since the
state estimation problem is over-determined (more equations than unknowns). For
the state estimation problem, matrix A is the measurement Jacobian.

In the Weighted Least Squares (WLS) Normal Equations formulation of the state
estimation problem, A”A describes the Gain matrix that is Symmetrical Positive
Definite (SPD) by structure. This makes the Conjugate Gradient (CG) method
applicable. Note that the Gain matrix requires a matrix-matrix multiplication of the
measurement Jacobian A with its transpose. This can be avoided by using CGNR
(Fig. 12.6).
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Given an initial guess x (%) Given an initial guess x ()
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Fori=1,2, ... until convergence Do: . o _
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EndDo

Fig. 12.6 CGNR (left) and CGNR with Jacobi preconditioner (right)

CGNR with Jacobi preconditioning method results when the diagonal of the
Gain matrix is used as the preconditioner matrix M (in the right part of Fig. 12.6).
The inverse of M consists of only the reciprocal of the diagonal of M. This makes
the Jacobi preconditioning quite attractive for iterative methods as it involves very
few additional computations compared with other preconditioning methods [24].

B. Serial Implementations of CGNR and CGNR + Jacobi preconditioner

The CGNR and CGNR with Jacobi preconditioner as presented in Fig. 12.6.
have been implemented using C on the Windows platform. In order to study the
behavior of iterative methods on the state estimation application, they are executed
using a group of state estimation data matrices listed in Table 12.6 and the fol-
lowing measurements are recorded: the number of iterations to convergence and the
time spent during iterations. Iterations are declared as converged when the 2-norm
of a residual vector is less than a predefined threshold value—1e—3.

C. The test environment
Hardware
e Intel Core 2 Quad Q9400 (2.66 GHz)

— L1 Cache: 4 x 32 KB instruction caches, 4 x 32 KB data caches
— 2 x 3 M 12-way set associative caches (each L2)

— caches is shared between 2 cores

— Seagate 1T hard drive, 7200 rpm

— 4G DDR2 memory

— PCI-E x 16 (GPU interface)
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Table 12.6 The test data sets abstracted from the estimation problem

Data set (SE measurement | Size Non zero | Condition Ratio of non-zero
Jacobian H) elements | number elements (%)

3 bus system 22 x 6 88 26.2 66.7

14 bus system 73 x 27 329 118.78 16.7

14 bus system 36500 x 13500 | 164,500 137.87 0.033

diagonal extension

14 bus system 36500 x 13500 | 205,296 1571.9 0.041
non-diagonal extension

PSSE2 28,634 x 11,028 |115,262 1.24 x 10° {0.036

e NVIDIA GTX480 GPU

- GPU GF100

— Memory 1.5G (DDRS5)
— Bus width (384 bit)

— Bandwidth 182.4 GB/s

Software

Windows 7 enterprise edition
Visual Studio 2008 professional

D. The test data set

Table 12.6 describes the test matrices for the state estimation problem using their
dimension, number of nonzero elements, condition number and percentage of the
nonzero elements. The condition number is specified for the index matrix A that
represents the measurement Jacobian. It should be emphasized that for CGNR, we
are dealing with the Gain matrix that has a squared condition number, even though
it accepts matrix A as an input, its convergence behavior depends upon the con-
dition number of the Gain matrix (ATA).

The 3 bus system and the 14 bus system test matrices are generated from a
simple 3 bus system and the standard IEEE 14 bus system. To test the scalability of
the algorithm, the 14 bus system measurement Jacobian is extended to form a large
sparse matrix, in which the original 14 bus matrix is duplicated 500 times along the
diagonal. From a practical viewpoint, such a diagonally extended matrix stands for
500 independent 14 bus systems and its condition number is the same as of the 14
bus system measurement Jacobian. In order to obtain a test case having a worse
condition number, a few off-diagonal elements are introduced. The matrix so
obtained is referred to as the 14 bus system diagonal extension with inter-area
dependencies. The condition number of this matrix is 1571, which is 9-10 times
larger than the original one. In addition, it considers another large state estimation
matrix PSSE2 [25].
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E. Sparse matrix storage scheme

The chosen matrix storage scheme is a combination of Coordinate
(COO) Format [26] and compressed sparse row Format [26]. The combination of
COO and CSR efficiently uses both the search based on individual locations
(COO) and the search based on rows, resulting in the following data structure as
illustrated in Fig. 12.7.

F. Test results and analysis

Table 12.7 lists the test results, which include the number of iterations and time
taken until convergence by CGNR and CGNR with Jacobi preconditioner when
executed using the test matrices in Table 12.6. For the termination criterion, the
residual thresholds is assumed as le—3. The data type used is the double precision
float type. The observations are:

e For a linear system Ax = b, the degree of ill-conditioning of the matrix
A influences the rate of convergence of an iterative method. An ill-conditioned
matrix A results in more iteration to converge.

e The computational time spent by the iterative algorithms is not as affected by the
size of the problem as by the matrix conditioning. In this evaluation, the 14 bus
system with diagonal extension only takes a reasonable time (<0.1 s) to

1700
_lo280
A_5039
0604

row=[001122233]

col=[011202313]

data=[17 285396 4]
ptr=1[02 4 7 9]

Fig. 12.7 The combination of COO and compressed sparse row

Table 12.7 Number of iterations and time spent by CGNR, CGNR with Jacobi preconditioner
under different test systems

Residual = 107 | 3 bus 14 bus 14 bus 14 bus system PSSE2
system system system diagonal extension data
diagonal with inter-area
extension dependencies
CGNR | Iteration |5 28 33 1369 188,271
Time 0.000159 | 0.000318 |0.077579 3.801 271.45
(©)
CGNR | Iteration |3 24 25 845 27,605
+ Time 0.000007 |0.000117 |0.064539 2.428825 40.844019
Jacobi (s)
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converge, even though its size is 36500 x 13500 (larger than PSSE2). Note that
this is a well-conditioned matrix.

e The Jacobi preconditioner greatly reduces the number of iterations to converge
and therefore effectively reduces the computation load. In this test, CGNR with
Jacobi preconditioner using PSSE2 data and residual threshold of le—3 as
stopping criterion takes 27,605 iterations to converge, which is 14.4% of the
number of iterations taken by CGNR without any preconditioning.

G. Performance evaluation

To roughly estimate GFLOPS and memory bandwidth, the number of double
precision operations, the number of accessing memory and time consumed by each
iterative algorithm are calculated manually (Table 12.7). The estimation assumes
the data is directly picked up from memory with no caching capability. As a simple
case, the statement ¢ = a + b X ¢ can be counted as two double precision opera-
tions (double precision add and multiplication), and four memory operations (three
reading operations and one writing operation). In the estimation process, only the
double precision operations and memory operations that occur during the iterative
loop are counted. Table 12.8 illustrates the overall performance of the serial
implementations of CGNR and CGNR + Jacobi preconditioning in terms of
GFLOPS and memory bandwidth, The CGNR with Jacobi preconditioner takes
0.36 GFLOPS, which is far below the peak GFLOPS of the Intel Quad Core 9400
(42.56 GFLOPS (Double Precision)) [27]. The average memory bandwidth is
around 6.2 GB/s, which is more than half of the peak memory bandwidth of the
Intel Core 2 Quad Core system (8.5 GB/s [28]).

The above test results show that the serial implementations of iterative methods
consume a small part of CPU computation power (less than 1% of the peak CPU
computation power), but a large portion of memory bandwidth (around 60% of
peak memory bandwidth) to transport double precision data back and forth between
CPU and memory. Consumption of a large portion of the memory bandwidth
demonstrates that an iterative method in the context of state estimation application
is highly memory bounded.

Table 12.8 Performance valued by GFLOPS and memory bandwidth

Total Total mem Spent GFLOPS Memory bandwidth
GFLOP Op time (GB/s)

CGNR 1.5G 3.11G x 8 3.83 0.39 6.4

CGNR + Jacobi | 0.932G 1.98G x 8 2.53 0.36 6.2

Key DP: Number of Double Precision Float Point Calculations
Test Data: 14 bus system diagonal extension with inter-area dependencies
Residue: 102
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12.2.1.3 Parallelization of Iterative Methods

This section discusses the parallelization of iterative methods using multi-core and
many-core computation architectures. CGNR + Jacobi preconditioning and
CG + Jacobi preconditioning are selected for parallelization based on the test
results in the former section.

A. The parallelization strategy

As is discussed, both of CG + Jacobi and CGNR + Jacobi preconditioning have
a common framework, which includes an initialization part and an iterative part,
and is constructed by several common operations, including the matrix vector
multiplication, vector inner products and vector updates. Here, the vector update
operation is defined as u; = v; + aw;, where u, v, w are n x [ vectors, and o is a
scalar.

Table 12.9 illustrates the time spent by above common operations, (i.e., the
matrix-vector multiplication, the vector inner product, and the vector update) in two
test scenarios: CG + Jacobi against a power flow test data set and CGNR + Jacobi
against a state estimation data set. The fact that the matrix-vector multiplication
takes 66.1, 82.3% of total time separately in above two test cases demonstrates the
importance of matrix vector multiplication. Hence, improving the performance of a
matrix-vector multiplication is the first priority of the parallelism.

B. Multi-core implementation

This section aims to boost the performance of matrix-vector multiplication
operations using multi-core technologies. To simplify the analysis, only the
matrix-vector multiplication of w; = Ap; (in the left part of Fig. 12.8) is parallelized
using a series of operations that can be concurrently executed: Aop;, A1pi, - - ., Aupi
(Ap, A, ..., A, are the individual rows of matrix A). Other parts of the algorithm use
their serial implementations.

The multi-core CG + Jacobi has been implemented using C++ on the windows
platform. To reduce the overhead of creating and deleting a thread, the thread pool
provided by the Microsoft platform is used. Managed by the thread pool, the
overhead of creating and destroying a thread is greatly reduced since the thread pool
creates a certain number of threads and reuses them. The thread synchronization is
done by a shared variable and an event handler.

Table 12.9 Time spent by three basic operations

Total Matrix x Vector x Vector Iterations
time (s) Vector (s) Vector (s) update (s)
CG + Jacobi 2.557 1.69 (66.1%) 0.46(17.9%) 0.40 (15.6%) | 715
CGNR + Jacobi |2.544 2.0945 (82.3%) |0.2272(8.9%) 0.2(7.8%) 845

Test data set
CG + Jacobi: 1138 bus system with 56 times extension for power flow
CGNR + Jacobi: 14 bus system diagonal extension with inter-area dependencies for state estimation
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Fig. 12.8 CG with Jacobi preconditioner and CGNR with Jacobi preconditioner

Table 12.10 The performance and CPU utilization of multi-core CG and single core CG

CPU utilization (%) Consumed time (s)
CG multi-core version 94 32.168
CG single-core version 25 3.39

Key The test is against 1135_56 data set

The workflow of multi-core CG + Jacobi is as follows: the main function
enqueues individual operations AyP;, A;P;, ..., A,P; into the buffer of the thread
pool, and then idles for an event that indicates all the operations AyP;, A;P;, ..., A,P;
are finished. Once the main function receives such an event, it finishes its idling
status and continually conducts rest of other part of the algorithm. For each thread, a
shared variable is used to synchronize its execution: once a thread finishes the
calculation of A;P;, it adds one to the shared variable through the atomic add
operation, and then check if the shared variable reaches n (the size of the problem).
The shared variable reaching n will trigger the event, telling the main function that
calculations for all threads are done. The above multi-core CG + Jacobi precon-
ditioner is tested against the data set 1138_56, a DC power flow Jacobian test data
extended from the 1138 system provided by NIST [29].

Demonstrated by Table 12.10, it is apparent that the multi-core version
CG + Jacobi has a higher CPU utilization rate (94%) than the single-core version
CG + Jacobi does, however, the actual performance of multi-core CG is 10 times
slower than CG + Jacobi.

Due to the irregular sparsity pattern of the input matrix, it is hard to be cached by
the caching infrastructure of the multi-core CPU in the test system. Most of the data
have to be picked up from the main memory. The observations in above section
demonstrate that a serial version iterative method already consumes >60% mem-
ory bandwidth. The experiment results here confirm the above observation: four
cores concurrently consuming the same memory bandwidth blocks the memory
data channel and makes individual cores idling and starving for data.
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C. Many-core implementation

As is discussed in Sect. 12.2, a many-core system consists of a host—the
original CPU system, and a device—the GPU system. A function in GPU is called
kernel. The CPU system is suitable for the workflow control, while the GPU is
suited for bulk computations that can be run on numerous data elements simulta-
neously in parallel. To let each type of hardware do the work it does best, it is
important to partition the application and offshore a suitable load to GPU.

Concurrent execution of individual iterations are not possible because the latter
iterations rely on the results of the former ones. Hence the parallel strategy is to
parallelize individual iterations by utilizing parallelism of GPU threads and syn-
chronize the execution of GPU threads using a global barrier to maintain the
execution sequence between individual iterations.

As common operations of an iterative method (Fig. 12.8) are GPU friendly, in
an actual implementation, these operations are offloaded to GPU for high perfor-
mance computation. Meanwhile, the CPU is utilized to coordinate the execution of
the operations that are offloaded to GPU.

Figure 12.9 illustrates the implementation of CGNR + Jacobi preconditioning
under the CPU-GPU computation architecture, in which the CPU and GPU col-
laborate with one another to maximize hardware utilization of both CPU and GPU.
To minimize the overhead of data transportation, the data is transported at the
beginning and the end of the calculation. During the calculation, only the syn-
chronization control signal is transported, the data stays in GPU.

D. GPU kernels implementation

As the vector-update operation is straightforward, this section focuses on the
matrix-vector multiplication and the vector-vector dot product.

The GPU implementation of the matrix vector multiplication is based on [30], in
which the matrix vector multiplication Ax = b is partitioned into a series of
independent operations Aix = bi (Ai refers to the row vector of A, bi is the ith
element of the vector b), concurrently executed by individual GPU threads. In this
partition, the number of currently executed threads is equal to the row number of
matrix A. For example, in the test scenario of PSSE2, the Ax = b is done by 28634
threads, calculating individual Aix = bi concurrently.

The GPU implementation of the vector inner product is based on [31], where the
vector inner product is defined as the sum of the elements of ¢; = a; X b; (a; and b;
are the ith element of the vectors a and b). Generally, the GPU version of the
vector-vector dot product has two steps:

e Concurrently conduct ¢; = a; X b; (a; and b; are the ith element of the vector)
e Sumc; (i =1... n)

Theoretically, the parallel vector-vector dot product algorithm requires all the
calculations (¢; = a; X b;) need to be done before doing Sum c;. This requires a
global synchronization of the executions of ¢; = a; x b; by CPU.
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Fig. 12.9 The CGNR with Jacobi and its CPU + GPU execution

12.2.1.4 Evaluations

This section evaluates the GPU implementation of CG series algorithms with Jacobi
preconditioning in the context of state estimation and power flow applications. To
keep the results comparable, the same test system is used in the previous sections.
Table 12.11 shows the test results of CPU and GPU version CGNR with Jacobi
preconditioner using the test data sets listed in Table 12.6. Irrespective of the

Table 12.11 The performance comparison between the serial and GPU implementations of
CGNR + Jacobin in the context of state estimation application

14 bus system diagonal 14 bus system diagonal PSSE2
extension extension with interarea
dependencies
Number of Spend Number of Spend Number of Spend
iterations time (s) iterations time (s) iterations time (s)
CPU |25 0.063972 845 243 27,605 42.873
GPU |25 0.006327 845 0.3619 27,605 7.13
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Table 12.12 The performance comparison between the serial and GPU implementations of
CG + Jacobin in the context of power flow application

Size CPU time (ms) GPU time (ms) Speed Up
494 bus 494 x 494 7.53 38.8 =5.15
494_28 13,832 x 13,832 226.6 40.0 5.6
494 _56 27,664 x 27,664 451.4 40.8 11.0
494_336 165,984 x 165,984 5400 141.7 38.1
685_336 230,160 x 230,160 4030 124 32.5
662_336 222,432 x 222,432 3700 74.9 49.3
1138_336 382,638 x 382,638 25000 687.6 36.4

conditioning of the matrix, the GPU version has a factor of 7-10 performance
improvement over the CPU version.

Table 12.12 lists various test matrices used for comparing the performance of
CG with Jacobi preconditioning on CPU and on GPU. Each of these matrices
represents a power flow admittance matrix [32], equivalent to the DC power flow
Jacobian. The first row represents a 494 bus system that is duplicated 28, 56 and
336 times respectively in rows two through four. Similarly, rows 5 through 7
represent a 685, 662 and 1138 bus system duplicated 336 times to obtain corre-
sponding power flow admittance matrices. The results in 12.11 demonstrate that for
a large system, the GPU solution is much faster than the corresponding CPU
solution; however, for a small system such as 494 bus network, GPU solution is
slower than the CPU solution due to the overhead of the GPU computation platform
(i.e., such as the expense of launching thousands of threads).

Matrices that are typically used in DC power flow calculations, namely the
active power flow Jacobian or equivalently the system admittance matrices, are
better conditioned than the ones used in other applications such as state estimation.
Well-conditioned matrices are more favorable for preconditioned iterative methods
such as CG using Jacobi preconditioner. Furthermore, a GPU architecture being
suitable for parallelizing large-scale matrix-vector multiplications in iterative
methods, it in effect appears promising for efficiently solving DC power flow
problems on a large-scale system (Table 12.12). The GPU architecture may also be
effective for DC power flow based contingency analysis as it involves multiple
power flows for various contingency situations.

12.2.2 How Far Is the GPU Technology from Practical
Application?

Even though substantial efforts have been incurred, few of existing research works
reported the successful or even attempted applications of GPU technologies to
real-world software products that power utilities currently execute in their daily
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operation. To address this issue, a commercial software product widely used in the
present US power industry is selected as the platform, based on which the potentials
and the challenges to apply GPU technologies in power system practical applica-
tions are analyzed. For the sake of convenience, in this session, the selected power
system software product is referred to as the GridSimulation rather than its real
name. Although the evaluated GridSimulation is a transmission system tool, it has
the same computational structure as the distribution application does, which con-
sists of 3rd party optimization solver and pre- and post-data processing [33]. Hence,
the conclusion drawn in this section can be applied to electric distribution network
applications. The rest of the session is organized as follows: Session 12.2.2.1
profiles the Grid Simulation and identifies its performance bottlenecks.
Section 12.2.2.2 implements the GPU counterparts of these performance bottle-
necks. Section 12.2.2.3 evaluates the performance of the GPU solutions against
practical power system test data set.

12.2.2.1 Profile the Grid Simulation Tool

GridSimulation is a power grid planning tool, which has the following functions:
(1) assessment of the exposed risks during the critical situations of power systems
(e.g., fluctuation in generation output, transmission component outage, or load
change); (2) prediction of important events for the power grid in the future (e.g.,
load forecast, the long-term, day-ahead, and near real-time market predictions) by
simulating the hourly economic operations of the power market for periods from
one day to multiple years.

While providing a forecast of the utilization levels of power system components
and power flow patterns in the transmission grid, GridSimulation involves a mas-
sive amount of computational load. For example, an annual simulation of a power
grid with 5000 buses and 20,000 constraints takes tens of hours. To reduce sim-
ulation time, customers of the GridSimulation system often have to simplify the
simulation problems and cut off relatively unimportant constraints. However, the
problem simplification and the constraints exclusion constantly result in approxi-
mate results. Therefore, improving the performance of GridSimulation becomes an
effective solution that can obtain more accurate results while reduces the simulation
time.

The core of GridSimulation is to solve an optimization problem. Therefore, it,
architecturally, consists of three parts: pre-processing to formulate the optimization
problem, solving the formulated problem, and post-processing to calculate results.
The source code in both the pre- and the post-processing parts are accessible. The
source code of the optimization solver, developed by a 3rd party vendor, is
unreachable. Hence, the 3rd party solver is treated as a black box in the profiling
procedure.

The used test data are from several practical power systems. The scales of these
test systems are represented by the dimensions of the generator shifter factor
(GSF) matrices. To thoroughly investigate the features of the computational load,
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Table 12.13 Selected test power grids

Z.Liand F. Yang

System name

Dimension (Row x Column)

PG1 1943 x 3817
PG2 2336 x 4252
PG3 8429 x 13622
PG4 4291 x 8155

Table 12.14 The Test Environment

Profiling hardware configuration S1 Profiling hardware configuration S2
CPU Intel Core 2 Q9400 Intel Core i7-3930
Memory 4 GB DDR2 32 GB DDR3
Hard disk Mechanical HD SSD
oS Win 7 (64 bits) Win 7 (64 bits)

Table 12.15 Performance of GridSimulation on power grids

PG1 (w/Loss)

PG2 (w/o loss)

PG3 (w/o loss)

PG4 (w/Loss)

S1 | Total runtime (s) | 700 299 3930 7310
Ratio of solver 6.28% 35.05% 64.09% 25.17%

S2 | Total runtime (s) | 190 138 1860 2990
Ratio of solver 8.83% 34.32% 69.12% 24.37%

Key Ratio of Solver — Ratio of time spent by solver over the total runtime

power grid models with and without system loss are both considered. In the case of
considering loss, a loss model is included into the optimization problem. In par-
ticularly, the test cases PG1 and PG4 Table 12.13 are profiled without the loss
model; PG2 and PG3 are profiled with the loss model (Tables 12.14 and 12.15).

Two types of profiling environment, referred to as S1 and S2, are designed for
the purpose of studying the performance features under different hardware con-
figurations. The S1 hardware setup has relatively outdated computer technologies,
including the Intel Core 2 Quad CPU (2008), the GTX480, the Fermi based GPU
(2010). In contrast, the S2 hardware setup has the most upgraded technologies,
including a four-channel DDR3 1600 MHz memory system, an Intel extreme series
CPU i7 3930 and the SSD hard disk.

Four identified performance bottlenecks are listed as follows: updating GSF,
checkflow that retrieves power flow results, calculating Locational Marginal Price
(LMP) and calculating delivery factors. To clarify the analysis, the profiling results
are categorized into two groups: overall measurements and measurements on each
individual sub-components. The former includes the overall performance of
GridSimulation and the performance of the 3rd party solver. The latter illustrates the
performance on each of the identified performance bottlenecks.
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The observations on the overall performance are listed as follows:

e The overall simulation time is significantly increased when the size of the power
grid is getting large. The simulation time for PG1 is 190 s versus 1860 s to that
of the PG4.

e The time spent on the 3rd party solver varies case by case, ranging from 15.46%
(PG1 with loss) to 82.59% (PG3 without loss) of the total simulation time. In the
PG3 case, in which the loss model is excluded from the simulation, the solution
time of the solver takes a large portion of runtime. On the contrary, when the
power grid loss is considered, the solution time of the solver only takes less than
20% of total runtime.

¢ Inclusion of power grid loss in the simulation triggers substantial computational
load on the pre- and post-processing parts and significantly increases the sim-
ulation runtime. In the practice of the power grid analysis software, most sim-
ulation scenarios need to consider the power grid loss.

e Because of the hardware evolution, particularly the upgrade of CPU, the S2 test
environment exhibits significant performance advantages over the S1 configu-
ration. The runtime in S2 environment reduces more than half comparing to that
of S1 in some cases (e.g., PG3).

The observations on the identified performance bottlenecks are listed as follows:

e Including the power grid loss introduces two expensive operations: updating
GSF and calculating the delivery factors. In regard to PG1, for instance, in the
S1 setup, the above two operations take about 65.36 and 7.77% of the total
runtime (Table 12.16). In the S2 setup, they take 39.36 and 13.62%
(Table 12.17). In other words, 74% of the total runtime in the S1 environment
and 53% of the total runtime in the S2 environment are consumed by the power
grid loss related calculation.

e In cases that the power grid loss is excluded from the simulation, checkflow and
calculating LMP are the major performance bottlenecks. In the simulation of the
PG2 (no loss), these two operations take about 44.82% (Table 12.16) and

Table 12.16 Test results from the S1 setup

CAISO ISO_B2021 EI_NERC EI_EPA_Reg
(Loss) (No loss) (No Loss) (Loss)
GSF update 65.36% N/A N/A 41.64%
Cal delivery factor 7.77% N/A N/A 7.68%
Check flow (%) 8.15 29.26 10.40 3.00
Calculate LMP (%) 3.26 15.56 7.01 1.95
Solving optimization 6.28 35.05 64.09 37.43
problem (%)
Other functions (%) 9.18 20.13 18.5 8.3
Total execution time (s) 700 299 3930 69110

Key The percentage refers to the ratio of runtime of the function over total runtime
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Table 12.17 The test results from the S2 setup

CAISO ISO_B2021 EI_NERC EI_EPA_Reg
(Loss) (No loss) (No Loss) (Loss)
GSF update 39.36% N/A N/A 33.48%
Cal delivery factor 13.62% N/A N/A 11.88%
Check flow (%) 11.63 27.16 9.66 2.58
Calculate LMP (%) 7.66 21.27 6.45 2.59
Solving optimization 8.75 34.32 69.12 33.57
problem (%)
Other functions (%) 18.98 17.25 14.77 15.9
Total execution time (s) 190 138 1860 27,550

Key The percentage refers to the ratio of runtime of the function over total runtime

48.43% (Table 12.17) of the total runtime in S1 and S2 configurations,
separately.

In a nutshell, GridSimulation is a computationally intensive application; espe-
cially when including power grid loss in the simulation procedure, the annual
simulation could take tens of hours. The loss calculation generally adds on heavy
computational load to the pre-processing and post-processing parts when loss is
considered.

12.2.2.2 GPU Solutions for Identified Performance Bottlenecks

A. The partial and full GPU optimization

Technically, GPU optimization falls into two categories: the partial and the full
optimization. In the partial optimization, both CPU and GPU participate in the
calculation: CPU controls the workflow and conducts some lightweight computa-
tional tasks; the heavy computational load is offshored to GPU. In the full GPU
optimization, CPU only controls the workflow and GPU performs all the calcula-
tion. By keeping all the data in GPU, the full GPU optimization maximally reduces
the data transportation overhead. Since implementing the full GPU optimization
requires the re-architecture of the existing software and unavoidably triggers a large
amount of efforts, only the partial GPU optimization is studied in this work.

B. GPU implementation for the performance improvement

In regards to the GPU implementation, both the existing GPU APIs and new
GPU functions developed from scratch are utilized.

(1) GPU kernels implemented by cuBLAS [17]

Essentially, the calculation of delivery factors and checkflow are both
matrix-vector multiplication; the calculation of LMP is matrix-matrix
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//Matrix vector multiplication

void GPUFAccelerator::gpu_mv(float* h_x, float* h_b)

{

. Transport vector x to GPU

. Transport vector b to GPU

. cublasSgemv(x, b) //the matrix vector multiplication function in cuBLAS lib
. Transport results back to GPU

B WN

}

Key: cublasSgemv is the matrix vector multiplication function in the cuBLAS library

Fig. 12.10 The GPU implementation of matrix vector multiplication

multiplication, the corresponding APIs in the GPU cuBLAS library are deployed
directly to implement the required multiplications between matrices and vectors.

In particular, the matrix-vector multiplication can be expressed by b = Ax, where
A is the GSF matrix. The GSF matrix is transported to GPU first before the cal-
culation begins and reused by other bottleneck calculations in GPU. During cal-
culation, only the vector x and b are transported between CPU and GPU. Sharing
the GSF matrix among several performance bottlenecks greatly reduces the data
transportation overhead. Figure 12.10 shows the example of GPU implementation
for matrix-vector multiplication.

(2) Developed GPU solutions

Since no API is offered for the matrix update, the GPU function for GSF update
is prototyped from scratch. Figure 12.11 illustrates the theory of the matrix update.
Its GPU counterpart is developed (Fig. 12.12), which can fully take advantage of
the GPU’s capability in concurrently launching thousands of threads. As a result,
the calculations of the GSF update can be implemented in one step in GPU instead
of multiple steps required in CPU implementation such as moving data to CPU and
conducting calculations serially.

Fig. 12.11 The element
update in the GSF update bo [aoo aOm]
[bn] ano Anm
[Co Cm]
[aoo *bg*co -+ Agm * bo *Cm]
ano*bn*CO anm*bn*cm
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__global__ void VecMulti(double* A, const double* B, double* C, double* D, int N, int Column)
{

int i = blockDim.x * blockldx.x + threadldx.x;

if (i< N)
{

D[i] = A[i] * (B[i % Column]) * (C[i / Column]);
}

Fig. 12.12 GPU Implementation of the GSF update

12.2.2.3 Evaluate GPU Solutions

A. Opverall performance measurements on bottlenecks

The measurements of the identified performance bottlenecks collected from both
the S1 and S2 hardware configurations are listed in (Tables 12.18 and 12.19),
separately. To be precise, the data transportation is further classified into syn-
chronized transportation and synchronized transportation.

The test results demonstrate that synchronized transportation effectively reduces
the data transportation time and significantly improves the performance. For
example, in the synchronized transportation (Tables 12.18 and 12.19), the check-
flow GPU solver is about 9 times and 1.7 times faster than its CPU counterpart in
the S1 and S2 test environment. In contrast, in the synchronized transportation, the
above two performance gains are 148 and 49.7, separately.

Table 12.18 The runtime of GPU and CPU solvers (S1 test system, PG1)

GPU (s) CPU (s) Performance gain
Syn Checkflow 0.001156 0.010384 8.98
Delivery factor 0.00284 0.0527 18.54
Update GSF 0.000332 0.40165 1315
Asyn Checkflow 7.12e—5 0.105 148.3
Delivery factor 0.00294 0.0579 19.709
Update GSF 7.27e-5 0.377 5184

Table 12.19 The runtime of GPU and CPU solvers (S2 test system, PG1)

GPU (s) CPU (s) Performance gain
Syn Checkflow 0.001319 0.002291 1.7367
Delivery factor 0.001925 0.0246 12.81
Update GSF 0.000185 0.0444 241.03
Asyn Checkflow 5.76e—5 0.002419 41.97
Delivery factor 0.0021 0.0221 10.48
Update GSF 5.20e—5 0.044 847.68
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Table 12.20 The scalablhty PG1 PG2 PG4

of GPU solver versus CPU
solver (checkflow, the S2 test CPU 0.002228 0.00254 0.004653

system) GPU 0.000112 0.000155 0.000163

In GSF update, as GSF matrix stays in GPU, the measurements only consider
transportation of the vector x and b from CPU to GPU and the calculations in GPU.
Since GPU can concurrently launch thousands of threads, updating all elements in
one step, the GPU version of GSF update has significant performance advantage
over its CPU counterpart. The test results demonstrate that the GPU solver of GSF
update is about 5184 and 847 times faster than its CPU counterpart in the S1 and
the S2 test systems, separately if the data transportation is not considered.

B. Scalability of GPU solver versus CPU solver

Table 12.20 illustrates the performance variances of the GPU solver versus the
CPU counterpart with the size of calculated data increased. In the measurements,
only calculation time (excluding the transportation time) is considered. The test
results demonstrate that time spent on the GPU solver increases in a flat ratio
(0.000163/0.000112 = 1.03) with the increased size of the simulated system. On
the contrary, the ratio of the CPU solver is not flat (0.004653/0.002228 = 2.08). In
other words, performance of GPU solver is insensitive to the size of the system,
which makes GPU solver suitable for calculating large systems.

C. Measurements on calculation and transportation

The detailed measurements on data transportation and calculations are listed in
Tables 12.18, 12.19, 12.20, and 12.21. Some observations are listed as follows:

e The transportation from CPU to GPU is much faster than that of the opposite
direction because GPU memory (DDRS) has faster read/write speed than the
CPU memory (DDR3).

e The calculations on two GPUs (GTX480 versus GTX680) take almost the same
amount of time. The reasonable explanation is that the problem is not large
enough to distinguish capability of the two GPUs.

e For a GPU solver, the ratios of transporting data between CPU and GPU over
the total runtime are significant. The round-trip of data transportation takes
about 95% + of the total runtime; while calculation only takes 5% of the total
runtime. Hence, reducing the transportation time becomes important in
designing high performance GPU solver.

Table 12.21 The runtime of S1 (S) S2 (q)
GPU solver for transportation

and matrix-vector calculation CPU to GPU 2.03e=5 1.59e~5
(PG1) GPU to CPU 0.001 0.001

Calculation 3.1e—5 3.1e—5
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Fig. 12.13 Three bus system
network

Appendix

Referring to Table 12.6, system networks used for experimentation include a 3-bus
system, IEEE 14 bus system [34] and PSSE2 system from [25]. These are described
in this appendix (Fig. 12.13).

The 3-bus system is shown in where the solid circles denote the flow and
injection measurements used for state estimation. Similarly, Fig. 12.14 shows the
measurement placement for IEEE 14-bus system. Measurements are obtained from
the load flow solution with noise added.

The 14 bus system is duplicated several times to obtain larger systems. The
sparsity pattern of the measurement Jacobian matrices in Table 12.6 (rows 3, 4 and
5) is shown in Fig. 12.15.

G | GENERATORS

¢ SYNCHRONOUS 12 =28
COMPENSATORS

THREE WINDING | [ Injection measuremeants
TRANSFORMER EQUIVALENT < @ Flowmessurements (P.Q)
- ¥
G
8
— g

Fig. 12.14 IEEE 14-bus system and measurement placement
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Fig. 12.15 Sparsity pattern of the test matrices: 14-bus with diagonal extension (left) 14-bus with
diagonal extension and inter-area tie lines (middle), PSSE2 system (right)
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