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Abstract. Time series forecasting research area generally aims at
improving prediction accuracy. Discrete wavelet transform (DWT) has
been applied to time series for decomposing it into approximation and
detail. Nevertheless, typically, the property of the approximation and the
detail are presumed as either linear or nonlinear. Actually, the purpose
of the DWT is not decomposing the original time series into linear and
nonlinear time series. Hence, this paper develops a new hybrid model
of autoregressive integrated moving average (ARIMA), artificial neural
network (ANN), and the DWT without prior assumption on linear and
nonlinear property of the approximation and the detail. The different
Khashei and Bijari’s hybrid models involving the ARIMA and the ANN
are built for the approximation and the detail in order to extract their
both linear and nonlinear components and fit the relationship between
the components as the function instead of additive relationship. Finally,
the forecasted approximation and detail are combined to obtain final
forecasting. The prediction capability of the proposed model is exam-
ined with two well-known time series: the sunspot and the Canadian
lynx time series. The results show that the proposed model has the best
performance in all two data sets and all three measures (i.e. MSE, MAE
and MAPE).

Keywords: Hybrid model · Time series forecasting · Autoregressive
integrated moving average (ARIMA) · Artificial neural network (ANN) ·
Discrete wavelet transform (DWT)

1 Introduction

For decades, time series forecasting research area contributes several real-
world applications in their prediction and decision making support [1]. This
research area attempts to achieve better prediction accuracy by developing effec-
tive forecasting models. Traditionally, autoregressive integrated moving aver-
age (ARIMA) and artificial neural network (ANN) were developed and widely
applied in time series forecasting. The ARIMA has an advantage in dealing with
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both stationary and non-stationary time series but it presumes that the rela-
tionship between inputs (e.g. historical time series) and outputs (e.g. future time
series) is linear. On the other hand, the ANN has no such assumption. However,
there is no a universal forecasting model that has the best performance in all
situations. Hence, applying sole single forecasting model to time series prediction
is not adequate to predict real-world time series [2].

Discrete wavelet transform (DWT), a transformation technique for signals, is
adapted to transform time series into approximation (trend) and detail (noise)
before further analysis. With the DWT, the prediction accuracy of the ARIMA
and the ANN has been improved in many applications such as short term load
[3]; electrical price [4,5]; groundwater level [6]; river discharge [7–9]; hourly flood
[10]; rainfall and runoff [11,12].

Moreover, Khandelwal et al. [13] has developed the hybrid model of the
ARIMA and the ANN (Zhang’s model [2]) with the DWT. Nevertheless, this
hybrid model considers the approximation as only a nonlinear component; in
fact, there is no theoretical prove whether the approximation is linear or nonlin-
ear. In addition, the additive relationship between linear and nonlinear compo-
nents is assumed in the final forecasting step.

This study proposes a new hybrid model that can capture both linear and
nonlinear components of the approximation and the detail, and has no assump-
tion on relationship between linear and nonlinear components. Firstly, the dis-
crete wavelet transform (DWT) is used to decompose the time series. Then, the
hybrid model of ARIMA and ANN are constructed for the approximation and
the detail to extract their linear and nonlinear components. Eventually, the final
prediction is the combination of the predicted approximation and detail.

The rest of this paper is organized as follows. In Sect. 2, the ARIMA, the
ANN, and the DWT are briefly explained. In Sect. 3, the proposed model is pre-
sented. The experiments and their results are shown and interpreted in Sect. 4.
Finally, Sect. 5 provides the conclusions.

2 Preliminaries

2.1 Autoregressive Integrated Moving Average (ARIMA)

The autoregressive integrated moving average (ARIMA) is a popular forecasting
model for decades due to its capability in handling both stationary and nonsta-
tionary time series [1]. However, The ARIMA assumes the relationship between
predicted and historical time series as linear relationship. The ARIMA consists
of three parts: autoregressive (AR), integration (I), and moving average (MA).
In the situation that the time series is nonstationary, the time series is trans-
formed by differencing in integration (I) step. The mathematical expression of
the ARIMA can be written as:

φp(B)(1 − B)dyt = c + θq(B)at (1)

where yt and at denote the time series and random error in period t respectively,
φp(B) = 1 − ∑p

i=1 φiB
i, θq(B) = 1 − ∑q

j=1 θjB
j , B denotes the backward shift
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operator defined as Biyt = yt−i, φi and θj denote the parameters of AR and
MA respectively, p and q denote the orders of AR and MA respectively, and d
denotes the degree of differencing, and c denotes the constant.

2.2 Artificial Neural Network (ANN)

The artificial neural network (ANN) is an artificial intelligent imitating biological
neurons, and it is good at nonlinear modeling [14]. The ANN is widely used in
time series forecasting because it is more flexible than the ARIMA in capturing
relationship between predicted and historical time series without assumption.
Typically, the ANN consists of three types of layer: input, hidden, and output
layers. There are nodes in each layer. Normally, the architects choose the number
of the layers and the nodes by their intuition in the problem and trial and
error. Nevertheless, a feed-forward neural network that has only one hidden
layer has been tested that it can be considered as a universal approximator [15].
The mathematical expression of the feed-forward neural network [16] can be
written as:

yt = f

(

bh +
R∑

h=1

whg

(

bi,h +
Q∑

i=1

wi,hpi

))

(2)

where yt denotes the time series at period t, bi,h and bh denote the biases of hid-
den and output layers, f and g denote the transfer functions which are typically
linear and nonlinear functions respectively, wi,h and wh denote the connection
weights between the layers, Q and R denote the numbers of the input nodes and
the hidden nodes respectively.

In this paper, the feed-forward neural network that has only one hidden
layer and Levenberg-Marquardt algorithm with Bayesian regularization training
algorithm [17] is applied in the experiments.

2.3 Discrete Wavelet Transform (DWT)

The wavelet transform is a tool for simultaneously analysis of both time and
frequency of signals [18]. After the analysis, the original signal is decomposed
into low frequency (approximation) and high frequency (detail) by applying low
and high frequency pass filters. In case of multiple decomposition level, the
approximation and the detail in the next level are the decomposition of the
approximation in the previous level. In fact, there are two main categories of
the wavelet transform such as continuous and discrete wavelet transforms. Nev-
ertheless, in real-word applications, the time series are discrete and appropriate
to be decomposed by the discrete wavelet transform (DWT) as:

yt = AJ (t) +
J∑

j=1

Dj(t)

=
K∑

k=1

cJ,kφJ,k(t) +
J∑

j=1

K∑

k=1

dj,kψj,k(t)

(3)
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where yt denotes the time series in period t; AJ (t) denotes the approximation in
the highest decomposition level (J); Dj(t) denotes the detail in decomposition
level j; cj,k and dj,k denote the coefficients of the approximation and detail
respectively, in decomposition level j and in period k; φj,k(t) and ψj,k(t) denote
low (approximation) and high (detail) pass filters respectively, in decomposition
level j and at period k; K denotes the length of the time series; J denotes the
highest level of decomposition.

3 Proposed Forecasting Model

The main objective of developing the proposed model is to obtain the advantage
of both the ARIMA and the ANN in fitting linear and nonlinear components
from the time series without presuming the characteristic of the approximation
and the detail as either linear or nonlinear. The proposed model can be divided
into three steps: decomposition of the time series, capturing linear and nonlinear
components, and final forecasting (Fig. 1).

In the first step, the actual time series (yt) is decomposed by the DWT with
Daubechies wavelet basis function in order to obtain the approximation (yapp

t ),
which presents the trend, and the detail (ydet

t ), which is the difference between
actual value and the trend. The pattern of the detail reveals the seasonality, the
white noise, etc.

Instead of applying a forecasting model to time series consisting of both trend
and noise, using different forecasting models to separately predict the trend from
the approximation and predict the noise (e.g. seasonality and white noise) from

Time series

Discrete wavelet transform

Detail

ARIMA

ANN

ARIMA

ANN

Approximation

Final forecasting

ResidualResidual

Fig. 1. The proposed forecasting model
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the detail can provide better prediction results because each forecasting model
deal with only either trend or noise, not both of them simultaneously.

In the second step, the Khashei and Bijari’s hybrid model of the ARIMA
and the ANN [19] is applied to both the approximation and the detail. This
step contributes the new approach that does not make either linear or nonlinear
assumption to the property of the approximation and the detail, and does not
assume additive relationship between their linear and nonlinear components as
well.

Generally, the Khashei and Bijari’s model forecasts the future time series at
period t (ŷt) by using linear (L̂t) and nonlinear (N̂t) components as:

ŷt = f(L̂t, N̂t) (4)

The linear component (L̂t) is the result of adopting the ARIMA to the actual
time series (yt). After that, the residual of the ARIMA (et) can be computed as:

et = yt − L̂t (5)

In case of the nonlinear component (N̂t), it can be obtained from the ANN
that has the lagged values of both the time series (yt) and the ARIMA residual
(et) as its inputs:

N̂1
t = f1(et−1, et−2, . . . , et−n) (6)

N̂2
t = f2(yt−1, yt−2, . . . , yt−m) (7)

where f1 and f2 denote the function fitted by the ANN, n and m is total included
lagged periods.

In the proposed model, the Khashei and Bijari’s model is separately built for
the approximation and the detail as:

ŷapp
t = fapp(L̂app

t , N̂app
t ) (8)

ŷdet
t = fdet(L̂det

t , N̂det
t ) (9)

where ŷapp
t and ŷdet

t denote the forecasted approximation and detail respectively,
in period t; fapp and fdet denote the function fitted by the ANN; L̂app

t and L̂det
t

denote the linear components of the approximation and the detail respectively, in
period t; N̂app

t and N̂det
t denote the nonlinear components of the approximation

and the detail respectively, in period t.
The linear components (L̂app

t and L̂det
t ) denote the result of applying the

ARIMA to yapp
t and ydet

t respectively. Then, the ARIMA residual of the approx-
imation (eappt ) and the detail (edett ) can be mathematically expressed as:

eappt = yapp
t − L̂app

t (10)

edett = ydet
t − L̂det

t (11)

For the nonlinear components (N̂app
t and N̂det

t ), they can be produced from
the ANN as:

N̂app1
t = fapp1(eappt−1, e

app
t−2, . . . , e

app
t−n1

) (12)
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N̂app2
t = fapp2(yapp

t−1, y
app
t−2, . . . , y

app
t−m1

) (13)

N̂det1
t = fdet1(edett−1, e

det
t−2, . . . , e

det
t−n2

) (14)

N̂det2
t = fdet2(ydet

t−1, y
det
t−2, . . . , y

det
t−m2

) (15)

where fapp1, fapp2, fdet1, and fdet2 denote functions fitted by the ANN; n1, n2,
m1, and m2 denote total lagged periods that are identified by trial and error in
the experiments.

After that, the forecasted approximation (ŷapp
t ) and the forecasted detail

(ŷdet
t ) can be obtained as:

ŷapp
t = fapp(L̂app

t , eappt−1, e
app
t−2, . . . , e

app
t−n1

, yapp
t−1, y

app
t−2, . . . , y

app
t−m1

) (16)

ŷdet
t = fdet(L̂det

t , edett−1, e
det
t−2, . . . , e

det
t−n2

, ydet
t−1, y

det
t−2, . . . , y

det
t−m2

) (17)

Finally, the final forecasting step is performed by combining of the forecasted
approximation (ŷapp

t ) and the forecasted detail (ŷdet
t ) as:

ŷt = ŷapp
t + ŷdet

t (18)

In sum, rather than applying the Khashei and Bijari’s model direct to the
time series, the DWT is used at first to transform the time series into the approx-
imation (trend) and the detail (noise). Then, without assuming linear or non-
linear properties of the approximation and the detail, the Khashei and Bijari’s
model is adopted to both of them. After the specific Khashei and Bijari’s models
have been separately built to capture the trend and the noise, they would give
the better forecasting result because the different Khashei and Bijari’s models
concentrate on only either trend or noise (not both of them simultaneously).
In addition, the relationship of the linear and nonlinear components is defined
as the function instead of additive relationship. Finally, the final forecasting is
performed by additive combination between forecasted approximation the detail
because the relationship between them is additive as well.

4 Experiments and Results

To assess forecasting capability of the proposed model, two well-known time
series (Table 1) are used as case studies such as Wolf’s sunspot (Fig. 2) and
Canadian lynx (Fig. 3). The measures of forecasting performance used in this
paper are mean square error (MSE), mean absolute error (MAE) and mean
absolute percentage error (MAPE). The performance of the proposed model is

Table 1. Detail of time series and experiment

Time series Size (total, training, test)

Sunspot (1700–1987) (288, 221, 67)

Canadian lynx (1821–1934) (114, 100, 14)
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Fig. 2. Sunspot time series (1700–1987)
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Fig. 3. Canadian lynx time series (1821–1934)

Table 2. Sunspot forecasting result

Model 35 year ahead 67 year ahead

MSE MAE MAPE MSE MAE MAPE

ARIMA 197.87 10.52 29.17% 323.48 13.25 32.86%

ANN 164.08 9.51 31.76% 413.90 14.19 33.34%

Zhang 156.76 9.63 30.22% 300.88 12.74 32.08%

Khashei and Bijari 127.67 8.60 22.85% 273.15 12.14 25.31%

Khandelwal et al. 144.09 8.21 20.22% 378.00 12.21 21.95%

Proposed model 121.52 5.51 16.21% 206.32 8.07 19.19%

compared with the ARIMA, the ANN, the Zhang’s model, Khashei and Bijari’s
model, and Khandelwal et al.’s model.

For the sunspot time series, it contains 288 annual records (1700–2987). The
training and test sets are 221 records (1700–1920) and 67 records (1921–1987)
respectively. Firstly, the sunspot time series is decomposed by the DWT into
the approximation and the detail. Secondly, the ARIMA is applied to both the
approximation and the detail. The most fitted ARIMA for the approximation
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Fig. 4. Forecasted values: (a) Sunspot, (b) Canadian lynx

and the detail are ARIMA(0, 0, 6) and ARIMA(0, 0, 3) respectively. Thirdly, the
forecasted approximation and detail are generated by the best fitted ANNs that
are ANN(16-1-1) and ANN(9-10-1) respectively. Then, the final forecasting is
computed from the combination of the predicted approximation and detail.
After obtaining the final forecasting, the performance measures are computed for
short term (35 years) and long term (67 years) horizontal predictions (Table 2).



194 W. Pannakkong and V.-N. Huynh

Table 3. Lynx forecasting result

Model MSE MAE MAPE

ARIMA 0.0229 0.1120 3.7062%

ANN 0.0201 0.1165 4.0156%

Zhang 0.0247 0.1083 3.5504%

Khashei and Bijari 0.0160 0.0980 3.2381%

Khandelwal et al. 0.0195 0.0873 2.9737%

Proposed model 0.0071 0.0639 2.1114%

According to the performance comparison, the proposed model has the lowest
error in all three measures. The MSE, MAE and MAPE in short term prediction
are 121.52, 5.51 and 16.21% respectively. On the other hand, the MSE, MAE
and MAPE in long term prediction are 206.32, 8.07 and 19.19% which are higher
than the short term prediction because the long term prediction has the highest
value at period 37 (see Fig. 4a) that increases the variance causing more predic-
tion error. Nevertheless, the proposed model can still have the best performance
because the other models also perform worse. Hence, the proposed model is the
best forecasting model for the sunspot time series in both short and long term
forecasting.

The Canadian lynx time series consists of 114 annual records (1821–1934).
The training and test sets are 100 records (1821–1920) and 14 records (1921–
1934) respectively. The best fitted ARIMAs of the approximation and the
detail are ARIMA(0, 0, 5) and ARIMA(2, 0, 0) respectively. The most appropri-
ate ANNs in forecasting the approximation and the detail are ANN(7-9-1) and
ANN(6-3-1) respectively. From the performance comparison shown in Table 3,
the proposed model gives the best performance in MSE, MAE and MAPE that
are 0.0071, 0.0639 and 2.1114% respectively. The most improved measure is
MSE. The lower MSE gives more chance to promise lower maximum of error
because the MSE is sensitive to a huge error. Therefore, the proposed model has
the lowest maximum error which is in period 9 (Fig. 4b).

5 Conclusions

In order to enhance forecasting accuracy in time series prediction, the new hybrid
model of the ARIMA, the ANN, and the DWT has been proposed. The proposed
model analyses the time series without assuming linear and nonlinear proper-
ties on the approximation and the detail, and defines the relationship of the
linear and nonlinear components of both the approximation and the detail as
the function. The prediction capability of the proposed model is examined with
two well-known time series: the sunspot and the Canadian lynx time series. The
results show that the proposed model has the best performance in all two data
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sets and all three measures (i.e. MSE, MAE and MAPE). The improved perfor-
mance implies benefit of hybridization of the ARIMA, the ANN, and the DWT
in capturing the linear and nonlinear components of the approximation and the
detail without prior assumption on their properties.

The limitation in the experiment is that the level of decomposition is one.
For future works, the impact of different decomposition levels will be considered.
Moreover, the statistical test will be performed to measure the significant level
of performance improvement.
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