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Enzyme-Instructed Self-assembly
of Small Peptides In Vivo for Biomedical
Application
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Abstract With the development of technology, there have developed many
methods to treat diseases. Among them, precision medicine is in an urgent need for
public healthcare. In the past several decades, the rapid development in nan-
otechnology significantly improves the realization of precision nanomedicine.
Comparing to well-established nanoparticle-based strategy, in this chapter, we
focus on the strategy using enzyme-instructed self-assembly (EISA) in biological
milieu for biomedical application. Generally speaking, the principles of designing
small molecules for EISA require two aspects: (1) the substrate of enzyme of
interest; (2) self-assembly potency after enzymatic conversion. This strategy has
shown its irreplaceable advantages in nanomedicine, specific for cancer treatments
and Vaccine Adjuvants. Up to now, all the reported examples rely on only one kind
of enzyme-hydrolase. Therefore, we envision that the application of EISA strategy
just begins and will lead a new paradigm in nanomedicine.
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4.1 Introduction

Supramolecular chemistry focuses on the intermolecular bond and the structures
and functions of the supramolecules, while the molecular chemistry is based on the
covalent bond [1]. The molecular self-assembly is a branch of supramolecular
chemistry [2]. The macrobehavior of molecular self-assembly is to form gels.
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Although molecular gels have been studied for over 170 years, the discovery and
design of small molecules forming gel have still drawn great attention of many
scientists due to their potential applications in tissue engineering drug release [3, 4]
and drug release [5, 6]. As we all know, for biological applications, one of the most
important problems is to find biodegradable materials to realize controlled drug
release. Compared to polymers gels, the small molecule gels could resolve this
problem because that they consist of biocompatible components and are held
together by noncovalent force, which make them easier for the body to degrade.
Therefore, the research on the small molecule gels is rapidly developing.

4.2 The Development of Small Molecular Gels

According to Flory, a gel has a continuous structure with macroscopic dimensions
that is permanent on the time scale of an analytical experiment and is solid-like in
its rheological behavior below a certain stress limit. In another words, the gels
consist of two parts, the gelators and the solvent. Generally speaking, the gels have
quite a few gelators, usually within the range of 0.1–10 wt%. When the gel formed,
in the macroscope, the solvent is immobilized and can support its own weight and is
not flowed. The simplest test is to turn the test tube upside down and observe it
flows or not. In the microscope, the gel forms many nanofibers, which are twisted
and traps the solvent by surface tension [7, 8]. To molecular gels, there already have
many studies on mechanisms of gelators, [9, 10] different types of gelator, [11, 12],
and their applications [13, 14]. Considering the difference of the solvents, the gels
can be simply classified into organogels and hydrogels, which have different
applications.

4.2.1 The Development and Characteristic of Organogels

The organogels are called “p-gelators” which are soft materials. The “p-gelators”
derive from gelators with more than one aromatic p-unit, which has contributed to
self-assembly and easier to from gels. Besides, duo to their delocalized p-electrons,
p-systems often have some special properties such as electronic conductivity and
luminescence [15, 16]. The p-systems have great applications in organic electronic
devices by coating if the size and shape of aggregates can be controlled. And one
possible way is to use the weak force such as hydrogen bonding and p-stacking
interactions to realize self-assembly. In organogels, the solvents can almost be any
common organic solvents as far as recent studies. Simply speaking, gelation is a
balance between crystallization and solubilization. Therefore, to a given solvent, a
molecule requires functionality that will provide both of them. Mostly, the gelators
of organogels have some functional groups such as hydroxyl and carboxylic acid,
which has been proved to be essential for gelation because that they are capable of
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forming hydrogen bond. And an aromatic core is another characteristic of organ-
gelators because the presence of an aromatic core can help p−p stacking. The
organogels can be triggered by light, pH, temperature, ionic strength, and other
factors.

Just like many scientific discoveries, we are not planned to enter into the field of
organogels. It was found by Y.-C. Lin during a photochemical investigation [17]. In
this experiment, the 3-b-cholesteryl-4-(2-anthryloxy) butanoate (CAB) can turn
organic solution to gel at very low concentrations (less than 2 wt%). Then, the
scientists focus on searching for the simpler organogelators. The molecules with
only one aromatic group and one linking chain had achieved little success. And the
molecules with one aromatic group and two linking chain has been proved to
successfully form organogels in many organic solutions [18]. And with the
developing of the investigation, some conclusion has been drawn:

(1) H-bond is not inevitable if other packing contribution dominated such as p–p
interactions and London dispersion forces [19].

(2) the interactions of charge—transfer among gelators can help to stabilize gels
[20].

(3) thixotropy can be induced by adding a small concentration of a second mole-
cule with poor ability to form gel, which is similar to the gelator in structure.

(4) the temperature and solubility of the gelator in organic solvent have great
influence on the fraction of the gelator within the gels [21].

(5) what determines the shape, the dimension, and the Tgel (the sol$gel transition
temperature) values are the properties of the liquid mixture, rather than the
individual components [22].

4.2.2 The Development and Characteristic of Hydrogels

With the development of organogels, the limitation is obvious when applied to
biomedicalfield. Andwater is the unique solvent tomaintain life forms and is themost
abundant substance in the body of life. In 1921, Hoffman reported a first small
molecule hydrogelator, the compound dibenzoyl-L-cystine, which could form gel at
0.1 wt% concentration in macroscope [23]. And about 100 years later, Menger and
co-workers applied modern physical methods such as X-ray crystallography and
electron microscope to examine the hydrogel of dibenzoyl-L-cystine [24]. And they
revealed the microstructure of hydrogels. Besides, they found that aromatic moieties
have great improvement on intermolecular interaction in water. Although there are
many principles of supramolecular hydrogelation, the first gel is an accidental dis-
covery of a particular molecule that forms a gel in a solvent. Just like organogels, it
usually gains hydrogels of peptides in accident when the researchers invest the oli-
gomeric peptides [6, 25]. And it can be concluded that the small molecules
self-assembly is a universal phenomenon, rather than particular process. Therefore, it
will be meaningful to explore the supramolecular hydrogels. Essentially, the
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hydrogels formed by the self-assembly of small organic molecules are different from
organogels and polymer hydrogels. The polymeric hydrogels originated from a ran-
dom cross-linked network is a strong covalent bond. As to hydrogels, the molecular
self-assembly is forced by weak and noncovalent interaction among hydrogelators in
water, which make the hydrogels more ordered.While simple swelling usually makes
a polymeric hydrogel, a stimulus or a triggering force is necessary to bias thermo-
dynamic equilibrium for initiating the self-assembly process or phase transition to
obtain a supramolecular hydrogel. Therefore, there are many forms of stimuli or
triggers for manipulating the weak interactions. The methods can be divided into
physical methods (such as changing the temperature, applying ultrasound, or mod-
ulating the ionic strength) and the chemical methods (such as pH change, chemical or
photochemical reactions, redox, and catalysis). Among them, the change of pH is the
simplest method to gain hydrogel because a small amount of acid or base easily and
rapidly can lead to a large pH shift via a diffusion-limited process. However, con-
sidering the biomedicine applications, themethods of great change of the environment
(such as all the physical methods and the change of pH) may be useless. And the
methods based on chemical reaction are promising. Chemical reactions can yield new
products which have great different properties from reactants and turn the solution to
gel. In polymeric hydrogels, click chemistry, [26] redox reactions, [27, 28] Michael
reaction, [29] acid–base reaction [30], and ligation reaction [31] have already been
developed. To supramolecular hydrogels, there are still much less attention.
Considering that self-assembly is themolecular foundation of life, and soft andwet are
another two obvious characteristics of most types of cells, it is not surprising that
catalysis and enzymes are attracting increased attention and are achieving many
unexpected successes in the generation and applications of supramolecular hydrogels.
The typical experiment is reported by Xu group [30]. They synthesized the hydro-
gelator with good water solubility by the replacement of a carboxylate group with a
hydroxyl group. By the hydrolysis of the carboxylic ester bond, it turned to be high
hydrophobic and formed the gels, which is much stable over a wide pH(1–14) range.
And this may be a possible application in designing a robust system of prodrug. Then,
the group of Hamachi reported that the “retro-Diels-Alder” reaction can be used to
trigger morphological transformation of supramolecular nanostructures, which trig-
gered by heating [32]. Due to the complex environment in cells, the enzyme has
greater advantages than other triggers on self-assembly.

4.2.3 The Development of Enzyme-Instructed Self-assembly

In 2015, the announcement of Precision Medicine Initiative (PMI) envisioned the
new era of medicine to develop individualized care [33]. The establishment of PMI
indicates that there are still many incurable or lack of effective treatment for a lot of
diseases, especially cancer. The improvement in cancer treatment is calling for the
urgent advances in new technology, such as nanotechnology. About three decades
ago, the blossoming bionanotechnology has made remarkable progresses in
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precision medicine [34–36]. When it starts, in this field, the major efforts are to
fabricate multi-functional nanoparticles to realize diagnostic and therapeutic effect
[37]. The vital concept is to carry out and maximize the targeting capability of
nanoparticles while leaving the rest of body unaffected [38, 39]. Up to now,
nanoparticle based on cancer theranostics has made tremendous progress which has
been thoroughly reviewed [40–42]. Nevertheless, the nanoparticle-based strategy
still remains in a dilemma. Before real application in market, there are a list of
unavoidable issues to be solved, mainly including (1) the quality control of
multi-step fabrication process; (2) the difficulty in clearance of nanoparticle; (3) the
poor ability of penetration into the tumor because of the size of nanoparticle; (4) the
high risky off target on account of frequent mutation of cancer cell surface proteins,
and (5) the delivery efficiency of nanoparticle [43–45]. In contrast, the bottom-up
strategy, which can generate nanomaterial directly in cancer cells rather than
delivery the nanomaterial to cancer cells, has drawn more and more attentions in
recent ten years [46]. Apart from the achievement of the in vivo formation of
quantum dots for bio-applications, [47] one kind of nanomaterial which uses
enzyme to activate self-assembly process of small molecules [48] has already been
demonstrated the great potential applications ranging from cancer diagnosis to
therapy or their combination (so-called theranostics). In this chapter, we summarize
the recent progress on the EISA and classify the enzymes underlying enzymatic
reactions in details. At the same time, if the readers have interests in various
application of EISA, there are a few excellent reviews on the topic of
supramolecular self-assembly for potential anticancer therapeutics for further
reading, [49–51] which emphasize on supramolecular hydrogels as molecular
biomaterial, the intersection of supramolecular chemistry, biomedicine science, and
the biological functions of prion-like nanofibrils of small molecules, respectively.
We just pay our attention to the biomedical application of EISA based on the
difference of enzymes.

4.3 The Characteristic and Advantages of EISA
on Cancer Theranostics

EISA is the multi-step process to form special functional structures, in which
amphiphilic molecules undergo certain transformations usually triggered by enzymes
before they stack with each other [48]. As a ruler, the formation of self-assembled
objects can be kinetically controlled, which may be potential application on control
drug release. In addition, there is still emerging example under mechanical control
directed by catalytic action [52] or non-equilibrium transient state [53]. These
structures of hydrogels display a variety of micromorphologies such as nanoparticles,
nanofibers, ribbons, and so on [54–56]. And the different morphologies depend on the
specific geometry of certain building blocks–molecular structures. Although it is
different morphologies, all of them share some same features, such as the
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intermolecular interactions which are noncovalent including hydrogen bonding,
aromatic–aromatic interaction, electrostatic attraction, and other weak Van derWaals
forces [57]. For example, the hydrogen bonding and aromatic-aromatic interaction
are directional force, which eventually determine the diameter of nanoparticles, the
infinite length along the prolate axis, well-defined width of nanofibers or tubes,
repeated unit with fixed length in helical ribbons [58]. Among the various process of
self-assembly, the unique feature of EISA is the involvement of enzymatic reactions
[59]. In other words, all of the EISA is triggered by enzymes, and the difference lies in
the types of enzyme. Enzyme-instructed self-assembly is quite common phenomenon
but much critical process in living systems. As we known, the enzyme-catalyzed
processes can regulate the formation of intracellular vesicles, the dynamics of cellular
skeletons formed by F-actins and microtubules (MT). Further, the dynamic cellular
transformations are largely dependent on enzymatic regulations, such as the disas-
sembly and reformation of cell membrane, F-actin and MT during the mitosis, cell
movement, and so on [60, 61]. Inspired by nature, the strategy using enzyme to
instruct self-assembly to synthesize small molecules has already been developed a
decade ago [62]. According to the reported documents, it is necessary to design a
suitable hydrophilic substrate which is so-called precursor, just like as hydrogelator.
By means of enzymatic reaction, such a precursor can be easily turned into corre-
sponding amphiphilic form [63]. The generating amphiphilic molecules will
self-assemble once its concentration reached the critical assembly/aggregation con-
centration (CAC) and yield various nanostructures eventually.

Considering the application in living system, EISA is irreplaceable process,
specifically for mammals. For mammals, the basic physiological conditions remain
almost constant. Therefore, this situation is improper to adopt usual sol-gel tran-
sition, which generally requires external physical or chemical stimuli including pH,
temperature, and ionic strength. Comparing to them, EISA is not only the
isothermal process but also performs in physiological condition, which means not
necessary to change the environment. Based on these biocompatible features, the
establishment of EISA makes it has great advantages to construct self-assemblies in
biological milieu.

The main advantages of the application of EISA in cancer theranostics can be
summarized as follows:

(1) The material can be easily synthesized by regular chemical methods. The
precursor is mainly peptides and the derivative of peptides. And the different
functional amino acid can be easily purchased by commercial channels. Then,
the synthesis of peptides depends on the solid phase peptide synthesis (SPPS),
which can be easily obtained at a large scale with high purity. Besides, the
peptides can be simply modified because of the existence of the amino and
carboxyl groups.

(2) The clearance can simply realize. Because the formation of the material is based
on the noncovalent interactions, the self-assembly process can be reversible to
disassemble to release the original small molecules into biological environment,
which get cleared via reticuloendothelial system (RES).
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(3) The adequate penetration into the tumor can be got because of the size of
precursor. Compared to the shallow penetration of nanoparticle into tumor,
which is limited by interstitial pressure, it is much easier for small molecules
(precursor) to penetrate deep inside of tumor and even tumor cells by means of
passive diffusion or active transportation. Besides, there are more choices to
design the appropriate precursor to get better ability of penetration into tumor.

(4) The delivery efficiency is quite sufficient. The EISA depends on the
over-expression of certain enzyme rather than cell surface receptor or vascular
leakage, which indicate that it can increase the opportunity of entering cells.
Because that overexpressed enzyme is the intrinsic component in tumor cells,
ideally, the enzyme-instructed self-assembly will proceed only in tumor cells
and get small molecules accumulated. When the concentration is over CAC, the
intracellular concentration of small molecules would reach millimolar level and
the self-assembly occurs, which can satisfy the need of preloaded or
post-delivered therapeutic agents.

(5) Further, this strategy owns the potential to target “undruggable” targets or
“untargetable” features of cancer cells and provides opportunities for simulta-
neously interacting with multiple targets [48]. EISA can greatly enrich the ways
of release of drugs and enhance the solubility of some drugs.

Although there are as many as thousand kinds of enzymes in cells, the types of
enzyme to trigger self-assembly is limited. Here in this chapter, we would like to
elucidate the progress on the enzyme-instructed self-assembly in vivo for biome-
dicine application in the order of enzyme.

4.4 The Application of EISA Strategy in Cancer
Theranostics

The EISA of small molecules has been proven to be a promising method in
selective inhibition of cancer cells. However, just as everything has two sides, the
EISA also have some problems and limitations to solve. One of the problems is that
the inhibitory concentrations of those self-assembling molecules remain too high
compared to traditional pharmaceuticals due to its high CAC [64]. And lack of
understanding of the interaction between potential protein targets and the in situ
assemblies or aggregates, as well as the limited techniques to identify and char-
acterize the interactions between nanoscale assemblies of small molecules and
proteins, remained another inevitable obstacle for further advances of EISA [65].
Therefore, it demands more researchers and scientists to work on it. The application
of this concept in biomedicine was just getting started. Next, we introduce in detail
the supramolecular self-assembly induced by different kinds of enzymes. For the
convenience of readers, we summarize some important parameters of EISA in
living cells and animals, such as concentration and incubation time in recent
reported documents to more intuitively compare with each other. (Table 4.1)
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Besides, we rearrange the chemical structures of the precursors to directly distin-
guish the difference among them and easy to name them in this chapter
(Scheme 4.1).

4.4.1 Hydrolysis of Esters

4.4.1.1 Phosphatase

As early as in 2004, a pioneer work finished by Yang and Xu reports the first
example of enzymatic formation of supramolecular hydrogel [62]. It is a new way
to turn the solution into gel using an enzyme (alkaline phosphatase) without further
external stimuli. Though limited biological applications were envisioned at that
time, the concept in this work has led the later-on tremendous development in this
field. With proper design of the small molecules (hydrogelator precursors), it is
possible to realize the hydrogelation in physiological conditions [59] and develop

Table 4.1 EISA in living cells and animals

Compound 1 2 3a 4b 5c 6 7 7 8 9 10 11f

Cell Conc./lM 500 500 500 500 500 500 500 500 30 0.2 0.2 500

Time/hour 12 12 0.5 0.5 0.5 0.5 24 3 24 48 48 7

Ref 73 71, 68, 67 68 74e 74 76 80

Cont’d

12 13 14d 15d 16d 17 18 19a 20 21 22 23 24

20 200 200 200 2 0.2 1 lCi 0.02 wt% 2500 2500 2 10 0.2 wt%

20 24 8 8 8 8 1/3 18 72 72 24 1 24

83 77 84 86 85 87 88 90 89 103

Cont’d

Compound 7 20 21 22 23 24

Animal Dose 100 mg/Kg 36 mg/Kg 36 mg/Kg 5 nM 200 lM 1 wt%

Time 48 h 6d 6d 24 h 24 h 14d

Ref 74 g 88 90 89 103
ainside cells
bmembranes
coutside cells
dGlogi
e7 (500 *** g/mL) co-assembly with Indocyanine Green (10 *** g/mL)
fcell surface
g7 co-assembly with ICG(10 mg/Kg)
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applications in various directions ranging from drug controlled release, controlling
cell fate, tissue engineering, and so on.

Later the Xu group reports the use of phosphatase to confer a hydrogel of
paclitaxel derivative. The paclitaxel derivative is made from paclitaxel and a pep-
tidic self-assembly motif linked by a succinic acid. Once the paclitaxel derivative is
dissolved in water, phosphatase could initiate the self-assembly process and yield

Scheme 4.1 Chemical structures of each compound numbered
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the formation of numerous nanofibers that result in a supramolecular hydrogel in
macroscope (Fig. 4.1). Upon slow hydrolysis reaction, the hydrogel serves as a
platform for controlled release of paclitaxel with adjustable release rates. Overall,
this design provides a powerful method to create molecular hydrogels of clinically
used therapeutics without compromising their bioactivities [66].

Then in 2012, the Xu group reported a method to image EISA of a small
molecular (See Scheme 1 compound 3) inside live cell [67] (Fig. 4.2). Aided with
[31] P NMR and rheology, they demonstrated that enzyme-trigged conversion of
the precursor (compound 3) to a hydrogelator results in the formation of a hydrogel
via self-assembly in vitro. Therefore, the same process is capable to perform inside
living mammalian cells. The intracellular self-assembly is dependent on both the
concentration of the precursor and the activity of protein tyrosine phosphatase 1B.
Since the enzyme is localized on the endoplasmic reticulum (ER), it also dominates
the location for the occurrence of intracellular self-assembly. The similar phe-
nomenon is further confirmed via a co-assembly strategy to visualize the
self-assembly of non-fluorescent small molecules (compound 7) inside live cells in
another work [68]. The cell fractionation experiment points out the cellular fraction
containing ER triggers the fastest sol-gel transition, which implies the self-assembly
occurs on ER with the highest possibility inside intact cells. Further immune
co-staining shows the maximum distribution overlap between self-assemblies and
ER tracker instead of lysosome or Golgi tracker. Although significant effort has
been paid including correlated light and electron microscopy (CLEM), it remains
difficult to identify the unambiguous fibrillar morphology of supramolecular
assemblies in situ due to the intrinsic background noise from cellular components,
which have similar chemical composition, the atoms of carbon, hydrogen, and
oxygen. One possible way to solve this problem could be the involvement of small
angle neutron scattering (SANS) which is the powerful technique investigating the
internal structures of soft materials [69, 70]. To fulfill the specific aim, it requires
further efforts on the correlation between SANS measurements and classical
imaging data, the balance of water and heavy water to tune the scattering length
density (SLD) mask the background from cell and so on, which demand too much
and hard to realize.

Fig. 4.1 Schematic representation of phosphatase-triggered self-assembly of a derivative of taxol
and its microstructures and the histogram of the IC50 [66] Adapted with permission from Ref. [66].
Copyright 2009 American Chemical Society
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Following the discovery of the intracellular supramolecular self-assembly, the
Xu group tested a serial of different fluorophores labeled self-assembly motif
against HeLa cells (Scheme 4.1, compound 3, 4, 5, 6) [71]. Interestingly, the slight
structural difference among each fluorophore has great influence on the
self-assembly propensity. Besides the NBD one which can self-assemble inside
cells, DBD-derived molecules could form abundant nanofibers before in contact
with cell/phosphatase; Dansyl-derived molecules show certain degree of toxicity
and disrupt the integrity of cell membrane while Rhodamine-derived molecules fail
to form nanofibers and remain homogeneous all the time. Overall, the variant
self-assembly propensity induces the drastically different distributions of
self-assemblies in the cellular environment (Fig. 4.2).

It is worth mentioning that the very recent result from the Xu group demon-
strated a novel way to localize supramolecular assemblies to sub-cellular organelles.
The attachment of a triphenylphosphonium to the self-assembly motif acquired
targeting capability to intracellular mitochondrial, which eventually can selectively
kill cancer cells via disrupting the cells’ powerhouse [72]. This rational design
shows the potential bioactivity of intracellular self-assembly via interacting with
specific sub-cellular organelles.

Fig. 4.2 Illustration of the distinct spatial distribution of the small molecules in a cellular
environment because of their different propensities of self-assembly before or after dephospho-
rylation [71] Adapted with permission from Ref. [71]. Copyright 2017 American Chemical
Society. Copyright 2013 American Chemical Society
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Although the kinetics of the formation of molecular assemblies is one of
important features of cells, it received little attention to develop anticancer thera-
peutics. In 2016, the Xu group designed a serial of tetrapeptide derivatives with
same sequence but a different number of phosphorous esters within the molecule.
A detailed comparison showed that the variation of phosphorous esters was able to
regulate the rate of supramolecular self-assembly although both the enzymatic
dephosphorylation and the final hydrogelator are exactly the same (Scheme 4.1,
compound 1 and 2) [73].

Besides the cell experiments, the Chen group further applied the
phosphatase-instructed self-assembly to an animal study. They adopted ICG (in-
docyanine green) to nanofibers formed by compound 7 to achieve co-assemblies for
cancer theranostics [74]. As the first example, they form tumor-specific ICG-doped
nanofibers in vivo, which is capable to manipulate the spatiotemporal distribution
of ICG in mice. As a result, the prolonged retention of therapeutic agent inside
tumor eventually improves the cancer theranostics.

Since the D-peptides are presumably resistant to most of enzymes, a serial of
valuable studies demonstrates that the formation of the nanofibers via enzymatic
dephosphorylation is independent from chirality. That means D/L enantiomers
undergo the quite similar enzymatic self-assembly process. Overall,
D-peptide-based EISA could achieve both bio-stability and additional desired
functions simultaneously. (See Scheme 4.1 compound 8 [75], 9, 10 [76] and 13
[77]) Very recently, the Xu group reported that the D-peptidic nanofibrils can serve
as multifaceted apoptotic inducers to target cancer cells in situ. With ALP as the
catalyst, D-peptidic nanofibrils which formed in situ on cancer cells presented
autocrine proapoptotic ligands to their cognate receptors in a juxtacrine manner, as
well as directly clustered the death receptors, which eventually activate extrinsic
death signaling for selectively killing cancer cells [78]. In another study, they
co-cultured a group of cancer cells and stromal cells with a D-peptidic derivative.
Based on differential EISA formation of fluorescent, non-diffusive nanofibrils, the
significantly higher activity of ALP on cancer cells than stromal cells was con-
firmed. The inherent and dynamic ALP activity was determined by drug-sensitive
or drug-resistant cancer cells and even with or without hormonal stimulation [79].

4.4.1.2 Carboxylesterase

It is well known that the cisplatin is one of the most successful therapeutic agents for
the ovarian cancers. However, the emerging drug resistance still remains a major
problem in its chemotherapy treatment. To overcome such a disadvantage, the
combination of cisplatin with other therapies is in an urgent need. In 2015, the Xu
group firstly demonstrated that enzyme-instructed intracellular self-assembly
molecular is a new approach to boost the activity of CDDP against two
drug-resistant ovarian cancer cell lines. They synthesized small peptide precursors
(See Scheme 4.1 compound 11) as the substrates of carboxylesterase (CES). CES
efficiently cleaved the ester bond preinstalled on the precursors and initiated the
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hydrolyzed peptidic part to form nanofibers inwater via self-assembly. The precursors
are innocuous to cells at the optimal concentrations, but they double or triple the
activity of cisplatin against the drug-resistant ovarian cancer cells [80] (Fig. 4.3).

And recently, the Xu group designed peptidic precursors as the substrates of both
CES and ALP to show the combination of enzyme-instructed assembly and disas-
sembly. The precursors can turn into self-assembling molecules to form nanofibrils
upon dephosphorylation by ALP, while the following CES catalyzed cleavage of the
ester bond on the same molecules will result in disassembly of the nanofibrils [81].
Besides, they also illustrated a fundamentally new approach to amplify the enzy-
matic difference between cancer and normal cells for overcoming cancer drug
resistance by establishing cytosolic EISA catalyzed by CES. The selectivity of EISA
targeting cancer cells was validated in cancer and normal cell co-culture test [82].

4.4.1.3 Esterase

D-peptides have great applications in many areas of biology and biomedicine
because of their bio-stability. However, it is ineffective for cellular uptake of
D-peptides. To further explore the merits of D-peptides inside cells, it is essential to
develop an effective strategy to enhance the cellular uptake of D-peptides. In 2015,
the Xu group synthesized the conjugate of taurine and D-peptide which drastically

Fig. 4.3 Enzymatic transformation of the precursor (1) (compound 11) as a substrate of
carboxylesterase (CES) to the corresponding hydrogelator (2) for intracellular self-assembly. CES
efficiently cleaved the ester bond preinstalled on the compound 11 and yielded the hydrolyzed
peptidic part to form nanofibers in cancer cell [80] Adapted with permission from Ref. [80].
Copyright 2015 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim
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boosts the cellular uptake of small D-peptides in mammalian cells and allows
intracellular esterase to trigger intracellular self-assembly of the D-peptide deriva-
tive, further enhancing their intracellular accumulation (Fig. 4.4). Using taurine for
EISA is a new way to promote the uptake of bioactive molecules and generate
higher-order molecular assemblies. This approach will be useful to facilitate the
transport of functional D-peptides, and other bioactive molecules through the cell
membrane into live cells for controlling the fate of cells [83].

4.4.2 Hydrolysis of Peptides

4.4.2.1 Furin

A controlled enzyme-triggered self-assembly in living cells was reported by Liang
and the co-workers in 2010 [84]. Based on the chemical reaction between
2-cyanobenzothiazole (CBT) and D-cysteine, the authors designed a variety of

Fig. 4.4 Molecular structures of precursors (compound 12) and the corresponding hydrogelators
after enzymatic transformation. (B) Taurine conjugation boosts cellular uptake of D-peptide
precursors and subsequent EISA to form nanofibers, accumulating inside cells [83] Adapted with
permission from Ref. [83]. Copyright 2015 American Chemical Society
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thiol- or amino-protected monomers via a disulfide bond and by a peptide sequence,
respectively. The protecting group of the monomers can be removed by either pH,
disulfide reduction or enzymatic cleavage in vitro and then the yielded product
self-assembled into different structural patterns.

Then, the authors attempted the enzyme-triggered self-assembly of monomers in
live cells. The direct imaging indicated that the self-assembled signals are closely
located to the furin enzyme sites–the Golgi bodies. While in control experiments
where furin inhibitor was added together with monomers, the fluorescence staining
pattern previously observed was absent, confirming that furin was responsible for
the localized condensation of monomers at the Golgi bodies.

Based on the biocompatible condensation and subsequent self-assembly, Liang
group designed a radioactive probe to self-assemble into the radioactive nanopar-
ticles (compound 18) under the action of intracellular glutathione (GSH) and furin
in living cells [85]. These as-prepared radioactive nanoparticles could concentrate
the radioactive isotopes inside cells and hamper themselves to be eliminated from
the cells due to the large size and hydrophobic property. The strategy provided a
new method to design smart probes for molecular imaging. Following the suc-
cessful strategy, Liang Group rationally designed a taxol derivative (CBT-Taxol,
compound 17) which could condensate and self-assembled into taxol nanodrugs
(Taxol-NPs) under the control of furin [86]. In vitro and in vivo studies showed that
the CBT-Taxol had a 4.5-fold or 1.5-fold increase in anti-multidrug resistance
effects, indicating this strategy could be used for overcoming multidrug resistance
(Fig. 4.5).

4.4.2.2 MMP

In 2015, Maruyama and co-workers reported the enzyme-triggered molecular
self-assembly of a low-molecular-weight gelator for novel anticancer applications.
Its precursor (ER-C16, compound 19) exhibited remarkable cytotoxicity to several
cancer cell lines and low cytotoxicity to normal cells. Cancer cells secrete excessive
amounts of MMP-7(matrix metalloproteinase-7), which converted the precursor
into a supramolecular gelator prior to its uptake by the cells. Once the
supramolecular gelators entered inside the cells, they self-assembled to form
nanofibers that greatly impaired cellular function and then caused the death of the
cancer cells (Fig. 4.6). Due to the unique cytotoxic mechanism, cancer cells will be
unlikely to acquire resistance to the present strategy [87] (Fig. 4.6).

Besides, in 2016, the Rein V. Ulijn group also has halted tumor growth by
MMP-9 triggered self-assembly of doxorubicin nanofiber depots. They demon-
strated that the fibrillar depots are formed where the MMP-9 is overexpressed. And
this will enhance the efficacy of doxorubicin, resulting in inhibiting of the growth of
tumor in mice [88].

Due to the intimate relationships between morphology of self-assembled
nanostructures and their biological performances, Wang group rationally designed a
responsive small-molecule precursor (compound 23) that simultaneously
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self-assembled into nanofibers in tumor sites in 2015. The compound 23 consisted
of P18, PLGVRG, and RGD. At first, the RGD can target to avb3 integrins,
overexpressed on cancer cell membranes. Second, gelatinase, belonged to MMP-2,
can cut the PLGVRD linker in tumor microenvironment. Therefore, the molecular
become more hydrophobic, resulting in self-assembly of the building blocks.
Eventually, the compound 23 simultaneously self-assembled into nanofibers in
tumor site, and it exhibited prolonged retention time in tumor cell that directly led to
an enhanced photoacoustic signal and therapeutic efficacy [89].

Fig. 4.5 a Chemical structures of CBT-Taxol. b Schematic illustration of intracellular
furin-controlled self-assembly of Taxol-NPs for anti-MDR [86] Adapted with permission from
Ref. [86]. Copyright 2009 American Chemical Society
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4.4.2.3 Caspase

Arguably, bio-orthogonal click chemistry (such as Staudinger ligation, azide-
alkyne, and Pictet-Spengler ligation) has already been widely applied in living cells.
In these examples, after activation, small molecules can enter cells and be
self-assembly. However, there are few successful examples in living animals
because of the more complex environment than cultured cells. Therefore, in 2014,
Rao group report a new method to direct the synthetic small molecules into
nanoaggregates in living mice. They designed a fluorescent small molecule
(C-SNAF, Compound 22) and initiated its self-assembly process via caspase

Fig. 4.6 a Cancer cell death induced by molecular self-assembly of an enzyme-responsive
supramolecular gelator and b molecular structures of compound 19 [87] Adapted with permission
from Ref. [87]. Copyright 2015 American Chemical Society

Fig. 4.7 Illustration of the mechanism of in vivo imaging by C-SNAF of caspase-3/7 activity in
human tumor xenograft mouse models [90] Adapted with permission from Ref. [90]. Copyright
2014 Nature Publishing Group
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activation (Fig. 4.7). The compound 22 comprised of two parts. One part was
D-cysteine and 2-cyano-6-hydroxyquinoline moieties linked to an amino luciferin
scaffold. The rest consisted of an L-DEVD (Asp-Gly-Val-Asp) capping sequence
and a disulfide bond. The self-assembly process required a two-step activation,
which was caspase-mediated cleavage and intracellular thiol-mediated reduction.
The strategy combined the advantages offered by small molecules with those of
nanomaterials and should find widespread use for non-invasive imaging of enzyme
activity in vivo [90].

4.5 Vaccine Adjuvants

Vaccines play a very important role in our daily life and have been widely applied
in medical fields by preventing the body against or treat the diseases through
balancing the immune response to be immunity or silence [91]. With the devel-
opment of vaccination, it probably serves as a medical intervention. The example is
the first therapeutic cancer vaccine, which was licensed in 2010 [92]. Due to the
complexity of human immune system and our lack of understanding of it, vaccine
design still is challenging. Therefore, DNA vaccines may be an ideal method,
which can generate long-term humoral and cellular immune responses [93, 94]. As
far, there have developed many delivery systems to improve the efficiency of
delivery DNA into mammalian cells, such as liposomes, [95] nanoparticles [96],
and polymers [97, 98]. Despite of the advantages of these systems, there are still
some disadvantages to overcome, including high toxicity, [99] low amount of
antigen loading [100] and reduce the bioactivity of DNA in modification [101,
102]. Therefore, EISA may be an ideal system to deliver DNA and the
self-assemblies base on EISA to produce vaccines have been studied and designed.

HIV infection is incurable so far, and developing efficient vaccines is urgent.
Yang and co-workers designed a nanovector in 2014, which can condense DNA to
result in strong immune responses against HIV [103]. This nanovector composed of
peptide-based nanofibrous hydrogel can strongly induce both tumoral and cellular
immune response of HIV Env DNA to a balanced level, which was rarely reported
in previous studies (Fig. 4.8). The nanovector shows good biocompatibility both
in vitro and in vivo, and the well-defined nanofibrous structure is significantly
important for the enhanced immune responses. These nanofibrous hydrogels are
potentially applicable to the development of efficacious HIV DNA vaccines.

And subsequently, Yang’s group reported that in suit-formed peptidic nanofibers
facilitate the induction of multiple crucial immunities against HIV DNA vaccine,
including multi-functional T cell response, broad IgG subclasses response, and V1/
V2-specific IgG response [104]. And then they reported the first co-assembly of
peptide and protein (ovalbumin, OVA) upon alkaline phosphatase (ALP) catalysis
[105]. The results show an obvious increase of the IgG production when compared
to the clinically used alum adjuvant and thus have big potential for application in
immunotherapy against different diseases as protein vaccines.
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The studies of using the peptide-based vaccines as physical carriers have showed
great potential applications. And another approach was also used for designing such
peptide-based vaccines by the previous conjunction of assembling peptide and
model antigens or proteins. Collier and co-workers deigned peptide-based assem-
bling supramolecular containing strong epitopes and demonstrated that the nano-
fiber induced strong antibody responses in mice [106–108]. MUCI proteins have a
lot of tandem repeats, bearing tumor-associated carbohydrate antigens, which is the
key problem to develop vaccines for epithelial tumors. To overcome the low
immunogenicity of the short MCUI peptide, Li and co-workers designed the
self-adjuvanting vaccine with self-assembly domains, which combined some vac-
cine candidates with a self-assembly peptide sequence. These vaccines can induce
antibodies that recognized human breast tumor cells without additional adjuvant. It
is reported that these vaccines can act through a T cell independent pathway and
may be associated with the activity of cytotoxic T cells [109].

4.6 Outlook

Despite the rapid outcomes about enzyme-activated theranostics under the EISA
strategy, it remains, as well as the whole precision nanomedicine field, lack of real
applications for improving the overall benefits for patients. Thus, there is still plenty
of room to be perfected. As of EISA, we would raise at least three aspects here.

(1) Elucidate the micromorphology of EISA in biological milieu. Various micro-
scopic techniques, such as AFM, SEM, TEM, and so on are working on very
well to study the micromorphology of EISA in vitro. However, because of the
complexity of the cell itself, it remains impossible to directly capture a vivid
snapshot of EISA with nanometer resolution in biological milieu. The attempts
on heavy atom labeling (such as Iodine or certain metal element) may be an

Fig. 4.8 Process of peptide-based nanofibrous hydrogel for enhancing immune responses of
HIV DNA vaccines [103] Adapted with permission from Ref. [103]. Copyright 2014 American
Chemical Society
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option to allow the EISA visible under environmental electron microscope. The
advancement in super-resolution fluorescent microscope may be another
potential technique to conquer this task since multi-color fluorescent probe
labeling is feasible and practical.

(2) Involve enzymes other than hydrolase, or even metabolites to instruct
self-assembly. Although there have been plenty of strategies to generate EISA,
however, all the enzymes involved in EISA monotonically belong to hydrolase
—one of six type of enzymes based on catalyzed chemical reactions in the
top-level enzyme classification. In comparison with hydrolase, some other
enzymes may be of even greater importance in cancer therapy. For example,
kinase is one of the most attractive targets in anticancer practice. This concept
has drawn numerous money for the discovery of adequate kinase inhibitor
which may eventually suppress the growth of cancer. However, more recent
studies are likely to disclose kinase as “untargetable.” Thus, if we can develop a
system which uses kinase to instruct the self-assembly in vivo, it will be of
great value helping the progress in kinase-oriented cancer therapy.
In addition to novel ways to instruct self-assembly, the precise localization
remains of great interest which is critical to eliminate false-positive/negative
results. Current EISA usually response to single stimuli such as abnormal
enzyme expression and its activity. The involvement of two enzymes to instruct
EISA process makes this strategy more delicate and potentially targetable to a
broader range of cancers [49]. Since there are plenty of known hallmarks of
cancers, a well-designed molecule which can respond to those stimulus and
perform multi-step tandem transformation before self-assemble will definitely
enhance the targeting capability and precision of EISA.

(3) Exploit the interaction between EISA and sub-cellular organelles. Most of the
enzymes are associated with certain sub-cellular organelles, e.g., the alkaline
phosphatase on the cell membrane, protein tyrosine phosphatase 1B on the
endoplasmic reticulum, furin in the Golgi. As the formation of EISA is initiated
by enzymatic reactions, the location of correlated enzyme dominates the dis-
tribution of EISA. We have realized this interesting phenomenon, but there is
little discussion on the interaction between EISA and “host” sub-cellular
organelles. The exploration on this point would be useful in controlling the cell
fate by regulating the activity of its sub-cellular organelles.

(4) Incorporation with bio-orthogonal chemistry. EISA provides an excellent
strategy for the construction of nanomaterial inside biological environment with
targeting capability. But we notice that the required CAC is somehow deviated
from the dosage of traditional drug molecules. If we covalently load drug
molecule on self-assembly motif (that is 1:1 molar ratio), there must be an
imbalance between severe overdose issue and initiation of self-assembly. To
solve this inevitable dilemma, we think the incorporation of bio-orthogonal
reaction would be a realistic solution. By linking a bio-orthogonal reaction
handle (azide, alkyne, tetrazine, and so on) to a self-assembly motif, the in situ
formed EISA material composed of those as-prepared functionalize molecule

108 Z. Huang and Y. Gao



will spontaneously deliver and localize bio-orthogonal reaction handles.
A following therapeutic agent modified with the counter handle will efficiently
target EISA in the desired location. We envision this pathway owns several
advantages including the on/off target ratio, the adjustable dosing, and even the
application of toxin which is too toxic by itself.
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