
Deep Learning for Network Flow Analysis
and Malware Classification

R.K. Rahul1,2(B), T. Anjali1,2, Vijay Krishna Menon1,2, and K.P. Soman1,2

1 Centre for Computational Engineering and Networking (CEN),
Amrita School of Engineering, Coimbatore, India

iamrkrahul@gmail.com, anjukrishnadas@gmail.com
2 Amrita Vishwa Vidyapeetham, Amrita University, Coimbatore, India

m vijaykrishna@cb.amrita.edu, kp soman@amrita.edu

https://www.amrita.edu/center/computational-engineering-and-networking

Abstract. In this paper, we present the results obtained by applying
deep learning techniques to classification of network protocols and appli-
cations using flow features and data signatures. We also present a similar
classification of malware using their binary files. We use our own dataset
for traffic identification and Microsoft Kaggle dataset for malware clas-
sification tasks. The current techniques used in network traffic analysis
and malware detection is time consuming and beatable as the precise
signatures are known. Deep learned features in both cases are not hand
crafted and are learned form data signatures. It cannot be understood by
the attacker or the malware in order to fake or hide it and hence cannot
be bypassed easily.

Keywords: Network application identification · Protocol classification ·
Malware classification · Deep learning · Convolutional Neural Network ·
CNN · Auto encoder

1 Introduction

The scale and density of network traffic is rapidly growing through the years.
The protocols which are designed grossly based on TCP-IP model established in
the initial days of Internet, lack the necessary features required for such traffic
analysis. Most of the protocol classification systems today mainly depends on
the parameters such as Port numbers, static headers, IP addresses etc. But, as
new protocols, which are being designed every day, are not following the rule
of port registration, the situation is worsing for traffic analysers and network
administrator [12].

When we take the case of network applications, the traditional way to classify
them using meta traffic information was based on limited behavioral properties
which are used to define heuristics features. These features again include port
numbers, transmission rate and frequency, application and protocol header infor-
mation etc. [18]. With the advent of mobile and web applications, this scenarios

c© Springer Nature Singapore Pte Ltd. 2017
S.M. Thampi et al. (Eds.): SSCC 2017, CCIS 746, pp. 226–235, 2017.
https://doi.org/10.1007/978-981-10-6898-0_19



Deep Learning for Network Flow Analysis and Malware Classification 227

is at its worst. Along with this, administrators also face issues like tunneling, ran-
dom port usage, proxy and encryptions that makes detection and classification
almost impossible [16].

Similarly traditional classification of malware is done mainly with heuristic
and bahavioral signatures that grapple to keep up with malware evolution. A
malware signature is an algorithm or hash that uniquely identifies a specific virus.
It is proved that all viruses in a family share common behaviour and a single
generic signature can be created for them. However, malware authors always try
to confuse antivirus software by writing polymorphic and metamorphic malware
that constantly change known signatures and thus fool the system. To avoid
all such contempt of behaviors, a flow and code feature based analysis or data
driven analysis is mandatory for network applications, protocols and malware.
Behavioral signature can be mocked, copied, changed or tampered with, but
data signatures are abstract and cannot be manipulated that easily [4].

In 2015, Microsoft hosted a competition in Kaggle with the goal of classifying
malware into their respective families based on the their content and character-
istics. Microsoft provided a set of malware samples representing 9 different mal-
ware families. Each malware sample had an ID, a 20 character hash value is used
to uniquely identify the sample and a class, an integer label representing one of
the 9 malware family (class) to which the malware belong: (1) Ramnit, (2) Lol-
lipop, (3) Kelihos ver3, (4) Vundo, (5) Simda, (6) Tracur, (7) Kelihos ver1, (8)
Obfuscater. ACY, (9) Gatak [7]. The dataset includes files containing hexadeci-
mal representation of malwares’ executable machine code. Each files is composed
of Byte Count, Address, Record type, Data and Checksum.

Together all three, can be defined as a multi class classification problem, to
make it machine learnable. Selection and processing of the right features from
a frenzy of unintelligible data is a near impossible task which makes the above
problems an ideal case for applying deep learning [4].

Deep learning is a new subversive machine learning strategy, where extrac-
tion of features is done by the machine itself from the given data for the best
classification possible. These feature are at best, non orthogonal and signifi-
cantly enhance the accuracy of classification or regression, compared to human
hand crafted features [8,14]. Some supervised learning algorithms include logistic
regression, multilayer perceptron, deep convolutional network etc. Semi or unsu-
pervised learning include stacked auto encoders, restricted Boltzmann machines
(RBMs), deep belief networks (DBNs) etc. [13,15].We approach the above prob-
lems with a convolutional neural network (CNN) with auto encoders and tweak
the network performance.

A Convolutional Neural Network (CNN) is a form of feed-forward neural
network in which the connection between its neurons is similar to the structure
of the animal visual cortex, whose individual neurons are organized in such a
way that they respond to overlapping regions tilling the visual field [1,6]. CNNs
are composed by three types of layers such as fully-connected, convolutional and
pooling. CNN has the ability to see any data as an image and this characteristic
allows users to encode certain properties into the architecture. CNN will con-
volve several small filters on the input image and subsample this space of filter



228 R.K. Rahul et al.

activations and repeat these processes until we left with enough high level fea-
tures. Then it will apply a standard feed-forward neural network to the resulting
features [2].

The other main method used for feature extraction are auto encoders. They
are made to generate a set of features which can be reverse transformed to yield
back the original input. This is called bidirectional training. The networks has
the same input and output from which it back propagates and learns [6]. In an
essence these can be used for kernel type feature mapping normally used with
non-linear or non-separable data in traditional machine learning

2 Methodology and Reasoning

A lot of literature is available on signature based network application and pro-
tocol classification and also based on statistical features and machine learning.
They are all some form of hand crafted features which are time consuming,
beatable and inflexible. These methods fail to detect or classify an unknown
application and protocol due to the same reason. Zhanyi Wang introduced deep
learning in traffic identification [17] which motivated us to take up this work. He
has classified applications and protocols using features which are automatically
extracted using an auto encoder. The full payload from the network data packet
is given to an auto encoder for feature extraction and classification is done by a
fully connected dense layer at the end.

The malware classification also have the above mentioned flaws in using the
manually handcrafted features for classification. Deep learning has been used for
classification of Kaggle data. The winners of Kaggle Microsoft malware challenge
have extracted mainly three important features from it like Opcode 2,3 and 4-
grams, Segment line count and Asm file pixel intensity features. They are getting
an accuracy of 99.98% which might fail while classifying polymorphic and meta-
morphic malwares and families. Sequence classification methods which is related
to gene classification in computational biology [5] have also been proposed. But
it too relies on features which are handcrafted. Besides, if old malware is rebuilt
to create new malware binaries then their code would be very much alike [9].

2.1 Protocol Classification Using Metadata

In order to collect packet data, Wireshark and Tshark is used. Wireshark [10]
is an open source software for analyzing network packet. Only HTTP, SSL, and
SMTP protocol packets are selected from the entire collection of captured pack-
ets. Since the classification process with entire payload is not computationally
easy, only the metadata or packet attributes are taken for the experiment. The
metadata contain a partial information about the payload. The collected data
packets are converted into comma separated values and it acts as the input to
the deep learning architecture. The data packetstrimmed to a uniform length
vector of 1024 bytes and the data is converted to decimal format, so it can be
easy fed to a network programatically [12].



Deep Learning for Network Flow Analysis and Malware Classification 229

2.2 Payload Data Collection and Data Preprocessing for Network
Application Classification

Since considerable results were obtained for classification using metadata, we
extended the experiment to a higher level. Classification of network applications
using full payload is done to obtain better results as more data is involved here.
We collected the complete payload using tcpdump [3] and extracted it. When
called, tcpdump actually prints headers of each packet and the data of each
packet including its link level header. From that, only the payload information
of three different network applications were collected. Browsers, Facebook and
Torrent are the three classes of applications chosen. The browser class consists
payloads of both Opera and Mozilla Firefox. Among the total of 33,268 packets,
the first class contains 17,024 packets of browser payloads, second class contain
8528 Facebook payloads and in the third class 7,716 packets of torrent application
payloads. The data payloads are originally in the form of hexadecimal values and
it is further converted into decimal values for the purpose of feeding it into deep
learning network as mentioned before.

2.3 Malware Classification Using Kaggle Data

The malware data provided by the Microsoft in Kaggle contain 9 families. The
main objective is to classify these to their respective families. Each observation
is a representation of the file’s binary content. This hexadecimal data is pre-
processed to decimal in order to feed it to the CNN. The preprocessed data is
a vector of 128 values, each coma separated. The preprocessed data is fed into
a Convolutional neural network with two convolutional layers along with max
pooling layers followed by two dense layers. 64 one dimensional filters are used
in first convolutional layer and 32 two dimensional filters are used in second
convolutional layer. Architecture is as given in the Table 1.

2.4 Different Convolutional Neural Networks Implemented

A four-layer convolutional neural network was implemented with two convolu-
tional and two fully connected layers. The network architecture used for the
classification of protocols, network applications, and malware is given in the
Table 1 respectively with weight dimensions. The input data sample size fed into
the network, size of filters of first two convolutional layers, and that of fully
connected layer and output layer are also given by the Table 1.

The neural network is expected to learn these filter weights over the training
process such that it extracts the essential features from the data samples which
are able to distinguish the different classes. The rectified linear activation func-
tion (RELU) was chosen as the activation function for both convolutional layers.
Then the information being extracted from these features are used to predict the
label corresponding to each data point by adjusting weights and biases across
the two fully connected layers [11]. In order to avoid over fitting, dropout was
enabled. We have chosen the Googles TensorFlow R© framework to implement
our network.



230 R.K. Rahul et al.

Table 1. CNN architecture used in the Classification Processes for Specific Tasks

Size of
input
vector

No of filters in
1st
convolutional
layer

No of filters in
2nd
convolutional
layer

Neurons in
fully
connected
layer

Output layer

Protocol 1024 128 64 8 3

Application 2048 128 64 8 3

Malware 128 64 32 16 9

2.5 Implemented Autoencoder Architecture

The entire payloads were fed into an auto encoder and features were extracted.
The architecture of the auto encoder used in the experiment is shown in the
Fig. 1. The packet attributes of three protocols is given to the designed auto
encoder.The network has an input of length 1024 and a 512 node middle layer.
tanh, is used as the activation function in all the three layers. The loss function
for training was taken as the root mean square error between the outputs of final
nodes and the inputs. The network is trained using batched stochastic gradient
decent, which is faster than individually updating after each data. The middle
layer samples were taken as input and are fed into the CNN which is further
trained with data labels as the ground truth.

Feature selection from the auto encoder is computationally heavy in the
training stage but is a one time process. Once the network has been trained,

Fig. 1. Architecture of Autoencoder used for protocol classification



Deep Learning for Network Flow Analysis and Malware Classification 231

features can be extracted from data frames with simple computations such as
matrix multiplication.

The only difference between the architectures of auto encoders used for appli-
cation classification and protocol classification is the input vector size; 2048 for
the application classifier. The number of nodes in the hidden layer is 512 as in
the above case. The samples from middle layer was taken as the features for
classification, to be fed to into the CNN.

3 Results and Discussions

3.1 Protocol Classification

The preprocessed samples of metadata for three different protocols are given to
the CNN. Out of 75,000 data given 52,500 packets of data are given for training
and remaining 22,500 are given for testing. The result shows classification on
test data. 83.78% accuracy is obtained for 2000 iterations. The same data set is
given to the auto encoder with a softmax layer for classification. However, this
classification gave less accuracy with a best measure of 75.57 for 1700 iterations.

3.2 Network Application Classification

The data contains payloads from three different network applications are given
to the CNN mentioned in the Table 1. Different parameters of the CNN were
changed and the changes in the accuracy were observed.

In the experiment stage, we tried with three different learning rates. Initially
it was fixed at 0.01 and an accuracy was 20.12% for 1000 epochs. Then we
changed the learning rate to 0.001 and obtained accuracy of 45.20% for the
same number of iterations. So we again decreased the learning rate to 0.0001
and got a high accuracy of 84.26%. Then we fixed the value of learning rate as
0.0001 and then changed the dropout values.Since the training takes much time
here the number of epochs is fixed to 200. The value of dropout was changed from
0.1 to 0.9 gradually and we could observe an evident increase in accuracy. The
accuracy for 0.1 dropout is 62.50% and for 0.9 it is 91.90%. We fixed the value
of dropout as 0.9 for our architecture. After choosing the values for learning rate
and dropout, we changed the number of epochs from 200 to 2000 and observed
the results. The corresponding observations are plotted in Fig. 2. Here, we can
observe that for 2000 epochs the accuracy obtained was 95.50%. The class-wise
accuracy for 3 different epochs are given in the Fig. 3. All these results were
obtained by the classification using only CNN . The next type of classification
combines an auto encoder with the existing CNN. The data points were directly
fed into an auto encoder and the features were piped to the CNN. The result
obtained for these two methods were compared to the existing results [17] and
are given in the Table 2.

The accuracy obtained for feature extracted CNN is high compared to the
other two methods, giving a class wise accuracy for both browsers and chat



232 R.K. Rahul et al.

Fig. 2. Training epochs vs Accuracy graph with a learning rate of 0.0001 and dropout
of 0.9

Fig. 3. Class-wise accuracy for three different epochs

Table 2. Results of application classification

Class Existing results(%) [17] Accuracy for CNN(%) CNN + Auto encoder(%)

Browser 88.60 97.97 100

Chat 99.80 100 100

Torrent 98.70 94.16 98.90

Overall 95.70 97.37 99.63



Deep Learning for Network Flow Analysis and Malware Classification 233

Fig. 4. Class-wise accuracy for malware classification

Fig. 5. Training epochs vs Accuracy graph for malware classification with learning rate
of 0.001 and dropout of 0.9. Average Testing Accuracy is 94.91%

applications at 100% and that of torrent(with encryption enabled) is 98.9%.
The overall accuracy is at 99.63% where as that of the existing method [17] was
at 95.70% and classification using CNN only is at 97.37%.

3.3 Malware Classification

Totally 9 families of malware is taken for classification. The CNN architecture
with two convolutional and two dense layers give maximum accuracy for the
data sample (full Kaggle dataset was too big to process, so random sample was
taken). The average accuracy of 94.91% is achieved with this architecture as
shown in Fig. 5. The class wise accuracy is also shown in the Fig. 4.



234 R.K. Rahul et al.

4 Conclusion

Deep learned features are abstract in nature and cannot be attributed to any
specific measure of the data entities (like traditional features which are hand
crafted), such as network traffic and malware that generate huge amounts of
data. From the results of our experiment we can conclude that this data in
each case has got more information than what is humanly visible, like basic
statistical behaviours, port associations, header information and format etc. The
obvious benefits are that these features are also invisible to the attacker and
data fingerprints like these cannot be manipulated. For malware we have used
their binary executable code and for the network traffic we used the transmitted
payload inside each packet. We speculate that since the code profiles seldom
change for even the most tricky polymorph, a static pre-trained model will do
that can be integrated with the firmware. The case with network traffic is almost
very similar. Newer and proprietary protocols/applications are mostly derived
from existing ones and can be caught since their flow signatures will remain more
or less static. We also observed that among all the three, torrent gives the least
accuracy for which we speculate that it is due to the tunnelling and encrypting
behaviour of torrent transmissions. But given these conditions, we still believe
we can identify them accurately in real time, if we pump in more data to train
the network.

5 Future Work

Presently the classification was done only using CNN and auto encoder. In future,
it can be further extended to RNN and LSTM as transmitted data might have
some auto correlations or sequential behaviour. The experiment was done by
collecting packets over a small network which can be expanded over larger ones.
We can try for more applications especially the ones with proprietary protocols.
Classification can be performed on Botnets to identify infections in real time.
The malware classification has a lot of room for improvement, and can chunk
more data toward this goal. The main use of this malware model is with in
disassemblers or firmware profilers which can see the actual code passed for
execution. Any code suspected to be malicious can be filtered or at least be
quarantined prior to the real execution of it. In the same way a network traffic
filter can be set up on bridges and routers based on learned models trained on
malicious or congestion causing traffic to do selective load shedding.

References

1. Convolutional neural network. https://en.wikipedia.org/wiki/Convolutional
neural network. Accessed 10 May 2017

2. Deep learning. https://en.wikipedia.org/wiki/Deep learning. Accessed 29 Nov
2016

3. Tcpdump. http://www.tcpdump.org/tcpdump man.html. Accessed 27 Apr 2017

https://en.wikipedia.org/wiki/Convolutional_neural_network
https://en.wikipedia.org/wiki/Convolutional_neural_network
https://en.wikipedia.org/wiki/Deep_learning
http://www.tcpdump.org/tcpdump_man.html


Deep Learning for Network Flow Analysis and Malware Classification 235

4. Anjali, T., Menon, V.K., Soman, K.P.: Network application identification using
deep learning. In: 6th IEEE International Conference on Communication and Sig-
nal Processing (2017, accepted)

5. Drew, J., Moore, T., Hahsler, M.: Polymorphic malware detection using sequence
classification methods, pp. 81–87 (2016)

6. LeCun, Y., Bengio, Y., Hinton, G.: Deep learning. Nature 521(7553), 436–444
(2015)

7. Microsoft: Kaggle malware data. https://www.kaggle.com/c/malware-
classification/data. Accessed 11 May 2017

8. Nagananthini, C., Yogameena, B.: Crowd disaster avoidance system (CDAS) by
deep learning using extended center symmetric local binary pattern (XCS-LBP)
texture features. In: Raman, B., Kumar, S., Roy, P.P., Sen, D. (eds.) Proceedings
of International Conference on Computer Vision and Image Processing. AISC, vol.
459, pp. 487–498. Springer, Singapore (2017). doi:10.1007/978-981-10-2104-6 44

9. Nataraj, L., Karthikeyan, S., Jacob, G., Manjunath, B.S.: Malware images: visu-
alization and automatic classification. In: Proceedings of the 8th International
Symposium on Visualization for Cyber Security, VizSec 2011, pp. 4:1–4:7. ACM
(2011). http://doi.acm.org/10.1145/2016904.2016908

10. Orebaugh, A., Ramirez, G., Beale, J.: Wireshark & ethereal network protocol ana-
lyzer toolkit (2006)

11. Athira, S., Mohan, R., Poornachandran, P., Soman, K.P.: Automatic modulation
classification using convolutional neural network. IJCTA 9(16), 7733–7742 (2016)

12. Rahul, R.K., Menon, V.K., Soman, K.P.: Network protocol classification using deep
learning. In: 6th IEEE International Conference on Communication and Signal
Processing (2017, accepted)

13. Soman, K., Diwakar, S., Ajay, V.: Data Mining: Theory and Practice [WITH CD].
PHI Learning Pvt. Ltd., Delhi (2006)

14. Soman, K., Loganathan, R., Ajay, V.: Machine learning with SVM and other kernel
methods. PHI Learning Pvt. Ltd., Delhi (2009)

15. Team, T.D.: Deep learning tutorials. http://deeplearning.net/tutorial/. Accessed
29 Nov 2016

16. Tongaonkar, A., Keralapura, R., Nucci, A.: Challenges in network application iden-
tification (2012)

17. Wang, Z.: The applications of deep learning on traffic identification. BlackHat USA
(2015)

18. Zander, S., Nguyen, T., Armitage, G.: Automated traffic classification and appli-
cation identification using machine learning, pp. 250–257 (2005)

https://www.kaggle.com/c/malware-classification/data
https://www.kaggle.com/c/malware-classification/data
http://dx.doi.org/10.1007/978-981-10-2104-6_44
http://doi.acm.org/10.1145/2016904.2016908
http://deeplearning.net/tutorial/

	Deep Learning for Network Flow Analysis and Malware Classification
	1 Introduction
	2 Methodology and Reasoning 
	2.1 Protocol Classification Using Metadata
	2.2 Payload Data Collection and Data Preprocessing for Network Application Classification 
	2.3 Malware Classification Using Kaggle Data
	2.4 Different Convolutional Neural Networks Implemented
	2.5 Implemented Autoencoder Architecture

	3 Results and Discussions
	3.1 Protocol Classification
	3.2 Network Application Classification
	3.3 Malware Classification

	4 Conclusion
	5 Future Work
	References


