
123

Sabu M. Thampi · Gregorio Martínez Pérez
Carlos Becker Westphall · Jiankun Hu
Chun I. Fan · Félix Gómez Mármol (Eds.)

5th International Symposium, SSCC 2017 
Manipal, India, September 13–16, 2017 
Proceedings

Security in Computing 
and Communications

Communications in Computer and Information Science 746



Communications
in Computer and Information Science 746

Commenced Publication in 2007
Founding and Former Series Editors:
Alfredo Cuzzocrea, Xiaoyong Du, Orhun Kara, Ting Liu, Dominik Ślęzak,
and Xiaokang Yang

Editorial Board

Simone Diniz Junqueira Barbosa
Pontifical Catholic University of Rio de Janeiro (PUC-Rio),
Rio de Janeiro, Brazil

Phoebe Chen
La Trobe University, Melbourne, Australia

Joaquim Filipe
Polytechnic Institute of Setúbal, Setúbal, Portugal

Igor Kotenko
St. Petersburg Institute for Informatics and Automation of the Russian
Academy of Sciences, St. Petersburg, Russia

Krishna M. Sivalingam
Indian Institute of Technology Madras, Chennai, India

Takashi Washio
Osaka University, Osaka, Japan

Junsong Yuan
Nanyang Technological University, Singapore, Singapore

Lizhu Zhou
Tsinghua University, Beijing, China



More information about this series at http://www.springer.com/series/7899

http://www.springer.com/series/7899


Sabu M. Thampi • Gregorio Martínez Pérez
Carlos Becker Westphall • Jiankun Hu
Chun I. Fan • Félix Gómez Mármol (Eds.)

Security in Computing
and Communications
5th International Symposium, SSCC 2017
Manipal, India, September 13–16, 2017
Proceedings

123



Editors
Sabu M. Thampi
Indian Institute of Information Technology
and Management Kerala (IIITMK)

Trivandrum, Kerala
India

Gregorio Martínez Pérez
University of Murcia
Murcia
Spain

Carlos Becker Westphall
Federal University of Santa Catarina
Florianópolis, Santa Catarina
Brazil

Jiankun Hu
RMIT University
Melbourne, VIC
Australia

Chun I. Fan
National Sun Yat-sen University
Kaohsiung
Taiwan

Félix Gómez Mármol
University of Murcia
Murcia
Spain

ISSN 1865-0929 ISSN 1865-0937 (electronic)
Communications in Computer and Information Science
ISBN 978-981-10-6897-3 ISBN 978-981-10-6898-0 (eBook)
https://doi.org/10.1007/978-981-10-6898-0

Library of Congress Control Number: 2017957559

© Springer Nature Singapore Pte Ltd. 2017
This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of the
material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation,
broadcasting, reproduction on microfilms or in any other physical way, and transmission or information
storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now
known or hereafter developed.
The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication
does not imply, even in the absence of a specific statement, that such names are exempt from the relevant
protective laws and regulations and therefore free for general use.
The publisher, the authors and the editors are safe to assume that the advice and information in this book are
believed to be true and accurate at the date of publication. Neither the publisher nor the authors or the editors
give a warranty, express or implied, with respect to the material contained herein or for any errors or
omissions that may have been made. The publisher remains neutral with regard to jurisdictional claims in
published maps and institutional affiliations.

Printed on acid-free paper

This Springer imprint is published by Springer Nature
The registered company is Springer Nature Singapore Pte Ltd.
The registered company address is: 152 Beach Road, #21-01/04 Gateway East, Singapore 189721, Singapore



Preface

These proceedings contain papers selected for presentation at the 5th International
Symposium on Security in Computing and Communications (SSCC 2017). SSCC aims
to provide an opportunity to bring together researchers and practitioners from both
academia and industry to exchange knowledge and discuss research findings. The
symposium was held in Manipal Institute of Technology, Manipal University,
Karnataka, India, during September 13–16, 2017. SSCC 2017 was co-located with the
International Conference on Applied Soft Computing and Communication Networks
(ACN 2017).

In response to the call for papers 84 papers were submitted to the symposium. These
papers were evaluated on the basis of their significance, novelty, and technical quality.
A double-blind review process was conducted to ensure that the author names and
affiliations were unknown to the Technical Program Committee (TPC). Each paper was
reviewed by the members of the TPC and finally, 21 regular papers and 13 short papers
were selected for presentation at the symposium (acceptance ratio: *40%).

The organization of the symposium benefited from the efforts of many individuals.
We would like to thank the TPC members and external reviewers for their timely
expertise in carefully reviewing the submissions. We would like to thank the general
chair and members of the Advisory Committee for their support. We express our most
sincere thanks to all keynote speakers who shared with us their expertise and
knowledge.

Special thanks to members of the Organizing Committee for their time and effort in
organizing the symposium. We wish to thank all the authors who submitted papers and
all participants and contributors to fruitful discussions. Finally, we would like to
acknowledge Springer for the active cooperation and timely production of the
proceedings.

September 2017 Sabu M. Thampi
Gregorio Martínez Pérez
Carlos Becker Westphall

Jiankun Hu
Chun-I Fan

Félix Gómez Mármol



Organization

Chief Patron

Ramdas M. Pai Manipal University, India

Patrons

H.S. Ballal Manipal University, India
B.H.V. Pai MIT, Manipal University, India
G.K. Prabhu MIT, Manipal University, India
Narayan Sabhahit Manipal University, India
V. Surendra Shetty Manipal University, India
H. Vinod Bhat Manipal University, India

Advisory Committee

John F. Buford Avaya Labs Research, USA
Mauro Conti SPRITZ Security and Privacy Research Group,

University of Padua, Italy
Xavier Fernando Ryerson University, Canada
David Naccache ENS Paris, France
Prasad Naldurg IBM Research India, Bangalore
Anand R. Prasad NEC, Japan
Bimal Kumar Roy R.C. Bose Centre for Cryptology and Security,

Indian Statistical Institute, India
Somitra Kr. Sanadhya IIIT Delhi, India
Zhili Sun Institute for Communication Systems (ICS),

University of Surrey, UK
Shambhu J. Upadhyaya State University of New York at Buffalo, USA
V.N. Venkatakrishnan University of Illinois at Chicago, USA
Guojun Wang Central South University, China

General Chair

Sudip Misra Indian Institute of Technology, Kharagpur, India

Program Chair

Gregorio Martínez Pérez University of Murcia, Spain



Program Co-chairs

Chun-I Fan National Sun Yat-sen University, Taiwan
Félix Gómez Mármol University of Murcia, Spain
Jiankun Hu RMIT University, Australia
Ryan Ko University of Waikato, New Zealand

Publicity Chair

Carlos Becker Westphall Federal University of Santa Catarina, Brazil

Steering Committee Chair

Sabu M. Thampi IIITM-Kerala, India

Organizing Chair

Hareesha K.S. Manipal Institute of Technology (MIT) - Manipal
University, India

Organizing Co-chairs

Balachandra Manipal Institute of Technology, Manipal University,
India

Ashalatha Nayak Manipal Institute of Technology, Manipal University,
India

Organizing Secretaries

Renuka A. Manipal Institute of Technology, Manipal University,
India

Preetham Kumar Manipal Institute of Technology, Manipal University,
India

Poornima P.K. Manipal Institute of Technology, Manipal University,
India

Technical Program Committee/Additional Reviewers

Rajan A. Tata Consultancy Services, India
Davide Adami CNIT Pisa Research Unit, University of Pisa, Italy
Rachit Adhvaryu Gujarat Technological University, India
Sasan Adibi Deakin University, Australia
Deepak Aeloor St. John College of Engineering and Technology, India
Afrand Agah West Chester University of Pennsylvania, USA
S. Agrawal Delhi Technological University (DTU) Formerly Delhi

College of Engineering (DCE), India

VIII Organization



Musheer Ahmad Jamia Millia Islamia, New Delhi, India
Maurizio Aiello National Research Council, CNR-IEIIT, Italy
Jose Maria Alcaraz Calero University of the West of Scotland, UK
Syed Taqi Ali NIT Kurukshetra, India
Karim Al-Saedi University of Mustansiriyah, Iraq
Kimaya Ambekar K.J. SIMSR, India
S. Anandhi PSG College of Technology, India
Gopalasingham

Aravinthan
Nokia Bell Labs, France

Claudio Ardagna Università degli Studi di Milano, Italy
Reza Atani University of Guilan, Iran
Osama Attia Intel Corporation, USA
Dhouha Ayed Thales, France
Asrul Izam Azmi Universiti Teknologi Malaysia, Malaysia
Ramesh Babu DSCE, Bangalore, India
V. Balamurugan Sathyabama University, India
Nikolaos Bardis Hellenic Military Academy, Greece
Ingmar Baumgart Karlsruhe Institute of Technology (KIT), Germany
Salah Benbrahim Ecole Polytechnique, Canada
Jalel Ben-Othman University of Paris 13, France
Bruhadeshwar Bezawada Mahindra Ecole Centrale, India
Aniruddha Bhattacharjya Guru Nanak Institute of Technology (GNIT), India
Debojyoti Bhattacharya Robert Bosch Engineering and Business Solutions Ltd.,

India
Tapalina Bhattasali University of Calcutta, India
B. Borah Tezpur University, India
Karima Boudaoud University of Nice Sophia Antipolis, France
Kai Bu Zhejiang University, P.R. China
John Buford Koopid Inc., USA
Christian Callegari RaSS National Laboratory - CNIT, Italy
Enrico Cambiaso National Research Council, CNR-IEIIT, Italy
Zhenfu Cao Shanghai Jiao Tong University, P.R. China
Shih-Hao Chang Tamkang University, Taiwan
Madhumita Chatterjee Pillai Institute of Information Technology, India
Nirbhay Chaubey Institute of Science and Technology for Advanced

Studies and Research, India
Ankit Chaudhary Northwest Missouri State University, USA
Feng Cheng University of Potsdam, Germany
Deepak Choudhary LPU, India
Maxwell Christian Gujarat Technological University, India
Chung-Hua Chu National Taichung Institute of Technology, Taiwan
Phan Cong-Vinh NTT University, Vietnam
Nora Cuppens-Boulahia IT TELECOM Bretagne, France
Anil Dahiya Manipal University Jaipur, India
Saad Darwish University of Alexandria, Egypt

Organization IX



Ashok Kumar Das International Institute of Information Technology,
Hyderabad, India

Pratish Datta Indian Institute of Technology Kharagpur, India
Sabrina De Capitani di

Vimercati
Università degli Studi di Milano, Italy

Abdelouahid Derhab King Saud University, Saudi Arabia
Aaradhana Deshmukh Aalborg University, Denmark
Andreas Dewald ERNW Research GmbH, Germany
Dhananjoy Dey DRDO, India
Nilanjan Dey West Bengal University of Technology, India
Tassos Dimitriou Computer Technology Institute in Greece and Kuwait

University, Greece
Nikunj Domadiya S.V. National Institute of Technology - Surat (Gujarat),

India
Jignesh Doshi L.J. Institute of Management Studies, Ahmedabad, India
Manali Dubal University of Pune, India
Supriya Dubey Motilal Nehru National Institute of Technology,

Allahabad, India
Zoya Dyka Innovations for High Performance Microelectronics,

Germany
El-Sayed El-Alfy King Fahd University of Petroleum and Minerals

(KFUPM), Saudi Arabia
Azza Elaskary Atomic Energy Authority, Egypt
Ahmed Elmisery Universidad Técnica Federico Santa María, Chile
Eduardo Fernandez Florida Atlantic University, USA
Apostolos Fournaris University of Patras, Greece
Alexandros Fragkiadakis Institute of Computer Science, FORTH, Greece
Thomas Gamer ABB AG, Germany
Carlos Gañán Delft University of Technology, The Netherlands
K. Ganesh SVECW, India
Gr. Gangadharan IDRBT, India
Praveen Gauravaram Tata Consultancy Services, Australia
S. Geetha VIT University Chennai Campus, India
Angelo Genovese Università degli Studi di Milano, Italy
Vadivelou Gnanapragasam Pondicherry University, India
Mario Goldenbaum Princeton University, USA
Paulo Gondim Universidade de Brasilia, Brazil
R. Goudar Visvesvaraya Technological University, Belagavi, India
D.J. Guan National Sun Yat-Sen University, Taiwan
Sghaier Guizani Alfaisal University, Saudi Arabia
Ankur Gupta Model Institute of Engineering and Technology, India
Manish Gupta Hindustan Institute of Technology and Management,

Agra, India
Raju Halder IIT Patna, India
Hani Hamdan CentraleSupélec, Université Paris-Saclay, France
Ramesh Hansdah Indian Institute of Science, Bangalore, India

X Organization



Deepthi Haridas Advanced Data Processing Research Institute (ADRIN),
India

Houcine Hassan Universidad Politecnica de Valencia, Spain
Aissaoui Hassane Mines-Telecom Institute/Telecom Paris Tech, France
Christine Hennebert CEA-LETI, France
Wolfgang Hommel Universität der Bundeswehr München, Germany
Gwo-Jiun Horng Southern Taiwan University of Science and Technology,

Taiwan
Asif Iqbal KTH Royal Institute of Technology, Sweden
Abdellah Jamali Hassan 1st University-Settat, Morocco
Alex Pappachen James Nazarbayev University, Kazakhstan
Jiaojiao Jiang Swinburne University of Technology, Australia
Shreenivas Jog Government College of Engineering Pune,

University of Pune, India
Prashant Johri Galgotias University, India
Manisha Joshi M.G.M. College of Engineering, India
Mohammed Kaabar Washington State University, USA
Sandeep Kakde Y.C. College of Engineering, India
Nirmalya Kar National Institute of Technology Agartala, India
Kira Kastell Frankfurt University of Applied Sciences, Germany
Sokratis Katsikas Norwegian University of Science and Technology,

Norway
Gaurav Khatwani Indian Institute of Management Rohtak, India
Praveen Khethavath LaGuardia Community College, USA
Donghyun Kim Kennesaw State University, USA
Andreas Kliem Technische Universität Berlin, Germany
Ravi Kodali National Institute of Technology, Warangal, India
Jerzy Konorski Gdansk University of Technology, Poland
Dimitrios Koukopoulos University of Patras, Greece
Bogdan Ksiezopolski Maria Curie-Sklodowska University, Poland
Binod Kumar JSPM’s Jayawant Institute of Computer Applications,

Pune, India
Chin-Laung Lei National Taiwan University, Taiwan
Imre Lendák University of Novi Sad, Serbia
Albert Levi Sabanci University, Turkey
Jiguo Li Hohai University, P.R. China
Wenzhong Li Nanjing University, P.R. China
Jie Li University of Tsukuba, Japan
Anyi Liu Oakland University, USA
Jenila Livingston VIT Chennai, India
Luigi Lo Iacono Cologne University of Applied Sciences, Germany
Flavio Lombardi Third University of Rome, Italy
Pascal Lorenz University of Haute Alsace, France
Malamati Louta University of Western Macedonia, Greece
Rongxing Lu University of New Brunswick, Canada
Supriya M. Amrita Vishwa Vidyapeetham, India

Organization XI



Parikshit Mahalle Kashibai Navale College of Engineering, Pune, India
Eman Mahmoodi Stevens Institute of Technology, USA
Massudi Mahmuddin Universiti Utara Malaysia, Malaysia
Soumyadev Maity National Institute of Technology, Rourkela, India
Amrita Manjrekar Shivaji University, India
Kyriakos Manousakis Applied Communication Sciences, USA
Marius Marcu Politehnica University of Timisoara, Romania
Ninoslav Marina Princeton University, USA
Sjouke Mauw University of Luxembourg, Luxembourg
Michael McGuire University of Victoria, Canada
Jay Merja Gujarat Technological University, India
Philippe Merle Inria Lille - Nord Europe, France
Dheerendra Mishra Indian Institute of Technology, Kharagpur, India
Amit Mishra Jaypee Institute of Engineering and Technology,

Raghogarh, Guna, M.P., India
Edward Moreno UFS - Federal University of Sergipe, Brazil
Francesco Moscato Second University of Naples, Italy
Amad Mourad University of Bouira, Algeria
Antonio Muñoz-Gallego University of Malaga, Spain
Aravind Nair Amrita University, India
Geetika Narang SIT College, India
Pratiksha Natani DIAT, India
T. Nishitha Vasavi College of Engineering, India
Quamar Niyaz University of Toledo, USA
Andreas Noack University of Applied Sciences Stralsund, Germany
Gabriele Oligeri Third University of Rome, Italy
Luís Oliveira IT, UBI and Polytechnic Institute of Tomar, Portugal
Jose A. Onieva University of Malaga, Spain
Jilna P. National Institute of Technology, Calicut, India
Michele Pagano University of Pisa, Italy
Pinakpani Pal Indian Statistical Institute, India
Saibal Pal DRDO, India
Mauricio Papa The University of Tulsa, USA
Younghee Park San Jose State University, USA
Thaksen Parvat Sinhgad Institute of Technology, Lonavala, India
Jitendra Patel KD Polytechnic Patan, India
Al-Sakib Khan Pathan Southeast University, Bangladesh
Thomas Paul TU Darmstadt, Germany
Vishnu Pendyala Santa Clara University, USA
Antonio Pescapé University of Naples Federico II, Italy
Sophia Petridou University of Macedonia, Greece
Anitha Pillai Hindustan University, Chennai, India
Emmanuel Pilli Malaviya National Institute of Technology, Jaipur, India
Vincenzo Piuri Università degli Studi di Milano, Italy
Geong-Sen Poh MIMOS, Malaysia
Anand Prasad NEC Corporation, Japan

XII Organization



Neeli Prasad ITU, Center for TeleInFrastructure (CTIF), USA
Kester Quist-Aphetsi University of Brest France, France
Purushothama R. National Institute of Technology Goa, India
Kirubakaran R. Kumaraguru College of Technology, India
Anitha R. Anna University, India
Vallikannu R. Hindustan University, Under UGC Act 3, India
Giuseppe Raffa Intel Corporation, USA
Mohammad Rahman KDDI R&D Laboratories, Inc., Japan
Praveen Kumar Rajendran Cognizant Technology Solutions, India
Somayaji Siva Rama

Krishnan
VIT University, India

Tarun Rao Dayanand Sagar College of Engineering, India
Arvind Rao Defense Research and Development Organisation,

Ministry of Defence, GOI, India
Sherif Rashad Florida Polytechnic University, USA
Nadana Ravishankar B.S. Abdur Rahman University, India
Behrooz Razeghi Ferdowsi University of Mashhad, Iran
Eric Renault Institut Mines-Telecom, Telecom SudParis, France
Abdalhossein Rezai ACECR, Iran
Simon Pietro Romano University of Naples Federico II, Italy
Animesh Roy Indian Institute of Engineering Science and Technology,

Shibpur, India
Antonio Ruiz-Martínez University of Murcia, Spain
Muthukumar S. Indian Institute of Information Technology, Tamil Nadu,

India
Vinod Chandra S.S. University of Kerala, India
Sudha Sadhasivam PSG College of Technology, India
Navanath Saharia Indian Institute of Information Technology Manipur,

India
Youssef Said Tunisie Telecom, Tunisia
Kashif Saleem King Saud University, Saudi Arabia
Panagiotis Sarigiannidis University of Western Macedonia, Greece
Himangshu Sarma NIT Sikkim, India
Kriti Saroha CDAC, India
Mrudula Sarvabhatla NBKR IST, India
Rajat Saxena Indian Institute of Technology Indore, India
Jaydip Sen Praxis Business School, India
Anirban Sengupta Jadavpur University, India
Jagruti Shah Nagpur University, India
V. Shanthi St. Joseph College of Engineering, India
Aditi Sharma MBM Engineering College Jodhpur, India
Sandip Shinde Sathyabama University Chennai, India
Rajeev Shrivastava MPSIDC, India
Ajay Shukla All India Institute of Ayureveda (AIIA), India
Sabrina Sicari University of Insubria, Italy
Axel Sikora University of Applied Sciences Offenburg, Germany

Organization XIII



Sarbjeet Singh Panjab University, Chandigarh, India
Rajiv Singh Banasthali University, India
Kunwar Singh NIT Trichy, India
Agusti Solanas Rovira i Virgili University, Spain
Vikas Solanke MSBTE, India
Keshav Sood Deakin University, Australia
Alessandro Sorniotti IBM Research, Switzerland
Karthik Srinivasan Philips, India
Vartika Srivastava Jaypee Institute of Information and Technology, India
Stormy Stark Penn State University, USA
Maicon Stihler Federal Center for Technological Education -

CEFET-MG, Brazil
Dimitrios Stratogiannis National Technical University of Athens, Greece
Tim Strayer BBN Technologies, USA
Martin Strohmeier University of Oxford, UK
Ravi Subban Pondicherry University, India
Pawel Szalachowski ETH Zurich, Switzerland
Siva Rama Krishna T. JNTUK-University College of Engineering

Vizianagaram, India
Rajneesh Talwar CGC Technical Campus, Jhanjeri,

Punjab Technical University, India
Cristina Alcaraz Tello University of Malaga, Spain
Geethapriya Thamilarasu University of Washington Bothell, USA
Deepti Theng G.H. Raisoni College of Engineering, India
Ciza Thomas College of Engineering Trivandrum, India
Padmaja Thurumella K.L. University, Vaddeswaram, India
Anurag Tomar Lovely Professional University, India
Orazio Tomarchio University of Catania, Italy
Zouheir Trabelsi UAE University, United Arab Emirates
Ha Duyen Trung Hanoi University of Science and Technology, Vietnam
Indumathi T.s. VTU, India
Francesco Tusa University College London, UK
Gopinath V. Sathyabama University, India
Odelu Vanga Indian Institute of Information Technology Chittoor,

India
Genoveva Vargas-Solar French Council on Scientific Research, France
Giacomo Verticale Politecnico di Milano, Italy
Divya Vidyadharan College of Engineering, Trivandrum, India
S. Vijaykumar 6TH SENSE, India
Luca Vollero Università Campus Bio-Medico (Roma), Italy
Chandra Vorugunti Indian Institute of Information Technology, SriCity,

India
Artemios Voyiatzis SBA Research, Austria
Rahul Waghmare Indian Institute of Space Science and Technology, India
Yong Wang Dakota State University, USA
Qi Wang University of the West of Scotland, UK

XIV Organization



Mohammad Wazid IIIT, Hyderabad, India
Chih-Yu Wen National Chung Hsing University, Taiwan
Xiaotong Wu Nanjing University, P.R. China
Bing Wu Fayetteville State University, USA
Yang Xiao The University of Alabama, USA
Jiping Xiong Zhejiang Normal University, P.R. China
Tarun Yadav Defence Research and Development Organisation,

Ministry of Defence, GOI, India
Akihiro Yamamura Akita University, Japan
Bo Yan University of Massachusetts Lowell, USA
Chung-Huang Yang National Kaohsiung Normal University, Taiwan
Turker Yilmaz Koc University, Turkey
Faqir Yousaf NEC Laboratories, Europe, Germany
Meng Yu University of Texas at San Antonio, USA
Chang Wu Yu Chung Hua University, Taiwan
Chau Yuen Singapore University of Technology and Design,

Singapore
Go Yun II Heriot-Watt University Malaysia, Malaysia
Sherali Zeadally University of Kentucky, USA
Wuxiong Zhang Shanghai Research Center for Wireless

Communications, P.R. China
Peng Zhang Stony Brook University, USA
Yujun Zhang Institute of Computing Technology,

Chinese Academy of Sciences, P.R. China
Haijun Zhang University of Science and Technology Beijing,

P.R. China

Organized by

Organization XV



Contents

Diversity-aware, Cost-effective Network Security Hardening
Using Attack Graph. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

M.A. Jabbar, Ghanshyam S. Bopche, B.L. Deekshatulu,
and B.M. Mehtre

Fast Verification of Digital Signatures in IoT . . . . . . . . . . . . . . . . . . . . . . . 16
Apurva S. Kittur, Ashu Jain, and Alwyn Roshan Pais

Efficient and Provably Secure Pairing Free ID-Based Directed
Signature Scheme . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

N.B. Gayathri, R.R.V. Krishna Rao, and P. Vasudeva Reddy

User Authentication Scheme for Wireless Sensor Networks
and Internet of Things Using LU Decomposition . . . . . . . . . . . . . . . . . . . . 39

Anup Kumar Maurya and V.N. Sastry

Detection of Zeus Bot Based on Host and Network Activities . . . . . . . . . . . 54
Ramesh Kalpika and A.R. Vasudevan

An Asymmetric Key Based Efficient Authentication Mechanism
for Proxy Mobile IPv6 Networks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65

Sandipan Biswas, Pampa Sadhukhan, and Sarmistha Neogy

User Authentication Scheme for Wireless Sensor Networks
and Internet of Things Using Chinese Remainder Theorem . . . . . . . . . . . . . 79

Anup Kumar Maurya and V.N. Sastry

A Ringer-Based Throttling Approach to Mitigate DDoS Attacks . . . . . . . . . . 95
Sarvesh V. Sawant, Gaurav Pareek, and B.R. Purushothama

NPSO Based Cost Optimization for Load Scheduling
in Cloud Computing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109

Divya Chaudhary, Bijendra Kumar, and Rahul Khanna

Multi-sink En-Route Filtering Mechanism for Wireless Sensor Networks . . . . 122
Alok Kumar and Alwyn Roshan Pais

Security Schemes for Constrained Application Protocol in IoT:
A Precise Survey . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 134

Amit Mali and Anant Nimkar

Jordan Center Segregation: Rumors in Social Media Networks . . . . . . . . . . . 146
R. Krithika, Ashok Kumar Mohan, and M. Sethumadhavan

http://dx.doi.org/10.1007/978-981-10-6898-0_1
http://dx.doi.org/10.1007/978-981-10-6898-0_1
http://dx.doi.org/10.1007/978-981-10-6898-0_2
http://dx.doi.org/10.1007/978-981-10-6898-0_3
http://dx.doi.org/10.1007/978-981-10-6898-0_3
http://dx.doi.org/10.1007/978-981-10-6898-0_4
http://dx.doi.org/10.1007/978-981-10-6898-0_4
http://dx.doi.org/10.1007/978-981-10-6898-0_5
http://dx.doi.org/10.1007/978-981-10-6898-0_6
http://dx.doi.org/10.1007/978-981-10-6898-0_6
http://dx.doi.org/10.1007/978-981-10-6898-0_7
http://dx.doi.org/10.1007/978-981-10-6898-0_7
http://dx.doi.org/10.1007/978-981-10-6898-0_8
http://dx.doi.org/10.1007/978-981-10-6898-0_9
http://dx.doi.org/10.1007/978-981-10-6898-0_9
http://dx.doi.org/10.1007/978-981-10-6898-0_10
http://dx.doi.org/10.1007/978-981-10-6898-0_11
http://dx.doi.org/10.1007/978-981-10-6898-0_11
http://dx.doi.org/10.1007/978-981-10-6898-0_12


Honeyword with Salt-Chlorine Generator to Enhance Security of Cloud
User Credentials . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 159

T. Nathezhtha and V. Vaidehi

Multi Class Machine Learning Algorithms for Intrusion Detection -
A Performance Study . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 170

Manjula C. Belavagi and Balachandra Muniyal

Symmetric Key Based Secure Resource Sharing . . . . . . . . . . . . . . . . . . . . . 179
Bruhadeshwar Bezawada, Kishore Kothapalli, Dugyala Raman,
and Rui Li

Prevention of PAC File Based Attack Using DHCP Snooping . . . . . . . . . . . 195
K.R. Atul and K.P. Jevitha

A Quasigroup Based Synchronous Stream Cipher
for Lightweight Applications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 205

S. Lakshmi, Chungath Srinivasan, K.V. Lakshmy, and M. Sindhu

Security Analysis of Key Management Schemes Based on Chinese
Remainder Theorem Under Strong Active Outsider Adversary Model . . . . . . 215

B.R. Purushothama, Arun Prakash Verma, and Abhilash Kumar

Deep Learning for Network Flow Analysis and Malware Classification . . . . . 226
R.K. Rahul, T. Anjali, Vijay Krishna Menon, and K.P. Soman

Kernel Modification APT Attack Detection in Android . . . . . . . . . . . . . . . . 236
Ajay Anto, R. Srinivasa Rao, and Alwyn Roshan Pais

Opaque Predicate Detection by Static Analysis of Binary Executables . . . . . . 250
R. Krishna Ram Prakash, P.P. Amritha, and M. Sethumadhavan

An Overview on Spora Ransomware . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 259
Yassine Lemmou and El Mamoun Souidi

Pattern Generation and Test Compression Using PRESTO Generator. . . . . . . 276
Annu Roy and J.P. Anita

Challenges in Android Forensics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 286
Sudip Hazra and Prabhaker Mateti

Current Consumption Analysis of AES and PRESENT Encryption
Algorithms in FPGA Using the Welch Method . . . . . . . . . . . . . . . . . . . . . . 300

William P. Maia and Edward D. Moreno

Spiral Model for Digital Forensics Investigation . . . . . . . . . . . . . . . . . . . . . 312
Suvarna Kothari and Hitesh Hasija

XVIII Contents

http://dx.doi.org/10.1007/978-981-10-6898-0_13
http://dx.doi.org/10.1007/978-981-10-6898-0_13
http://dx.doi.org/10.1007/978-981-10-6898-0_14
http://dx.doi.org/10.1007/978-981-10-6898-0_14
http://dx.doi.org/10.1007/978-981-10-6898-0_15
http://dx.doi.org/10.1007/978-981-10-6898-0_16
http://dx.doi.org/10.1007/978-981-10-6898-0_17
http://dx.doi.org/10.1007/978-981-10-6898-0_17
http://dx.doi.org/10.1007/978-981-10-6898-0_18
http://dx.doi.org/10.1007/978-981-10-6898-0_18
http://dx.doi.org/10.1007/978-981-10-6898-0_19
http://dx.doi.org/10.1007/978-981-10-6898-0_20
http://dx.doi.org/10.1007/978-981-10-6898-0_21
http://dx.doi.org/10.1007/978-981-10-6898-0_22
http://dx.doi.org/10.1007/978-981-10-6898-0_23
http://dx.doi.org/10.1007/978-981-10-6898-0_24
http://dx.doi.org/10.1007/978-981-10-6898-0_25
http://dx.doi.org/10.1007/978-981-10-6898-0_25
http://dx.doi.org/10.1007/978-981-10-6898-0_26


Smart-Lock Security Re-engineered Using Cryptography
and Steganography . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 325

Chaitanya Bapat, Ganesh Baleri, Shivani Inamdar,
and Anant V. Nimkar

Adding Continuous Proactive Forensics to Android . . . . . . . . . . . . . . . . . . . 337
Karthik M. Rao, P.S. Aiyyappan, and Prabhaker Mateti

ASLR and ROP Attack Mitigations for ARM-Based Android Devices . . . . . . 350
Vivek Parikh and Prabhaker Mateti

CBEAT: Chrome Browser Extension Analysis Tool . . . . . . . . . . . . . . . . . . 364
Sudakshina Singha Roy and K.P. Jevitha

Hardware Trojan Detection Using Effective Test Patterns
and Selective Segmentation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 379

K. Atchuta Sashank, Hari Sivarami Reddy, P. Pavithran, M.S. Akash,
and M. Nirmala Devi

Estimation and Tracking of a Ballistic Target Using Sequential Importance
Sampling Method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 387

J. Ramnarayan, J.P. Anita, and P. Sudheesh

An Android Application for Secret Image Sharing with Cloud Storage . . . . . 399
K. Praveen, G. Indu, R. Santhya, and M. Sethumadhavan

Tracking of GPS Parameters Using Particle Filter . . . . . . . . . . . . . . . . . . . . 411
M. Nishanth, J.P. Anita, and P. Sudheesh

Author Index . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 423

Contents XIX

http://dx.doi.org/10.1007/978-981-10-6898-0_27
http://dx.doi.org/10.1007/978-981-10-6898-0_27
http://dx.doi.org/10.1007/978-981-10-6898-0_28
http://dx.doi.org/10.1007/978-981-10-6898-0_29
http://dx.doi.org/10.1007/978-981-10-6898-0_30
http://dx.doi.org/10.1007/978-981-10-6898-0_31
http://dx.doi.org/10.1007/978-981-10-6898-0_31
http://dx.doi.org/10.1007/978-981-10-6898-0_32
http://dx.doi.org/10.1007/978-981-10-6898-0_32
http://dx.doi.org/10.1007/978-981-10-6898-0_33
http://dx.doi.org/10.1007/978-981-10-6898-0_34


Diversity-aware, Cost-effective Network Security
Hardening Using Attack Graph

M.A. Jabbar1(B), Ghanshyam S. Bopche2,3, B.L. Deekshatulu2,
and B.M. Mehtre2

1 Vardhaman College of Engineering, Hyderabad, Telangana, India
jabbar.meerja@gmail.com

2 Centre for Cyber Security (CCS), IDRBT, Hyderabad, India
ghanshyambopche.mca@gmail.com, deekshatulu@hotmail.com, mehtre@gmail.com

3 School of Computer and Information Sciences (SCIS),

University of Hyderabad (UOH), Hyderabad, India

Abstract. To assess the security risk of a given computer network, it
is imperative to understand how individual vulnerabilities can be com-
bined to launch a multistage, multi-host Cyber attack. Attack graphs are
instrumental in modeling how potential adversaries can combine multi-
ple network-related vulnerabilities for incremental network compromises.
Hence, attack graph provides a decision support to security analyst by
enumerating critical attack sequences. However, for a reasonable size
network, it is not possible to patch all the vulnerabilities with many
attack paths available. To mitigate the said problem, in this paper, we
propose a diversity-aware, cost-effective network hardening solution to
pro-actively secure the network. First, we compute the risk of each of the
goal-oriented attack path which ends in a predetermined critical resource.
Unlike other solutions, while calculating the risk of a goal-oriented attack
path, we consider the reduction in attackers effort due to the repetition
of already exploited vulnerabilities along the attack path. Next, the risk
of all such goal-oriented attack paths is summed up to compute the risk
of an entire network. Finally, an initial condition or an exploit which
contributes most to the security risk of a network and having least dis-
abling or patching cost will be chosen for removal. This process continues
iteratively, and come to a halt until the total cost of network harden-
ing exceeds the allocated security budget or network risk becomes zero,
whichever comes first. To validate our approach, we have presented a
small case study. Experimental results show that our method of network
hardening is complementary to the existing attack graph-based network
hardening solutions.

Keywords: Network security and protection · Network hardening · Risk
assessment · Exploit diversity · Attack graph · Security metric

c© Springer Nature Singapore Pte Ltd. 2017
S.M. Thampi et al. (Eds.): SSCC 2017, CCIS 746, pp. 1–15, 2017.
https://doi.org/10.1007/978-981-10-6898-0_1



2 M.A. Jabbar et al.

1 Introduction

With the advent of the Internet technology, today’s computer networks have
grown rapidly both in terms of size and complexity. Moreover, Cyber attacks are
also on the rise, prompting the need for cyber defense analysis. Even though crit-
ical industry resources are assumed to be well-secured within a well-administered
network, a single vulnerability in the Internet facing server(s) or client-side appli-
cation(s) can be used as a pivot point (launching pad) to compromise network
resources incrementally. Essentially, potential adversaries can combine multiple
network vulnerabilities to progressively compromise critical network resources
results in a multistage, multi-host attacks. Therefore, security analyst must
consider the cause-consequence relationship between the existing vulnerabili-
ties to secure the network. To determine the relation and interaction among the
exploitable network vulnerabilities, attack graphs [1–5] have been proposed in
literature.

Various attack path length-based metrics [6–9] have been proposed in the lit-
erature to assess the security posture of a computer network. The problem with
path length-based metrics is that they do not consider the cause-consequence
relationship between vulnerabilities and treat each of the exploitable vulnera-
bility equally. However, each kind of vulnerability in a network poses different
amount of resistance to the attacker during their exploitation. Cumulative prob-
ability [10] and cumulative attack resistance metric [11] assess the attacker’s
likelihood of successful vulnerability exploitation, and attackers efforts in terms
of the resistance posed by the vulnerabilities, respectively. However, both the
metrics do not consider the exploit diversity along the attack path(s). Chen
et al. [12] considered diversity among the network vulnerabilities as one of the
factors while calculating the network risk. However, as the attacker can take only
one of the attack path at a time, exploit diversity among the network vulnera-
bilities is not good criteria to consider. Instead, author’s should have considered
vulnerability diversity along the attack path.

Yigit et al. [13] proposed a metric to assess the security risk of a given net-
work. Authors summed up the path probabilities of all the goal-oriented attack
paths to measure the risk of a given network. However, they do not consider the
exploit diversity along the attack path. Suh-Lee and Jo [14] used the proximity
of the un-trusted network and the potential security risk(s) of the neighboring
hosts as important risk conditions to assess the security risk of each vulnera-
bility in a given system. However, they do not consider critical network risk
conditions such as the cause-consequence relationship between the exploitable
vulnerabilities and the exploit diversity along the attack paths.

In this paper, we introduce a new metric for assessing the security risk of a
given network. For doing this, we have considered the resistance and the success
probabilities of each of the goal-oriented attack path (in an attack graph) reach-
able to the predetermined target (i.e. critical resource). First, the risk of each
of the goal-oriented attack path is computed and then summed up to measure
the potential risk of an entire network. Secondly, the contribution of each initial
condition and exploit in an attack graph that contributes to the goal-oriented



Diversity-aware, Cost-effective Network Security Hardening 3

attack paths is calculated. Then, the effective cost of removing each of them
is estimated. Finally, the candidate exploits/initial condition are identified for
removal as a network hardening strategy. The entire process is repeated until
all the attack paths are removed, or security budget gets depleted. Based on
the metric recommendations we find a network hardening solution that brings
maximum security to the network with a minimum cost.

The organization of the paper is as follows. Section 2 discusses the existing
work on metrics available in the attack graph literature. Section 3 reviews the
popular attack graph model and provides a running example. In Sect. 4 we pro-
pose a new network risk assessment metric and also discuss how it will be useful
in identifying the network hardening solution that brings maximum security to
the network with minimum cost. Section 5 presents the results for the running
example. Finally, Sect. 6 closes with conclusions and directions for future work.

2 Related Work

Earlier efforts on security metrics, for example, CVSS [15,16], and CWSS [17] are
focused on assigning a numeric score to the individual reported vulnerabilities or
software weaknesses based on the known facts about them. Vulnerabilities with
higher severity score are given top priority during the process of network hard-
ening. However, an attacker may combine (correlate) less severe vulnerabilities
(based on their cause-consequence relationship) to penetrate the network and
compromise critical resources incrementally. Such causal relationship between
system vulnerabilities is at the heart of ever-increasing multistage, multi-host
attacks [18,19].

Cumulative probability-based attack graph metric [10] considers the causal
relationship between the network vulnerabilities for measuring the overall prob-
ability of an attacker successfully exploiting a vulnerability from her initial posi-
tion. The likelihood of occurrence of each attack path is used to evaluate the
network security. Similar to [10], cumulative attack resistance [11] for each attack
goal (here, critical resource) provides a quantitative measure of how likely the
attack goal can be achieved. The complexity of exploiting each attack path is
used to assess the security posture of a target network. The downside of the
proposed metric ([11]) is that the authors evaluated their work by assigning
the hypothetical resistance values to the individual vulnerabilities, which is not
acceptable in realistic networks and hence limits its usage. Later on, Ghosh
and Ghosh [20] resolved the problem of computing the individual resistance
value of each vulnerability in the system. Although the work in [10,11] consider
the causal relationship between vulnerabilities, they do not consider the exploit
diversity along the attack path(s). As a matter of fact, the multiple occurrences
of the already exploited vulnerability along the attack path(s) ease attacker’s
job. While launching the same type of attack for the second time, the adversary
will get benefited from her experiences and tools that have been accumulated
during the launch of attack for the first time [11]. In particular, an adversary
does not have to engineer a new exploit for taking advantage of the repeated



4 M.A. Jabbar et al.

vulnerabilities and hence she can save her effort, and time. In other words, she
can use previously engineered exploits with little or no modification.

Chen et al. [12] used diversity among the network vulnerabilities and attack
path length as an important risk condition to assess the security risk of a net-
work. Here, the length of the attack path(s) signifies the attacker’s effort and
exploit diversity indicates her knowledge about the different exploitation tech-
nologies. However, as the attacker can follow only one of the attack path, the
diversity among the network vulnerabilities is not a good factor to consider.
Instead, authors should have considered vulnerability diversity along the attack
path. The second factor they took into account is the attack path length in terms
of the number of vulnerabilities attacker has to exploit to reach and compromise
the critical resource. The number of vulnerabilities along the attack path is not
good criteria to consider as it does not capture attackers effort. The fundamental
problem with [12] is that the authors do not consider the exploit diversity along
the attack paths. Wang et al. [21,22] used diversity among the network services
along the attack paths (in a resource graph generated for a given network) to
measure the robustness of a network against the zero-day attacks. Smaller the
count, less robust the network is to the potential zero-day attacks and vice versa.
The above idea of service diversity along the attack path(s) motivated us to con-
sider the exploit diversity along the attack paths in an attack graph generated
for the well-known vulnerabilities. Suh-Lee and Jo [14] used the proximity of un-
trusted network and the risk posed by the neighboring hosts as important risk
condition to assess the security risk of each vulnerability in a system. However,
the approach followed in [14] does not consider the cause-consequence relation-
ship between the exploitable vulnerabilities. Work of Chen et al. [12], Yigit et al.
[13], Suh-Lee and Jo [14], Wang et al. [21,22], and Albanese et al. [23] motivated
us to consider various parameters such as vulnerability resistance, exploit prob-
ability, and exploit diversity along the goal-oriented attack paths for network
risk scoring.

3 Attack Graph and Running Example

An attack graph [1–5] is a formal network security modeling technique which
depicts potential “multistage, multi-host” attack paths in a given computer net-
work. Essentially, the generated attack graph captures the interplay between
the vulnerable network components and establishes a correlation (i.e. cause-
consequence relationship) between the vulnerabilities exposed on these elements.
Adversary, an entity with malicious intent, makes use of such causal relationship
in staging multistep attacks to compromise the network resources incrementally.

Figure 1 depicts a sample attack graph. Essentially, there are three hosts in
the underlying network: attacking host (i.e. Host0), and two victim hosts, Host1
and Host2. The identifiers (i.e. the numbers used in parenthesis) represents
related hosts. For example, root(2) signifies that an adversary has root privilege
on the target Host2. The exploitation of ftp rhosts vulnerability on Host1 from
the Host0 is represented by means of an exploit ftp rhosts(0, 1).



Diversity-aware, Cost-effective Network Security Hardening 5

Fig. 1. Attack Graph G for the Test Network (adapted from [12]). Each exploit is
shown by a box, initial condition, and post-condition by a simple plain-text, attackers
initial position by a circle, and her final target by a double circle.

Essentially, in an attack graph domain, security conditions are of two dif-
ferent types: (i) initial conditions and (ii) intermediate conditions. As the name
implies, an initial condition becomes a necessary precondition for the exploits
but not a postcondition of any of them. As depicted in Figure 1, service connec-
tivities/accessibility rules between the hosts for e.g., ftp(0, 1), and adversarial
access on the attacking hosts (i.e. user(0)) are the examples of networks ini-
tial conditions. Whereas, intermediate conditions can be both preconditions and
postconditions of exploit(s). For example the intermediate condition trust(1, 0)
in Fig. 1 signifies a trust relationship between the attacker (i.e. user(0)) and
Host1 which is user(1).



6 M.A. Jabbar et al.

Each attack path in an attack graph G is a multistage, multi-host attack
which consists of a sequence of exploitable vulnerabilities that can be exploited
successively to compromise critical enterprise resources. For example, remote
adversary (here, user(0)) can acquire root-level privileges on Host2 (i.e. root(2))
by executing the attack path “ftp rhosts(0, 2) → rsh(0, 2) → localbof(2)” as
shown in Fig. 1. To achieve this, firstly an adversary establishes a required trust
relationship (trust(2, 0)) between Host0 and Host2 by exploiting ftp rhosts
vulnerability on Host2. Then the adversary obtain user-level access (user(2))
on Host2 using rsh login attack (i.e. by executing the exploit rsh(0, 2)). Lastly,
she owns the root-level privilege (root(2)) on Host2 via local buffer overflow
attack (local bof(2)) on Host2.

Essentially, the security analyst can remove an attack path in two ways. First,
she can disable/invalidate one of the initial conditions that contribute to the goal-
oriented attack path. The second option is to stop an attacker by patching one of
the exploitable vulnerability along the attack path. However, as a matter of fact,
one should keep in mind that all the initial conditions cannot be disabled and all
the vulnerabilities cannot be patched. Like zero-day attacks, patches may not be
available for all well-known vulnerabilities. There might be a delay in releasing
patches as in the case of Microsoft’s Patch Tuesday. Moreover, disabling an initial
condition, for example, stopping a service or removing a service connectivity, etc.
may create service downtime, actively affect service availability, and hence hurts
the business performance. For the given running example in Fig. 1, disabling
the initial condition ftp(0, 2) by stopping ftp service can be undesirable as the
service is not available to the authorized users.

4 Proposed Solution

By traversing the attack graph G (shown in Fig. 1), we have extracted all the
valid, goal-oriented attack paths that end in a given critical resource. If each of
these multistage attack scenarios is eliminated, then the critical resource (here,
Host2) in an enterprise network become secure. Usually, there is a vast solution
space available for removing all the multistep attack scenarios since different
initial conditions, and exploits can be chosen for removal. Security analyst needs
to take into account the cost involved in disabling initial conditions or patching
vulnerabilities to harden the network with minimum cost. However, sometimes it
is not at all possible to disable or patch few initial conditions or exploits because
of the incurred side-effects as discussed in Sect. 3. On the contrary, considering
the cost involved in disabling initial conditions or patching vulnerabilities influ-
ence security budget constraint since the cost involved in completely securing
the network can be unacceptable. However, the likelihood of the potential multi-
stage attacks can be decreased to a great extent even if it cannot be entirely wipe
out. It is because of the organization’s security budget constraints. Therefore,
the security risk of a given network needs to be measured to assess their security
strength, and then the administrator will decide on how much protection she
needs to provide.



Diversity-aware, Cost-effective Network Security Hardening 7

In this paper, we propose a cost-effective network hardening solution by con-
sidering organization’s security budget constraint and the cost factor, iteratively.
Figure 2 shows the flowchart of proposed network hardening solution. Mainly,
there are two phases in our proposal. Firstly, using the backward algorithm, all
the potential goal-oriented attack paths that ended in a predetermined critical
resource are extracted from the generated attack graph G. Next, the success
probabilities and resistance of all the goal-oriented attack paths and the security
metric M is calculated. Similar to [13], in Phase II, the contributions of each
initial condition and exploit to the extracted goal-oriented attack paths is calcu-
lated. According to the cost (involved in patching a vulnerability or disabling an
initial condition) and the contribution to the attack paths, an initial condition
or an exploit is chosen for elimination. Lastly, the attack paths which consists
of the chosen initial condition or exploit are removed from the attack graph,
and network risk (M) is re-calculated. The Phase II go on until the network is
“completely” secure or the allocated security budget get consumed.

Fig. 2. The flow chart of proposed network hardening solution.



8 M.A. Jabbar et al.

To identify all the goal-oriented attack scenarios which end at the prede-
termined critical resource (here, Host2), we have used a backward algorithm
in Phase I of our proposal. Hence, the exploits which cannot help adversary
in reaching the target (i.e. critical resource) are never explored. Moreover, we
also got benefited from the logic used by the forward algorithm and discarded
the attack scenarios which do not start from the attacker initial position (i.e.
user(0)). Consequently, the complexity of Phase II is decreased further, as only
essential, goal-oriented attack paths are considered for removal. Mostly, attack
graph for a given network may contain cyclic paths. However, the attacker does
not usually opt for such cyclic paths [12] during network compromise, as she
never relinquishes her privileges on the already compromised host(s). During
the extraction of an attack path(s) (using the backward algorithm), if an exploit
gets encountered which was previously covered in the attack path, then the
extraction of that attack path is canceled to avoid the cyclic attack path(s).

In particular, the security risk of a network relies on several factors. First, the
number of goal-oriented attack paths to the target resource denoted as m. The
availability of more number of goal-oriented attack paths signifies that there is
more opportunity for an adversary to compromise critical resources. The second
one is the length of the attack path in terms of the number of vulnerabili-
ties that needs to be exploited successfully to reach the target. The longer the
attack path(s), an adversary should have the greater endurance to reach the
target resource. However, each type of vulnerability along the attack path poses
a different level of difficulty (resistance) to an attacker during their exploitation.
Hence, each type of vulnerability has different success probability which in turn
could be approximated by the average time (mean-time-to-compromise) or com-
putational complexity required to successfully compromise the critical resource in
a network [24]. We have used individual success probabilities of exploit Eprob(Ei)
[20] which is obtained from the CVSS Temporal Score [15,16] and given as input
to calculate the overall success probability of attack paths. The success prob-
ability (or the resistance) of an attack path execution is a more appropriate
criterion than the attack path length since attackers usually circumvent longer
paths. Since the attack path length increases, the overall probability of success-
ful execution of that path typically decreases. However, there could be longer
attack paths in a network which constitute easy to exploit vulnerabilities and
have higher success probability than the shorter attack paths which include diffi-
cult to exploit vulnerabilities. In this regard, the success probability of an attack
path Aj (i.e. Aprob(Aj)), can be obtained by multiplying the success probabil-
ities of each exploit in that path. The third is the number of different kinds of
vulnerabilities along the attack path. Usually, the more types of vulnerabilities
along the attack path indicates that an adversary needs to have more knowledge
about the different exploitation technologies. Hence, we define the security risk
posed by each of the goal-oriented attack path Aj in a given network N as:

Risk(Aj) =
1

Arest(Aj)
w + (1 − w)Aprob(Aj), (1)



Diversity-aware, Cost-effective Network Security Hardening 9

where w and (1 − w) signifies the weights given to the factors such as attacker’s
endurance and knowledge, respectively. The likelihood of a goal-oriented attack
path Aj , Aprob(Aj), can be obtained by multiplying the success probabilities of
each exploit encountered along that path:

Aprob(Aj) =
∏

Eprob(Ei) (2)

whereas, the overall resistance posed by an attack path Aj (i.e. Arest(Aj)) to an
adversary can be found by summing up the individual resistance value of each
of the vulnerability present in that path as:

Arest(Aj) =
∑

Erest(Ei), (3)

where Eprob(Ei) = 1/(Erest(Ei) + 1).
Each type of vulnerability poses a different level of resistance, and hence

an attacker has to spend the individual amount of effort while exploiting them.
However, the vulnerability repetition (i.e. encounter of the same kind of vul-
nerability which is already exploited earlier) along the path reduces the resis-
tance posed by the repeated instances of a vulnerability and thereby saving of
attacker’s effort. An attacker can use previously engineered exploits with little
or no modification. Therefore, exploits diversity along the path is a function
of vulnerability types and their repetitiveness. For example, in the attack path
“ftp rhosts(0, 1) → rsh(0, 1) → rsh(1, 2) → local bof(2)”, there is a repetition
of vulnerability in rsh service installed on Host1 and Host2. Such repetition of
vulnerabilities along the attack paths eases attacker’s job as she knows how to
exploit them. She just needs to apply acquired knowledge or use existing tools.
Therefore, the effort spent on exploiting the repeated instances is always less
than the original effort. Such reduction in the vulnerability resistance is due to
the attackers acquired skills, tools, and techniques. For the repeated vulnera-
bility instance i.e., rsh(1, 2) in the example attack path, the resistance value
becomes 0.5 ∗ Erest(rsh(0, 1)). Here, 0.5 is the attacker’s effort reduction factor
due to the repetition of vulnerabilities along the attack path(s). It is the only
subjective parameter used in our risk calculation method. An administrator can
choose this value based on the effort required to tweak the already engineered
exploit for exploiting repeated vulnerability in a network. To the best of our
knowledge, there is no study on how much reduction in attackers work factor
happens when the attacker exploits the same vulnerability the second time.

As evident from the Eq. 1, when the attacker does not have much skill or
knowledge about the different exploitation technologies (i.e. attacker’s endurance
w = 0) then she may attempt to exploit the attack path with highest success
probability. In this scenario, attack path with the highest probability of exploita-
tion will contribute most to the risk of an underlying network. On the other
hand, when the attacker is skilled in all sort of exploitation technologies (i.e.
when w = 1), then the attack path probability is of little importance as she can
take any of the available attack paths. In such scenario, all that matters to her
is the resistance posed by vulnerabilities along the chosen attack path.



10 M.A. Jabbar et al.

At the end of Phase I, the metric M is calculated to determine the network
risk. In this proposal, the risk of the extracted, goal-oriented attack paths is
summed up to compute M. Hence, the number of valid, goal-oriented attack
paths (m), their likelihoods (Aprob(Aj)), exploit diversity along the attack paths,
and resistance (Arest(Aj)) are combined to define the security metric M as:

M =
m∑

j=1

Risk(Aj), (4)

where Aj is the goal-oriented attack path.
As discussed earlier, to remove an attack path, usually there are two options:

(i) disabling initial conditions, (ii) patching of vulnerabilities. In Phase II, attack
paths are removed iteratively through the selection of an initial condition or an
exploit in each step. Similar to [13], in our proposal, we have used two crite-
ria for selecting an initial condition or an exploit: (i) the cost of disabling or
removal, i.e., α and (ii) their contribution to the extracted goal-oriented attack
paths. In particular, the contribution of an exploit (i.e. Con(Ei)) can be obtained
by adding the success probabilities of all the goal-oriented attack paths which
constitute that exploit. However, the contribution of an initial condition (i.e.
Con(Ik)) can be determined by adding the contributions of all the exploit(s)
which are invoked by that initial condition. Hence, Con(Ei) and Con(Ik) can
be calculated as:

Con(Ei) =
∑

Aprob(Aj), (5)

where Ei ∈ Aj , and
Con(Ik) =

∑
Con(Ei), (6)

where Ik enables Ei.
Here, α represents the cost of disabling an initial condition or the cost

involved in patching the vulnerability. These cost values are assumed to be
approximated by the security experts. Similar to [12,13], in our proposal, we
have unified the cost (α) and contribution (Con(x)) of each exploit and ini-
tial condition into effective cost β. Here, the effective cost β signifies how much
security risk is reduced per unit cost. For an initial condition or an exploit with
higher contribution rate (i.e. Con(x)), one unit cost provides more reduction in
security risk M. Based on the discussion above, the effective cost β is defined as:

β =
α

Con(x)
, (7)

where x can be an initial condition or an exploit.

Like [13], our network hardening solution selects an exploit Ei or initial con-
dition Ik with minimum effective cost β for removal provided their cost α should
not exceed the remaining security budget γ. If an exploit Ei is chosen for patch-
ing, attack paths which encompass Ei are removed, and hence these paths will
be no longer available to an adversary. However, if an initial condition Ik is



Diversity-aware, Cost-effective Network Security Hardening 11

disabled, then the attack paths which include exploit(s) which were enabled by
Ik are removed. Hence, the selected exploit Ei or initial condition Ik eliminates
its contribution to attack paths and reduce security risk M. In this way, by
considering the effective cost β for the removal of an exploit or an initial condi-
tion, critical resources are secured with minimal security budget. The selection
of an initial condition or an exploit for elimination in each iteration based on the
minimum effective cost β guarantees that the highest security risk reduction is
achieved per unit cost. Then, the network security risk M is re-computed, and
Phase II go on until risk M is zero or security budget γ is depleted.

5 A Case Study

To illustrate the proposed cost-effective network hardening strategy, we have
used a well-known network example [12,18,19] from the attack graph literature.
The corresponding attack graph G generated for the adapted network is shown
in Fig. 1. As shown in the attack graph G, there are 11 exploits and 7 initial
conditions. The success probability (likelihood of vulnerability exploitation) and
the cost of removal of each vulnerability is given in Table 1. We assumed the cost
of disabling each initial conditions is 10 units and user(0) is the only initial con-
dition that cannot be disabled since it signifies attackers initial location/position
and also her privileges on the attacking machine. The total security budget set
aside for the enterprise network security is 25 units. In practice, the success
probability values for each well-known vulnerability can be calculated from the
CVSS Temporal Score [15,20]. Whereas, the security experts provide the cost
of removal of vulnerability or initial condition. However, in this study, we have
assigned cost values to each of the exploitable vulnerability and initial conditions
to illustrate the operation of proposed network hardening method more clearly.

Table 1. Exploits in the attack graph G

Exploit Ei Success probability Eprob(Ei) Cost α

ftp rhosts 0.8 7

rsh 0.8 20

local bof 0.5 25

sshd bof 0.7 12

As shown in Table 2, there are 5 goal-oriented attack paths by which an
adversary can obtain the root privileges (root(2)) on Host2. Essentially, the
backward algorithm computes total 9 attack paths. However, 4 among them are
discarded since they do not begin from the attacker’s initial position (i.e. the
user(0)). One example of such attack path is “ftp rhosts(2, 1) → rsh(2, 1) →
rsh(1, 2) → local bof(2)”. The column 2 in Table 2 represents the number of
exploits adversary need to exploit along the attack path to the reach target



12 M.A. Jabbar et al.

Table 2. Attack Paths in a Attack Graph G, and their respective values for path length,
number of distinct vulnerabilities (along the path), Success Probability (Aprob(Aj)),
Resistance (Arest(Aj)), and Risk (Risk(Aj)). Here no. of steps represents the total
number of vulnerabilities which needs to be exploited by an adversary along the attack
path.

Attack path Aj # of # of Dist Aprob Arest Risk

Steps Vuln (Aj) (Aj) (Aj)

A1 ftp rhosts(0, 1) → rsh(0, 1) → rsh(1,2)

→ local bof(2)

4 3 0.2844 1.625 0.4499

A2 ftp rhosts(0, 1) → rsh(0, 1) → ftp rhosts

(1,2) → rsh(1,2) → local bof(2)

5 3 0.2527 1.75 0.4121

A3 sshd bof(0, 1) → ftp rhosts(1, 2) → rsh(1, 2)

→ local bof(2)

4 4 0.224 1.6785 0.4099

A4 sshd bof(0, 1) → rsh(1, 2) → local bof(2) 3 3 0.2800 1.5535 0.4528

A5 ftp rhosts(0, 2) → rsh(0, 2) → local bof(2) 3 3 0.3200 1.25 0.5600

M = 2.2847

root(2). The number of distinct exploits in each attack path is shown in column
3. Whereas, the column 4, 5, and 6 shows the cumulative probability, cumulative
resistance and the risk of each of the goal-oriented attack path, respectively.

The cumulative success probability of a goal-oriented attack path is obtained
by multiplying the success probabilities of all the exploits which belong to the
attack path provided exploit diversity taken into account. For instance, the
probability of occurrence of first attack path A1 is Aprob(A1) = 0.8 × 0.8 ×
0.8888 × 0.5 = 0.2844. Whereas, the resistance posed by the attack path A1 is
Arest(A1) = 0.25 + 0.25 + 0.125 + 1 = 1.625. Supposing attacker’s endurance
w = 0.5 and attacker’s effort reduction factor a = 0.5 (i.e. reduction in attackers
effort due to the repetition of already exploited vulnerabilities along the attack
path), we use Eq. 1 to compute the security risk of each of the goal-oriented
attack path in G. The risk of a whole network (i.e. M) is determined using the
Eq. 4. Table 2 shows the valid, goal-oriented attack paths and their respective
values for success probability, resistance, and risk.

For the original network setting N , security risk M equals to 2.2847 and is
measured by summing up the risks posed by all five goal-oriented attack paths.
As the network security risk M and the organizational security budget γ are not
zero, we can execute Phase II of our proposed system hardening algorithm.

The effective cost β for each initial condition and exploit that contributes
to the goal-oriented attack paths is calculated in the very first iteration. Next,
an initial condition or an exploit which has a minimum effective cost (β) and
removal cost lower than the original security budget γ is chosen for elimination.
To compute the effective cost β of an initial condition or exploit, the corre-
sponding removal cost α is divided by their contribution (Eq. 7). Table 3 shows
the contribution (con(x)) and effective cost (β) values of each exploits and ini-
tial conditions for each iteration. For the exploit(s) or initial condition(s) that
does not contribute to M, we did not compute their effective cost. As evident
from the Table 3, in the first iteration, an exploit ftp rhosts(0, 1) is selected for



Diversity-aware, Cost-effective Network Security Hardening 13

Table 3. Contribution and Effective cost (β) of each exploit (Ei) and initial condi-
tion (Ik).

Attack graph elements (x) Iteration 1 Iteration 2 Iteration 3

Con(x) β Con(x) β Con(x) β

ftp rhosts(0,1) 0.5371 13.03 0 - 0 -

rsh(0,1) 0.5371 37.23 0 - 0 -

ftp rhosts(1, 2) 0.4767 14.68 0.2240 31.25 0 -

rsh(1,2) 1.0411 19.21 0.5040 39.68 0 -

sshd bof(0, 1) 0.5040 23.81 0.5040 23.81 0 -

ftp rhosts(0,2) 0.3200 21.88 0.3200 21.88 0.3200 21.88

rsh(0,2) 0.3200 62.50 0.3200 62.50 0.3200 62.50

local bof(2) 1.3611 18.37 0.6000 41.67 0.3200 78.13

ftp(0,1) 0.5371 18.62 0 - 0 -

ftp(0,2) 0.3200 31.25 0.3200 31.25 0.3200 31.25

sshd(0,1) 0.5040 19.84 0.5040 19.84 0 -

ftp(1,2) 0.4767 20.98 0.2240 44.64 0 -

removal because its removal cost is not larger than the security budget γ and
it has the minimum effective cost β among all exploits and initial conditions.
As neither the residual risk M nor the remaining security budget γ is zero post
ftp rhosts(0, 1) removal, we go for the second iteration.

In the second iteration, an initial condition sshd(0, 1) is chosen for the
removal as it has minimum effective cost and disabling cost is smaller than
the remaining security budget. Upon completion of the second iteration, neither
M nor γ is zero; therefore, we go on with the Third iteration. In this iteration,
the exploit ftp rhosts(0, 2) is chosen for removal.

Therefore, with the total cost of 24 units, we can harden the network such
that there is no single path available to an adversary to compromise Host2.
However, if only initial conditions are considered while hardening the network
as in [18,25,26], the overall system hardening cost would be 30 units instead of
24. Disabling all the initial conditions provide an additional gain of completely
securing the network. In contrast, these approaches ([18,25,26]) of network secu-
rity hardening are not adaptive and do not let the security administrator control
the overall cost of network hardening in a flexible manner. Therefore, considering
both exploits and initial conditions for removal in our technique helps admin-
istrator to converge to the minimum cost requirement of an organization in a
budget-aware manner.

To conclude, similar to [12,13], our proposed network hardening solution
allows the balance between network security posture improvement and the result-
ing incurred cost to be adjusted by the security analyst in a cost and context-
aware manner. Therefore, our method of network hardening is complementary
to the existing attack graph-based network hardening solutions.



14 M.A. Jabbar et al.

6 Conclusion

In this paper, we have proposed a diversity-aware metric (M) to assess the
security risk of a given network and presented a cost-effective network hardening
solution. The proposed metric M determines the security posture of a given net-
work. The proposed network hardening solution facilitates cost-controlled net-
work immunization by taking into account both initial conditions and exploits for
removal. As opposed to existing solutions ([12,13]), we consider the attacker’s
effort reduction factor (due to the repetition of same vulnerability along the
attack path(s)) while protecting the critical resources. Further, like [13], our
network hardening solution considers the organization’s security budget con-
straints while securing the critical network resources. Such viable hardening
solution obtained under the given security budget constraint improves the secu-
rity posture of a network. As a part of future work, the complexity analysis of
the proposed algorithm needs to be investigated rigorously. Moreover, we pro-
pose to study the reduction in attacker’s work factor (vulnerability resistance)
because of the repetition of vulnerabilities along the attack paths. Such reduc-
tion in work factor (i.e. attackers effort) will be different for the different types
of vulnerabilities.

References

1. Jha, S., Sheyner, O., Wing, J.: Two formal analysis of attack graphs. In: Proceed-
ings of the 15th IEEE Workshop on Computer Security Foundations, CSFW 2002,
pp. 49–63. IEEE Computer Society, Washington (2002)

2. Sheyner, O., Haines, J., Jha, S., Lippmann, R., Wing, J.: Automated generation
and analysis of attack graphs. In: Proceedings of the IEEE Symposium on Security
and Privacy, pp. 273–284 (2002)

3. Ou, X., Boyer, W.F.: A scalable approach to attack graph generation. In: Pro-
ceedings of the 13th ACM Conference on Computer and Communications Security
(CCS), pp. 336–345. ACM Press (2006)

4. Jajodia, S., Noel, S.: Topological vulnerability analysis: a powerful new approach
for network attack prevention, detection, and response. In: Proceedings of Algo-
rithms, Architectures, and Information System Security, pp. 285–305. Indian Sta-
tistical Institute Platinum Jubilee Series (2009)

5. Ghosh, N., Ghosh, S.: A planner-based approach to generate and analyze minimal
attack graph. Appl. Intell. 36, 369–390 (2012)

6. Phillips, C., Swiler, L.P.: A graph-based system for network-vulnerability analysis.
In: Proceedings of the 1998 Workshop on New Security Paradigms, NSPW 1998,
pp. 71–79. ACM, New York (1998)

7. Ortalo, R., Deswarte, Y., Kaaniche, M.: Experimenting with quantitative evalua-
tion tools for monitoring operational security. IEEE Trans. Softw. Eng. 25, 633–650
(1999)

8. Li, W., Vaughn, R.: Cluster security research involving the modeling of network
exploitations using exploitation graphs. In: Proceedings of the 6th IEEE Inter-
national Symposium on Cluster Computing and the Grid, CCGRID 2006, vol. 2,
p. 26 (2006)



Diversity-aware, Cost-effective Network Security Hardening 15

9. Idika, N., Bhargava, B.: Extending attack graph-based security metrics and aggre-
gating their application. IEEE Trans. Dep. Secur. Comp. 9, 75–85 (2012)

10. Wang, L., Islam, T., Long, T., Singhal, A., Jajodia, S.: An attack graph-based
probabilistic security metric. In: Atluri, V. (ed.) DBSec 2008. LNCS, vol. 5094, pp.
283–296. Springer, Heidelberg (2008). doi:10.1007/978-3-540-70567-3 22

11. Wang, L., Singhal, A., Jajodia, S.: Measuring the overall security of network
configurations using attack graphs. In: Barker, S., Ahn, G.-J. (eds.) DBSec
2007. LNCS, vol. 4602, pp. 98–112. Springer, Heidelberg (2007). doi:10.1007/
978-3-540-73538-0 9

12. Chen, F., Liu, D., Zhang, Y., Su, J.: A scalable approach to analyzing network
security using compact attack graphs. J. Netw. 5 (2010)

13. Yigit, B., Gür, G., Alagüz, F.: Cost-aware network hardening with limited budget
using compact attack graphs. In: Proceedings of the IEEE Military Communica-
tions Conference, pp. 152–157 (2014)

14. Suh-Lee, C., Jo, J.: Quantifying security risk by measuring network risk condi-
tions. In: 2015 Proceedings of the 14th International Conference on Computer and
Information Science (ICIS), pp. 9–14. IEEE/ACIS (2015)

15. Mell, P., Scarfone, K., Romanosky, S.: Common vulnerability scoring system. IEEE
Secur. Priv. 4, 85–89 (2006)

16. FIRST: Common vulnerability scoring system v3.0: Spec. Doc., June 2015
17. MITRE: Common weakness scoring system (2016). https://cwe.mitre.org/cwss/
18. Wang, L., Noel, S., Jajodia, S.: Minimum-cost network hardening using attack

graphs. Comput. Commun. 29, 3812–3824 (2006)
19. Keramati, M., Asgharian, H., Akbari, A.: Cost-aware network immunization frame-

work for intrusion prevention. In: Proceedings of the IEEE International Confer-
ence on Computer Applications and Industrial Electronics (ICCAIE), pp. 639–644
(2011)

20. Ghosh, N., Ghosh, S.: An approach for security assessment of network configu-
rations using attack graph. In: Proceedings of the International Conference on
Networks & amp; Communications, pp. 283–288 (2009)

21. Wang, L., Jajodia, S., Singhal, A., Noel, S.: k -zero day safety: measuring the
security risk of networks against unknown attacks. In: Gritzalis, D., Preneel, B.,
Theoharidou, M. (eds.) ESORICS 2010. LNCS, vol. 6345, pp. 573–587. Springer,
Heidelberg (2010). doi:10.1007/978-3-642-15497-3 35

22. Wang, L., Jajodia, S., Singhal, A., Cheng, P., Noel, S.: k-zero day safety: a network
security metric for measuring the risk of unknown vulnerabilities. IEEE Trans.
Dependable Secure Comput. 11, 30–44 (2014)

23. Albanese, M., Jajodia, S., Noel, S.: Time-efficient and cost-effective network hard-
ening using attack graphs. In: IEEE/IFIP International Conference on Dependable
Systems and Networks (DSN 2012), pp. 1–12 (2012)

24. Wang, L., Singhal, A., Jajodia, S.: Toward measuring network security using attack
graphs. In: Proceedings of the 2007 ACM Workshop on Quality of Protection. QoP
2007, pp. 49–54. ACM, New York (2007)

25. Man, D., Wu, Y., Yang, Y.: A method based on global attack graph for network
hardening. In: Proceedings of the 4th International Conference on Wireless Com-
munications, Networking and Mobile Computing, pp. 1–4 (2008)

26. Islam, T., Wang, L.: A heuristic approach to minimum-cost network hardening
using attack graph. In: Proceedings of the New Technologies, Mobility and Security,
pp. 1–5 (2008)

http://dx.doi.org/10.1007/978-3-540-70567-3_22
http://dx.doi.org/10.1007/978-3-540-73538-0_9
http://dx.doi.org/10.1007/978-3-540-73538-0_9
https://cwe.mitre.org/cwss/
http://dx.doi.org/10.1007/978-3-642-15497-3_35


Fast Verification of Digital Signatures in IoT

Apurva S. Kittur(B), Ashu Jain, and Alwyn Roshan Pais

Information Security and Research Lab, Department of Computer Science
and Engineering, National Institute of Technology Karnataka,

Surathkal, Karnataka, India
apurva.kittur@gmail.com, ashurr99@gmail.com, alwyn.pais@gmail.com

Abstract. Internet of Things (IoT) is the recent advancement in Wire-
less technology where multiple embedded devices are connected through
internet for exchange of information. Since the information exchanged is
private and at times confidential, state of the art focusses at providing
proper security to the system. To avoid illegal users from getting access to
information system, authentication through Digital Signatures becomes
integral part of IoT. Verifying individual signatures is a time consuming
process, hence it is not advisable in IoT systems. Using Batch verification
of Digital signatures, reduction in verification time is achievable. Hence
in this paper, we have studied different RSA based batch verification
techniques and their analysis is provided. Batch verification of digital
signatures in IoT devices is a promising area for further research.

1 Introduction

Internet of Things (IoT) was coined in 1999 by Kevin Ashton. ‘Internet’ refers
to the interconnectivity of devices to create a network, and ‘Things’ refers to
the objects or devices that have the capability to connect to the Internet. The
Internet of Things (IoT) can be defined in many ways [2,10,15,31]. One way of
defining can be, ‘it is a network of sensors and smart devices which sense the data
which is further processed and analysed in a ubiquitous network.’ IoT has seen
rapid development in recent years because of its ‘smartness’. The various appli-
cations of IoT include Smart City [5,17], Smart Home [6,16], and Smart Health
[1] etc. These applications have millions of devices generating large volumes of
data.

As we know the sensors are used for monitoring various physical conditions
like temperature, sound, pressure etc. The network of these several distributed
sensing objects are collectively referred as Wireless Sensor Network (WSN).
These WSN nodes are deployed largely in various applications because of their
low cost and low power consumption. WSN edge nodes act as gateways or bridge
between sensors and internet protocol as depicted in Fig. 1. These gateway nodes
collect data from the sensor nodes, and normalize the information received for
further processing and storage and they are also responsible for providing secu-
rity. These nodes initially authenticate the sensor node before the exchange of
data. These set of edge nodes together have more energy and computation power
c© Springer Nature Singapore Pte Ltd. 2017
S.M. Thampi et al. (Eds.): SSCC 2017, CCIS 746, pp. 16–27, 2017.
https://doi.org/10.1007/978-981-10-6898-0_2



Fast Verification of Digital Signatures in IoT 17

for processing than individual sensor nodes. Hence they play the role of firewall
by providing the security to sensor nodes as well as to the internet protocol.

Internet/Cloud

Gateway nodes
Sensor nodes

Fig. 1. Basic structure of IoT

1.1 Security in IoT

Security is the major concern in IoT since millions of devices sense and com-
municate large volumes of private and sensitive data. There are a number of
fundamental security capabilities that a IoT system should posses, since the
sensor nodes are more vulnerable to threats. Therefore IoT security standard
must address the challenges of scalability, privacy and authentication etc. IoT is
a combination of various networks, where various sensor nodes generate hetero-
geneous sets of data. Therefore building a standard secure and reliable system
for IoT is still a challenge.

Most of the threats are categorised into three major categories:

– Capture: The attacker captures or gets access to the system or information.
In the threats like eavesdropping, the attacker tries to obtain control over the
system and the private data.

– Disrupt: This attack refers to destroying, denying or disturbing the system
from proper functioning. Replay attack is one of the examples under this
threat.

– Manipulate: This attack refers at manipulating critical data, identity etc.
Man-in-the-middle attack is an example for the same.

There are various ways to overcome these threats by implementing security pro-
tocols such as TLS, SSL, and by providing digital certificate standard and Cer-
tificate Authorities (CA), which are based on Public Key Infrastructure (PKI).
Before processing any data, the authenticity of the sender has to be verified by



18 A.S. Kittur et al.

verifying the Digital Signature of the sender. There are many standard Digi-
tal signature algorithms introduced such as RSA Digital Signature, DSA, and
ECDSA etc. which satisfy the CIA (Confidentiality, Integrity, Authentication)
triad properties.

1.2 Batch Verification in IoT

Authenticating every data being exchanged in IoT is a challenge. Individual veri-
fication of Digital signatures reduces the performance of the real time IoT system.
If the signatures are verified in batches then the verification time can be signif-
icantly reduced. Batch verification has two main advantages: one is decreased
computation load and the other is reduced computation time at verification side.
Hence our study focusses on efficient deployment of Batch verification techniques
in IoT system. We also provide results for performance gain over existing system.

As per our understanding, there are has been no study on implementing batch
verification in IoT. Since IoT nodes have low computation power and memory,
batch verification leads to significant increase in performance.

The organisation of the paper is as follows: Sect. 2 throws light on the related
research carried out on the topic. In Sect. 3, Harn proposed thewe provide the
standard definitions and in Sects. 4 and 5, we discuss our proposed idea and the
results supporting our claim respectively. Section 6 discusses the security analysis
of the proposed scheme and we conclude the paper with Sect. 6 and also provide
the future scope, followed by references.

2 Related Work

There has been lot of research on the security of IoT in recent times [25,28–30].
Many researchers have been in to standardizing the security protocols for IoT,
but due to its diversity in varied applications, it is difficult to standardize the
security architecture. Various lightweight authentication schemes are provided to
reduce computation load and computation time [13,14,20,21] on the IoT devices.

There are many Digital Signatures schemes [7,19,22,26] proposed for check-
ing the Authenticity, Integrity and Non-repudiation properties. There has been
research on improving the signature verification time through Batch verification
[8]. And many Batch verification techniques for RSA Digital signatures [3,12],
DSA signatures [11,24], ECDSA signatures [27] etc. are proposed. As per our
knowledge there is no standard, efficient batch signature verification technique
introduced for IoT as of now.

3 Definitions

In this section we provide formal definitions of various notions.

Definition 1. A Digital Signature Scheme is actually a systematic study of
three probabilistic algorithms (Gen, Sign, Vrfy) [18]:



Fast Verification of Digital Signatures in IoT 19

– Gen is the Key Generation algorithm, which takes security parameter 1n as
input and generates the (pk, sk) as output, where pk is public key and sk is
private key. We assume that pk and sk each have length at least n, and that
n can be determined from pk and sk.

– Sign is the Signing algorithm that takes the private key sk and the message m
as inputs and outputs signature s, which can be written as s ← Signsk(m).

– Vrfy is the Verification algorithm, which takes the public key pk, message
m and the signature s as inputs and outputs b whose value is either ‘1’, if
the signature is valid and ‘0’, if the signature is invalid. It can be shown as
b ← V rfypk(m, s).

It is required that except with negligible probability over (pk, sk) output by
Gen(1n), it holds that V rfypk(m,Signsk(m)) = 1 for every (legal) message
m. Signature s is considered valid if V rfypk(m, s) = 1

Definition 2. Batch Verification Algorithm: Suppose (Gen, Sign, Vrfy) is
a Digital Signature Scheme with l as the security parameter, k, n ∈ poly(l),
PK = pk1, . . . , pkk and (pk1, sk1), . . . , (pkk, skk) are generated by Gen(1l), the
Batch Verification Algorithm [4] should hold the following conditions:

– If pki ∈ PK and V rfypki
(mi, si) = 1 for i ∈ [1, n] then

Batch((pk1,m1, s1), . . . , (pkn,mn, sn)) = 1
– If pki ∈ PK for all i ∈ [1, n] and V rfypki

(mi, si) = 0 for some i ∈ [1, n], then
Batch((pk1,m1, s1), . . . , (pkn,mn, sn)) = 0 except with negligible probability
in l, over the randomness of Batch.

4 Proposed Method

As IoT devices have huge information exchange, providing end-to-end authenti-
cation between the sensor nodes is very critical. In our work, we have reduced
the verification time required for authentication of these millions of nodes in
IoT. As we know, batch verification of signatures reduces the total verification
time, but in order to further reduce the verification time, we have applied paral-
lelism along with batch verification. As explained earlier, the edge nodes in IoT
can distribute the verification and processing load among themselves as in the
cluster considered for our study.

Parallel processing has the advantage of reduced computation time and cost.
Therefore in our study, we are implementing parallel processing for three batch
Verification Algorithms, A1 [12], A2 [23] and A3 [3] signed with RSA digital
signature scheme. We use MPI (Message Passing Interface) [9] in order to dis-
tribute the load among the different processors in the workstation cluster. MPI
provides the specifications for the library for efficient message passing in par-
allel. MPI specifications provide advantages such as portability, efficiency and
flexibility across various platforms.



20 A.S. Kittur et al.

4.1 Algorithms Considered for Study

For our experimentation, we consider multiple signatures signed by RSA digital
signature scheme. There are many techniques proposed for verification of RSA
signatures in batches. We have considered three algorithms which were proposed
initially which verify the given batch of RSA signatures for the presence of invalid
signature. If there is occurrence of invalid signature, then all the signatures in
the batch are verified individually to identify the location of that signature. The
three algorithms considered for our study are:

Algorithm A1: L. Harn proposed the first scheme for batch verification of RSA
Digital Signatures. The message to be sent is first hashed, then signed and the
signature generated is appended with the message and sent to the verifier. The
equation proposed for signature verification at the verifier is,

(
t∏

i=1

si)e =
t∏

i=1

h(mi)modn (1)

From the above equation it is clear that, after the receiving the signatures si,
at the LHS side, all the si values are multiplied, and are exponented with the
public key e. Then on the RHS side, hash values h (mi) for each message are
generated and re multiplied if both the values of LHS and RHS match, all the
signatures are valid or else there are one/more invalid signatures existing in the
given batch.

Algorithm A2: This algorithm proposed by Hwang et al. is the modification
to Algorithm A1, and improves the security over algorithm A1. The proposed
equation to batch verify the signatures is,

(
t∏

i=1

svi
i )e =

t∏

i=1

h(mi)vimodn (2)

where vi is a small random number generated at the verifier, which is used as
an exponent for verification. And all these signatures are then multiplied and
verified. Similar to the first algorithm, if both the values of LHS and RHS match,
all the signatures are valid or else there are one/more invalid signatures existing
in the given batch.

Algorithm A3: This algorithm is proposed by Bao [3] which makes sure that
the signature can be generated only with the valid private key. The verifier makes
this slight modification to the Hwang’s scheme [23],

(
t∏

i=1

svi
i )2e =

t∏

i=1

h(mi)2vimodn, (3)

where vi are random numbers generated by the verifier.
As we know there are three main phases in Digital Signature Algorithms: Key

Generation, Signature Generation and Signature Verification. In our scheme, we



Fast Verification of Digital Signatures in IoT 21

are introducing parallelism in Signature verification phase. The signatures are
generated for various messages either signed by single device or multiple signers.
The batch verification algorithm can be used to verify the signatures signed
using the following three Types:

– Type 1: Single signer uses his private key (sk) to generate signatures for
multiple messages (m1,m2, . . . ,mt). The signatures are verified in a batch of
t signatures (s1, s2, . . . , st) at once.

– Type 2: Multiple signers use their private keys to sign multiple messages
(m1,m2, . . . ,mt). Signatures (s1, s2, . . . , st) are verified using the batch ver-
ification algorithm where in the signatures correspond to n different signers
(2 ≤ n ≤ t).

– Type 3: The signatures which can not be categorized in Type 1 and 2 can
be categorized in this Type.

4.2 Hardware Specifications

Our study focuses on Type 1 signatures, since we are considering RSA batch
verification techniques efficient for Type 1 signatures. Our analysis yields around
80–85% efficiency with inclusion of 7 workstations working in parallel.

The system considered for experimentation is a Rock cluster 6.0 system. The
system has 7 workstations. Each workstation has 2 sockets, and each socket has
10 cores. And each core runs with 2.3 GHz processor. Among these seven work-
stations, one acts as the master which distributes the load among remaining six
slaves using MPI library standard. The computation results of all the worksta-
tions running in parallel are aggregated and the final results are displayed by
the master. This results in significant reduction in verification time of multiple
signatures.

4.3 Workflow

Our aim of the work is to reduce the computation load on single node during
signature verification, since IoT sensor nodes have limited capacity. The verifi-
cation load is distributed among the available nodes through parallel processing
which reduces the computation time and load.

In the proposed system for batch verification, server node will perform the
task of scheduling the batch verification jobs amongst the available gateway
nodes and will generate the final results. To emulate this scenario, we have
designed and implemented a 7 node cluster system for the batch verification of
digital signatures. It may be noted that each cluster node has large capacity
and computation power in comparison to a gateway node. Gateway nodes have
either dual or quad core 500 MHz–1 GHz processors. Therefore each processor of
our cluster system is equivalent to two Gateway nodes.

In Fig. 2, we can observe that the Master distributes load to other worksta-
tions, and the communication happens through MPI. Each workstation gets a
set of signatures which have to be verified through batch verification. The public



22 A.S. Kittur et al.

Batch
of Sig-
natures

Load
Distri-
bution

node
1

node
2

node
3

node
n

Data
aggre-
gation

Display
result

Fig. 2. Workflow of processing

master

slave
1

slave
2

slave
n

Sensor nodes
Gateway nodes

Fig. 3. Signature verification in IoT

key information is shared by the all the workstations. If there is occurrence of
an invalid signature/s, the batch verification algorithm at the respective work-
station fails. This provides an advantage over serial processing where occurrence
of invalid signature involves individual verification of entire batch to identify the
faulty signature. In case of parallel verification, the batch size is reduced, there-
fore number of individual verifications to identify faulty signature/s is reduced.

Figure 3 depicts the scenario of load distribution in IoT. When the gateway
node receives batch of digital signatures from sensors/IoT devices, it first identi-
fies other gateway nodes which are available: the ones which have enough power
for computation, and the ones which are not very busy in other computations.
After figuring the available nodes, it distributes batch of signatures to them.
Therefore these available nodes act as slave and the distributing node acts as
the master node.



Fast Verification of Digital Signatures in IoT 23

Gateway nodes have more computing power then the sensors or IoT devices,
every Gateway node can almost process data from around 2000 sensors. There-
fore to handle more load i.e., to process more data from sensors, higher processing
power is needed.

5 Results

We have implemented three Batch verification algorithms and analysed their
results. We provide the results for batch sizes of 24, 28, 212, 216, 220, running in
parallel on a cluster consisting of seven nodes. Each node consists of two CPUs
with 20 cores. Therefore our system with seven nodes is cluster of 140 cores. We
also provide the verification time when the same batch of signatures are verified
without parallel processing with MPI.

Case 1: For algorithm A1, the details of time required are given in the Table 1.

Table 1. Verification Time(sec) for Algorithm A1

Batch size Individual verification No. of cluster nodes

1 2 3 4 5 6 7

24 0.03 0.0029 0.0029 0.0029 0.0029 0.0029 0.0029 0.0029

28 0.28 0.174 0.1296 0.113 0.09 0.079 0.069 0.069

212 3.83 0.3158 0.1698 0.1109 0.0854 0.0632 0.0605 0.0565

216 60.21 3.682 2.061 1.3981 1.1204 0.8744 0.7214 0.6354

220 970.22 61.6181 31.1445 20.7126 16.2244 13.2463 10.8428 7.0895

The verification time obtained for Algorithm A1 are shown in Table 1. The
Table clearly indicates, as the number of workstations increases, the verification
time required for the batch of signatures subsequently reduces. It can also be
seen that as the batch size of signatures increases, the verification time also
increases accordingly. We can also observe the perform gain. The verification
time for batch size 24 remains almost same for all seven machines is because the
amount of time needed for verification of such small batch size very less.

Case 2: For Algorithm A2, the details of time required are given in the Table 2.

Table 2. Verification Time(sec) for Algorithm A2

Batch Size Individual Verification No. of Cluster nodes

1 2 3 4 5 6 7

24 0.003 0.0057 0.0057 0.0057 0.0057 0.0057 0.0057 0.0057

28 0.03 0.2369 0.136 0.11 0.101 0.075 0.07 0.07

212 4.07 0.336 0.1773 0.1162 0.0852 0.0717 0.0709 0.0605

216 64.60 3.9138 2.2428 1.5071 1.2114 0.9363 0.8036 0.7213

220 1029.17 62.4667 33.0693 21.5816 17.0072 13.6976 11.5284 9.3254



24 A.S. Kittur et al.

Table 2 shows the results obtained for Algorithm A2, for the same input
given. For 7 machines, the performance gained is almost 6 - 6.5 times. There is
very little difference in the increased time for verification for this algorithm since
the number of modular exponentiations increases, but the difference is negligible
when compared to the security provided.

Case 3: For algorithm A3, the details of time required are given in the Table 3.

Table 3. Verification Time(sec) for Algorithm A3

Batch Size Individual Verification No. of Cluster nodes

1 2 3 4 5 6 7

24 0.03 0.0075 0.0075 0.0075 0.0075 0.0075 0.0075 0.0075

28 0.27 0.0276 0.0147 0.0114 0.011 0.00914 0.00815 0.00815

212 4.05 0.3538 0.1803 0.1265 0.1051 0.0722 0.07147 0.06474

216 64.48 3.9312 2.2514 1.6943 1.3436 0.9506 0.9006 0.8036

220 1025.07 62.5376 34.7386 23.0379 17.1628 13.956 12.1236 10.6987

Table 3 for Algorithm A3 has similar results to show. There is no much differ-
ence in the number of exponentiation operations when compared to Algorithm
A2, but Algorithm A3 is more secure.

6 Security Analysis

Since our study focuses on three Batch verification techniques for RSA digital
signatures, in this section we analyse the security aspects of the three techniques
and compare them. The algorithm A1 by L. Harn is prone to adaptive chosen
message attack. This can be explained as follows, If an attacker wants to send a
set of messages m1,m2, . . . ,mt, he first generates fake signatures for the messages
s′
1, s

′
2, . . . s

′
t such that si’= si ∗ ai mod q where i = 1, 2, . . . , t and

∏t
i=1 ai = 1

and sends across. Therefore at the verification, these set of signatures get verified
successfully and the verifier fails to detect the fake signatures.

In other attack, the sender generates signatures s′
1 = h(m3)d, s′

2 =
h(m1)d, s′

3 = h(m2)d etc., which when verified in batch gets successfully ver-
ified. But in case of both the attacks, the invalid signatures are identified if
verified individually.

To improve the security of algorithm A1, algorithm A2 was introduced. This
technique was introduced to overcome the security flaws from the previous tech-
nique. But this technique too is vulnerable to attacks. The chances of verifying
an invalid signature as valid is 50%. A dishonest signer chooses a w such that
w2 = 1 mod n and generates the invalid signatures si’= si ∗w mod n. The prob-
ability of choosing an even random number is 50%. Therefore the probability of
accepting an invalid signature as valid is 50%.

This technique increases the number of modular exponentiation operations
for batch verification at the verifier. Therefore the extra security comes at a



Fast Verification of Digital Signatures in IoT 25

small computation cost. Therefore for a small increase of 2% computation time,
we achieve extra security.

Algorithm A3 was introduced to further reduce the possibility of attacks
on algorithm A2. This algorithm takes care of the attack shown in previous
algorithm, but introduces a constant which slightly increases the computation
time compared to the previous algorithm. Since it introduces a constant integer
in the exponentiation, there is no significant increase in computation time.

7 Conclusion and Future Scope

As we know that IoT has millions of sensor devices sending information across
the network, there is a need to provide security and authentication to prevent
the integrity and the privacy of information. Therefore our idea of accelerating
the Batch verification techniques, significantly reduces the time needed to verify
millions of signatures, which is a significant advantage to the Digital world. This
aids for ‘smart’ projects such for smart city, smart healthcare etc.

For our experimental results, we have considered the batch verification tech-
niques introduced for RSA Digital Signature Scheme since it is the first scheme
introduced for batch verification strategy and easy to interpret. We extend our
experimental results for various batch verification techniques introduced for DSA
and ECDSA. And we are looking forward to implement and study batch verifi-
cation strategy for Type 2 signatures for verification.

References

1. Amendola, S., Lodato, R., Manzari, S., Occhiuzzi, C., Marrocco, G.: RFID tech-
nology for IoT-based personal healthcare in smart spaces. IEEE Internet Things
J. 1(2), 144–152 (2014)

2. Atzori, L., Iera, A., Morabito, G.: The internet of things: a survey. Comput. Netw.
54(15), 2787–2805 (2010)

3. Bao, F., Lee, C.-C., Hwang, M.-S.: Cryptanalysis and improvement on batch ver-
ifying multiple rsa digital signatures. Appl. Math. Comput. 172(2), 1195–1200
(2006)

4. Bellare, M., Garay, J.A., Rabin, T.: Fast batch verification for modular exponen-
tiation and digital signatures. In: Nyberg, K. (ed.) EUROCRYPT 1998. LNCS,
vol. 1403, pp. 236–250. Springer, Heidelberg (1998). https://doi.org/10.1007/
BFb0054130

5. Cocchia, A.: Smart and digital city: a systematic literature review. In: Dameri,
R.P., Rosenthal-Sabroux, C. (eds.) Smart City. PI, pp. 13–43. Springer, Cham
(2014). https://doi.org/10.1007/978-3-319-06160-3 2

6. Du, K.-K., Wang, Z.-L., Hong, M.: Human machine interactive system on smart
home of IoT. J. China Univ. Posts Telecommun. 20, 96–99 (2013)

7. Even, S., Goldreich, O., Micali, S.: On-line/off-line digital signatures. J. Cryptol.
9(1), 35–67 (1996)

8. Fiat, A.: Batch RSA. In: Brassard, G. (ed.) CRYPTO 1989. LNCS, vol. 435, pp.
175–185. Springer, New York (1990). https://doi.org/10.1007/0-387-34805-0 17

https://doi.org/10.1007/BFb0054130
https://doi.org/10.1007/BFb0054130
https://doi.org/10.1007/978-3-319-06160-3_2
https://doi.org/10.1007/0-387-34805-0_17


26 A.S. Kittur et al.

9. Gropp, W., Lusk, E., Doss, N., Skjellum, A.: A high-performance, portable imple-
mentation of the MPI message passing interface standard. Parallel Comput. 22(6),
789–828 (1996)

10. Gubbi, J., Buyya, R., Marusic, S., Palaniswami, M.: Internet of things (IoT): a
vision, architectural elements, and future directions. Future Gener. Comput. Syst.
29(7), 1645–1660 (2013)

11. Harn, L.: Batch verifying multiple DSA-type digital signatures. Electron. Lett.
34(9), 870–871 (1998)

12. Harn, L.: Batch verifying multiple RSA digital signatures. Electron. Lett. 34(12),
1219–1220 (1998)

13. Hernandez-Ramos, J.L., Pawlowski, M.P., Jara, A.J., Skarmeta, A.F., Ladid,
L.: Toward a lightweight authentication and authorization framework for smart
objects. IEEE J. Sel. Areas Commun. 33(4), 690–702 (2015)

14. Jan, M.A., Nanda, P., He, X., Tan, Z., Liu, R.P.: A robust authentication scheme
for observing resources in the internet of things environment. In: 2014 IEEE 13th
International Conference on Trust, Security and Privacy in Computing and Com-
munications (TrustCom), pp. 205–211. IEEE (2014)

15. Jia, X., Feng, Q., Fan, T., Lei, Q.: Rfid technology and its applications in internet
of things (IoT). In: 2012 2nd International Conference on Consumer Electronics,
Communications and Networks (CECNet), pp. 1282–1285. IEEE (2012)

16. Jie, Y., Pei, J.Y., Jun, L., Yun, G., Wei, X.: Smart home system based on IoT
technologies. In: 2013 Fifth International Conference on Computational and Infor-
mation Sciences (ICCIS), pp. 1789–1791. IEEE (2013)

17. Jin, J., Gubbi, J., Marusic, S., Palaniswami, M.: An information framework for
creating a smart city through internet of things. IEEE Internet Things J. 1(2),
112–121 (2014)

18. Katz, J., Lindell, Y.: Introduction to Modern Cryptography. CRC Press, Boca
Raton (2014)

19. Lamport, L.: Constructing digital signatures from a one-way function. Technical
report CSL-98, SRI International Palo Alto (1979)

20. Lee, J.-Y., Lin, W.-C., Huang, Y.-H.: A lightweight authentication protocol for
internet of things. In: 2014 International Symposium on Next-Generation Elec-
tronics (ISNE), pp. 1–2. IEEE (2014)

21. Liu, J., Xiao, Y., Chen, C.P.: Authentication and access control in the internet of
things. In: 2012 32nd International Conference on Distributed Computing Systems
Workshops (ICDCSW), pp. 588–592. IEEE (2012)

22. Merkle, R.C.: Method of providing digital signatures, US Patent 4,309,569, 5
January 1982

23. Min-Shiang, H., Cheng-Chi, L., Yuan-Liang, T.: Two simple batch verifying mul-
tiple digital signatures. In: Qing, S., Okamoto, T., Zhou, J. (eds.) ICICS 2001.
LNCS, vol. 2229, pp. 233–237. Springer, Heidelberg (2001). https://doi.org/10.
1007/3-540-45600-7 26

24. Naccache, D., M’Räıhi, D., Vaudenay, S., Raphaeli, D.: Can D.S.A. be improved?
— Complexity trade-offs with the digital signature standard —. In: De Santis, A.
(ed.) EUROCRYPT 1994. LNCS, vol. 950, pp. 77–85. Springer, Heidelberg (1995).
https://doi.org/10.1007/BFb0053426

25. Riahi, A., Challal, Y., Natalizio, E., Chtourou, Z., Bouabdallah, A.: A systemic
approach for IoT security. In: 2013 IEEE International Conference on Distributed
Computing in Sensor Systems (DCOSS), pp. 351–355. IEEE (2013)

26. Rivest, R.L., Shamir, A., Adleman, L.: A method for obtaining digital signatures
and public-key cryptosystems. Commun. ACM 21(2), 120–126 (1978)

https://doi.org/10.1007/3-540-45600-7_26
https://doi.org/10.1007/3-540-45600-7_26
https://doi.org/10.1007/BFb0053426


Fast Verification of Digital Signatures in IoT 27

27. Shao, Z.: Batch verifying multiple DSA-type digital signatures. Comput. Netw.
37(3), 383–389 (2001)

28. Xu, T., Wendt, J.B., Potkonjak, M.: Security of IoT systems: design challenges and
opportunities. In: Proceedings of the 2014 IEEE/ACM International Conference
on Computer-Aided Design, pp. 417–423. IEEE Press (2014)

29. Zhang, Z.K., Cho, M.C.Y., Wang, C.W., Hsu, C.W., Chen, C.K., Shieh, S.: Iot
security: ongoing challenges and research opportunities. In: 2014 IEEE 7th Inter-
national Conference on Service-Oriented Computing and Applications (SOCA),
pp. 230–234. IEEE (2014)

30. Zhao, K., Ge, L.: A survey on the internet of things security. In: 2013 9th Interna-
tional Conference on Computational Intelligence and Security (CIS), pp. 663–667.
IEEE (2013)

31. Zhu, Q., Wang, R., Chen, Q., Liu, Y., Qin, W.: IoT gateway: Bridgingwireless sen-
sor networks into internet of things. In: 2010 IEEE/IFIP 8th International Confer-
ence on Embedded and Ubiquitous Computing (EUC), pp. 347–352. IEEE (2010)



Efficient and Provably Secure Pairing Free
ID-Based Directed Signature Scheme

N.B. Gayathri(&), R.R.V. Krishna Rao, and P. Vasudeva Reddy

Department of Engineering Mathematics, Andhra University,
Visakhapatnam, AP, India

gayatricrypto@gmail.com, rrvkrisharao@gmail.com,

vasucrypto@yahoo.com

Abstract. Nowadays electronic communication is ubiquitous, irreplaceable;
Digital signature plays an essential role in these secure communications. Digital
signatures have expanded rapidly along with mathematical advances in lattices,
pairings and elliptic curves. Due to their high efficiency and strong security
properties, the elliptic curve cryptographic schemes remain the best option for
many security goals. Pairing free signature schemes on elliptic curves is an
emerging area of interest for efficient community. To deal with specific appli-
cation scenarios, digital signature schemes have evolved into many variants.
One of such variant is Directed signature scheme. A directed signature is a kind
of signature where the verification ability is controlled by the signer. Here the
validity of the signature can be verified by a designated verifier only and nobody
knows anything about the verifier. Directed signature schemes are suitable for
applications where message is sensitive to recipient; for example bill of tax and
health. In this paper we propose an efficient and secure pairing free Identity
(ID) based directed signature (IDBDS) scheme over elliptic curves. To the best
of our knowledge, this is the first scheme in ID based setting addressing about
directedness in pairing free environment. We prove its security using random
oracle model under the assumption that the Elliptic Curve Discrete Logarithm
Problem (ECDLP) is hard. We compare our scheme with well known existing
schemes and efficiency analysis shows that our scheme is more efficient than all
other related schemes.

Keywords: Public Key Cryptography � Identity based signature � Directed
signatures � Random oracle security model � ECDL problem

1 Introduction

Public Key Cryptography (PKC) is a very attractive and exciting technology,
embedding in both encryption and digital signatures. The concept of PKC was pro-
posed by Diffe and Hellman [1] in 1976, in which authentication of a public key can be
achieved through the digital certificate issued by Certificate Authority (CA). But
generation, management, delivering, revocation, storage etc. of certificates need to bear
high computing cost and brings lot of certificate management problems in practice. To
defeat the difficulties in traditional PKC, Shamir [11] introduced the concept called
Identity based Public Key Cryptosystem. This approach apparently reduces the

© Springer Nature Singapore Pte Ltd. 2017
S.M. Thampi et al. (Eds.): SSCC 2017, CCIS 746, pp. 28–38, 2017.
https://doi.org/10.1007/978-981-10-6898-0_3



complexity and eliminates the need of digital certificate by creating public key from its
public identity. A reliable third party called Key Generation Centre (KGC) generates
the private key using entity’s public key.

In an ordinary signature scheme, the validity of a signature on a message can be
verified by any one. However, this public verifiability of a signature is not desirable in
some applications where the signed message is sensitive to the signature receiver. To
deal with specific application scenarios such as signatures on medical records, tax
information and in personal/business transactions, one may go for directed signatures.
In a directed signature scheme, the validity of a signature can be verified only by the
designated verifier (receiver). If difference of opinion occurs between the signer and
designated verifier then they both can prove the correctness of a signature to a third
party.

1.1 Related Work

The Directed signature concept was first introduced by Lim and Lee in [7]. Later
Sundarlal et al. [6] proposed a directed signature scheme on PKI setting. A universally
convertible directed signature scheme was presented by Laguillaumie et al. [5] in 2005.
In 2006, Lu and Cao [8] presented a directed signature scheme based on integer
factorization problem and in 2007 Ismail et al. [3] presented a novel scheme based on
discrete logarithm problem (DLP). In 2009, Wei et al. [15] proposed a directed sig-
nature scheme based on DLP and applied it to group key initial distribution for con-
fidential group communication. In 2013, Ramlee et al. [10] presented a new directed
signature scheme based on hybrid problems: Integer Factorization and Discrete Log-
arithm problem and discussed about its security. All these schemes are on PKI based
setting.

In 2005, Wang [14] proposed the first ID-based directed signature scheme. But this
scheme does not hold public verification and have no security proof. The first efficient
ID-based directed signature scheme from bilinear pairings was presented by Xun Sun
et al. [12] in the random oracle model. In 2009, Jianhong Zhang et al. [16] proposed an
ID-based directed signature scheme without random oracles. In the same year, Rao
et al. [13] proposed an efficient ID based directed signature using bilinear pairings. In
2012, Ku et al. [4] proposed an efficient ID-based directed signature scheme on hyper
elliptic curves.

1.2 Motivation

The above mentioned ID-based directed signature schemes are designed using bilinear
pairings over elliptic curves and this pairing operation is 20 times more than that of the
scalar multiplication over elliptic curve group. So most of the schemes are less efficient
and are not applicable efficiently in practice. Also, Elliptic Curve Cryptography
(ECC) provides high security with smaller key sizes. Hence, time management, storage
space and consumption of bandwidth become very less with these small keys.
According to National Institute of Standards and Technology (NIST), to achieve high
security level, such as 256 bit AES (symmetric algorithm), RSA needs 15360 bit key
size where as ECC needs only 521 bit. Similarly for 80 bit AES (symmetric algorithm),

Efficient and Provably Secure Pairing 29



RSA needs 1024 bit key size where as ECC needs only 160 bit for applications. Hence,
schemes with general hash function under Elliptic Curve Cryptography (ECC) in
pairing free environment would be more desirable to achieve high efficiency with the
same security. This motivated us to design a pairing free directed signature scheme in
identity based frame work.

1.3 Our Contribution

In this paper, we consider designing a directed signature scheme in the Identity based
setting to meet the following requirements.

(i) Designated verifiability: Only designated verifier can check the validity of a
signature.

(ii) Computational efficiency: Scheme is designed in pairing free environment to
improve the computational efficiency.

(iii) Provable Security: Security is proved in the random oracle model under the
hardness of Elliptic Curve Discrete Logarithm Problem (ECDLP)

1.4 Paper Organization

The remaining part of this paper is organized as follows. In Sect. 2 we reviewed some
preliminaries. IDBDS scheme along with security analysis is described in Sect. 3. In
Sect. 4 we presented the efficiency analysis of our IDBDS scheme. Finally, Sect. 5
concludes the paper.

2 Preliminaries

In this section we briefly describe the fundamental concepts that are required in the
proposed scheme.

2.1 Elliptic Curve Group

The elliptic curve E over a prime field FP is given by the set of solutions of y2 mod p ¼
ðx3 þ axþ bÞmod p; a; b 2 FP with D ¼ 4a3 þ 27b2 6¼ 0 and is denoted by E=FP:
Then we define G ¼ fðx; yÞ:x; y 2 FP; ðx; yÞ 2 E=FPg[ f1g as the additive elliptic
curve group, and the point 1 is known as the zero point. The security of ECC depends
on the difficulty of the following hard problem.

2.2 Elliptic Curve Discrete Logarithm Problem (ECDLP)

Given a random instance P the generator of G and Q ¼ xP where x 2 Z�
q ; compute x

from P and Q: Computation of x from P and Q is computationally hard by any
polynomial-time bounded algorithm.

30 N.B. Gayathri et al.



2.3 Syntax and Security Model

In this section, we present the definitions of the two security features of an IDBDS
scheme i.e. unforgeability and invisibility.

Unforgeability: An IDBDS scheme is said to be existentially unforgeable under
adaptive chosen message and identity attack, if there exists no polynomial time
adversary with non-negligible advantage in a game played between a challenger and
adversary.

Invisibility: An IDBDS scheme is said to have the property of invisibility under
chosen message and identity attack, if there exists no polynomial time distinguisher D
with a non-negligible advantage in a game played between a challenger and adversary.

The Syntax and security model of IDBDS scheme is same as in [12].

3 Proposed IDBDS Scheme Without Pairings

In this section we propose our efficient Identity based directed signature (IDBDS)
scheme and we prove its security.

3.1 Proposed IDBDS Scheme

The proposed IDBDS scheme consists of the following algorithms.
The signer with identity IDs signs on a message m 2 0; 1f g� to a designated verifier

with identity IDv

• Setup: nð Þ
Input: n 2 Z þ ; where n is a security parameter.
Output: System public parameters s ¼ q;G;P;PPub;H1;H2;H3f g and master secret
key s:

1. KGC chooses ðq;P;GÞ according to n:
2. Choose s 2 Z�

q as the master secret key and set master public key as PPub ¼ sP:

3. Choose three cryptographic hash functions H1;H2;H3 : 0; 1f g�! Z�
q :

• Extract: ID; sð Þ
Input: ID; s ¼ q;G;P;PPub;H1;H2;H3f g:
Output: Users private key Di ¼ ðdi;RiÞ:
1. KGC chooses ri 2 Z�

q ; computes Ri ¼ riP; h1i ¼ H1ðIDi;Ri;PPubÞ and di ¼ ri þ
sh1i mod q:

• Signature Generation: s ¼ q;G;P;PPub;H1;H2;H3f g;m 2 0; 1f g�; IDv;Rv; IDs; dsð Þ
Input: s ¼ q;G;P;PPub;H1;H2;H3f g;m 2 0; 1f g�; IDv;Rv; IDs; ds:
Output: rs ¼ ðRs;Ws;Vs; ksÞ; signature on a message m.

Efficient and Provably Secure Pairing 31



1. The signer chooses t1; t2 2 Z�
q and computes Us ¼ t1P;Vs ¼ t2P; Ws ¼

Us þRv þ h1vPPub and h2 ¼ H2ðm; IDs; IDv;Us;RsÞ and h3 ¼ H3ðm; IDs; IDv;
Us;Rs; h2Þ:

2. The signer computes ks ¼ h2ds þ h3t2 mod q:
Now rs ¼ ðRs;Ws;Vs; ksÞ is the signature on a message m.

• Designated Verification (D Verify): s ¼ q;G;P;PPub;H1;H2;H3f g; rs ¼ ðRs;ð
Ws;Vs; ksÞ;m 2 0; 1f g�; IDv;Rv; IDs;RsÞ
Input: s ¼ q;G;P;PPub;H1;H2;H3f g; rs ¼ ðRs;Ws;Vs; ksÞ;m 2 0; 1f g�; IDv;Rv;
IDs;Rs:
Output: 0 or 1:

1. Compute Ys ¼ Ws � dvP ¼ ðUs þRv þ h1vPPubÞ � ðrv þ h1vsÞP = Us þRv þ h1v
PPub � Rv � h1vPPub ¼ Us.

2. Compute h2 ¼ H2ðm; IDs; IDv; Ys;RsÞ and h3 ¼ H3ðm; IDs; IDv;Ys;Rs; h2Þ:
3. Checks whether the equation ðksP� ðRs þ h1sPPubÞh2Þh�1

3 ¼ Vs holds or not.
4. If the above verification equation is valid, it outputs 1; otherwise 0.

• Public Verification (P Verify):
Input: s ¼ q;G;P;PPub;H1;H2;H3f g; rs ¼ ðRs;Ws;Vs; ksÞ;m 2 0; 1f g�; IDv;Rv;
IDs;Rs:
Output: 0 or 1:

1 Either IDs or IDv computes Aid ¼ Us ¼ Ys; and then sends to the third party
(TP).

2 TP computes h2 ¼ H2ðm; IDs; IDv; Ys;RsÞ and h3 ¼ H3ðm; IDs; IDv; Ys;Rs; h2Þ:
3 Checks whether the equation ðksP� ðRs þ h1sPPubÞh2Þh�1

3 ¼ Vs holds or not.
4. If the above verification equation is valid, it outputs 1; otherwise 0.

3.2 Correctness of the Proposed Scheme

The correctness of the presented scheme can be verified as follows.

ðksP� ðRs þ h1sPPubÞh2Þh�1
3

¼ ðh2ds þ h3t2ÞP� ðRs þ h1sPPubÞh2ð Þh�1
3

¼ ðh2ðrs þ sh1sÞþ h3t2ÞP� ðRs þ h1sPPubÞh2ð Þh�1
3

¼ h2ðRs þ h1sPPubÞþ h3t2P� ðRs þ h1sPPubÞh2ð Þh�1
3

¼ h3t2Pð Þh�1
3

¼ Vs:

3.3 Security of the IDBDS Scheme

In this section we prove the security of the proposed IDBDS scheme in the random
oracle model under the assumption that the ECDLP is intractable.

Theorem 1: If an adversary can break the unforgeability of the proposed IDBDS
scheme, then there is an algorithm which can solve the ECDL problem.

32 N.B. Gayathri et al.



Proof: Let n be an ECDL challenger and is given a random instance ðQ ¼ sPÞ of the
ECDL problem in G for a randomly chosen s 2 Z�

q : Its goal is to compute s: Let ADV
is an adversary who interacts with n by performing oracle queries as modelled in [12].
Now we prove that n can solve the ECDLP using ADV. During the simulation process
n needs to guess the target identity of ADV. Without loss of generality, n takes ID� as
target identity of ADV on a message m�:

– Initialization Phase: Algorithm n sets PPub ¼ Q ¼ sP and runs Setup to generate
s: n then gives s and PPub to ADV.

– Query Phase: In this phase, ADV performs the oracle simulation and n responds to
these oracles as follows.

Queries on oracle H1 H1ðIDi;Ri;PPubÞð Þ: A list L1; with records of the form
ðIDi;Ri;PPub; l1iÞ; is maintained by n: After receiving a query on
H1ðIDi;Ri;PPubÞ; if there is a record ðIDi;Ri;PPub; l1iÞ in L1, n returns l1i:
Otherwise, n picks a random l1i and adds to L1: Finally, n returns l1i:

Some time ADV can query for the public key component corresponding to
identity IDi as ADV wants to know the actual Ri corresponding to IDi: n does the
following.

(i) If IDi ¼ ID�, n sets Ri ¼ sP ¼ PPub where s is unknown to n and PPub is the
ECDL problem that n wants to solve. n stores the record ðIDi;Ri;?;PPub; l1iÞ
to L1, and returns Ri to ADV.

(ii) If IDi 6¼ ID�; choose ri 2 Z�
q and set Ri ¼ riP� l1iPPub and stores the record

ðIDi;Ri; ri;PPub; l1iÞ to L1, and returns Ri to ADV.
Queries on oracle H2 H2ðm; IDs; IDv;Us;RsÞð Þ: A list L2; with records of the
form ðm; IDs; IDv;Us;Rs; l2iÞ; is maintained by n: After receiving H2 query on
ðm; IDs; IDv;Us;RsÞ if a record ðm; IDs; IDv;Us;Rs; l2iÞ exists on L2, n returns
l2i: otherwise, n picks a random l2i 2 Z�

q and returns l2i: n adds
ðm; IDs; IDv;Us;Rs; l2iÞ to L2:
Queries on oracle H3 H3ðm; IDs; IDv;Us;Rs; l2iÞð Þ: A list L3; with records of the
form ðm; IDs; IDv;Us;Rs; l2i; l3iÞ; is maintained by n: After receiving a query on
H3ðm; IDs; IDv;Us;Rs; l2iÞ; n gives l3i if the record exists on L3: Otherwise, n
picks a random l3i 2 Z�

q ; and returns l3i and n adds ðm; IDs; IDv;Us;Rs; l2i; l3iÞ to
L3:
Key Extraction Oracle ðKExtIDiÞð Þ: When ADV makes this query on identity
IDi; n does the following.
If IDi ¼ ID�, n aborts. Otherwise ðif IDi 6¼ ID�Þ, n sets di ¼ ri and returns di to
ADV.
Signing Oracle: When n receives a query on ðIDs;mÞ; with a verifier IDv; n first
makes queries on H1;H2;H3 oracles and recovers the records ðIDi;Ri;PPub; l1iÞ;
ðm; IDs; IDv;Us;Rs; l2iÞ; ðm; IDs; IDv;Us;Rs; l2i; l3iÞ from L1; L2; L3 respectively.
n generates two random numbers r1i; r2i 2 Z�

q and sets ki ¼ r1i;Vi ¼
r1iP� ðRi þ l1iPPubÞl2ið Þl�1

3i ;Ui ¼ r2iRv and Wi ¼ r2iP:

Efficient and Provably Secure Pairing 33



n returns ri ¼ ðRi;Wi;Vi; kiÞ to ADV.
Note that ri ¼ ðRi;Wi;Vi; kiÞ generated in this way satisfies the verification
equation

ðkiP� ðRi þ h1iPPubÞh2iÞh�1
3i ¼ Vi: ð1Þ

DVerify Oracle DVðIDiÞð Þ: ADV submits ðIDs; IDv;mÞ and ri ¼ ðRi;Wi;Vi; kiÞ
to n: It first recovers ðIDv;Rv;PPub; l1iÞ from L1 list and continues as follow.

(i) If IDv 6¼ ID�; it computes Ui ¼ rvWi and then recovers the entries l2i ¼
H2ðm; IDs; IDv;Ui;RiÞ and l3i ¼ H3ðm; IDs; IDv;Ui;Ri; l2iÞ from L2 & L3
lists.
If these entries does not exists, n selects l2i; l3i 2 Z�

q and defines
H2ðm; IDs; IDv;Ui;RiÞ ¼ l2i and H3ðm; IDs; IDv;Ui;Ri; l2iÞ ¼ l3i: n then ver-
ifies the Eq. (1) to check the validity of ri ¼ ðRi;Wi;Vi; kiÞ and returns either
1(valid) or 0(invalid) to ADV.

(ii) If IDv ¼ ID�, n works on all possible entries H2ðm; IDs; IDv;Ui;RiÞ and
H3ðm; IDs; IDv;Ui;Ri; l2iÞ for some Ui:
• For each possible entry H2ðm; IDs; IDv;Ui;RiÞ ¼ l2i and

H3ðm; IDs; IDv;Ui;Ri; l2iÞ ¼ l3i for some Ui; n evaluate the Eq. (1). If the
verification results 1 (valid) then n returns 1(valid) to ADV.

• If the above procedure does not lead n to return an answer for ADV; n
then returns 0 (invalid) to ADV.

PVerify Oracle PVðIDiÞð Þ: ADV. submits ðIDs; IDv;mÞ and ri ¼ ðRi;Wi;Vi; kiÞ
to n: It follows the same procedure as in the simulation of DVerify Oracle. The
only difference is; when n judges ri ¼ ðRi;Wi;Vi; kiÞ is valid (i.e., returns 1 in
the DVerify Oracle); it returns Aid ¼ Ui ¼ r2iRv ¼ rvWi ¼ Yiðsay) to ADV.
When n judges ri ¼ ðRi;Wi;Vi; kiÞ is invalid (i.e., returns 0 in the DVerify
Oracle); it returns ? to ADV.

– Forgery: Finally ADV. out puts ID�
s ; ID

�
v ;m

�; r�i as its forgery where
r�i ¼ ðR�

i ;W
�
i ;V

�
i ; k

�
i Þ:

If IDi 6¼ ID�
s ; n stops simulation. Otherwise, let rð1Þi ¼ ðRi;W

ð1Þ
i ;Vi; k

ð1Þ
i Þ denote

ri ¼ ðRi;Wi;Vi; kiÞ: By Forking Lemma [9], n repeats simulation with same random

tape but different choice of H2;H3;ADV will out put another two rðjÞi ¼
ðRi;W

ðjÞ
i ;Vi; k

ðjÞ
i Þ for j ¼ 2; 3; and Eq. (1) holds. Hence

kðjÞi P� ðRi þ lðjÞ1i PPubiÞlðjÞ2i
� �

l�lðjÞ
3i ¼ Vi for j ¼ 1; 2; 3:

By ri; s; vi; we now denote discrete logarithms of Ri;PPub;Vi respectively, that is
Ri ¼ riP;PPub ¼ sP;Vi ¼ viP: From the above equation, we get

kðjÞi � ðri þ lðjÞ1i sÞlðjÞ2i
� �

l�lðjÞ
3i ¼ vi For j ¼ 1; 2; 3:

In these equations, only, ri; s; vi are unknown to n. n solves these values from the
above three linear independent equations and out puts s as the solution of DLP. h

34 N.B. Gayathri et al.



Theorem 2: If a distinguisher can break the invisibility of the proposed IDBDS
scheme, then there is an algorithm which can solve the ECDL problem.

Proof: Here we present the main idea to prove the invisibility of our IDBDS scheme
by giving the ECDL problem instance ðP;A ¼ aP; zÞ: The ECDLP solver n simulates
the distinguisher D by initializing the D with PPub ¼ aP ¼ A as the system public key.
n answers the oracle queries of D in the same way as in Theorem 1. In the challenge
phase, if ID�

v is not the target designated verifier, n out puts failure and terminates the
simulation. Otherwise, n chooses e; f 2 Z�

q and sets R�
s ¼ PPub;W�

s ¼ ePPub;

V�
s ¼ ð1� e�1ð1þ l1sÞÞP; k�s ¼ e and computes Y�

s ¼ W�
s � dvP ¼ zðk�s P� P� h1vPÞ:

Now to implant the ECDLP in to challenge signature, n inserts H2ðm�; ID�
s ;

ID�
v ; Y

�
s ;R

�
s Þ ¼ z�1 and H2ðm�; ID�

s ; ID
�
v ; Y

�
s ;R

�
s ; h

�
2Þ ¼ e into L2 and L3 and forwards

the signature to D as a challenge signature. Hence n’s simulation of the signature is
same as the real game as long as it does not fail. D performs several oracle queries as
described in [12] subject to the following conditions

(i) D cannot make Extraction queries on ID�
v :

(ii) D cannot make a Dverify or a Pverify query on ðID�
s ; ID

�
v ;m

�; r�Þ; and it outputs a
bit b0 as a guess of challenge bit b of n:

In the following Fig. 1, we present our cryptosystem in a schematic way.

Fig. 1. Schematic representation of IDBDS scheme.

Efficient and Provably Secure Pairing 35



4 Efficiency Analysis

In this section we compare our scheme with the relevant schemes [12, 13, 16] in terms
of computation and communication cost. Various cryptographic operations and their
conversions are presented in Table 1 [2]. The detailed comparison of our IDBDS
scheme with other Directed signature schemes is presented in Table 2. From Table 2, it
is clear that all the existing directed signature schemes are using bilinear pairings where
as our IDBDS scheme does not use bilinear parings. The security of our scheme is
proven under the hardness of ECDL problem. Hence, our proposed scheme is com-
putationally more efficient than all other schemes.

5 Conclusions

In this paper, we have presented a novel and efficient IDBDS scheme over elliptic
curves in pairing free environment. This is the first ID-based directed signature scheme
in pairing free setup. All the existing directed signature schemes in ID-based setting
uses bilinear pairings and the computation of bilinear pairing is most expensive
operation. The proposed scheme does not uses pairings and hence our scheme is
computationally more efficient than the well-known existing directed signature
schemes. The proposed scheme is secure under the assumption that ECDLP is hard.
Hence, the proposed scheme can be applied in many applications such as signatures on
medical records, tax information where message is sensitive to the signature receiver.

Table 1. Notations and descriptions of various cryptographic operations

Notations Descriptions

TMM Time needed to compute modular multiplication operation
TSM Time needed to compute the elliptic curve point multiplication

(Scalar multiplication if G is additive group) TSM ¼ 29TMM

TBP Time needed to compute the bilinear pairing TBP ¼ 87TMM

TPEX Time needed computing the pairing–based exponentiation TPEX ¼ 43:5TMM

TINV Time needed to compute modular inversion operation in TINV ¼ 11:6TMM

TH Time needed to compute a simple hash function
TMTPH Time needed to compute a map to point hash function 1TMTPH ¼ 1TSM ¼ 29TMM

TMX Time needed to compute modular exponentiation operation TMX ¼ 240TMM

TPA Time needed to compute the elliptic curve point addition TPA ¼ 0:12TMM

36 N.B. Gayathri et al.



T
ab

le
2.

C
om

pa
ri
so
n
of

th
e
pr
op

os
ed

ID
B
D
S
sc
he
m
e
w
ith

th
e
re
la
te
d
sc
he
m
es

Sc
he
m
e

Si
gn
in
g
co
st

D
ve
ri
fy

co
st

P
ve
ri
fy

co
st

T
ot
al

co
st

Si
gn
at
ur
e

le
ng
th

W
ith

ou
t

pa
ir
in
g

H
ar
d
pr
ob
le
m

Su
n
et

al
.

(2
00
8)

3T
SM

þ
1T

B
P
þ
2T

M
TP

H
þ
1T

P
A

4T
B
P
þ
1T

M
TP

H
3T

B
P
þ
1T

M
TP

H
89
9:
12
T M

M
3
G

1
j

j
N
o

C
D
H

&
D
B
D
H

B
.U
.P
.
et

al
.

(2
00
9)

3T
SM

þ
2T

B
P
þ
2T

M
TP

H
þ
1T

H
þ
1T

P
E
X

3T
B
P
þ
1T

M
TP

H
þ
1T

H
þ
1T

P
E
X

2T
B
P
þ
1T

M
TP

H
þ
1T

H
þ
1T

P
E
X

94
2:
5T

M
M

2
G

1
j

jþ
Z
� q� � �
� � �

N
o

C
D
H

&
D
B
D
H

Z
ha
ng

et
al
.

(2
00
9)

6T
SM

þ
1T

B
P
þ
2T

H
þ
1T

X
O
R
þ
6T

P
E
X

2T
SM

þ
6T

B
P
þ
2T

H
þ
1T

X
O
R
þ
2T

P
E
X

2T
SM

þ
4T

B
P
þ
1T

H
þ
1T

P
E
X

15
95
T M

M
4
G

1
j

j
N
o

C
D
H

&
D
B
D
H

O
ur

Sc
he
m
e

3T
SM

þ
2T

H
þ
2T

P
A

5T
SM

þ
2T

H
þ
3T

P
A
þ
1T

IN
V

4T
SM

þ
2T

H
þ
2T

P
A
þ
1T

IN
V

37
2:
04
T M

M
3
G

1
j

jþ
Z
� q� � �
� � �

Y
es

E
C
D
L

Efficient and Provably Secure Pairing 37



Acknowledgements. The authors are grateful and sincerely thank the reviewers for their
valuable suggestions. This work is supported by WOS-A, DST, Govt. of India under the grant
No. SR/WOS-A/PM-1033/2014 (G), WOS-A, DST.

References

1. Diffe, W., Hellman, M.E.: New directions in cryptography. IEEE Trans. Inf. Theor. 22, 644–
654 (1976)

2. Islam, S.K., Biswas, G.P.: A Pairing free identity-based authenticated group key agreement
protocol for imbalanced mobile networks. Ann. Telecommun. 67, 547–558 (2012). Springer

3. Ismail, E.S., Abu-Hassan, Y.: A directed signature scheme based on discrete logarithm
problems. Jurnal Teknologi 47(C), 37–44 (2007)

4. Ku, J., Yun, D., Zheng, B., Wei, S.: An efficient ID-based directed signature scheme from
optimal eta pairing. In: Li, Z., Li, X., Liu, Y., Cai, Z. (eds.) ISICA 2012. CCIS, pp. 440–448.
Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-34289-9_49

5. Laguillaumie, F., Paillier, P., Vergnaud, D.: Universally convertible directed signatures. In:
Roy, B. (ed.) ASIACRYPT 2005. LNCS, vol. 3788, pp. 682–701. Springer, Heidelberg
(2005). https://doi.org/10.1007/11593447_37

6. Lal, S., Kumar, M.: A directed signature scheme and its applications (2004). http://arxiv.org/
abs/cs/0409035

7. Lim, C.H., Lee, P.J.: Modified Maurer-Yacobi’s scheme and its applications. In: Seberry, J.,
Zheng, Y. (eds.) AUSCRYPT 1992. LNCS, vol. 718, pp. 308–323. Springer, Heidelberg
(1993). https://doi.org/10.1007/3-540-57220-1_71

8. Lu, R., Cao, Z.: A directed signature scheme based on RSA assumption. Int. J. Netw. Secur.
2(3), 182–421 (2006)

9. Pointcheval, D., Stern, J.: Security arguments for digital signatures and blind signatures.
J. Crypt. 13(3), 361–369 (2000)

10. Ramlee, N.N., Ismail, E.S.: A new directed signature scheme with hybrid problems. Appl.
Math. Sci. 7(125), 6217–6225 (2013)

11. Shamir, A.: Identity-based cryptosystems and signature schemes. In: Blakley, G.R., Chaum,
D. (eds.) CRYPTO 1984. LNCS, vol. 196, pp. 47–53. Springer, Heidelberg (1985). https://
doi.org/10.1007/3-540-39568-7_5

12. Sun, X., Li, J., Chen, G., Yung, S: Identity-based directed signature scheme from bilinear
pairings. https://eprint.iacr.org/2008/305.pdf

13. Uma Prasada Rao, B., Vasudeva Reddy, P., Gowri, T.: An efficient ID-based directed
signature scheme from bilinear pairings. https://eprint.iacr.org/2009/617.pdf

14. Wang, Y.: Directed signature based on identity. J. Yulin Coll. 15(5), 1–3 (2005)
15. Wei, Q., He, J., Shao, H.: Directed signature scheme and its application to group key initial

distribution. In: ICIS-2009, Seoul, Korea, pp. 24–26. ACM (2009)
16. Zhang, J., Yang, Y., Niu, X.: Efficient provable secure ID-based directed signature scheme

without random oracle. In: Yu, W., He, H., Zhang, N. (eds.) ISNN 2009. LNCS, vol. 5553,
pp. 318–327. Springer, Heidelberg (2009). https://doi.org/10.1007/978-3-642-01513-7_34

38 N.B. Gayathri et al.

http://dx.doi.org/10.1007/978-3-642-34289-9_49
http://dx.doi.org/10.1007/11593447_37
http://arxiv.org/abs/cs/0409035
http://arxiv.org/abs/cs/0409035
http://dx.doi.org/10.1007/3-540-57220-1_71
http://dx.doi.org/10.1007/3-540-39568-7_5
http://dx.doi.org/10.1007/3-540-39568-7_5
https://eprint.iacr.org/2008/305.pdf
https://eprint.iacr.org/2009/617.pdf
http://dx.doi.org/10.1007/978-3-642-01513-7_34


User Authentication Scheme for Wireless Sensor
Networks and Internet of Things Using LU

Decomposition

Anup Kumar Maurya1,2(B) and V.N. Sastry1

1 Centre for Mobile Banking, Institute for Development and Research in Banking
Technology (Established by the Reserve Bank of India), Hyderabad, India

anupmaurya88@gmail.com, {akmaurya,vnsastry}@idrbt.ac.in
2 Artificial Intelligence Lab, SCIS, University of Hyderabad, Hyderabad, India

Abstract. In security-sensitive wireless networks of sensor devices, the
authenticity of the legitimate user is the prominent requirement. Because
of constraints-resources of these sensor devices implementing traditional
cryptographic mechanism is not an easy task. In this paper, we propose a
lightweight mechanism for authenticating users of a sensor network using
fuzzy extractor along with a novel matrix based session key establishment
scheme. After that, we perform the security analysis of our protocol
using widely accepted automated verification tools such as AVISPA and
Scyther. Then, we perform logical verification using BAN Logic. Finally,
we do the computational analysis, and we demonstrate the comparative
analysis in respect of computational overhead and security features.

Keywords: User authentication · Session key establishment · Smart
card · Wireless sensor networks (WSNs)

1 Introduction

The sensor nodes of WSNs or Internet of Things (IoT) which measure different
parameters (temperature, pressure, humidity, light, etc.) of the environment and
mutually transmit the processed data to the users or gateway, are confined to
tiny computational capacity, small-scale memory, moderate transmission range
and short-lived battery power. It is the essential and challenging task of WSNs
to accomplish better security using light- weight cryptography on this resource
constrained sensor devices. User authentication is one of the significant need
for WSN’s emerging technologies (remotely monitoring patient’s body situation,
electronic devices of industry and smart home, the possibility of attacks in a
battleground, natural calamity, forest fire, etc.). Authenticating users who con-
nect to the WSNs is a process of validating his/her identity (based on one or
more factors such as user’s inherence, possession, knowledge) using sensor device.
A secure user validation scheme of WSNs offers various known security features
such as efficient user’s password update mechanism, secure session key estab-
lishment, confidentiality, integrity, availability, non-repudiation, freshness and
c© Springer Nature Singapore Pte Ltd. 2017
S.M. Thampi et al. (Eds.): SSCC 2017, CCIS 746, pp. 39–53, 2017.
https://doi.org/10.1007/978-981-10-6898-0_4



40 A.K. Maurya and V.N. Sastry

mutual authentication of the user, sensor, gateway. A secure WSN resists vari-
ous well-known security attacks such as sensor node and user’s identity imper-
sonation attack, replay attack, denial of service and man-in-the-middle attack,
stolen smart card attack.

2 Related Work

Akyildiz et al. [1] analyzed many aspects of WSNs and discussed many open
research issues of WSNs. In 2006, Watro et al. [2] proposed public-key based
scheme TinyPK for securing WSNs which provides mutual authentication and
withstand sensor impersonation attack. In 2006, Wong et al. [3] suggested a
secure hash function based authentication scheme but it does not support mutual
authenticity and session key establishment between user and sensor. In 2007,
Tseng et al. [4] specified that Watro et al.’s [2] and Wong et al.’s [3] schemes
exhibit replay and forgery attack. Tseng et al. improved Wong et al.’s scheme and
recommended password update mechanism. In 2008, Lee [5] revealed that Wong
et al. scheme exhibits more computational overhead on sensor node compared to
gateway node and improved Wong et al. scheme with less computation overhead
of sensor node. In 2008, Ko [6] indicated that Tseng et al.’s scheme does not con-
tribute mutual authentication and proposed mutual authenticity and timestamp
based scheme. In 2009, Vaidya et al. [7] proposed mutual authentication scheme
with formal verification. In 2009, Das [8] developed a secure mechanism to pro-
vide authenticity using smart card and user’s password (two factor) but it does
not offer session key between user and sensor node. In 2010, Khan- Alghathbar
[9] identified the gateway node bypass attack, insider attack and lack of password
update mechanism in Das’s [8] scheme and improved Das’s scheme by including
password update and mutual authentication technique. In 2010, Yuan et al. [10]
provided a bio metric based scheme but it is unprotected from node capture and
denial of service attack. In 2012, Yoo et al. [11] designed a scheme that provides
secure session key and mutual authentication. In 2013, Xue et al. [12] designed a
mutual authentication scheme based on temporal information. However, in 2014,
Jiang et al. [13] revealed that Xue et al.’s scheme is susceptible to stolen smart
card and privilege insider attack. In 2015, Das [14] suggested fuzzy extractor
based authentication scheme which resist well known security attacks of WSNs
and has more security features compare to Althobaiti et al. (2013) [15] scheme.

The outline of this paper is as follow: In Sect. 1, we introduce the basic
characteristics, applications and important security features of WSNs. Section 2,
consists of literature survey. In Sect. 3, we have explained the notation and math-
ematical expressions which we use for designing the protocol. Section 4, is about
the techniques we use for the proposal of user authentication and session key
establishment mechanism. In Sect. 5, we perform the security analysis. Section 6,
presents the comparison of computational overhead considering other existing
protocol. Eventually, in Sect. 7, we presents conclusions of our paper.



User Authentication Scheme for WSNs and Internet of Things 41

3 List of Symbols and Some Mathematical Expressions
Used

Some basic notations which we use for designing our protocol are listed in fol-
lowing Table 1.

Table 1. Notations used

Notations Description

Ui ith User

IDUi Identity of Ui

PWUi Password of Ui

Bi Bio-metric information of Ui

SNj jth Sensor Node

SCUi Smart card of Ui

GWN The gateway node

h(.) A collision resistant one - way hash function

n Maximum numbers of Users and Sensor Nodes in WSNs

LO n × n Lower triangular matrix

UP n × n Upper triangular matrix

LOij Element of LO matrix at ith row and jth column

Mat n × n Symmetric matrix such that Mat = LO × UP

Matij Element of Mat at row i and column j

LOr(Ui) Row matrix securely assign to Ui

LOr(SNj) Row matrix securely assign to SNj

UPc(Ui) Column matrix assign to Ui

UPc(SNj) Column matrix assign to SNj

Gen(.) Generator procedure of Fuzzy Extractor

Rep(.) Reproduction procedure of Fuzzy Extractor

T Error tolerance limit of Fuzzy Extractor

TUi , TGWN , TSNj Current timestamps of Ui, GWN, SNj respectively

T ′, T ′′, T ′′′ Current time at GWN, SNj , Ui respectively

Z
+ Set of positive integers

|| A string concatenation operator

⊕ A bitwise XOR operator

ΔT Maximum transmission delay

× Matrix multiplication Operator

A Adversary



42 A.K. Maurya and V.N. Sastry

3.1 Secure Cryptographic Hash Function

A function h : In → Out, with a binary string s ∈ In({0, 1}∗) of arbitrary
length as input and a binary string d ∈ Out({0, 1}m) of length m as a output,
is a secure hash function if the following conditions holds:

• A’s advantage to find the collision AdvhA(t) = Pr[(s, s′) ←R A : s �= s′, h(s) =
h(s′)] and

• Advh
A(t) ≤ τ , for any sufficiently small τ > 0.

Where (s, s′) ←R indicates that the pair (s, s′) is randomly chosen by A and Pr
represents the probability of the event (s, s′) ←R A with execution time t.

4 Discussions and Proposal

To design a secure and efficient user validation protocol of WSNs, we use the
concept of fuzzy extractor [17] for authenticating the user and LU decomposition
for establishing the session key between user and sensor node.

In this section, we first describe the concept of fuzzy extractor and efficient
way of using LU decomposition for establishing the session key. Afterwards, we
propose the pre-deployment scheme for user, sensor, gateway and the procedure
of registering the user Ui and the mechanism of login, authentication and session
key establishment between Ui and SNj . Finally, we describe the user’s credential
update mechanism.

4.1 Fuzzy Extractor for Authenticating the User Ui

Fuzzy extractor [17] transforms the Ui’s bio-metric information Bi into random,
secret and reproducible string of size l applicable to cryptographic methods of
authenticating Ui with a error tolerance limit T . Suppose M = {0, 1}N is an
N dimensional metric space of bio-metric points with a distance function d :
M ×M → Z

+ which measures the differences between any two bio-metric points
with the help of a given metric. The two main procedures of Fuzzy Extractor
which we use for authenticating the user Ui are as follows :

• Gen(): This is a probabilistic generation function which takes the bio-metric
information Bi ∈ M of user Ui as input and generates a secret string σi{0, 1}l
along with a associative string τi, i.e., Gen(Bi) = {σi, τi}

• Rep(): This is a deterministic reproduction function which takes a bio-metric
input B

′
i and the public string τi as input and reproduces the secret string σi

i.e., Rep(B′, τi) = σi, if d(Bi, B
′
i) ≤ T .



User Authentication Scheme for WSNs and Internet of Things 43

4.2 LU Decomposition of Mat and Secret Sharing

LU decomposition of Mat is a process of decomposing Mat into a lower trian-
gular matrix LO and a upper triangular matrix UP such that Mat = LO × UP
and

LOij =

{
LOij , if i ≥ j

0, otherwise
and UPij =

{
UPij if i ≤ j

0, otherwise

As reported by [18], we assume any two entities Ex and Ey have {LOr(Ex)
(xth row of LO), UPc(Ex) (xth column of UP )} and {LOr(Ey) (yth row of LO),
UPc(Ey) (yth column of UP )} respectively. If Ex shares UPc(Ex) with Ey and
Ey shares UPc(Ey) with Ex, Ex and Ey can calculate a common shared key as
follows:

Ex calculates: LOr(Ex) × UPc(Ey) = Matxy
Ey calculates: LOr(Ey) × UPc(Ex) = Matyx

Since Mat is a symmetric matrix i.e. Matxy = Matyx, therefore Ex and Ey

discovers the same key.
The values of LOij and UPij are 0 for i < j and i > j respectively and

therefore it has no effect on the final result obtained after multiplication of ith

row of LO and jth column of UP . As the sensor nodes and smart cards of the
users have limited memory and processing power, hence we propose to store the
value of LOij and UPij for i ≥ j and i ≤ j respectively. We can assign these
value as follow:

LOr(Ui) = [LOi1 . . . . . . LOii] and LOr(SNj) = [LOi1 . . . . . . LOjj ],

UPc(Ui) =

⎡
⎢⎢⎢⎢⎣

UP1i

...

...
UPii,

⎤
⎥⎥⎥⎥⎦ and UPc(SNj) =

⎡
⎢⎢⎢⎢⎣

UP1j

...

...
UPjj

⎤
⎥⎥⎥⎥⎦

For efficient multiplication of these row and column matrix we use the fol-
lowing approach:

LOr(Ui) × UPc(SNj) =

⎧⎪⎨
⎪⎩

∑j
k=0 LOr(Ui)k × UPc(SNj)k, if i ≥ j

∑i
k=0 LOr(Ui)k × UPc(SNj)k, otherwise

Here, for LOr(Ui) and UPc(SNj) the value of i and j represents the ith

user and jth sensor node respectively, i and j are also equal to the number
of elements of row matrix LOr(Ui) and column matrix UPc(SNj) respectively.
LOr(Ui)k represents the kth element of LOr(Ui).

LOr(SNj) × UPc(Uj) =

⎧⎪⎨
⎪⎩

∑j
k=0 LOr(SNi)k × UPc(Uj)k, if j ≥ i

∑i
k=0 LOr(SNi)k × UPc(Uj)k, otherwise



44 A.K. Maurya and V.N. Sastry

Storage Analysis. If len be the number of bits or length of each keying elements
of LO or UP , z be the number of bits to represent n − 1 zero elements. Then, the
total memory required to store keys as per Choi et al.’s scheme [18] is,

Γ[18] = 2 × n2 × len

Total memory required to store keys as per Pathan et al.’s [19] is,

Γ[19] = len ×
∑n

i=1
i + n × (2 × z) = len × n × (n + 1)

2
+ n × (2 × z)

Total memory required to store keys in our scheme is,

Γour = len ×
∑n

i=1
i = len × n × (n + 1)

2

Therefore, we can say that Γour < Γ[19] < Γ[18].

4.3 Pre-deployment Scheme:

In this section, we assume that the WSNs consist of users (with smart card which
can be captured or stolen by the adversary A), sensor nodes (it can be captured
by A) and gateway (it is trusted and it can not be compromise by A). The GWN
first generates a set p of large pool of keys and construct a symmetric matrix Mat
of size n×n using the set p. The GWN performs the LU decomposition operation
on Mat to get LO, UP . Afterwards, the GWN securely provides the row matrix
LOr(SNj) and the column matrix UPc(SNj) to the sensor node SNj .

4.4 User Registration

A legitimate user Ui who wants to access the confidential report of WSNs, follows
the procedures as shown in following Table 2.

Table 2. User registration phase

Step 1: for user Ui Step 2: for gateway node GWN

Ui selects IDUi , PWUi and provides Bi.
Then, generates (σi, τi) = Gen(Bi), and
assign IPBi = h(ID(Ui)||PWUi ||h(σi),

Ui transmits 〈IDUi , IPBi〉 to GWN .
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−→

SecureChannel

GWN extracts LOr(Ui) and UPc(Ui) from
Mat and derives AUi = IPBi ⊕ LOr(Ui),
BUi = h(IDUi ||IPBi||LOr(Ui)),
WUi = h(IDUi ||IPBi) ⊕ UPc(Ui)
Then, GWN stores AUi , BUi , WUi into SCUi

GWN transfers SCUi to Ui←−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
SecureChannel

Step3. Ui stores Gen(.), Rep(.) and
h(.), τi, T into SCUi .



User Authentication Scheme for WSNs and Internet of Things 45

4.5 Ui’s Authentication and Secure Session Key Exchange
with SNj

In order to retrieve data from SNj , Ui gets authenticated using SCi, IDUi
,

PWUi
, noisy bio-metric information B′

i and fuzzy extractor function Rep(.).
Afterwards, the GWN verifies the credentials of Ui and sends a secure message
to SNj for establishing a secure session with Ui. SNj verifies the message and
establishes the key with Ui. Table 3 describes the authentication and key sharing
mechanism in detail.

Table 3. Authenticated key exchange phase

Step 1: for Ui Step 2: for GWN

Ui puts SCUi into card reader and provides

IDUi , PWUi , B
′
i. Then find out σ

′
i = Rep(B

′
i , τi),

IPB
′
i = h(IDUi ||PWUi ||h(σ

′
i)), LOr(Ui)

′
= AUi ⊕

IPB
′
i , B

′
Ui

= h(IDUi ||IPB
′
i ||LOr(Ui)

′
),

if BUi = B
′
Ui

then

Ui computes UPc(Ui)
′ = WUi ⊕ h(IDUi ||IPB

′
i)

and finds the current time-stamp TUi .Then Ui

evaluates m1 = h(IDUi ||IDSNj ||LOr(Ui)
′||TUi),

M1 =
〈
IDUi , IDSNj , m1, TUi

〉

Ui transmits 〈M1〉 to GWN
−−−−−−−−−−−−−−−−−−−−−−−−−−−−→

V iaPublicChannel

else
Reject Ui

if T ′ − TUi ≤ ΔT then
GWN Extract
LOr(Ui), UPc(Ui), LOr(SNj), UPc(SNj) from
Mat and computes
m

′
1 = h(IDUi ||IDSNj ||LOr(Ui)||UPc(Ui)||TUi),

if m1 = m′
1 then

Find current time-stamp TGWN , and
computes
m2 = h(LOr(SNj)||IDUi ||UPUi

c ||TGWN ),
m3 = h(LOr(Ui)||UPc(SNj)||TUi ||TGWN ),
M2 =〈
IDUi , IDSNj , m2, m3, UPc(Ui), TGWN , TUi

〉

else
Rejects Ui

GWN sends M2 to SNj−−−−−−−−−−−−−−−−−−−−−−−−−−−−→
V iaPublicChannel

else
Reject Ui

Step 3: for SNj Step 4: for Ui

if (T” − TUi ≤ 2ΔT, T” − TGWN ≤ ΔT ) then
SNj extracts LOr(SNj) from its memory and
computes
m′

2 = h(LOr(SNj)||IDUi ||UPc(Ui)||TGWN ),
if m2 = m′

2 then
Find current time-stamp TSNj and compute
the session key
SK = h(TUi ||(LOr(SNj) × UPc(Ui)), Then,
calculate
m4 = h(IDUi ||IDSNj ||SK||m3||TSNj )
M3 =

〈
m4, m3, UPc(SNj), TSNj , TGWN

〉

SNj sends M3 to Ui−−−−−−−−−−−−−−−−→
V iaPublicChannel

else
Reject Ui

else
Reject Ui

if (T”′ − TGWN ≤ 2ΔT, T”′ − TSNj ≤ ΔT ) then
Ui computes
m′

3 = h(LOr(Ui)
′||UPc(SNj)||TUi ||TGWN ),

if m3 = m′
3 then

Compute the session
keySK′ = h(TUi ||(LOr(Ui)

′ × UPc(SNj))),.
Then, calculates
m′

4 = h(IDUi ||IDSNj ||SK′||m′
3||TSNj ),

if m4 = m′
4 then

Establish the session key SK′ = SK
with sensor node SNj

else
Reject Ui

else
Reject Ui

else
Reject Ui



46 A.K. Maurya and V.N. Sastry

4.6 User’s Credential Update Phase

We provide a mechanism for the user Ui to change his/her password and bio-
metric information before an adversary (who can steal user’s credential without
his/her knowledge) get an opportunity to use it. The procedure for updating the
credential is shown in Table 4.

Table 4. User’s credential update phase

For User (Ui)

Ui puts SCUi into card reader and provides IDUi , PWUi , Bi,

It produces σ
′
i = Rep(B

′
i , τi),

IPB
′
i = h(IDUi ||PWUi ||h(σ

′
i)),

LOr(Ui)
′
= AUi ⊕ IPB

′
i ,

B
′
Ui

= h(IDUi ||IPB
′
i ||LOr(Ui)

′
),

Verify BUi = B
′
Ui

,

Computes UPc(Ui)
′ = WUi ⊕ h(IDUi ||IPB

′
i),

Ui provides new password PWnew
Ui

and bio-metric information Bnew
i .

(σnew
i , τ

′
i ) = Gen(Bnew

i )
IPBnew

i = h(IDUi ||PWnew
Ui

||h(σnew
i ))

Anew
Ui

= IPBnew
i ⊕ LOr(Ui)

Bnew
Ui

= h(IDUi ||IPBnew
i ||LOr(Ui))

Wnew
Ui

= h(IDUi ||IPBnew
i ) ⊕ UPc(Ui)

Replace AUi , BUi , WUi of SCUi with Anew
Ui

, Bnew
Ui

, Wnew
Ui

respectively.

5 Security Analysis

To validate the security feature of our protocol, we first perform the informal
analysis considering major and minor attacks in WSNs. Afterwards, we imple-
ment our scheme using Security Protocol Description Language and evaluate our
security claims using Sycther tool [22]. For automated validation of the protocol
using AVISPA tool [21], we use High- Level Protocols Specification Language
Finally, we do the logical verification of the protocol using BAN logic [23].

5.1 Informal Security Analysis

The informal security analysis indicates that our protocol is designed to with-
stand the popular security attacks as follows:

Attack Based on Stolen Smart Card: Our scheme is safe from stolen card of
legitimate user Ui because an adversary A can not extract the secret credential
PWUi

, σi, LOr(Ui) etc. without having the authentic bio-metric credential Bi

of Ui.



User Authentication Scheme for WSNs and Internet of Things 47

Replay Attack: The timestamp TUi
, TGWN , TSNj

are stored in variable
m1,m3,m4 after secure hashing, therefore an adversary A can not perform the
replay attack using message M1,M2,M3.

User Impersonation Attack: We avoid the user’s impersonation using fuzzy
extractor on the bio-metric credential Bi of Ui. The adversary A can not imper-
sonate the user Ui without having the bio-metric information Bi of Ui.

Sensor Node Impersonation Attack: We uniquely and securely assign a key
LOr(SNj) to each sensor node SNj and we verify the message m3 and m4 at
user Ui. Therefore, an adversary A can not perform the sensor impersonation
attack.

Man-In-The-Middle Attack (MITM): The verification of the message m1

on GWN , m2 on SNj , m3 and m4 on Ui stops an adversary A to perform MITM
attack.

5.2 Security Verification Using Scyther and AVISPA Tool

We specify our protocol using Security Protocol Description Language (spdl)
based on operational semantics of Scyther tool. Table 5 represents the spdl spec-
ification of our protocol:

The result of security verification using Scyther tool is shown Fig. 1. The
result indicates that no attacks found on all the claims which we specified for
the three roles Ui, GWN,SNj . The result obtained (Fig. 2) using OFMC back-
ends of AVISPA tool indicates that our protocol is safe from Dolev-Yao [20]
intruder model.

Logical Verification Using BAN Logic. In this subsection, we use BAN
logic [23] to verify the freshness of time-stamp to avoid replay attack and we
validate the message origin to achieve authenticity. The notations we use for
logical verification is shown in Table 6.

1. Verification of freshness of TUi
by GWN (using message - meaning and nonce

verification rule):

•
GWN | ≡ Ui

LOr(Ui)� GWN,GWN � <TUi
>LOr(Ui)

GWN | ≡ Ui| ∼ TUi

That is, if GWN believe the secret LOr(Ui) is shared with Ui and sees
<TUi

>XUi
, then GWN believe (| ≡) Ui once said TUi

• GWN | ≡ �(TUi
), GWN | ≡ Ui| ∼ TUi

GWN | ≡ Ui| ≡ TUi

That is, if GWN believes TUi
is fresh and GWN believes Ui once said

TUi
, then GWN believe Ui believes on TUi



48 A.K. Maurya and V.N. Sastry

Table 5. The spdl specification of the proposed protocol

hashfunction h;
const XOR : Function;
const MatMul : Function ;
const Gen : Function ;
const Rep : Function;
protocol UserValidation(Ui, GWN, SNj)
{ macro SIGi = Gen(Bi);
macro IPBi = h(IDui, PWui, h(SIGi));
macro SIGi’ = Rep(Bi’, TAUi’);
macro IPBi’ = h(IDui, PWui, h(SIGi’));
macro Aui = XOR(IPBi, LOrUi);
macro Bui = h(IDui, IPBi,LOrUi);
macro Wui = XOR(h(IDui,IPBi), UPcUi);
macro LOrUi’ = XOR(Aui, IPBi’);
macro Bui’ = h(IDui, IPBi’,LOrUi’);
macro UPcUi’ = XOR(Wui,h(IDui,IPBi’));
macro SK =
h(Tui,MatMul(LOrSNj,UPcUi));
macro m1 = h(IDui,IDsnj,LOrUi’,UPcUi’,
Tui); ‘
macro m2 = h(LOrSNj,IDui,UPcUi,Tgwn);
macro m3 = h(LOrUi,Tui,Tgwn);
macro m4 =h(IDui,IDsnj,SK,m3,Tsnj);
macro m1’ = h(IDui,IDsnj,LOrUi,UPcUi,
Tui);
macro m2’ =
h(LOrSNj’,IDui,UPcUi,Tgwn);
macro m3’ = h(LOrUi’,Tui,Tgwn);
macro m4’ =h(IDui,IDsnj,SK,m3’,Tsnj);

role Ui
{ var Tgwn, Tsnj : Nonce;
fresh Tui: Nonce;
const IDui, PWui, Bi, Bi’, IDsnj,
TAUi’,LOrUi,UPcUi,UPcSNj,LOrSNj :
Ticket;
send 1(Ui, GWN, IDui, IPBi);
recv 2(GWN, Ui,Aui, Bui, Wui);
match(Bui, Bui’) ;
send 3(Ui, GWN, IDui, IDsnj, m1,Tui);
recv 5(SNj, Ui, m4, m3, UPcSNj, Tsnj,
Tgwn);
match(m3, m3’);
match(m4, m4’);
claim Ui1(Ui,Secret,Tui);
claim Ui2(Ui,Secret,LOrUi);
claim Ui3(Ui,Secret,UPcUi);
claim Ui4(Ui,Secret,UPcSNj);
claim Ui6(Ui,SKR,SK)));
claim Ui7 (Ui,Niagree);
claim Ui8 (Ui,Nisynch);
}

role GWN
{
fresh Tgwn: Nonce;
var Tui : Nonce;
const IDui, PWui, IDsnj, Bi,TAUi’,Tui, Bi’,
PWui, LOrUi,LOrSNj,UPcUi,UPcSNj:
Ticket;
recv 1(Ui, GWN, IDui, IPBi);
send 2(GWN, Ui,Aui, Bui, Wui);
recv 3(Ui, GWN, IDui, IDsnj, m1,Tui);
match (m1, m1’);
send 4(GWN, SNj, m2, m3, UPcUi, Tgwn,
Tui);
claim GWN1(GWN,Secret,Tgwn);
claim GWN2(GWN,Secret,LOrUi);
claim GWN3(GWN,Secret,LOrSNj);
claim GWN4(GWN,Secret,UPcUi);
claim GWN5(GWN,Secret,UPcSNj);
}

role SNj
{
var Tgwn, Tui: Nonce;
fresh Tsnj : Nonce;
const IDui, IDsnj, Tui, Bi ,Bi’,TAUi’,
PWui,LOrSNj,LOrSNj’,UPcUi,LOrUi,UPcSNj:
Ticket;
recv 4(GWN, SNj, m2, m3, UPcUi, Tgwn,
Tui);
match(m2, m2’);
send 5(SNj, Ui, m4, m3, UPcSNj, Tsnj,
Tgwn);
claim SNj1(SNj,Secret,Tgwn);
claim SNj2(SNj, Secret, LOrSNj’);
claim SNj3(SNj, Secret, Tsnj);
claim SNj4(SNj,SKR,SK)));
}
}



User Authentication Scheme for WSNs and Internet of Things 49

Fig. 1. Result obtained using Scyther tool.

2. Verification of freshness of TGWN by SNj (using message - meaning and nonce
verification rule):

•
SNj | ≡ GWN

LOr(SN)
� SNj , SNj � <TGWN>KGSNj

SNj | ≡ GWN | ∼ TGWN

That is, if SNj believe the secret LOr(SNj) is shared with GWN and
sees <TGWN>KGSNj

, then SNj believe GWN once said TGWN

• SNj | ≡ �(TGWN ), SNj | ≡ GWN | ∼ TGWN

SNj | ≡ GWN | ≡ TGWN

That is, if SNj believes TGWN is fresh and SNj believes GWN once said
TGWN , then SNj believes GWN believes on TGWN

3. Verification of freshness of TSNj
by Ui (using message - meaning and nonce

verification rule):

•
Ui| ≡ �(TSNj

), Ui| ≡ SNj | ∼ TSNj

Ui| ≡ SNj | ≡ TSNj

That is, if Ui believes TSNj
is fresh and Ui believes SNj once said TSNj

,
then Ui believe SNj believes on TUi



50 A.K. Maurya and V.N. Sastry

Fig. 2. Result obtained using AVISPA tool.

4. Verification of the authenticity of the message m1 by GWN (using message
- meaning rule)

•
GWN | ≡ Ui

LOr(Ui)� GWN,GWN � <m1>X
′
Ui

GWN | ≡ Ui| ∼ m1

That is, if GWN believes the secret LOrUi is shared with Ui and sees
<m1>XU′

i
, then GWN believe Ui once said m1

5. Verification of the authenticity of the message m2 by SNj (using message -
meaning rule)

•
SNj | ≡ GWN

LOr(SNj)� SNj , SNj � <m2>KGSNj

SNj | ≡ GWN | ∼ m2

That is, if SNj believes the secret LOrSNj is shared with GWN and sees
<m2>KGSNj

, then SNj believe GWN once said m2

6. Verification of the authenticity of the message m3 by Ui (using message -
meaning rule)

•
Ui| ≡ GWN

LOr(Ui)� Ui, Ui � <m3>LOr(Ui)

Ui| ≡ GWN | ∼ m3
That is, if Ui believes the secret LOrUi is shared with GWN and sees
<m3>LOrUi

, then Ui believe GWN once said m3



User Authentication Scheme for WSNs and Internet of Things 51

Table 6. Notations used in verification using BAN logic

Notations Description

Pr, Qr Principals like Ui, GWN, and SNj

St Statements like TUi , TGWN , α, β etc.

K Secret key or data like KGSNj , X
′
Ui

etc.

Pr| ≡ St Pr believes st, or Pr is permitted to believe st

Pr � St Pr has received a data containing St and it can read or repeat St

Pr| ∼ St Pr once said St. Pr sent a data containing St and it could be a fresh or
old data

�(St) The St is fresh and it has not been sent before

Pr

X
′
Ui� Qr St is a secret data and it is only known to Pr or Qr and perhaps to the

trusted principals

<St>St1 St1 is a secret and its presence gives the identity of whoever generates
<St>St1

Table 7. Comparisons of protocols based on security features

Security
feature

Yoo et al.
[11]

Sun et al.
[16]

Xue et al.
[12]

Jiang et al.
[13]

Althobaiti
et al. [15]

Ours

SF1 No Yes No Yes Yes Yes

SF2 Yes No No No No Yes

SF3 No No No No No Yes

SF4 No No No No Yes Yes

SF5 No No No No No Yes

SF6 Yes Yes No No Yes Yes

Note: SF1, SF2, SF3, SF4, SF5 are the security features. F1 resist the attack based
on stolen smart card, SF2 indicates the secure password updating, SF3 represents
secure bio-metric information updating, SF4 indicates non-repudiation, SF5 offers
formal security analysis, SF6 represents no privileged-insider attack

6 Performance Comparison

Table 7 shows the comparison of our proposed protocol based on security fea-
tures, and it indicates that our protocol is relatively more secure compared to
the existing protocols. Table 8 represents the computational cost comparison,
it shows that our scheme provides better computational cost on all the three
entities i.e., Ui, GWN and SNj .



52 A.K. Maurya and V.N. Sastry

Table 8. Comparison of protocols based on computational performance

Scheme Computational Overhead on Ui, SNj , GWN

Ui SNj GWN

Yoo et al.’s [11] 7 th 2 th 11th

Sun et al.’s [16] 2th 2 th 7 th

Xue et al.’s [12] 12th 6th 17th

Jiang et al.’s [13] 8th 5 th 11th

Althobaiti et al.’s [15] 2 tbfe + 2tenc/tdec + 6th tdec + tmac + th tenc + tmac + 4th

Das’s [14] 2tfe + tenc + 10th tdec + 2th 2 tenc/tdec + 5th

Ours 2tfe + 9th + tm 2th + tm 5th
Note: th, tfe, tenc, tdec, tbfe, tmac indicates the time required to perform secure hashing,
Gen(.)/ Rep(.), encryption, decryption, bio-metric feature extraction and message
authentication code operation, respectively.

7 Conclusion

In this paper, we first discussed the security issues involve in sensor nodes of
WSNs and proposed a user validation, session key sharing scheme using smart
card, fuzzy extractor, matrix decomposition operation. Afterward, we performed
the security analysis and verification using a widely accepted and robust tool
such as AVISPA and Scyther. To ensure the correctness of the security features
involves in the protocol, we performed the logical verification using BAN logic.
Finally, we did the comparative analysis of our protocol with other existing
protocol based on security features and computational overhead which indicates
that our protocol is secure and efficient.

References

1. Akyildiz, I.F., Su, W., Sankarasubramaniam, Y., Cayirci, E.: Wireless sensor net-
works: a survey. Comput. Netw. 38(4), 393–422 (2002)

2. Watro, R., Kong, D., Cuti, S.F., Gardiner, C., Lynn, C., Kruus, P.: TinyPK: secur-
ing sensor networks with public key technology. In: ACM Workshop on Security
of Ad Hoc and Sensor Networks, Washington DC, USA, pp. 59–64. ACM Press
(2004)

3. Wong, K.H., Zheng, Y., Cao, J., Wang, S.: A dynamic user authentication scheme
for wireless sensor networks. In: Proceedings of 2006 IEEE International Conference
on Sensor Networks, Ubiquitous, and Trustworthy Computing, Taichung, Taiwan,
pp. 1–9 (2006)

4. Tseng, H.R., Jan, R.H., Yang, W.: An improved dynamic user authentication
scheme for wireless sensor networks. In: Proceedings of IEEE Global Telecommu-
nications Conference (GLOBECOM 2007), Washington, DC, USA, pp. 986–990
(2007)

5. Lee, T.H.: Simple Dynamic user authentication protocols for wireless sensor net-
works. In: The Second International Conference on Sensor Technologies and Appli-
cations, pp. 657–660 (2008)



User Authentication Scheme for WSNs and Internet of Things 53

6. Ko, L.C.: A novel dynamic user authentication scheme for wireless sensor networks.
In: IEEE International Symposium on Wireless Communication Systems (ISWCS
2008), pp. 608–612 (2008)

7. Vaidya, B., Silva, J.S., Rodrigues, J.J.: Robust dynamic user authentication scheme
for wireless sensor networks. In: Proceedings of the 5th ACM Symposium on QoS
and Security for Wireless and Mobile Networks (Q2SWinet 2009), Tenerife, Spain,
pp. 88–91 (2009)

8. Das, M.L.: Two-factor user authentication in wireless sensor networks. IEEE Trans.
Wireless. Comm. 8, 1086–1090 (2009)

9. Khan, M.K., Alghathbar, K.: Cryptanalysis and security improvements of “two-
factor user authentication in wireless sensor networks”. Sensors 10(3), 2450–2459
(2010)

10. Yuan, J., Jiang, C., Jiang, Z.: A biometric-based user authentication for wireless
sensor networks. Wuhan Univ. J. Nat. Sci. 15(3), 272–276 (2010)

11. Yoo, S.G., Park, K.Y., Kim, J.: A Security-performance-balanced user authentica-
tion scheme for wireless sensor networks. Int. J. Distrib. Sens. Netw. 2012, 1–11
(2012)

12. Xue, K., Ma, C., Hong, P., Ding, R.: A temporal-credential-based mutual authen-
tication and key agreement scheme for wireless sensor networks. J. Netw. Comput.
Appl. 36(1), 316–323 (2013)

13. Jiang, Q., Ma, J., Lu, X., Tian, Y.: An effcient two-factor user authentication
scheme with unlinkability for wireless sensor networks. Peer-to-Peer Netw. Appl.
8, 1070–1081 (2014). doi:10.1007/s12083-014-0285-z

14. Das, A.K.: A secure and effective biometric-based user authentication scheme for
wireless sensor networks using smart card and fuzzy extractor. Int. J. Commun.
Syst. (2015). doi:10.1002/dac.2933

15. Althobaiti, O., Al-Rodhaan, M., Al-Dhelaan, A.: An efficient biometric authen-
tication protocol for wireless sensor networks. Int. J. Distrib. Sens. Netw. 2013,
1–13 (2013). Article ID 407971

16. Sun, D.Z., Li, J.X., Feng, Z.Y., Cao, Z.F., Xu, G.Q.: On the security and improve-
ment of a two-factor user authentication scheme in wireless sensor networks. Pers.
Ubiquit. Comput. 17(5), 895–905 (2013)

17. Dodis, Y., Reyzin, L., Smith, A.: Fuzzy extractors: how to generate strong keys
from biometrics and other noisy data. In: Cachin, C., Camenisch, J.L. (eds.)
EUROCRYPT 2004. LNCS, vol. 3027, pp. 523–540. Springer, Heidelberg (2004).
doi:10.1007/978-3-540-24676-3 31

18. Choi, S.J., Youn, H.Y.: An efficient key pre-distribution scheme for secure dis-
tributed sensor networks. In: Enokido, T., Yan, L., Xiao, B., Kim, D., Dai,
Y., Yang, L.T. (eds.) EUC 2005. LNCS, vol. 3823, pp. 1088–1097. Springer,
Heidelberg (2005). doi:10.1007/11596042 111

19. Pathan, A.K., Dai, T.T., Hong, C.S.: An efficient LU decomposition-based key pre-
distribution scheme for ensuring security in wireless sensor networks. In: Proceed-
ings of The Sixth IEEE International Conference on Computer and Information
Technology, CIT 2006, p. 227 (2006)

20. Dolev, D., Yao, A.: On the security of public key protocols. IEEE Trans. Inf. Theor.
29(2), 198–208 (1983)

21. AVISPA. http://www.avispa-project.org/
22. Cremers, C.: Scyther - semantics and verification of security protocols. Ph.D. dis-

sertation, Eindhoven University of Technology, Netherlands (2006)
23. Burrows, M., Abadi, M., Needham, R.M.: A logic of authentication. Proc. Roy.

Soc. Lond. 426, 233–271 (1989)

http://dx.doi.org/10.1007/s12083-014-0285-z
http://dx.doi.org/10.1002/dac.2933
http://dx.doi.org/10.1007/978-3-540-24676-3_31
http://dx.doi.org/10.1007/11596042_111
http://www.avispa-project.org/


Detection of Zeus Bot Based on Host
and Network Activities

Ramesh Kalpika(B) and A.R. Vasudevan

TIFAC-CORE in Cyber Security, Amrita University, Coimbatore, India
kalpikar14@gmail.com

Abstract. Botnet is a network of host machines infected by malicious
code. Infected machines are bots that perform illegitimate activities with
the help of bot master who has remote control over the bot machine.
The infected bot machine performs actions such as key logging, informa-
tion harvesting, and Denial of Service. The challenge is to identify the
Zeus bot activity by monitoring the network and host activities. Mon-
itoring the network activities leads to identification of communication
patterns between bot and outside network. Monitoring host activities
can effectively identify abnormal host activities. In this paper we pro-
pose a methodology to analyse and identify the presence of Zeus bot.
Analysis is performed by observing the host and network activities of
a machine. Based on the analysis we propose a system that consists of
three modules, viz: Folder monitoring, Network monitoring, and API
Hooks monitoring. The folder monitoring module monitors the folder
in which the Zeus bot executable gets stored. The network monitoring
module deals with capturing the host network lively and compares with a
predefined pattern which consists of the communication pattern between
the bot and its master. The pattern is fixed after monitoring the network
of the host machine before and after infection. The API hook monitoring
module monitors the API hooks used for stealing the credentials. Finally
the Integrated decision module is triggered which decides whether the
system is infected by Zeus bot based on three conditions.

Keywords: Zeus bot · Communication pattern · Bot executable · API
hook

1 Introduction

Bots are one of the crucial hazards in the field of internet. The main feature
that differentiates the bot and other types of malware is the command and
control channel through which the Zeus bot is controlled by its bot master. The
commands vary depending on the motivation of the botnet. The motive of Zeus
bot is to steal user credentials and send it to its bot master. Zeus botnets use
keystroke logging and form grabbing attacks that target bank data, account
logins, and private user data. The information gathered by Zeus botnet are used
for online identity theft, credit card theft, and more. The functionalities of the
Zeus bot are as follows:
c© Springer Nature Singapore Pte Ltd. 2017
S.M. Thampi et al. (Eds.): SSCC 2017, CCIS 746, pp. 54–64, 2017.
https://doi.org/10.1007/978-981-10-6898-0_5



Detection of Zeus Bot Based on Host and Network Activities 55

• Copies the original executable into another location, executes the copied file
and deletes the original.

• The config.bin file is downloaded from the bot master and the Zeus bot exe-
cutes it.

• Steal the user credential from the infected system.
• Send the stolen data back to the bot master.

The following are the contributions in this paper:

• Analysis of Zeus bot infected system.
• Proposing a detection methodology for Zeus bot detection.

In Sect. 2 the works related to host based bot detection are explained. Section 3
describes the Zeus bot and its activities. The proposed system for host based
Zeus bot detection is explained in Sect. 4. Section 5 explains the experimental
result and the conclusion is explained in Sect. 6.

2 Related Works

BotSwat [1] is used to differentiate bot programs and benign programs in a host
system. It is done by monitoring the commands executed in the host machine.
The final judgment is done by checking whether the input data of the executed
command in the host is received from the network or not. Generally C&C channel
is used by the botmaster to send commands to the bot infected host. Thus
monitoring the network of the host system can detect the bot at the host level.

BotTracer [2] is used to detect bots using three stages. A bot has three fea-
tures on its onset: Automatic startup of bot without any user action, establish-
ment of command and control channel with its bot master, and local or remote
attacks by the bot. Bot-Tracer is used to detect the using these three phases.
Capturing the three features during the bot execution, the bot is detected.

BotTee [3] the method captures and analyses runtime call behaviour of the
bot during its execution. It recognizes the behavior triggered by every command,
irrespective of the syntax of different bot protocols. The working is based on the
interception Windows API system calls for a list of calls that are popular. When
a bot starts executing, the API calls are compared to a set of call patterns.

Detection of botnets using combined host and network-level information is
explained in [4]. The host level information consists of registry, file system, and
network stack. The network level information consists of network behavior fac-
tors by analyzing the net flow of the system. The host and network information
are used to determine the infected host through clustering and correlation.

EFFORT [5] proposes an approach to correlate information from different
host and network-level and design an architecture to coordinate the modules
for monitoring. Implementation and evaluation is done on real-world benign
and malicious programs. The five modules: HumanProcessNetwork correlation
analysis module, Process reputation analysis module, System resource exposure
analysis module, Network information trading analysis module, and Correlation
engine were designed for detection of bot.



56 R. Kalpika and A.R. Vasudevan

Analysis of overhead, and approaches to evaluate host based bot detection
[6] classifies the typical approaches of host-based bot detection. Then, based
on the analysis of aims and implementations of detection approaches, three
major factors affecting the overhead of approaches were identified. Influence of
the obtained factors via various experiments on real systems is then evaluated.
Finally, several suggestions which are able to decrease the overhead of host-based
bot detection approaches are proposed.

A java based detection tool [7] is used to detect botnets using HTTP protocol.
The network traffic of the infected system were captured and filtered. Filtering
is based on MAC address, Port number, Number of requests, Packet size and IP
address. These filtered data are compared with the predefined rules. When the
filtered data matches the rules then the system is said to be infected by bot.

Machine learning algorithms to probe over peer to peer botnet [8] focuses on
the machine learning algorithms. Analysis is done on various algorithms available
such as random forest, multilayer perceptron and k-nearest neighbour classifier.
The performance of these algorithms are noted after which the best algorithm
is chosen for peer to peer botnet detection.

A brief description about the various ways to identify a bot infected system
is provided in the related work. However, detection of bot at the host level seems
to be an efficient way of detection. The task is to detect Zeus bot at the host
level based on its functionalities in the host system.

3 Zeus Bot and Its Activities

A bot can be injected into a system through various attacks like drive by down-
load, phishing, click jacking, email spamming etc. When the system is compro-
mised by the bot, it executes the normal actions and the commands sent by the
bot master. Our focus is on Zeus bot, hence the command sent by the bot master
is to steal and send the user credentials.

Figure 1 represents the normal activity that takes place when the user
accesses a banking website from a benign system. The user requests for the
webpage and the bank server responds to the same and asks for user credentials.
When the user submits the credentials the server verifies and provides access to
that user.

Figure 2 describes the bot infection scenario. The bot executable is down-
loaded by the user through drive by download. After infection the configuration
file is downloaded. Now the system is compromised. When the user accesses bank
website and enters the login credentials or card details, the Zeus bot steals them
and sends to the bot master. Later, the bot master can access the user’s account
using the stolen credentials.

4 Proposed System

Based on the analysis performed on the functionalities of the Zeus bot, the
following modules have been identified for detection of Zeus bot:



Detection of Zeus Bot Based on Host and Network Activities 57

Fig. 1. Normal activity

Fig. 2. After bot infection

(1) Module - 1: Folder monitoring
(2) Module - 2: Host Network monitoring
(3) Module - 3: API Hooks monitoring

Figure 3 provides a diagrammatic representation for the work flow of the pro-
posed system. The modules are designed based on the functionalities of the Zeus
bot. Once the system starts booting the Folder monitoring module is started.
When the executable file is found, the Host Network monitoring module and



58 R. Kalpika and A.R. Vasudevan

API hook monitoring module are triggered, and also value true is passed into
Integrated Decision module. The captured network traffic is compared with pre-
defined patterns. If the network traffic matches the Configuration file download
pattern and the HTTP POST message pattern, the value true is passed on to the
Integrated decision module. The API hook monitor runs parallel to Host Net-
work monitoring module. If the monitored API hooks match with the API hooks
used by Zeus bot, (for stealing credentials) value true is passed into Integrated
decision module. When all the three modules conditions are true in Integrated
decision module, then the host system is classified as infected by Zeus bot.

Fig. 3. Working of proposed system

The working of each module is explained in detail.

4.1 Module 1 - Folder Monitoring

In this module the folder in which the bot executable stores itself is monitored.
After analyzing the Zeus bot it was found that the bot executable creates a
folder with a random name inside Roaming folder. Inside this folder the copy of
the original executable is stored with a random name and other folders which are
benign did not have any .exe extension files. Thus by monitoring the Roaming
folder, the executable file can be traced.



Detection of Zeus Bot Based on Host and Network Activities 59

4.2 Module 2 - Host Network Monitoring

This module has two patterns. First pattern is checking the network traffic for
config.bin download pattern. Second pattern is checking for HTTP POST mes-
sage pattern.

Pattern 1: Configuration File Download Pattern
Once the Zeus bot executable is executed the Zeus bot downloads the config-
uration file from the bot master. There is a constant communication pattern
observed between the Zeus bot and the bot master for downloading the config-
uration file.

Figure 4 depicts the communication pattern for configuration file download
between the Zeus bot client and the bot master. The connection is established
through three way handshake initially. The host system infected by Zeus bot
sends a request for downloading the configuration file from the bot master. The
bot master sends the requested configuration file to the Zeus bot infected system.

Fig. 4. Configuration file download communication pattern

Pattern 2: HTTP POST Message Pattern
The credentials are sent to the bot master after stealing. By monitoring the
POST messages of the host network the communication pattern between the
Zeus bot and its master are traced.

Figure 5 shows the diagrammatic representation for the communication pat-
tern for sending the stolen credentials to the bot master. Initial connection is
established through a three way handshake. After which the client sends the
stolen credentials to the master through HTTP POST request. After receiving
the credentials the bot master acknowledges with an ACK packet.

4.3 Module 3: API Hook Monitoring

Zeus bot steals the credentials, when the user accesses a page requesting for cre-
dentials or card details. The Zeus bot makes use of API hooks to steal the creden-
tials. The various API hooks are ntdll.dll, kernel32.dll, wininet.dll, ws2 32.dll,



60 R. Kalpika and A.R. Vasudevan

Fig. 5. Communication pattern for HTTP POST message

and user32.dll. By monitoring the API hooks used by the currently running
processes and comparing them with the list of API hooks used by Zeus bot we
can decide if the currently running process is the Zeus bot process.

4.4 Integrated Decision Module

The integrated decision module checks for three conditions: if executable file
is found in Roaming folder, network traffic matches pattern of configuration
file download and HTTP POST message, and match of API hooks with the
predefined list. If all three conditions are satisfied, an alert message for the
presence of Zeus bot is triggered. If at least one of the three conditions is not
satisfied then the system is considered a benign system.

4.5 Implementation

Figure 6 is the experimental setup constructed in lab environment. There are
two LAN connections. LAN 1 consists of the bot masters server. LAN 2 has
three host machines in which one is infected by the Zeus bot. The other two
are benign hosts. The host systems are windows systems. Host 1 is infected
by Zeus bot through drive by download attack. After the system is infected the
first communication takes place with the bot master requesting for configuration
file. After obtaining the configuration file the master can send commands to the
infected system. The commands are actions performed for malicious purpose.
All these actions take place in the background and the user is not aware about
the system being compromised.

To monitor the folder in which the bot executable is used a code is written.
The code continuously monitors the Roaming folder. The folder is monitored for
the presence of an executable file.

Next the host network is monitored with help of wireshark. Logs are extracted
once in 5 min which are saved as pcap files. Then these files are converted into



Detection of Zeus Bot Based on Host and Network Activities 61

Fig. 6. Experimental test bed

.csv files. With the help of coding we compare the obtained .csv file with another

.csv file having the predefined communication pattern for Zeus configuration file
download or HTTP POST message.

Java code is written to monitor the API hooks of the currently running
processes. A comparison is done with the list that contains the API hooks that
are used by Zeus bot to steal credentials.

5 Results and Discussion

A real time monitoring of host system infected by Zeus bot is done. The following
results were obtained after monitoring:

When the Zeus bot executable is executed it disappears from the source loca-
tion and stores itself in the location C:\User\CurrentUser\Appdata\Roaming.
Inside the Roaming folder the Zeus bot creates a folder with random name and
stores the Zeus bot executable with a random name inside it. The proposed
Folder Monitoring module identifies the presence of exe files in Roaming folder.

The first action after infection of Zeus bot is downloading the config.bin file
from the bot master. The config.bin download action takes place in the initial
phase of setting up the connection between the infected system and the master.

The HTTP POST message is used by the infected system to send the stolen
credentials and screenshot of user screen to the bot master.

The fields extracted from network traffic are source and destination IP
addresses, Protocol and Description. The predefined pattern consists of the Pro-
tocol and Description fields saved as a csv file. The Protocol and Description
fields of the csv file, consisting of the lively captured network traffic is com-
pared with the csv file containing the predefined patterns. When the two csv



62 R. Kalpika and A.R. Vasudevan

Table 1. Functionalities of API hooks used by Zeus bot

Name of DLL APIs involved Functionality of the API

ntdll NtCreateUserProcess Used to create the bot executables
process with a random name

kernel32 GetFileAttributes Retrieves system attributes to the
folder created by the Zeus bot

wininet HTTPSendRequest Used to get configuration file and
send the stolen credentials

wininet InternetReadFile Reads data about currently opened
url

wininet InternetQueryDataAvailable Asks the server for the amount of
stolen credentials available

wininet HTTPQueryInfo Retrieves the header information of
the HTTP requests

ws2 32 Closesocket Closes the socket opened for
connection establishment

ws2 32 Send Used to send the stolen data
through the socket

user32 OpenInputDesktop Opens the desktop screen to take
screenshot

user32 GetWindowDC Used to retrieve device context of
the entire window to take
screenshot

user32 GetCursorPos Retrivies mouse cursor position in
screen coordinates to monitor click
action

user32 SetCursorPos Moves the cursor to the required
coordinates to take screenshot

user32 SetCapture Sets the mouse capture action to
the current screen to take
screenshot

user32 GetCapture Used to monitor the mouse capture
action to steal data

user32 GetClipboardData Collects the data stored in the
clipboard

crypt32 PFImportCertStore Collects the certificates of websites
used for online banking

nspr4 PR OpenTCPSocket Creates a new tcp socket only for
the bot master

nspr4 PR Read Reads the byte values from the file
used for saving stolen data

nspr4 PR Write Inserts a buffer of data into the file
created by bot



Detection of Zeus Bot Based on Host and Network Activities 63

files matched, the corresponding destination address was noted and API hook
monitoring was triggered.

The Host Network monitoring module successfully captured the network traf-
fic automatically, compared with the predefined patterns, and passed value true
to the Integrated decision module and extracted the destination IP address which
was the IP address of the bot master.

API Hook Monitoring:
Table 1 gives the contents of the various dll processes and Application Program
Interfaces used for stealing the credentials from the Zeus bot infected system.

After monitoring all the three modules individually the Integrated module
checked for three conditions: presence of executable file in Roaming folder, pat-
tern matching for network traffic with predefined communication pattern, and
API hooks of running processes matching the predefined list of API hooks used
by Zeus bot. When all three conditions were true an alert message was triggered
with the IP address of the bot master. Immediately after this the bot executable
was deleted from the Roaming folder.

6 Conclusion

Zeus bot can be detected using a combination of three prolonged approach
by monitoring the host and network activities. The main contribution of the
research work includes specific Folder monitoring, Network traffic monitoring,
API Hook monitoring, and an Integrated Decision making module in order to
identify the executable as Zeus bot or not. It was seen that presence of .exe file
in Roaming folder, keeping track of HTTP GET and HTTP POST messages,
and the monitoring of nineteen API hooks were the necessary conditions in order
to identify and confirm the presence of Zeus bot activity in a host system. The
detection was performed by monitoring the three modules in real time.

References

1. Stinson, E., Mitchell, J.C.: Characterizing bots’ remote control behavior. In:
Hämmerli, B.M., Sommer, R. (eds.) DIMVA 2007. LNCS, vol. 4579, pp. 89–108.
Springer, Heidelberg (2007). https://doi.org/10.1007/978-3-540-73614-1 6

2. Liu, L., Chen, S., Yan, G., Zhang, Z.: BotTracer: execution-based bot-like mal-
ware detection. In: Wu, T.-C., Lei, C.-L., Rijmen, V., Lee, D.-T. (eds.) ISC 2008.
LNCS, vol. 5222, pp. 97–113. Springer, Heidelberg (2008). https://doi.org/10.1007/
978-3-540-85886-7 7

3. Park, Y., Reeves, D.S.: Identification of bot commands by runtime execution mon-
itoring. In: Annual Computer Security Applications Conference, ACSAC 2009, pp.
321–330. IEEE, December 2009

4. Zeng, Y., Hu, X., Shin, K.G.: Detection of botnets using combined host and network-
level information. In: 2010 IEEE/IFIP International Conference on Dependable Sys-
tems and Networks (DSN), pp. 291–300. IEEE, June 2010

5. Shin, S., Xu, Z., Gu, G.: EFFORT: efficient and effective bot malware detection. In:
2012 Proceedings of INFOCOM, pp. 2846–2850. IEEE, March 2012

https://doi.org/10.1007/978-3-540-73614-1_6
https://doi.org/10.1007/978-3-540-85886-7_7
https://doi.org/10.1007/978-3-540-85886-7_7


64 R. Kalpika and A.R. Vasudevan

6. Ji, Y., Li, Q., He, Y., Guo, D.: Overhead analysis and evaluation of approaches to
host-based bot detection. Int. J. Distrib. Sensor Netw. (2015)

7. Thejiya, V., Radhika, N., Thanudhas, B.: J-Botnet detector: a java based tool for
HTTP botnet detection. Int. J. Sci. Res. (IJSR) 5(7), 282–290 (2016)

8. Bharathula, P., Mridula Menon, N.: Equitable machine learning algorithms to probe
over P2P botnets. In: Das, S., Pal, T., Kar, S., Satapathy, S.C., Mandal, J.K. (eds.)
Proceedings of the 4th International Conference on Frontiers in Intelligent Comput-
ing: Theory and Applications (FICTA) 2015. AISC, vol. 404, pp. 13–21. Springer,
New Delhi (2016). https://doi.org/10.1007/978-81-322-2695-6 2

https://doi.org/10.1007/978-81-322-2695-6_2


An Asymmetric Key Based Efficient
Authentication Mechanism for Proxy Mobile

IPv6 Networks

Sandipan Biswas1(B), Pampa Sadhukhan2, and Sarmistha Neogy3

1 Department of Computer Science and Engineering,
Dumkal Institute of Engineering and Technology, Murshidabad, India

sandipan diet@rediffmail.com
2 School of Mobile Computing and Communication,

Jadavpur University, Kolkata, India
pampa.sadhukhan@ieee.org

3 Department of Computer Science and Engineering,
Jadavpur University, Kolkata, India

sarmisthaneogy@gmail.com

Abstract. Proxy Mobile IPv6 (PMIPv6), a network-based localized
mobility management protocol, provides efficient mobility management
support to mobile nodes without their participation in mobility-related
signaling. However, PMIPv6 suffers from inefficient authentication pro-
cedure during hand-off. Very few work on PMIPv6 handover procedures
consider the security threats to PMIPv6 network and most of them use
symmetric key based authentication. In this paper we propose an asym-
metric key based authentication cum handoff technique for PMIPv6 net-
works. The simulation results show that our proposed authentication
cum PMIPv6 handoff technique outperforms the other existing authen-
tication procedure based PMIPv6 handoff technique in terms of handover
latency as well as signaling cost.

Keywords: Proxy Mobile IPv6 (PMIPv6) · Authentication · Mobile
access gateway (MAG) · AAA server · Handover latency

1 Introduction

Proxy Mobile IPv6 (PMIPv6) [1] was proposed as a network-based localized
mobility management protocol by the Internet Engineering Task Force (IETF)
to provide mobility management support to mobile nodes without their partic-
ipation in mobility-related signaling. Existing host-based mobility management
protocol mobile IPv6 (MIPv6) [2,3] is not suitable for real-time applications due
to its long hand off delay. The major advantages of PMIPv6 over MIPv6 are as
follows.

c© Springer Nature Singapore Pte Ltd. 2017
S.M. Thampi et al. (Eds.): SSCC 2017, CCIS 746, pp. 65–78, 2017.
https://doi.org/10.1007/978-981-10-6898-0_6



66 S. Biswas et al.

(i) PMIPv6 does not need any modification in the protocol stack of IPv6
devices.

(ii) PMIPv6 eliminates tunneling overhead over the wireless link.
(iii) PMIPv6 also reduces signaling overhead as the mobile node (MN) does not

need to participate in mobility-related signaling.

The architecture of PMIPv6 network which is shown in Fig. 1, comprises three
entities: mobile access gateway (MAG), local mobility anchor (LMA) and
authentication, authorization and accounting (AAA) server. The MAG detects
the attachment and detachment of the mobile nodes to the access network. It
also accomplishes mobility-related signaling on behalf of the MN when the MN
switches from one MAG to another MAG in the same localized mobility domain
(LMD). The LMA provides similar functionalities just like the home agent (HA)
in MIPv6 and it also maintains the binding cache entries for currently registered
MNs. PMIPv6 handoff procedure that is triggered by the MNs movement from
one access network to another access network, is shown in Fig. 1.

Fig. 1. Network architecture of proxy mobile IPv6 protocol.

Deregistration phase begins as the serving MAG (MAG1) detects MNs
detachment from its access network and then, the serving MAG sends a DeReg
proxy binding update (PBU) message to the LMA. The LMA deletes the binding



An Asymmetric Key Based Efficient Authentication Mechanism for PMIPv6 67

cache entry for the corresponding MN. When the MN attaches to a new MAG,
the AAA server executes the authentication procedure and uses MNs identity
(i.e., MN-ID) to authenticate the MN using security protocols deployed in the
access network. The new MAG (MAG2) sends PBU registration message to the
LMA for updating MNs current location within the network. Upon receiving
such message, LMA sends back proxy binding acknowledgement (PBA) message
that include MNs home network prefix (HNP) to the new MAG. The LMA then
creates a binding cache entry for the MN and sets up a bi-directional tunnel
to the new MAG (MAG2). The new MAG now sends the router advertisement
(RA) message to the MN and then acts as the serving MAG for the MN. Data
packets destined for the MN comes from the correspondent node (CN) to the
MN via the bi-directional tunnel between MAG2 and the LMA.

The hand off delay for PMIPv6 is substantially reduced compared to MIPv6.
However, PMIPv6 handover procedure incorporates some inefficient authentica-
tion mechanism [5,11]. On the other hand, most of the research work on PMIPv6
[4–7] attempt to improve the PMIPv6 handover procedure by decreasing the
hand-off delay. Very few works consider security threats to PMIPv6 network. The
researchers in [8] propose a symmetric key based secure fast handover scheme
called SF-PMIPv6 that reduces handover delay compared to the existing authen-
tication schemes [5,11] for PMIPv6 networks and resolves the packet loss problem.
However, compromising the key by a single MAG in SF-PMIPv6 may be a critical
security threat to the PMIPv6 network as authentication among various network
entities in SF-PMIPv6 is based on a single pre-shared symmetric key between all
the MAGs and AAA server. Thus, in this paper we propose an asymmetric key
based efficient authentication scheme for PMIPv6 handover procedure to reduce
handover latency compared to other existing authentication based PMIPv6 han-
dover procedures. This paper has been organised as follows. Literature review is
done in Sect. 2. Section 3 presents our proposed authentication scheme AKEAuth
and the integrated AKEAuth-PMIPv6 handoff technique. Section 4 provides secu-
rity analysis of our proposed scheme and Sect. 5 presents the numerical analysis.
Finally we conclude in Sect. 6 and presents our future goal.

2 Related Work

The authors in [9,10] have proposed an AAA-Infrastructure based authentica-
tion scheme for the MNs. However, their proposed scheme is weak in terms of
security and it incurs huge packet loss. A packet loss-less PMIPV6 (PL-PMIPv6)
has been proposed in [5] that prevents packet loss using buffer mechanism during
handoff. But this approach employs some inefficient authentication procedure.
A certificate-based authentication scheme for PMIPv6 network is proposed in
[11]. This scheme suffers from packet loss problem and lengthy handover latency.
SF-PMIPv6 proposed in [8], employs a local authentication scheme to reduce the
authentication delay. It uses piggyback scheme to reduce the signaling cost and
implements a pre-handover phase to reduce the handover latency compared to
the above mentioned schemes proposed for PMIPv6 networks. It also uses double



68 S. Biswas et al.

buffer mechanism to resolve the packet loss problem. However, the authentica-
tion scheme in SF-PMIPv6 is less secure as authentication among the AAA
server and all the MAGs is based on a single pre-shared symmetric key. The
secure password authentication mechanism (SPAM) proposed for PMIPv6 han-
dover procedure proposed in [12] involves a complicated authentication proce-
dure that executes two separate mutual authentications. One is between the MN
and the MAG and the other is between the MAG and the LMA. Although the
integration of SPAM along with the bicasting scheme into PMIPv6 handover
procedure [12] can resolve the packet loss as well as out-of-sequence problems
but it increases over-all handover latency compared to other existing techniques.
In addition, SPAM stores the authentication related parameters of a user into
a smart card which is highly susceptible to attack by adversary when the user
inserts the smart card along with id and password into card reader in order
to access mobility related services. Another secret key based mutual authen-
tication mechanism which uses separate secret key for authentication between
each different pair of network entities, is proposed in [14]. However, maintain-
ing a separate key for each MAG by the LMA would obviously create a huge
burden on the LMA. On the other hand, researchers in [15] have pro-posed a
public key based authentication mechanism called PKAuth for PMIPv6 net-
works that comprise multiple domains considering both inter-PMIPv6-domain
handover as well as intra-PMIPv6 handover. However, all the PMIPv6 network
entities and the MNs in PKAuth use certificates to distribute their public keys
among themselves rather than relying on the AAA server. In this paper we pro-
pose an efficient authentication scheme which is to be integrated with PMIPv6
handover procedure to reduce overall handover latency.

3 Proposed Authentication Mechanism for PMIPv6
Handover Procedure

This section at first describes our proposed authentication scheme and then
presents its seamless integration with PMIPv6 handoff technique to prevent
various attacks in PMIPv6 networks. Our proposed authentication mechanism
is named as asymmetric key based efficient authentication (AKEAuth)
scheme for PMIPv6 handover procedure.

3.1 System Setup Phase

For security parameter k, the AAA server and MAG generate the system para-
meters as given below.

1. Set a finite field Fp, where p is a k-bit prime.
2. Define an elliptic curve E : y2 = x3 + ax + b mod p over Fp, where a, b ∈

Fp, p ≥ 3, 4a3 + 27b2 �= 0 mod p.
3. Set a public point P with prime order q over E, and generate a cyclic additive

group G of order q by point P.



An Asymmetric Key Based Efficient Authentication Mechanism for PMIPv6 69

4. Set a random number sZq∗ as the master key and set Ppub = s.P as the
system public key.

5. Set four cryptographic hash functions H1 : {0, 1}∗
XG → Z∗

q ,
H2 : {0, 1}∗

XG2 → {0, 1}k
H3 : {0, 1}∗

XG3 → {0, 1}k
And H4 : {0, 1}∗

XG4 → {0, 1}k
6. Represent the system parameters params= (Fq, E,G, P, Ppub,H1,H2,H3,H4)

while keeping s secret.

3.2 Proposed Asymmetric Key Based Efficient Authentication
(AKEAuth) Scheme

The main feature of the proposed AKEAuth scheme is the use of asymmetric
key rather than symmetric key in authentication process to provide high security
in PMIPv6 networks. The proposed authentication procedure consists of two
parts. The first part is initial authentication procedure between the AAA server
and the MN. The second part is authentication procedure performed locally
between the MN and the MAG. Table 1 lists the notations that are used in the
proposed authentication scheme.

Table 1. Notations

Identification Description

q A large prime number

G A cyclic additive group of order q

P The generator of G

Z∗
q (1, 2,....., q− 1)

SKMN A secret number chosen by MN

IDMN The identity of the MN

rAAA A random number chosen by AAA server

CIDMN The dynamic identity of the MN

(SMN , SKMN ) The private key of the MN

(PKMN , CMN ) The public key of the MN

s The private key of the MAG

Ppub The system public key

r1MN , r2MN Random numbers chosen by MN

3.2.1 Initial Authentication Procedure
Before joining a localized mobility domain, the MN needs to accomplish initial
authentication with the AAA server via a secure channel.



70 S. Biswas et al.

The initial authentication procedure between the MN and the AAA server is
described below.

(i) The mobile node, at first, chooses a secret number denoted as SKMN , where
SKMN ∈ Zq∗ and computes CMN = SKMNP Afterward, the MN sends
its Id (IdMN ) and newly computed value CMN , i.e., (IdMN , CMN ) to the
AAA server.

(ii) Upon receiving (IdMN , CMN ) from the MN, AAA server selects a random
number rAAA where rAAA ∈ Z∗

q and then computes the following values:
RAAA = rAAA + CMNP And dAAA = (H1(IDMN , RAAA)s − rAAA) mod
q. It also stores the ID of MN i.e. IdMN for future authentication required
by MAG of the same LMD. Now, the AAA server sends those two newly
computed values (RAAA, dAAA) to the MN .

(iii) After receiving (RAAA, dAAA) from the AAA server, MN computes SMN =
(dAAA −SKMN )mod q. And PKMN = sMN .P Afterwards MN uses the set
(SMN , SKMN ) as private key and (PKMN , CMN ) as public key for future
authentication process.

3.2.2 Authentication Procedure Between the MN and the MAG
When the MN joins LMD or changes its location within the LMD, i.e., the MN
moves from one MAGs access network to another MAGs access network, new
MAG collects IDMN from the AAA server. MN is now authenticated by the new
MAG. Mobility related services will be provided only after successful authenti-
cation. As authentication is performed by the local MAG without involving the
AAA server, the proposed authentication mechanism provides fault tolerance.
The steps of the authentication procedure are described below.

(i) The mobile node (MN) chooses two random numbers r1MN and r2MN

where r1MN , r2MN ∈ Zq∗ and computes k1 = r1MNPpub and CIDMN =
IDMN

⊕
[k1]x, where CIDMN is the dynamic identity of the MN.

Then MN computes ZMN = zMNP . MN then sends the set of values M1 =
(CIDMN , RMN , RAAA, SKMN , h, v)to the MAG.

(ii) Upon receiving M1, the MAG computes key k2 = sRMN . Then MAG
extracts the MNs identity by doing IDMN = CIDMN

⊕
[k2]x and checks

the validity of IDMN . If IDMN is valid, then MAG continues to next step;
otherwise MAG rejects MNs login request.

(iii) Next, the MAG computes PKMN = H1.(IDMN , RAAA).Ppub − RAAA and
also used above Z

′
MN = v.p + h.PKMN using the hash function H2. MAG

calculates and then verifies whether h is equal to h. If it is not, then the
MAG rejects MNs login request; otherwise, MAG randomly chooses rMAG ∈
Zq∗ and computes RMAG = rMAG.Ppub. Then MAG computes using hash
function k3 = s.rMAG.(RMN +PKMN −CMN ). Finally, MAG sends M1 =
(Auth,RMAG) to the MN.

(iv) Upon receiving M2, the MN verifies whether Auth [13] is equal to
H3.(IDMN , RMAG, ZMN , Ppub, k1) and computes key
k4 = (r1MN + sMN − SKMN ).RMAG and



An Asymmetric Key Based Efficient Authentication Mechanism for PMIPv6 71

sk = H4(IDMN , RMAG, RMN , RAAA, Ppub, k1) using hash function H4.
This authentication process establishes a system in which k1 = k2 and
k3 = k4. We can prove this by the following equations:
k1 = r1MNPpub = r1MN .s.P = s.r1MN .P = s.RMN = k2
Z

′
MN = v.p + h.PKMN = (v + h.sMN ).P = zMNP = ZMN

k3 = s.rMAG.(RMN + PKMN − CMN ) = s.rMAG.(r1MN + sMN −
SKMN ).P = (r1MN + sMN − SKMN ).rMAG.s.P = (r1MN + sMN −
SKMN .RMAG = k4.

3.2.3 Integrated AKEAuth-PMIPv6 Handoff Technique
The signaling flow diagram of the proposed AKEAuth-PMIPv6 handoff tech-
nique is shown in Fig. 2 in which dotted line represents control flow and the
solid dark line represents data flow. In AKEAuth-PMIPv6, the handover phase
begins when the MN is about to leave the range of the serving MAG (i.e., MAG1)
and try to attach to the target MAG (i.e., MAG2). Buffers are used to prevent
packet loss at both MAGs, i.e., the serving MAG and the target MAG (MAG2)
as shown in Fig. 2. The integrated AKEAuth-PMIPv6 handover procedure is
described below.

(i) MAG1 sends a proxy handover initial (Proxy HI) message to the target
MAG (i.e., MAG2). This Proxy HI message includes the MNs profile (i.e.,
IDMN ) and the target MAGs address.

(ii) MAG2 responds by sending a proxy handover acknowledgement (Proxy
HACK) message to MAG1.

(iii) After getting Proxy HI, MAG1 begins to store data in its buffer until it
receives the DeReg PBU message from the LMA via MAG2.

(iv) When the MN moves outside the transmission range of MAG1 and comes
with-in the communication range of target MAG, i.e., MAG2, it sends RS
and authentication information to the MAG2.

(v) Upon receiving the RS message from MN, MAG sends DeRegPBU MAG1
and PBU message for itself to the LMA.

(vi) After receiving the PBU message, the LMA sends the PBA message con-
taining the HNP of the MN as well as DeRegPBA for MAG1 to MAG2.

(vii) MAG2 forwards DeReg PBA to MAG1.
(viii) Upon receiving the DeRegPBA message, MAG1 forwards the buffered

packet to MAG2 and MAG2 stores it in its own buffer.
(ix) After sending the PBA message to the MAG2, LMA forwards MAG2

all data packets destined for MN, buffered by MAG2. MAG2 checks the
sequence number of the first packet it receives from LMA and stores all
packets in proper order.

(x) After successful completion of the proposed authentication mechanism by
MAG2, MAG2 sends back RA with authentication information to MN.

(xi) LMA updates the binding cache entry with the MNs current location, and
sets up a bi-directional tunnel to the new MAG (i.e., MAG2). By this bidi-
rectional tunnel between LMA and MAG2 and associated routing states in



72 S. Biswas et al.

both LMA and MAG2, MN data plane is managed. Downlink packets sent
to the Mobile Node from outside of the LMD arrive at LMA, which for-
wards them by the tunnel to MAG2. After decapsulation, MAG2 sends the
packets to the MN directly through the access link. Uplink packets which
are originated in the MN are sent to the LMA from the MAG2 through
the tunnel, and are then forwarded to the destination by the LMA.

Fig. 2. Signaling flow of integrated AKEAuth-PMIPv6 handoff scheme

The seamless integration of our proposed authentication scheme AKEAuth
with the traditional PMIPv6 handover procedure further reduces handover
latency com-pared to other existing authentication based PMIPv6 handover
techniques in which the MN is authenticated either by the AAA server [5,9,10]
or by some complicated local authentication procedure [8,12]. Moreover, our
proposed integrated AKEAuth-PMIPv6 handoff technique uses a buffer mech-
anism to prevent packet loss and out-of-sequence packet problem. Our scheme
also adopts a piggyback scheme to reduce the signaling costs. In this paper we
have shown that latency is reduced by introducing buffers in both old MAG



An Asymmetric Key Based Efficient Authentication Mechanism for PMIPv6 73

(MAG1) and new MAG (MAG2), because when MN transmits RS with the
authentication information to MAG2, MAG1 utilizes its buffer to store packets
coming from LMA. So time taken for authentication in MAG2 and latency due
to PBU and PBA is reduced as packet transmission is not stopped. The whole
process occurs in handover phase.

4 Security Analysis

In this section, we shortly describe the security analysis of the proposed scheme.
We show that the proposed authentication scheme can provide various security
features like insider attack prevention, mutual authentication, confidentiality as
well as it can prevent replay attack and domino effect as explained below.

(i) Insider attack resistance: Our scheme can resist insider attack and pro-
vide user anonymity. The insider attack can affect all computer security
elements and range from stealing sensitive and valuable data to injecting
Trojan viruses in a system or network. A mobile node (MN) which resides
in a LMD may be malicious but AAA and MAG both check the MN by
getting the value IDMN and CMN the MN which resides in the LMD is
genuine/correct or malicious.

(ii) Mutual Authentication: The proposed authentication procedure
described in Subsect. 3.2 shows that both the MN and the MAG authenti-
cates each other before MN is provided mobility related services by MAG.
Thus, mutual authentication is ensured by the proposed scheme.

(iii) Replay Attack Prevention: In our proposed authentication scheme,
whenever the MN joins LMD or moves from one MAGs network to another
MAGs network within the same LMD, MN and new MAG authenticates
each other by checking some newly computed key values and then estab-
lish some new session key. Thus, our proposed authentication scheme can
ensure prevention of replay attack even if some messages are replayed as the
session key included in those messages would not remain valid afterwards.

(iv) Confidentiality: Confidentiality is guaranteed by our proposed scheme
AKEAuth by using the secret session key established between the MN and
the MAG for encrypting some important messages before their exchange
between the MN and the MAG. Exchange of encrypted messages between
the MN and the MAG can easily prevent attack from eavesdropping.

(v) Domino Effect Prevention: Although our proposed scheme relies on
AAA server-based key management, it can prevent domino effect, which
means the compromise of the secret session key by one MAG is always local-
ized and never affects the other parts of the network. Unlike SF-PMIPv6
in which some single secret key is pre-shared between all MAGs and AAA
server and PKAuth in which some secret key is shared by several MAGs
that are mentioned by the MN, our proposed scheme AKEAuth can com-
pletely prevent the domino effect as new secret session key is established
between the MN and each new MAG.



74 S. Biswas et al.

5 Numerical Analysis

This section analyzes the performances of our proposed handoff technique
AKEAuth-PMIPv6 with that of other existing PMIPv6 handoff techniques
for PMIPv6 network such as SF-PMIPv6 and PKAuth-PMIPv6 in terms of
computational cost, handover latency and signaling cost. The integrated SPAM-
PMIPv6 handover procedure proposed in [12] has not been considered for
performance comparisons as it adopts a complicated authentication procedure
consisting of two separate mutual authentications.

5.1 Analysis of the Computational Cost Scheme

In analysis of computational cost, we use the following notations: NA means
there is no computational cost in the current phase; Ch is the cost of executing
the one-way hash function; CXOR is the cost of executing the XOR operation;
Ck is the cost of computing a key encryption; and Cran is the cost for generating
a random number. Table 2 shows that the computational cost for AKEAuth-
PMIPv6 are based on asymmetric cryptography, an XOR operation and a hash
function.

Table 2. Computational cost of the proposed AKEAuth-PMIPv6 scheme

MN MAG AAA

Initial registration procedure Cran+3.Ck NA Ch+Cran

Authentication procedure 3.Ch+2.Ck+Cran+CXOR 4.Ch+Ck+Cran+CXOR NA

5.2 Analysis of Handover Latency

This subsection compares the handover latency of our proposed AKEAuth-
PMIPv6 handoff technique and other existing PMIPv6 handover procedures.
Assuming tMN−MAG to be the wireless propagation delay between MN and
MAG; tMAG−MAG to be the propagation delay between the neighbouring MAGs
(i.e. MAG1, MAG2) located in the same LMD; tLMA−MAG be the propagation
delay between LMA and MAG and tAAA−MAG to denote the propagation delay
between AAA server and MAG, handover latency incurred by various handoff
techniques are given below. The handover latency associated with SF-PMIPv6,
PKAuth-PMIPv6 and AKEAuth-PMIPv6 handover procedure are represented
as HLSF−PMIPv6,HLPKAuth−PMIPv6andHLAKEAuth−PMIPv6 respectively.

HLSF−PMIPv6 = tRS/RA = 2.tMN−MAG

HLPKAuth−PMIPv6 = tRS/RA = 2.tMN−MAG

HLAKEAuth−PMIPv6 = tRA = tMN−MAG



An Asymmetric Key Based Efficient Authentication Mechanism for PMIPv6 75

Fig. 3. Variation in average handover latency with respect to latency between MAG
and LMA.

Figure 3 compares handover latency of our proposed handoff technique and
other existing handover procedures for PMIPv6 network with respect to the vari-
ation in propagation delay between the LMA and the MAG. Figure 4 compares
the handover latency incurred by different schemes with respect to the variation
in propagation delay between the AAA server and the MAG. Both Figs. 3 and 4
show that the handover latency of our proposed technique AKEAuth-PMIPv6
is lower than that of PKAuth-PMIPv6 and SF-PMIPv6. This is because our
proposed handoff technique performs the initial registration only when the MN
joins the LMD and the simplified local authentication when the MN joins LMD
or changes the access network. Both the Figs. 3 and 4 show that our proposed
integrated AKEAuth-PMIPv6 handoff technique reduces the handover latency
compared to existing SF-PMIPv6 and PKAuth-PMIPv6 handover procedures.

5.3 Analysis of Cost of Control Messages

This cost is measured by total number of signalling or control messages
exchanged between the network entities participating in the hand-off process.
The costs generated by various networks entities such as AAA server, LMA,
MAG and the MN are represented by SAAA, SLMA, SMAG and SMN respec-
tively. On the other hand, the signaling or control message cost incurred by
the handover schemes SF-PMIPv6, PKAuth-PMIPv6, AKEAuth-PMIPv6 are
denoted SCSF-PMIPv6, SCPKAuth-PMIPv6 and SCAKEAuth-PMIPv6. These
are computed as follows. Figure 5 compares the performances of various schemes
considered in this paper in terms of signaling cost. Figure 5 also shows that the
signaling cost of our proposed scheme AKEAuth-PMIPv6 is same as that of
SF-PMIPv6 and PKAuth-PMIPv6.



76 S. Biswas et al.

Fig. 4. Variation in average handover latency with respect to latency between AAA
server and MAG.

Fig. 5. Average signalling cost vs cumulative handover time.

SCSF−PMIPv6 = SLMA + SMN + 5.SMAG = 7messages.
SCPKAuth−PMIPv6 = 2.SMN + 5.SMAG = 7messages.
SCAKE−PMIPv6 = SLMA + SMN + 5.SMAG = 7messages.

6 Conclusion

This paper proposes an asymmetric key based simplified authentication scheme
which is named as asymmetric key based efficient authentication mechanism
for Proxy Mobile IPv6 Networks to provide high security in PMIPv6 networks.
Numerical analysis shows that our proposed AKEAuth-PMIPv6 handoff tech-
nique reduces the handover latency compared to the other existing handoff



An Asymmetric Key Based Efficient Authentication Mechanism for PMIPv6 77

techniques for PMIPv6 networks such as SF-PMIPv6 and PKAuth-PMIPv6.
Moreover, our proposed handoff technique resolves the packet loss and out-of-
sequence problem by using buffers at both MAGs, i.e., serving MAG and new
MAG.

On the other hand, our proposed AKEAuth-PMIPv6 handover procedure
does not provide better result in terms of signaling cost compared to existing
SF-PMIPv6 and PKAuth-PMIPv6 handoff technique. Thus, certain modifica-
tion on the authentication scheme proposed in this paper for PMIPv6 handover
procedure is required to be done to further reduce its signaling cost, which we
aim to do in near future.

References

1. Johnson, D., Perkins, C., Arkko, J.: Mobility Support in IPv6. IETF RFC 3775,
June 2004

2. Gundavelli, S., Leung, K., Devarapalli, V., Chowdhury, K., Patil, B.: Proxy Mobile
IPv6. RFC 5213, August 2008

3. Lei, J., Fu, X.: Evaluating the benefits of introducing PMIPv6 for localized mobility
management. In: Proceedings of the IEEE International Wireless Communications
Mobile Computing Conference, August 2008

4. Xia, F., Sarikaya, B.: Mobile node agnostic fast handovers for Proxy Mobile IPv6.
Draft-xia-netlmm-fmip-mnagno-02, IETF draft, November 2007

5. Ryu, S., Kim, M., Mun, Y.: Enhanced fast handovers for Proxy Mobile IPv6. In:
Proceedings of IEEE International Conference on Computational Science and Its
Applications (ICCSA), pp. 39–43, July 2009

6. Lee, J.H., Kim, Y.D., Lee, D.: Enhanced handover process for Proxy Mobile IPv6.
In: Proceedings of IEEE International Conference on Multimedia and Ubiquitous
Engineering (MUE), p. 15, August 2010

7. Park, J.W., Kim, J.I., Koh, S.J.: Q-PMIP: query-based proxy mobile IPv6. In:
Proceedings of IEEE International Conference on Advanced Communication Tech-
nology (ICACT), pp. 742–745, February 2011

8. Chuang, M.C., Lee, J.F.: SF-PMIPv6: a secure fast handover mechanism for Proxy
Mobile IPv6 Networks. J. Syst. Softw. 86, 437–448 (2013)

9. Kong, K.S., Lee, W., Han, Y.H., Shin, M.K., You, H.R.: Mobility management for
All-IP mobile networks: mobile IPv6 vs. Proxy Mobile IPv6. IEEE Wirel. Commun.
2, 36–45, April 2008

10. Kong, K.S., Lee, W., Han, Y.H., Shin, M.K.: Handover latency analysis of a
network-based localized mobility management protocol. In: Proceedings of IEEE
International Conference on Communications (ICC), pp. 5838–5843, May 2008

11. Tie, L., He, D.: A certificated-based binding update mechanism for Proxy Mobile
IPv6 protocol. In: Proceedings of IEEE Asia Pacific Conference on Postgraduate
Research in Microelectronics and Electronics, pp. 333–336, January 2009

12. Chuang, M.C., Lee, J.F., Chen, M.C.: SPAM: a secure password authentication
mechanism for seamless handover in Proxy Mobile IPv6 Networks. IEEE Syst. J.
7(1), 102–113 (2013)

13. Sun, H., Wen, Q., Zhang, H., Jin, Z.: A novel remote user authentication and key
agreement scheme for mobile client-server environment. Appl. Math. Inf. Sci. 7(4),
1365–1374 (2013)



78 S. Biswas et al.

14. Ben Ameur, S., Zarai, F., Smaoui, S., Obaidat, M.S., Hsiao, K.F.: A lightweight
mutual authentication mechanism for improving fast PMIPV6-based network
mobility scheme. In: 4th IEEE International Conference on Network Infrastruc-
ture and Digital Content, Beijing, China, pp. 61–68 (2014)

15. Kim, J., Song, J.: A public key based PMIPv6 authentication scheme. In: 2014
IEEE/ACIS 13th International Conference on Computer and Information Science
(ICIS), Taiyuan, pp. 5–10 (2014)



User Authentication Scheme for Wireless Sensor
Networks and Internet of Things Using Chinese

Remainder Theorem

Anup Kumar Maurya1,2(B) and V.N. Sastry1

1 Centre for Mobile Banking, Institute for Development and Research in Banking
Technology (Established by the Reserve Bank of India), Hyderabad, India

anupmaurya88@gmail.com, {akmaurya,vnsastry}@idrbt.ac.in
2 Artificial Intelligence Lab, SCIS, University of Hyderabad, Hyderabad, India

Abstract. Authenticated querying is one of the prominent requirement
of Internet of Things (IoT) or wireless networks of sensor devices to
resist unauthorized users from accessing real time and confidential data.
In this paper, we perform security analysis and find drawbacks of Das’s
user authentication scheme (proposed in 2015). We propose an efficient
authenticated key exchange mechanism using the concepts of the fuzzy
extractor and Chinese Remainder Theorem. After that, we perform the
security analysis of our scheme using widely accepted automated ver-
ification tools such as AVISPA and Scyther. Then, we perform logical
verification using BAN Logic. Finally, we do the computational analysis,
and we demonstrate the comparative analysis in respect of computational
overhead and security features.

Keywords: User authentication · Session key establishment · Smart
card · Wireless sensor networks (WSNs) · Internet of Things (IoT)

1 Introduction

The sensor nodes of WSNs [1] or IoT measures different parameters (temper-
ature, pressure, humidity, light, etc.) of the environment and mutually trans-
mit the processed data using the wireless medium to the users or gateway, are
confined to tiny computational capacity, small-scale memory, moderate trans-
mission range and short-lived battery power (e.g. 7.7 MHz 8-bit ATmega128
processor, 4 K byte RAM, 128 K byte ROM, 512 K byte EEPROM, 250 k baud
data rate, 2 AA battery). Therefore, it is not feasible to implement the tradi-
tional cryptography algorithm on the resource constrained sensor devices. But
user authentication is one of the significant need for WSN’s emerging technolo-
gies (remotely monitoring patient’s body situation, electronic devices of industry
and smart home, the possibility of attacks in a battleground, natural calamity,
forest fire, etc.). Authenticating users who connect to the WSNs is a process
of validating identity (based on one or more factors such as user’s inherence,
possession, knowledge) using sensor devices. A secure user validation scheme of
c© Springer Nature Singapore Pte Ltd. 2017
S.M. Thampi et al. (Eds.): SSCC 2017, CCIS 746, pp. 79–94, 2017.
https://doi.org/10.1007/978-981-10-6898-0_7



80 A.K. Maurya and V.N. Sastry

WSNs offers various known security features such as efficient user’s password
update mechanism, secure session key establishment, confidentiality, integrity,
availability, non-repudiation, freshness and mutual authentication of the user,
sensor, gateway. A secure WSNs resist various well-known security attacks such
as sensor node and user’s identity impersonation attack, replay attack, denial of
service and man-in-the-middle attack, stolen smart card attack.

2 Related Work

In 2002, Akyildiz et al. [1] surveyed many aspects of WSNs and discussed many
open research issues of WSNs. In 2004, Benenson et al. [26] presented a user
authentication and access control mechanism for WSNs. In 2006, Watro et al.
[2] offered public-key based scheme TinyPK for securing WSNs which provides
mutual authentication and withstand sensor impersonation attack. In 2006,
Wong et al. [3] suggested a secure hash function based authentication scheme but
it does not support mutual authenticity and session key establishment between
user and sensor. In 2007, Tseng et al. [4] specified that Watro et al.’s and Wong
et al.’s schemes exhibit replay and forgery attack. Tseng et al. improved Wong
et al’s scheme and recommended password update mechanism. In 2008, Lee [5]
revealed that Wong et al. scheme exhibit more computational overhead on sensor
node in compare to gateway node and improved Wong et al. scheme with less
computation overhead of sensor node. In 2008, Ko [6] indicated that Tseng et al’s
scheme does not contribute mutual authentication and proposed mutual authen-
ticity and time-stamp based scheme. In 2009, Vaidya et al. [7] presented mutual
authentication scheme with formal verification. In 2009, Das [8] developed a
secure mechanism to provide authenticity using smart card and user’s password
(two factor) but it does not offer session key between user and sensor node. In
2010, Khan-Alghathbar (2010) [9] identified the gateway node bypass attack,
insider attack and lack of password update mechanism in Das’s [8] scheme and
improved Das’s scheme by including password update and mutual authentica-
tion technique. In 2010, Yuan et al. [10] provided a bio metric based scheme but
it is unprotected from node capture and denial of service attack. In 2012, Yoo et
al. [11] designed a scheme that provides secure session key and mutual authenti-
cation. In 2013, Xue et al. [12] designed a mutual authentication scheme based
on temporal information. However, in 2014, Jiang et al. [13] revealed that Xue
et al.’s scheme is susceptible to stolen smart card and privileged insider attack.
In 2015, Das [14] suggested fuzzy extractor based authentication scheme which
resists well-known security attacks of WSNs and has more security features in
compare to Althobaiti et al. (2013) [15] scheme.

The outline of this paper is as follow: Sect. 1, introduces the basic character-
istics, applications and important security features of WSNs. Section 2, consist of
literature survey. Section 3, explains the notation and mathematical expressions
which we use for designing the protocol. Section 4, reviews Das’s user authentica-
tion scheme. In Sect. 5, is about cryptanalysis of Das’s Scheme. Section 6, describes
our proposed scheme. Section 7, performs the security analysis. Section 8, indi-
cates the performance comparison. Eventually, Sect. 9, concludes our paper.



User Authentication Scheme for WSNs and IoT 81

3 List of Symbols and Some Mathematical Expressions
Used

Some basic notations which we use for designing our protocol are listed in fol-
lowing Table 1.

Table 1. Notations used

Notations Description

Ui ith User

IDUi Identity of Ui

PWUi Password of Ui

Bi Bio-metric information of Ui

SNj jth Sensor Node

SCUi Smart card of Ui

GWN The gateway node

h(.) A collision resistant one - way hash function

Gen(.) Generator procedure of Fuzzy Extractor

Rep(.) Reproduction procedure of Fuzzy Extractor

T Error tolerance limit of Fuzzy Extractor

TUi , TGWN , TSNj Current timestamps of Ui, GWN, SNj respectively

T ′, T”, T”′ Current time at GWN, SNj , Ui respectively

|| A string concatenation operator

⊕ A bitwise XOR operator

ΔT Maximum transmission delay

A Adversary

– Secure cryptographic hash function: A function h : In → Out, with a
binary string s ∈ In {0, 1}∗ of arbitrary length as input and a binary string
d ∈ Out {0, 1}m of length m as a output, is a secure hash function if the
following conditions holds:

• A’s advantage to find the collision Advh
A(t) = Pr[(s, s′) ←R A : s �=

s′, h(s) = h(s′)] and
• Advh

A(t) ≤ τ , for any sufficiently small τ > 0.
Where (s, s′) ←R indicates that the pair (s, s′) is randomly chosen by A and
Pr represents the probability of the event (s, s′) ←R A with execution time t.

– Fuzzy Extractor for authenticating the user Ui: Fuzzy extractor [17]
transforms the Ui’s bio-metric information Bi into random, secret and repro-
ducible string of size l applicable to cryptographic methods of authenticating



82 A.K. Maurya and V.N. Sastry

Ui with a error tolerance limit T . Suppose M = {0, 1}D is an D dimensional
metric space of bio-metric points with a distance function d : M × M → Z

+

which measures the differences between any two bio-metric points with the
help of a given metric. The two main procedures of Fuzzy Extractor which
we use for authenticating the user Ui are as follows :

• Gen(): This is a probabilistic generation function which takes the the
bio-metric information Bi ∈ M of user Ui as input and generates a secret
string σi{0, 1}l along with a associative string τi, i.e., Gen(Bi) = {σi, τi}

• Rep(): This is a deterministic reproduction function which takes a bio-
metric input B

′
i and the public string τi as input and reproduces the

secret string σi i.e., Rep(B′, τi) = σi, if d(Bi, B
′
i) ≤ T

4 Review of Das’s Scheme

Das [14] proposed a novel approach for bio-metric based user authentication
using fuzzy extractor. We represent Das’s Scheme in Tables 2 and 3 for security
analysis.

Table 2. User registration phase of Das’s Scheme

Step 1: for user Ui Step 2: for gateway node GWN

Ui inputs IDUi , PWUi and Bi

Generates 1024 bit random number K,
Calculates RPWi = h(IDUi ||K||PWUi),
Selects a key eki

Ui transmits 〈IDUi , RPWi, eki〉 to GWN
−−−−−−−−−−−−−−−−−−−−−−→

SecureChannel

GWN Generates 1024 bit key Xs,
Evaluates fi = h(IDUi ⊕ h(Xs)),

and stores (h()̇, Gen()̇, Rep()̇, fi, T ) into SCi

GWN sends SCi to Ui←−−−−−−−−−−−−−−−−−−−−−−
SecureChannel

Finally, GWN Store eki related to IDUi

5 Cryptanalysis of Das’s Scheme

In this module, we first make some presumption for evaluating the security of
user authentication protocols of WSNs. Subsequently, we show that Das’s scheme
is insecure against several attacks.

5.1 Presumption

• Sensor node may not fix up with temper - resistant hardware and if a node
is captured by an adversary, all the prominent and confidential information
stored in its memory can be accessed by the adversary. If the sensor nodes
are tamper - resistant the adversary can know the information stored in the
memory by measuring the power consumption of the captured sensor nodes.

• Base station or gateway can not be compromised, by the adversary.
• Adversary can intercept the public communication channel, inject packets

and reply the previously transmitted packets.



User Authentication Scheme for WSNs and IoT 83

Table 3. Login, authentication and key sharing phase of Das’s Scheme

Step 1: for user Ui Step 2: for gateway node GWN

Insert SCi into card reader and gives
IDUi , PWUi , Bi

Evaluates σ′
i = Rep(Bi, τi),

K′ = ri ⊕ h(IDUi ||σ′
i),

RPW ′
i = h(IDUi ||PWUi ||K′),

e′
i = h(IDUi ||RPW ′

i ||σ′
i)

if e′
i = ei

Ui transmits 〈IDUi , req〉 to GWN
−−−−−−−−−−−−−−−−−−−−−−→

V iaPublicChannel

If IDUi is valid
GWN sends random challenge R to Ui←−−−−−−−−−−−−−−−−−−−−−−−−−−−−

V iaPublicChannel

Step 3: for user Ui Step 4: for gateway node GWN

Ui Evaluates eki = BEi ⊕ h(IDUi ||σ′
i)

Ui sends
〈
Eeki(R, T1, IDSNj )

〉
to GWN

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−→
V iaPublicChannel

Evaluates R, T1, IDSNj using eki. If T1 and
R are valid, computes f∗

i = h(IDUi ⊕
h(Xs)), f

∗∗
i = h(IDSNj ||f∗

i ) and Yj =
EKj [IDUi , IDSNj , T1, T2, f

∗∗
i ]

GWN transmits 〈IDUi , Yj〉 to SNj−−−−−−−−−−−−−−−−−−−−−−→
V iaPublicChannel

Step 5: for sensor node SNj Step 6: for user Ui

Retrieve (IDUi , IDSNj , T1, T2, f
∗∗
i ) as

(IDUi”, IDSNj”, T1”, T2”, fi”). If T2 and
IDUi are valid, evaluate the session key
SKij = h(f”

i ||IDUi ||IDSNj ||T1”, T3)

SNj sends h(SKij), T3 to Ui−−−−−−−−−−−−−−−−−−−−−−→
V iaPublicChannel

Store SKij

If T3 is valid, Computes f ′
i = f∗

i ⊕
h(σ′

i||IDUi ||K′),
f”
i = h(IDSNj ||f

′
i ),

SK′
ij = h(fi”||IDUi ||IDSNj ||T1||T3)

If h(SK′
ij) = h(SKij), Stores SK′

ij

• Adversary can capture the smart card of user and it can extract the sensitive
information stored in card through a power analysis attack.

• We consider that the WSNs consist of few users (with smart card which can
be captured or stolen by the adversary A), hundreds of sensor nodes (it can
be captured by A) and gateway (it is trusted and it can not be compromise
by A).

5.2 Attacks on Das’s Scheme

The vulnerabilities involve in Das’s scheme are elaborated in following subsection:

Stolen Smart Card Attacks. The adversary A ascertains the value of {τi, ei,
ri, BEi, f

∗, h(.), Gen(.), Rep(.), T } from stolen SCi by measuring the power con-
sumption of smart card [25]. A computes: BEi⊕ri = [h(IDi ‖ σi)⊕K]⊕[h(IDi ‖
σi) ⊕ eki] = K ⊕ eki.



84 A.K. Maurya and V.N. Sastry

The adversary A finds out the value of K and eki by implementing one of
the following three mechanism:

1. Derives the value of K and eki using the frequency analysis of stream cipher
BEi, ri and BEi ⊕ ri.

2. Eavesdrops R and Eeki
(R, T, IDSNj

) and implements the known plain text
attack to find out the value of eki. Thereafter, A finds out the value of K =
eki ⊕ (K ⊕ eki).

3. Steals the bio-metric information B
′
i of Ui (where d(Bi, B

′
i) ≤ T ) and find

out the value of σi = Rep(B
′
i , τi). Eavesdrops the value of IDi from public

communication channel and then evaluates the value of eki = BEi ⊕h(IDi ‖
σi), K = ri ⊕ h(IDi ‖ σi). It is possible, because eki is not password PWi

protected.

A chooses his or her own IDA, PWA and BA and then computes:

RPWA = h(IDA ‖ K ‖ PWA), Gen(BA) = (σA, τA), eA = h(IDA ‖
RPWA ‖ σA), rA = h(IDA ‖ σA) ⊕ K and BEA = h(IDA ‖ σA) ⊕ eki
The adversary A finally replaces the information {τi, ei, ri, BEi, f

∗, h(), Gen(.),
Rep(.), T } of SCi with {τA, eA, rA, BEA, f∗, h(), Gen(.), Rep(.), T }

The login phase of the adversary A is as follows:

• A insert SCi and inputs IDA, PWA and imprints BA.
• A computes σ

′
A = Rep(BA, τA), K

′
= rA ⊕ h(IDA ‖ σ

′
A), RPW

′
A = h(IDA ‖

PWA ‖ K
′
) and e

′
A = h(IDA ‖ RPW

′
A ‖ σ

′
A). Verifies if e

′
A = eA?. It would

be true i.e. both the password and bio-metric verification would be correct.
• SCi sends the login message 〈IDA, req〉 to GWN via a public channel. The

adversary A replaces 〈IDA, req〉 with 〈IDi, req〉.

Authentication and key agreement phase for A is as follows:

• Since IDi is valid, therefore GWN generates a random challenge R and send
it to A.

• A select the login sensor node SNj and sends 〈Eeki
(R, T1, IDSNj

)〉 to GWN .
• GWN decrypt 〈Eeki

(R, T1, IDSNj
)〉 using eki, verify the validity of T1 and

R, computes f∗
i = h(IDi ⊕ h(Xs)), f∗∗

i = h(IDSNj
‖ f∗

i ), Yj = EKj
[IDi,

IDSNj
, T1, T2, f

∗∗
i ] and send 〈IDi, Yi〉 to SNj .

• SNj computes SKij = h(f”
i ‖ IDi ‖ IDSNj

‖ T ”
1 ‖ T3) and sends h(SKij), T3

to A
• A computes f ′

i = f∗
i ⊕ h(σ′

i||IDi||K ′) using IDi, stolen bio-metric and eval-
uated K. It is possible because f ′

i has no password protection.
• A computes f”

i = h(IDSNj
||f ′

i) and the session key SKij = h(f”
i ‖ IDi ‖

IDSNj
‖ T ”

1 ‖ T3) shared with SNj .



User Authentication Scheme for WSNs and IoT 85

Table 4. User registration phase

Step 1: for user Ui Step 2: for gateway node GWN

Ui Selects IDUi , PWUi , Bi

(σi, τi) = Gen(Bi)
Evaluates IPBi = h(IDUi ||PWUi ||h(σi))

Ui transmits 〈IDUi , IPBi〉 to GWN
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−→

SecureChannel

GWN computes α = IPBi ⊕ rUi ,
β = h(IPBi||rUi),
γ = h(IDUi ⊕ IPBi) ⊕ Xold

GWN sends 〈α, β, γ〉 to Ui←−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
SecureChannel

Step 3: for user Ui

Ui stores h(), Gen(), Rep(), α, β, γ, τi, T into
SCi

6 Proposed Scheme

Our proposed protocol involves multiple phases. The following subsection
explains the pre-deployment phase and Tables 4, 5 and 6 describes the registra-
tion, authenticated key exchange, user’s credentials update phase respectively.

6.1 Pre-Deployment Phase

GWN generates a key rSNj
for each sensor node SNj and a key rUi

for each user
Ui, where rSNj

and rUi
are relatively prime integers. GWN generates a system

of simultaneous congruence (considering Chinese Remainder Theorem) such as:

Xold ≡ xold
i mod rUi

, Xold ≡ xold
i mod rSNj

,
Xnew ≡ xnew

i mod rUi
, Xnew ≡ xnew

i mod rSNj

6.2 Registration Phase

To get registered by the GWN , an authentic user Ui chooses her identity IDUi
,

password PWUi
and biometric information Bi as a input for the Gen() function

of fuzzy extractor. Then, Ui and GWN follows the steps 1, 2, 3 consecutively as
proposed in Table 4.

6.3 Authenticated Key Establishment Phase

For authenticated key establishment, Ui provides IDUi
, PWUi

and the noisy
biometric information B′

i as a input to the Rep() function of the fuzzy extractor.
Then, Ui, GWN and SNj follows the steps 4, 5, 6, 7, 8, 9 consecutively as
proposed in Table 5.



86 A.K. Maurya and V.N. Sastry

Table 5. Authenticated key exchange phase

Step 4: for Ui Step 5: for SNj

Ui inserts SCi into the card reader and inputs
IDUi , PWUi , Bi. Then evaluates σ′

i = Rep(B′
i, τi),

IPB′
i = h(IDUi ||PWUi ||h(σ′

i)), β′ = h(IPB′
i||r′

Ui
)

if β′ = β then
Evaluates Xold = γ ⊕ h(IDUi ⊕ IPBi),
xold
i = Xold mod r′

Ui
, m1 = h(xold

i ||TUi),
m2 = h(IDUi ||IDSNj ||r′

Ui
||TUi). Construct the

message M1 =
〈
IDUi , IDSNj , Xold, m1, m2, TUi

〉

Ui transmits 〈M1〉 to GWN
−−−−−−−−−−−−−−−−−−−−−−−−−−−−→

V iaPublicChannel

else
Reject Ui

if T ′ − TUi ≤ ΔT then

Find xold′
i ≡ Xold mod rSNj m′

1 = h(xold′
i ||TUi)

if m′
1 = m1 then
Computes m3 = h(IDSNj ||rSNj ||m2||TSNj ),
M2 =

〈
IDUi , IDSNj , m3, TUi , TSNj

〉

else
Reject Ui

SNj sends M2 to GWN−−−−−−−−−−−−−−−−−−−−−−−−−−−−→
V iaPublicChannel

else
Reject Ui

Step 6: for GWN Step 7: for SNj

if T” − TSNj ≤ ΔT then
Computes m′

2 = h(IDUi ||IDSNj ||rUi ||TUi),
m′

3 = h(IDSNj ||rSNj ||m′
2||TSNj )

if m′
2 = m2 and m′

3 = m3 then
Compute m4 = h(IDUi ||IDSNj ||Xnew||
xnew
i ||TUi ||TSNj ||TGWN ),

M3 = 〈Xnew, m4, TGWN 〉
GWN sends M3 to SNj−−−−−−−−−−−−−−−−→

V iaPublicChannel

else
Reject Ui

else
Reject Ui

Find xnew
i ≡ Xnew mod rSNj , m′

4 =
h(IDUi ||IDSNj ||Xnew||xnew

i ||TUi ||TSNj ||TGWN )
if m′

4 = m4 then
Evaluates K = h(TUi ||TSNj ||xnew

i ), m5 = h(K),
Construct a message
M4 =

〈
Xnew, m4, m5, TSNj , TGWN

〉

SNj sends M4 to Ui−−−−−−−−−−−−−−−−−−−−−−−−−−−−→
V iaPublicChannel

else
Reject Ui

Step 8: for Ui Step 9: for Ui

if T” − TGWN ≤ ΔT then
Evaluates xnew

i ≡ Xnew mod rSNj , m4” =
h(IDUi ||IDSNj ||Xnew||xnew

i ||TUi ||TSNj ||TGWN )
if m4” = m4 then

Computes K′ = h(TUi ||TSNj ||xnew
i ), m5 =

h(K′)
if m′

5 = m5 then
Establish the session key K′ with SNj

else
Reject Ui

else
Reject Ui

else
Reject Ui

Make Xold = Xnew and
Store γ = h(IDUi ⊕ IPBi)⊕ (Xold = Xnew) into SCi

6.4 User’s Credential Update Phase

For an user Ui, credential update is required to ensure an adversary A can not
acquire or snoop the user’s secret credentials like password PWUi

and biometric
information Bi. To update the credential, Ui follows the step as proposed in
Table 6.



User Authentication Scheme for WSNs and IoT 87

Table 6. User’s credential update phase

User (Ui)

Ui puts SCUi into card reader and provides IDUi , PWUi , Bi,

It produces σ
′
i = Rep(B

′
i , τi),

IPB
′
i = h(IDUi ||PWUi ||h(σ

′
i)), r

′
Ui

= α ⊕ IPB
′
i , β

′
= h(IPB

′
i ||r′

Ui
), Verify β = β

′
,

Computes X ′
old = γ ⊕ h(IDUi ||IPB

′
i),

Ui provides new password PWnew
Ui

and bio-metric information Bnew
i .

(σnew
i , τ

′
i ) = Gen(Bnew

i ), IPBnew
i = h(IDUi ||PWnew

Ui
||h(σnew

i ))
αnew = IPBnew

i ⊕ rUi βnew = h(IPBnew
i ||rUi) γnew = h(IDUi ||IPBnew

i ) ⊕ X ′
old

Replace α, β, γ of SCUi with αnew, βnew, γnew respectively.

7 Security Analysis

To verify the security features present in our protocol, we first perform the infor-
mal analysis considering major and minor attacks in WSNs. Afterward, we imple-
ment our scheme using Security Protocol Description Language and evaluate our
security claims using Sycther tool [22]. For automated validation of the proto-
col using AVISPA tool [21], we use High-Level Protocols Specification Language
Finally, we do the logical verification of the protocol using BAN logic [23].

7.1 Informal Security Analysis

The informal security analysis indicates that our protocol is designed to with-
stand the popular security attacks as follows:

• Exhausting Constrained Resources. To avoid bogus message flooding
(which exhausts the resources of WSNs), we eliminate the illegitimate users
at the initial level (i.e. at sensor node itself) of message transmission. For a
sensor node SNj , the energy required for computation is less compared to
data transmission (the energy required in 2090 clock cycles of computation is
equivalent to the energy required for transmitting 1-bit data [24]). We verify
the correctness of m1 = h(xold

i ||TUi
) at sensor node, where xold

i ≡ mod rSNj
,

the correct value of m1 ensures the user belongs to the authorized group.
Energy required in transceiving and receiving 1-bit data (at the data rate
of 12.4 Kb/s) are 59.2 µ Joule, 28.6 µ Joule respectively [24]. Furthermore,
we assume N,n are the size and density (total number of nodes within the
circular area with radius equal to the communication range of sensor node)
of WSNs. If an illegitimate user A is not eliminated or filtered at initial
level, A can consume total energy equal to E by sending a message M ′

1 =〈
IDUi

, IDSNj
, hash value/signature, TUi

〉
of size S bytes. Where E can be

evaluated as follows:

E = N
(
S × (59.2 + 28.6n)

)
µJoule.



88 A.K. Maurya and V.N. Sastry

But in our scheme we eliminate A at the initial level which saves the total
energy of (E − Eh)µ Joule. Where Eh is the energy required in computing
and verifying the hash value m1 = h(xold

i ||TUi
). The energy required by SHA-

1 hash function is 5.9µ Joule/byte [24]. Hence, our scheme with stand the
energy exhausting attacks.

• Stolen Smart Card Attack. To defend the attacks based on stolen SCi, we
keep the secret credentials of Ui in SCi protected with fuzzy extractor mech-
anism. An adversary A can extract the value of α, β, γ from stolen SCi using
power analysis attacks. But it is hard find out the value of secret credentials
such as: rUi

, σi, PWUi
for an adversary A without knowing the bio-metric

information and password of the user Ui. Therefore, our scheme resist the
stolen SCi attacks.

• Man-in-the-middle attack. To avoid the Man-in-the-middle attack, we
ensure mutual authentication among the Ui, SNj , GWN by verifying the
secret parameters such as m1,m2,m3,m4. The parameters m1,m2,m3,m4

also ensures the message integrity.
• Replay Attack. Verification of timestamps TUi

, TSNj
, TGWN along with

their hashed values protects the replay attacks.
• Impersonation Attack. The verification of legitimate bio-metric informa-

tion B′
i (using fuzzy extractor) and password PWUi

at the time of user authen-
tication ensures that an adversary A can not impersonate the user Ui.

7.2 Security Verification Using Scyther and AVISPA Tool:

We specify our protocol using Security Protocol Description Language (spdl)
based on the operational semantics of Scyther tool. Table 7 represents the spdl
specification of our protocol.

The result of security verification using Scyther tool is shown Fig. 1. The
result indicates that no attacks found on all the claims which we specified for
the three roles Ui, GWN,SNj . The result obtained (Fig. 2) using OFMC back-
ends of AVISPA tool indicates that our protocol is safe from Dolev-Yao [20]
intruder model.

Logical Verification Using BAN Logic. In this subsection, we use BAN
logic [23] to verify the freshness of time-stamp to avoid replay attack, and we
validate the message origin to achieve authenticity. The notations we use for
logical verification is shown in Table 8.

1. Verification of freshness of TUi
, TSNj

, TGWN (using message - meaning and
nonce verification rule of BAN logic):

•
GWN | ≡ Ui

rUi� GWN,GWN � <TUi
>rUi

GWN | ≡ Ui| ∼ TUi

That is, if GWN believes the secret rUi
is shared with Ui and sees

<TUi
>XUi

, then GWN believe Ui once said TUi



User Authentication Scheme for WSNs and IoT 89

Table 7. The spdl specification of the proposed protocol

hashfunction h;
const XOR : Function;
const Modulo: Function ;
const Gen : Function ;
const Rep : Function;
protocol Protocol(Ui, GWN, SNj)
{ macro SIGi = Gen(Bi);
macro IPBi = h(IDui, PWui, h(SIGi));
macro SIGi’ = Rep(Bi’, TAUi);
macro IPBi’ = h(IDui, PWui, h(SIGi’));
macro Alpha = XOR( IPBi,Rui );
macro Beta = h(IPBi, Rui );
macro Gamma = XOR(h(IDui,IPBi), Xold );
macro xiold = Modulo(Xold,Rui’);
macro xiold’ = Modulo(Xold,Rsnj);
macro xinew = Modulo(Xnew,Rsnj);
macro xinew’ = Modulo(Xnew,Rui’);
macro m1 = h(xiold, Tui);
macro m2 = h(IDui, IDsnj,Rui’,Tui);
macro m3 = h(IDsnj, Rsnj, m2,Tui, Tsnj);
macro m4 = h(IDui,IDsnj,Xnew, xinew,Tui,Tsnj,Tgwn);
macro m5 = h(h(Tui,Tsnj,xinew));
macro m1’ = h(xiold’, Tui);
macro m2’ = h(IDui, IDsnj,Rui,Tui);
macro m3’ = h(IDsnj, Rsnj, m2’,Tui, Tsnj);
macro m4’ = h(IDui,IDsnj,Xnew, xinew’,Tui,Tsnj,Tgwn);
macro m5’ = h(h(Tui,Tsnj,xinew));
role Ui
{ var Tsnj ,Tgwn : Nonce;
fresh Tui: Nonce;
const IDui, PWui, Bi, Bi’, IDsnj, Xold, xiold,xiold’,
Xnew,xinew’,xinew , Rui, Rui’,Rsnj, TAUi: Ticket;
send 1(Ui, GWN, IDui, IPBi);
recv 2(GWN, Ui,Alpha,Beta,Gamma);
send 3(Ui, SNj, IDui, IDsnj, Xold,m1,m2,Tui);
recv 6(SNj, Ui, Xnew,m4,m5,Tsnj,Tgwn);
match(m4, m4’);
match(m5, m5’);

claim Ui1(Ui,Secret,Bi);
claim Ui2(Ui,Secret,PWui);
claim Ui3(Ui,Secret,Rui’);
claim Ui4(Ui,Secret,xiold);
claim Ui5(Ui,Secret,xinew’);
claim Ui6(Ui,SKR,h(Tui,Tsnj,xinew));
claim Ui7(Ui,Niagree);
claim Ui78(Ui,Nisynch);
}
role GWN
{ fresh Tgwn: Nonce;
var Tui,Tsnj : Nonce;
const IDui, PWui, Bi, Bi’, IDsnj, Xold, Xnew,Rui,
Rui’,Rsnj, TAUi: Ticket;
recv 1(Ui, GWN, IDui, IPBi);
send 2(GWN, Ui, Alpha, Beta, Gamma);
recv 4(SNj, GWN, IDui,IDsnj,m3,Tui,Tsnj);
match (m2’, m2);
match (m3’, m3);
send 5(GWN, SNj, Xnew, m4, Tgwn);
claim GWN1(GWN,Secret,xinew);
claim GWN2(GWN,Secret,Rsnj);
claim GWN3(GWN,Secret,Rui’);
}
role SNj
{ var Tui, Tgwn: Nonce;
fresh Tsnj : Nonce;
const IDui, PWui, Bi, Bi’, IDsnj, Xold, Xnew , Rui,
Rui’,Rsnj, TAUi: Ticket;
recv 3(Ui, SNj, IDui, IDsnj, Xold,m1,m2,Tui);
recv 5(GWN, SNj, Xnew, m4, Tgwn);
match(m1’, m1);
send 4(SNj, GWN, IDui,IDsnj,m3,Tui,Tsnj);
match(m4’, m4);
send 6(SNj, Ui, Xnew,m4,m5,Tsnj,Tgwn);
claim SNj1(SNj, Secret, Rsnj);
claim SNj2(SNj, Secret, Tsnj);
claim SNj3(SNj,Secret,xinew);
claim SNj4(SNj,SKR,h(Tui,Tsnj,xinew));
} }

• GWN | ≡ �(TUi
), GWN | ≡ Ui| ∼ TUi

GWN | ≡ Ui| ≡ TUi

That is, if GWN believes TUi
is fresh and GWN believes Ui once said

TUi
, then GWN believe Ui believes on TUi

•
GWN | ≡ SNj

rSNj� GWN,GWN � <TSNj
>rSNj

GWN | ≡ SNj | ∼ TSNj

That is, if GWN believes the secret rSNj
is shared with SNj and sees

<TSNj
>rSNj

, then GWN believe SNj once said TUi

•
GWN | ≡ �(TSNj

), GWN | ≡ SNj | ∼ TSNj

GWN | ≡ SNj | ≡ TSNj

That is, if GWN believes TSNj
is fresh and GWN believes SNj once said

TSNj
, then GWN believe SNj believes on TSNj

•
Ui| ≡ �(TSNj

), Ui| ≡ SNj | ∼ TSNj

Ui| ≡ SNj | ≡ TSNj

That is, if Ui believes TSNj
is fresh and Ui believes SNj once said TSNj

,
then Ui believe SNj believes on TSNj



90 A.K. Maurya and V.N. Sastry

Fig. 1. Result obtained using Scyther tool.

2. Verification of the authenticity of the message m2 by GWN (using message
- meaning rule)

•
GWN | ≡ Ui

rUi� GWN,Ui � <m2>rUi

GWN | ≡ Ui| ∼ m2

That is, if GWN believes the secret rUi
is shared with Ui and sees

<m2>rUi
, then GWN believe Ui once said m2



User Authentication Scheme for WSNs and IoT 91

Fig. 2. Result obtained using AVISPA tool.

Table 8. Notations used in verification using BAN logic

Notations Description

Pr, Qr Principals like Ui, GWN, and SNj

St Statements like TUi , TGWN , α, β etc.

K Secret key or data like KGSNj , X
′
Ui

etc.

Pr| ≡ St Pr believes st, or Pr is permitted to believe st

Pr � St Pr has received a data containing St and it can read or repeat St

Pr| ∼ St Pr once said St. Pr sent a data containing St and it could be a fresh or
old data.

�(St) The St is fresh and it has not been sent before.

Pr

rUi� Qr St is a secret data and it is only known to Pr or Qr and perhaps to the
trusted principals

<St>St1 St1 is a secret and its presence gives the identity of whoever generates
<St>St1

8 Performance Comparison

Table 9 shows the comparison based on security features, and it indicates that our
protocol is relatively secure compared to the existing protocol. Table 10 represent
the computational cost comparison, it shows that our scheme is suitable for
secure WSNs and IoT.



92 A.K. Maurya and V.N. Sastry

Table 9. Comparisons of security features

Security
Feature

Sun et al.
[16]

Xue et al.
[12]

Jiang et al.
[13]

Althobaiti
et al. [15]

Our scheme

SF1 Yes No Yes Yes Yes

SF2 No No No No Yes

SF3 No No No No Yes

SF4 No No No Yes Yes

SF5 No No No No Yes

SF6 Yes No No Yes Yes

Note: SF1, SF2, SF3, SF4, SF5 are the security features. F1 resist the
attack based on stolen smart card, SF2 indicates the secure password
updating, SF3 represents secure bio-metric information updating, SF4

indicates non-repudiation, SF5 offers formal security analysis, SF6 rep-
resents no privileged-insider attack

Table 10. Computational cost comparison

Scheme Computational overhead on Ui, SNj , GWN

Ui SNj GWN

Yoo et al.’s [11] 7 th 2 th 11 th

Sun et al.’s [16] 2 th 2 th 7 th

Xue et al.’s [12] 12 th 6 th 17 th

Jiang et al.’s [13] 8 th 5 th 11 th

Shi et al.’s [27] 3 tm + 5 th 2 tm + 3 th tm + 4 th

Choi et al.’s [28] 3 tm + 7 th 2 tm+ 4 th tm + 4th

Das’s [14] 2 tfe + tenc +10th tdec + 2th 2tenc/tdec + 5th

Ours 8 th + tmo 5 th + 2tmo 3 th

9 Conclusion

In this paper, we first discussed the security issues involve in sensor nodes of
WSNs and identified vulnerabilities involve in Das’s user authentication scheme.
Based on the security requirement of WSNs, we proposed an efficient authenti-
cated key exchange mechanism using the concepts of the fuzzy extractor and Chi-
nese Remainder Theorem. After that, we performed the security analysis of our
scheme using widely accepted automated verification tools such as AVISPA and
Scyther. Then, we performed logical verification using BAN Logic. Finally, we
did the computational analysis, and we demonstrated the comparative analysis
in respect of computational overhead and security features which indicate that
our scheme is secure and effective. In future, we aim to propose hyperelliptic
curve based authenticated key exchange scheme for WSNs and IoT.



User Authentication Scheme for WSNs and IoT 93

References

1. Akyildiz, I.F., Su, W., Sankarasubramaniam, Y., Cayirci, E.: Wireless sensor net-
works: a survey. Comput. Netw. 38(4), 393–422 (2002)

2. Watro, R., Kong, D., Cuti, S.F., Gardiner, C., Lynn, C., Kruus, P.: TinyPK: secur-
ing sensor networks with public key technology. In: ACM Workshop on Security of
Ad Hoc and Sensor Networks, pp. 59–64. ACM Press, Washington, DC (2004)

3. Wong, K.H., Zheng, Y., Cao, J., Wang, S.: A dynamic user authentication scheme
for wireless sensor networks. In: Proceedings of 2006 IEEE International Conference
on Sensor Networks, Ubiquitous, and Trustworthy Computing, Taichung, Taiwan,
pp. 1–9 (2006)

4. Tseng, H.R., Jan, R.H., Yang, W.: An improved dynamic user authentication
scheme for wireless sensor networks. In: Proceedings of IEEE Global Telecommu-
nications Conference (GLOBECOM 2007), Washington, DC, USA, pp. 986–990
(2007)

5. Lee, T.H.: Simple dynamic user authentication protocols for wireless sensor net-
works. In: The Second International Conference on Sensor Technologies and Appli-
cations, pp. 657–660 (2008)

6. Ko, L.C.: A novel dynamic user authentication scheme for wireless sensor networks.
In: IEEE International Symposium on Wireless Communication Systems (ISWCS
2008), pp. 608–612 (2008)

7. Vaidya, B., Silva, J.S., Rodrigues, J.J.: Robust dynamic user authentication scheme
for wireless sensor networks. In: Proceedings of the 5th ACM Symposium on QoS
and Security for wireless and mobile networks (Q2SWinet 2009), Tenerife, Spain,
pp. 88–91 (2009)

8. Das, M.L.: Two-factor user authentication in wireless sensor networks. IEEE Trans.
Wireless. Comm. 8, 1086–1090 (2009)

9. Khan, M.K., Alghathbar, K.: Cryptanalysis and security improvements of two-
factor user authentication in wireless sensor networks. Sensors 10(3), 2450–2459
(2010)

10. Yuan, J., Jiang, C., Jiang, Z.: A biometric-based user authentication for wireless
sensor networks. Wuhan Univ. J. Nat. Sci. 15(3), 272–276 (2010)

11. Yoo, S.G., Park, K.Y., Kim, J.: A security-performance-balanced user authentica-
tion scheme for wireless sensor networks. Int. J. Distrib. Sens. Netw. 2012, 1–11
(2012)

12. Xue, K., Ma, C., Hong, P., Ding, R.: A temporal-credential-based mutual authen-
tication and key agreement scheme for wireless sensor networks. J. Netw. Comput.
Appl. 36(1), 316–323 (2013)

13. Jiang, Q., Ma, J., Lu, X., Tian, Y.: An efficient two-factor user authentication
scheme with unlinkability for wireless sensor networks. Peer-to-Peer Network. Appl.
8(6), 1070–1081 (2014). doi:10.1007/s12083-014-0285-z

14. Das, A.K.: A secure and effective biometric-based user authentication scheme for
wireless sensor networks using smart card and fuzzy extractor. Int. J. Commun.
Syst. (2015). doi:10.1002/dac.2933

15. Althobaiti, O., Al-Rodhaan, M., Al-Dhelaan, A.: An efficient biometric authen-
tication protocol for wireless sensor networks. Int. J. Distrib. Sens. Netw. 1–13,
Article ID 407971 (2013)

16. Sun, D.Z., Li, J.X., Feng, Z.Y., Cao, Z.F., Xu, G.Q.: On the security and improve-
ment of a two-factor user authentication scheme in wireless sensor networks. Pers.
Ubiquit. Comput. 17(5), 895–905 (2013)

http://dx.doi.org/10.1007/s12083-014-0285-z
http://dx.doi.org/10.1002/dac.2933


94 A.K. Maurya and V.N. Sastry

17. Dodis, Y., Reyzin, L., Smith, A.: Fuzzy extractors: how to generate strong keys
from biometrics and other noisy data. In: Cachin, C., Camenisch, J.L. (eds.)
EUROCRYPT 2004. LNCS, vol. 3027, pp. 523–540. Springer, Heidelberg (2004).
doi:10.1007/978-3-540-24676-3 31

18. Choi, S.J., Youn, H.Y.: An efficient key pre-distribution scheme for secure dis-
tributed sensor networks. In: Enokido, T., Yan, L., Xiao, B., Kim, D., Dai,
Y., Yang, L.T. (eds.) EUC 2005. LNCS, vol. 3823, pp. 1088–1097. Springer,
Heidelberg (2005). doi:10.1007/11596042 111

19. Pathan, A.K., Dai, T.T., Hong, C.S.: An efficient LU decomposition-based key pre-
distribution scheme for ensuring security in wireless sensor networks. In: Proceed-
ings of The Sixth IEEE International Conference on Computer and Information
Technology, CIT 2006, p. 227 (2006)

20. Dolev, D., Yao, A.: On the security of public key protocols. IEEE Trans. Inf. Theory
29(2), 198–208 (1983)

21. AVISPA. http://www.avispa-project.org/
22. Cremers, C.: Scyther - Semantics and Verification of Security Protocols, Ph.D.

dissertation, Eindhoven University of Technology, Netherlands (2006)
23. Burrows, M., Abadi, M., Needham, R.M.: A logic of authentication. Proc. Royal

Soc. Lond. 426, 233–271 (1989)
24. Wander, A., Gura, N., Eberle, H., Gupta, V., Shantz, S.: Energy analysis of public-

key cryptography on small wireless devices. In: Proceedings of the IEEE PerCom,
Kauai, HI, pp. 324–328, March 2005

25. Kocher, P., Jaffe, J., Jun, B.: Differential power analysis. In: Wiener, M. (ed.)
CRYPTO 1999. LNCS, vol. 1666, pp. 388–397. Springer, Heidelberg (1999). doi:10.
1007/3-540-48405-1 25

26. Benenson, Z., Gartner, F., Kesdogan, D.: User authentication in sensor networks.
In: Proceedings of the Workshop on Sensor Networks. Lecture Notes Informatics
Proceedings Informatik (2004)

27. Shi, W., Gong, P.: A new user authentication protocol for wireless sensor networks
using elliptic curves cryptography. Int. J. Distrib. Sens. Netw., 730–831 (2013)

28. Choi, Y., Lee, D., Kim, J., Jung, J., Nam, J., Won, D.: Security enhanced user
authentication protocol for wireless sensor networks using elliptic curve cryptog-
raphy. Sensors 14, 10081–10106 (2014)

http://dx.doi.org/10.1007/978-3-540-24676-3_31
http://dx.doi.org/10.1007/11596042_111
http://www.avispa-project.org/
http://dx.doi.org/10.1007/3-540-48405-1_25
http://dx.doi.org/10.1007/3-540-48405-1_25


A Ringer-Based Throttling Approach
to Mitigate DDoS Attacks

Sarvesh V. Sawant(B), Gaurav Pareek, and B.R. Purushothama

National Institute of Technology, Ponda, Goa, India
ssarvesh93@gmail.com, {gpareek,puru}@nitgoa.ac.in

Abstract. Ease of data availability in the client server model of the
Internet comes with issues like Denial of Service which is an attack
devised by the malicious clients to restrict the legitimate clients from
using services offered by the server. In DDoS, the attacker asks the server
for its resources and keeps the resources engaged. Distributed denial of
service attack is performed on a large scale by using many malicious
clients to flood the server with requests. In this paper, we address the
problem of mitigating the effects of distributed denial of service attacks.
We use a ringer-based approach in which a polynomial is sent as challenge
to each requesting party. If the service is to be availed, the requesting
client must send the correct value of the polynomial at a point fixed
by the server and unknown to the client. Unlike previous approaches,
the proposed approach to throttle the attacking clients does not rely on
operations over large numbers thereby leading to far less computation
overhead on the server for validating the clients and forcing the client to
devote considerable computation efforts to gain access to a service. This
makes the proposed solution more scalable with guaranteed security even
if the system is exposed to a very large number of potential attackers. The
proposed solution also defends against an intelligent client who tries to
solve the polynomial using a random guess or by doing constant number
of computations.

Keywords: Denial of service · Throttling · Ringer · Polynomial
evaluation

1 Introduction

Client-server architecture is the basis of Internet and global connectivity across
the world. Knowing whether the client is authentic or not is a difficult task. Even
somehow, if it is possible to validate the authenticity of the client, if she has a
malicious intent, she can still bring down the server by sending valid requests
through her valid account. The actual flaw lies in the computation time for the
client making request for service which is very small as compared to the time the
server has to spend to serve the request. This distinction of computation time
between the client and the server makes distributed denial of service (DDos)

c© Springer Nature Singapore Pte Ltd. 2017
S.M. Thampi et al. (Eds.): SSCC 2017, CCIS 746, pp. 95–108, 2017.
https://doi.org/10.1007/978-981-10-6898-0_8



96 S.V. Sawant et al.

attack successful. Thus, some mischievous or malicious clients try to compromise
these servers and gain illegal access to their environment through DDoS scheme.
Any server under the DDoS attack will find overwhelming network traffic coming
towards her, breaching the security measures configured at her side. In order to
protect their environment, her last resort will be to shut down her services and
go off-line thus, denying all the clients the services. However, the server going off-
line would result in bitter consequences. The only option she has is to somehow
quarantine the effects of the attack, minimize the damage and at the same time
make the malicious client consume more of its resources before they attack and
negligibly affecting her resources for using the solution. One of the best ways
to do it is to make each request from the client to pay for the service through
its computation time i.e. by generating a “validation value” thus reducing the
impact of the attack. For the idea to work, we need to devise an algorithm that
will take more time to calculate the validation value at client side and less time
to verify the validation value at the server side. In our solution, we propose
to use a ringer-based approach (polynomial construction and evaluation) as the
mathematical challenge and vary the difficulty of solving the challenge depending
on the intensity of attack on the server. Our solution aims at making the server
responsive to valid clients with tolerable computation duty and acceptable failure
rates when the server is under DDoS attack. Such methods which control the
number of attack requests arriving at the server per unit time by introducing a
duty overhead on all the clients is called throttling. The attacker in throttling is
forced to compute a new validation value for each request it wishes to initiate
(which consumes computation time) thereby limiting the number of different
requests an attacker can issue per unit time.

Schemes that use throttling as a means to mitigate DDoS effect generate a
problem instance and wait for the client’s stamp based on whose validity, access
to a service is granted [6,10]. The problem instance involves generation of large
primes and performing costly computations like multiplication and exponentia-
tion. As a result, it is apparent that computation efforts required for checking
the validity of any stamp by the server are comparable to that for constructing
the stamp itself. This may create a problem when the network size is huge and
the number of potential attackers is high. Gujjunoori et al. [10] and Darapureddi
et al. [6] also highlight that in their schemes, the size of the potential problem
space which they pick every problem instance from, varies with factors like size
of the field whereas in our proposed approach there are no such issues. In our
proposed approach, need for mathematically hard problems is circumvented as
the generation of problem instance includes generating polynomial coefficients
randomly from the small range and constructing a polynomial which involves
constant time.

The concept of ringers was first proposed by Golle et al. [8]. Ringer concept
has been widely used for cheating detection across various computing platforms.
A ringer is an output of a one-way function that serves as a challenge for the
responder who sends the correct input required for the one-way function to pro-
duce the challenge. Analogously, a validation value serves as a challenge and the



A Ringer-Based Throttling Approach to Mitigate DDoS Attacks 97

goal of the client is to calculate the point in a collection of points that produces
the value same as the challenge. So, the proposed solution is an extension of the
idea of ringer-based cheating detection to throttling of the DDoS client with the
polynomial acting as a one-way function.

Rest of the paper is organized as follows. In Sect. 2, we present a detailed
discussion about the problem. In Sect. 3, we have presented a brief idea of existing
methodologies. In Sect. 4, we have presented our proposed solution. In Sect. 5
we have described our implementation results. Section 6 includes probabilistic
analysis of effectiveness of the proposed throttling scheme. Finally, we conclude
the paper in Sect. 7.

2 Problem Description

DDoS is a mechanism devised by illegitimate clients to gain access in the server
environment by flooding the system with packets that keep the system resources
engaged long enough to deny service to legitimate clients requesting the resources
and eventually gaining control of the server. Victims of DDoS attack consists of
not only targeted system but also of all compromised systems maliciously used
and controlled by the attacker.

To elaborate, we will consider a hypothetical server capable of serving 10,000
requests per second. Assume there are two legitimate clients asking for service
request at the rate of 500 requests per second. Since, the request rate is below
the rate at which server can process the request, the server serves the request of
these clients.

Now, assume that an adversary client starts sending request to the server at
the rate of 20,000 requests per second. Due to increase in the requests received
by the server, there is a toll over the server and has overhead. Hence, we see
that in the queue maintained by the server, the amount of the requests from the
adversary is more than the requests from the legitimate clients.

In a distributed attack scenario, assume that another malicious client is send-
ing requests at the rate of 20,000 packets per second to the server. Therefore,
now at the server side, at a second 41,000 packets are requesting for the server
resources per second thereby increasing the probability that the legitimate client
gets denied of the service. Eventually, as the attack intensifies, since the server
is exhausted with her resources, she can no longer serve any requests and ends
up either hanged or crashed. So, there is a need to prevent the malicious client
from overwhelming the server with many requests so that the legitimate clients
will not be denied the service.

3 Related Work

Juels [7,12] proposed to solve the problem of DDoS by the use of crypto-
graphic puzzles. Once the sever determines that it is under attack, it starts
sending puzzles to all its clients which are to be solved in a specified time inter-
val. On solving the puzzle the clients are given access to the server resources.



98 S.V. Sawant et al.

An adversary will take more time to solve the puzzle because he will have to solve
large number of puzzles one for each of its requests. However, in this scheme the
legitimate client will be denied access if his solution does not reach the server
within the expected time duration. In the scheme by Aura [3], the efficiency of
the client puzzles are improved by reducing the length of the puzzle and the
number of hash operations needed in the verification of the solution. Abadi [1]
proposed the use of memory bound functions in cryptographic puzzles. Mem-
ory bound is a condition wherein the time needed to complete computational
problem is decided mainly by the amount of memory required to hold the data.
Back [4] contributed a Hashcash based solution in which a token is computed
by the client which can be used as a proof-of-work. But Hashcash is a function
that is efficiently verifiable but expensive to compute. The main drawback with
respect to client puzzles approach was to set the difficulty of the puzzle in the
presence of an attacker with unspecified computing power and integrating them
with existing mechanisms. Wang [17] have used the concept of puzzle auction
to enable every client to “bid” for resources by tuning the difficulty it solves
and to adapt its bidding strategy in response to apparent attacks. However, the
main issues seen in this approach were adjusting the difficulty with respect to
the unknown computing power of the attacker and the puzzles poses signifi-
cant load on the legitimate clients. On the similar lines, different schemes like
those in [5,11,15] were proposed. A brief survey of related schemes and current
DDoS trends are discussed in the report of [2,9,13,14,18]. However, foreseeing
the significant increase in the computing power of processors, it was emphasized
to develop more resilient solutions to DDoS Attack. Thus, the focus shifted
to using NP-Hard problems and exploiting the hardness of these problems to
provide solution to the DDoS Attack. In one such approach by Darapureddi
et al. [6], they have used Discrete Logarithm Problem as the hardness problem
to strategically rule out the malicious packets. In this approach, using a combi-
nation of IP Address and time stamp, prime numbers, generators and finite fields
are generated. In the scheme due to Syed [10], Integer Factorization Problem is
used as the hardness problem to throttle the illegitimate clients.

All the above schemes that employ computationally hard problems for throt-
tling the DDoS client require the problem instance to be such that the problem
formulation and result verification take little effort as compared to the actual
computation. Generating an instance of a computationally hard problem can
be as costly as solving the problem in the worst case. Also, availability of such
problem instances is affected by various factors like the input size etc. All these
issues need to be addressed so as to guarantee the scalability in addition to
effectiveness of the solution. In this paper, we propose a ringer based approach
to throttle the DDoS attack. The concept of ringer is widely used for detecting
malicious behaviour across many distributed computing platforms like in [8,16]
to segregate illegitimate requests from the legitimate ones.



A Ringer-Based Throttling Approach to Mitigate DDoS Attacks 99

4 Proposed Solution

We address the problem of DDoS by providing the client a polynomial to evaluate
and generate a validation value. This validation value will then be verified at the
server end. Using this, the computation time required at the client end would
be of O(m n!) where n is the number of coefficients in the polynomial and m,
the number of points at which the polynomial is evaluated by the client before
being granted access to the service.

We stress that our solution can effectively throttle the malicious client so as
to reduce the impact of the attack on the server while taking constant time to
generate the polynomial sequence. Thus, pressing significant computation load
on the malicious clients to gain access to the server with little or no effect on
the server due to the solution.

Polynomial Evaluation is a process of computing value from the set of domain
for a polynomial function to get corresponding range value for the polynomial
function for given domain input.

Threshold is the permitted limit of the requests the server can handle by not
stressing her resources.

4.1 Notations and Proposed Approach

In this section, we present notations that are used throughout the paper. The
concrete proposed throttling solution is also presented.

Notations:

• p(x) =⇒ The polynomial generated by the server.
• X =⇒ The set of values that will be fed to the polynomial at client side as

input for the polynomial.
• V =⇒ The validation value generated for one of the x ∈ X by feeding into
p(x) at the server side.

The proposed solution proceeds as below:

• A client sends a request to the web server for a web page.
• The server responds to the request satisfactorily till it finds that her resources

are getting compromised and have crossed certain permeable conditions. It is
when the solution is invoked.

• The server generates a random polynomial p(x), whose degree depends upon
the severity of the attack. Generating a polynomial includes selecting the
coefficients randomly from a given range of values so that the polynomial
is represented as the collection of polynomial. For example, a polynomial
p(x) = 303x3+67x+931 is represented as the collection P = {303, 0, 67, 931}.

• Next, the server generates a large set X of values on which the polynomial
can be calculated.

• The server now selects a random xt ∈ X and computes V = p(xt) as the
validation value.



100 S.V. Sawant et al.

• Finally, the polynomial p(x) is rearranged into p′(x) by taking a random
permutation of the set P. For example, if P = {303, 0, 67, 931}, one possible
permutation is the collection P ′ = {0, 67, 303, 931}.

• P ′, X and V are sent to the client along with the source code for re-
constructing the polynomial for each permutation (P ′′) of the values in P ′

and computing p′′(xu) for each xu ∈ X, that is, the value of the polynomial
at xu.

• The client now uses the above code that continues operating on the input
received in the step above until p′′(xu) = V , that is, P = P ′′ and xu = xt

hold simultaneously.
• The client now sends the value xu computed in the previous step to the server

and the server grants access to the service only if the value stored by the server
equals the value sent by the client, that is xt = xu.

4.2 Solution Description

When the server is posed with requests, in normal scenario, wherein the number
of requests reaching the server is well below the maximum number of requests,
the server can serve without any panic, operating normally without any need
for invoking the solution. However, once the threshold limit for the requests at
the server end crosses a certain value, the solution is invoked which includes the
steps mentioned in the previous section. As explained, the solution will allow only
those user’s requests to go through to the server who could successfully compute
the correct value corresponding to the validation value for that request.

These steps are bound to consume large number of computation cycles and
since each request will have a new validation value, triggering our solution results
in slowdown in the number of illegitimate requests per unit time an attacker can
send. As the distributed attack deepens, we can increase the degree of polynomial
and the set X by not putting much load on the server. Each time a client initiates
a service request, the server treats it as a new request and does not try to
distinguish between the fake and genuine requests as such. The attacking client
who tries to flood enormous number of requests towards the server, computes
and sends a response corresponding to the validation value.

Due to high computational cost involved in obtaining the desired response
for a validation value, the number of requests that can successfully go through
to the server per unit time is limited leading to a sudden drop in the server
utilization. The same computation burden is imposed on a genuine client but
since the number of requests generated by the genuine client is very low, this
leads to a tolerable delay in service for the genuine client. Moreover, the degree
of polynomial can be reduced to reduce the computation burden in case the
genuine client is a mobile device limited by storage and/or power constraints.
Increasing degree of the polynomial would only increase the time it takes for the
clients to evaluate for the right value.



A Ringer-Based Throttling Approach to Mitigate DDoS Attacks 101

4.3 Detailed Algorithmic Description of the Proposed Solution

In this section, we provide a detailed algorithmic description for proposed solution.

Algorithm 1.1. Polynomial generation.
PolynomialCreation ( RequestCount )
{
if (RequestCount >threshold) then

set degree according to the attack intensity
end if
Generate degree + 1 random coefficients to form the set P
}

The Algorithm 1.1 describes about creation of the polynomial. Coefficients
of the polynomial are generated randomly and a randomly permutation of the
set of coefficients (P ′) is sent to the client instead of the original one (P). The
client will have to generate the correct polynomial at its end.

Algorithm 1.2. X value set generation.
XSetGeneration ( )
{
scale |X| according to intensity of the attack
generate |X| random values to fill the set X
}

Algorithm 1.2 describes about creation of set of points (X). Depending upon
the intensity of the attack, the set of points generated given for the polynomial
will change. More the intensity of attack, greater the size of the set X.

Algorithm 1.3. Validation Value generation V .
XValGen ( p(x) , X)
{
Select a random xt ∈ X
Compute V = p(xt) as Validation Value
}

Algorithm 1.3 generates the validation value. In this algorithm, we choose
a random point xt from the set of points (X) generated by Algorithm1.2 and
evaluate the polynomial at this point (p(xt)) to obtain the validation value (V ).

Algorithm 1.4. Polynomial evaluation.
FindX ( P ′, X )
{
for all permutations P ′′ of P ′ do

Select xu ∈ X sequentially
while p′′(xu) �= V do

Evaluate p′′(xu)
end while

end for
}



102 S.V. Sawant et al.

Algorithm 1.4 evaluates the polynomial at each point xu ∈ X and checks
if p(xu) = V holds true for the said value V . This task is performed at the
client side by the JavaScript that was sent to the client by the former when
the latter requested for the service. The task for the client is to first generate
the polynomial p′′(x) at his side from the given coefficients P ′. Then, for each
permutation generated, he checks for all the values in the set of values if any
match for the validation value is occurring i.e. he checks for p′′(xu) = V , implying
p(x) = p′′(x) and xu = xt. If he gets the match, he immediately sends it to the
server or else continues till all the possible permutations of the coefficients are
exhausted.

5 Implementation and Results

In this section, we present the results obtained by implementing the proposed
solution with system configurations as under:

– Clients: Intel(R) Core(TM) i7-4970 CPU@3.60 GHz, 8 GB RAM, 64 bit Oper-
ating System, x64 based processor.

– Server: Intel(R) Core(TM) i7-4970 CPU@3.60 GHz, 8 GB RAM, 64 bit Oper-
ating System, x64 based processor.

For studying effectiveness of the proposed solution, we developed a server repre-
senting an on-line portal. This server was developed in Microsoft Visual Studio
2010 in Windows Operating System.

The client first constructs the polynomial and then computes the value of
x ∈ X for which the polynomial gives the computed output with the help of a
JavaScript provided by the server. The proposed solution was tested on the test
bed consisting the above configurations. However, our scheme can work on any
device that is capable of executing a JavaScript.

We observe that, as the polynomial degree increases, the amount of time
consumed at the client side to evaluate the polynomial is also increased. Table 1
presents the amount of computation overhead in terms of the time taken by their
browsers as the polynomial degree increases.

Table 1. Time taken (ms) by different browsers to obtain correct validation value.

p(x) Degree Chrome Opera Mozilla IE

2 10 10 19 30
3 36 50 60 150
4 233 270 280 980

In Figs. 1(a), (b) and 2(a), the plot between the server load and time depicts
reduction in relative number of fake packets after the solution is invoked, for
degree 2, 3 and 4 polynomial respectively. The quantity Server Load in the
graph is the amount of packets the server processes at a given time instant.



A Ringer-Based Throttling Approach to Mitigate DDoS Attacks 103

Fig. 1. Solution impact with (a) Degree 2 and (b) Degree 3.

Fig. 2. (a) Solution impact with degree 4 and (b) Server overhead of the solution.

As the degree of the polynomial increases the rate with which the attack packets
are eliminated also increases. So, it can be seen that the decline in the relative
number of attack packets is faster in case of the degree 4 polynomial as compared
with the degree 3 polynomial and so on. This is because the illegitimate client
has to process as many polynomials as there are number of requests it wants to
flood the server with which slows the attacking client down thus, reducing the
number of requests approaching the sever. With increase in the degree of the
polynomial, the computation time keeps on increasing.

In Fig. 2(b), the computation overhead our solution imposes on the server
with respect to each polynomial degree. We see that as the degree increases, the
computation overhead also increases on the server. However, the computation
load on the server is less compared to previous schemes developed.

In Fig. 3(a), we have presented the effectiveness of our solution in throttling
the DDoS client. It clearly highlights that higher the degree of the polynomial
faster the throttling of illegitimate clients. In order to understand the behav-
iour of our solution when the attacker is intelligent, we developed an intelligent
illegitimate client that could compute the validation value. This client was devel-
oped in JAVA using Eclipse. We analysed the duration for which the attacker
can continue with the attack before she gets totally exhausted along with the



104 S.V. Sawant et al.

Fig. 3. (a) Solution effectiveness and (b) Packets falsely marked valid (false negative).

Fig. 4. Solution impact on malicious client.

impact of change of degree of the polynomial. Thus, in Fig. 3(b), we have pre-
sented the delay our solution took to throttle all the malicious requests made to
the server.

Figure 4 depicts the performance of our solution when the malicious client is
capable of computing the validation value. It shows the total packets generated
by the intelligent adversary when the solution is invoked.

6 Security and Comparative Analysis

The strength of a throttling scheme lies in the inability of an attacker not being
able to respond with correct validation value by a random guess or partial efforts.
In this, section we present a probabilistic analysis of the proposed scheme indicat-
ing that the attacker must compute the response. This section also presents com-
parative study of the proposed scheme against various other throttling schemes.
The comparative analysis suggests that our scheme outperforms the existing
throttling schemes which involve NP-hard problems for challenge generation.



A Ringer-Based Throttling Approach to Mitigate DDoS Attacks 105

6.1 Security Analysis

We present a probabilistic analysis of how the proposed solution guards against
the random guessing of the point to obtain correct validation value. We also
capture the strategies that can possibly be adopted by an intelligent attacker
to “early-guess” the validation value without doing the required computations.
We establish that probability of success to guess the correct response for server’s
validation value by even an intelligent attacker is no greater than the probability
of a random guess from the set X of points. Suppose that the DDoS client wants
to avoid evaluating the polynomial (with n coefficients) sent by the server at all
the m points in the set X to obtain the correct validation value V . Note that
the set of points X, (|X| = m) and the validation value V are sent to the client
by the server along with the set P ′ which consists of a random permutation of
the actual set of coefficients P. A client may proceed with any of the following
strategies for an “early-guess” of the validation value:

– Strategy-1 : Selecting a random point from X as response to the server’s val-
idation value.

– Strategy-2 : Selecting a point from X at random and computing the value of all
the polynomials obtained by permuting the set P ′ till exactly w polynomials
are evaluated over the selected point. And if the validation value is still not
found, a randomly selected point from the remaining points in X is returned
as a response to the server’s validation value.

– Strategy-3 : Selecting a random permutation of the set P ′ and evaluating
the polynomial thus obtained at w′ distinct points from X anticipating the
required validation value and upon failure in obtaining the required validation
value, selecting a point randomly from the remaining (m − w′) points as a
response to the server’s validation value.

First we obtain the probability of success of the attacker using each of the above
strategies for guessing the validation value sent by the server. In the first strat-
egy, probability that the correct point from the m points in X is guessed can be
given by:

P (1) =
1
m

(1)

The above probability is the probability of a completely random guess without
any knowledge. As an attempt to attain a greater success probability, an attacking
client may use Strategy-2 for guessing the point corresponding to the validation
value. In this, the probability of success for the attacking client is given by:

P (w) =
1
m

(
w

n!
+ (1 − w

n!
)) =

1
m

(2)

which is again equal to the probability of random guess from the set X of points.
Using strategy-3, the success probability for the attacker is:

P (w′) =
1
n!

(
w′

m
+ (1 − w′

m
)(

1
m − w′ )) =

w′ + 1
n!m

(3)



106 S.V. Sawant et al.

T
a
b
le

2
.
C

o
m

p
a
ri

so
n

o
f
th

e
p
ro

p
o
se

d
sc

h
em

e
w

it
h

so
m

e
ex

is
ti

n
g

o
n
es

D
D

o
S

sc
h
e
m

e
c
o
m

p
a
ri

so
n

S
c
h
e
m

e
C

h
a
ll
e
n
g
e

S
tr

e
n
g
th

S
c
a
la

b
le

S
e
rv

e
r

si
d
e

C
li
e
n
t-

si
d
e

R
o
b
u
st

n
e
ss

C
h
a
ll
e
n
g
e

c
o
n
st

ru
c
ti

o
n

R
e
sp

o
n
se

v
e
ri

fi
c
a
ti

o
n

C
o
m

p
u
ta

ti
o
n

o
v
e
rh

e
a
d

C
li
e
n
t

p
u
z
z
le

s
[1

2
]

C
ry

p
to

g
ra

p
h
ic

p
u
z
z
le

s

O
n
e
-w

a
y

fu
n
c
ti

o
n

N
o

—
C

o
n
st

a
n
t

P
u
z
z
le

v
a
lu

e

c
o
m

p
u
ta

ti
o
n

D
e
p
e
n
d
s

o
n

ti
m

e
in

te
rv

a
l
th

u
s

so
m

e
ti

m
e
s

d
e
n
ie

s
a
c
c
e
ss

to
v
a
li
d

c
li
e
n
ts

P
u
z
z
le

a
u
c
ti

o
n
s

[1
7
]

C
ry

p
to

g
ra

p
h
ic

p
u
z
z
le

s

O
n
e
-w

a
y

fu
n
c
ti

o
n

Y
e
s

—
C

o
n
st

a
n
t

P
u
z
z
le

v
a
lu

e

c
o
m

p
u
ta

ti
o
n

D
iffi

c
u
lt

to
a
p
p
ro

p
ri

a
te

ly
tu

n
e

th
e

p
u
z
z
le

d
iffi

c
u
lt
y

w
.r

.t
c
li
e
n
t

D
L
P

[6
]

N
P
-H

a
rd

P
ro

b
le

m
s

D
is

c
re

te

L
o
g
a
ri

th
m

ic

P
ro

b
le

m

Y
e
s

P
+

M
E

C
o
n
st

a
n
t

D
is

c
re

te
lo

g
a
ri

th
m

C
h
a
ll
e
n
g
e

c
o
m

p
u
ta

ti
o
n

a
n
d

re
sp

o
n
se

v
e
ri

fi
c
a
ti

o
n

in
v
o
lv

e
s

c
o
st

ly
m

o
d
u
la

r

a
ri

th
m

e
ti

c

P
ri

m
e

fa
c
to

ri
z
a
ti

o
n

[1
0
]

N
P
-h

a
rd

p
ro

b
le

m
s

In
te

g
e
r

fa
c
to

ri
z
a
ti

o
n

Y
e
s

P
+

M
C

o
n
st

a
n
t

P
ri

m
e

fa
c
to

ri
z
a
ti

o
n

C
h
a
ll
e
n
g
e

c
o
m

p
u
ta

ti
o
n

a
n
d

re
sp

o
n
se

v
e
ri

fi
c
a
ti

o
n

in
v
o
lv

e
s

c
o
st

ly
m

o
d
u
la

r

a
ri

th
m

e
ti

c

P
ro

p
o
se

d
so

lu
ti

o
n

P
o
ly

-t
im

e

so
lv

a
b
le

p
ro

b
le

m

P
o
ly

n
o
m

ia
l

c
o
n
st

ru
c
ti

o
n

Y
e
s

p
(x

)
C

o
n
st

a
n
t

P
e
rm

u
ta

ti
o
n
s

N
o

c
o
m

p
le

x
m

o
d
u
la

r
a
ri

th
m

e
ti

c
in

v
o
lv

e
d

P
is

th
e

c
o
m

p
u
ta

ti
o
n

o
v
e
rh

e
a
d

fo
r

se
le

c
ti

n
g

la
rg

e
p
ri

m
e

in
te

g
e
r

fr
o
m

a
fi
n
it

e
fi
e
ld

.

M
E

is
th

e
c
o
m

p
u
ta

ti
o
n
a
l
c
o
st

fo
r

p
e
rf

o
rm

in
g

o
n
e

m
o
d
u
la

r
e
x
p
o
n
e
n
ti

a
ti

o
n

g
x

w
h
e
re

x
is

a
la

rg
e

p
ri

m
e

n
u
m

b
e
r.

M
is

th
e

c
o
m

p
u
ta

ti
o
n
a
l
c
o
st

fo
r

p
e
rf

o
rm

in
g

o
n
e

m
o
d
u
la

r
m

u
lt

ip
li
c
a
ti

o
n

p
×

q
w

h
e
re

p
a
n
d

q
a
re

tw
o

la
rg

e
p
ri

m
e
s.

p
(x

)
is

th
e

c
o
m

p
u
ta

ti
o
n
a
l
c
o
st

fo
r

g
e
n
e
ra

ti
n
g

a
p
o
ly

n
o
m

ia
l
w

it
h

ra
n
d
o
m

(r
e
la

ti
v
e
ly

sm
a
ll
)

c
o
e
ffi

c
ie

n
ts

.

“
—

”
in

d
ic

a
te

s
n
o

c
o
n
c
re

te
o
n
e
-w

a
y

fu
n
c
ti

o
n
s

a
re

m
e
n
ti

o
n
e
d
.



A Ringer-Based Throttling Approach to Mitigate DDoS Attacks 107

The above probability also poses a fair chance to reduce toP (1) only after the value
w′ surpasses n!. This means that to obtain success probability any larger than 1

m ,
the attacking client has to work on the polynomial that is, bothP (w) andP (w′) are
proportional tow andw′ respectively, that is the amount of work done in each case.
So, the client has to work on more and more points from X to attain a probability
of success of obtaining the desired point higher than that in case of a random guess
which is our objective of throttling the DDoS client.

6.2 Comparative Analysis

We present a comparative study of the proposed scheme against the existing ones
with respect to strength, scalability and robustness. Performance comparison is
also presented. We find that the proposed scheme is scalable, efficient and relies on
simpler assumptions. However, the proposed scheme is strong and imposes rela-
tively low computation burden on the server for computing the challenge. Ours is
the only throttling scheme based on problems that are not NP-Hard (Table 2).

7 Conclusion

Distributed Denial of Service (DDoS) is a serious attack on a server’s reputation
in which the attacker engages the server’s resources by overwhelming the server
with huge number of service requests. Throttling of such a client is an effective
defence against such attacks. As a result of throttling, cost of sending attack pack-
ets becomes huge and the effect due to the attack can be reduced within a tolerable
limit for the server. In this paper, we address the problemofDDoS attacks by throt-
tling the attacker using polynomial evaluation problem. In previous methods, to
throttle the illegitimate clients the server sent challenges based on computation-
ally hard problems and ends up generating problem instances that are costly to
both generate and verify. In our solution we proposed to use a combinatorial prob-
lem which is a faster growing function than exponential function. Thus, with little
change such as increasing the degree of the polynomial at the server-side we are
capable of generating a massive computational overhead on the client machines.

Thus, compared to previous schemes our solution impresses more computa-
tional duty on the clients with less overhead on the server even when the solution
needs to be intensified as a result to deepening of the attack. The accompanying
probabilistic analysis suggests the effectiveness of ourmethodagainst an intelligent
attacker who wishes to gain control of server by doing a small number of computa-
tions. This probability of getting access to the server by doing a limited number of
computations is even worse than that in case of a completely random guess.



108 S.V. Sawant et al.

References

1. Abadi,M., Burrows,M.,Manasse,M.,Wobber,T.:Moderately hard,memory-bound
functions. ACM Trans. Internet Technol. (TOIT) 5(2), 299–327 (2005)

2. Ali, S.T., Sultana, A., Jangra, A.: Mitigating DDoS attack using random integer
factorization. In: 2016 Fourth International Conference on Parallel, Distributed and
Grid Computing (PDGC), pp. 699–702, December 2016

3. Aura, T., Nikander, P., Leiwo, J.: DOS-resistant authentication with client puz-
zles. In: Christianson, B., Malcolm, J.A., Crispo, B., Roe, M. (eds.) Security Proto-
cols 2000. LNCS, vol. 2133, pp. 170–177. Springer, Heidelberg (2001). doi:10.1007/
3-540-44810-1 22

4. Back, A., et al.: Hashcash-a denial of service counter-measure. Technical report
(2002)

5. Crosby, S.A., Wallach, D.S.: Denial of service via algorithmic complexity attacks. In:
USENIX Security, vol. 2 (2003)

6. Darapureddi, A., Mohandas, R., Pais, A.R.: Throttling DDoS attacks using discrete
logarithm problem. In: Proceedings of the 2010 International Conference on Security
and Cryptography (SECRYPT), pp. 1–7. IEEE (2010)

7. Dean, D., Stubblefield, A.: Using client puzzles to protect TLS. In: USENIX Security
Symposium, vol. 42 (2001)

8. Golle, P., Mironov, I.: Uncheatable distributed computations. In: Naccache, D. (ed.)
CT-RSA 2001. LNCS, vol. 2020, pp. 425–440. Springer, Heidelberg (2001). doi:10.
1007/3-540-45353-9 31

9. Gu, Q., Liu, P.: Denial of service attacks. In: Bidgoli, H. (ed.) Handbook of Com-
puter Networks: Distributed Networks, Network Planning, Control, Management,
and New Trends and Applications, vol. 3, pp. 454–468. Wiley, Hoboken (2007)

10. Gujjunoori, S., Syed, T.A., Madhu Babu, J., Darapureddi, A., Mohandas, R., Pais,
A.R.: Throttling DDoS attacks. In: Proceedings of the 2009 International Conference
on Security and Cryptography (SECRYPT), pp. 121–126. INSTICC Press (2009)

11. Jin, C., Wang, H., Shin, K.G.: Hop-count filtering: an effective defense against
spoofed DDoS traffic. In: Proceedings of the 10th ACM Conference on Computer
and Communications Security, pp. 30–41. ACM (2003)

12. Juels, A., Brainard, J.G.: Client puzzles: a cryptographic countermeasure against
connection depletion attacks. In: NDSS 1999, pp. 151–165 (1999)

13. Li, X., Wang, Y., Zhang, Y.: Session initiation protocol denial of service attack
throttling. uS Patent Ap. 13/944,156, 22 January 2015. https://www.google.com/
patents/US20150026793

14. Malialis, K., Kudenko, D.: Multiagent router throttling: decentralized coordinated
response against DDoS attacks. In: IAAI (2013)

15. Mirkovic, J., Prier, G., Reiher, P.: Attacking DDoS at the source. In: Proceedings of
the 10th IEEE International Conference on Network Protocols, pp. 312–321. IEEE
(2002)

16. Sion, R.: Query execution assurance for outsourced databases. In: Proceedings of the
31st International Conference on Very Large Data Bases, VLDB 2005, pp. 601–612.
VLDB Endowment (2005)

17. Wang, X., Reiter, M.K.: Defending against denial-of-service attacks with puzzle auc-
tions. In: Proceedings of SymposiumonSecurity andPrivacy, pp. 78–92. IEEE (2003)

18. Wong, F., Tan, C.X.: A survey of trends in massive DDoS attacks and cloud-based
mitigations. Int. J. Netw. Secur. Appl. 6(3), 57 (2014)

http://dx.doi.org/10.1007/3-540-44810-1_22
http://dx.doi.org/10.1007/3-540-44810-1_22
http://dx.doi.org/10.1007/3-540-45353-9_31
http://dx.doi.org/10.1007/3-540-45353-9_31
https://www.google.com/patents/US20150026793
https://www.google.com/patents/US20150026793


NPSO Based Cost Optimization for Load
Scheduling in Cloud Computing

Divya Chaudhary(&), Bijendra Kumar, and Rahul Khanna

Department of Computer Engineering,
Netaji Subhas Institute of Technology, New Delhi, India

divyadabas@gmail.com, bizender@hotmail.com,

khannar1995@gmail.com

Abstract. The main objective of virtual distributed computing is optimization
of load in an efficient manner. This is achieved using load scheduling in cloud
computing. The cloud is a virtual distributed environment having a huge set of
resources. It offers us an incremental paradigm to obtain effective data transfer
among the virtual machines and cloudlets. The paper proposes New Particle
Search Optimization (NPSO) based load scheduling approach to obtain cost
minimization by processing the cloudlets on VMs. It specifies a meta-heuristic
swarm intelligence based approach by storing the best positions. The swarm of
particles affects the behavior of the cloudlets. This is achieved using a new cost
evaluation function. This paper analyzes the particle swarm optimization and
NPSO (New Particle Search Optimization) on a large data set of cloudlets and
VMs. The proposed approach provides higher efficiency by cost optimization
(minimized cost) based on the statistical analysis of the total cost (execution and
transfer) on a data set of number of iterations and particles.

Keywords: Cloud computing � Load scheduling � Particle swarm
optimization � Swarm intelligence

1 Introduction

The cloud computing is a fast growing computing technology providing large set of
resources. It is a growing computing paradigm that offers higher scalability, higher
software and hardware management, higher flexibility among the resources. The cloud
computing specifies a virtual, distributed computing environment for users by the
pay-as-you-use model. It could be accessed over a large geographical area. The
resources can be executed on the heterogeneous computers. The cloudlets are executed
in parallel on the virtual machines. The tasks consume a large amount of resources in a
distributed environment and handling complexities and time (response, execution and
transfer). The allocation of the heterogeneous resources to virtual machines is per-
formed by load schedulers and is known as load scheduling.

Load Scheduling refers to the system of providing, allocating resources to available
tasks in the virtual distributed system. It is performed to solve the problems like
starvation, system failure, deadlock, etc. [1, 3]. It deals with the minimization of the
total cost. The main purpose of load balancing is to increase the performance of the

© Springer Nature Singapore Pte Ltd. 2017
S.M. Thampi et al. (Eds.): SSCC 2017, CCIS 746, pp. 109–121, 2017.
https://doi.org/10.1007/978-981-10-6898-0_9



system and imbibe cost effectiveness achieved using proper exploitation and allocation
of the resources to the tasks. The job scheduling depending on swarm intelligence has a
larger significance in the environment. The swarm deals with the collection of particles
or objects [7, 8]. The swarm technique deals with division of labour and generation of
good solutions available in the system. The biggest advantage of using the Swarm
Intelligence based technique is that it involves both positive as well as negative
feedback. Particle Swarm Optimization is a type of optimization that uses self-adaptive
global search mechanism for the workflow scheduling [9, 13]. This optimization
approach derives its references from various algorithms like genetic algorithms (GAs),
Simulated Annealing (SA), Ant Colony Optimization (ACO) among others [10, 11].
The PSO is applied in cloud computing for the faster and higher data retrieval
mechanism along with very minimal cost in the system [12, 16]. The paper discusses a
New Particle Swarm Optimization algorithm (NPSO) for load scheduling in cloud
computing using a new fitness function for the total cost evaluation. The CloudSim
simulator is used for the implementation [2].

This paper is arranged in the following manner. Section 2 provides a brief review
of particle swarm optimization based load scheduling. In Sect. 3, we introduce the new
proposed algorithmic approach. Section 4 demonstrates the experimental setup along
with the results and analysis of the algorithms and finally Sect. 5 provides the con-
clusions and future scope in the algorithm.

2 Particle Swarm Optimization Based Load Scheduling

The load scheduling is a technique used in computer networks for allocation of
workload in between the systems, processing units, and networks. This is done to make
the system have higher utilization of the resources, system throughput and evading the
overloading in the system. The main objective is to increase the performance and cost
effectiveness [6].

Particle Swarm Optimization is global optimization method which is heuristic in
nature which is defined by Kennedy and Eberhart. It is a spontaneous process based on
self-organization concept and is evolutionary in nature [19–21]. It depends on a swarm
of particles. The cloudlets are allocated to the VMs on the basis of capabilities. It
performs multiple interactions thereby balancing the exploitation & exploration of the
search space that is provided. This algorithm deals with five principles namely prox-
imity, diversity, adaptability, quality and responsiveness [4, 5]. The PSO algorithm
applies searching on a swarm of particles moving forward step by step to obtain the
best optimal solution. Here, each particle moves in the direction of the pbest (particle
best) and gbest (global best) positional values in the particle swarm in the algorithm.
The pbest value of the particles in the swarm depends on the makespan and the value
that gets stored in pbest is the minimum makespan among all the particles. The fitness
function which is measured plays an important role in highlighting the best perfor-
mance of the system. The fitness detects the most efficient node positions to be selected
from among the particles. These values are assigned to cloudlets to be run on specific
VMs.

110 D. Chaudhary et al.



In this algorithm, the particles in the beginning are initialized randomly at the
intervals. Every particle generates a fitness value on specific parameters [14, 15] which
helps in traversing from one particle another. The next particle to be executed depends
on the existing position and the velocity of the particle. All the particles are traversed
till the stopping condition is met. The cost is calculated as the total sum of all the
execution and transfer cost. This drawback is minimized by the minimized cost as
compared to the static algorithms [17, 18].

3 Proposed New Particle Swarm Optimization Algorithm
for Load Scheduling

The proposed approach is known as the New Particle Swarm Optimization (NPSO) for
load scheduling. It uses a new cost function for the calculation of the total cost (exe-
cution and transfer). This algorithm also includes the capability of storage. This is
achieved by stored the values of the best particle in the specific iteration as well as in
the search space. It includes the maximum exploitation of the resources in the search
space. Our new fitness function depends on the VM cost involved as well as the VM
time.

Total Cost Mð Þ is specified as the total cost of all the particles that are assigned to
calculate the fitness of each particle. The NPSO involves the Cost computation using
the updated fitness function and total cost evaluation function. Total Cost Mð Þ is cal-
culated using the following transfer and execution cost of the cloudlets:

Cex Mð Þj ¼
X

k
wkj 8M kð Þ ¼ j ð1Þ

CtrðMÞj ¼
X

k12T
X

k22T dM k1ð Þ;Mðk2Þ�ek1;k2 8M k1ð Þ ¼ j and M k2ð Þ 6¼ j ð2Þ

Ctot Mð Þj ¼ Cex Mð Þj þCtr Mð Þj ð3Þ

Total Cost Mð Þ ¼ max Ctot Mð Þj
� �

8j 2 P ð4Þ

MinimizeðTotal Cost Mð Þ 8MÞ ð5Þ

Cex Mð Þj specify the execution cost, Ctr Mð Þj is the transfer cost of the cloudlets and
Ctot Mð Þj depicts the sum of the execution cost and the transfer cost of the cloudlets on
the VMs. The maximum value of the total cost among all VMs is taken as the
Total Cost Mð Þ value.

Figure 1 shows the flowchart of CloudSim and NPSO applied for scheduling the
cloudlets (tasks) to virtual machines. First, datacenter is created and a list of N cloudlets
is initialized with the size of data, execution cost and transfer cost. Then number of
virtual machines is initialized along with parameters like mips (million instructions per
second), RAM, execution cost of task in each VM and transfer cost among VMs.

NPSO Based Cost Optimization for Load Scheduling 111



Then PSO algorithm is applied. Firstly a fixed number of particles are randomly
distributed into the search space and fitness value of the particles is computed based on
the new improved fitness function. It is the weighted sum of VMcost and VMtime
parameters of the cloudlets allocated to the virtual machines. VMtime is evaluated

Fig. 1. Flowchart of New Particle Swarm optimization based on cost function (NPSO) for load
scheduling in cloud computing

112 D. Chaudhary et al.



using Eqs. (6) and (7). The improved fitness function used in the proposed approach is
calculated by the Eq. (9).

Tex Mð Þj¼
X

k
wk

�
mipsj 8M kð Þ ¼ j ð6Þ

Total Time Mð Þ ¼ max Tex Mð Þj
� �

8j 2 P ð7Þ

a � TotalCost Mð Þð Þþ 1� að ÞTotal Time Mð Þ ð8Þ

Thus, now the minimization is performed on the improved fitness function given
above on both the time and cost considerations.

Minimize a � Total Cost Mð Þð Þþ 1� að Þ � Total TimeðMÞð Þ ð9Þ

a ¼ ½0; 1� ð10Þ

The parameter a is used for providing the weighted sum of cost and time. These
values help in finding the best particles among all the particles in the system, i.e.,
pbest i; tð Þ and gbest tð Þ global best value among the particles in the existing iteration in
the system. The pbest i; tð Þ and gbest tð Þ value are calculated as:

pbest i; tð Þ ¼ argmink¼1;...;t½f ðPiðkÞÞ�; i 2 1; 2; . . .. . .Np
� � ð11Þ

gbest tð Þ ¼ argmini¼1;...;Np
k¼1;...;t

f Pi kð Þð Þ½ � ð12Þ

Here, i represent the index of the particle, Np represents the total number of
particles, f symbolizes the fitness function, P denotes the position and t is the current
iteration. The velocity and position of the next particle is calculated in the following
manner.

Vi tþ 1ð Þ ¼ xVi tð Þþ c1r1 pbest i; tð Þ � Pi tð Þð Þþ c2r2 gbest tð Þ � Pi tð Þð Þ ð13Þ

Pi tþ 1ð Þ ¼ Pi tð ÞþVi tþ 1ð Þ ð14Þ

where, velocity of the particle i at iteration t is represented as Vi tð Þ, the velocity of the
next particle i at tþ 1ð Þ iteration is denoted as Vi tþ 1ð Þ. The c1 and c2 depict the
coefficient for acceleration in the system & r1 and r2 denote the random values between
0 and 1with x representing the inertia weight. The Pi tð Þ specifies the current position of
the particle i at iteration t and Pi tþ 1ð Þ denotes the position of the particle i at tþ 1ð Þ
iteration. On the basis of these values, the particles move to the next position Pi tþ 1ð Þ
and updated velocity Vi tþ 1ð Þ from the previous position Pi tð Þ at velocity Vi tð Þ. The
particles’ position is updated till the number of iterations condition is fulfilled and then
the best position is returned.

The cloudlets after being assigned specific values are passed to the respective
virtual machines (VMs) for the execution. The datacenter executes the cloudlets on the
virtual machines. The datacenter broker known as NetDatacenterBroker helps in

NPSO Based Cost Optimization for Load Scheduling 113



initializing and shutting down the datacenter in the cloud. The cost of execution
incurred is specified as the maximum value of the total computation involved in
NetCloudletSpaceSharedScheduler class. The total transfer cost is specified in the
NetworkHost class for each host. This total cost includes the sum of the total execution
time and the total transfer time of all the cloudlets on a virtual machine (VM). The New
Particle Swarm Optimization algorithm (NPSO) in cloud based on new cost evaluation
function. The total cost calculation uses the same Eqs. (1)–(4). This paper implements
the PSO scheduling given by Buyya et al. on Cloud Labs. But the contradiction given
in the paper is found for total cost evaluation using CloudSim. This algorithm
implements the correct cost evaluation strategy provided in the paper for correct results.

The cost computation in the cloud is performed in the manner as defined using an
example in Fig. 2 in CloudSim. This new cost evaluation approach provides minimized
cost. It is calculated on the basis of the execution and transfer cost of the cloudlets and
the VMs.

The proposed approach gives minimized total cost including the execution and
transfer cost among the cloudlets using the particles on the virtual machines in the
cloud for the optimal (minimized result) load scheduling in the system. This is a
meta-heuristic approach providing larger exploitation of search space using memory
based functionality. The detailed results in tabulated and graphical manner are
explained in the next section.

Fig. 2. Illustration of cloud cost calculation function in CloudSim

114 D. Chaudhary et al.



4 Results and Analysis

The above discussed scheduling heuristics using swarm intelligence for solving the
algorithms viz. PSO, NPSO are implemented in the CloudSim simulator. It helps in
designing and processing the new cost computation function. The Network CloudSim
Simulator is based on CloudSim. The proposed approach is implemented by extending
the available classes and creating a new improved fitness function and cost evaluation
function in the simulator using a JSwarm package for the particles and their properties.
25 particles are defined in the search space. These particles include various values like
inertia, maximum position, minimum position and velocity. The number of cloudlets
working on 8 VMs is 10, 15 and 20 cloudlets. These results are computed on a large
dataset of iteration ranging from 10 to 100 and 100 to 1000. The cloudlets and VMs
include the features and characteristics provided by the system like mips (millions of
instructions per second), bandwidth, transfer cost, execution cost are used for the
calculation of the total cost incurred by the system. The total cost computed on the set
of iterations for the existing PSO and the proposed New PSO for cost optimization are
computed and given in Table 1 for 10 cloudlets on 8VMs, Table 2 for 15 cloudlets on
8VMs and Table 3 for 20 cloudlets on 8VMs.

Table 1. Comparison of total cost for 10 cloudlets in PSO and NPSO algorithm

Iterations PSO New PSO

10 144670.354 19721.955
20 154718.388 22671.367
30 146023.003 22231.076
40 151117.032 19150.000
50 153934.604 20809.476
60 146671.563 22364.729
70 150630.778 23605.914
80 144320.104 19472.795
90 150043.444 22231.076
100 155538.952 24862.478
200 143757.944 23889.320
300 155469.762 18361.303
400 154534.972 21721.068
500 148303.411 19307.616
600 143482.749 23337.075
700 148181.188 22558.027
800 145980.430 18035.190
900 145713.846 23430.972
1000 150183.341 21122.244

NPSO Based Cost Optimization for Load Scheduling 115



Table 2. Comparison of total cost for 15 cloudlets in PSO and NPSO algorithm

No. of Iterations PSO New PSO

10 251281.517 30162.991
20 248417.269 31208.575
30 248960.089 36607.071
40 247411.824 36607.071
50 249097.514 30655.160
60 252863.341 28856.305
70 233301.076 36607.071
80 240275.467 36201.780
90 238414.151 27192.867
100 246693.713 29867.619
200 257046.548 28406.375
300 241913.925 28961.424
400 250686.566 31208.575
500 255247.494 31374.876
600 255640.518 31260.997
700 240621.622 30162.991
800 234732.638 29630.981
900 245081.605 36607.071
1000 245697.967 33854.779

Table 3. Comparison of total cost for 20 cloudlets in PSO and NPSO algorithm

No. of Iterations PSO New PSO

10 368649.602 54551.860
20 354478.049 46299.038
30 345540.580 39905.970
40 356553.370 41206.459
50 353046.854 39521.912
60 355353.891 48829.189
70 351187.753 41673.579
80 357996.221 44268.773
90 371324.589 38517.034
100 368448.353 39170.780
200 359849.885 49303.231
300 347655.150 34995.054
400 350306.997 47062.315
500 365131.362 39821.958
600 366225.261 34995.054
700 369217.780 37408.506
800 366704.318 41700.048
900 362957.682 40466.853
1000 363249.969 38177.916

116 D. Chaudhary et al.



The Figs. 3, 4 and 5 depicted the graphical analysis of the total cost of 10, 15 and
20 cloudlets on 8 VMs versus number of iterations. This comparison is performed for
PSO and New Particle Swarm Optimization Algorithm (NPSO) for load scheduling.

Fig. 3. Analysis of total cost based on cost function for 10 cloudlets in PSO and NPSO
algorithms

Fig. 4. Analysis of total cost based on cost function for 15 cloudlets in PSO and NPSO
algorithms.

NPSO Based Cost Optimization for Load Scheduling 117



The statistical analysis of the results generates the mean, standard deviation,
minimum and maximum values given in Table 4.

The Figs. 6 and 7 graphically analyze the descriptive statistics of the total cost
versus number of iterations. This comparison is performed for PSO and NPSO algo-
rithms for mean and standard deviation are provided.

Thus we analyze that the New Particle Search Optimization Algorithm (NPSO)
using a new cost calculation function in cloud computing environment presented better
results to load scheduling problem.

Fig. 5. Analysis of total cost based on cost function for 20 cloudlets in PSO and NPSO
algorithms.

Table 4. Descriptive statistics of PSO and NPSO algorithms for 10, 15 and 20 cloudlets

Cloudlets PSO New PSO

Mean 10 149119.782 21520.193
15 246493.939 31864.977
20 359677.771 41993.448

Standard deviation 10 4187.166 3177.125
15 6849.873 2354.763
20 7944.934 5159.619

Minimum 10 143482.749 18035.190
15 233301.076 27192.867
20 345540.580 34995.054

Maximum 10 155538.952 24862.478
15 257046.548 36607.071
20 371324.589 54551.860

118 D. Chaudhary et al.



5 Conclusion

This paper specified load scheduling as the important factor for processing the data in
the cloud computing environment between cloudlets and VMs. The PSO algorithm
which is meta-heuristic in nature and based on swarm intelligence technique for
scheduling of load has been explained. This is based on the fitness values of particles
acting and also the force acting over them. The proposed New Particle Swarm Opti-
mization Algorithm (NPSO) approach used a new cost evaluation function on the
cloudlets for the total cost provided higher cost optimization on 10, 15 and 20
cloudlets. The descriptive analysis of the algorithms for the total cost results is
showcased. The results of the proposed NPSO approach have been equated with the
prevailing scheduling algorithm PSO using graphical and tabular. The proposed New
Particle Swarm Optimization approach gives more realistic and minimized results (total

Fig. 6. Mean of total cost for number of cloudlets in PSO and NPSO algorithms

Fig. 7. Standard deviation of total cost for number of cloudlets in PSO and NPSO algorithms

NPSO Based Cost Optimization for Load Scheduling 119



cost) focusing on the essence of load scheduling. The future work includes generating a
new fitness function for further cost reduction in the cloud using different simulators
and real time hosts.

References

1. Buyya, R., Pandey, S., Vecchiola, C.: Cloudbus toolkit for market-oriented cloud
computing. In: Jaatun, M.G., Zhao, G., Rong, C. (eds.) CloudCom 2009. LNCS, vol.
5931, pp. 24–44. Springer, Heidelberg (2009). https://doi.org/10.1007/978-3-642-10665-1_4

2. Kennedy, J., Eberhart, R.: Particle swarm optimization. In: IEEE International Conference
on Neural Networks, vol. 4, pp. 1942–1948. IEEE (1995)

3. http://en.wikipedia.org/wiki/Cloud_computing
4. http://en.wikipedia.org/wiki/Load_balancing_(computing)
5. Pandey, S., Buyya, R., et al.: A particle swarm optimization based heuristic for scheduling

workflow applications in cloud computing environments. In: 24th IEEE International
Conference on Advanced Information Networking and Applications, pp. 400–407 (2010)

6. Tsai, C.W., Joel, J.P., Rodrigues, C.: Metaheuristic scheduling for cloud: a survey. IEEE
Syst. J. 8(1), 279–291 (2014)

7. Chaudhary, D., Chhillar, R.S.: A new load balancing technique for virtual machine cloud
computing environment. Int. J. Comput. Appl. 69(23), 37–40 (2013)

8. Chaudhary, D., Kumar, B.: Analytical study of load scheduling algorithms in cloud
computing. In: IEEE International Conference on Parallel, Distributed and Grid Computing
(PDGC), pp. 7–12 (2014)

9. Chaudhary, D., Kumar, B.: An analysis of the load scheduling algorithms in the cloud
computing environment: a survey. In: IEEE 9th International Conference on Industrial and
Information Systems (ICIIS), pp. 1–6 (2014)

10. Kang, Q., He, H.: A novel discrete particle swarm optimization algorithm for meta-task
assignment in heterogeneous computing systems. Microprocess. Microsyst. 35(1), 10–17
(2011)

11. Pacini, E., Mateos, C., Garino, C.G.: Distributed job scheduling based on swarm
intelligence: a survey. Comput. Electr. Eng. 40, 252–269 (2014). Elsevier

12. Garg, S.K., Buyya, R.: Network CloudSim: modelling parallel applications in cloud
simulations. In: 4th IEEE/ACM International Conference on Utility and Cloud Computing
(UCC 2011), Melbourne, Australia. IEEE CS Press (2011)

13. Kumar, D., Raza, Z.: A PSO based VM resource scheduling model for cloud computing. In:
IEEE International Conference on Computational Intelligence and Communication Tech-
nology (CICT), pp. 213–219 (2015)

14. Bhardwaj, S., Sahoo, B.: A particle swarm optimization approach for cost effective SaaS
placement on cloud. In: International Conference on Computing, Communication and
Automation (ICCCA), pp. 686–690 (2015). doi:10.1109/CCAA.2015.7148462

15. He, X., Ren, Z., Shi, C., Fang, J.: A novel load balancing strategy of software-defined
cloud/fog networking in the Internet of Vehicles. China Commun. 13(Suppl. 2), 140–149
(2016)

16. Agnihotri, M., Sharma, S.: Execution analysis of load balancing particle swarm optimization
algorithm in cloud data center. In: Fourth International Conference on Parallel, Distributed
and Grid Computing (PDGC), Waknaghat, pp. 668–672 (2016)

120 D. Chaudhary et al.

http://dx.doi.org/10.1007/978-3-642-10665-1_4
http://en.wikipedia.org/wiki/Cloud_computing
http://en.wikipedia.org/wiki/Load_balancing_(computing
http://dx.doi.org/10.1109/CCAA.2015.7148462


17. Gupta, S.R., Gajera, V., Jana, P.K.: An effective multi-objective workflow scheduling in
cloud computing: a PSO based approach. In: Ninth International Conference on Contem-
porary Computing (IC3), Noida, pp. 1–6 (2016)

18. Riletai, G., Jing, G.: Improved PSO algorithm for energy saving research in the double layer
management mode of the cloud platform. In: 2016 IEEE International Conference on Cloud
Computing and Big Data Analysis (ICCCBDA), Chengdu, pp. 257–262 (2016)

19. Fan, C., Wang, Y., Wen, Z.: Research on Improved 2D-BPSO-based VM-container hybrid
hierarchical cloud resource scheduling mechanism. In: 2016 IEEE International Conference
on Computer and Information Technology (CIT), Nadi, pp. 754–759 (2016)

20. Somasundaram, T.S., Govindarajan, K., Kumar, V.S.: Swarm Intelligence (SI) based
profiling and scheduling of big data applications. In: 2016 IEEE International Conference on
Big Data (Big Data), Washington, DC, pp. 1875–1880 (2016)

21. Ibrahim, E., El-Bahnasawy, N.A., Omara, F.A.: Task scheduling algorithm in cloud
computing environment based on cloud pricing models. In: 2016 World Symposium on
Computer Applications & Research (WSCAR), Cairo, pp. 65–71 (2016)

22. Mao, C., Lin, R., Xu, C., He, Q.: Towards a trust prediction framework for cloud services
based on PSO-driven neural network. IEEE Access 5, 2187–2199 (2017)

NPSO Based Cost Optimization for Load Scheduling 121



Multi-sink En-Route Filtering Mechanism
for Wireless Sensor Networks

Alok Kumar(B) and Alwyn Roshan Pais

Information Security Research Lab, Department of Computer Science and
Engineering, National Institute of Technology Karnataka, Surathkal, Karnataka, India

alok 21@outlook.com, alwyn.pais@gmail.com

Abstract. Wireless Sensor Networks (WSNs) are deployed in unat-
tended environments and thus are prone to security compromises.
Providing security and tamper resistant hardware to each node is also
unrealistic. The compromised nodes can populate network with forged
false reports which can cause false alarms and wrong decision making
in networks. En-Route filtering is a popular method for filtering false
reports in WSNs. Many such filtering techniques have been proposed for
filtering false reports based on single sink.

In this paper we propose a multi-sink en-route filtering mechanism,
which reduces the overall energy consumption of the network. This is
achieved by dividing the network into smaller networks and assigning a
separate sink to each smaller network. This helps in reducing the hop
count of genuine reports, saving lot of energy consumption. The pro-
posed technique also decreases the key-exchange overhead maintaining
the same filtering efficiency. The proposed technique also reduces the
effect of selective forwarding attack in the network. The simulated results
also support our claims and we are able to save up to 40% of energy con-
sumption.

1 Introduction

Wireless Sensor Networks comprise of large number of sensor nodes which are
very limited in computational and memory resources. Sensor nodes are used to
sense their nearby environment where they are deployed. Because of these sens-
ing capabilities sensor nodes are deployed in hostile environments like military
monitoring, industrial sensing, etc. for sensing and tracking purposes [1].

When a WSN is deployed, the sensor nodes sense the environment and send
this data to sink (data collection node). Sensing nodes deployed in hostile and
unattended environments can be easily compromised, which can hamper the
overall security of network. These compromised nodes can send forged or bogus
reports in the network, which will unnecessarily increase the network traffic
and can also cause sink to take wrong decisions or raise false alarms. These
compromised nodes can also launch various DoS attacks, which can jeopardize
the normal working of network. Other attacks possible are selective forwarding
attack [1] where a compromised node drop legitimate reports passing through
c© Springer Nature Singapore Pte Ltd. 2017
S.M. Thampi et al. (Eds.): SSCC 2017, CCIS 746, pp. 122–133, 2017.
https://doi.org/10.1007/978-981-10-6898-0_10



Multi-sink En-Route Filtering Mechanism for Wireless Sensor Networks 123

it and report disruption attack [1] where compromised nodes contaminate the
authentication data in legitimate reports. Therefore, it’s at most important to
drop these false report from the network as soon as possible to decrease the effect
of any attack on network.

To reduce the effect of attacks discussed above and to filter the false and
forged reports many en-route filtering based techniques [2–7] have been proposed.
In these techniques, when an event happens it is sensed by multiple sensor nodes
and all nodes in a cell collaborate together to form and endorse the report. Each
intermediate forwarding node verifies whether the endorsements included in the
report are genuine or not. Detection of incorrect endorsement leads to dropping
of the report. Finally reports can be checked by sink whether reports are genuine
or not.

All en-route filtering methods have mainly 3 phases- Key exchange phase, En-
route filtering phase and Sink verification phase. In Key exchange phase, nodes
exchange keys with intermediate forwarding nodes on the path to the sink. In En-
route filtering phase, intermediate nodes filter and forward the reports toward
the sink. In sink verification phase, sink acts as a final goalkeeper for the whole
network where it collects and verifies all the reports. Majority of the research
has been done in key exchange phase of en-route filtering. Many techniques [2–7]
have been proposed for key exchange phase which can be grouped in two major
categories - symmetric cryptography based key exchange (SCBKE) and asymmet-
ric cryptography based key exchange (ASCBKE). Majority of en-route filtering
based techniques are symmetric cryptography based. All of these uses message
authentication codes (MACs) derived from symmetric keys shared between mul-
tiple nodes. Each legitimate report should have certain minimum valid MACs.
On the other hand asymmetric cryptography based techniques uses signatures
which can be verified by intermediate nodes and sink. These techniques do not
require any pre-shared keys and they mainly use elliptic curve cryptography
[8] and Shamir’s threshold cryptography [8] to generate signatures. No alter-
ation has been done by any technique in second phase of en-route filtering. Thus
majority of techniques are susceptible to attacks like selective forwarding and
report disruption in the network. Sink verification requires either key exchange
with all the nodes to check the authenticity of reports or it rely on signatures to
filter false reports.

In this paper we alter the en-route filtering phase without changing the key
exchange phase and sink verification phase. For key exchange phase we use SEF
[2] and LBRS [3] techniques. We alter the en-route filtering mechanism where
only single sink was present and we introduce new sinks in the network to gather
reports from all the nodes in the network. In a nutshell the large network is
divided into many smaller networks, where each smaller network is having an
independent sink. Moreover each smaller network will be using different keys for
their network. Proposed changes are being tested with SEF and LBRS schemes
but these changes can also be applied to other filtering schemes too to get same
results. Contribution of the paper are as follow:-



124 A. Kumar and A.R. Pais

– Reduction in key overhead in symmetric cryptography based en-route filtering
techniques.

– Reduction in overall energy consumption.
– Increase in resiliency against compromised nodes.
– Decreased and limited effect of selective forwarding attack on network.

The rest of the paper is organized as follows: Sect. 2 discusses about the en-route
filtering technique including all the proposed changes, Sect. 3 gives the detailed
analysis of the proposed changes with simulation results. Section 4 compares
the altered technique with related work. Section 5 gives the discussion about
the existing and proposed technique. Finally, future work and conclusions are
discussed in Sect. 6.

2 En-Route Filtering

Three phases of en-route filtering are explained below-

2.1 Key Exchange Phase

Key exchange takes place in many ways in en-route filtering. It could be either
SCBKE or ASCBKE. In SCBKE multiple nodes share keys with each other,
which are used to generate MACs and these MACs are used for verification
by intermediate nodes. In ASCBKE, each node is assigned a part of key or
secret. Multiple nodes collaborate together to create a signature which is used
by intermediate nodes and sink for verification. For this phase we choose 2 pre-
existing techniques SEF and LBRS which both are symmetric cryptography
based techniques.

In SEF [2] the whole network is divided into equal sized cells, where each cell
have fixed number of sensing nodes. Sink maintains a global key pool, which is
divided into many equal partitions. Each node randomly chooses a key partition
and selects some keys from this partition. At the time of event, multiple nodes
sense the same event and all nodes elect a Center of Stimulus (CoS) node. Each
node creates a report containing location, time and type of event. Sensing node
uses one of its keys to generate MAC which is sent to CoS with report. CoS
collects all the MACs and reports to create the final report which contains single
report and predefined number of distinct MACs. Different keys assigned to all the
nodes make sure that each node can create only single MAC and to completely
create a bogus report attacker has to forge other MACs. But these forged MACs
can be probabilistically checked by intermediate nodes, making sure that forged
reports are dropped as soon as possible.

In LBRS [3] whole terrain is divided into geographical grids resembling cells.
Each cell have fixed number of nodes with a head in center. Each node stores two
types of keys namely location binded keys and location guided keys. Each node
acquires its location using simple geometric calculations and uses the pre-stored
master key with hash function to drive the location binded key. Location guided



Multi-sink En-Route Filtering Mechanism for Wireless Sensor Networks 125

keys are the keys exchanged with few chosen verifiable cells. For selection of these
cells each node decides its upstream region, where upstream region represents
remote cells whose report this corresponding node may transfer. So to decide this
region, node uses a beam which is created from sink as starting phase, particular
node in the center and it stretches till end of the network. From all the cells which
lies in-between this beam, node probabilistically choose some nodes with whom
it exchange location guided keys. Location binded keys are used for endorsing
the events in the cell and Location guided keys are used to verify the report from
remote cells.

2.2 En-Route Filtering Phase

There is randomized key exchange in LBRS and key assignment in SEF which
makes sure that each intermediate forwarding node has some chance to have one
of the keys used to create the MACs in the report. If node has any such key, it
can verity the authenticity of the report by checking the corresponding MAC.
The existing techniques like SEF and LBRS choose a particular node in network
as sink which collects all the reports of the network.

Both the above discussed techniques have same en-route filtering method.
None of the techniques have tried to decrease the path for a genuine report to
reach sink. This can be done if we decrease the network size, so that each report
has to travel less hops to reach the sink. To implement this, we divide the large
network into smaller networks. Each smaller network is assigned separate sink.
Moreover each smaller network is assigned different keys. This helps in increasing
the resiliency against compromised nodes, as compromised node in other smaller
networks would be having different keys. Thus compromised nodes in different
smaller networks cannot co-ordinate to compromise the whole cell.

2.3 Sink Collection and Verification Phase

As sink would know the global key pool in case of SEF and the location of each
node and master key in LBRS, sink can create all the keys stored by nodes.
Thus finally it can verify any forged or false reports which were not dropped by
intermediate nodes.

3 Analysis and Simulated Results

For simulation of existing techniques and our technique we used TinyOS [9].
The simulator used is TOSSIM [9]. For the simulation setup, we have taken a
scenario of 3k. There are about 250 cells in the network. Width of each cell is
100 m, each having 12 nodes. Radio communication range of each node is 50 m. A
single sink is situated in center of the network. Each report should carry 5 MACs
and there are at least 10 different keys assigned to each cell. For SEF key sharing
probability is 0.2. Beam width is set to 150 m in LBRS. Other parameters are
same as used in SEF and LBRS. For creation of smaller network we divide the



126 A. Kumar and A.R. Pais

original network into 4 equal squares. Each smaller network is having 750 nodes
spread in a square field of 700 m. In each smaller network there are about 63 cells
with same node density and a sink node at the center. Each smaller network is
assigned different set of keys. All other parameters are same as discussed above.

With the creation of smaller network there is considerable decrease in key
overhead in LBRS scheme. But this reduction in number of keys does not have
much effect on overall filtering efficiency of LBRS. Filtering efficiency of SEF is
also same in both the cases. This shows that forged and false data will be dropped
within same number of hops in both the cases. But in smaller networks genuine
reports will be traveling less hops than compared with larger network. This
helps in saving energy consumption in the network. The smaller networks also
have more resiliency from compromised nodes and effect of selective forwarding
attack is also decreased. Detailed analysis and simulated results are given in next
subsections.

3.1 Key Overhead

SEF assign keys to each node from the global key pool. Sink maintains a global
key pool which is further divided into equal partitions having equal number of
keys. So at the time of deployment each node randomly selects a partition and
randomly chooses fixed number of keys from that partition. So when we divide
the network into 4 equal networks and assign individual sink to all of them, each
node will be storing same numbers of keys. Thus both the case will be having
same key-overhead.

In LBRS each individual node stores cell keys for each node in its sensing
range and few keys for remote verifiable cells. Cell keys are constant thus we
talk only about keys shared with remote cells. Technique [3] gave approximation
to find the number of keys stored by an individual sensor node represented by
Nkey ≈ Θ

(
bR/C2

)
, where b is the beam width, R is radius of the network and C

is the cell size. When we divide the network into smaller independent networks,
the R (radius) of the corresponding network decreases which indirectly also
decrease the number of keys. When around 3k nodes were there in the network,
on an average each node stored 3 keys and maximum of 7 keys in any case.
When we divided the network into smaller independent networks each having
750 nodes, the key overhead decreased to almost half. The average number of keys
stored by any node decreased to 2 keys and now any particular node stored at
most 5 keys. Figure 1 shows the maximum number of keys stored by any node.
The x axis represents the relative distance of node from sink, whereas y axis
represent the number of keys. The decrease in keys stored by each node do not
effect the overall effectiveness of the technique which is the biggest motivation
to decrease the size of network. We will discuss this in next subsection.

3.2 Filtering Efficiency

Now we will discuss the filtering efficiency of new technique and will compare it
with existing SEF and LBRS technique.



Multi-sink En-Route Filtering Mechanism for Wireless Sensor Networks 127

Fig. 1. Maximum number of keys stored by any node

In SEF, keys from a single partition are assigned to a particular node. So
to create a false report attacker has to forge other remaining MACs. But these
forged MACs will be filtered by the intermediate forwarding nodes. So firstly
we will find probability that the forwarding node has key from that partition
which attacker has used to forge MAC. This probability can be denoted by
p1 = k(m − 1)/N as given in [2], where k represents number of different keys
stored by each sensor node, m-1 are the number of MACs attacker has to forge
and N is the total number of keys in Global key pool. Above equation can be
molded to find new equation [2] which gives the expected percentage of false or
forged reports being dropped within H given hops.

ph = 1 − (1 − p1)H (1)

In the Eq. 1 we can see that there is no radius parameter which tells that
decreasing the size of network has no effect on the key stored in the nodes.

First network model had 3k nodes and a single sink in the center. By using
simulations we found that each packet travels around 16 hops on average. Using
this value in above formula with other given value gave filtering efficiency of
97.18%. Second network model had 4 smaller networks each having 750 nodes
and a separate sink in each network. Simulation results showed that in such setup
each packet travels around 9 hops on average. Putting this value gave around
86.5% filtering efficiency which is much under considerable limits. The unfiltered
reports can be filtered by the sink in sink verification phase.

Filtering efficiency of LBRS is analyzed by the filtering position of the false
reports. Attacker will be only having keys for creating only single MAC and he
would have to forge other remaining MACs. These forged MACs will be checked
and dropped by the forwarding intermediate nodes. So the probability that the
forwarding node has that particular key which attacker has tried to forge is given
by above equation, where k represents number of keys assigned to each sensor
node, m-1 are the number of MACs attacker has to forge and N is the total
number of keys assigned in whole network. But here in this technique k is not
constant and is decided according to upstream region of a particular node. More



128 A. Kumar and A.R. Pais

over total number of keys are also dependent on total number of cells in the
network and node density in each cell.

In the key exchange overhead subsection we discussed that the key exchange
overhead is considerably decreased if we decrease the size of network. This means
each node now will be storing less number of keys. This gives us the intuition that
filtering efficiency should decrease because the number of keys stored by each
individual node has decreased and now the forged reports will be traveling more
hops without being detected. But this is not the case. The number of keys will
decrease substantially if we decrease the upstream region of the node but now
the probability of choosing only the intermediate upstream nodes increases. This
means each node will have less keys but these keys will be mainly from interme-
diate upstream region cells. This in long run ensures almost same efficiency as
of the node having more keys where node will be having little less probability
of choosing intermediate upstream nodes. More over in above equation, value
of k will decrease if we reduce the size of network, but the value of N will also
decrease with it. As the smaller network will now be having less number of cells,
so the value of N will also decrease. This can further be molded to find new
equation [3] which gave the expected fraction of false reports being dropped
within H given hops represented by ph = 1 − ∏H

1 (1 − p1).
First network model had 3k nodes and a single sink in the center. By using

simulations we found that each packet travels around 16 hops on an average.
Using this value in above equation with other given values gave filtering efficiency
of 92%. Second network model had 4 smaller networks each having 750 nodes
and a separate sink in each network. Simulation results showed that in such
setup each packet travels around 9 hops on an average. This value gave around
84.5% filtering efficiency which is much under considerable limits. This decrease
in efficiency is not because of decreased keys stored by all nodes but because of
adding of new sinks. As reports originating from cells which are very near to sink
will not be having enough intermediate hops such that they could be verified
either as genuine or forged. But such reports are verified by sink itself. So if we
take such cells around sink as x, then if we increase the number of sinks to 4 then
these cells will increase to 4x, each sink having its equal number of such cells.
So in smaller networks, in total there would be 4x cells which cannot guarantee
en-route filtering. But any unfiltered forged report can be checked and dropped
finally by sink.

3.3 Energy Saving

In this subsection we discuss about energy consumption in normal case and how
energy requirement reduces with proposed changes. In first case we take network
where there is no en-route filtering of packets. In such case all the reports will
travel all the H hops, where H represents hop count from particular node to
sink. If in this scenario we apply our changes, we will get 4 equal networks with
separate sinks. In such case the number of hops H for majority of the nodes
will reduces to almost half on average. Simulation results also showed the same
results. If we take an experimental setup where each cell sends a packet to sink,



Multi-sink En-Route Filtering Mechanism for Wireless Sensor Networks 129

if only one sink was present all packets traveled around 4000 hops. This number
subsequently decreases if we increase the number of sinks to 4 and now all packets
only required 2300 hops to reach respective sink. In this case we have not done
any en-route filtering of packets and because of which each packet either forged
or genuine will travel all the H hops.

To further reduce the energy requirements we introduce en-route filtering
mechanism because of which forged reports can be filtered as soon as possible.
Early detection and dropping of forged reports helps in reducing the overall
energy requirements for the whole network. In previous subsection we proved
that decreasing the size of network does not have much effect on filtering effi-
ciency and forged report can be filtered with same efficiency. So in both the cases
where network is large and when network is divided, en-route filtering will take
same energy for filtering. Thus we will gain energy only in case where packets
are genuine or are not being filtered by en-route filtering mechanism. This is
achieved by decreasing the number of hops a genuine or undetected report has
to travel to reach the sink. For simulation, we alter the network traffic to have
variable genuine and forged reports and we will see the energy requirements in
all the cases. Figures 2 and 3 gives the energy consumption of SEF and LBRS
when the network is big and when we divide the network into smaller networks.
In both the figures we can see that we save lot of energy if we have smaller
networks as compared to larger networks.

Fig. 2. Energy Requirements in SEF

3.4 Resiliency

Resiliency of particular technique can be defined as how much a particular tech-
nique is resilient to compromised nodes in the network. An attacker will be
having keys stored in particular compromised node, by this he can only create
single MAC and he would have to forge other MACs. But as the number of
compromised nodes increases attacker would collect many keys from many cells.
A cell is fully compromised if attacker gets at least x different keys of a cell,
where x is number of MACs included in the report. If attacker gains these many
keys, he can forge the report completely and that report will not be filtered by



130 A. Kumar and A.R. Pais

Fig. 3. Energy Requirements in LBRS

intermediate nodes or sink. So in this situation neither sink nor intermediate
nodes can tell whether that cell is sending false or genuine reports.

SEF is a global key pool based technique where each node randomly selects
a partition and chooses keys from that partition. So each node is having keys
of one partition only; thus if attacker wants to forge the report successfully he
only needs other x -1 keys of different partitions, where x is number of MACs
in a report. Moreover getting remaining keys from different partition requires
only few compromised nodes anywhere in the network. This is called t-threshold
limitation. When we divide the network and each smaller network is assigned
keys from different key pools, no significant improvement is gained in terms of
resiliency. As the smaller networks would still be having t-threshold limitation.

LBRS on the other hand is more resilient to compromised nodes. As each
node stores keys based on upstream region, number of keys stored by each node
is very low when compared with other technique based on global key pool. Thus
many compromised nodes are needed to compromise a cell. Moreover compro-
mised nodes should have overlapping upstream region so that they can get dif-
ferent keys for the same particular cell. In normal network where there were
3k nodes and a single sink in center with few number of compromised nodes
spread in network, it was very difficult to compromise a cell by combining the
keys from all the compromised nodes. But this condition degrades at a very fast
pace if number of compromised nodes increases. Simulation results also proved
the same. Figure 4 shows the simulated results, we can see that one cell was
compromised if 40 compromised nodes were present and around 10 were com-
promised if 80 compromised nodes were present in the network. The number of
compromised cell reaches 100 very quickly if compromised nodes increased to
300. If we applied the proposed changes, where large network was divided into
smaller networks each having separate sink, the resiliency of the overall network
improved drastically. Simulated results also verifies this, in Fig. 4 we can see that
number of compromised cell in smaller networks are comparatively very low if
compared with larger single sink network. There were only 15 compromised cells
when 300 compromised nodes were present which were very less when compared
to 100 in case of larger sink network.



Multi-sink En-Route Filtering Mechanism for Wireless Sensor Networks 131

Fig. 4. Resiliency against compromised nodes(LBRS)

3.5 Effect of Selective Forwarding Attack

Selective forwarding attack is a DoS attack where a particular node purposely
drops packet from the network. This attack can be performed by compromised
nodes which are present in the forwarding path of other nodes. Thus whenever
these nodes will be getting any packets they drop the reports selectively. The
LBRS and SEF have not given any particular method to detect or reduce the
effect of such attacks. We tried to reduce the effect of such attacks by reducing
the size of network. Reducing the size of network, reduces the hop count for the
packets to reach network. This in result decreases the number of reports each
node would be forwarding. Thus if we divide the network into 4 smaller networks
and introduce 4 sinks, selective forwarding attack is reduced to at least half.

4 Related Work

To filter out false data from the network many en-route filtering techniques [2–7]
have been proposed. For example SEF [2] is a global key pool based technique,
LBRS [3] is a location based key exchange technique. Other techniques include
DEFS [4] which is a hash based technique and PCREF [5] which is polynomial
based technique. All the above techniques are symmetric cryptography based
key exchange techniques. These techniques need pre shared keys, hash generator
or polynomials for implementation of en-route filtering. Other techniques such as
CCEF [6] and LBCT [7] are asymmetric cryptography based techniques. These
techniques do not require any pre-exchanged keys and here authentication of
reports is done on basis of signature. All the above techniques have a single
sink situated either in center or at one end of the network. None of the above
techniques have tried to decrease the size of network.

Somework has also been done in proposing techniqueswhich collects data using
multiple sinks. Technique [10] implemented the network having multiple sinks and
where nodes relay the data to closest sink. This in result decreased the distance of
node to sink helping in saving of energy consumption. But this technique did not
divide the larger network into smaller networks. Technique [11] also implemented



132 A. Kumar and A.R. Pais

multiple sinks in the network but here they also divided the network into smaller
ones giving better results in term of resiliency from compromised nodes. The above
two techniques are only designed to handle genuine data from the network. So if any
false data is being sent by any node, it will travel all the way to the sink resulting in
wastage of energy. Thus we propose a multi-sink en-route filtering technique which
can check and drop the false data Our technique also reduces the hop count of gen-
uine reports to reach the sink.

5 Discussion

All existing en-route filtering techniques including LBRS and SEF are single
sink based false data filtering techniques. These could also be compared to a
centralized environment where all the data collection and decision making is done
at a single point. We by our technique are proposing a distributed scenario of the
same problem. Our technique divides the large network into smaller networks
each having independent sink. So all the smaller networks can act as independent
networks, thus sink in each smaller network can take independent decisions for
its network. So there is no need to collect the data from all the sinks at a single
central point.

If in any scenario we want to have the data collected from all the sinks at a
single sink then we can alter the proposed technique and can make all the sinks
to send the data to a single master sink. There could be many ways to send the
data from multiple sinks to a single sink-

– All the sinks use the same network to send the data to a particular chosen
master sink.

– All the sinks are having more powerful radio capabilities, thus all the sinks can
communicate with each other and can send data to single collection point.
This in turn converts the network into a 2-tier architecture where sensors
nodes communicate with each other at lower level and all sinks communicate
with other at upper level.

– A wired backbone network could be setup where all the sinks are connected
to the master sink.

– Mobile sensor node could be used to collect the data from multiple sinks. In
this case, a mobile sensor node periodically visits all the sinks and collects
the data from them.

6 Conclusion and Future Work

In this paper we proposed a multi-sink en-route filtering scheme, which divides
the large network into smaller networks and individual sink is assigned to each
smaller network. The technique filters out the false reports by checking the
endorsements contained in the reports. The technique also reduces the distance
from a node to sink, thus genuine reports travel less number of hops resulting
in energy saving. Simulated results and analysis proved that our technique saves



Multi-sink En-Route Filtering Mechanism for Wireless Sensor Networks 133

around 40% of the energy and also decreases the key exchange overhead. Our
technique also increases the resiliency of the network from compromised nodes
and limits the effect of selective forwarding attack. As the future work, we plan
to devise new key exchange method which could work more effectively in smaller
network. We also intend to find way to effectively collect the data from all the
sinks.

References

1. Kumar, A., Pais, A.R.: En-route filtering techniques in wireless sensor networks: a
survey. Wirel. Pers. Commun. 96, 697–739 (2017)

2. Ye, F., Luo, H., Lu, S., Zhang, L.: Statistical en-route filtering of injected false
data in sensor networks. IEEE J. Sel. Areas Commun. 23(4), 839–850 (2005)

3. Yang, H., Ye, F., Yuan, Y., Lu, S., Arbaugh, W.: Toward resilient security in
wireless sensor networks. In: Proceedings of the 6th ACM International Symposium
on Mobile Ad Hoc Networking and Computing, pp. 34–45. ACM (2005)

4. Yu, Z., Guan, Y.: A dynamic en-route scheme for filtering false data injection in
wireless sensor networks. In: SenSys, vol. 5, pp. 294–295 (2005)

5. Yang, X., Lin, J., Yu, W., Moulema, P.M., Fu, X., Zhao, W.: A novel en-route
filtering scheme against false data injection attacks in cyber-physical networked
systems. IEEE Trans. Comput. 64(1), 4–18 (2015)

6. Yang, H., Lu, S.: Commutative cipher based en-route filtering in wireless sensor
networks. In: 2004 IEEE 60th Vehicular Technology Conference, VTC2004-Fall,
vol. 2, pp. 1223–1227. IEEE (2004)

7. Zhang, Y., Liu, W., Lou, W., Fang, Y.: Location-based compromise-tolerant secu-
rity mechanisms for wireless sensor networks. IEEE J. Sel. Areas Commun. 24(2),
247–260 (2006)

8. Hankerson, D., Menezes, A.J., Vanstone, S.: Guide to elliptic curve cryptography.
Springer Science & Business Media, Heidelberg (2006)

9. Levis, P., et al.: TinyOs: an operating system for sensor networks. In: Weber,
W., Rabaey, J.M., Aarts, E. (eds.) Ambient Intelligence, pp. 115–148. Springer,
Heidelberg (2005). https://doi.org/10.1007/3-540-27139-2 7

10. Vincze, Z., Vida, R., Vidacs, A.: Deploying multiple sinks in multi-hop wireless
sensor networks. In: IEEE International Conference on Pervasive Services, pp. 55–
63. IEEE (2007)

11. Ciciriello, P., Mottola, L., Picco, G.P.: Efficient routing from multiple sources to
multiple sinks in wireless sensor networks. In: European Conference on Wireless
Sensor Networks, pp. 34–50. Springer (2007)

https://doi.org/10.1007/3-540-27139-2_7


Security Schemes for Constrained Application
Protocol in IoT: A Precise Survey

Amit Mali(B) and Anant Nimkar(B)

Sardar Patel Institute of Technology, Mumbai 400053, India
{amit mali,anant nimkar}@spit.ac.in

Abstract. Internet of things is the fast developing network between
different day-to-day products or things connected together via Internet.
Internet of Things (IoT) has enabled connectivity of millions of devices
together and help operate them at ease. The most important factor
that needs to be taken into consideration while performing connectivity
between devices over IoT is the IPbased communication protocols. Rapid
growth in IoT increases security vulnerabilities of the linked objects.
Internet Engineering Task Force (IETF) has standardized a communi-
cation protocol at application layer, that is developed in consideration
with IoT, named Constrained Application Protocol (CoAP). Ensuring
security over CoAP is an ongoing challenge and a major research area.
CoAP is associated with various security schemes that guarantee secure
data transfer and reliability over the network, but each of them still lack
in providing full efficiency. This survey aims to analyze different secu-
rity schemes implied to CoAP inorder to improve its performance and
also states issues present in them. We examine different techniques that
are aligned with CoAP to ensure fundamental security requirement and
protect communication and some research challenges.

1 Introduction

The basic idea behind the Internet of Things (IoT) is connecting various kinds
of electronic device into the Internet with an aim to build a worldwide distrib-
uted system of interconnected physical objects. For constructing such a global
network, where all these nodes should be able to communicate and interact with
each other in an efficient manner, software architectures which provide scalabil-
ity, simplicity and interoperability of communication are required. Due to the
unreliable congestion control algorithms, TCP in wireless networks shows a very
low performance therefore, the connection-less UDP is mostly used in the IoT.
One approach which fulfills these requirements is the architectural style of Repre-
sentational State Transfer (REST) providing a guideline for designing large-scale
distributed applications. The basic idea behind the Internet of Things (IoT) is
the integration of all kinds of electronic devices into the Internet with an aim to
build a worldwide distributed system of interconnected physical objects.

The security of IoT is a very crucial topic, because it is related to the data
that is transmitted over the network, data may be sensitive, personal as well
c© Springer Nature Singapore Pte Ltd. 2017
S.M. Thampi et al. (Eds.): SSCC 2017, CCIS 746, pp. 134–145, 2017.
https://doi.org/10.1007/978-981-10-6898-0_11



Security Schemes for Constrained Application Protocol in IoT 135

as confidential. Protecting these kind of data is a must have in any communi-
cation network. According to a research 70% of the ordinarily used IoT devices
are found prone to security breach. Some common security complications are
insufficient authorization, lack of encryption, and insecure web interfaces [5].
At the end of the day, security, protection and trust are the fundamental com-
ponents that organizations need to concentrate on while executing IoT envi-
ronment. Notwithstanding, the greatest test is execution and speed, if security
is connected. The IoT gadgets are light and subsequently made remembering
low computation power and higher memory capacities in order to perform data
transfer between two nodes with minimum delay, and without affecting general
throughput avoiding packet loss.

The Constrained Application Protocol (CoAP) is under calibration as an
application layer protocol for the IoT [2]. The Constrained Application Proto-
col (CoAP) designed and maintained by IETF is an application layer protocol
constructed mainly for resource constrained devices and M2M applications. It
permits data transfer among IoT objects that have UDP and 6lowPAN enabled,
achieving low overhead and supporting multicast. CoAP constitutes of two lay-
ers, the lower message layer and the upper request/response layer. The message
layer provides reliability and sequencing by means of a stopandwait protocol
using messages such as confirmable which requires an acknowledgment message
as response, non-confirmable which does not require a response, and reset which
is used in case a confirmable message cannot be processed [13].

This article analyzes study from various available literature that are present
and security techniques for CoAP in the IoT. This survey, presented over in
following sections is a legitimate and initial work in this particular domain. Here,
the attention is imparted more precisely on the security techniques that help to
secure CoAP. Some existing surveys do exist that, focus on the Identification
of security requirements but, it is equally important to analyze the security
technologies currently being designed for IoT devices [5,6,8].

Our article is organized as follows; Sect. 2 focuses on the Constrained Applica-
tion Protocol and its Security requirement. In Sect. 3 we discuss various existing
security schemes implied to CoAP and Sect. 4 we enlighten some research issues
still present in CoAP and we conclude the article on this in Sect. 5.

2 Constarined Application Protocol

The Constrained Application Protocol (CoAP) as its name suggests is devel-
oped specifically for IoT networks. Addressing the issue of constrained resources
in IoT, CoAP has its dedicated focus on nodes performing data transfer in
constrained networks. CoAP is a version of HTTP designed to support require-
ments for IoT. CoAP depends on Representational State Transfer (REST), a
principle adopted from HTTP and embedded in UDP for the transaction [17].
Constrained application Protocol extends its support to provides M2M commu-
nication in constrained environments whereas, it also enables optional support
uni-cast and multicast requests. Some other notable features depicted by CoAP



136 A. Mali and A. Nimkar

are asynchronous message exchanges, low header overhead and parsing complex-
ity, supports URI (Universal Resource Identifier) and content-type, also that it
has simple proxy and caching capabilities [3].

2.1 CoAP Architecture

The structure of CoAP is divides into two layer, the message layer and
request response layer. The principal layer is in charge of controlling the mes-
sage trade over UDP between two nodes. While the second layer conveys the
request/response which holds respective code with a specific end goal to main-
tain message delivery, for example, the entry of messages that are out of request,
lost or copied. Figure 1 illustrates the design for CoAP. CoAP is a solid instru-
ment with rich components, for example, basic stop-and-wait re-transmissions,
copy discovery and multicast support. CoAP utilizes a short fixed-length binary
header and components, and messages are encoded in binary simple format. The
techniques supported in CoAP depend on the REST-ful structure which is GET,
POST, PUT and DELETE [3].

Fig. 1. Architecture of CoAP

CoAP message format is shown in Fig. 2. The CoAP start header contains a
version number (V), a message type number (T), a token length (TKL), a code
(C) and a Message ID (MID). Since CoAP uses the unreliable UDP, senders
can advise receivers to confirm the reception of a message by declaring it as
confirmable. The TKL field defines the size of the token which enables the asyn-
chronous message exchange. Based on this token, requests and responses can be
matched. The CoAP start header concludes with a Message ID being an identifier
for linking a reset or an acknowledgement message to its confirmable message.
The next element of the CoAP header is the token value. This value can be



Security Schemes for Constrained Application Protocol in IoT 137

Fig. 2. CoAP message format

empty, if no asynchronous message exchange is needed. The CoAP options com-
plete the CoAP header. The delimiter to separate the header from the payload
is a 8-bit unsigned integer with the fixed value of 255.

2.2 Security in CoAP

CoAP, as said, lacks built-in security mechanism and hence, security for CoAP
requires the presence of an external security scheme or mechanism, e.g., HTTP
and Transport Layer Security (TLS) [8]. As widely used and mentioned by IETF
and CoRE working group, security considerations are implemented by using
Datagram Transport Layer Security (DTLS) or IPSec [1]. DTLS ensures fea-
tures such as confidentiality, integrity, authentication, and non-repudiation in
the network using AES/CCM. DTLS is mainly functional in the transport layer
of the protocol stack. DTLS was at first intended for traditional networks, but
over the time it has been ported for constrained devices but this result in pro-
ducing a heavyweight protocol. DTLS headers are likewise too long to fit in a
single IEEE 802.15.4 maximum transmission unit (MTU) [15]. Calculation over-
head of their DTLS handshake presents high vitality utilization because of the
utilization of RSA-based cryptography.

DTLS is a derived protocol, obtained by modification of Transport Layer
Security (TLS) protocol, and it is implied at application layer. DTLS contains
records that are 8 bytes longer than in TLS. 13 bytes extra overhead per data-
gram is incurred on DTLS after the handshake is processed making it costly
for constrained nodes [13]. For an incoming message during handshake, it will
be decompressed and decryption will be performed by the protocol to verify it.
While in an outgoing scenario of handshake, the protocol will apply encryption
algorithm, add authentication code (MAC) and compress the message. Following
Fig. 3 states the DTLS handshake mechanism between a client and a server.

The security in CoAP is still under talk, despite the fact that DTLS is joined
as an assurance layer. The open deliberation is the substantial cost of com-
putation and high handshake in the message which causes message disconti-
nuity. Many reviews have proposed an answer for compressed DTLS which is
addressed in further sections. Moreover, key administration is another downside
of the CoAP security which is a typical issue in all protocols. Raza et al. have
proposed to receive 6LoWPAN header size reduction for DTLS [13]. They have
connected compressed DTLS with the 6LoWPAN standard, accomplishing an
enormous lessening in the quantity of extra security bits.



138 A. Mali and A. Nimkar

Fig. 3. Handshake mechanism using DTLS

Research is also carried out in order to introduce a symmetric key-based,
cost effective security mechanism using authentication and confidentiality for
CoAP [19]. Here symmetric key is used with Advanced Encryption Standard
(AES) 128 Cipher Block Chaining (CBC) mode. Having a different perspective
Oscar et al. [4] have also proposed a method based on new variant of Host
Identity protocol that uses pre-shared keys (PSK) and uses AMIKEY protocol
for key management. It isn’t a standard yet but is definitely reliable. These are
some of the security mechanisms implied to CoAP. Furthermore, we will study
many such security mechanisms put forth by researchers and scholars aiming
towards security to CoAP.

3 Existing Security Scheme for CoAP

This section allows us to study about various security techniques that are aligned
along with CoAP to render security. Each of this technique demonstrates its
unique feature to attain secure data transfer and reliability in IoT environment
over CoAP. We will hereby study each of this technique, their strategy to for
securing CoAP and issues present in this technique.

3.1 Security Using DTLS

Datagram Transport Layer Security (DTLS) is primarily aligned as a security
protocol with Constrained Application Protocol (CoAP) for specified facilities



Security Schemes for Constrained Application Protocol in IoT 139

such as automatic key management, data encryption and authentication [2].
Secure-CoAP (CoAPs) is a collaborative term including CoAP and DTLS sup-
port. Firstly, DTLS was developed and framed for traditional networks and not
for IoT devices that posses constrained environments. As Maximum Transmis-
sion Unit (MTU) for 802.15.4 is 128 bytes, hence there is a need to compress
the DTLS headers and messages. Raza et al. in 2012 firstly proposed a light-
weight DTLS support for the IoT using 6LoWPAN header compression stan-
dards. 6LoWPAN has a plug-in 6LoWPAN-GHC [14] which is used to compress
UDP payload. DTLS is similarly compressed using these standards. 6LoWPAN-
GHC allows us to compress record header, handshake header and other hand-
shake messages efficiently that can reduce the packet size and improve the mem-
ory consumption.

Fig. 4. CoAP DTLS interaction

Further in 2013, Raza et al. devised a security scheme Lithe, which is a
lightweight security solution for CoAP that uses 6LoWPAN header compres-
sion technique to compress DTLS in order to implement it as security support
for CoAP [14]. It is a novel method in all aspects for securing CoAP over the
Internet of Things. Evaluation results of this technique over simulation environ-
ment in Contiki OS proved to device some positive results that showcased very
less amount of bytes transferred resulting in an efficient and CoAP implementa-
tion. The header compression reduces a huge amount of traffic in the network,
leading to minimal energy consumption. Auther here promises to obtain around
62% of space saving due to compression in comparison with uncompressed ones.
It is also observed that in handshake phase compressed DTLS header archives
space saving upto 75%. In comparison to plain CoAP, the response time was
drastically reduced which proves DTLS compression efficient in terms of energy
consumption. Also Lithe avoids fragmentation which results in fragmentation
attacks over an IoT system.



140 A. Mali and A. Nimkar

To implement Secure CoAP, Park et al. proposed a technique according to
which a handshake between a client and a sever will be divides using the secure
service manager (SSM) into handshake phase and encryption phase [12]. This
result to overcome various problems in LLN such as data loss, delay that con-
tribute in increasing the overhead in network. This separation also prevents
the system from DoS attacks as encryption phase is separated at host location.
User has a choice of selecting multiple numbers of cipher suites while using this
proposed system. Separation of DTLS protocol into a handshake phase and an
encryption phase does not have a effect end-to-end security as data encryption
and decryption are done in the end node. This system is resistant to SSM spoof-
ing attack, Single point of failure, fragmentation attack and DoS attacks on a
constrained device. This system is allows usage of pre-shared key that enables
to maintain the relation of the SSM and constrained devices as a single system
virtually even if the are physically distributed.

3.2 Security Using Key Management

As an replacement for heavy DTLS, key based authentication technique can
be used for securing CoAP messages. Certain methods are proposed that state
benefits of Key based authentication and also have been effective when compared
with DTLS based conventional approach. Ukil et al. proposed a security solution
which is based on symmetric key [20]. Exchanged symmetric key is used with
Advanced Encryption Standard (AES) 128 Cipher Block Chaining (CBC) mode.
This method consists of phases such as secret distribution; session initiation;
server challenge; sensor response. Being an payload embedded method supports
towards minimizing the handshake overhead.

Furthermore Bandopadhy et al. came up with Auth-Lite [19] that enables
security to CoAP by providing object security. Security is ensured using a tech-
nique where key management and authentication scheme are integrated together
and are based upon usage of Symmetric keys. Resource consumption in CoAP is
minimized by introducing new header options along with mutual authentication.
Auth-Lite is manned to protect the system threats of DoS attack, replay attack,
man-in-the-middle attack, and information disclosure attack. When evaluated
against DTLS based CoAP system it is observed that Auth-Lite has higher per-
formance and less losses in a pre-shared key mode. Auth- Lite combined with
DTLS provides a perfect security solution that provides mutual authentication
layer and also protect from various attacks.

Obtaining all-round security in constrained environment is difficult as the exist-
ing network security protocols lack to provide support for all required functionali-
ties and traditional Internet solutions provide deprived performance when implied
to constrained devices To overcome this situation a new variant of Host Identity
Protocol (HIP) based on Pre- Shared Key (PSK) is stated which introduces a cryp-
tographic namespace of stable host identifiers between network and transport layer
to improve the performance and reliability of constrained networks. Oscar et al. [4]
propose a solution which mainly addresses to three phases viz., secure network
access, key management and secure communication. The initial Handshake is done



Security Schemes for Constrained Application Protocol in IoT 141

using symmetric key which is the pre-shared key configured in devices a priory. Key
management is done using polynomial scheme that guarantees sharing of secret
bivariate by the domain manager of the network. Here, keys serve as root key mate-
rial in MIKEY derivation. Whereas secure communication is guaranteed by DTLS
record.

3.3 Message Authentication in CoAP

Research has been extensive to provide security using various means to the
payload of the message but, securing the meta-data of the message is also of equal
importance. Nguyen et al. [11] proposed a message authentication framework for
CoAP message as there is an issue regarding the privacy of Meta information
even though payload of message is secured. Protecting only the payload or certain
data format still leaves a trail for an attacker to manipulate meta-data, which
is a crucial part of CoAP message. Distinction between header parts of CoAP is
needed in order to differentiate meta-data from payload which isn’t present, the
proposed research provides distinction between CoAP start header and CoAP
header.

Considering an MITM model, an attacker can intrude due to known DTLS
vulnerabilities. It is a complimentary to Transport layer security. The REST-
ful CoAP message authentication protects and ensures authenticity by implying
following steps:

1. Defines various message parts that are needed to be uniquely defined.
2. Implements REST-ful CoAP message signature generation algorithm.
3. Implements REST-ful CoAP message signature validation algorithm.

4 Research Issues in CoAP

CoAP being a standardized protocol for constrained devices, these is an exten-
sive amount of research going on regarding various improvisations that can be
made in order to hyper its reliability and efficiency in Internet of Things. Despite
there is huge research completed and still going on, CoAP security still requires
a lot more mining done to address some issues that are not taken care of. The
most important drawback found in CoAP is that it lacks its own built-in secu-
rity module, hence there is a necessity of bind some external security protocol
or technology to obtain security in CoAP. DTLS is being stated as standard
security solution for CoAP, but use of DTLS as security scheme also restricts
us from leveraging all features of CoAP. There are still some unaddressed issues
that remain as an open research challenge regarding Constrained Application
Protocol.

– CoAP still posses high energy consumption, data loss and delay as DTLS
posses heavy packet size.



142 A. Mali and A. Nimkar

T
a
b
le

1
.
S
tu

d
y

o
f
ex

is
ti

n
g

se
cu

ri
ty

sc
h
em

e
fo

r
C

o
A

P

S
r.

n
o
.

R
e
se

a
rc
h

a
rt
ic
le

to
p
ic

Y
e
a
r

S
e
c
u
ri
ty

sc
h
e
m

e
K
e
y

m
a
n
a
g
e
m

e
n
t

A
u
th

e
n
ti
c
a
ti
o
n

m
e
c
h
a
n
is
m

M
e
ss
a
g
e

se
c
u
ri
ty

E
n
d
-t
o
-e
n
d

se
c
u
ri
ty

H
e
a
d
e
r

c
o
m

p
re

ss
io
n

P
ro

te
c
ti
o
n

fr
o
m

a
tt
a
c
k
s

1
6
L
o
W

P
A
N

c
o
m

p
re

ss
e
d

D
T
L
S

fo
r

C
o
A
P

[1
5
]

2
0
1
2

-
-

-
-

-
Y
e
s

-

2
S
e
c
u
ri
n
g

IP
b
a
se

d
Io

T
W

it
h

H
IP

a
n
d

D
T
L
S

[4
]

2
0
1
3

H
o
st

Id
e
n
ti
ty

P
ro

to
c
o
l

A
M

IK
E
Y

Y
e
s

Y
e
s

Y
e
s

N
o

Y
e
s

3
L
IT

H
E

[1
4
]

2
0
1
3

D
T
L
S

Y
e
s

Y
e
s

Y
e
s

Y
e
s

Y
e
s

Y
e
s

4
S
e
c
u
re

m
u
lt
ic
a
st

tr
a
n
sm

is
si
o
n

[7
]

2
0
1
3

B
a
tc
h

S
ig
n
a
tu

re

V
e
rfi

y

P
u
b
li
c
K
e
y

Y
e
s

Y
e
s

Y
e
s

-
Y
e
s

5
S
e
c
u
ri
n
g

c
o
m

m
u
n
ic
a
ti
o
n

in

6
L
o
W

P
A
N

w
it
h

c
o
m

p
re

ss
e
d

IP
S
e
c

2
0
1
3

IP
S
e
c

N
o

Y
e
s

Y
e
s

Y
e
s

-
Y
e
s

6
A
u
th

L
it
e
[1
9
]

2
0
1
4

S
y
m

m
e
tr
ic

K
e
y

Y
E
S

Y
e
s

Y
e
s

Y
e
s

O
p
ti
o
n
a
l

N
o

7
L
ig
h
tw

e
ig
h
t
se

c
u
re

c
o
m

m
u
n
ic
a
ti
o
n

fo
r
C
o
A
P

e
n
a
b
le
d

Io
T

u
si
n
g

d
e
le
g
a
te

d
D
T
L
S

[1
2
]

2
0
1
4

D
T
L
S

Y
e
s

Y
e
s

Y
e
s

Y
e
s

N
o

Y
e
s

8
L
ig
h
tw

e
ig
h
t
D
T
L
S

In
C
o
A
P

b
a
se

d
Io

T
[1
0
]

2
0
1
4

T
in
y

D
T
L
S

Y
e
s

Y
e
s

Y
e
s

-
N
o

-

9
S
e
c
u
ri
ty

a
n
a
ly
si
s
o
f
D
T
L
S

st
ru

c
tu

re
a
n
d

it
s
a
p
p
li
c
a
ti
o
n

to

se
c
u
re

m
u
lt
ic
a
st

c
o
m

m
u
n
ic
a
ti
o
n

[1
6
]

2
0
1
4

C
e
n
tr
a
li
z
e
d

C
o
n
tr
o
l

S
e
c
u
re

m
u
lt
ic
a
st

S
c
h
e
m
e

Y
e
s

Y
e
s

Y
e
s

Y
e
s

N
o

-

1
0

A
d
e
c
e
n
tr
a
li
z
e
d

a
p
p
ro

a
c
h

fo
r

se
c
u
ri
ty

a
n
d

p
ri
v
a
c
y

c
h
a
ll
e
n
g
e
s

in
Io

T
[1
8
]

2
0
1
4

P
u
b
li
c
K
e
y

C
ry

p
to

g
ra

p
h
y

Y
e
s

Y
e
s

Y
E
s

-
N
o

-

1
1

R
E
S
T
-f
u
l
C
o
A
P

m
e
ss
a
g
e

a
u
th

e
n
ti
c
a
ti
o
n

2
0
1
5

R
E
S
T

S
ig
n
a
tu

re
[1
1
]

Y
E
S

Y
e
s

Y
e
s

Y
e
s

N
o

-

1
2

L
ig
h
tw

e
ig
h
t
se

c
u
ri
ty

sc
h
e
m

e
fo
r

Io
T

a
p
p
li
c
a
ti
o
n
s
u
si
n
g

C
o
A
P

[2
0
]

2
0
1
4

S
y
m

m
e
tr
ic

K
e
y

B
a
se

d

Y
e
s

Y
e
s

Y
e
s

Y
e
s

N
e
w

H
e
a
d
e
r

o
p
ti
o
n
s

Y
e
s

1
3

L
E
S
S

-
li
g
h
tw

e
ig
h
t
e
st
a
b
li
sh

m
e
n
t

o
f
se

c
u
re

se
ss
io
n

2
0
1
5

P
a
y
lo
a
d

e
m
b
e
d
d
e
d

re
sp

o
n
se

sc
h
e
m
e
[2
]

Y
e
s

Y
e
s

Y
e
s

Y
e
s

-
Y
e
s

1
4

A
d
is
tr
ib

u
te

d
se

c
u
ri
ty

fo
r

re
so

u
rc

e
c
o
n
st
ra

in
e
d

Io
T

d
e
v
ic
e
s
[9
]

2
0
1
6

T
ra

n
sp

o
rt

L
a
y
e
r

S
e
c
u
ri
ty

/
S
y
m

m
e
tr
ic

E
n
c
ry

p
ti
o
n

Y
e
s

Y
e
s

Y
e
s

Y
e
s

N
o

-



Security Schemes for Constrained Application Protocol in IoT 143

– Being request/response protocol implies four round trips for initial authenti-
cation.

– DTLS defines to use Elliptical curve cryptography for key management but,
there is requirement of a second thought over ECC technique as its practicality
is questionable.

– A prime feature of CoAP, multicast messaging cannot be performed using
DTLS and proves to be essential in IoT environments.

– DTLS lacks the support for group key management.

Although there are certain research proposals aiming towards alternative
approach regarding CoAP security other than DTLS, those are mostly dependent
of key management. In a network consisting of multiple nodes, distribution and
management of encryption keys still persist as an important issue that awaits a
reliable and efficient solution.

The wide range of security schemes mentioned above lack firm results on their
resistance to various probable attacks on the network. We lack the knowledge
of reliability of network and its security over a real-time network and traffic as
results presented by researchers and authors are based upon lab experiments
and simulation software.

No firm simulation evaluation criteria /frameworks are available to perform
standardized output and signify the results. The implementation of IoT is mainly
carried out using traditional networks i.e. connecting nodes and maintaining a
server that records the behavior and performs necessary actions, as the technol-
ogy of cloud is growing reliable and accessible easily, it is necessary to implement
IoT over cloud to provide global access.

With an objective of performing an extensive survey with respect to various
security mechanism for CoAP, a study was performed with its outcomes men-
tioned in Table 1. Depending on various mentioned parameters that are necessary
or posses importance, this study examines various important security schemes
back from 2012. This study help to understand the importance of various security
parameters and advancements in security techniques.

5 Conclusion

Through this paper we surveyed and studied different techniques that are associ-
ated with Constrained Application Protocol to guarantee secure communication
in Internet of Things. We measured out that DTLS is mentioned as a standard
mechanism for securing CoAP protocol and it also provides the necessary secu-
rity to some extent. But there are still some modifications required to reduce the
cost of this heavy protocol with respect to the heavy handshake mechanism and
packet size. We also came across various other security schemes that are light-
weight but not yet standardized. The message authentication scheme studied
provides protection to meta-data as well, which is a add-on in improving secu-
rity in CoAP. Here, we also state various issue that still persist and need to be
addressed to provide overall security to CoAP over IoT. Some techniques men-
tioned here are evaluated and verified to provide efficient results and reliability in



144 A. Mali and A. Nimkar

securing CoAP. We expect that this survey provide some valuable contribution
and proper insights by documenting a very dynamic area of research in this era.
This will definitely be helpful to the researchers to evolve with new solutions in
the aspect of securing the IoT.

References

1. Arkko, J., Keränen, A.: CoAP security architecture (2011)
2. Bhattacharyya, A., Bose, T., Bandyopadhyay, S., Ukil, A., Pal, A.: Less: light-

weight establishment of secure session: a cross-layer approach using CoAP and
DTLS-PSK channel encryption. In: 2015 IEEE 29th International Conference on
Advanced Information Networking and Applications Workshops (WAINA), pp.
682–687. IEEE (2015)

3. Bormann, C., Hartke, K., Shelby, Z.: The Constrained Application Protocol
(CoAP). RFC 7252, June 2014

4. Garcia-Morchon, O., Keoh, S.L., Kumar, S., Moreno-Sanchez, P., Vidal-Meca, F.,
Ziegeldorf, J.H.: Securing the IP-based internet of things with HIP and DTLS. In:
Proceedings of the Sixth ACM Conference on Security and Privacy in Wireless and
Mobile Networks, pp. 119–124. ACM (2013)

5. Granjal, J., Monteiro, E., Silva, J.S.: Security for the internet of things: a survey
of existing protocols and open research issues. IEEE Commun. Surv. Tutor. 17(3),
1294–1312 (2015)

6. Ishaq, I., Hoebeke, J., Van den Abeele, F., Moerman, I., Demeester, P.: Group com-
munication in constrained environments using CoAP-based entities. In: 2013 IEEE
International Conference on Distributed Computing in Sensor Systems (DCOSS),
pp. 345–350. IEEE (2013)

7. Salem Jeyaseelan, W.R., Hariharan, S.: Secure multicast transmission. In: 2013
Fourth International Conference on Computing, Communications and Networking
Technologies (ICCCNT), pp. 1–4. IEEE (2013)

8. Karagiannis, V., Chatzimisios, P., Vazquez-Gallego, F., Alonso-Zarate, J.: A survey
on application layer protocols for the internet of things. Trans. IoT Cloud Comput.
3(1), 11–17 (2015)

9. King, J., Awad, A.I.: A distributed security mechanism for resource-constrained
IoT devices. Informatica 40(1), 133 (2016)

10. Lakkundi, V., Singh, K.: Lightweight DTLS implementation in CoAP-based inter-
net of things. In: 2014 20th Annual International Conference on Advanced Com-
puting and Communications (ADCOM), pp. 7–11. IEEE (2014)

11. Nguyen, H.V., Iacono, L.L.: REST-ful CoAP message authentication. In: 2015
International Workshop on Secure Internet of Things (SIoT), pp. 35–43. IEEE
(2015)

12. Park, J., Kang, N.: Lightweight secure communication for CoAP-enabled inter-
net of things using delegated DTLS handshake. In: 2014 International Conference
on Information and Communication Technology Convergence (ICTC), pp. 28–33.
IEEE (2014)

13. Rahman, R.A., Shah, B.: Security analysis of IoT protocols: a focus in CoAP. In:
2016 3rd MEC International Conference on Big Data and Smart City (ICBDSC),
pp. 1–7. IEEE (2016)

14. Raza, S., Shafagh, H., Hewage, K., Hummen, R., Voigt, T.: Lithe: lightweight
secure CoAP for the internet of things. IEEE Sens. J. 13(10), 3711–3720 (2013)



Security Schemes for Constrained Application Protocol in IoT 145

15. Raza, S., Trabalza, D., Voigt,, T.: 6LowPAN compressed DTLS for CoAP. In: 2012
IEEE 8th International Conference on Distributed Computing in Sensor Systems
(DCOSS), pp. 287–289. IEEE (2012)

16. Shaheen, S.H., Yousaf, M.: Security analysis of DTLS structure and its applica-
tion to secure multicast communication. In: 2014 12th International Conference on
Frontiers of Information Technology (FIT), pp. 165–169. IEEE (2014)

17. Sheng, Z., Yang, S., Yifan, Y., Vasilakos, A., Mccann, J., Leung, K.: A survey
on the IETF protocol suite for the internet of things: standards, challenges, and
opportunities. IEEE Wirel. Commun. 20(6), 91–98 (2013)

18. Skarmeta, A.F., Hernandez-Ramos, J.L., Moreno, M.V.: A decentralized approach
for security and privacy challenges in the internet of things. In: 2014 IEEE World
Forum on Internet of Things (WF-IoT), pp. 67–72. IEEE (2014)

19. Ukil, A., Bandyopadhyay, S., Bhattacharyya, A., Pal, A., Bose, T.: Auth-lite: light-
weight M2Mauthentication reinforcing DTLS for CoAp. In: 2014 IEEE Interna-
tional Conference on Pervasive Computing and Communications Workshops (PER-
COM Workshops) pp. 215–219. IEEE (2014)

20. Ukil, A., Bandyopadhyay, S., Bhattacharyya, A., Pal, A., Bose, T.: Lightweight
security scheme for IoT applications using CoAP. Int. J. Pervasive Comput. Com-
mun. 10(4), 372–392 (2014)



Jordan Center Segregation: Rumors in Social
Media Networks

R. Krithika(&), Ashok Kumar Mohan, and M. Sethumadhavan

TIFAC-CORE in Cyber Security, Amrita School of Engineering,
Amrita Vishwa Vidyapeetham, Amrita University, Coimbatore, India

krithikavijiraj@gmail.com

Abstract. Social media networks have gained a lot of popularity among the
people by rapidly spreading rumors inquiring a variety of human affairs.
Nowadays people simply tend to hype over social media for publicity or pro-
motion which is the prime source for all deception activities online. The data
shared in the midst of social media may be spreading a bogus news online and
sooner or later they will be sorted off the record as rumors, but meanwhile the
rumor might have done an adequate amount of damage to the subject. Current
day rumor Segregation practice aims no more than identifying the rumor in the
reign, days after its first forecast. The anticipated model will serves as a precise
way out for isolating a rumor by calculating the preparatory source of the rumor
by the use of Jordan source center with SI, SIR, and SIRI infection models.
Jordan source center is the best optimal source calculator which overcomes the
error rate, infection rates and other parameters when compared to other cen-
trality estimators from the marketplace. It helps in finding the source of a
common social media rumor and proceeding further to cleanse the infections
and trim down their forged impact over the social media networks.

Keywords: Social network analysis � Social graphs � Twitter � Rumor �
Centrality � Jordan center � Eccentricity � SI � SIR � SIRI

1 Introduction

Nowadays sharing of information is very popular in social media networks such as
Facebook, Twitter, Instagram and YouTube. Social networks are huge repository of
information where individuals know how to gain knowledge over user behavior. In
addition, it holds back a lot more widespread social media rumors and hook up their
impact on the victims using social interconnection between entities to share their data.
If people are badly in need of any news, without any hesitation then inspect these social
networks to gather information rather than referring authentic news channels or several
other form of verified journal sources. A typical social media user collects data from
various sources in the form of image, video, audio and post it as a valid information in
the social networks. This posted information spreads quickly among the other internet
users because of its increasing popularity and universal curiosity among humans to
believe in these attention-grabbing rumors. People just read these unverified news and
without any hesitation they tend to share the news in their social media circle and it

© Springer Nature Singapore Pte Ltd. 2017
S.M. Thampi et al. (Eds.): SSCC 2017, CCIS 746, pp. 146–158, 2017.
https://doi.org/10.1007/978-981-10-6898-0_12



spreads virally over all other cohesive social networks. There is a higher probability
that people will believe these fake news especially during emergency situation or any
instances of disaster. So there is a greater possibility of spreading fake news among the
social network users which is commonly referred to as online rumor. For example
much fake news related to missing Malaysian flight MH-370 spread in social media,
which created a number of panic circumstances among the mass [12, 14].

Internet users pass this information deliberately to their community, while the cyber
criminals who initiates the news will achieve their success in creating chaos. Because
common people will believe those fake news and start panicking among them, this
might lead to fall in market shares, riots, gang war, damage to public property, death,
murder and many more fatal situations. Spreading of rumor in social media is
increasing day by day which has a variety of interesting grounds to harvest.

In today’s digitally connected world it is very difficult to recognize rumor and set
apart non-rumor news in social media due to the mass occurrence and the hasty speed
at which it propagates. This is because the use contents are not verified properly, people
immediately forward whatever they receive aiming only at the number of likes or
shares as a deciding factor to spread the same. So before forwarding anything we have
to verify the content properly and also think about the adverse effects of the false data.
Monitoring all the tweets, shares, and posts is not an easy task in the era where access
to internet is more or less freely available to all. But in order to identify the rumor in the
news, it is very important to collect and correlate with all the relevant news which is
currently circulating in the social media. Here, concentrating on both analyzing the
rumor and identifying the source, i.e., the individual who starts spreading the fake news
in social network. If a disease spreads from one person to another person it is com-
monly referred to as infection. Here the news spreading from one user to another in
social networks is also referred as infection.

There are three basic infection models in social media and they are as follows:
Susceptible Infected (SI) model, Susceptible Infected and Recovered (SIR) model and
Susceptible Infected Recovered and Infected (SIRI) model. Usually we model social
networks based on Graph theory G = (V,E), where V is the vertices and E is the edges
in the graph G. The infection model Susceptible Infected (SI) model is a set of nodes
that have possible infected nodes as their neighbors which is known as susceptible
node. Here to say in terms of social media, friends of an infected individual believes in
some rumors and shares the same post related to a spreading rumor is referred to as
infected nodes. And in future, there is a larger possibility that other surrounding
individuals will also believe in that rumor and will start sharing the posts which is
known as susceptible nodes. In the Susceptible Infected and Recovered (SIR) model,
an infected nodes get recovered as this person who shares the post believing it as a
rumor will remove that post if they later discover it as fake news which is referred as
Recovered node. The Susceptible Infected Recovered and Infected (SIRI) model is a
typical scenario after recovering they will be yet again infected by the same rumor. If
an individual believes in some rumor by sharing any post (infected) related to the
rumor and later it removes them (recovered) and even after that they tend to re-shares
the same rumor by providing additional evidences (infected), which is known as SIRI
model. In this manuscript, we took the most spoken event in social network and
monitored the tweets, posts, and shares to sort it out to be a rumor or non-rumor news.

Jordan Center Segregation: Rumors in Social Media Networks 147



And from the identified rumor we found the center (source of rumor) using Jordan
center calculation and tried proving that the Jordan center is verified to be the best
among its nearest competitors namely closeness, degree, betweenness centrality in
sorting out the source.

2 Related Works

The fake news at all times spreads rapidly while the genuine news takes some to gain
popularity. Especially in social media the origin and behavior of rumors are the
nightmare for data analyst. And the process in progress is divided into two phases
namely: the first phase starts with identifying whether the data is a rumor or non-rumor
by simple Segregation and the second phase is the calculation of center (rumor source)
with the inferences of Jordan center being the best among all other centrality measure
algorithms.

Towards detecting rumors in social media [4], here the social media is used as a
medium to spread information among the users. Along with the general information,
false data will also spread among the online users. This kind of unverified news along
with some fake evidences propagating in social media creates many problems espe-
cially during emergency situations like the incident which happened with the Hurricane
Sandy incident in 2012. This type of rumors during any crisis spreads quickly than the
real facts in social media. The PHEME project aims at analyzing these rumors by
tracing their source in social media and its truthfulness is verified. In this rumor
analysis, the authors initially collected all the tweets about Hurricane Sandy with tweets
having reply, retweets with the initial tweet. An atomic unit of these tweets are referred
to as thread. This rumor analysis is done by human assessor who manually reads
through the tweets and determines the rumor for the particular event which is referred
as annotation.

To facilitate this annotation task, a specific tool is used which visualizes the
timeline of tweets. Annotators use this tool to analyze the tweets and mark as positive
( ) if it is a rumor, isolate a non-rumor ( ) message or keep the rest of them in the
suspicious unverified mode ( ). It also includes an interface that allows us to revise,
rename, move the threads to another category. They used the twitter’s streaming API to
collect tweets for any particular ongoing event. The creation of datasets with the
annotated conversations and collection of thread helps in identifying the rumor or
non-rumor state in this social media for any particular circulating story.

Identifying rumors and their sources in social networks [3], is a piece of infor-
mation that propagates through social networks having many false claims. The rumors
can propagate to large number of users with the incorrect information as its source.
These false claims are spread by any unknown node and it is very difficult to tell the
original source of this fake information. In this paper the problem of identifying rumors
and their sources in social networks are discussed. A social network is modeled as a
directed graph G = (V,E) where V is the set of all people and E is the set of edges and
they represent the flow of information between specific individuals. A set of
pre-selected nodes are termed as monitor nodes (M). For investigation purposes, a
piece of dummy information is sent and the monitor is expected to report whether they

148 R. Krithika et al.



received it or not. If received, then it is referred as positive monitors (M+) and the nodes
which have not received is referred as negative monitors (M−). So, for each node the
reach ability and distance is calculated for both the positive and negative nodes
appropriately. Once it is sorted, they are compare with the selection methods such as
Randomness, Inter-Monitor Distance (Dist), Number of Incoming Edges (NI), NI +
Dist, Betweenness Centrality (BC) and BC + Dist.

Then the information is concluded to be a rumor or non-rumor by using the Greedy
Source Set Size (GSSS) algorithm and Maximal Distance of Greedy Information
Propagation (MDGIP) monitor selection method. When there is a large difference in the
number of sources between rumor and non-rumor, then it is clear that the actual rumors
are separated. If the difference is too small then there exists some inaccuracy and
redundancy in the procedures followed to sort them out. And logistic regression is used
to classify rumor and non-rumor accurately with first half of the data used as training
data and second half as testing dataset.

Automatic Detection and Verification of Rumors in Twitter [1], explains the rise of
social media that greatly affects the scope of journalism and similar news reporting
areas. This social media platform is not only used for sharing the genuine news but also
tends to proliferate much of unconfirmed fake news. As in Boston bombing scenario,
many rumors were spread in twitter which brought huge confusions and problems
between the people in that locality. Here a tool is developed to detect the rumor and to
check the trustworthiness of the rumor. The system has two major subsystems namely
the rumor detection and rumor verification. In rumor detection, subsystem is referred to
as ‘hearsift’ and it is the actual collection of tweets about an specific event. It is sub
classified into two major parts as assertion detector and hierarchical clustering. The raw
tweets are fed into the assertion detector and it filters only the assertion tweets. The
assertion belongs to the class of speech acts which has multi-class classification
problem, where a dataset is created and categorized based on the semantic and syntactic
features of the source. The output of the assertion detector is fed as an input to the
clustering module from which the user is able to get the collection of all the clusters.
Clusters contain the messages propagated through the twitter in multitude of cascades
which can fetch the established rumor as the output.

The next major module is the rumor verification module which is referred as rumor
gauge model. Here the output of the rumor detector is fed as input to the rumor gauge.
The rumor gauge will get the time-series features about the linguistic content, user
identity and propagation dynamics of the rumors. Then it passes to a Hidden Markov
Model (HMM), where it has trained the annotated rumors which helps to find the
truthfulness of the rumors.

Eccentricity and centrality in networks [8], belongs to the concept of centrality
discovered by Camille Jordan later introduced as a model for social network analysis. It
includes the path center of a graph. In this model the center of the graph is referred to as
operation research (OR) which helps in choosing a site for a facility and to minimize
the response time to any other location. It is solved by finding the set of nodes whose
total distance to all other nodes is least, i.e., the ‘median’ of the graph. Next by finding
the set of nodes whose maximum distance to any other node is least, i.e., the ‘center’ of
the graph. A graph G consists of a finite non-empty set V = V (G) of nodes together
with a set E = E (G) of edges joining certain nodes. A path in G is an alternating

Jordan Center Segregation: Rumors in Social Media Networks 149



sequence v0, e1, v1, e2, .., vn-1, en, vn. A cycle is brought up by connecting the initial
and terminal nodes joined by an edge. The length of a path is determined by the
authentic number of edges present at that time interval. The distance d (u,v) is the
length of the shortest path joining u and v. The eccentricity e (v), in a connected graph
G is the maximum distance d (u,v) for all u. The diameter of a graph G is the maximum
eccentricity of a node. The radius r (G) is the minimum eccentricity of the nodes.

The classical theorem of Jordan determines the location of the center while the
given graph is represented as a tree. It states three main theorems of Jordan.

Theorem 1. The center of a tree consists of either a single node or a pair of adjacent
nodes.

Theorem 2. The center C(G) of any connected graph G lies within a block of G.

Theorem 3. The center of any network lies in a single block.

Linear algorithms for finding the Jordan center and path center of a tree [5], in this
paper the linear algorithms for finding the Jordan center is suggested along with the
steps to calculate the weighted Jordan center and the path center of a tree. This
algorithm helps in representing canonical representation of a tree. The path center of a
tree T consists of a unique sub path of T which is also recommended in this paper. The
distance d (u,v) between two vertices u and v in a graph G is the length of a shortest
path between them. The shortest path between any two vertices is called a geodesic.
Eccentricity e (v) of a vertex in a connected graph G is the longest geodesic from v.

On the universality of the Jordan center for estimating the rumor source in a social
network [2], the base paper of our model considers the rumor spreading sources in
social networks. While identifying the source the investigator tries to fetch only the
nodes posted locally but not any clue on the model. Finding the source estimator is
applicable to Susceptible Infected (SI) model, Susceptible Infected Recovered
(SIR) model and Susceptible Infected Recovered Infected (SIRI) models. SI model gets
infected from its infected neighbor. SIR model, an infected node will one way or
another gets recovered from an infection. In SIRI model, the infected node recovers
initially and later get infected again. The main aim of this paper is to show that Jordan
center is an optimal rumor source estimator which is applicable to all the above
mentioned models. The Jordan center does not depend only on the parameters like the
infection rate, recovery, re-infection rate and so it is regarded as universal source
estimator. A Jordan center is defined as a node in G that has minimum eccentricity.
Simulation results using both the synthetic and real world networks are tested in
parallel to evaluate the performance of the Jordan source estimator. Simulations have
been conducted and the results shows that Jordan center outperforms better than the
distance, closeness and betweenness centrality based heuristic mechanisms [6].

A distributed algorithm for the graph center problem [5], is the paper with a
distributed algorithm for the graph center problem suggested to find the center of a
social graph. The algorithm is based on three sub algorithms such as test connectivity,
all-pair shortest path and leader election which operate in different layers. Locating
center between the nodes help in placing the resource at a center of a graph which
minimizes the costs of sharing the resources with other locations. The main idea of this

150 R. Krithika et al.



algorithm is to find the center node in a distributed environment. The test layer provides
the information whether the network is connected or isolated after infection. The
routing layer computes MinMax distance also termed as the eccentricity value. The
center layer computes the center by using the minimum eccentricity value and it is
ultimately considered as Jordan center.

Enquiring minds: early detection of rumors in social media from enquiry posts [10],
demonstrates the trending rumors that are identified by finding the entire clusters of the
actual posts and isolated malicious rumor clusters [13]. The rumor clusters can be
found by the signature text referred to as enquiry phrases. A technique is developed
based on searching for the enquiry phrase as early as possible and then separate the
posts that do not contain these phrases. Then they are clustered appropriately and
finally rank based upon their classification anatomy.

Rumor detection procedure has the following five major steps in practice namely;
Identify Signal Tweets, Identify Signal Clusters, Detect Statements, Capture
Non-Signal Tweets and Rank Candidate Rumor Clusters. To process cases with bil-
lions of record such as Boston Marathon bombing datasets, the experiment is per-
formed on a typical Hadoop cluster. The main components of the framework includes
filtering, clustering and retrieval algorithm implemented by means of apache pig
framework.

3 Proposed Methodology

Considering the virally spreading news in social networks and the intention identify the
rumor, the following model is formulated. From the identified rumor we calculate the
center using Jordan center, as Jordan center is the proven to be the best among all other
centralities like degree, closeness and betweenness centrality algorithms. The proposed
dataflow methods has two routines namely to Identify it as a rumor and collect the
supporting datasets [18, 20] (Fig. 1).

Fig. 1. Twitter streaming API with their key values

Jordan Center Segregation: Rumors in Social Media Networks 151



An individual shares or tweets detailed set of posts in their account. With the help
of these complete data, we identified the posts having verified rumors. So in order to
collect those posts, we processed them using streaming API by tracking all the main
keywords with relevant hash tags. Application Programming Interface (API) is a set of
protocols or routines for building an application. Using streaming API a persistent
stream alive API session will be established between the server and the client. It pushes
the data whenever it is publicly available and notifies them automatically if any new
tweets or posts arrive in the user space (Fig. 2).

The dataset from twitter streaming API is collected and stored it in a database for
future reference. In twitter streaming API, apps are created by logging in by their
twitter account and in the second stage, in OAuth interface and it gives Access Token,
Access Token Secret, Consumer Key and Consumer Key Secrets. These are the four set
of keys that are provided to the user in order to authenticate themselves while collecting
data. It provides the end client a second level of access to server in order to authorize
themselves to the server on the behalf of the owner. Twitter streaming API collects all
information based upon user specific keywords. For example, give a keyword as
‘Boston Bombing’ it collects all the data including person’s name, ID, followers list,
number of people retweeted, replies to tweets and retweets, and also their hashtags.
Monitoring the rumor is facilitated with the actual number of retweets. Then we started
collecting the data for the particular story that is circulated in the social media i.e.,
Boston Marathon Bombing through streaming API [17].

Fig. 2. Tweets are fetching from streaming API

152 R. Krithika et al.



Technical details of the proposed system with the sole purpose of applying the
standard API imports officially provided by the social media network providers.
Implementation of the same begins with tagging and annotating specific search key-
words on the grounds of the three models (SI, SIR, SIRI) after tagging by individuals or
retweets through friends are noticed by the API collector interface. To be precise on the
implementation and as a proof of concept of the anticipated scheme only a particular
rumor circulating during the time of execution was collected to classify the rumor [15].

• Annotation: The data is collected through twitter streaming API and stored in the
JSON file. The annotation master collects all the anticipated data and stores the
JSON file in the user specified folder. Manual annotation task is carried out here by
individually reading and bookmarking the annotation tags. Human has to read
through the text file of tweets to determine the rumors for training the engine. Here,
major characteristics that are considered to sort it out as rumor are the number of
retweets and the replies for any particular tweets that exceed the time limit.

• Classification of Text: Once the text is annotated manually, then we tend to classify
them as rumor or non-rumor. Python library named TextBlob is used to classify the
text as it helps us to classify the text by creating a simple classifier. The training and
testing dataset created is the fed into the Naive Bayes classifier where the dataset is
trained and tested to finally classify the text to be a rumor as in Fig. 3.

So here before the rumor detection part, the preliminary dataset isolation is accu-
mulating the tweets through Twitter streaming API and manually annotating them
based on the replies and the number of retweets to identify the rumor source. If the
annotator feels it as rumor then it is marked with ‘red’ and if it is non-rumor then

Fig. 3. Flow diagram for anticipated rumor segregation in social media networks

Jordan Center Segregation: Rumors in Social Media Networks 153



labeled as ‘green’ and if they are in dilemma, the tag goes ‘orange’. Then it is aptly
trained and marked off the record using the well established TextBlob classifier. [19]

Calculating the Jordan Center.

• Dataset Collection: Once the text is classified to be a rumor or non-rumor, each set
is exported as a comma separated file (csv) in order to calculate the Jordan center to
make sure the integrity of the rumor is verified and finally to weigh up with the
exact origin of the rumor source.

• Segregation Component: After finding the rumor only, centrality (source) of the
appropriate suspicious node ought to be calculated, so the Jordan centre estimation
steps are performed only after sanitizing the junk of Tweets collected in the pre-
vious phase. Finally the graph center estimation algorithm is applied to discover the
accurate starting node as shown below.

• Graph Center Estimation: Gephi framework is used to calculate the centralities and
specifically in social networking scenario it helps to calculate centralities, viewing
data and shortest path values. Here, the csv file is given as an input to the Gephi
window and centralities are calculated as it proves Jordan center to be the best
among all the other centralities like degree, closeness and betweenness centrality.

The below diagram shows the relationship (edges) between one node to another
node, as it illustrates how the nodes in social media are interconnected with each other.
The Boston bombing event dataset is collected in twitter using twitter streaming API as
mentioned in the phase-1 and it is facilitated with the help of Gephi identifiers. This is
the best example for all the infection models in a typical social network.

The Jordan, Betweenness, Closeness and Degree centrality calculating procedures
are as follows: [9, 16]

– Jordan Centrality: It is minimum eccentricity value. The smallest distance between
each node is taken and calculated by using the following formula.

CJðxÞ ¼ 1
MAXDðx;yÞ
y 6¼x

– Betweenness Centrality: It is the number of shortest path that passes through that
particular vertices and it is calculated as,

CBðZÞ ¼ 0:001þ 2
ðn� 1Þðn� 2Þ

X

x 6¼z

X

y 6¼z

gxyð2Þ
gxy

– Closeness Centrality: It is reciprocal of average of shortest path and calculated
using,

CcðxÞ ¼ n� 1P
y 6¼x

Dðx; yÞ ¼
1

AVGDðx;yÞ
y 6¼x

154 R. Krithika et al.



– Degree Centrality: It is the number of outcomes from a particular node and it’s
calculated using,

CD vð Þ ¼ Deg vð Þ

Only indispensable models and formulas that are mandatory for the segregation of
rumor source is considered above. All other basic centrality formulas are skipped here
with a trust of all the prerequisite basic calculations of centrality is acknowledged by
the annotator during the early stages of the review.

After getting the nodes and their relationships, next step is to identify the source.
With the help of Gephi we are able to generate the various centrality values. In the
below figure the maximum eccentricity value i.e., the diameter value is calculated and
the expected best diameter value is highlighted in Table 1 [7].

Inorder to segregate the Jordan center we are taking the minimum eccentricity value
as four. So from this we get the source from the collected sample dataset of Boston
bombing.

Table 1. Seggregated diameter value in gephi

Id Label Diameter Betweenness Harmonic Closeness

325085529936 @poodles 6.0 2.178 0.320 0.352
387695432056 @pavram 7.0 0.0 0.305 0.254
324752486377 @oh_leeshy 8.0 2.36 0.467 0.385
387654231860 @kelli_c 6.3 2.1 0.235 0.345

Fig. 4. Minimum eccentricity value (Jordan center) plotted using gephi’s report agent.

Jordan Center Segregation: Rumors in Social Media Networks 155



While the graph estimation value plotted using Gephi in Fig. 4. We calculate the
additional features using R studio with the same Boston bombing dataset. Initially we
import the dataset and centrality values for indegree, outdegree, closeness, between-
ness, minimum eccentricity values are calculated as shown in Fig. 5.

In the R studio the min eccentricity value by default is set to one. Here we calculate
the Jordan center value out of which it is proven to be the best among the other
centrality calculator algorithms.

By segregating all the centrality measure values using R studio, gephi the above
graph (Fig. 6) states that the Jordan center is best among the other centralities like
Betweenness, Closeness, Degree centrality in social networks.

Fig. 5. Minimum eccentricity value using gephi

Fig. 6. Various centrality measures values plotted along the nodes.

156 R. Krithika et al.



Manually collecting all the tweets related to our live case study is performed. It is
annotated based upon the suggestions on the scenario distinguished by the real world
annotators involved in the incident is advantageous over working on standard departed
datasets from the past. Comparing with other centrality measures Jordan provides best
results with to a large extent of classification and sound calculation of the source which
is rendered in the above table on sorting out the rumor source.

4 Conclusion and Future Work

The main aim of this project is to categorize the post to b a rumor or non-rumor in a
particular event circulating in social media networks. From the basic steps to identify a
rumor, we later graduate to exactly identify the source using the appropriate centrality
measure algorithm. Here the survey on the history of Jordan center and other centrality
algorithms paved the way for sorting out the precise rumor in social networks. Keeping
this as the base we have classified the tweets to be a rumor or non-rumor with a typical
example of Boston bombing marathon event. By using the centrality measure segre-
gation, it is verified that the Jordan center is the best among other centralities like
Betweenness, closeness, degree centrality.

In order to handle the real time data and huge amount of data, the extraction and
isolation of rumor is achieved via Hadoop interface [9]. Flume helped us to achieve a
smooth progress of automating the process of rumor classification and hive modules
fetch the dataset for dynamic processing of tweets fetched from twitter API [10].
Collection of TamilNadu CM Ms. Jayaram Jayalalithaa death issue related tweets are
being performed in Hadoop to work with the real time social graph and also to handle
the huge amount of data collected in a stipulated span of time [11]. Apache Hadoop is
installed to facilitate this model and the appropriate modules have been deployed to
collect the dataset. Thereafter any such incidents should be predicted using the model
and an early alert whether it is a rumor or not will be posted well in advance to avoid all
havoc caused by the same [21]. This should be able to keep away from rumors and
disinfect all the existing rumors that circulates liberally in and around all social media
networks.

References

1. Vosoughi, S.: Automatic detection and verification of rumors on Twitter. Doctoral
dissertation, Massachusetts Institute of Technology (2015)

2. Luo, W., Tay, W.P., Leng, M., Guevara, M.K.: On the universality of the Jordan center for
estimating the rumor source in a social network. In: 2015 IEEE International Conference on
Digital Signal Processing (DSP), pp. 760–764. IEEE, July 2015

3. Seo, E., Mohapatra, P., Abdelzaher, T.: Identifying rumors and their sources in social
networks. In: SPIE Defense, Security, and Sensing, p. 83891I. International Society for
Optics and Photonics, May 2012

4. Zubiaga, A., Liakata, M., Procter, R., Bontcheva, K., Tolmie, P.: Towards detecting rumours
in social media. arXiv preprint arXiv:1504.04712 (2015)

Jordan Center Segregation: Rumors in Social Media Networks 157

http://arxiv.org/abs/1504.04712


5. Song, L.: A Distributed Algorithm for Graph Center Problem. Complexity Research Group,
BT Exact, Martlesham (2003)

6. Luo, W., Tay, W.P., Leng, M.: How to identify an infection source with limited
observations. IEEE J. Sel. Top. Sig. Process. 8(4), 586–597 (2014)

7. Hedetniemi, S.M., Cockayne, E.J., Hedetniemi, S.T.: Linear algorithms for finding the
Jordan center and path center of a tree. Transp. Sci. 15(2), 98–114 (1981)

8. Hage, P., Harary, F.: Eccentricity and centrality in networks. Soc. Netw. 17(1), 57–63 (1995)
9. Louni, A., Santhanakrishnan, A., Subbalakshmi, K.P.: Identification of source of rumors in

social networks with incomplete information. arXiv preprint arXiv:1509.00557 (2015)
10. Zhao, Z., Resnick, P., Mei, Q.: Enquiring minds: early detection of rumors in social media

from enquiry posts. In: Proceedings of the 24th International Conference on World Wide
Web, pp. 1395–1405. ACM, May 2015

11. Danthala, M.K.: Tweet analysis: twitter data processing using Apache Hadoop. Int. J. Core
Eng. Manage. (IJCEM) 1, 94–102 (2015)

12. Viswanath, B., Mislove, A., Cha, M., Gummadi, K.P.: On the evolution of user interaction in
Facebook. In: Proceeding of the 2nd ACM Workshop on Online Social Networks (2009)

13. Kempe, D., Kleinberg, J., Tardos, E.: Maximizing the spread of influence through a social
network. In: Proceedings of the 9th ACM SIGKDD International Conference on Knowledge
Discovery and Data Mining (2003)

14. Watts, D.J., Strogatz, S.H.: Collective dynamics of ‘small-world’ networks. Nature
393(6684), 440–442 (1998)

15. Corcoran, M.: Death by cliff plunge, with a push from twitter. New York Times, 12 July
2009

16. Freeman, L.C., Borgatti, S.P., White, D.R.: Centrality in valued graphs: a measure of
betweenness based on network flow. Soc. Netw. 13, 141–154 (1991)

17. “Mining Data from Twitter” from AbhishangaUpadhyay, Luis Mao, Malavika Goda Krishna
(PDF)

18. Vinodhini, G., Chandrasekaran, R.M.: Sentiment analysis and opinion mining: a survey. Int.
J. Adv. Res. Comput. Sci. Softw. Eng. 2(6), 282–292 (2012). ISSN: 2277 128X

19. Devi, G.R., Veena, P.V., Kumar, M.A., Soman, K.P.: Entity extraction for Malayalam social
media text using structured skip-gram based embedding features from unlabeled data.
Procedia Comput. Sci. 93, 547–553 (2016)

20. Sanjay, S.P., Anand Kumar, M., Soman, K.P.: AMRITA_CEN-NLP@ FIRE 2015: CRF
based named entity extractor for Twitter Microposts. In: FIRE Workshops, pp. 96–99 (2015)

21. Mahalakshmi, R., Suseela, S.: Big-SoSA: social sentiment analysis and data visualization on
big data. Int. J. Adv. Res. Comput. Commun. Eng. 4(4), 304–306 (2015). ISSN: 2278-1021

158 R. Krithika et al.

http://arxiv.org/abs/1509.00557


Honeyword with Salt-Chlorine Generator
to Enhance Security of Cloud User Credentials

T. Nathezhtha1(&) and V. Vaidehi2

1 Madras Institute of Technology, Anna University, Chennai, Tamil Nadu, India
nathezhtha31@gmail.com

2 SCSE, VIT, Chennai, Tamil Nadu, India
vaidehimitauc@gmail.com

Abstract. Cloud Computing plays a vital role in current IT sector. Every
advantage of cloud comes with major security issues. Cloud credential security
concern has been listed as top security threat in the Treacherous 12 by Cloud
Security Alliance in 2016. The login credentials of a cloud user can be easily
cracked with the existing tools. Honeywords are used to protect the passwords in
password database. Honeywords are set of decoy passwords stored along with
the legitimate password in hashed password database. Honeyword list along
with the legitimate password are called as sweetword list. In current scenario the
list of sweetwords can be stolen by launching brute force attack, dictionary
attack or other password cracking attacks to the Hashed password database and
the cloud user’s legitimate password can be inverted. To avoid such attacks an
improvised salt generator named as Salt-Chlorine is proposed. Salt-chlorine
algorithm generates highly unpredictable pseudo-random Salt to enhance the
integrity of the cloud user account. Salt-Chlorine generator generates complex
salts (SC) and SC is hashed with both the honeywords and cloud users legiti-
mate password to confuse the attacker and to withstand the attacks on hashed
password database. The proposed method increases the complexity of identi-
fying the legitimate password in the list of sweetwords. The analysis demon-
strates the privacy and security level of the passwords stored in cloud password
database and the passwords are more secured than the existing schemes.

Keywords: Honeyword � Complex salt � Password � Password cracking �
Authentication

1 Introduction

Data breaching can happen in cloud due to lack of identity authentication and unau-
thorized account access. Cloud users login credentials such as user passwords will be
stolen by the attackers and the user account will be hijacked which leads to data breach
issues. Data breach, insufficient identity and false credentials are the major issues in
cloud, listed by cloud security alliance (CSA) [2]. Passwords are used to enhance the
entry level security of user account. Password grants access to all the online IT
resources such as computers, emails or server on a network. Passwords are very sen-
sitive information used to authenticate the users. The login credentials of the users are
stored in password database; if the password is exposed by attacking the password

© Springer Nature Singapore Pte Ltd. 2017
S.M. Thampi et al. (Eds.): SSCC 2017, CCIS 746, pp. 159–169, 2017.
https://doi.org/10.1007/978-981-10-6898-0_13



database then the user data can be breached. Millions of users passwords are cracked
and companies like linkedin, yahoo, ebay have been attacked [3]. Data breach has
always been out of users control but it is imperative to create passwords which can
withstand password cracking and other attacks on password retrieval. Avoiding such
attacks depends on the complexity of a password.

The password given by users for their account is hashed and stored in the cloud
server database. It is believed that hash is irreversible but this is not true for the current
scenario. There are many advanced tools to revert the hashed password to its original
form. In current scenario many cloud services use weak storage methods for storing
user credentials. For example, SHA-1 algorithm is used by LinkedIn websites for
hasing their account users password and eHarmony system uses MD5 hashing algo-
rithm without salting [4]. To increase the complexity in finding the hash passwords,
Salts are used. Salt is a pseudo random string which is added at the beginning or end of
the original password. The passwords with salt produce a strong hash. The difficultly
level of inverting increases with the complexity of salt.

The password hashed in current scenario is weak against hash crackers. Password
hashing with salting is an appropriate way to secure the password since the hash cannot
be reverted to plain text. Honeywords are decoy passwords to stronghold the password
files. They are fake passwords placed in the password database to deceive the attackers
while attacking the password DB [1]. This paper provides a novel honeyword mech-
anism along with complex salt generation which focuses in cloud users credential
security.

Section 2 gives a survey about the honeyword generation methods and hashing.
Section 3 gives the description of Complex salt-chlorine algorithm. Section 4 gives the
newly enhanced honeyword with salt-chlorine mechanism, Sect. 5 analyze the security
properties and compares the proposed approach and the existing methods. Finally,
Sect. 6 concludes this paper.

2 Honeyword and Hashing

Honeywords are decoy passwords to stronghold the password files. They are fake pass-
words placed in the password database to deceive the attackers while attacking the
password DB. Honeywords appear like normal user-selected passwords, So it is difficult
for an attacker distinguish between honeywords and true user passwords from the stolen
password file. The decoy passwords and the user’s original passwords are stored together
in the password database and these lists of words in the database are called as sweetwords.
The user’s password is placed randomly placed in the sweetword list and its position k gets
stored by the honeychecker. Honeychecker is an auxiliary service checks whether the
password submitted by the user is a true password or a honeyword. The password system
at the server end itself does not know about the real password in the sweetword list. When
someone tries to loginwith a sweetword the password checker checks whether the entered
password exists in the honeyword list, if it exists the password system sends the index of
the sweetword j to the honeychecker, where j is the password entered by an attacker or
legitimate user. The honeychecker verifies whether j = k, if the index matches the user is
authenticated else if incorrect password is submitted an alarm is raised. There are several

160 T. Nathezhtha and V. Vaidehi



approaches for honeyword generation chaffing-by-tweaking, chaffing-with-a-password-
model, chaffing with “Tough Nuts”, Hybrid model, honeywords form existing user
password. In chaffing-by-tweaking the honeywords are produced by tweaking the
selected characters from the user’s original, user password seeded into the generator. In
tweaking method characters in user passwords are replaced by randomly chosen char-
acter, whereas the characters to be replaced are predetermined. The characters replaced to
generate honeywords are of same type, i.e. the digits are replaced by random digits, the
letters are replaced by letters and the special characters are replaced with random special
characters. In chaffing-with-a-password-model, the honeywords are generated by relying
on probabilistic model of user’s real passwords [5]. The authors presented an example for
this model [6] named as the modeling syntax. In this model, the password is splitted into
character sets, i.e. mice3blind is decomposed as four-letters + one-digit + five-letters. In
the chaffing with “Tough Nuts” model [5], the system injects some special honeywords,
named as tough nuts, such that inverting hash values of those words is computationally
infeasible. Hybrid method [5] is the combination of different honeyword generator
models, e.g. chaffing-with-a-password-model and chaffing-by-tweaking-digits. By using
this technique, random password model will yield seeds for tweaking-digits to generate
honeywords. In existingmethod instead of generating the honeywords and storing them in
the password file, the passwords of the existing users are taken and used as honeywords,
which confuses the attackers after reverting the hashes since every plaintext retrieved from
the honeywords looks like a password, If the attacker attempts to login with a false
password an alarm is raised reporting the intrusion [1].

Hash algorithms are one way functions, which turns the data of any length to a
fixed-length that cannot be reversed. In hashing if the input changes even by a single
bit, the resulting hash will be entirely different. Hashing is a commonly and widely
used technique for protecting passwords, because it is a technique that stores the
password in other form which will be challenging for the attacker to compromise a user
credentials even when a hash file is compromised. There are several password hashing
functions like MD5, SHA 256, SHA 512, WHIRLPOOL. The password P will be
hashed to get the a fixed length hash value H(P) and these hashes will be stored in the
password database instead of storing the raw password. When a user tries to login the
hash of the entered plain text H(P’) is compared with the hash in the password data-
base, if the hash matches i.e. if H(P) = H(P’) the users gets authenticated.

Hashing conceals the password when the attacker steals the password file. The
complexity of password reversing from a hash depends on the chosen password. The
attacker either chooses dictionary attack or brute force attack to get the plain text from
the hash. In the dictionary attack the dictionary holds the pre hashed values of the
password using which the attacker can launch an attack and get the reverted hash. In
brute force attack the attacker tries for to guess the passwords with all combination
word, brute force is an attack with no solution but to the password guessing possi-
bilities can be reduced. To avoid dictionary attack and to reduce brute force attack an
enhancement called “salt” is used with the passwords while hashing. Salt can be either
added before or after a password while hashing H(P,S) or H(S,P) both will produce
different hash values, where S, the salt is a random value. The computer does not store
the raw password instead it stores hash value to avoid the attacks on raw passwords.

Honeyword with Salt-Chlorine Generator to Enhance Security 161



Honeywords can also be hashed while hashing the real password to form Sweetword
list with hash values.

3 Proposed Salt-Chlorine Generator

Hash functions are believed to be irreversible. However, password cracking can be
done by people with less cracking expertise. The hash values can be reverted with
brute-force attack and dictionary lookups. Best way to produce an irreversible hash is
to use salt; the salt generated must be complex enough to withstand the brute-force
attack or any other password cracking attacks. This paper proposes a Complex
salt-chlorine generator which generators a very high level salt, which increases the
complexity of attacking the user credentials to an extreme level. The Salt-chlorine
generated goes to a number of phases such as, Pseudo Random string generator, ASCII
Convertor, Filter, Shuffler, Symbol translator, salt-chlorine generation. Pseudo random
string generation (PRSG) generates a string with the combination of uppercase and
lowercase alphabets along with numbers in a random manner. ASCII convertor pro-
duces equivalent ASCII values of the characters in the string; the produced values are
numeric set of values. The Shuffler takes the ASCII values and shuffles it randomly to
forms another set of numeric values. The filter gets the shuffled values and filters the
value to be in the range of 32 to 127. After filtering the values are passed to the symbol
translator to convert the numeric ASCII value into its equivalent symbols. Symbol of
ASCII value 32 is a space which continues with Special characters, uppercase alpha-
bets and Lowercase alphabets.

Pseudo 
Random string 

generator 
ASCII

Convertor 

Symbol
Translator

Filter Shuffler

Salt-Chlorine 
generation

Fig. 1. Salt chlorine generator

162 T. Nathezhtha and V. Vaidehi



 
Pseudocode for Complex Salt-Chlorine generator 

 
Procedure Salt-Chlorine 
 String → Genrand( ) /* generates random string */ 
 len → length(string) 
 Convert the string to chararray(0 to len) 
 for i=0 to len do 
 ascii_value[i]=ASCII(chararray[i]) 
 end for 
 value[i] → shuffler(ascii_value[i]) 
 for i=0 to len do 
  if  value[i] less than 32 then 
   value[i]=value[i]-32 
  else  if value[i] greater than 127 then 
   for i=i, value[i]  greater than 127 
    value[i]=value[i]-95  
  else value[i]=value[i] 
  end if 
 end for 
 for i=0 to len do 
  translator[i] =symbol(value[i]) 
 end for 
 convert translator[i] to string 
 salt-chlorine → string.

 

When a random string is generated by the PRSG the string is converted into
chararray and the ASCII equivalent of all the characters are stored in ascii_value[i],
where i varies from 0 to len(length of the string). All the characters under go shuffling
process and the shuffled characters are stored in value[i]. The filter process checks the
range of the value, if the value is lesser then 32, the value[i] is added by 32. If the value
[i] is greater than 127 then the value is subtracted by 95 continuously until the value
becomes lesser than 127. After filtering, all the values will be in the range of 32 to 127.
In the symbol equivalent of the characters value[i] is translated and the final set of
characters is converted to the salt-chlorine as shown in Fig. 1. The combination of the
honeyword technique and salt-clorine technique gives an extremely secured system for
protecting cloud users login credentials.

4 Honeyword with Salt-Chlorine Generator

The cloud user Ui authenticates his account with the password Pi. The randomized
salt-chlorine generator generates the complex salt-chlorine (sci) for the password Pi.
The Pi and sci are hashed to produce an irreversible hash h(pi + sci) for user account.
The randomized salt-chlorine generator not only produces a SC for user password, it
also produces the complex SC for Honeyword generator. Honeyword generator

Honeyword with Salt-Chlorine Generator to Enhance Security 163



generates the list of Honeywords (fake passwords) Wi = {w1,w2…..wn-1}, here the
honeywords are randomly chosen passwords, all these honeywords are hashed with the
SC and produces a list of complexly hashed honeywords i.e. h(Wi) = {h(wsc1), h(wsc2)
…. h(wscn-1)}. The honeyword generator generates (n − 1) honeywords. Along with
these honeywords the users complexly hashed passwords h(pi + sci) is added and
stored in cloud server’s password database. The database contains a list of hashes h
(Wi) = {h(wsc1), h(wsc2) …. h(wscn-1),h(wscn)} called as sweetwords, One of these
sweetword is a users original password and remaining are the honeywords. Even the
decoy passwords in the honeyword list are complex enough to withstand the attacks
since the SC are hashed with the decoy passwords. Assume the users real password
stored in the database is h(wsck). The index K of the real password is stored in the
honeychecker. The index will not be stored in the same server where password data-
base exists. If an attacker tries to authenticate with the hacked cloud servers password
database, the attacker must choose one password form the list of honeywords. The
attacker will try to revert the hash to original password by launching brute force or
dictionary attack.

The complexity of retrieving a password when it is hashed with a salt-chlorine is
very high. Even at the slightest possibility of reverting one of the honeyword’s hashes
by launching an attack and the possibility obtained plaintext being users original

Password pi
Cloud User h(pi+sc)

Password 
DB

h(wsc1) 

h(wsc2) 

. 

. 

. 

. 
h(wscn)

Password checker

Hashed password with sc

Sweetword 
with index

No Matches

Matches

Alert generation

Honeychecker
Authenticated

Fig. 2. User authentication with Honeywords

164 T. Nathezhtha and V. Vaidehi



password is very less. When someone tries to login with password pi, the password is
hashed and password checker in cloud server compares the hashed password with the
list of passwords in password database. If the password matches with anyone of the
sweetwords, the password is sent to the honeychecker, if the index of the sent password
matches the index stored in honeychecks then the user gets authentication else an
intrusion gets reported as shown in Fig. 2.

5 Security Analysis

In this section the security of the proposed Honeyword with Salt-chlorine is compared
with existing systems. The password file with hashed honeywords and raw password
(sweetwords) is shown in Table 1 (column 1). These sweetwords are retrieved into
plaintext with hash cracking tools. The Raw passwords column shows the reverted
hashes, the passwords are found along with the type of hash function (column 2) used
to hash that particular password. Table 1 shows the current protection scenario of
password database. Even with the honeywords mechanism, if all sweetwords are
reversed and raw text are retrieved, the attacker can guess the users password with their
related information and try to attack the system with sweetword of high probability. To
crack the hashes the attacker only needs simple hash cracking tools or even an online
hash crackers are enough. After obtaining the cracked password the attacker can easily
hack the account. Even though the existing system challenges the attacker to the
moderate level, it does not provide a fully secured system. Various kinds of attacks can
be injected in the existing system. The lowest probability honeychecker can be attacked
after attacking the password file, so that the attacker steal the index of hashed password
to retrieve the original password and try to impersonate as authenticated user. To avoid
these types of insecurities and to enhance security of cloud password database, the
sweetwords hashed with salt-chlorine is implemented in this paper. The salt-chlorines
generated are complex salts which go under the process of shuffling, filtering.

The hash can be reverted to original plain text using hash cracking tools. The
plaintext retrieval form the hash using the tool Cain and Able is shown in Fig. 3. There
exist many online and offline password cracking tools to revert the hashes by launching

Table 1. Hash cracking on sweetwords without salt

Hashed sweetword list Hash type Raw passwords
(Reverted
Hashes)

6e70477ad778d804d7689f53372047c44d55fb8bc006778856c231
6b605186cf5f8ca087c373aa2663909c7cfb368a0ea8927880cc089812ee

sha512 james007

9ef74b5b454c0681f88c77a9fac29dfc md5 HYDRA123
.
.

.

.
.
.

1cf0295b47683ca5d354af46ff977bf2de6d70e6749d3078fbfe580f2f3395e3 sha256 Angel31
e241ea1f510611a85765e48ceaa7b55ec0bf640e sha1 krupskaya
191f6cf307771c3594bbe2945dbb36de tiger128,3 SWEET789

Honeyword with Salt-Chlorine Generator to Enhance Security 165



dictionary and brute-force attack. The hashes reverted in the above picture are the
compromised user credentials. The dictionary attack for retrieving the user credentials
is shown in Fig. 4. Hash value produced by combining the salt and passwords are hard
for the attackers to retrieve. The challenge for the attacker increases when the com-
plexity of the salt increase. The proposed model gives a very complexed salt named as
salt-chlorine which makes the attacks impossible when they are hashed with the
passwords. In Fig. 3, the last four hashes are the hash values produced by the user’s
password along with salt-chlorine, which was irreversible by hash cracking attacks.

Fig. 3. Password retrieval from hash using Cain and Abel

Fig. 4. Dictionary attack on the hashes

166 T. Nathezhtha and V. Vaidehi



A complex salt generation process is shown in the Table 2 for sweetword Angel31.
The plain text Angel31 and salt-chorine oQQL[,FeiCJ/nz> are hashed together using
SHA256 algorithm which produces an irreversible hash value as given below;

ff9e104128000457355efbdde88185f18779f6e56f8fd7895c4442e2618dc842.

Table 2. Salt-chlorine Process

PRSG ASCII
conversation

Shuffling Filtering Symbol
transformation
and salt-chlorine

5WWR8snVFmujbdE 53 87 87 82
56
115 110 86
70
109 117 106
98
100 69 32

53 17 80 88
56 175 129
86 96 101
917 106 00
108 17 32

53 40 80 88
56 80 34
86 96 101 62
106 32 108 49 3

5(PX8P”V’e>j l1
(space)

MOh0ozM3jFPF9Cf 77 79 104
48
111 122 77
51
106 70 80 70
57 67 102

97 05 172
41 710 182
72 01 177
57 80 60 17
67 104

97 37 77 41
45 87 72 33
82 57 80 60
54 67 104

a%M)-WH!R9P<Ch

pYQLazFtiCJfifV 112 89 81
76
97 122 70
116
105 67 74
102
105 102 86

111 81 81
76 91 012
70 196 105
67 74 807
205 122 62

111 81 81
76 91 44 70
101 105 67
74 47 110
122 62

oQQL[,FeiCJ/nz>

QfiLc6zbaBhgmsv 81 102 105
76
99 54 122 98
97 66 104
103
109 115 118

60 102 105
71 69 54 112
28 87 96 145
101 189 903
911

60 102 105
71 69 54
112 50 87
96 50 101
94 48 56

<fiGE6p2 W’2e^08

8O1vDrvnGWCdsnd 56 79 49
118
68 114 118
110 71 87 67
100 115 110
100

16 79 41 118
68 084 518
191 71 07 60
107 115 011
110

48 79 41 118
68 084 43 96
71 39 60 107
115 043 110

0O)vDT+’G<ks+o

Honeyword with Salt-Chlorine Generator to Enhance Security 167



Table 3 shows the results of the hash cracking attacks tried by attackers in
sweetword list. The sweetword list contains passwords hashed with salt-chlorine. The
Hash generator with salt chlorine cannot be reverted by the hash cracking attacks. The
result of cracking hash with SC is shown in the Table 3.

Table 4 shows the comparison of honeyword generator models [1], the guessing
probability of the passwords are categorized, the security of the approaches has also
been categorized. In user passwords as honeyword model the passwords of existing
users has been used, if all the hashes are cracked in this model the guessing probability
will be low since all the sweetwords in that particular list are passwords, but users are
under the risk of compromising their password without their knowledge. The attacker
may also try to compromise all the system with the cracked passwords and launch
several attacks via other user accounts. So the risk of involving the other user pass-
words in the model is a huge drawback, whereas the proposed approach focuses on
increasing the complexity of password guessing by the attackers with salt-chlorine
technique. The Novel honeyword with SC model focuses on giving the privacy for all
the cloud users and also it increases the overhead for brute-force attackers, it also avoid
the dictionary lookups by providing hashes with complex salt-chlorine.

Table 3. Password cracking on sweetwords list of hashed passwords with salt-chlorine

Hashed sweetword list Hash type Raw passwords

7053a2c52ac8f9c822b40a6e6f09e896801559044c6db261e16ff
145b21eee716b1162261f531d61a2fcca6a805092199fd152e87b
321a0ba36

Unknown Not found

0dff50283f4456cc122d885d32cfd5d3 Unknown Not found
.
.
.

.

.

.

.

.

.
ff9e104128000457355efbdde88185f18779f6e56f8fd7895c4442
e2618dc842

Unknown Not found

853904beda55379052fda5b4ba8872693f57edaa Unknown Not found
e9874b6613cf66a2d5183babbb5f8f6d Unknown Not found

Table 4. Comparison of Honeyword generator models

Model Password guessing probability Security

Chaffing-by-tweaking Very high Very Low
Chaffing-with-a-password-model High Very Low
User passwords as honeyword Low Moderate
Honeyword with salt chlorine Very Low Very high

168 T. Nathezhtha and V. Vaidehi



6 Conclusion

This paper proposed a Honeyword with Salt-Chlorine (complex salts) generator model
to protect the cloud password database. The security analysis in the proposed model is
compared with all other existing models. The Honeyword with the complex salt
generator protects the password file from attackers. It increases the complexity of
password cracking to the brute-force attackers to high level. Since the passwords are
hashed with salt-chlorines the other hash cracking attacks cannot be injected in the
proposed model. The cracking probability decreases to an extreme low level in this
model, since the time taken to crack a hashed password along with the salt-chlorine is
extremely high, along with this the complexity for cracking all the n number of
sweetword makes the attacks impossible. The proposed approach enhances the cloud
entry level security to a higher level and protects the login credentials of cloud users
form attackers.

References

1. Erguler, I.: Achieving flateness: selecting the honeywords from existing users passwords.
IEEE Trans. Dependable Secure Comput. 13, 284–295 (2016)

2. Cloud Security Alliance: The Treacherous 12- Cloud Computing Top Threats in 2016,
February 2016

3. Vance, A.: If your password is 123456, just make it hackme. New York Times, January 2010
4. Brown, K.: The dangers of weak hashes. SANS Institute InfoSec Reading Room, Maryland,

US, pp. 1–22, November 2013
5. Juels, A., Rivest, R.L.: Honeywords: making password-cracking detectable. In: Proceedings

of the ACM SIGSAC Conference on Computer and Communications Security, pp. 145–160
(2013)

6. Bojinov, H., Bursztein, E., Boyen, X., Boneh, D.: Kamouflage: loss-resistant password
management. In: Proceedings of the 15th European Symposium on Research in Computer
Security, pp. 286–302 (2010)

Honeyword with Salt-Chlorine Generator to Enhance Security 169



Multi Class Machine Learning Algorithms
for Intrusion Detection - A Performance Study

Manjula C. Belavagi(B) and Balachandra Muniyal

Department of Information and Communication Technology, Manipal Institute
of Technology, Manipal University, Manipal, India

{manjula.cb,bala.chandra}@manipal.edu

Abstract. Advancement of the network technology has increased our
dependency on the Internet. Hence the security of the network plays a
very important role. The network intrusions can be identified using Intru-
sion Detection System (IDS). Machine learning algorithms are used to
predict the network behavior as intrusion or normal. This paper discusses
the prediction analysis of different supervised machine learning algo-
rithms namely Logistic Regression, Gaussian Naive Bayes, Support Vec-
tor Machine and Random Forest on NSL-KDD dataset. These machine
learning classification techniques are used to predict the four different
types of attacks namely Denial of Service attack, Remote to Local (R2L),
Probe and User to Root(U2R) attacks using multi-class classification
technique.

Keywords: Intrusion detection · Machine learning · Network security

1 Introduction

Drastic development in the network technologies made every one to depend on
Internet for each and every thing. Applications of Internet includes banking,
shopping, education, communication, business and so on. Hence the network is
vulnerable to different security threats such as Denial of service (DoS) attacks,
routing attacks, Sybil attacks, probing etc. These cannot be handled by the
state of the art security mechanisms namely authentication techniques, Key-
management techniques and security protocols. Hence there is a need of Intrusion
Detection System (IDS).

In the existing literature different machine learning based intrusion detec-
tion techniques namely Naive Bayes [1,2], Neural Networks [3], Support Vector
Machine [4], Ensemble based [5] are available. Also a hybrid detection technique
is also proposed in [6].

Even though lot of literature is available on machine learning based intrusion
detection, there is very limited literature available on the performance compar-
ison of machine learning algorithms for multi-class classifications. This paper
is the extension of prior work of Belavagi and Muniyal [7], where performance
of different machine learning algorithms are compared on NSL-KDD dataset
c© Springer Nature Singapore Pte Ltd. 2017
S.M. Thampi et al. (Eds.): SSCC 2017, CCIS 746, pp. 170–178, 2017.
https://doi.org/10.1007/978-981-10-6898-0_14



Multi Class Machine Learning Algorithms for Intrusion Detection 171

based on the binary classification. Where as this paper discusses the performance
comparison of different multi-class machine learning classification techniques for
intrusion detection on the same dataset.

The paper is organized as follows. In Sect. 2 Intrusion Detection System and
the Data set used for it is discussed. Research work related to Intrusion Detection
System is discussed in Sect. 3. In Sect. 4 various machine learning techniques used
are discussed. Section 5 discusses the framework and algorithm used for Intrusion
detection. In Sect. 6 results obtained are analyzed and Sect. 7 gives the overall
conclusion and future scope.

2 Intrusion Detection System

Abnormal behavior of the network is identified using a security mechanism called
Intrusion Detection System(IDS). An IDS should be able to differentiate between
desirable and undesirable activity. Some of the intrusions are Masquerade, Pen-
etration, Leakage and Denial Of Service(DOS).

With respect to machine learning, Intrusion detection system is classified
as Anomaly based and misuse based as specified by Tom Michel [8] IDS learns
the patterns to identify the intrusions. Using these learned behavioral patterns
network behavior is identified as normal or intrusion by Misuse method. Hence
it is possible to identify the known attack patterns. Whereas anomaly based
detection can detect the unknown malicious behavior of the network also.

2.1 Data Set for IDS

In this paper prediction analysis for the different class labels is done by con-
sidering the standard intrusion detection data set NSL-KDD [9]. The data set
has forty two attributes. The forty second attribute contains label, which stores
labels of the five classes. These are categorized as one normal class and four
attack class based on the behavior of the network. Specific type of abnormal
activities are further grouped as User to Root, Denial of Service, Probe and
Remote to Local.

3 Related Work

Recently survey on ensemble and hybrid classifier based intrusion detection sys-
tem was proposed by Aburomman et al. [10]. They have considered homogeneous
and heterogeneous ensemble methods. They suggested that voting techniques
based ensemble methods give satisfactory results. They have considered bagging,
boosting, stacking, mixture of computing experts to create ensemble classifiers.

Comparison between the various existing IDS technologies based on detection
methodologies and detection approaches is proposed by Liao et al. [11]. Vladimir
et al. [12] proposed neural network based distributed classifier to handle network
intrusions. They used the confidence level as the measure for decision making.



172 M.C. Belavagi and B. Muniyal

The proposed method works better in comparison with the existing ensemble
techniques. They concluded that performance improvement is possible by the
formalization of the value of threshold selection.

Intrusion detection using support vector machine is proposed by Enache et al.
[13]. They suggested that the performance of the SVM depends on the attributes
used. Hence they used Swarm Intelligence technique to select the best features.
The proposed model is tested with NSL-KDD dataset. Authors claim that the
model has good detection rate and low false positive rate than when compared
to regular SVM.

Panda et al. [14] used combination of different classifiers to identify the intru-
sions. Supervised machine learning technique is used to filter the data. Using the
decision tree classifier they tested the NSL-KDD data set, to identify whether
the network activity is intrusion or not. But the model works only for binary
classification.

Levent et al. [15] proposed multi class classifier based on Naive Bayes to
identify the intrusions. This method identifies Denial of Service attacks with
good accuracy compared to other attacks.

Intrusion detection technique using Support Vector Machine (SVM) is pro-
posed by Li et al. [16]. They also used feature removal method to improve the
efficiency. Using the proposed feature removal method they selected nineteen
best features. They used KDD-CUP99 data-set for experimentation. In the pro-
posed method the data set used is very small.

A light weight IDS was proposed by Sivatha Sindhu et al. [17]. The proposed
method mainly focused on pre-processing of the data so that only important
attributes can be used. The first step is to remove the redundant data so that the
learning algorithms give unbiased result. Bahri et al. [18] proposed an ensemble
based on Greedy-Boost approach for anomaly as well as misuse intrusion detec-
tion. To reduce the time of intrusion detection they used aggregation decision
classifier. Authors claim that the proposed method has minimal number of false
alarms (false-positives) and undetected attacks (false-negative).

4 Machine Learning Techniques

The aim of this paper is to design the intrusion detection model to identify mul-
tiple attacks. The predictive model is built using Logistic Regression, Gaussian
Naive Bayes,Random Forest and Support Vector Machine. The performance of
these techniques is also analyzed. These classification algorithms are discussed
below.

4.1 Logistic Regression

Logistic regression is used to predict the probability of occurrence of an event
by fitting data to a logit function (logistic function). For regression analysis, it
uses numerous predictor variables that may be either numerical or categorical.



Multi Class Machine Learning Algorithms for Intrusion Detection 173

Hypothesis for the logistic regression is shown in the Eq. 1. Where g(θT x) is
a logistic function. This function is defined in the Eq. 2. Considering the Eqs. 1
and 2 the hypothesis is also can be represented as in Eq. 3

hθ(x) = g(θT x) (1)

g(z) =
1

1 + e−z
(2)

hθ(x) =
1

1 + e−θT x
(3)

Given the hypothesis as in Eq. 3 fit the parameter θ based on the data.

4.2 Gaussian Naive Bayes

The Gaussian Naive Bayes (GNB) algorithm is a supervised learning method. It
uses the probabilities of each attribute belonging to each class to make a predic-
tion. The algorithm works based on the strong assumption that the probability
of each attribute belonging to a given class value is independent of all other
attributes. The probability of a class value given a value of an attribute is called
the conditional probability. Probability of a data instance belonging to specific
class can be computed by multiplying the conditional probabilities together for
each attribute for a given class value. Predictions are based on the probabilities
of the instances belonging to each class and selecting the class value with the
highest probability [19].

GNB uses categorical as well as numeric data and assumes that the attributes
are normally distributed. It is suitable for high dimensional inputs.

4.3 Support Vector Machine

Classification and regression problems can be solved by using one of the super-
vised machine learning technique called Support Vector Machine (SVM). Each
data item is plotted as a point in n-dimensional feature space with the value
of each feature being the value of a particular coordinate. Then classification
is made by finding the hyper-plane that differentiate the two classes very well.
The decision function is specified by subset of the training samples called the
support vectors.

4.4 Random Forest

In 2001, Breiman proposed the Random Forest(RF) machine learning algorithm.
It is a collaborative method, which works based on nearby neighbor predictor.
It uses a divide and conquer method to increase performance [20]. The random
forest is based on the standard machine learning technique called “decision tree”
which, in ensemble terms, corresponds to our weak learner. In case of a decision
tree, an input data is given at the top node and as the data navigates down the
sub trees, the data is stored in the small sets.



174 M.C. Belavagi and B. Muniyal

5 Methodology

The overall methodology followed for the prediction of intrusions is shown in
Fig. 1. In the preprocessing step all the categorical data is converted to numerical,
suitable for machine learning techniques. Then ten best features are selected out
of forty two features using decision tree machine learning technique. After that
preprocessed data is divided as testing data and training data. Then an Intrusion
Detection model is trained by training data to predict multiple class labels. The
different models considered for intrusion detection are Gaussian Naive Bayes,
Logistic Regression, Support Vector Machine and Random Forest classifiers.
These models are used to predict the multi-class labels such as Dos, U2R, R2L,
probe and normal of the test data. The predicted labels are compared based on
the parameters namely accuracy, Precision, Recall and F1-Score.

The following Algorithm is used to build the models. Coding is done in
Python in Intel Core i5-3230M with 4GB RAM. Initially a dataset is made
suitable for machine learning algorithms. Then the best features are selected
using c4.5 Decision Tree classifier, which uses Gini index as the measure. After
this data set is divided into training set and testing. Train the models built using
GNB, LR, SVM and RF. Then predict the labels of the testing data for multi-
class. Compare the performance of the models based on accuracy, precision,
recall and F1-Score.

Fig. 1. Framework



Multi Class Machine Learning Algorithms for Intrusion Detection 175

1: procedure Build − Model(Dataset)
2: Pre-process the data set.
3: Select the 10 best features using Decision tree technique
4: Divide the data set as training data and testing data for multi class

classification
5: models=[Gaussian Naive Bayes, Logistic Regression, Support Vector

Machine, Random Forest]
6: while True do
7: Build the models on training data
8: end while
9: Read the test data

10: Test the classifier models on training data to identify DoS, U2R, R2L
and probe attacks

11: Compute and compare Precision, Recall, F1-Score and Accuracy for all
the models.

12: return
13: end procedure

6 Results and Analysis

Initially categorical data is converted into numerical data. Then the redundant
features are eliminated and ten best features are selected using c4.5 decision tree
technique. These ten best attributes selected are Protocol type, Service, Serror
Rate, Srv-diff-host rate, Dst-host-count, Dst-host-same-srv-rate, Dst-host-diff-
srv-rate, Dst-host-srv-diff-host-rate and Dst-host-srv-rerror-rate.

The multi class performance of SVM, GNB, LR and RF to identify DoS,
U2R, R2L and probe is shown in the Fig. 2. Performance measures considered
are Precision, Recall and F1-Score. From the Fig. 2 it can be identified that the

Fig. 2. Performance measures of machine learning algorithms for multi class



176 M.C. Belavagi and B. Muniyal

Table 1. Average accuracy of machine learning algorithms for multi class intrusion
detection

ML algorithms Average accuracy for multi class

LR 67%

RF 94%

GNB 44%

SVM 76%

Random Forest shows good performance in identifying all the four attacks, as
compared to other learning techniques. All machine learning algorithms show
very poor performance in identifying R2L attacks. The main reason for this that
is the amount of data available in NSL-KDD dataset for R2L attack is limited.

GNB has the lowest performance in identifying all the four attacks. SVM
works better than the LR.

Experiment is conducted by considering the four different machine learning
algorithms to predict normal behavior and the attack classes namely U2R, R2L,
Probe and DoS. Based on the prediction of each class, accuracy of each algorithm
is computed. Hence the performance of these machine learning algorithms are
also analyzed based on the average accuracy as shown in Table 1. From Table 1
it can be identified that the Random Forest shows the best average accuracy and
Gaussian Naive Bayes has least average accuracy with respect to identification
of different class of intrusions and normal behavior. Whereas average accuracy
of Support Vector Machines is better than the Logistic Regression.

7 Conclusion

Multi class performances of machine learning algorithms such as Support Vec-
tor Machine, Gaussian Naive Bayes, Random Forest and Logistic Regression
are analyzed for the intrusion detection. A normal behavior and four classes of
attacks namely DoS, U2R, R2L and probe are considered. Initially best ten fea-
tures are selected using the decision tree classifier. Using these features NSL -
KDD dataset is tested with the above mentioned classification algorithms. Per-
formance of these algorithms are compared based on the precision, recall, F1-
score and accuracy. Experimental results show that the Random Forest shows
very good performance in identifying DoS, Probe and U2R attacks, whereas per-
formance of all the algorithms is poor towards the identification of R2L attacks .
GNB model shows the least performance towards the detection of all the attacks.
SVM works better than the LR in identifying DoS, Probe, U2R and R2L attacks.

The work can be extended to identify the intrusions in wireless sensor net-
works and wireless networks.



Multi Class Machine Learning Algorithms for Intrusion Detection 177

References

1. Mukherjee, S., Sharma, N.: Intrusion detection using naive bayes classifier with
feature reduction. Procedia Technol. 4, 119–128 (2012). 2nd International Confer-
ence on Computer, Communication, Control and Information Technology (C3IT-
2012), 25–26 February, 2012. http://www.sciencedirect.com/science/article/pii/
S2212017312002964

2. Panda, M., Patra, M.R.: Semi-Näıve Bayesian method for network intrusion detec-
tion system. In: Leung, C.S., Lee, M., Chan, J.H. (eds.) ICONIP 2009. LNCS,
vol. 5863, pp. 614–621. Springer, Heidelberg (2009). https://doi.org/10.1007/
978-3-642-10677-4 70

3. Devaraju, S., Ramakrishnan, S.: Performance comparison for intrusion detection
system using neural network with KDD dataset. ICTACT J. Soft Comput. 4(3),
743–752 (2014)

4. Khan, L., Awad, M., Thuraisingham, B.: A new intrusion detection system using
support vector machines and hierarchical clustering. VLDB J. 16(4), 507–521
(2007). http://dx.doi.org/10.1007/s0077800600025

5. Gaikwad, D.P., Thool, R.C.: Intrusion detection system using bagging ensemble
method of machine learning. In: 2015 International Conference on Computing Com-
munication Control and Automation, pp. 291–295, February 2015

6. Leite, A., Girardi, R.: A hybrid and learning agent architecture for network intru-
sion detection. J. Syst. Softw. 130, 59–80 (2017). http://www.sciencedirect.com/
science/article/pii/S0164121217300183

7. Belavagi, M.C., Muniyal, B.: Performance evaluation of supervised machine learn-
ing algorithms for intrusion detection. Procedia Comput. Sci. 89, 117–123 (2016).
http://www.sciencedirect.com/science/article/pii/S187705091631081X

8. Mitchell, T.M.: Machine Learning, 1st edn. McGraw-Hill Inc., New York (1997)
9. Nsl-kdd dataset. Accessed Dec 2015

10. Aburomman, A., Reaz, M.: A survey of intrusion detection systems based on
ensemble and hybrid classifiers. Comput. Secur. 65, 135–152 (2017)

11. Liao, H.J., Lin, C.H.R., Lin, Y.C., Tung, K.Y.: Intrusion detection system: a com-
prehensive review. J. Netw. Comput. Appl. 36(1), 16–24 (2013)

12. Bukhtoyarov, V., Zhukov, V.: Erratum: ensemble-distributed approach in classifi-
cation problem solution for intrusion detection systems. In: Corchado, E., Lozano,
J.A., Quintián, H., Yin, H. (eds.) IDEAL 2014. LNCS, vol. 8669, p. E1. Springer,
Cham (2014). https://doi.org/10.1007/978-3-319-10840-7 60

13. Enache, C., Patriciu, V.V.: Intrusions detection based on support Vector machine
optimized with swarm intelligence. In: 2014 IEEE 9th IEEE International Sympo-
sium on Applied Computational Intelligence and Informatics (SACI), pp. 153–158,
May 2014

14. Panda, M., Abraham, A., Patra, M.R.: A hybrid intelligent approach for network
intrusion detection. Procedia Eng 30, 1–9 (2012). International Conference on
Communication Technology and System Design 2011. http://www.sciencedirect.
com/science/article/pii/S1877705812008375

15. Koc, L., Mazzuchi, T.A., Sarkani, S.: A network intrusion detection sys-
tem based on a hidden Naive Bayes multiclass classier. Expert Syst. Appl.
39(18), 13492–13500 (2012). http://www.sciencedirect.com/science/article/pii/
S0957417412008640

http://www.sciencedirect.com/science/article/pii/S2212017312002964
http://www.sciencedirect.com/science/article/pii/S2212017312002964
https://doi.org/10.1007/978-3-642-10677-4_70
https://doi.org/10.1007/978-3-642-10677-4_70
http://dx.doi.org/10.1007/s00778-006-0002-5
http://www.sciencedirect.com/science/article/pii/S0164121217300183
http://www.sciencedirect.com/science/article/pii/S0164121217300183
http://www.sciencedirect.com/science/article/pii/S187705091631081X
https://doi.org/10.1007/978-3-319-10840-7_60
http://www.sciencedirect.com/science/article/pii/S1877705812008375
http://www.sciencedirect.com/science/article/pii/S1877705812008375
http://www.sciencedirect.com/science/article/pii/S0957417412008640
http://www.sciencedirect.com/science/article/pii/S0957417412008640


178 M.C. Belavagi and B. Muniyal

16. Li, Y., Xia, J., Zhang, S., Yan, J., Ai, X., Dai, K.: An efficient intrusion detection
system based on support vector machines and gradually feature removal method.
Expert Syst. Appl. 39(1), 424–430 (2012). http://www.sciencedirect.com/science/
article/pii/S0957417411009948

17. Sindhu, S.S.S., Geetha, S., Kannan, A.: Decision tree based light weight intrusion
detection using a wrapper approach. Expert Syst. Appl. 39(1), 129–141 (2012).
http://www.sciencedirect.com/science/article/pii/S0957417411009080

18. Bahri, E., Harbi, N., Huu, H.N.: Approach based ensemble methods for better
and faster intrusion detection. In: Herrero, Á., Corchado, E. (eds.) CISIS 2011.
LNCS, vol. 6694, pp. 17–24. Springer, Heidelberg (2011). https://doi.org/10.1007/
978-3-642-21323-6 3

19. Murphy, K.P.: Learning Machine: A Probabilistic Perspective. The MIT Press,
Cambridge (2012)

20. Breiman, L.: Random forests. Mach. Learn. 45(1), 5–32 (2001). http://www.cs.
colorado.edu/grudic/teaching/CSCI5622-2004/RandomForests-ML-Journal.pdf

http://www.sciencedirect.com/science/article/pii/S0957417411009948
http://www.sciencedirect.com/science/article/pii/S0957417411009948
http://www.sciencedirect.com/science/article/pii/S0957417411009080
https://doi.org/10.1007/978-3-642-21323-6_3
https://doi.org/10.1007/978-3-642-21323-6_3
http://www.cs.colorado.edu/grudic/teaching/CSCI5622-2004/RandomForests-ML-Journal.pdf
http://www.cs.colorado.edu/grudic/teaching/CSCI5622-2004/RandomForests-ML-Journal.pdf


Symmetric Key Based Secure Resource Sharing

Bruhadeshwar Bezawada1(B), Kishore Kothapalli2, Dugyala Raman3,
and Rui Li4

1 Mahindra Ecole Centrale, Hyderabad, India
bru@mechyd.ac.in

2 International Institute of Information Technology, Hyderabad, India
kkishore@iiit.ac.in

3 Vardhaman College of Engineering, Hyderabad, India
raman.vsd@gmail.com

4 College of Computer Science and Networking Security,
Dongguan University of Technology of Science and Technology, Dongguan, China

ruli@dgut.edu.cn

Abstract. We focus on the problem of symmetric key distribution for
securing shared resources among large groups of users in distributed
applications like cloud storage, shared databases, and collaborative edit-
ing, among others. In such applications, resources such as data, are sen-
sitive in nature and it is necessary that only authorized users are allowed
access without the presence of on-line monitoring system. The de-facto
approach is to encrypt a shared resource and deploy a key distribution
mechanism, which enables only authorized users to generate the respec-
tive decryption key for the resource. The key distribution approach has
two major challenges: first, the applications are dynamic i.e., users might
join and leave arbitrarily, and second, for a large number of users, it
is required that the cryptographic technique be scalable and efficient.
In this work, we describe an approach that overcomes these challenges
by using two key techniques: first, flattening the access structure and
applying efficient symmetric key distribution techniques. By flattening
the access structure, we reduce the problem to that of key distribution
of a resource among all the users sharing that resource. We consider this
smaller flattened access structure and devise a unified key distribution
technique that is sufficient for key distribution across all such structures.
Our key distribution techniques have an important feature of a public
secret and a private secret, which allows the group controller to publish
updates to the keying material using the public secret and therefore,
does not necessitate the users to be in constant communication with the
group controller. Using this model we describe two efficient key distrib-
ution techniques that scale logarithmically with the group size and also
handle group additions and removals. Furthermore, a user can be off-line
for any amount of time and need not be aware of the dynamics of the
system, which is important as it overcomes the problems posed by lossy
channels. We have performed an experimental evaluation of our scheme
against a popular existing scheme and show that they perform better for
this scheme with the same security guarantees. As our approaches are

c© Springer Nature Singapore Pte Ltd. 2017
S.M. Thampi et al. (Eds.): SSCC 2017, CCIS 746, pp. 179–194, 2017.
https://doi.org/10.1007/978-981-10-6898-0_15



180 B. Bezawada et al.

easy to implement they are especially suitable for practical applications
where security is viewed as an overhead rather than as a necessity.

1 Introduction

Motivation. Shared resource access is common in many application domains
such as data access control in organizations, multi-level database applications
like air-travel reservations, collaborative document editing and cloud file systems
among others. The problem in such applications is to implement an efficient and
scalable security mechanism which allows users selective access to the resources
based on their privileges. This problem can be trivially solved if the environment
is static i.e., the users of the application do not change or if the privileges of the
users do not change over time. However, real-world applications are dynamic in
nature and hence, the security mechanism must be able to handle such changes
in an efficient manner without causing breaches of security. Thus, given the
pervasive nature of such applications and the sensitivity of the data, there is
a critical need to address the problem securing shared resources in real-time
dynamic applications.

Problem Overview. A trivial solution to secure access to resources is to
encrypt each resource with a unique symmetric key. For each resource to which
the user has access, the user receives the set of decrypting keys for the resources.
The trivial solution is simple and computationally efficient but has some draw-
backs. First, the storage at the user is directly proportional to the number of
resources he can access, for R resources the user stores R keys. Second, when
a user is revoked from the system, the central authority needs to re-encrypt
all the resources known to the revoked user and distribute the new keys to the
remaining users who need them. In case of revocation, the cost of encryption
is quite high for the central authority. Moreover, the central authority needs to
communicate the changed keys individually to each of the remaining users in a
secure manner. A more serious problem is that all users may not be online to
receive the key updates. Thus, the trivial solution requires high user storage and
has considerable communication overhead if users go offline for arbitrary periods
of time.

Limitation of Prior Art. The existing approach to this problem is organize
users and the resources in a hierarchical manner and define an ordering on the
data access. For example, one such ordering is that users and data at the higher
levels of the hierarchy can access data at lower levels of the hierarchy and so
on. There have been several solutions [1–5,7,9,17,19,21,23,28] that address the
security of data in such access hierarchies. In these approaches, the data at level
in the hierarchy is encrypted using a cryptographic key and users at higher
levels in the hierarchy can derive the lower level keys in an efficient manner.
These solutions reduce the user storage to only one cryptographic key O(1) as
the rest of the keys can be derived using this key. However, in many cases, the
hierarchies can run deep and the key derivation time is considerable. Another



Symmetric Key Based Secure Resource Sharing 181

major drawback in applying these solutions is that it is not trivial or possible
to identify or generate an access hierarchy using the access control list. Thus,
the main challenge in securing shared resource access is to identify the trade-off
between storage and computational complexity.

Our Approach. From the above discussion, we note that, there is a need for a
solution that can address a generic model of data sharing. We consider one such
simple and generic model in which each resource is individually selected and
all the users who can access this resource are grouped together. This model is
natural in many applications. For applications that may have naturally defined
access hierarchies, it is trivial to transform the hierarchy into such a flattened
structure. The flat structure is well suited to model the type of sharing that
occurs, say, in secure data bases and hence, our approach is applicable to a more
general class of problems than access hierarchies.

Using the flat structure and the trivial solution described above, it is possible
to reduce the computational complexity for deriving the necessary decrypting
keys. However, this not only requires high storage at the users but also, the
revocation and addition of users is non-trivial. Instead, we use a public-space
based model where the decryption key of a resource is a function of a public
secret and a private secret. The public-space model is simple in nature and
consists of two pieces of information: public-information and private-information.
The central authority encrypts the resource by using a combination of the public
and the private information. At initialization, the central authority distributes
the corresponding private-information to each user in a secure manner. Each
user is given only the relevant private information and this information does
not change regardless of the dynamics of the group. The decryption key of each
resource is a function, F of the private-information held by all the users who
have access to this resource. The public-information consists of one or more
values evaluated over F on the private-information held by each user. Now, the
central authority attaches the public-information to the resource as meta-data
and stores it along with the resource. By using the necessary public-information
and the stored private-information each user can locally derive the decryption
key. If any change in the membership occurs, the central authority re-computes
the public information using the private information of changed user group and
updates the resource accordingly.

Technical Challenges and Solutions. The first technical challenge is to be
able to generate the flat access structure from a given organization’s access struc-
ture. We solve this by treating the access structure as a graph, where the nodes
are associated with access levels and users, and then computing the transitive
closure of this graph for each resource. The result is the set of users sharing a
particular resource r, i.e., the access control list of r and the set of resources
accessible by a user, i.e., the capability of a user.

The second technical challenge in our approach is to devise a key distribution
scheme that does not require the user to store as many decryption keys as the
number of authorized resources. Specifically, to design an efficient construction
of the function F , that is dependant on the private-information of the users, and,



182 B. Bezawada et al.

on the derivation of the decryption key by the users. To reduce the storage at
the users we use a logarithmic-keying approach where, for a set of R resources,
each user needs to store only O(log R) keys.

Now, if a user is granted access to a resource, the central authority selects a
unique subset of the keys from this pool of keys, derives the function F and the
corresponding public-information. We design two key distribution approaches
for implementing the function F . In the first approach, the central-authority
randomly selects a secret polynomial which is of order O(log R). An arbitrary
point on this polynomial is chosen as the encrypting key for the resource and
made public. For each user, the central authority uses the keys of this user
and evaluates them on the polynomial. All the evaluated values from all the
users are published as public-information. To derive the decryption key, the
user needs to interpolate the polynomial and evaluate it at the particular point
published by the central authority. Since deriving a polynomial of order O(log R)
requires O(log R) points, each user can easily compute the polynomial using the
corresponding set of keys and the corresponding public-information.

In the second approach, the central authority computes the decryption key
as an XOR of values derived using the keys selected from the users sharing the
resource. For each user, the central authority uses the keys of this user and passes
each key through a one-way function along with a public-value P that is specific
to this user. The hashing is necessary to prevent leaking the actual values of the
keys and the public-value acts as a salt for dictionary-based attacks. Now, the
central authority XORs all the hash values from all the users. This combined
hash value is used as the encryption key after appropriate expansion or reduction
of the hash value length depending on the requirement. In order to derive this
key, from the properties of XOR, each user needs the XOR of all the hash values
contributed by the remaining users. Since, the basic key derivation operations
are one-way hashing and XOR, this scheme is very efficient and can even be
implemented in hardware.

Key Contributions. Our major contributions are as follows. (a) We devise an
efficient key distribution approach for securing shared resource using a public-
private information model. (b) We implement our model using two efficient
key distribution approaches that only require the users to store a logarith-
mic number of keys to the number of authorized resources. (c) We show that
the cost of handling user dynamics is better than existing approaches without
compromising security. We have used key derivation cost, user storage, size of
public-information and membership handling costs as metrics to evaluate our
approaches. (d) The generic nature of our approach shows that more key distri-
bution protocols are possible within this model and hence, there is further scope
for expanding our approach to newer application domains.

Organization. The paper is organized as follows. In Sect. 2, we describe our
system model and identify security requirements. In Sect. 3, we describe our
framework in detail. We analyze the security of our framework in Sect. 5. In
Sect. 4, we present the experimental results obtained from our framework and



Symmetric Key Based Secure Resource Sharing 183

compare them with existing schemes. In Sect. 6, we conclude the paper and
describe some future work.

2 System Model

In this section, we describe the problem background in detail and the system
model. We also state our assumptions towards solving the problem. We conclude
the section by describing some related work in this area.

2.1 Background

Applications with shared resources can be classified into two broad classes based
on user behavior: those that require all the users to be online at the time of
sharing, e.g., video conferencing and those that do not have this requirement e.g.,
secure databases, file systems. For the sake of simplicity, we denote the former
class of applications as online applications and the latter as offline applications.
For online applications, the number of shared resources and the degree of sharing
is small e.g., a group of users may subscribe to one or more multicast sessions.
This problem has been studied extensively and many good solutions have been
proposed in the literature [18,25,26]. In this work, we focus on the security of
the offline applications and propose a framework to secure such applications.

2.2 System Model

We will describe our system model in terms of an access hierarchy and show
how it can be transformed into a more general model. We assume that a cen-
tral authority (CA) is in charge of access control, defines the access hierar-
chy and performs the key management tasks. The application has a set of
m resources R = {R1, R2, . . . , Rm} in a resource store and a set of n users
U = {u1, u2, . . . , un}. The users are arranged in an access hierarchy where the
access relationships are specified by the central authority. Formally, an access
hierarchy of users is a partial order on the users so that ui ≤ uj if and only
if uj has access to every object that ui has apart from the objects that uj can
access on its own. The users (and the resources) are grouped into security classes
SC1, SC2, . . . , SCn such that SCi ≤ SCj if i ≤ j i.e., users belonging to class
SCj can access all resources that are accessible to users belonging to class SCi

and of other classes lower than SCi. A user ui is allowed to access a subset
Si ⊆ R of resources. Moreover, if user ui is above uj in the hierarchy, then ui is
allowed to access all the resources in Si ∪ Sj . It is natural to view the hierarchy
as a partial order (U,≤). We say that when user ui ≤ uj , user uj is allowed all
the privileges associated with user ui apart from what uj has on his own. Such
a hierarchy is best represented using its Hasse diagram which can be modeled
as a directed graph G = (V,E), where, V represents the users and E represent
the access relationships. The resulting graph is acyclic in nature i.e., directed
acyclic graph (DAG). We call this graph as the access hierarchy graph. We note



184 B. Bezawada et al.

that, in current literature, some special topologies of the hierarchy graph such
as a tree [15,20], graphs of a certain partial order dimension [2] are studied for
simplicity. For any node u ∈ G and R ∈ Su, let d(u,R) refer to the length of a
shortest (directed) path from u to a node v ∈ G because of which u can access
the object R. Let d(u) = maxR∈Su

d(u,R). The depth of a hierarchy graph G,
denoted d(G), is defined as maxu∈V (G) d(u).

Normally, in an access graph all the users at the higher levels can access all the
lower level resources. However, there are some special cases of access hierarchies
where the users at the higher layers are restricted from access all the lower level
resources. This restriction is specified in terms of the depth of the hierarchy they
can access and hence, such hierarchies are called limited-depth hierarchies. In
the case of a mechanism that works for a limited depth hierarchy, we say that
each vertex in the graph is associated with a number �(v) that indicates that v
is allowed to access resources that can be reached by a (directed) path of length
at most �(v). For a user u, we denote by cap(u) the set of resources that u can
access. Similarly, for a resource r, we denote by acl(r) the set of users u such
that r ∈ cap(u). We extend this notation naturally when dealing with sets of
users and resources.

2.3 Related Work

One approach to reduce the storage at the users is to use key derivation tech-
niques [1–3,5,9,17,19,21,28] for access hierarchies. A key derivation technique
can be briefly described as follows: a user belonging to a class SCj is given
some secret information and if any, public parameters. The resources belonging
to a particular security class, SCj are encrypted using a secret key SKj . Now,
if a user, belonging to SCj , wishes to access the resources of some other class
SCi ≤ SCj , then, the user can use his secret information and any available
public parameters to derive the decrypting key for the lower security class.

In their seminal work, Akl and Taylor [1] proposed a scheme where keys
are based on products of prime numbers. The scheme works on the underlying
difficulty of finding factors for large prime numbers. As the prime numbers may
get larger and hence, operations become more expensive, MacKinnon et al. [17]
relaxed the setting to not use prime numbers. However, the process of generating
the required keys is still difficult. An improvement to these schemes is suggested
by Chang and Buehrer [5] but relies on integer modulo exponentiation which is
a costly operation. Other schemes using multiplicative properties of the modulo
function are reported in e.g., [19]. Several efficient schemes which rely on key
derivation mechanisms using symmetric cryptographic primitives, for example
hash functions, are reported in the literature [3,14,16,20,27]. Schemes from [20,
27] do not adapt well to dynamism and require expensive updates to handle
dynamism.

In [3], the authors describe an efficient key derivation scheme based on one-
way hash functions where each class is given a key and it can derive a key of
classes lower to it in the hierarchy using its own key along with some public
information. However, we note that the cost of deriving a key can be directly



Symmetric Key Based Secure Resource Sharing 185

proportional to the depth of the access graph. The dynamic access control prob-
lems such as addition/deletion of edges, addition/deletion of a class are also
handled in an efficient manner by updating only the public information - a fea-
ture that was not available in earlier schemes. They also presented techniques to
minimize the key derivation time at the expense of user storage [2]. The idea is to
add some extra edges and extra nodes called dummy nodes based on the dimen-
sion of a poset. However, as pointed out in [2], the computational complexity
of finding the dimension of a given poset diagram is not known. Our approach
provides a key derivation scheme which on an average performs comparable or
better to [2,3].

In [6,11], the authors describe a scheme that combines techniques from dis-
crete logarithms and polynomial interpolation. However, the user storage cost is
high and support for dynamic operations requires costly polynomial interpola-
tion. In [28], the authors present a scheme using polynomials over finite fields.
However, the degree of the polynomial kept secret with the object store is very
high. Key derivation also involves computations with such large degree polyno-
mials and takes time proportional to the depth of access. Moreover, the cost of
rekeying under dynamic updates is quite high. In [9], the authors attempt a uni-
fication of most of the existing schemes. This is done by identifying the central
attributes of the schemes such as: node based, direct key based, and iterative.

Once database is treated as a service [13], it is easy to envision that database
operations can be outsourced bringing in a host of security issues. In [10,24], the
authors apply the key derivation approach of [3] to secure databases. However,
to be able to use the key derivation schemes to problems like secure databases
the access hierarchy needs to be built up-front. A virtual hierarchy of users is
created and the scheme of [3] is used. But, as noted in [10,24], the computational
cost of generating this virtual hierarchy can be quite high.

The key short-coming of the key derivation techniques is that applying these
solutions is difficult if the access hierarchy is not available upfront or is not
explicitly specified. Such a scenario occurs in secure data bases or in access
control matrices, which implies that, in order to be able to use the key deriva-
tion techniques, the access hierarchy structure needs to be constructed for these
applications. Although, techniques for constructing access hierarchies [10,24]
have been proposed, these are expensive and place additional pre-processing
overhead on the system. The main advantage of the key derivation schemes is
that the user storage is minimal O(1). However, the computational complexity
in key derivation scheme is proportional to the depth of hierarchy which can
be O(N) where N is the number of application users. Thus, the key derivation
techniques reduce the storage complexity but increase the computation required
to derive the required keys.

From this discussion, we note that, there is a possibility of trade-off between
the user storage and the complexity of key derivation. Given these shortcom-
ings, we note that, it is relatively easier to consider a hierarchy and flatten it
before deploying any key distribution techniques. Flattening of a hierarchy sim-
ply means that we consider each resource individually and group all the users



186 B. Bezawada et al.

sharing that resource. Using this approach, we will be able to address those sce-
narios where the hierarchies are not readily available, which is the case in most
practical user-level databases. Also, special hierarchies like, limited-depth hier-
archies where resources given to a user fall between two levels of the hierarchy,
can also be addressed with a flattened hierarchy. Next, we describe our approach
by which the access hierarchy graph is flattened thereby eliminating the need for
the expensive pre-processing step. To secure the flat access structure, we describe
storage efficient key distribution techniques that are based on the public-private
model, which means that the decryption key of a resource is a function of some
public information and the user’s secret information.

3 Our Approach

In this section we describe the proposed framework for shared resource access.
In Sect. 3.1, we describe our approach for flattening of the access hierarchy of
a given organization. In Sect. 3.2, we describe our basic key distribution app-
roach for securing resources known to a single user using the storage efficient
logarithmic keying approach. In Sect. 3.3, we enhance our basic key distribution
using Shamir’s secret sharing technique and describe the solution to securing all
resources shared by the users.

3.1 Flattening Access Hierarchies

The process of flattening the hierarchy can be seen as computing the transitive
closure of the graph G. There are several algorithms for computing the transitive
closure of a given directed graph [8]. Given the graph G, the transitive closure
of G, denoted G∗, has at most n2 edges if the graph G has n vertices. The
central authority thus first computes the graph G∗. Note that, the process for
computing transitive closure changes only slightly for limited depth hierarchies
as the depth of each user is noted before computing the closure. The outcome
of computing the transitive closure is that for every user u, cap(u) is known and
similarly for every resource r, acl(r) is known.

3.2 Logarithmic Keying for Securing Single Owner Resources

Logarithmic keying refers to schemes that require users to store a logarithmic
number of keys and achieve some security functionality. Such schemes have been
in vogue [12,25] for reducing the cost of rekeying in secure group communication.
In [12,25], the authors show that for N users 2 log N keys at the group controller
are sufficient to achieve the desired functionality. The key distribution is as
follows: each user is assigned a log N -bit identifier. Using this identifier, the
group controller assigns to this user a unique log N sized subset from its pool of
keys. In our scheme, we use a similar key distribution with some modifications
to suit our requirements.



Symmetric Key Based Secure Resource Sharing 187

Now, to secure single owner resources with the logarithmic keying technique,
each user stores atmost O(log m) symmetric keys where m is the number of
resources to which he has access to. To encrypt a resource, the user selects
a unique subset of keys from this subset, computes an XOR of the keys and
uses this value to encrypt the resource. To enable sharing of resources, each
user who has access to the resource needs the decrypting key. We use Shamir’s
secret sharing approach to encode the encrypting (symmetric) key of the shared
resource. The encrypting key can be locally computed using a subset of the
O(log m) keys held by each user and using some public information. This public
information can be stored in the resource store as resource meta-data.

We note that, the above key distribution approach can be generalized. Instead
of choosing a fixed size subset of keys based on the binary identifier, the central
authority can choose a unique but smaller subset of keys for each resource. Thus,
the key distribution can be now stated as follows. The central authority generates
a unique pool of keys for each user. From this pool of keys, for each cap(u), the
central authority selects a unique subset of keys to encrypt the resource. Since
the subset of keys is unique by construction, no two resources will be encrypted
with the same key. Moreover, it is clear the pool of keys cannot be more than
O(2 log m) as it can be trivially shown that the number of subsets of size k i.e.,(
2 logm

k

)
, for some k < log m, is greater than m, where k can be appropriately

chosen using Stirling’s approximation [8].

Reducing Storage Further. In the key derivation techniques [1–3,5,9,17,19,
21,28] the user needs to store only one key, albeit, the cost of deriving the decryp-
tion key involves higher computation. We note that, the logarithmic keying can
be replaced with a scheme which requires the user to store only one master
key K. The scheme is as follows: to encrypt a resource Ri with identifier IDi

the central authority computes the encrypting keys as, KRi
= HK(IDi) where

H denotes a secure one-way hash function. Since the user has the master key
K, he can compute the encrypting key by performing one secure one-way hash
computation. However, we note that, in the logarithmic keying scheme the user
needs to perform log m XOR operations where m is the size of the resources.
It can be seen that this computation is much faster than one secure hash com-
putation even when m is as large as 212. Hence, this illustrates that reducing
storage invariably increases the computation required for key derivation. From
this discussion, we observe that, the logarithmic keying scheme reduces the key
derivation overhead by increasing the storage complexity only slightly.

3.3 Securing All Shared Resources

The logarithmic keying approach works if a single user is only accessing the
resources. To secure shared resources we apply Shamir’s secret sharing scheme
coupled with the logarithmic keying approach. We encrypt the resource using a
secret that can be generated locally by the individual subsets of keys held by
the users. Our final solution has two main steps.



188 B. Bezawada et al.

Step 1: Key Distribution. Notice that for each user u, it holds that |cap(u)| ≤
m. To provide keys for the resources, the central authority, using the scheme
described in Sect. 3.2, picks 2 log m keys uniformly and independently at random
from the field F . Note that for all practical purposes, it can be assumed that
the set of keys chosen for each user are all distinct. These 2 log m keys form the
master keys for each user. For each user u and for every resource r ∈ cap(u),
the central authority then allocates different subsets of size log m keys chosen
independently and uniformly at random from the set of master keys at u. These
are denoted as Sr

u = {Kr
u,1,K

r
u,2, · · · ,Kr

u,logm} and are called as the keys of
resource r at user u. The central authority thus has |acl(r)| · log m keys for
resource r.

Step 2: Key Management. Given the key distribution from Step 1, we now
apply ideas from Shamir’s influential paper [22] to complete the solution. The
central authority chooses a polynomial fr of degree log m for resource r and
uses this to encode the encrypting key for the resource. The encrypting key
k(r) of the resource r is computed as follows. The CA chooses a point on the
polynomial fr, say p(r), and computes fr(p(r)) and publishes 〈p(r), fr(p(r))〉.
The decryption key k(r) is set to fr(0), and the polynomial fr(.) is kept secret
by the CA. Now, the CA implements a log m–out of–|acl(r)| · log m threshold
secret sharing scheme to enable a user to interpolate this polynomial. To this
end, for each user u ∈ acl(r), the CA evaluates fr at each of the keys in Sr

u.
These values are then made public. To access a resource r, a user u uses the
subset Sr

u for r along with the public information, i.e., evaluations of fr(.) on
the key set Sr

u, for resource r to interpolate the polynomial fr(.). Finally, the
user evaluates this polynomial at fr(0) to recover the encrypting key k(r).

Storage and Computational Complexity. The storage complexity of each
user is O(log m) and that of the central authority is O(n. log m) where n is the
total number of users. We denote the average degree of resource sharing by mr,
i.e., on an average mr users share a particular resource. Given this informa-
tion, the public information required per shared resource is given by mr log m.
The complexity of interpolating a polynomial of degree log m, for extracting the
encrypted key, is O(log2 m) operations using the well-known Lagrange’s method.
We note that, the main advantage of our scheme is the small degree of the poly-
nomial compared to other schemes [6,11,28] based on polynomial interpolation.

Our framework allows for efficient updates to handle changes to the user set,
changes to the hierarchy, and changes to the resource set. We now describe the
operations required to address each of these events.

Addition of an user. Suppose that the new user u along with a list of objects he
can access is given. Let Ra denote the set of resources for which acl(r) changes.
The central authority chooses the set of master keys for u independently and
uniformly at random from the field F . For each resource r ∈ cap(u), the CA
also picks the subsets of keys Sr

u. Now, for every resource r ∈ Ra, the central
authority evaluates the polynomial fr() at the points in Sr

v for every new member
v ∈ acl(r) and makes these evaluations public. No change to the polynomial or



Symmetric Key Based Secure Resource Sharing 189

the key k(r) of the object is required. Unlike other schemes, adding a user is very
easy in our framework as only a few more evaluation of polynomials are required.
We note that, adding a user in an access hierarchy can be easily modeled in our
approach by considering the incremental transitive closure.

Revoking a User. In this case, the central authority has to essentially change
the polynomial for each of the affected resources. For every such resource, r, the
CA chooses a different polynomial of degree log m and recomputes the public
information public for each user in aclr. The CA need not change p(r), or the
keys of the users but only has to change the encryption key of r.

Addition of an Authorization. This corresponds to adding a resource r to
cap(u) for a user u. The CA associates a subset of keys Sr

u, evaluates fr at the
points (keys) in Sr

u, and the resulting values are made public.

Revoking an Authorization. In this case, only one resource is affected. To
handle this change, the central authority chooses a different polynomial and
proceeds as in the previous case.

Addition of a Resource. We now consider the case when a new resource r
is added to the resource store. In this case, let us assume that acl(r) is also
provided. For each user u in acl(r), the CA associates the set Sr

u and informs u
of the same. The CA then chooses a polynomial fr(.) and computes the required
public information.

Extensions to Limited-Depth Hierarchies. Note that the above frame-
work can work seamlessly for limited-depth hierarchies. Instead of finding the
transitive closure of the access graph, we simply find the graph H such that
(u, v) ∈ E(H) if and only if dG(u, v) ≤ d(u) and apply our approach.

4 Experimental Results

We performed three experiments. First, we compared the average number of
operations required in our proposed framework against the scheme described in
[3]. We refer to the scheme from [3] as Atallah’s scheme. Second, to evaluate
the efficiency of our framework in various settings, we describe a profiling of
organizations. We evaluated our framework on each of these profiles. Finally, we
compared the storage overhead of the proposed framework with that of Atallah’s
scheme. Implementation was in C++ on a general purpose Linux PC.

Comparison of Operations. We experimented with the number of users ranging
from n = 100 and n = 1000. As we need to generate access graphs Atallah’s
scheme, we used random graphs with a diameter between log n and 2 log n.
We used the transitive closure of the same graphs for evaluating our frame-
work. The number of resources varies from 100 to 1000. To measure the average
cost of accessing a shared resource, we computed the cost of accessing random
resources at randomly chosen users using our framework and Atallah’s scheme.
For Atallah’s scheme, we used SHA-1 as the chosen hash function as the deriva-
tion function. To move away from the specifics of the different implementation,



190 B. Bezawada et al.

 100

 200

 300

 400

 500

 600

 700

 0  100  200  300  400  500  600  700  800  900  1000

N
o.

 o
f O

pe
ra

tio
ns

No. of users

Proposed Scheme
Atallah’s Scheme

(a)

 0

 50

 100

 150

 200

 250

 300

 350

 400

 1  4  16  64  256  1024  4096  16384

N
o.

 o
f O

pe
ra

tio
ns

No. of users

T, log m=10
T, log m=16
B, log m=10
B, log m=16
M, log m=10
M, log m=16

(b)

Fig. 1. (a) shows comparison of computational cost of the our scheme with the scheme
of Atallah et al. [3]. (b) shows the profiling results of our proposed scheme.

the cost was measured by the average number of operations performed to derive
the key of a randomly chosen resource. For our framework, the number of oper-
ations required to interpolate a set of points was measured. The results were
averaged over 25 trials. In Fig. 1(a), we show the results of the experimenta-
tion. We can see that on an average our framework requires a smaller number
of operations as the size of the system grows.

Profiling and Efficiency of the Framework. We describe a practical profiling of
different organizations that enable us to evaluate our framework in diverse set-
tings. We note that our profiling can be used to evaluate other key deriva-
tion techniques as well. Our profiling is based on the distribution of users
across the organizational hierarchy. The profiling is as follows: Bottom − heavy,
Top−heavy, Middle−heavy, and Uniform. The Bottom−heavy model corre-
sponds to an organizational structure where there are a lot of users at the lower
levels of the hierarchy. Similarly, a Top − heavy model consists of more users
at the top of the hierarchy; a Middle − heavy model consists of more users in
the middle of the hierarchy. In the Uniform model, the users are equally spread
across the organization. Note that, most organizations fall in these categories
and hence, can be easily modeled by these profiles. We experimented on user
sizes, n = 210 and n = 216. In Fig. 1(b), we show the results of the experi-
ments. For example, the line corresponding to, T, log m = 10, means that the
average number of operations were measure for a Top − heavy organization for
n = 210 users. In the figure, B stands for Bottom − heavy and M stands for
Middle − heavy. We can clearly see the variation in the number of operations.
In the case of a Top − heavy hierarchy where the degree of sharing is typically
small, the number of operations even for 216 users is around 200. This can be
contrasted with a Bottom − heavy hierarchy with a bigger degree of sharing. In
this case, the number of operations increase but still is under 250. Predictably,
the lines for the Middle − heavy fall in between the Top and Bottom − heavy
cases.



Symmetric Key Based Secure Resource Sharing 191

 1

 4

 16

 64

 256

 1024

 4096

 16384

 0  100  200  300  400  500  600  700  800  900  1000

P
ub

lic
 S

to
ra

ge
 (

12
8-

bi
t u

ni
ts

)

No. of users

Proposed Scheme
Atallah’s Scheme

Fig. 2. The average public storage required in Atallah’s scheme [3] and our scheme.

Storage Comparison. In Fig. 2, we show the public storage of our scheme against
Atallah’s scheme. For small hierarchies, our scheme requires a higher amount of
public storage. But as the number of users increase, the public storage in our
scheme is comparable to that Atallah’s scheme. We note that, public-storage
is necessary in such applications as it serves to reduce the amount of secure
communication between the CA and the users.

5 Security Analysis of Our Framework

5.1 Soundness

Notice that as each resource is associated with an access polynomial which works
along the lines of Shamir’s secret sharing scheme, any valid user can always access
a resource. This holds because, the user needs to simply associate a subset of
keys for the required resource from the keys in his key ring. Since the user knows
the public information required to interpolate the resource polynomial, the user
can access the resource.

5.2 Completeness and Collusion Resistance

Any scheme for shared resource access has to guarantee that a group of malicious
users cannot pool up their secrets (keys) and derive access to any resource that
they cannot otherwise access. If a solution is resistant to any group of up to
k colluding users, then we call the solution to be k-collusion resistance. The
parameter k is often called as the degree of collusion resistance of the solution.
In the following, we show that our scheme is collusion resistant to a degree n
where n is the number of users in the system.

To make the presentation formal, we need to define some notions. We follow
the model introduced by Atallah et al. [3]. We look at adversaries that can
actively corrupt any node. When a node is corrupted by an adversary, it is
possible for the adversary to get all the keys owned by the corrupted node.



192 B. Bezawada et al.

We also assume that keys assigned to the users are chosen uniformly at random
from all possible keys in the field F .

We let the adversary know the access graph G and its transitive closure. In
effect, the adversary knows cap(u) for every user u and acl(r) for every resource
r. For a given set C of corrupted nodes, let cap(C) = ∪u∈Ccap(u). Let us fix
any resource r �∈ cap(C) and the goal of the adversary is to access r. For this
purpose, imagine an oracle O that knows the keys for k(r) for r. The adversary
creates a key (or a set of keys) k(r

′
) and presents it to O. The adversary is

successful (wins) if k(r) = k(r
′
).

While our description above uses an adaptive adversary, it can be noted that
the power of an adaptive adversary is same as that of a static adversary. So in
the rest of the presentation, we work with a static adversary. We call the above
adversary as A.

From the above description, it is clear that the advantage of the adversary
A is tied to the ability to come up with the right polynomial. However, as
stated in Shamir’s paper [22], even if one point is not known it is difficult in the
information theoretic sense to know the polynomial. In our case, the adversary A
is not aware of any single point completely. It can know only the images but not
the pre-images. For each of the possible x ∈ F for each of the pre-images, A can
construct a polynomial. All these |F|logm polynomials are equally likely to be the
correct polynomial for resource r. Hence, A cannot win with any non-negligible
probability as |F| is large enough.

6 Conclusion and Future Work

In this paper, we presented a generic framework for securing shared resource
access. We showed that our framework can be used for a general class of problems
like access hierarchies and database security. Our framework used a logarithmic
keying technique coupled with Shamir’s secret sharing approach to reduce the
computational complexity of encrypting and decrypting resources considerably.
We also provided a profiling of organizations and evaluated our framework in
these scenarios. The simplicity of our framework and our experimental results
show that our framework can be easily deployed in practice.

We note that, however, our framework is meant for scenarios where there
are many shared resources. Applications such as secure group communications
have a limited number of shared resources with real-time requirements. Our
framework can place considerable overhead in such applications and hence, would
not be efficient. We are currently working on reducing the public storage in our
framework and also, on the practical deployment of our framework in various
applications.



Symmetric Key Based Secure Resource Sharing 193

References

1. Akl, S.G., Taylor, P.D.: Cryptographic solution to a problem of access control in
a hierarchy. ACM Trans. Comput. Syst. 1(3), 239–248 (1983)

2. Atallah, M.J., Blanton, M., Frikken, K.B.: Key management for non-tree access
hierarchies. In: Proceedings of ACM SACMAT, pp. 11–18 (2006)

3. Atallah, M.J., Frikken, K.B., Blanton, M.: Dynamic and efficient key management
for access hierarchies. In: Proceedings of ACM CCS, pp. 190–202 (2005)

4. Castiglione, A., Santis, A.D., Masucci, B., Palmieri, F., Huang, X., Castiglione,
A.: Supporting dynamic updates in storage clouds with the AKL–Taylor scheme.
Inf. Sci. 387, 56–74 (2017)

5. Chang, C.C., Buehrer, D.J.: Access control in a hierarchy using a one-way trap
door function. Comput. Math. Appl. 26(5), 71–76 (1993)

6. Chen, T.S., Chen, H.J.: How-Rernlina: a novel access control scheme based on
discrete logarithms and polynomial interpolation. J. Ya-Deh Univ. 8(1), 49–56
(1999)

7. Chu, C.K., Chow, S.S., Tzeng, W.G., Zhou, J., Deng, R.H.: Key-aggregate cryp-
tosystem for scalable data sharing in cloud storage. IEEE Trans. Parallel Distrib.
Syst. 25(2), 468–477 (2014)

8. Cormen, T., Leiserson, C., Rivest, R., Stein, C.: Introduction to Algorithms, 2nd
edn. McGraw Hill, New York (2001)

9. Crampton, J., Martin, K., Wild, P.: On key assignment for hierarchical access
control. In: Proceedings of the 19th IEEE workshop on Computer Security Foun-
dations, pp. 98–111 (2006)

10. Damiani, E., di Vimercati, S.D.C., Foresti, S., Jajodia, S., Paraboschi, S., Samarati,
P.: Selective data encryption in outsourced dynamic environments. Electron. Notes
Theor. Comput. Sci. 168, 127–142 (2007)

11. Das, M., Saxena, A., Gulati, V., Pathak, D.: Hierarchical key management schemes
using polynomial interpolation. SIGOPS Oper. Syst. Rev. 39(1), 40–47 (2005)

12. Gouda, M.G., Kulkarni, S.S., Elmallah, E.S.: Logarithmic keying of communication
networks. In: Datta, A.K., Gradinariu, M. (eds.) SSS 2006. LNCS, vol. 4280, pp.
314–323. Springer, Heidelberg (2006). doi:10.1007/978-3-540-49823-0 22

13. Hacigümüs, H., Mehrotra, S., Iyer, B.R.: Providing database as a service. In: ICDE,
pp. 29–38 (2002)

14. Jend, F.G., Wang, C.M.: A practical and dynamic key management for a user
hierarchy. J. Zhejiang Univ. Sci. A 7(3), 296–301 (2006)

15. Liaw, H., Wang, S., Lei, C.: A dynamic cryptographic key assignment scheme in a
tree structure. Comput. Math. Appl. 25(6), 109–114 (1993)

16. Lin, C.H., Lee, W., Ho, Y.K.: An efficient hierarchical key management scheme
using symmetric encryptions. In: 19th International Conference on Advanced Infor-
mation Networking and Applications (AINA 2005), vol. 2, pp. 399–402 (2005)

17. MacKinnon, S.J., Taylor, P.D., Meijer, H., Akl, S.G.: An optimal algorithm for
assigning cryptographic keys to control access in a hierarchy. IEEE Trans. Comput.
34(9), 797–802 (1985)

18. Naor, D., Naor, M., Lotspiech, J.: Revocation and tracing schemes for stateless
receivers. In: Kilian, J. (ed.) CRYPTO 2001. LNCS, vol. 2139, pp. 41–62. Springer,
Heidelberg (2001). doi:10.1007/3-540-44647-8 3

19. Ray, I., Ray, I., Narasimhamurthi, N.: A cryptographic solution to implement
access control in a hierarchy and more. In: Proceedings of ACM SACMAT, pp.
65–73 (2002)

http://dx.doi.org/10.1007/978-3-540-49823-0_22
http://dx.doi.org/10.1007/3-540-44647-8_3


194 B. Bezawada et al.

20. Sandhu, R.S.: Cryptographic implementation of a tree hierarchy for access control.
Inf. Process. Lett. 27(2), 95–98 (1988)

21. Santis, A.D., Ferrara, A.L., Masucci, B.: Cryptographic key assignment schemes
for any access control policy. Inf. Process. Lett. 92(4), 199–205 (2004)

22. Shamir, A.: How to share a secret. Commun. ACM 22, 612–613 (1979)
23. Tang, S., Li, X., Huang, X., Xiang, Y., Xu, L.: Achieving simple, secure and efficient

hierarchical access control in cloud computing. IEEE Trans. Comput. 65(7), 2325–
2331 (2016)

24. di Vimercati, S.D.C., Samarati, P.: Data privacy problems and solutions. In: Pro-
ceedings of the Third International Conference on Information Systems Security
(ICISS), pp. 180–192 (2007)

25. Waldvogel, M., Caronni, G., Sun, D., Weiler, N., Plattner, B.: The versakey frame-
work: versatile group key management. IEEE JSAC 17, 1614–1631 (1999)

26. Wong, C.K., Gouda, M., Lam, S.S.: Secure group communications using key graphs.
IEEE/ACM Trans. Netw. 8, 16–30 (2000)

27. Yang, C., Li, C.: Access control in a hierarchy using one-way functions. Elseveir
Comput. Secur. 23, 659–664 (2004)

28. Zou, Z., Karandikar, Y., Bertino, E.: A dynamic key managment solution to acces
hierarchy. Int. J. Netw. Manag. 17, 437–450 (2007)



Prevention of PAC File Based Attack
Using DHCP Snooping

K.R. Atul1,2(B) and K.P. Jevitha1,2

1 TIFAC-CORE, Cyber Security, Amrita School of Engineering, Coimbatore, India
kratul93@gmail.com

2 Amrita Vishwa Vidyapeetham, Amrita University, Coimbatore, India

Abstract. As part of configuring a large number of systems within a
network, the Proxy-Auto Configuration (PAC) file is used to have a com-
mon configuration. This is done by using the feature called Web Proxy
Auto Discovery (WPAD) that helps the browser to determine the avail-
able PAC file. PAC file path is configured in DHCP servers. The attacker
impersonates as the DHCP server and provides the malicious PAC file to
the user. PAC file determines the proxy server to be used for a particular
Uniform Resource Locator (URL). Attacker has to be on the same net-
work as the victim or able to spoof DHCP response packets. The PAC
file is retrieved from the attacker web server. The attacker replaces the
PAC file with malicious PAC file that can redirect traffic to the attacker
IP address. Victim is redirected to the attacker controlled proxy server.
The attacker is able to view the URL the victim visits. This is performed
before a secure connection is established between the client and the web
server. This attack can be mitigated by using a technique called DHCP
snooping in switches that can verify DHCP messages passing through
the switch that prevents impersonation of DHCP server.

Keywords: PAC · WPAD · DHCP snooping

1 Introduction

Proxy Server in an organisation reduces the bandwidth used in the shared chan-
nel. It can increase the performance and can be used for load balancing within
an organisation. As number of user increases, configuring proxy settings in the
end system is a difficult task for an administrator. CFILE or PAC file [1] is used
to locate the web proxy servers stored in a Web server or it can be stored in a
proxy server depending upon the amount of users.

The automation of PAC file configuration in web clients is performed using
WPAD [2]. PAC file will decide the host to connect through a proxy or access
point directly to remote server which is written in javascript having a mandatory
function FindProxyForUrl [1] inside the file. When the user requests for a URL
through the browser, the PAC file is retrieved from Web Server using WPAD
Protocol.

WPAD protocol will search for PAC file in the following methods:
c© Springer Nature Singapore Pte Ltd. 2017
S.M. Thampi et al. (Eds.): SSCC 2017, CCIS 746, pp. 195–204, 2017.
https://doi.org/10.1007/978-981-10-6898-0_16



196 K.R. Atul and K.P. Jevitha

– Using DHCP: The Web Browser requests for PAC file location from the DHCP
Server. DHCP server must be configured with an option 252 having the PAC
file destination.

– Using DNS: DNS WPAD is a method for detecting a PAC file via discovery
by leveraging the network name of the user computer and using a consistent
DNS configuration and PAC script file name.

The response from the DHCP Server is spoofed [3] by an attacker within the
network, i.e., middle man between the victim and a DHCP server. The PAC
file is retrieved from attacker location. Even if the user requests for a HTTPS
[4] running Web Server the attacker is able to see the URL visited because the
attack happen before the establishment of end to end connection.

This paper is organized as follows. Related work is described in Sect. 2. The
Problem in WPAD protocol is mentioned in Sect. 3. The proposed system and
implementation is described in Sect. 4. Section 5 discuss the results and Sect. 6
concludes the paper.

2 Related Work

In Man-in-the-middle attack by name collision, the user mistakenly leaks out
domain name requests that make an attacker create name collisions for the
queries by registering the domain name ‘company.ntld’ [5] in new gTLD [6]
.ntldp [7]. This name collision attack can cause all web traffic of an internet user
to be redirected to a Man-In-The-Middle (MITM) proxy automatically right
after the launching of the web browser. The underlying problem of this attack
is internal namespace WPAD query leakage.

Browser Cache Poisoning (BCP), attack is performed in a network by one-
time MITM attack on the users HTTPS session of a user. It substitutes cached
resources with malicious ones. Browsers are highly inconsistent in their caching
policies for loading resources over SSL connections with invalid certificates [8].

In an insecure HTTP connection an attacker is possible to perform a MITM
attack. Thus the use of HTTPS enforcer helps establish a secure connection
over HTTPS. The mitigation is done based on collecting the static list of URLS
maintained by different user agent and using squid proxy server as a daemon
that checks URL with the static list of URL [9].

In the ARP cache poisoning attack the MAC address is collected by broad-
casting ARP request and caches of two hosts are poisoned. For mitigation of ARP
cache spoofing, the security features such as DHCP Snooping and Dynamic ARP
Inspection (DAI) are enabled in the network switch [10].

In sniffing and propogating malwares through WPAD deception, the attacker
impersonate as a WPAD web server while requesting the PAC file through
windows system’s NetBIOS Name Service (NBNS) protocol in a local area
network [11].

In the name collision attack the internal DNS namespace is leaked to the
outside Domain Name Server. The attacker needs to collect the leaked domain
and register domain for redirecting traffic of the user. This can be controlled



Prevention of PAC File Based Attack Using DHCP Snooping 197

in three ways, i.e., by reserving new registration from Native XML Database
(NXD) traffic, by filtering the request before entering public namespace, and by
running a background process to filter domains within the network. BCP replaces
the javascript files with malicious ones with same URL. So if the user visits the
same website again; the malicious cache is loaded to the browser provided by
the attacker. Attack is prevented by running a script that checks for freshness
and integrity of resources from a website. The SHS-HTTPS enforcer redirects
traffic through squid proxy server if it is HTTP connection and checks with the
preloaded list that are synchronised periodically. In a LAN connection, WPAD
web server impersonation is done by the attacker using NBNS protocol and
respond with a malicious PAC file.

3 Problem Outline

The attack is performed in any network including public Wi-Fi networks where
HTTPS is necessary for end-user. Figure 1 depicts the working of WPAD feature
with host and DHCP [12] server. This WPAD feature is exploited that reveals
certain browser requests to attacker-controlled code. The web site address the
user visits are known to the attacker.

Fig. 1. PAC file served using DHCP

When a host accesses the DHCP to connect to a network, the attacker acts
like a DHCP server and a malicious response is sent by the attacker having the
path of PAC file. DHCP can be used to set up proxy settings in the browser to
access the URLs other than just assigning IP addresses [13]. In this attack the
browser receives the PAC file and this PAC file will decide the proxy for URL.
The attacker can modify the PAC file accordingly in order to redirect the traffic
to the attacker controlled phishing site. Proxy server controlled by the attacker



198 K.R. Atul and K.P. Jevitha

Fig. 2. Timeline of normal scenario

receives the request from user. The attacker receives the entire URL because it
gets the request before an end to end connection is established with HTTPS
protocol. If the PAC file is not configured in DHCP, it will look for in DNS and
NetBIOS settings.

Figure 2 shows the normal functioning of accessing a web server through a
web browser. The user sends an INFORM message to a legitimate Server. The
server then serves the path where the PAC file resides. The user sends a HTTP
GET request to the web server for PAC file. PAC file is served by the web server
and has the IP address of the proxy server to be used for the URLs.

Figure 3 depicts the attack scenario. The attacker acts as a middle man, i.e.,
impersonates as a DHCP server and responds to the HTTP request before the

Fig. 3. Timeline of attack scenario



Prevention of PAC File Based Attack Using DHCP Snooping 199

legitimate server message reach the user called the DHCP spoofing. The user
retrieves the PAC file from the attacker web server and redirects to the attacker
controlled proxy server and the attacker is able to view the URL the user is
visiting. This attack can be analysed using the packet sniffing tool, Wireshark.

4 Proposed System

Figure 4 depicts the basic architecture for mitigating WPAD protocol by using
DHCP snooping deployed in the switch. Snooping feature is deployed in switch
and group the ports as trusted and untrusted. The ports connected to the DHCP
server is made trusted and all others as untrusted. This method works with
multiple DHCP server.

Fig. 4. Experimental test-bed

In DHCP Snooping, switch defends the network from rogue DHCP servers.
Switch checks the messages that pass through the network and acts like a firewall.
DHCP snooping table (or DHCP binding database) is created by switch for
monitoring. This table is used by switch for filtering of messages. The Database
keeps track of DHCP addresses that are given to ports and filter them from
untrusted ports. The packet from untrusted port is dropped if the MAC address
does not match the MAC address in the database.



200 K.R. Atul and K.P. Jevitha

Fig. 5. Modules in the proposed system

Figure 5 shows how the implementation of proposed system is done. The host
systems and the DHCP server need to be connected with the help of a switch
where the snooping access layer feature is available. The auto configuration must
be enabled in the web browser for each host system.

4.1 DHCP Server Installation

DHCP server is installed for serving path of PAC file. ISC DHCP is an open
source software that is used to provide IP addresses. After installing the ISC
DHCP server, the DHCP sever is configured by mentioning the network inter-
faces in the /etc/default/isc-dhcp-server.conf with the IP range, Default gateway,
Name server, and Subnet mask address in /etc/dhcp/dhcpd.conf file. Moreover,
it should be configured to serve a PAC file by specifying the option 252 with
path of web server.

4.2 Web Server and PAC File Configuration

In the second module a web server is created for hosting the PAC file. If Apache
web server is used create an .htaccess file in the root directory and specify the
MIME type as ‘application/x-ns-proxy-autoconfig.dat’ inside the file. The PAC
file can also be uploaded to the root directory with .dat extension.

4.3 Proxy Server Implementation

In the third module a proxy server is implemented locally for end user. These
are done with the Squid proxy or Google DNS server i.e., 8.8.8.8 and 8.8.4.4.
This proxy address is provided within the PAC file.



Prevention of PAC File Based Attack Using DHCP Snooping 201

4.4 Configuration of Snooping Feature in Network Switch

In the fourth module the DHCP snooping has to be enabled in the switch that
connects between the hosts and DHCP server. The snooping prevents rogue
DHCP server by assigning ports as trusted and untrused. The port that is con-
nected to the DHCP server from switch is made as trusted and send DHCP
INFORM message to any host and all other ports are made untrusted. If any
violation of packet is detected the packets are dropped in switch and messages
are logged.

5 Results and Discussion

Attacker hijacks the request made by the client and serves the malicious PAC
file to the client by spoofing the response from a legitimate server. The attacker
having the IP address 192.168.1.2 delivers this PAC file by running a bogus
DHCP server. The request for PAC file, i.e., wpad.dat made by the client having
IP address 192.168.73.131 is responded by the attacker as shown in Fig. 6.

Fig. 6. Serving of PAC file by attacker web server

As shown in Fig. 7 the request is hijacked by attacker and given to the Google
proxy server 8.8.8.8 in port 53 for fetching the requested website.

Fig. 7. Hijacking the request from client and forwarded to proxy

Figure 8 shows the client, port number, and protocol from where the malicious
PAC file is requested. Figure 9 shows the list of URL the client visits.



202 K.R. Atul and K.P. Jevitha

Fig. 8. List of clients collected the malicious PAC file

Fig. 9. List of URL the client visits

As shown in Fig. 10 the PAC file is requested by the host having IP address
172.17.128.121 to the web Server with IP address 172.17.128.52 by HTTP GET
request after spoofing DHCP response. Since the Automatically detect settings
is turned on in the host system, the malicious PAC file is served by the attacker.



Prevention of PAC File Based Attack Using DHCP Snooping 203

Fig. 10. Wireshark log for PAC file retrieval

6 Conclusion

In this paper a mitigation strategy is proposed for the WPAD protocol used
to configure proxy settings in end systems by DHCP snooping. This feature
can leak URL to attacker by retrieving the PAC file from attacker web server.
The attacker is able to spoof the DHCP response that has the path for the
PAC file. This work explains the attack in WPAD using DHCP in detail. The
snooping feature in switch can be deployed to prevent the bogus DHCP servers
by grouping the ports as trusted and untrusted.

References

1. Introduction to PAC files — FindProxyForURL. http://findproxyforurl.com/
pac-file-introduction/

2. Gauthier, P., Cohen, J., Dunsmuir, M.: Draft-ietf-wrec-wpad-01 - Web Proxy Auto-
Discovery Protocol (1999). https://tools.ietf.org/html/draft-ietf-wrec-wpad-01

3. Alok: Spoofing Attacks DHCP Server Spoofing - 24355 - The Cisco Learning Net-
work, June 2014. https://learningnetwork.cisco.com/people/alokbharadwaj

4. Rescorla, E.: RFC 2818 - HTTP Over TLS (May 2000). https://tools.ietf.org/
html/rfc2818

5. Chen, Q.A., Osterweil, E., Thomas, M., Mao, Z.M.: MitM Attack by Name Colli-
sion: Cause Analysis and Vulnerability Assessment in the New gTLD Era (2016)

6. ICANN — Archives — Top-Level Domains (gTLDs). http://archive.icann.org/en/
tlds/

7. Delegated Strings — ICANN New gTLDs. https://newgtlds.icann.org/en/
program-status/delegated-strings

http://findproxyforurl.com/pac-file-introduction/
http://findproxyforurl.com/pac-file-introduction/
https://tools.ietf.org/html/draft-ietf-wrec-wpad-01
https://learningnetwork.cisco.com/people/alokbharadwaj
https://tools.ietf.org/html/rfc2818
https://tools.ietf.org/html/rfc2818
http://archive.icann.org/en/tlds/
http://archive.icann.org/en/tlds/
https://newgtlds.icann.org/en/program-status/delegated-strings
https://newgtlds.icann.org/en/program-status/delegated-strings


204 K.R. Atul and K.P. Jevitha

8. Jia, Y., Chen, Y., Dong, X., Saxena, P., Mao, J., Liang, Z.: Man-in-the- browser-
cache: persisting HTTPS attacks via browser cache poisoning. Comput. Secur. 55,
62–80 (2015)

9. Sugavanesh, B., Hari Prasath, R., Selvakumar, S.: SHS-HTTPS enforcer: enforcing
HTTPS and preventing MITM attacks. ACM SIGSOFT Softw. Eng. Notes 38(6),
1–4 (2013)

10. Mangut, H.A., Al-Nemrat, A., Benzad, C., Tawil, A.R.H.: ARP cache poi-
soning mitigation and forensics investigation. In: 2015 IEEE on Trust-
com/BigDataSE/ISPA, vol. 1, pp. 1392–1397. IEEE, August 2015

11. Li, D., Liu, C., Cui, X., Cui, X.: Sniffing and propagating malwares through WPAD
deception in LANs. In: Proceedings of the 2013 ACM SIGSAC Conference on
Computer Communications Security, pp. 1437–1440. ACM, November 2013

12. Droms, R.: Dynamic Host Configuration Protocol (1997). https://www.ietf.org/
rfc/rfc2131.txt

13. Introduction to WPAD — FindProxyForURL. http://findproxyforurl.com/
wpad-introduction/

https://www.ietf.org/rfc/rfc2131.txt
https://www.ietf.org/rfc/rfc2131.txt
http://findproxyforurl.com/wpad-introduction/
http://findproxyforurl.com/wpad-introduction/


A Quasigroup Based Synchronous Stream
Cipher for Lightweight Applications

S. Lakshmi1,2(B), Chungath Srinivasan1,2, K.V. Lakshmy1,2, and M. Sindhu1,2

1 TIFAC-CORE in Cyber Security, Amrita School of Engineering, Coimbatore, India
lakshmisivadas1992@gmail.com

2 Amrita Vishwa Vidyapeetham, Amrita University, Coimbatore, India

Abstract. The need of securing all types of communication in the
present world has led to an increased dependance on cryptographic prim-
itives such as block ciphers, stream ciphers, pseudorandom number gen-
erators, hash functions etc. All conventional cryptographic schemes make
use of the algebraic structures for their construction. But systems based
on non algebraic structures can also provide a considerable amount of
security. Quasigroups are one such non algebraic structures. The main
focus of this paper is to design a stream cipher based on quasigroup,
which can be used in memory constrained devices. Further the work also
focuses on the security analysis of the proposed scheme based on various
statistical and structural tests.

Keywords: Quasigroups · Latin square · Encryption · Structural tests

1 Introduction

Cryptography is the art of converting any readable data into unintelligible form,
so that it can be read and processed by those who are intended. Cryptosystems
can be divided into public key and symmetric key cryptosystems. Public key sys-
tems uses a public key for encryption and private key for decryption. Symmetric
cryptographic algorithms can be either stream cipher or block cipher based. In
stream cipher based systems, the message is processed in a bit by bit fashion
and allow for higher throughput. In block ciphers, the message is processed in
blocks of fixed length. Symmetric key cryptosysytems make use of a single key
for both encryption and decryption.

The increased need for security and space reduction has led to the develop-
ment of many lightweight algorithms that provide adequate security within the
space constraints. Block cipher PRESENT [1], stream ciphers Grain [2], Trivium
and hash function Hash-One [3] are some among the many examples. But almost
all available crypto primitives make use of the properties of algebraic structures
like groups, rings, fields etc. But recent researches shows that non algebraic struc-
tures can also provide the required security. Quasigroups are one among the non
algebraic structures that can be made use for the design of cryptographic sys-
tems [4]. Quasigroups can be used for the development of encryption schemes
c© Springer Nature Singapore Pte Ltd. 2017
S.M. Thampi et al. (Eds.): SSCC 2017, CCIS 746, pp. 205–214, 2017.
https://doi.org/10.1007/978-981-10-6898-0_17



206 S. Lakshmi et al.

with less computational requirements since only simple lookup operations are
required.

There are many cryptosystems based on quasigroups. The lack of algebraic
properties make these systems resistant to various attacks. They can be used for
the construction of S-boxes [5], block ciphers [6] and stream ciphers [7], pseudo-
random number generators [8], hash functions [9] etc. Many of these systems
are proven to be resistant to algebraic and structural attacks. The security of
these cryptosystems rely on the quasigroups that are used for the construction.
Edon80 [7] is a stream cipher and it make use of 4 quasigroups of order 4 for their
construction. Edon80 managed to find a place among the phase 3 eSTREAM
candidates. Also Edon-R [9], a hash function based on quasigroup was a candi-
date in round two of the NIST hash function competition. There are plenty of
S-box construction based on quasigroups. Quasigroups are itself 2n → n S-boxes.
They can be transformed to 2n → 2n S-boxes by linear transformations.

The rest of the paper is organized as follows. Section 2 deals with the general
description of quasigroups and properties. Section 3 contains the proposed design
and Sect. 4 includes the design rationale of the proposed scheme and Sect. 5
contains the security analysis.

2 Quasigroups

Definition 1. A quasigroup is a groupoid (Q, ∗) with the property that each of
the equations a ∗ x = b and y ∗ a = b has a unique solution for x, respectively
y [10].

When Q contains a finite number of elements, the main body of the Caley
table of the quasigroup represents a Latin square. Latin square contains rows
and columns that are permutations of the elements from Q.

Table 1. Quasigroup of order 4

∗ 1 2 3 4

1 1 4 2 3

2 2 3 1 4

3 3 2 4 1

4 4 1 3 2

Table 1 is a quasigroup of order 4 with an operator ∗. It contains elements
from 1 to 4 and all the elements occur only once in each row and column. The
value of a ∗ b can be easily calculated from the table by looking into the entry
corresponding to a-th row and b-th column. Also it can be seen that (1 ∗ 2) ∗ 3
�= 1 ∗ (2 ∗ 3) violating associativity. Similarly it can be seen that (1 ∗ 2) �= (2 ∗
1), thus not satisfying the commutativity property.



A Quasigroup Based Synchronous Stream Cipher 207

Different authors use quaigroups with different properties for their construc-
tion. But quasigroups suitable for cryptographic construction are generally with
little structure such as shapeless quasigroups.

2.1 Shapeless Quasigroups

Definition 2. A finite quasigroup (Q, ∗) of order r is said to be shapeless
iff it is non-idempotent, non-commutative, non-associative, it does not have
neither left nor right unit, it does not contain proper sub-quasigroups, and
there is no k < 2r such that identities of the kinds are satisfied in (Q, ∗) [9].

2.2 n-ary Quasigroups

Definition 3. An n-quasigroup (A, α) can be defined as an algebra (A,
α1, α2, ....αn) with n + 1 n-ary operations satisfying the following identities [11]

α(xi−1
1 , αi(xn

1 ), xn
i+1) = xi

αi(xi−1
1 , α(xn

1 ), xn
i+1) = xi

i = 1,2,...n.

Now an n−ary operation β on A can be defined as follows:

β(xn
1 ) = f(α(f−1

1 (x1), ....f−1
n (xn)))

Then (A, β) is also an n-quasigroup.
A 3-quasigroup is finite algebra containing elements of group A and 4 ternary

operations that satisfy the following properties: [12]

α(α1(x1, x2, x3), x2, x3) = x1 = α1(α(x1, x2, x3), x2, x3)
α(x1, α2(x1, x2, x3), x3) = x2 = α2(x1, α(x1, x2, x3), x3)
α(x1, x2, α3(x1, x2, x3)) = x3 = α3(x1, x2, α(x1, x2, x3))

3 Specifications of the Proposed Design

The aim is to design a synchronous stream cipher based on quasigroups that
can be used for lightweight applications. Let the length of the key K and
Initialization vector IV be 128 bits, represented as K = [a1, a2, ..., a16] and
IV = [b1, b2, ..., b16].

Let (G, β) be the 3-quasi group with β(x1, x2, x3) = ft4 [α(f−1
t1 (x1), f−1

t2 (x2),
f−1
t3 (x3)], for some x1, x2, x3, t1, t2, t3 t4 ∈ G. The functions fti are permutations

defined over G, and α and β are ternary operators on G. The encryption process



208 S. Lakshmi et al.

consists of two phases: Initialization and keystream generation. The function f
is calculated as fa(x) = x ∗ a. Also, α(x, y, z) = x ∗ (y ∗ z).

The value of inverse function f−1
t (x) can be easily obtained from the quasi-

group table by looking for the row which contains the value x in the t-th column.
But as the order of the quasigroup increases, it becomes difficult to store them
as it takes a lot of memory. So the lookup can be replaced with on the fly cal-
culation in case of memory constrained devices. Let fa(x) = x ∗ a = y. This can
be written as: y = FA,B,C(x ⊕ a) ⊕ a. The aim is to find f−1

a (y). The inverse
function can be calculated as follows: y = FA,B,C(x ⊕ a) ⊕ a
y = [(x ⊕ a)lsb ⊕ A, (x ⊕ a)msb ⊕ B ⊕ S((x ⊕ a)lsb ⊕ C)] ⊕ a;
where A, B, C are constants
y ←− y ⊕ a
y = ymsb ‖ ylsb
y′ ←− ymsb ⊕ A
y′′ ←− y′ ⊕ C
z ←− ylsb ⊕ B ⊕ S(y′′)
x′ = z ‖ y′
x ←− x′ ⊕ a

3.1 Initialization Phase

There are basically 18 rounds during the initialization phase.

1. k1 = β(b1, b2, b3) = fa4 [α(f−1
a1

(b1), f−1
a2

(b2), f−1
a3

(b3)]
2. k2 = β(b2, b3, b4 ⊕ k1) = fa5 [α(f−1

a2
(b2), f−1

a3
(b3), f−1

a4
(b4 ⊕ k1)]

3. k3 = β(b3, b4 ⊕ k1, b5 ⊕ k2) = fa6 [α(f−1
a3

(b3), f−1
a4

(b4 ⊕ k1), f−1
a5

(b5 ⊕ k2)]
4. k4 = β(b4 ⊕k1, b5 ⊕k2, b6 ⊕k3) = fa7 [α(f−1

a4
(b4 ⊕k1), f−1

a5
(b5 ⊕k2), f−1

a6
(b6 ⊕

k3)]
...
...

14. k14 = β(b14 ⊕ k11, b15 ⊕ k12, b16 ⊕ k13) = fb1 [α(f−1
a14

(b14 ⊕ k11), f−1
a15

(b15 ⊕
k12), f−1

a16
(b16 ⊕ k13)]

15. k15 = β(b15 ⊕ k12, b16 ⊕ k13, k14) = fk14 [α(f−1
a15

(b15 ⊕ k12), f−1
a16

(b16 ⊕
k13), f−1

b1
(k14)]

16. k16 = β(b16 ⊕ k13, k14, k15) = fk15 [α(f−1
a16

(b16 ⊕ k13), f−1
b1

(k14), f−1
k14

(k15)]
17. k17 = β(k14, k15, k16) = fk16 [α(f−1

b1
(k14), f−1

k14
(k15), f−1

k15
(k16)]

18. k18 = β(k15, k16, k17) = fk17 [α(f−1
k14

(k15), f−1
k15

(k16), f−1
k16

(k17)]

3.2 Keystream Generation and Encryption

Let the message to be encrypted be denoted as m1,m2,m3, ... and c1, c2, c3, ...
be the corresponding ciphertext symbols. Note that mi, ci ∈ G for i = 1, 2, ...

1. z1 ← k19 = β(k16, k17, k18) = fk18 [α(f−1
k15

(k16), f−1
k16

(k17), f−1
k17

(k18)]
c1 ← m1 ⊕ z1



A Quasigroup Based Synchronous Stream Cipher 209

2. z2 ← k20 = β(k17, k18, k19) = fk19 [α(f−1
k16

(k17), f−1
k17

(k18), f−1
k18

(k19)]
c2 ← m2 ⊕ z2
...
...

4 Design Rationale

The building blocks of the proposed design are carefully chosen and connected in
such way that the overall cipher resists known generic attacks on stream ciphers
and produce random looking output.

4.1 Quasigroups

Usually quasigroups are constructed using Latin squares, that will be the main
body of the multiplication table. But this method is applicable only during the
construction of small order quasigroups. In practical applications quasigroups of
higher order such as 216, 264.... are needed. They can be constructed using the
extended Feistel network mechanism [10]. The quasigroups generated using this
method will be shapeless, which is a desirable property for the construction of
crypto primitives.

Let (G, ⊕) be an abelian group, let f : G −→ G be a permutation and let
A,B,C ∈ G be constants. The extended Feistel network FA,B,C : G2 −→ G2 is
defined for every (l, r) ∈ G2 as

FA,B,C(l, r) = (r ⊕ A, l ⊕ B ⊕ f(r ⊕ C))

The quasigroup (G2, ∗FA,B,C
) can be produced as

X ∗FA,B,C
Y = FA,B,C(X ⊕ Y ) ⊕ Y

The proposed design works on XOR operation denoted by ⊕ and a 4× 4
order S-box replaces the permutation function f .

4.2 S-box

The proposed design uses a 256 × 256 quasigroup. The permutation function
in the extended feistel network mechanism has been replaced with an S-box in
the design to increase the non-linearity of the cipher. The S-box used in the
construction is a 4-bit S-box. The S-box is constructed using quasigroups using
linear transformations [5]. Table 2 shows the S-box used for the construction.

The above S-box has the following cryptographic properties:

– Differential uniformity = 4
– Balanced
– Robustness = 0.75
– Non-linearity = 4



210 S. Lakshmi et al.

Table 2. Substitution box

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

13 9 15 12 11 5 7 6 3 8 14 2 0 1 4 10

4.3 Initialization and Keystream Generation

In the initialization phase the output k1 is generated by the four symbol keyframe
[a1, a2, a3, a4] and the three symbol IV frame [b1, b2, b3]. The output k2 is gen-
erated by the next immediate key and IV frames [a2, a3, a4, a5] and [b2, b3, b4].
Continuing like this the symbols are generated

k13 by key and IV frames [a13, a14, a15, a16], [b13, b14, b15]
k14 by key and IV frames [a14, a15, a16, b1], [b14, b15, b16]
k15 by key and IV frames [a15, a16, b1, k14], [b15, b16, k14]
k16 by key and IV frames [a16, b1, k14, k15], [b16, k14, k15]
k17 by key and IV frames [b1, k14, k15, k16], [k14, k15, k16]
k18 by key and IV frames [k14, k15, k16, k17], [k15, k16, k17]

One can note here that the symbols ki, i = 18, 19, ... does not explicitly
depend on any of the key symbols [a1, a2, ..., a16], which motivates to use these
symbols as keystream symbols and generate ciphertext as described in Sect. 3.2.
The number of rounds in the initialization phase (18 here) can be increased for
making the scheme more secure by compromising efficiency.

5 Security Analysis

The cipher is subjected to various statistical and structural tests for analyz-
ing the security. NIST-STS test suite [13] is used to find the randomness of
the keystream. The structural test [14] involved key/keystream correlation test,
IV/keystream correlation test, frame correlation test and diffusion test.

5.1 Randomness Testing Using NIST-STS

The NIST Statistical Test Suite (NIST-STS) can be used to evaluate the amount
of randomness that has been introduced in the system. It contains 15 standard
tests. The NIST-STS package will be giving a p-value and a Success/Failure
status for each particular test [13]. The Table 3 shows the parameters that we
have chosen for the given NIST-STS tests.

Upon completion of each test, p-value is obtained which lies between 0 and 1
(both included). The p-values for the various tests performed on the design are as
shown in Table 4, which clearly indicates that the design has no deviation from
the random behavior. Conventionally, a p-value > 0.01 is accepted as success
while p < 0.01 is considered as failure.



A Quasigroup Based Synchronous Stream Cipher 211

Table 3. Parameters for NIST-STS Test

Test Block length(m)

Block frequency test 128

Non-overlapping template test 9

Overlapping template test 9

Approximate entropy test 10

Serial test 16

Linear complexity test 500

It should be noted that these NIST statistical tests are not originally designed
to test the security of stream ciphers, rather to evaluate the randomness proper-
ties of finite sequences. So they do not consider the internal structure, key or IV
loading phases of the ciphers. To solve this problem we go for testing the cipher
with the following structural tests.

5.2 Structural Analysis

The NIST test is to find the randomness in the sequence while the struc-
tural testing is done to find the correlation between the Key/IV with the
generated keystream. Mainly three structural tests were done which includes
Key/Keystream correlation, IV/Keystream correlation, Frame correlation test
and Diffusion test. The Key/Keystream correlation test is done to find out the
correlation between the key and generated Keystream given a fixed IV. The
IV/Keystream correlation tests the correlation between the IV and keystream
when the key is fixed. The Frame correlation test considers the correlation
between keystreams for consecutive values of IV. The Diffusion test finds out
the diffusion of IV and key bits within the keystream. Evaluations are done
based on the Chi-Square Godness of Fit test.

Key/Keystream Correlation. This test actually helps in determining the
correlation between the key and a part of keystream for a fixed IV [14]. For the
analysis, 106 sets of random keys of length 128 bits are generated. For each of
these random 128 bit keys, keystream of length 128 bits are generated with a
fixed 128 bit IV. Then each keystream is XORed with the corresponding key and
the weight is found. The weights are divided into 5 uncorrelated classes such as
0–58, 59–62, 63–65, 66–69, 70–128. The frequencies of each classes are compared
against their expected values and Chi-Square Godness of fit test is applied to
find the p-value. The high or low correlation between the key and keystream
value enables the attacker to recover the secret key from the keystream.

IV/Keystream Correlation. This test is helpful in finding out the correlation
between the IV and a part of the keystream for a fixed key [14]. For analysis 106



212 S. Lakshmi et al.

sets of 128 bit random IV’s are generated. For each of these random IV’s corre-
sponding 128 bit keystream is generated with a fixed 128 bit key. The keystreams
are then XORed with their corresponding IV and weights are found. These weights
are divided into the following 5 classes: 0–58, 59–62, 63–65, 66–69, 70–128. The fre-
quencies are compared against their expected values and Chi-Square Goodness of
fit test is performed. High or low correlation between the IV and the keystream
can help the attacker to generate the keystream without the knowledge of the
keystream.

Frame Correlation. The objective of this test is to find the correlation frames
generated with similar IVs [14]. In this test, for a random IV and key of length 128
bits, keystream of length L = 256 bits is generated. This procedure is repeated for
N = 210 times with incremented values of the IV. These generated keystreams
are used to construct a 210 × 256 matrix. The column weights of this matrix is
calculated and is classified into 5 intervals: 0–498, 499–507, 508–516, 517–525, and
526–1024. The frequency of each class is compared against expected frequency and
Chi-Square Goodness of fit test is applied.

Diffusion Test. The Diffusion property is satisfied if and only if, each Key and
IV bits is having an effect in the keystream [14,15]. Any change in the key or IV
bits should generate random looking changes within the keystream. Random 128
bit key and IV are chosen for the test. A keystream of length 256 is generated
using this key and IV. By changing each bit of key and IV, new keystreams
are generated and they are XORed with the original keystream. With these
vectors, a 256 × 256 matrix is generated and this procedure is repeated 1024
times. The resulting matrices are added in real numbers and the values are
classified into the following intervals: 0–498, 499–507, 508–516, 517–525, and
526–1024. The obtained results are evaluated against the expected values and
Chi-Square Goodness of Fit test is performed to obtain the p-value.

5.3 Results

NIST-STS. For the analysis, 100 keystream samples are generated each having
106 bits. The keystream samples are written to a single file and analyzed. The
results for each test are summarized in Table 4.

It can be seen from the table that p-value for the generated keystream is
greater than 0.01 for every test. Thus the generated sequence can be considered
as a random sequence.

Structural Tests. The results of the chi-square test is used to generate the
p-value. The p-value should be in between 0 and 1 and >0.01 is considered as a
success. Failure of Key/Keystream test will result in revising the key initializa-
tion phase while failure of other two tests will result in revising the IV loading
phase. In the analysis part, 100 such p-values are generated for each test and the
average p-value for each test is given in Table 5.



A Quasigroup Based Synchronous Stream Cipher 213

Table 4. NIST-STS test results

Test p-value

Frequency 0.1835

Block frequency 0.3538

Cumulative sums 0.3289

Approximate entropy 0.8681

Serial 0.3633

Linear complexity 0.5317

Runs 0.0497

Longest run 0.3116

Rank 0.6898

FFT 0.8615

Non overlapping template 0.9781

Overlapping template 0.4358

Universal 0.9783

Table 5. Average p-value for various structural tests

Test p-value

Key/Keystream correlation 0.8708

IV/Keystream correlation 0.9572

Frame correlation 0.7029

Diffusion test 0.8351

It can be seen that the p-value is greater than the threshold and thus the
proposed scheme passes all the structural tests.

5.4 Algebraic Attacks

The algebraic degree of the output keystream bits when expressed as a function
of the nonlinear state bits are large and varies with time. The choice of the
4 × 4 S-box is such that it has a nonlinearity equal to 4 and also the state bits
are nonlinearly updated which makes it is so difficult for retrieving the 256 bit
internal state of the keystream generator using algebraic attacks.

6 Conclusion

In this paper, we propose a synchronous stream cipher based on quasigroups
which appears to be suited for lightweight applications. The randomness of the
cipher output is analyzed by the NIST statistical Test Suite and various struc-
tural tests. The cipher is believed to be resistant to the known generic attacks
on stream ciphers.



214 S. Lakshmi et al.

References

1. Bogdanov, A., Knudsen, L.R., Leander, G., Paar, C., Poschmann, A., Robshaw,
M.J.B., Seurin, Y., Vikkelsoe, C.: PRESENT: an ultra-lightweight block cipher.
In: Paillier, P., Verbauwhede, I. (eds.) CHES 2007. LNCS, vol. 4727, pp. 450–466.
Springer, Heidelberg (2007). doi:10.1007/978-3-540-74735-2 31

2. Hell, M., Johansson, T., Maximov, A., Meier, W.: A stream cipher proposal: grain-
128. In: 2006 IEEE International Symposium on Information Theory, pp. 1614–
1618. IEEE (2006)

3. Mukundan, P.M., Manayankath, S., Srinivasan, C., Sethumadhavan, M.: Hash-one:
a lightweight cryptographic hash function. IET Inf. Secur. 10(5), 225–231 (2016)

4. Markovski, S.: Design of crypto primitives based on quasigroups. Quasigroups
Related Syst. 23(1), 41–90 (2015)

5. Mihajloska, H., Gligoroski, D.: Construction of optimal 4-bit s-boxes by quasi-
groups of order 4. In: The Sixth International Conference on Emerging Security
Information, Systems and Technologies, SECURWARE (2012)

6. Battey, M., Parakh, A.: An efficient quasigroup block cipher. Wireless Pers. Com-
mun. 73(1), 63–76 (2013)

7. Gligoroski, D., Markovski, S., Knapskog, S.J.: The stream cipher Edon80. In:
Robshaw, M., Billet, O. (eds.) New Stream Cipher Designs. LNCS, vol. 4986,
pp. 152–169. Springer, Heidelberg (2008). doi:10.1007/978-3-540-68351-3 12

8. Battey, M., Parakh, A., Mahoney, W.: A new quasigroup based random number
generator. In: Proceedings of the International Conference on Security and Man-
agement (SAM), p. 1. The Steering Committee of the World Congress in Computer
Science, Computer Engineering and Applied Computing (WorldComp) (2013)

9. Gligoroski, D., Markovski, S., Kocarev, L.: Edon-R, an infinite family of crypto-
graphic hash functions. IJ Netw. Secur. 8(3), 293–300 (2009)

10. Mileva, A., Markovski, S.: Shapeless quasigroups derived by feistel orthomor-
phisms. Glasnik matematički 47(2), 333–349 (2012)

11. Petrescu, A.: Applications of quasigroups in cryptography. In: Proceedings of Inter-
Eng (2007)

12. Chakrabarti, S., Pal, S.K., Gangopadhyay, S.: An improved 3-quasigroup based
encryption scheme. In: ICT Innovations 2012, p. 173 (2012). Web Proceedings
ISSN 1857-7288

13. Rukhin, A., Soto, J., Nechvatal, J., Smid, M., Barker, E.: A statistical test suite
for random and pseudorandom number generators for cryptographic applications.
Technical report, Booz-Allen and Hamilton Inc Mclean Va (2001)

14. Turan, M.S., Doganaksoy, A., Calık, C.: Statistical analysis of synchronous stream
ciphers. In: Stream Ciphers Revisited, SASC 2006 (2006)

15. Srinivasan, C., Lakshmy, K.V., Sethumadhavan, M.: Measuring diffusion in stream
ciphers using statistical testing methods. Defence Sci. J. 62(1), 6 (2012)

http://dx.doi.org/10.1007/978-3-540-74735-2_31
http://dx.doi.org/10.1007/978-3-540-68351-3_12


Security Analysis of Key Management Schemes
Based on Chinese Remainder Theorem Under

Strong Active Outsider Adversary Model

B.R. Purushothama(B), Arun Prakash Verma, and Abhilash Kumar

Department of Computer Science and Engineering,
National Institute of Technology Goa, Farmagudi, Ponda 403401, Goa, India
puru@nitgoa.ac.in, arunpverma007@gmail.com, akaryvanshi@gmail.com

Abstract. The existing key management schemes have adopted the
passive adversarial model to analyze the forward secrecy and backward
secrecy security requirements. However, the more realistic model is the
strong active outsider adversary model wherein a legitimate group user
can be compromised by the outsider adversary. In this work, we analyze
the security of the Chinese remainder theorem based key management
schemes under strong active outsider adversary model. We show that the
schemes are insecure and we reason for their insecurity. Also, we provide
a generic approach to make the schemes based on Chinese remainder
theorem as secure against strong adversary. We conclude that, to make
these schemes secure against strong adversary, the cost for every rekey-
ing event requires the cost of initial group set up. That is, for rekeying
upon user join or leave, it requires n secure channels for a group of n
users which is costly.

Keywords: Active outsider · Strong security · Key management · Chi-
nese remainder theorem

1 Introduction

Design of a secure group key management scheme is a challenging task. A group
of users to communicate securely among themselves should share a common
group key. The group key should not be known to any adversary other than the
group users. In the lifetime of a group, several new users may join and existing
members may leave the group. There are two major security requirements namely
forward secrecy, and backward secrecy that any group key management scheme
should satisfy. Backward secrecy is needed to protect the communications of
the group upon a new user join, and forward secrecy is needed to protect the
future communications of the group when an existing user of a group leaves.
To satisfy both the requirements the group key must be changed after join or
leave event and securely distributed to the current group members resulting
from the join or leave. Several key management schemes have been proposed.

c© Springer Nature Singapore Pte Ltd. 2017
S.M. Thampi et al. (Eds.): SSCC 2017, CCIS 746, pp. 215–225, 2017.
https://doi.org/10.1007/978-981-10-6898-0_18



216 B.R. Purushothama et al.

The key management schemes can be centralized, decentralized or contributory
[9]. An efficient key management should reduce the rekeying cost required to
update and distribute securely the group key to the legitimate group users.

Our focus is on the adversarial model adopted by the key management
schemes. The passive adversarial model has been adopted by the existing key
management schemes. A passive adversary can arbitrarily join or leave the group
but is not allowed to compromise the group user. A stronger and realistic adver-
sarial model is the strong active outsider attack/adversary model. In this out-
sider attack model, an adversary being an outsider can compromise or corrupt
the legitimate group user. Formal security models can be seen in [13,14]. This
type of attack is more practical as in many application scenarios, the group
users are unattended by the group manager. Thus, the secret key of the group
member which is present on the local memory of the member can be obtained
by compromising the group member. Some of the efficient stateful schemes such
as logical key hierarchy based scheme [12], one way function tree based scheme
[10], and stateless receiver schemes [6,8] are insecure against the active outsider
attack model [13]. That is, by compromising the legitimate group user adversary
not only will be able to access the current communications of the group, but
also the past communications of the group even though the user does not store
the past keys. This is more dangerous situation as an outside adversary can get
access to the past communications by obtaining the keys of the current session
of a legitimate user. Further, Purushothama et al. have shown that the binomial
tree based key management scheme [1], proxy re-encryption based scheme [3]
and access polynomial based scheme [18] are insecure in the strong active out-
sider model. Also, they have provided the secure versions of the corresponding
schemes under strong active adversary model.

Our Contribution

Given the more realistic active outsider adversarial model, fundamentally the
key management schemes should be secure against active adversary. Chinese
remainder theorem (CRT) based key management schemes were designed to
reduce the rekey message size (communication cost) and computation cost at
user level.

– In this work, we prove that the CRT based schemes are not secure against
active outsider adversary. In particular we analyze the scheme by Zheng et al.
[15], scheme by Zhou et al. [16,17] and the scheme by Joshi et al. [7]. There
is no specific reason to choose these schemes as all the CRT based key man-
agement schemes have used the concept of secure lock [4].

– We reason why the schemes are insecure and how to make these schemes
as secure against active adversary. We conclude that the cost required to
make the CRT based schemes as secure is equivalent to the cost of new group
creation which is exorbitant as it requires the n secure channels for n users
for every rekeying event.



Security Analysis of Key Management Schemes 217

2 Security Analysis of CRT Based Key Management
Scheme

Zheng et al. [15] have proposed CRT based scheme. We show that the scheme is
insecure against active outsider adversary.

Let group users be U = {u1, u2, ..., un}. A random private key ki for user ui

is chosen by the key server from a collection of pairwise relatively prime integers.
So, gcd(ki, kj) = 1, i �= j, 1 ≤ i, j ≤ n. The key server chooses randomly a group
key K and establishes the following system of congruences:

X ≡ l1 mod k1, X ≡ l2 mod k2 , . . . , X ≡ ln mod kn

where li is the value of corresponding bits of K⊕ ki, 1 ≤ i ≤ n. The above is
the instance of CRT.

The key server computes the unique solution S to the above congruence sys-
tem of equations [2]. The key server broadcasts S. The user ui can get the group
key by computing S mod ki to get li and computing li ⊕ ki = K ⊕ ki ⊕ ki = K
to get K.

When a new user un+1 joins the group, key server chooses randomly a key
kn+1 from set of relatively prime integers such that gcd(ki, kj) = 1, i �= j, 1 ≤
i, j ≤ n+1. Also, a new group key must be chosen in order to maintain backward
secrecy. Key server chooses K ′ as the new group key and computes a unique
solution S

′
to the following system of congruences:

X ≡ l
′
1 mod k1, X ≡ l

′
2 mod k2 , . . . , X ≡ l′n mod kn, X ≡ l′n+1 mod kn+1

Where, l
′
i is the value corresponding to K

′ ⊕ ki for i = 1, . . . n+ 1. Then the
key server broadcasts S

′
. All the users including newly joining user un+1 can

get the key K
′

by computing S′ mod ki, 1 ≤ i ≤ n + 1 which gives l
′
i and then

computing l
′
i ⊕ ki which gives K

′
.

Now we consider a scenario of user leaving the group. Then, the key server
should change the group key K

′
, to ensure forward secrecy so that leaving users

will not be able to access the future communications of the group. Suppose user
u2 wants to leave the group. A new group key K

′′
is chosen by the key server

and computes a unique solution S
′′

to the following systems of equations:

X ≡ l
′′
1 mod k1, X ≡ l

′′
2 mod k3 , . . . , X ≡ l

′′
n mod kn, X ≡ l

′′
n+1 mod kn+1

Where l
′′
i is the value of bits K

′′ ⊕ ki. Each user ui, i = 1, 3, . . . , n + 1 can
get the key K

′′
by computing S

′′
mod ki which gives l

′′
i and then computing

l
′′
i ⊕ki which gives K

′′
. The leaving user u2 cannot obtain group key K

′′
as in the

system of congruence in computing CRT solution the equation X ≡ l
′′
2 mod k2

is excluded.
The above solution using CRT satisfies forward and backward secrecy require-

ments under passive adversarial attack model.



218 B.R. Purushothama et al.

2.1 Analysis of the Scheme Under Strong Active Attack Model

Consider the scenario of an initial group consisting of n users u1, u2, . . . , un

having the (current) group key K. Note that, to communicate the group key
K, the key server has broadcast the solution S of the set of congruences X ≡
li mod ki, 1 ≤ i ≤ n. So adversary A has access to S. Now consider the new
user un+1 joining the group. The key server computes unique solution S

′
for

the system of congruences X ≡ l
′
i mod ki, 1 ≤ i ≤ n + 1 and broadcasts S′.

Adversary A has access to S
′
. All the users u1, u2, . . . , un+1 will get new group

key K
′
and erase K. So, each user ui will have two keys one is the group key K

′

and their private key ki.
Now consider the scenario of user u2 leaving the group. The key server com-

putes unique solution S
′′

for the system of congruences X ≡ l
′′
i mod ki, i =

1, 3, . . . , n+ 1 and the key server broadcasts S
′′
. Adversary A has access to S

′′
.

All the users u1, u3, . . . , un+1 can compute new group key K
′′

from S
′′

and erase
K

′
. Each user stores their private key ki and current group key K

′′
. No other

keys are being stored by any user of the group.
We show that adversary A by compromising the legitimate user of the group,

not only get access to the current communications but also access to the past
communications. It is usually believed that the adversary only gets access to the
current communications. However, we show that the adversary can get access to
the previous communications also.

– Note that, adversary has access to S, S
′
and S

′′
broadcast by the key server.

Now, among the users u1, u3, . . . , un+1, suppose the adversary A compromises
user u3. By compromising u3, the adversary gets the key k3 and K

′′
. Hence,

the adversary can access all the communications that are encrypted with the
key K

′′
. Note, the user u3 had erased K and K

′
. Adversary can also get key

K
′
by computing S′ mod k3 to get l

′
3 and computing l′3⊕k3. So, he can access

all the messages encrypted with K
′
.

– Also, adversary A can get K by computing S mod k3 to get l3 and computing
l3 ⊕ k3 to get K. So, A gains access to all the messages encrypted with K.
Hence, by compromising the user u3, adversary A not only gets access to the
current group key but also the past group keys.

3 Security Analysis of Key Tree and CRT Based Key
Management Scheme

A group key distribution scheme based on key tree and CRT is proposed by
Zhou et al. [16,17]. Consider a group of n users say u1, u2, . . . , un. The key
server constructs a user tree with n = dl leaves (where d is the degree of the
node and l is the number of levels). All the nodes are labelled with node ID
by following top-down, and left-right order in incremental fashion. For instance,
Fig. 1 shows the tree for 8 = 23 users.

For each node i in the user tree, key server chooses a private key ki. The
private key identity(ID) of the node i is i, where 0 ≤ i ≤ dl+1−1

d−1 .



Security Analysis of Key Management Schemes 219

Fig. 1. Key tree for 8 users

Key server chooses the keys of the nodes such that all the keys are pairwise
relatively prime. A user tree with the private key assigned to each node is called
a key tree. Figure 1 shows the key tree for 8 = 23 users. The private key set of
user ui, 1 ≤ i ≤ n is all the keys on the path from leaf corresponding to ui to the
root. These keys are given to users ui securely by the key server. For example,
private key set of u1 is {k7,k3,k1,k0 } where, k1 is the private key of user u1.

Suppose, multicast has to be done to users u1, u2, u3, . . . , u8. Then, the key
server broadcasts the identity 0 of the root node. All the users will check whether
the key corresponding to identity 0 is present. In this example, all the users have
the key k0 in their private set. So, they communicate using k0.

Suppose, multicast is among the users u1, . . . , u5 and u8. There is no common
key among the private key sets of u1, . . . , u5 and u8 i.e. the users u1, u2, . . . , u5

and u8 does not have any key in common. So, key server chooses a random group
key K and obtains the unique solution to the system of following congruences.

X ≡ l1 mod k1, X ≡ l2 mod k2, X ≡ l3 mod k3,

X ≡ l4 mod k4, X ≡ l5 mod k5, X ≡ l8 mod k8

where li = value of K ⊕ ki for i = 1, . . . , 5, 8.
Let the solution be S. So, key server broadcasts S. The user u1, u2, . . . , u5

and u8 can get the group key K, by computing S mod ki to obtain ki and then
computing li ⊕ ki to get K.

Suppose user u6 (new user) joins the group, then K should be changed. Also,
the key server securely gives k6 to u6. Key server chooses K

′
as the new group

key and obtains an unique solution t the following system of congruences:

X ≡ l
′
1 mod k1, X ≡ l

′
2 mod k2, X ≡ l

′
3 mod k3, X ≡ l

′
4 mod k4,

X ≡ l
′
5 mod k5, X ≡ l

′
6 mod k6, X ≡ l

′
8 mod k8



220 B.R. Purushothama et al.

where l
′
i = is the value of K ′ ⊕ ki for i = 1, . . . , 6, 8. Let the solution be S′ and

key server broadcasts S′. Each user ui, i = 1 − 6, 8 can get K
′

by computing
S′ mod ki to get l

′
iand l

′
i ⊕ ki and each user erases K.

Suppose a user u1 leaves the group. The group key K
′

should be changed.
A new group key K ′′ is chosen by the key server. Further, the server computes
solution S′′ to following system of congruences:

X ≡ l
′′
2 mod k2, X ≡ l

′′
3 mod k3, X ≡ l

′′
4 mod k4

X ≡ l
′′
5 mod k5, X ≡ l

′′
6 mod k6, X ≡ l

′′
8 mod k8

where l
′′
i = is the value of K ′′⊕ki for for i = 2, . . . , 6, 8. The key server broadcasts

S′′. Each user u2, u3, u4, u5, u6 and u8 can obtain K ′′ by computing S′′ mod ki
to get l

′′
i and then computing l

′′
i ⊕ ki to get K6

′′. Each user erases K ′.

3.1 Analysis of the Scheme Under Strong Active Attack Model

Consider the current group with users u2, . . . , u6 and u8 and current group key
is K ′′. This state of the group is as a result of join of u6 to the initial multicast
group of users u1, . . . , u5, u8 and user u1 leaving the group u1, . . . , u6, u8. An
active adversary A can compromise any legitimate user u2 − u5 and u8. Also,
adversary A has access to S, S′ and S′′. Suppose, A compromises the user u5.
Now, u5 has only k5 and K ′′. So, the adversary can access all communications
encrypted using K ′′.

We show that, an adversary A can also access the communications encrypted
with K

′
and K. Since A has access to k5, A can get K

′
by computing l

′
i ≡

S′ mod k5 and l
′
i ⊕ k5. Since, A has access to k5, A can get K by computing

li ≡ S mod k5 and li ⊕k5. So, by compromising the legitimate user of the group,
the adversary A not only accesses communications encrypted with the current
group key K ′′ but also past communications of the group encrypted with K

′

and K.

4 Security Analysis of Key Transport Protocol Based
on CRT

The CRT based scalable key transport protocol is proposed by Joshi et al. [7].
Suppose the users u1, u2, . . . , un want to communicate secretly. Key server gen-
erates n + 1 key pairs (ki,mi) for 0 ≤ i ≤ n such that gcd(mi,mi+1) = 1
∀i, j ∈ [1, n]. (k0,m0) is not given to any user. The key pair (ki,mi) is securely
communicated to user ui. Let Z be the data that the server wants to communi-
cate securely. Key server chooses a secret key S to encrypt Z for a group.

– Server computes Si = Eki
(S), 1 ≤ i ≤ n using any symmetric encryption

algorithm like DES or AES.



Security Analysis of Key Management Schemes 221

– Key server computes a secure lock X using CRT method as below:

X =
n∑

i=0

Si Ci Yi mod M

where,

Si = Eki
(S),M =

n∏

i

mi, Yi =
M

mi
, Ci = Y −1

i mod mi

and broadcasts X and ES [Z] (encryption of Z using symmetric encryption E
with key S).

– Each user obtains Z by computing X mod mi to get Si and using its key ki
computes Dki

(Si) to get S.
– Then user ui can get data Z by computing DS(ES(Z)) where D is the decryp-

tion algorithm of a symmetric cryptosystem. So all users ui, 1 ≤ i ≤ n can
get S and can use S for group communication.

– Suppose a new user Unew joins the group.
– Key Server chooses new key pair (knew,mnew) such that mnew is relatively

prime to all mi’s.
– Key server chooses a new group key S′ and computes M ′ = M × mnew, and

S
′
i = Eki

(S
′
), and Y

′
i = M ′

mi
, and C

′
i = (Y

′
i )−1 mod mi, 0 ≤ i ≤ n + 1 and

computes X ′ =
∑n+1

i=0 S
′
i C

′
i Y

′
i mod M ′ and broadcasts X ′ and ES′ [Z ′]

where Z ′ is a new data item.
– Each user computes X ′ mod mi to get S

′
i and gets S′ by computing Dki

(S
′
i)

and gets data Z ′ by computing DS′(ES′(Z ′)). So, S′ is used as a new group
key.

– Suppose a user u1 leaves the group, then server should change the current
group key S′. Server selects new group key S

′′
and remove (k1,m1) from the

system of congruences as below:
– Key server computes

M ′′ =
M ′

m
,S

′′
i = Eki(S

′′), Y
′′
i =

M ′′

mi
, C

′′
i = (Y

′′
i )−1 mod mi, 0 ≤ i ≤ n+ 1, i �= 1

and computes,

X ′′ =
n+1∑

i=0,i �=1

S
′′
i C

′′
i Y

′′
i mod M ′′

– Server broadcasts X ′′ and ES′′ [Z ′′] where Z ′′ is a new data item.
– Each user u2, u3, . . . , un, unew computes X ′′ modmi to get S

′′
i and Dki

(S
′′
i )

to get S′′ and computes DS′′(ES′′(Z ′′)) to get Z ′′. So, S′′ is used as a new
group key. The leaving user cannot get the group key S′′.

4.1 Analysis of the Scheme Under Strong Active Adversary Model

Consider group with users u1, u2, u3, . . . , un with events of unew joining and u1

leaving the group. The rekeying will be done as explained above. So, the current



222 B.R. Purushothama et al.

keys with user ui is ki,mi and S′′. Suppose that all the users have erased the
key S, S′ after rekeying events.

Adversary A has access to ES(Z),X,E′
S(Z ′),X ′, and E′′

S(Z ′′),X ′′. Suppose
A compromises user u2. By compromising u2, A will get k2,m2 and S′′. So, the
user will be able to obtain all the communications that are encrypted with S′′.
We show that A also gets access to past communications. Note that, this happens
even after u2 has erased S, S′.

A using k2 can compute X ′ mod m2 to get S′
2 and compute Dk2(S

′
2) to get

S′. So, all communications encrypted with S′ such as E′
S(Z ′) are accessed by

A by computing DS′(ES′(Z ′)). Also, A can compute X mod m2 to get S2 and
computes Dk2(S2) to get S and decrypt all the communications encrypted with
S. For example, by computing DS(ES(Z)) A can get Z.

So, A not only gets the communications with encrypted group key S′′, but
also the past communications encrypted with S′ and S. So, the scheme is insecure
against active adversary model.

5 Approach to Make the CRT Based Group Key
Management Schemes Secure Against Active
Adversary

All the CRT based schemes are based on the generic “Secure Lock” concept
[4]. In this section, we highlight the generic CRT based group key management
scheme. We establish that the scheme is not secure against the active adversary.
Also, we make the scheme secure against the active adversary.

Suppose, U = {u1, u2, u3, . . . , un} be the set of users want to communicate
securely. A group key should be shared among the users in U to securely com-
municate.

– Key server generates key ki and securely sends the key to ki to ui, for 1 ≤
i ≤ n. ki is the secret key of the user ui shared with the key server.

– Key server chooses the group key K and set up the system of congruences:
X ≡ l1 mod k1,X ≡ l2 mod k2, . . . , X ≡ ln mod kn where li = Eki

(K) for
1 ≤ i ≤ n, E is symmetric encryption algorithm.

– Key server computes the unique solution of the set of congruences

S =
n∑

i=1

li Mi Ni mod N

where N = k1k2 . . . kn, Ni = N
ki

and MiNi ≡ 1 mod ki for 1 ≤ i ≤ n.
The key server broadcasts S.

– Each user ui, 1 ≤ i ≤ n computes S mod ki to get li and computes Dki
(li)

to get K, where D is the corresponding decryption algorithm of E.
– All the users can communicate securely using K. So, K will be the current

group key. No other users can get the key K.



Security Analysis of Key Management Schemes 223

– Suppose, a user un+1 (new user) joins the group. A new key (group) K
′

is
chosen by the key server. Key server generates kn+1 such that gcd(ki, kj) = 1
∀i, j ∈ [1, n + 1] and i �= j. And securely gives kn+1 to user un+1 and set
up the new set of congruences, X ≡ l

′
i mod k

′
i, 1 ≤ i ≤ n + 1, such that

l
′
i = Eki

(K ′) and computes the solution S′ for the set of congruences and
broadcasts S′.

– Each user ui, 1 ≤ i ≤ n+ 1 can get K
′
by computing S′ mod ki to get l

′
i and

then computing Dki
(l

′
i) to get K

′
. So it ensure the backward secrecy.

– Suppose an user ui, 1 ≤ i ≤ n + 1 wants to leave the group.
– W.l.o.g let u1 be the user leaving the group. Then key server should generate

a new group key K ′′ and send to users uj securely, where j ∈ [2, n + 1]. Key
server sets up the following system of congruences:

X ≡ l
′′
2 mod k2, X ≡ l

′′
3 mod k3, . . . , X ≡ l

′′
n+1 mod kn+1

where l
′′
j = Ekj

(K ′′) for j ∈ [2, n + 1] and computes solution S′′ to the set
of equations and broadcasts S′′. The users uj except u1 can obtain the new
group key K ′′ by computing S′′ mod kj to get l

′′
j and compute Dkj

(l
′′
j ) to get

K ′′. All the users except u1 can communicate securely using K ′′. Note that
user u1 cannot compute K ′′ as the key server excluded X ≡ l

′′
1 mod k1 from

the system of congruences. This ensures forward secrecy.

5.1 Adversary Point of View

The current scenario is that the group contains user u2, u3, . . . , un+1. The current
group is a result of user un+1 joining the initial group with user u1, u2, . . . , un

and user u1 leaving the group. The current group key is K ′′. Suppose that after
each rekeying upon user join/leave, each user erases the old group key and keeps
the new group key. So, the user uj , j ∈ [2, n + 1] will have two keys kj and K ′′.

Suppose adversary A compromises the user ut, for 2 ≤ t ≤ n + 1. W.l.o.g,
suppose A compromises u2. Then A gets access to k2 and K ′′. Using K ′′ A can
decrypt all communications encrypted with K ′′. We show that A can also access
the past communications that were encrypted with K and K

′
even though u2

had erased them.
Adversary A does the following.

1. Adversary A has access to the broadcast message S and S′.
2. Using k2, A can compute S′ mod k2 to get l

′
2 and compute Dk2(l

′
2) to get K

′
.

3. Using k2, A can compute S mod k2 to get l2 and compute Dk2(l2) to get K.
4. So, A will succeed in obtaining past group keys K and K

′
also. So A can

decrypt all messages that were encrypted with K,K ′ and K ′′. This kind of
attack breaks the security of the key management system.

5.2 Reason for Insecurity

As it can be observed by the above attack, the primary reason is that the key
k2 of user u2 is used in all rekey messages. Though u2 erases K and K

′
, u2 will



224 B.R. Purushothama et al.

still store k2. Note that S′ and S were obtained by encrypting K
′

and K with
k2 respectively. So A will be able to obtain these keys. To make it not accessible
to A, S′ and S should not use k2. In general, the private key of u2 should not
be used in all rekeying events.

Now, we give the secure version of the above scheme and comment on the per-
formance and security. Consider the scenario where group of users u1, u2, . . . , un

with current group key K. Now, suppose un+1 joins the group. Then key server
should choose new set of keys k′

1, k
′
2, . . . , k

′
n and kn+1 such that gcd(k′

i, k
′
j) = 1,

i, j ∈ [1, n] and gcd(k′
i, kn+1) = 1, for i ∈ [1, n]. And obtain solution S′ to the

following set of equations:

X ≡ l′1 mod k
′
1, X ≡ l′2 mod k

′
2, X ≡ l′n mod k

′
n, X ≡ ln+1 mod kn+1

where l
′
i = Ek

′
i
(K ′) and K

′
new group key. Key chosen kn+1 by key server

is securely given to un+1. To obtain K
′
, each user ui should have the key k′

i,
for i ∈ [1, n]. The only way key server can communicate the new keys k′

i to
ui for i ∈ [1, n] is by securely sending to ui. Suppose say by using public key
cryptosystem. So, it requires n encryptions by the key server. Each user needs
to do one decryption to get k′

i. Then use k′
i to get K

′
and erase k′

i.
When a user leaves also, key server should follow the same process excluding

the leaving user. So the cost of the rekey will increase drastically and it reduces
performance of key management scheme. However, the adversary will not be
able to access the past group keys as all the keys are changed for every rekeying.
Other schemes proposed for group key management based on Chinese Remainder
Theorem [5,11] are more efficient. However, none of them is secure under the
effect of an active outsider adversary.

6 Conclusion

We have analyzed the Chinese remainder theorem based key management
schemes under strong active outsider attack model. We have shown that the
schemes based on the concept of secure lock are insecure against active outsider
attack model. The reason for their insecurity is that the keys are reused for every
rekeying and only group key is being changed. To make the schemes based on
CRT secure, it incurs the cost that is equal to the cost required to setup the
new initial group. Precisely, it requires n secure channels for a group of n users
for every re-keying event which is costly. In future, we focus on providing the
efficient approach to make the schemes as secure.

Acknowledgement. This work is supported by the Science and Engineering Research
Board (SERB), Department of Science & Technology (DST), Government of India.



Security Analysis of Key Management Schemes 225

References

1. Aparna, R., Amberker, B.B.: A key management scheme for secure group commu-
nication using binomial key trees. Int. J. Netw. Manag. 20(6), 383–418 (2010)

2. Burton, D.: Elementary number theory (2011). https://books.google.co.in/books?
id=3KiUCgAAQBAJ

3. Chen, Y.R., Tygar, J.D., Tzeng, W.G.: Secure group key management using uni-
directional proxy re-encryption schemes. In: INFOCOM, pp. 1952–1960. IEEE
(2011)

4. Chiou, G.H., Chen, W.T.: Secure broadcasting using the secure lock. IEEE Trans.
Software Eng. 15(8), 929–934 (1989)

5. Guo, C., Chang, C.C.: An authenticated group key distribution protocol based on
the generalized chinese remainder theorem. Int. J. Commun. Syst. 27(1), 126–134
(2014)

6. Jho, N.-S., Hwang, J.Y., Cheon, J.H., Kim, M.-H., Lee, D.H., Yoo, E.S.: One-way
chain based broadcast encryption schemes. In: Cramer, R. (ed.) EUROCRYPT
2005. LNCS, vol. 3494, pp. 559–574. Springer, Heidelberg (2005). https://doi.org/
10.1007/11426639 33

7. Joshi, M.Y., Bichkar, R.S.: Scalable key transport protocol using chinese remainder
theorem. In: Thampi, S.M., Atrey, P.K., Fan, C.-I., Perez, G.M. (eds.) SSCC 2013.
CCIS, vol. 377, pp. 397–402. Springer, Heidelberg (2013). https://doi.org/10.1007/
978-3-642-40576-1 39

8. Naor, D., Naor, M., Lotspiech, J.: Revocation and tracing schemes for stateless
receivers. In: Kilian, J. (ed.) CRYPTO 2001. LNCS, vol. 2139, pp. 41–62. Springer,
Heidelberg (2001). https://doi.org/10.1007/3-540-44647-8 3

9. Rafaeli, S., Hutchison, D.: A survey of key management for secure group commu-
nication. ACM Comput. Surv. 35(3), 309–329 (2003)

10. Sherman, A.T., McGrew, D.A.: Key establishment in large dynamic groups using
one-way function trees. IEEE Trans. Software Eng. 29(5), 444–458 (2003)

11. Vijayakumar, P., Bose, S., Kannan, A.: Chinese remainder theorem based cen-
tralised group key management for secure multicast communication. IET Inf.
Secur. 8(3), 179–187 (2014)

12. Wong, C.K., Gouda, M., Lam, S.S.: Secure group communications using key graphs.
IEEE/ACM Trans. Networking 8(1), 16–30 (2000)

13. Xu, S.: On the security of group communication schemes based on symmetric key
cryptosystems. In: Proceedings of the 3rd ACM Workshop on Security of Ad Hoc
and Sensor Networks, New York, USA, pp. 22–31 (2005)

14. Xu, S.: On the security of group communication schemes. J. Comput. Secur. 15(1),
129–169 (2007)

15. Zheng, X., Huang, C.T., Matthews, M.: Chinese remainder theorem based group
key management. In: Proceedings of the 45th Annual Southeast Regional Confer-
ence, ACM-SE 45, pp. 266–271. ACM, New York (2007)

16. Zhou, J., Ou, Y.: Key tree and Chinese remainder theorem based group key
distribution scheme. In: Hua, A., Chang, S.-L. (eds.) ICA3PP 2009. LNCS,
vol. 5574, pp. 254–265. Springer, Heidelberg (2009). https://doi.org/10.1007/
978-3-642-03095-6 26

17. Zhou, J., Ou, Y.: Key tree and chinese remainder theorem based group key distru-
bution scheme. J. Chin. Inst. Eng. 32(7), 967–974 (2009)

18. Zou, X., Dai, Y.S., Bertino, E.: A practical and flexible key management mechanism
for trusted collaborative computing. In: INFOCOM, pp. 538–546. IEEE (2008)

https://books.google.co.in/books?id=3KiUCgAAQBAJ
https://books.google.co.in/books?id=3KiUCgAAQBAJ
https://doi.org/10.1007/11426639_33
https://doi.org/10.1007/11426639_33
https://doi.org/10.1007/978-3-642-40576-1_39
https://doi.org/10.1007/978-3-642-40576-1_39
https://doi.org/10.1007/3-540-44647-8_3
https://doi.org/10.1007/978-3-642-03095-6_26
https://doi.org/10.1007/978-3-642-03095-6_26


Deep Learning for Network Flow Analysis
and Malware Classification

R.K. Rahul1,2(B), T. Anjali1,2, Vijay Krishna Menon1,2, and K.P. Soman1,2

1 Centre for Computational Engineering and Networking (CEN),
Amrita School of Engineering, Coimbatore, India

iamrkrahul@gmail.com, anjukrishnadas@gmail.com
2 Amrita Vishwa Vidyapeetham, Amrita University, Coimbatore, India

m vijaykrishna@cb.amrita.edu, kp soman@amrita.edu

https://www.amrita.edu/center/computational-engineering-and-networking

Abstract. In this paper, we present the results obtained by applying
deep learning techniques to classification of network protocols and appli-
cations using flow features and data signatures. We also present a similar
classification of malware using their binary files. We use our own dataset
for traffic identification and Microsoft Kaggle dataset for malware clas-
sification tasks. The current techniques used in network traffic analysis
and malware detection is time consuming and beatable as the precise
signatures are known. Deep learned features in both cases are not hand
crafted and are learned form data signatures. It cannot be understood by
the attacker or the malware in order to fake or hide it and hence cannot
be bypassed easily.

Keywords: Network application identification · Protocol classification ·
Malware classification · Deep learning · Convolutional Neural Network ·
CNN · Auto encoder

1 Introduction

The scale and density of network traffic is rapidly growing through the years.
The protocols which are designed grossly based on TCP-IP model established in
the initial days of Internet, lack the necessary features required for such traffic
analysis. Most of the protocol classification systems today mainly depends on
the parameters such as Port numbers, static headers, IP addresses etc. But, as
new protocols, which are being designed every day, are not following the rule
of port registration, the situation is worsing for traffic analysers and network
administrator [12].

When we take the case of network applications, the traditional way to classify
them using meta traffic information was based on limited behavioral properties
which are used to define heuristics features. These features again include port
numbers, transmission rate and frequency, application and protocol header infor-
mation etc. [18]. With the advent of mobile and web applications, this scenarios

c© Springer Nature Singapore Pte Ltd. 2017
S.M. Thampi et al. (Eds.): SSCC 2017, CCIS 746, pp. 226–235, 2017.
https://doi.org/10.1007/978-981-10-6898-0_19



Deep Learning for Network Flow Analysis and Malware Classification 227

is at its worst. Along with this, administrators also face issues like tunneling, ran-
dom port usage, proxy and encryptions that makes detection and classification
almost impossible [16].

Similarly traditional classification of malware is done mainly with heuristic
and bahavioral signatures that grapple to keep up with malware evolution. A
malware signature is an algorithm or hash that uniquely identifies a specific virus.
It is proved that all viruses in a family share common behaviour and a single
generic signature can be created for them. However, malware authors always try
to confuse antivirus software by writing polymorphic and metamorphic malware
that constantly change known signatures and thus fool the system. To avoid
all such contempt of behaviors, a flow and code feature based analysis or data
driven analysis is mandatory for network applications, protocols and malware.
Behavioral signature can be mocked, copied, changed or tampered with, but
data signatures are abstract and cannot be manipulated that easily [4].

In 2015, Microsoft hosted a competition in Kaggle with the goal of classifying
malware into their respective families based on the their content and character-
istics. Microsoft provided a set of malware samples representing 9 different mal-
ware families. Each malware sample had an ID, a 20 character hash value is used
to uniquely identify the sample and a class, an integer label representing one of
the 9 malware family (class) to which the malware belong: (1) Ramnit, (2) Lol-
lipop, (3) Kelihos ver3, (4) Vundo, (5) Simda, (6) Tracur, (7) Kelihos ver1, (8)
Obfuscater. ACY, (9) Gatak [7]. The dataset includes files containing hexadeci-
mal representation of malwares’ executable machine code. Each files is composed
of Byte Count, Address, Record type, Data and Checksum.

Together all three, can be defined as a multi class classification problem, to
make it machine learnable. Selection and processing of the right features from
a frenzy of unintelligible data is a near impossible task which makes the above
problems an ideal case for applying deep learning [4].

Deep learning is a new subversive machine learning strategy, where extrac-
tion of features is done by the machine itself from the given data for the best
classification possible. These feature are at best, non orthogonal and signifi-
cantly enhance the accuracy of classification or regression, compared to human
hand crafted features [8,14]. Some supervised learning algorithms include logistic
regression, multilayer perceptron, deep convolutional network etc. Semi or unsu-
pervised learning include stacked auto encoders, restricted Boltzmann machines
(RBMs), deep belief networks (DBNs) etc. [13,15].We approach the above prob-
lems with a convolutional neural network (CNN) with auto encoders and tweak
the network performance.

A Convolutional Neural Network (CNN) is a form of feed-forward neural
network in which the connection between its neurons is similar to the structure
of the animal visual cortex, whose individual neurons are organized in such a
way that they respond to overlapping regions tilling the visual field [1,6]. CNNs
are composed by three types of layers such as fully-connected, convolutional and
pooling. CNN has the ability to see any data as an image and this characteristic
allows users to encode certain properties into the architecture. CNN will con-
volve several small filters on the input image and subsample this space of filter



228 R.K. Rahul et al.

activations and repeat these processes until we left with enough high level fea-
tures. Then it will apply a standard feed-forward neural network to the resulting
features [2].

The other main method used for feature extraction are auto encoders. They
are made to generate a set of features which can be reverse transformed to yield
back the original input. This is called bidirectional training. The networks has
the same input and output from which it back propagates and learns [6]. In an
essence these can be used for kernel type feature mapping normally used with
non-linear or non-separable data in traditional machine learning

2 Methodology and Reasoning

A lot of literature is available on signature based network application and pro-
tocol classification and also based on statistical features and machine learning.
They are all some form of hand crafted features which are time consuming,
beatable and inflexible. These methods fail to detect or classify an unknown
application and protocol due to the same reason. Zhanyi Wang introduced deep
learning in traffic identification [17] which motivated us to take up this work. He
has classified applications and protocols using features which are automatically
extracted using an auto encoder. The full payload from the network data packet
is given to an auto encoder for feature extraction and classification is done by a
fully connected dense layer at the end.

The malware classification also have the above mentioned flaws in using the
manually handcrafted features for classification. Deep learning has been used for
classification of Kaggle data. The winners of Kaggle Microsoft malware challenge
have extracted mainly three important features from it like Opcode 2,3 and 4-
grams, Segment line count and Asm file pixel intensity features. They are getting
an accuracy of 99.98% which might fail while classifying polymorphic and meta-
morphic malwares and families. Sequence classification methods which is related
to gene classification in computational biology [5] have also been proposed. But
it too relies on features which are handcrafted. Besides, if old malware is rebuilt
to create new malware binaries then their code would be very much alike [9].

2.1 Protocol Classification Using Metadata

In order to collect packet data, Wireshark and Tshark is used. Wireshark [10]
is an open source software for analyzing network packet. Only HTTP, SSL, and
SMTP protocol packets are selected from the entire collection of captured pack-
ets. Since the classification process with entire payload is not computationally
easy, only the metadata or packet attributes are taken for the experiment. The
metadata contain a partial information about the payload. The collected data
packets are converted into comma separated values and it acts as the input to
the deep learning architecture. The data packetstrimmed to a uniform length
vector of 1024 bytes and the data is converted to decimal format, so it can be
easy fed to a network programatically [12].



Deep Learning for Network Flow Analysis and Malware Classification 229

2.2 Payload Data Collection and Data Preprocessing for Network
Application Classification

Since considerable results were obtained for classification using metadata, we
extended the experiment to a higher level. Classification of network applications
using full payload is done to obtain better results as more data is involved here.
We collected the complete payload using tcpdump [3] and extracted it. When
called, tcpdump actually prints headers of each packet and the data of each
packet including its link level header. From that, only the payload information
of three different network applications were collected. Browsers, Facebook and
Torrent are the three classes of applications chosen. The browser class consists
payloads of both Opera and Mozilla Firefox. Among the total of 33,268 packets,
the first class contains 17,024 packets of browser payloads, second class contain
8528 Facebook payloads and in the third class 7,716 packets of torrent application
payloads. The data payloads are originally in the form of hexadecimal values and
it is further converted into decimal values for the purpose of feeding it into deep
learning network as mentioned before.

2.3 Malware Classification Using Kaggle Data

The malware data provided by the Microsoft in Kaggle contain 9 families. The
main objective is to classify these to their respective families. Each observation
is a representation of the file’s binary content. This hexadecimal data is pre-
processed to decimal in order to feed it to the CNN. The preprocessed data is
a vector of 128 values, each coma separated. The preprocessed data is fed into
a Convolutional neural network with two convolutional layers along with max
pooling layers followed by two dense layers. 64 one dimensional filters are used
in first convolutional layer and 32 two dimensional filters are used in second
convolutional layer. Architecture is as given in the Table 1.

2.4 Different Convolutional Neural Networks Implemented

A four-layer convolutional neural network was implemented with two convolu-
tional and two fully connected layers. The network architecture used for the
classification of protocols, network applications, and malware is given in the
Table 1 respectively with weight dimensions. The input data sample size fed into
the network, size of filters of first two convolutional layers, and that of fully
connected layer and output layer are also given by the Table 1.

The neural network is expected to learn these filter weights over the training
process such that it extracts the essential features from the data samples which
are able to distinguish the different classes. The rectified linear activation func-
tion (RELU) was chosen as the activation function for both convolutional layers.
Then the information being extracted from these features are used to predict the
label corresponding to each data point by adjusting weights and biases across
the two fully connected layers [11]. In order to avoid over fitting, dropout was
enabled. We have chosen the Googles TensorFlow R© framework to implement
our network.



230 R.K. Rahul et al.

Table 1. CNN architecture used in the Classification Processes for Specific Tasks

Size of
input
vector

No of filters in
1st
convolutional
layer

No of filters in
2nd
convolutional
layer

Neurons in
fully
connected
layer

Output layer

Protocol 1024 128 64 8 3

Application 2048 128 64 8 3

Malware 128 64 32 16 9

2.5 Implemented Autoencoder Architecture

The entire payloads were fed into an auto encoder and features were extracted.
The architecture of the auto encoder used in the experiment is shown in the
Fig. 1. The packet attributes of three protocols is given to the designed auto
encoder.The network has an input of length 1024 and a 512 node middle layer.
tanh, is used as the activation function in all the three layers. The loss function
for training was taken as the root mean square error between the outputs of final
nodes and the inputs. The network is trained using batched stochastic gradient
decent, which is faster than individually updating after each data. The middle
layer samples were taken as input and are fed into the CNN which is further
trained with data labels as the ground truth.

Feature selection from the auto encoder is computationally heavy in the
training stage but is a one time process. Once the network has been trained,

Fig. 1. Architecture of Autoencoder used for protocol classification



Deep Learning for Network Flow Analysis and Malware Classification 231

features can be extracted from data frames with simple computations such as
matrix multiplication.

The only difference between the architectures of auto encoders used for appli-
cation classification and protocol classification is the input vector size; 2048 for
the application classifier. The number of nodes in the hidden layer is 512 as in
the above case. The samples from middle layer was taken as the features for
classification, to be fed to into the CNN.

3 Results and Discussions

3.1 Protocol Classification

The preprocessed samples of metadata for three different protocols are given to
the CNN. Out of 75,000 data given 52,500 packets of data are given for training
and remaining 22,500 are given for testing. The result shows classification on
test data. 83.78% accuracy is obtained for 2000 iterations. The same data set is
given to the auto encoder with a softmax layer for classification. However, this
classification gave less accuracy with a best measure of 75.57 for 1700 iterations.

3.2 Network Application Classification

The data contains payloads from three different network applications are given
to the CNN mentioned in the Table 1. Different parameters of the CNN were
changed and the changes in the accuracy were observed.

In the experiment stage, we tried with three different learning rates. Initially
it was fixed at 0.01 and an accuracy was 20.12% for 1000 epochs. Then we
changed the learning rate to 0.001 and obtained accuracy of 45.20% for the
same number of iterations. So we again decreased the learning rate to 0.0001
and got a high accuracy of 84.26%. Then we fixed the value of learning rate as
0.0001 and then changed the dropout values.Since the training takes much time
here the number of epochs is fixed to 200. The value of dropout was changed from
0.1 to 0.9 gradually and we could observe an evident increase in accuracy. The
accuracy for 0.1 dropout is 62.50% and for 0.9 it is 91.90%. We fixed the value
of dropout as 0.9 for our architecture. After choosing the values for learning rate
and dropout, we changed the number of epochs from 200 to 2000 and observed
the results. The corresponding observations are plotted in Fig. 2. Here, we can
observe that for 2000 epochs the accuracy obtained was 95.50%. The class-wise
accuracy for 3 different epochs are given in the Fig. 3. All these results were
obtained by the classification using only CNN . The next type of classification
combines an auto encoder with the existing CNN. The data points were directly
fed into an auto encoder and the features were piped to the CNN. The result
obtained for these two methods were compared to the existing results [17] and
are given in the Table 2.

The accuracy obtained for feature extracted CNN is high compared to the
other two methods, giving a class wise accuracy for both browsers and chat



232 R.K. Rahul et al.

Fig. 2. Training epochs vs Accuracy graph with a learning rate of 0.0001 and dropout
of 0.9

Fig. 3. Class-wise accuracy for three different epochs

Table 2. Results of application classification

Class Existing results(%) [17] Accuracy for CNN(%) CNN + Auto encoder(%)

Browser 88.60 97.97 100

Chat 99.80 100 100

Torrent 98.70 94.16 98.90

Overall 95.70 97.37 99.63



Deep Learning for Network Flow Analysis and Malware Classification 233

Fig. 4. Class-wise accuracy for malware classification

Fig. 5. Training epochs vs Accuracy graph for malware classification with learning rate
of 0.001 and dropout of 0.9. Average Testing Accuracy is 94.91%

applications at 100% and that of torrent(with encryption enabled) is 98.9%.
The overall accuracy is at 99.63% where as that of the existing method [17] was
at 95.70% and classification using CNN only is at 97.37%.

3.3 Malware Classification

Totally 9 families of malware is taken for classification. The CNN architecture
with two convolutional and two dense layers give maximum accuracy for the
data sample (full Kaggle dataset was too big to process, so random sample was
taken). The average accuracy of 94.91% is achieved with this architecture as
shown in Fig. 5. The class wise accuracy is also shown in the Fig. 4.



234 R.K. Rahul et al.

4 Conclusion

Deep learned features are abstract in nature and cannot be attributed to any
specific measure of the data entities (like traditional features which are hand
crafted), such as network traffic and malware that generate huge amounts of
data. From the results of our experiment we can conclude that this data in
each case has got more information than what is humanly visible, like basic
statistical behaviours, port associations, header information and format etc. The
obvious benefits are that these features are also invisible to the attacker and
data fingerprints like these cannot be manipulated. For malware we have used
their binary executable code and for the network traffic we used the transmitted
payload inside each packet. We speculate that since the code profiles seldom
change for even the most tricky polymorph, a static pre-trained model will do
that can be integrated with the firmware. The case with network traffic is almost
very similar. Newer and proprietary protocols/applications are mostly derived
from existing ones and can be caught since their flow signatures will remain more
or less static. We also observed that among all the three, torrent gives the least
accuracy for which we speculate that it is due to the tunnelling and encrypting
behaviour of torrent transmissions. But given these conditions, we still believe
we can identify them accurately in real time, if we pump in more data to train
the network.

5 Future Work

Presently the classification was done only using CNN and auto encoder. In future,
it can be further extended to RNN and LSTM as transmitted data might have
some auto correlations or sequential behaviour. The experiment was done by
collecting packets over a small network which can be expanded over larger ones.
We can try for more applications especially the ones with proprietary protocols.
Classification can be performed on Botnets to identify infections in real time.
The malware classification has a lot of room for improvement, and can chunk
more data toward this goal. The main use of this malware model is with in
disassemblers or firmware profilers which can see the actual code passed for
execution. Any code suspected to be malicious can be filtered or at least be
quarantined prior to the real execution of it. In the same way a network traffic
filter can be set up on bridges and routers based on learned models trained on
malicious or congestion causing traffic to do selective load shedding.

References

1. Convolutional neural network. https://en.wikipedia.org/wiki/Convolutional
neural network. Accessed 10 May 2017

2. Deep learning. https://en.wikipedia.org/wiki/Deep learning. Accessed 29 Nov
2016

3. Tcpdump. http://www.tcpdump.org/tcpdump man.html. Accessed 27 Apr 2017

https://en.wikipedia.org/wiki/Convolutional_neural_network
https://en.wikipedia.org/wiki/Convolutional_neural_network
https://en.wikipedia.org/wiki/Deep_learning
http://www.tcpdump.org/tcpdump_man.html


Deep Learning for Network Flow Analysis and Malware Classification 235

4. Anjali, T., Menon, V.K., Soman, K.P.: Network application identification using
deep learning. In: 6th IEEE International Conference on Communication and Sig-
nal Processing (2017, accepted)

5. Drew, J., Moore, T., Hahsler, M.: Polymorphic malware detection using sequence
classification methods, pp. 81–87 (2016)

6. LeCun, Y., Bengio, Y., Hinton, G.: Deep learning. Nature 521(7553), 436–444
(2015)

7. Microsoft: Kaggle malware data. https://www.kaggle.com/c/malware-
classification/data. Accessed 11 May 2017

8. Nagananthini, C., Yogameena, B.: Crowd disaster avoidance system (CDAS) by
deep learning using extended center symmetric local binary pattern (XCS-LBP)
texture features. In: Raman, B., Kumar, S., Roy, P.P., Sen, D. (eds.) Proceedings
of International Conference on Computer Vision and Image Processing. AISC, vol.
459, pp. 487–498. Springer, Singapore (2017). doi:10.1007/978-981-10-2104-6 44

9. Nataraj, L., Karthikeyan, S., Jacob, G., Manjunath, B.S.: Malware images: visu-
alization and automatic classification. In: Proceedings of the 8th International
Symposium on Visualization for Cyber Security, VizSec 2011, pp. 4:1–4:7. ACM
(2011). http://doi.acm.org/10.1145/2016904.2016908

10. Orebaugh, A., Ramirez, G., Beale, J.: Wireshark & ethereal network protocol ana-
lyzer toolkit (2006)

11. Athira, S., Mohan, R., Poornachandran, P., Soman, K.P.: Automatic modulation
classification using convolutional neural network. IJCTA 9(16), 7733–7742 (2016)

12. Rahul, R.K., Menon, V.K., Soman, K.P.: Network protocol classification using deep
learning. In: 6th IEEE International Conference on Communication and Signal
Processing (2017, accepted)

13. Soman, K., Diwakar, S., Ajay, V.: Data Mining: Theory and Practice [WITH CD].
PHI Learning Pvt. Ltd., Delhi (2006)

14. Soman, K., Loganathan, R., Ajay, V.: Machine learning with SVM and other kernel
methods. PHI Learning Pvt. Ltd., Delhi (2009)

15. Team, T.D.: Deep learning tutorials. http://deeplearning.net/tutorial/. Accessed
29 Nov 2016

16. Tongaonkar, A., Keralapura, R., Nucci, A.: Challenges in network application iden-
tification (2012)

17. Wang, Z.: The applications of deep learning on traffic identification. BlackHat USA
(2015)

18. Zander, S., Nguyen, T., Armitage, G.: Automated traffic classification and appli-
cation identification using machine learning, pp. 250–257 (2005)

https://www.kaggle.com/c/malware-classification/data
https://www.kaggle.com/c/malware-classification/data
http://dx.doi.org/10.1007/978-981-10-2104-6_44
http://doi.acm.org/10.1145/2016904.2016908
http://deeplearning.net/tutorial/


Kernel Modification APT Attack Detection
in Android

Ajay Anto, R. Srinivasa Rao(B), and Alwyn Roshan Pais

Information Security Research Lab, National Institute of Technology,
Mangalore, Karnataka, India

ajay.anto@gmail.com, routh.srinivas@gmail.com, alwyn.pais@gmail.com

Abstract. Android is one of the most secure and widely used operating
systems for the mobile platform. Most of the Android devices have the
functionality for rooting and installing new custom ROMs and kernels in
the device. This feature of the Android devices makes it vulnerable to the
kernel-modification advanced persistent threat attack (APT). This type
of APT attacks cannot be detected by using existing tools and methods.
This paper presents the implementation details of a kernel-modification
APT attack performed on an android device and proposes a new method
for detecting the same. The proposed system uses control flow analysis
of the kernel binary code for detecting APT. In control flow analysis the
control flow graph of the genuine kernel is compared with the control flow
graph of the device-kernel and detects the APT based on signatures.

Keywords: Advanced persistent threat · Android kernel · APT detec-
tion · Android security · Operating system

1 Introduction

Android is a Linux-based operating system designed primarily for touchscreen
mobile devices such as Smartphones and tablet computers. It is one of the most
secure and widely used operating system for mobile platform. Most of the android
devices have the functionalities for rooting and installing new custom ROMs and
kernels in the device. This feature of Android devices makes it vulnerable to the
‘kernel-modification advanced persistent threat attack’ (APT). The attacker can
download the source code of android kernel from the internet and he can add the
required functionality to the kernel source code. For example, the attacker can
download a genuine kernel source code and add functionality for automatically
capturing images and recording sound, and sending recorded voice and images to
the attacker through a mobile network without the knowledge of the user. Then
the attacker can overcome all the security features provided by the genuine OS by
changing the genuine android operating system kernel with a malicious operating
system kernel created by the attacker. If he has successfully changed the kernel,
then the built in android security features will not prevent him from performing
the attack. Then he makes the targeted user to use the phone carrying malicious
c© Springer Nature Singapore Pte Ltd. 2017
S.M. Thampi et al. (Eds.): SSCC 2017, CCIS 746, pp. 236–249, 2017.
https://doi.org/10.1007/978-981-10-6898-0_20



Kernel Modification APT Attack Detection in Android 237

OS. This type of threat has a very high impact and it is very hard to identify.
After a successful attack, all built in security features of android will work in
favor of the attacker and will prevent the detection of attack by any security
software running on the device.

Nowadays buying mobile phones from online shopping sites is very common.
Many are ready to buy from any seller, who is selling mobiles for a lesser price
without checking their authenticity. This behavior of android customers opens a
great opportunity for the attacker to implement APT attack over a large number
of users. The attacker can easily register to any of the shopping sites and can
easily sell products which contains malicious kernel. If an attacker modifies the
kernel and implements the attack in the android kernel, then the lifetime of the
attack is almost equal to the lifetime of the device. No security software running
in android phone can detect this kind of attack. Implementing such an APT
attack is also a challenging thing. This paper presents the steps for implementing
kernel-modification APT attack and implementation details of the APT attack
performed in the GT S-6102 kernel.

We propose a new method for detecting the kernel-modification APT attack
in android device. The proposed system uses control flow analysis of the kernel
binary code for detecting APT. In control flow analysis the control flow graph of
the genuine kernel is compared with the control flow graph of the device-kernel
and detects the APT based on signatures generated for the detection mechanism.

The rest of the paper is organized as follows. In Sect. 2, we have presented a
brief literature survey on existing work. Section 3 discusses kernel-modification
APT attack implementation steps for android. Section 4 presents the proposed
system for kernel modification APT attack detection. Section 5 discusses Imple-
mentation and results. Section 6 presents conclusions and future work.

2 Literature Survey

We are not able to find any major research work related to kernel-modification
APT attack implementation and APT detection in the literature. But many
works related to binary-code analysis and android malware detection are
available.

Levine et al. [1] presented a framework to detect and classify rootkits and
discussed a methodology for determining if a system has been infected with a
kernel-level rootkit. By using their tool once infection is established, administra-
tors can create new signatures for kernel-level rootkits to detect them. Although
they have used cyclical redundancy check (CRC) checksum for faster and less
memory comparison of file contents, this comparison tells only that a current
program file differs from its original program file. The above approach can be
extended for detection of APT in android. You and Noh [2] proposed Android
platform based Linux kernel rootkit. In this paper, they have discussed some
rootkits, which exploit android kernel by taking advantage of LKM (loadable
kernel module) and /dev/kmem device access technology and the danger the
rootkit attack would bring. Some of these methods can be used for implement-
ing APT components.



238 A. Anto et al.

Isohara et al. [3] proposed a system for Android malware detection. This sys-
tem performs kernel based behavioral analysis. Liu et al. [4] proposed a technique
that discusses different methods and tools, for analyzing binary code. Among
these tools static binary-code analyzing tools can be used in the proposed sys-
tem, for analyzing the binary-code. Bergeron et al. [5] proposed a technique for
static analysis of binary code that address the problem of static slicing on binary
executables for the purposes of the malicious code detection in COTS compo-
nents. Rubanov et al. [6] proposed a system for Runtime Verification of Linux
Kernel Modules. In the proposed system, they have used call interception for
the verification of the kernel. They developed a framework called KEDR for the
kernel verification. But their framework cannot be used for the analysis of the
entire system. It can be used for analysis of single function. KEDR tool can be
used for collecting control flow information.

Many of the existing methods for binary code analysis can be extended to
analyze the android kernel binary code. The static binary analysis tools can be
used for creating a control flow graph of entire kernel. The generated control
flow graphs can be used for APT detection.

3 Kernel Level APT Attack Implementation in Android
Devices

The Linux kernel is the most suitable place for implementing the kernel level
APT attack because the entire hardware of the device is directly accessible from
the kernel. If the attack is implemented on kernel level, then the android OS secu-
rity will not allow any application layer software to detect or remove the APT.
The attacker can implement the APT attack on Android devices by following
the steps given below.

1. Download the android kernel source code
2. Modify the Linux kernel and add required functionality to the kernel
3. Cross compile the Linux kernel by using ARM compiler, it will generate kernel

image named zImage
4. Download the original kernel image (boot.img) or extract the boot.img from

the device
5. Extract the ramdisk.img from stock kernel boot.img
6. Create a new boot.img by combining zImage and ramdisk.img.
7. Boot the device into bootloader mode /cwm recovery mode/downloading

mode
8. Download and flash newly created boot.img into device

The kernel source code can be downloaded directly from the device manufac-
ture’s site or android open source site. Whatever kernel modifications required
to perform APT attack on android device are performed in step 2. For exam-
ple, to perform an image capturing APT attack, the camera driver has to be
modified to perform automatic capturing of images. ARM tool chains are spe-
cially built tool for building executables for the ARM architecture. In step 3 the



Kernel Modification APT Attack Detection in Android 239

modified kernel is cross- compiled by using ARM tool chain. After compilation
the compressed kernel image (zImage) is generated. Steps 3–6 are performed
for creating boot.img from zImage and ramdisk image. For creating boot.img
the original ramdisk image is separated from the genuine boot.img and which is
combined with the modified zImage.

In the seventh step, the device is booted into bootloader /recovery /down-
loading mode and in the last step the newly created boot.img is copied to the
device and flashed it into the device using different tools.

4 Detection of APT

The kernel-modification APT attacks can be efficiently detected by using control
flow analysis of the kernel binary code. The control flow analysis compares the
control flow graph of the genuine kernel with the control flow graph of the ker-
nel from the device and detects the APT based on signatures generated for the
detection mechanism. This section presents the proposed mechanism for detect-
ing kernel-modification APT attack in android using control flow analysis of
the kernel binary-code and implementation details of the proposed system. This
section presents the proposed system for the kernel-modification APT detection
in android.

4.1 Generation of Signature for APT Detection

The notations used in this paper are explained in Table 1.
In order to detect APT the proposed system require genuine kernel

(boot.img) B (kernel used by the manufacturer) and vmlinux V for the gen-
uine kernel B. The following steps are performed for generating signatures.

1. Extract zImage Z from B.
2. Extract uncompressed kernel Image I from zImage Z.
3. Compute the Hash code H for I.
4. Disassemble the binary code I.
5. Createfunction call graph G for the kernel I.
6. Create function mapping file M for kernel Image I.
7. Create a list L containing device driver function details.
8. Create hexcode file X from image I.
9. H, I,M,L,X are stored as signature S for APT detection.

4.2 APT Detection Algorithms

The proposed system will back up the kernel image (boot.img) in the device
using backup tools. The backing up of boot.img and copying of backup files to
the computer are performed under recovery mode or downloading mode of the
Android device. Otherwise, the operating system running on the device may
deny the access to certain files. The interference of the OS can be avoided by
performing above tasks in recovery or downloading mode.



240 A. Anto et al.

Table 1. Notations used

Notation Meaning

B Genunie kernel boot image (boot.img)

B′ boot.img from device

V vmlinux for the genuine kernel B

Z Genuine kernel zImage

Z′ zImage extracted from the device kernel boot.img

I Uncompressed kernel image for genuine kernel

I ′ Uncompressed kernel image for device kernel

H Hash code calculated from I

H ′ Hash code calculated from I ′

X Hex code for the genuine kernel

X ′ Hex code for the kernel extracted from the device

M Function mapping file for the genuine kernel

M ′ Function mapping file for the kernel extracted from the device

L device driver function call details

G′ Used for storing function call graph of the kernel extracted from
the device

G Used the function call graph of the genuine kernel

S Signature file

A1 (two dimensional array) For storing nodes from G′ and
corresponding matching nodes in G

A2 For storing non matching nodes of G′

A3 (two dimensional array) For storing nodes from G′ and
corresponding matching nodes in G find during edge matching
and a variable

R For storing results and detailed log during APT detection

Max Contains the maximum number of nodes to be searched

R For storing results and detailed log during APT detection

threshold Indicates the amount of similarity is required to consider two
nodes are same

edge threshold Indicates the amount of similarity in edges is required to
consider two nodes as same

Graph Matching for the APT detection (Algorithm 2): In the function
call graph each node represents a function and each edge represents a function
call. The following algorithm will compare two function call graphs. It will also
check the similarity of the functions.

The graph generated from the Kernel Image will contain addresses of func-
tions as nodes instead of the function name, due to this the graph matching



Kernel Modification APT Attack Detection in Android 241

Algorithm 1: APT Detection
Data: S(G,H, I,M,L,X), array A1, array A2, array A3, R
Result: R contains Details of APT if it is present

1 Boot the device into boot loader mode or custom recovery mode
2 Load the backup tool in device; Back up kernel Image (boot.img) B′

3 Transfer the Kernel image B′ to the computer; Extract zImage Z′ from B′

4 Extract Image I ′ from zImage; Genarate M ′, G′

5 Compute the hash code H’ for the Image
6 if H ′ = H (from signature) then
7 Kernel is authenticated no threat found
8 Add the details to R
9 return 0

10 else
11 Create control flow / function call graph G′ of the extracted image I ′

12 A1 ← ∅; A2 ← ∅; A3 ← ∅; R ← ∅; GraphMatching(G′, I ′,M ′)
13 if A2 = ∅ then
14 /*all nodes got matched */
15 Kernel is authenticated and no threat found
16 add details to R
17 return 0

18 else
19 SignatureMatching()

20 return R

is not straight forward. The function call graph may contain multiple similar
trees also. The existence of the multiple similar trees makes the graph matching
even difficult. Due to the above reasons the matching algorithm should check
the function length, content of the function and number of function calls initi-
ated from the function for finding matching function for each node. In the first
step the algorithm creates hex code (X ′) for the kernel image (I ′), then it will
perform the Matching, AdvancedMatching, EdgeMatching for comparing the
graphs G and G′.

Algorithm for matching two graphs (Algorithm 3): The Matching algo-
rithm finds the matching node (both nodes can be considered as similar) in graph
G for each node in graph G′. It will compare the nodes based on the length of
function, number of edges and code difference. The attacker can insert, remove
and modify functions in the kernel. Due to this the slight change in order of
functions in the binary code may be there and remaining order will be similar in
both genuine kernel image and the kernel image extracted from the device. This
algorithm uses this property for improving accuracy and speed. This algorithm
checks nodes based on the order of their existence, for that it is keeping the
indexes of nodes in i and j (i is used for storing index of nodes in graph G′ and
j is used for storing index of nodes in graph G).



242 A. Anto et al.

Algorithm 2: GraphMatching
Input: Function call graphs G′, I ′

Data: S(G,H, I,M,L,X), array A1, array A2, arrayA3, R
Result: modified array A1 containing nodes and corresponding matching

nodes, modified array A2 containing non-matching nodes, modified
array A3 containing nodes and corresponding matching nodes find
during AdvancedMatching, modified R

1 Generate hexcode X ′ from I ′

2 Matching(G′, I ′, X ′,M ′) // which will create a matching list A1 and
non-matching list A2

3 AdvancedMatching(G′, I ′, X ′,M ′)
4 EdgeMatching(G′, I ′, X ′,M ′)
5 return

Algorithm 3: Matching
Data: S(G,H, I,M,L,X), array A1, array A2, maximum number of nodes to

be searched Max, code distance threshold value threshold
Input: G′, I ′, X ′,M ′

Result: modified array A1 containing nodes and corresponding matching
nodes, Modified array A2 containing non-matching nodes

1 i ← 0 // i represent the node number in graph G′

2 j ← 0 // j represent the node number in graph G
3 while i <number of nodes in graph G′ do
4 if i is not visited then
5 if j < total number of nodes in graph G and

CompareNodes(G′, i, j,X ′,M ′) = 1 then
6 /*nodes i of G′ and node j of G are matching*/

DFSMatching(i, j, G′,M ′, X ′);

7 else
8 Compare each node j1 of graph G having |j − j1| ≤ Max/2 with the

node i of G′ in ascending order of |j − j1|
9 if node j1 got matched with the node i then

10 DFSMatching(i, j1, G
′,M ′, X ′)

11 j ← j1 + 1

12 i ← i + 1

13 GenerateNonMatchingList(G′)

Algorithm for comparing two nodes (Algorithm 4): This algorithm com-
pares node i of function call graph G′ with node j of function call graph G.
In this algorithm steps from 1 to 4 calculates the function lengths, number of
function calls for node i and j. In step 5 the hex code difference between the
functions corresponding to node i and j is calculated. In step 6 checks the func-
tion lengths, number of function calls are same or not and code difference is less
than threshold or not. If all the condition in step 6 is satisfied, then the node



Kernel Modification APT Attack Detection in Android 243

Algorithm 4: CompareNodes
Input: Function call graphs G′, i, j, X ′,M ′

Data: S(G,H, I,M,L,X), array A1, code distance threshold value threshold
Result: modified array A1 containing nodes and corresponding matching

nodes, Modified array A2 containing non-matching nodes
1 l1 ← function length of node i in graph G′ from M ′

2 l2 ←function length of node j in graph G from M
3 e1 ← number of edges from node i of graph G′

4 e2 ← number of edges from node j of graph G
5 c1 ← Hex code difference between node i of G and node j of G′ using X and X ′

6 if l1 = l2 and e1 = e2 and c1 ≤ threshold then
7 Add node i of G′ and node j of G to the matching list A1 with the hex code

difference c1
8 return 1

9 return 0

i, j are added to the matching list A1 and algorithm returns 1. If the conditions
are not satisfied, then the algorithm will return 0.

DFSMatching Algorithm (Algorithm 5): If two functions are same then the
function calls made by those functions are also same. Using this property the
DFS matching algorithm finds the matching function. This is done to improve
the speed of node matching and improving accuracy.

Algorithm 5: DFSMatching
Data: S(G,H, I,M,L,X), array A1, array A2, code distance threshold value

treshold
Input: i, j, G′,M ′, X ′

Result: modified array A1 containing nodes and corresponding matching
nodes, modified array A2 containing non-matching nodes

1 Make node i as visited
2 for each node m adjacent to the node i in graph G′ do
3 find similar adjacent node n in graph G
4 if m is not visited and CompareNode(G’,m,n,X’,M’) = 1 then
5 DFSMatching(m,n,G′,M ′, X ′)

Algorithm for generating the non-matching list (Algorithm 6): This
algorithm will generate a list of non-matching nodes of the graph G′ (nodes
having no matching node). The algorithm searches each node in graph G′ in the
array A1 containing matching list. If the node is not in A1 then, it is added to
array A2.

Advanced Matching Algorithm (Algorithm 7): The advanced matching
is done only for those nodes, having no matching node identified by the graph



244 A. Anto et al.

Algorithm 6: GenerateNonMatchingList
Input: Function call graphs G′

Data: array A1, array A2

Result: modified array A2 containing non-matching nodes
1 i ← 0
2 while i < number of nodes in graph G′ do
3 if node i of graph G′ /∈ A1 then
4 add node i to A2

5 return

Algorithm 7: AdvancedMatching
Data: S(G,H, I,M,L,X), array A1, Array A2, code distance threshold value

threshold
Input: G′, I ′, X ′,M ′

Result: modified array A1 containing nodes and corresponding matching
nodes, Modified array A2 containing non-matching nodes

1 for each node i of G′ ∈ A2 do
2 if i <total number of nodes in graph G′ then
3 j ← i
4 else
5 j ← total number of nodes in graph G

6 if CompareNodes(G′, i, j,X ′,M ′) �= 1 then
7 Compare each node j1 of the graph G′ with the node i of graph G in

ascending order of |j − j1|
8 if CompareNodes(G′, i, j1, X ′,M ′) �= 1 then
9 Matching node found

10 A2 ← ∅
11 GenerateNonMatchingList(G′)

matching algorithm. This algorithm is similar to the graph matching algorithm,
only differs in DFS matching and number of nodes searched for finding a match-
ing node. The algorithm tries to find a matching node for each node i of graph
G′ in array A2 generated after Matching algorithm. Step 2 to 6 initialize the
starting node j of graph G for searching. Then the nodes i and j are compared.
If both are matched, then both are added to array A1. Else the search is done
for entire nodes in graph G. The algorithm compares each node j1 of the graph
G′ with the node i of graph G in ascending order of |j − j1|. After performing
first 20 steps array A2 is recreated.

Algorithm for Edge Matching (Algorithm 8): EdgeMatching is performed
for those nodes which don’t have any matching node after Advanced Matching.
This algorithm compares nodes based on the outgoing edges (function calls).
The graph Matching and Advanced Matching algorithm considered only nodes



Kernel Modification APT Attack Detection in Android 245

Algorithm 8: EdgeMatching
Data: S(G,H, I,M,L,X), array A1. Array A2, code-distance threshold value

threshold, edge threshold, array A3

Input: G′, I ′, X ′,M ′

Result: Modified array A3 containing non-matching nodes
1 for each node i of G′ ∈ A2 do
2 l1 ← length of function i in G′ from M ′

3 e ← number of edges starting from node i in graph G′

4 if l1 > 100 and e > 0 then
5 for each node k adjacent to i in graph G′ do
6 if matching node for k ∈ A2 then
7 n ← matching node for k from A2

8 Name of node k ← name of node n

9 for each node j ∈ G do
10 edist ← Edge difference between node i in graph G′ and node j in

graph G calculated by comparing adjacent node names of i and j
11 C ← code difference between node i in graph G′ and node j in

graph G
12 if edist < edge threshold and c < threhold then
13 Add the nodes i, j into to the edge-matching list A3 with edist

and c

having the same number of edges for node matching. This algorithm compares
the nodes based on the edge difference and code difference. This algorithm can
be used to identify matching nodes for those nodes having a small number of
function call changes.

Algorithm for Signature Matching (Algorithm 9): The signature match-
ing algorithm will check the following things. Primarily the algorithm checks
whether all functions in each device driver are properly identified or not. If it
is not identified, then some modification to the device driver has to be there.
Secondly, in device drivers some functions like ioctl, open, close etc. are only
called from the user space. Those functions are never to be called inside the
kernel. Due to that in the second step the algorithm checks whether any unex-
pected such function calls are there or not. One property of almost all android
APT attacks is that, it will use two or more device drivers (at least one input
or one output component of the device) for implementing attacks. For example,
capturing images automatically using camera can’t be considered as APT attack
until it sends the data using network to the attacker. Due to this the algorithm
checks any function, calls more than one device driver (input and output) in
a function call tree which is identified as modified. Android device components
can be classified as pure input device pure output devices, the device having
input and output facilities like communication components and file system. The
algorithm should check the following things in each modified tree.



246 A. Anto et al.

Algorithm 9: SignatureMatching
Data: S(G,H, I,M,L,X), array A1, array A2, A3, R
Result: Modified R

1 flag ← 0
2 for each function i ∈ L do
3 if node i /∈ A1 or node i /∈ A3 then
4 /*Check existence of node I in graph G′ by checking the matching node

list A1 and edge-matching list A3*/
5 Add details of node i to R

6 for each node j for G′ ∈ A2 do
7 Generate all the sub-trees in the graph G′ that contains the node j
8 for each tree k for node j do
9 for each function i ∈ L do

10 if node i ∈ k then
11 /*Unexpected function calls to device driver function I is

present in the tree, k */
12 Add that function call detail to R

13 for each input driver functions i ∈ L do
14 for each output driver functions j ∈ L do
15 if function i ∈ k and j ∈ k then
16 /*APT Detected*/
17 Add APT details to R
18 flag ← 1

19 if flag = 1 then
20 return 1
21 else
22 return 0

1. Whether there are function calls to pure input device drivers and pure output
device drivers in modified tree.

2. Whether there are function calls to pure input device driver and input-output
device driver, example camera and network

3. Whether there are function calls to more than one input-output device, for
example, file operation and network operation

In step 1 the algorithm initializes a flag to 0, this flag is used to indicate the
existence of APT. In Step 2 to 6 each function i in device driver function details
list L is searched in arrays A1 and A3. If the function i is not found in both
A1 and A3, then the missing function details are added to the R. Steps 8 to
23 are performed for each node j of graph G′ in A2. For each node j all sub
trees having node j in graph G′ are generated and steps from 9 to 19 are carried
out. For each tree, steps 10 to 12 checks whether any function belongs to L is
called or not. If it is there, then the function call is considered as an unexpected



Kernel Modification APT Attack Detection in Android 247

function call and details will be added to R. After checking unexpected function
calls the algorithm starts checking for APT. For Detecting APT the algorithm
checks the existence of function calls to both input and output device driver in
each modified tree by performing steps 13 to 18. If those calls are there, then the
APT is detected, then the flag is changed into 1 and details are added into R.

4.3 Complexity Analysis of the APT Detection Algorithms

The complexity of the APT Detection algorithm is the sum of the complexities
of graph matching algorithm and the signature matching algorithm. The worst
case complexity of the algorithm is O(n2 ∗ (c+e))+n∗m) which is almost equal
to Θ(n2 ∗ (c + e)), where n is the number of nodes in G′, c is the complexity of
comparing two nodes, m is the number of nodes in the signature and e is the
complexity of calculating edge distance. In the best case, the complexity of the
algorithm is O(1) (when hash codes are getting matched). In average cases the
complexity of the algorithm is Θ(c ∗ n + 0.01 ∗ n ∗ m) which is almost equal to
Θ(c ∗ n).

4.4 Detection of New APTS

The generation of function call trees for all APTs and use it as a signature
for APT detection is very difficult. The attacker can perform attacks in many
different ways, which will lead to the formation of different function call trees
in kernel code. Adding all these APT function call trees into the signature is
a very hard task. Due to the above reason the proposed detection mechanism
uses the original device drivers function call trees as a signature. The proposed
APT detection mechanism finds the existence of APT by comparing genuine
device driver function call trees with the function call trees (which is identified
as modified) in the device-kernel.

The proposed APT detection mechanism can be extended to detect almost all
types of kernel-modification APTs in android device drivers by adding function
call details of all genuine device drivers to the signature. The signature matching
uses the original function call tree for each device driver function (in signature)
to find the existence of APT; for that the signature matching compares the
original function call tree of each device driver with each modified function call
tree in the device kernel graph. If function calls to both input and output device
drivers exists (which is not existing in original kernel function tree) in a modified
tree of device kernel then that modification in the kernel can be considered as
APT.

5 Implementation and Results

5.1 APT Attack Implementation

The camera APT attack was successfully implemented in the gut s6102 kernel.
The source code for GTS-6102 kernel was downloaded from the Samsung open



248 A. Anto et al.

Fig. 1. Image captured by camera
APT

Fig. 2. Video frame captured by camera
APT

source site. The source code was modified for including required functionality.
Then the source code is compiled using the ARM compiler. The ramdisk image is
extracted using the umkbootimg tool form genuine boot. img. Then boot.img is
created by combining ramdisk image and zImage using the mkbootimg tool [7].
Then the boot.img is flashed on the device using the kernel flasher tool. There
are two different implementation one for images capturing and other for video
capturing. Image capturing attack This attack captures pictures using the
camera in frequent intervals. The attack will do the entire capturing procedure
automatically and store the captured YCBCR image in SD card. The captured
image is having 640 × 480 resolution. This image is then converted into .JPEG
format after transferring it into the device. The image captured by the camera
APT attack is given in Fig. 1.

Video capturing attack. This attack makes the kernel capturing 30 s video in
every 3 min. The captured video has 320× 240 resolution and YCBCR format.
After capturing each frame the program automatically stores them in SD card.
Then the raw video is transferred to the computer and converted it into mp4
format. Figure 2 shows one frame in the video captured by the attack.

5.2 Implementation of APT Detection

5.2.1 APT Detection Signature Creation
For creating signature the steps mentioned under Generation of signature for
APT detection are performed. The genuine uncompressed kernel Image is
obtained after cross compiling genuine source code using arm compiler with-
out any modification. Then the hash code for the Image is calculated. Then the
kernel Image is converted into .Elf format by adding elf headers to the Image.
The function call graphs and function mapping file are generated using IDA pro.
The list containing device driver details was generated using a program written
in Java.



Kernel Modification APT Attack Detection in Android 249

5.2.2 APT Detection
Extracting kernel image from the android device is the first step in APT detec-
tion. In order to extract kernel image the device is booted into The cwm recovery
mode. The kernel image (boot.img) is extracted from device by using backup tool
which comes along with the cwm recovery. Then the boot.img is copied to the
computer from the SD card. The zImage from boot.img is separated using umk-
bootimg tool. Then the uncompressed kernel Image is extracted from zImage
using repack-zImgae.sh shell script. After extraction the uncompressed zImage
is converted into .elf format by adding elf header, then the elf file is opened
in IDA pro and generated all required files. All APT detection algorithms are
implemented using Java. Files generated through IDA and uncompressed ker-
nel image and signature generated are given to as input for detection tool. The
detection tool uses the signature created before for APT detection.

6 Conclusion and Future Work

Kernel-modification APT attacks are capable of destroying entire security fea-
tures of the Android OS. It can be used for the highly targeted attacks. The
kernel- modification APT attack was successfully implemented in GTS-6102
smartphone kernel. The implementation results have proven that, the android
devices are vulnerable to kernel-modification APT attack. An efficient method
for detecting these Kernel-modification APT attacks was proposed and success-
fully implemented. All the device driver signatures for the GTS-6102 Smartphone
were generated and used it for the APT detection. These signatures made the
detection mechanism capable of detecting almost all types of kernel modifica-
tion APT attacks. The implementation was tested against the image and video
capturing APT attacks for checking the accuracy of the detection.

References

1. Levine, J., Grizzard, J.B., Owen, H.L.: Detecting and categorizing kernel-level rootk-
its to aid future detection. IEEE Secur. Priv. 4(1), 24–32 (2006)

2. You, D.H., Noh, B.N.: Android platform based linux kernel rootkit. In: 2011 6th
International Conference on Malicious and Unwanted Software (MALWARE), pp.
79–87. IEEE (2011)

3. Isohara, T., Takemori, K., Kubota, A.: Kernel-based behavior analysis for android
malware detection. In: 2011 Seventh International Conference on Computational
Intelligence and Security (CIS), pp. 1011–1015. IEEE (2011)

4. Liu, K., Tan, H.B.K., Chen, X.: Binary code analysis. Computer 46(8), 60–68 (2013)
5. Bergeron, J., Debbabi, M., Erhioui, M.M., Ktari, B.: Static analysis of binary code

to isolate malicious behaviors. In: Proceedings of the IEEE 8th International Work-
shops on Enabling Technologies: Infrastructure for Collaborative Enterprises (WET
ICE 1999), pp. 184–189. IEEE (1999)

6. Rubanov, V.V., Shatokhin, E.A.: Runtime verification of linux kernel modules based
on call interception. In: 2011 IEEE Fourth International Conference on Software
Testing, Verification and Validation (ICST), pp. 180–189. IEEE (2011)

7. Xda developers: compiled mkbootimg and unpack/repack linux scripts for
boot.img. http://forum.xda-developers.com/nexus-s/development/hack-compiled-
mkbootimg-unpack-repack-t891333 (2016). Accessed 01 June 2016

http://forum.xda-developers.com/nexus-s/development/hack-compiled-mkbootimg-unpack-repack-t891333
http://forum.xda-developers.com/nexus-s/development/hack-compiled-mkbootimg-unpack-repack-t891333


Opaque Predicate Detection by Static Analysis
of Binary Executables

R. Krishna Ram Prakash1,2(B), P.P. Amritha1, and M. Sethumadhavan1

1 TIFAC-CORE in Cyber Security, Amrita School of Engineering, Coimbatore, India
krishnaramprakash@gmail.com

2 Amrita Vishwa Vidyapeetham, Amrita University, Coimbatore, India

Abstract. Opaque Predicates are one of the most covert methods
employed by obfuscators to mitigate the risk of reverse engineering of
code. Detecting the presence of opaque predicates in a program is an
arduous problem since, it is challenging to differentiate between the con-
ditional expressions present in the program and the extraneous expres-
sions added by the obfuscator. This paper addresses a number of limi-
tations encountered in the previous work due to dynamic analysis and
proposes an improved algorithm for the detection of opaque predicates,
with better efficiency and runtime. We propose a two phased approach
for detecting the presence of opaque predicates - building an extractor
to extract mathematical expressions from conditional statements and a
decision engine which determines if the expressions are opaque predicates
or not.

Keywords: Reverse engineering · Deobfuscation · Opaque predicates

1 Introduction

Among the numerous methods employed to make reverse engineering hard,
opaque predicates belong to a special class of approach. It is because, opaque
predicates can seamlessly be integrated into the program along with any of the
numerous obfuscation methods available like virtualization and packing. So, it
is crucial to understand the working of opaque predicates and formulate an effi-
cient method to detect their presence in a given program. Although there are
multiple methods [5,7] currently present in the detection of opaque predicates,
there are new methods which are being discovered for generating new classes of
opaque predicates [9], leveraging on the limitations of previous works on opaque
predicate detection. So in this paper, we are addressing the limitations posed by
LOOP [7] due to the underlying use of dynamic analysis.

1.1 Opaque Predicates

A predicate is a boolean expression which evaluates to either true or false. This
result is used by the processor to decide which branch of code to be executed.
c© Springer Nature Singapore Pte Ltd. 2017
S.M. Thampi et al. (Eds.): SSCC 2017, CCIS 746, pp. 250–258, 2017.
https://doi.org/10.1007/978-981-10-6898-0_21



Opaque Predicate Detection by Static Analysis of Binary Executables 251

Opaque predicates are a special sub-class of predicates such that these predicates
are constant expressions. They constantly evaluate to only true or only false,
depending on the way they are constructed. These type of predicates are termed
“opaque” because, its behavior cannot be determined by an analyst [4].

Presence of opaque predicates are relatively trivial when it comes to manual
analysis by a human reverse engineer. By running the program or by debugging,
one will be able to recognize patterns and identify the presence of opaque predi-
cates. This is done by noticing that some branches are never executed. But, this
takes a lot of effort and manpower to analyze a single obfuscated program. So,
it is crucial to have an automated approach in the detection of opaque predi-
cates. The existence of opaque predicates effectively cripple all naive automated
analysis of binary programs [2]. This is because, they are used to insert huge
chunks of junk code which never gets executed during the course of execution.
An analyzer, unless it is able to identify if a branch never gets executed or not,
it will end up analyzing huge parts of junk code which functionally has no effect
on the program.

Opaque Predicates have a very detrimental effect over decompilers. This
is because, it would result in the decompiled output containing too much of
irrelevant junk code. This makes it hard to gain any meaningful information
from the decompiled output.

Opaque predicates are extensively used by malicious programs to evade sig-
nature based detection from anti-virus softwares. Polymorphic malwares gen-
erally encrypt themselves to evade static signature-based detection. But, they
are vulnerable to detection in memory since, before execution the code must be
decrypted. So, polymorphic malware authors employ opaque predicates in their
code so that signature generation is different [5] even when the same code is
loaded into the memory.

2 Background

Opaque predicates are boolean expressions which always evaluates to true or
false. They are either tautologies, which always evaluates to true irrespective of
the inputs or they can also be contradictions, which always evaluates to false
irrespective of value of the inputs. Opaque predicates can also be called as con-
stant boolean expressions.

These boolean expressions are used to construct bogus conditional statements
like if-else structures, switch-case or loops. In a more general sense, opaque pred-
icates introduce fake conditional jumps in the program. Each of these conditional
jump results in branching of the execution. Since, opaque predicates make sure
that only one branch is always taken, the other branch can be used to introduce
junk code into the program which is never executed in the course of the program
execution. This results in an increased code size

∀x ∈ Z (x × (x + 1))3 ≡ 0 (mod 2) (1)

A simple example for an opaque predicate is shown by Eq. (1). Irrespective
of the value of x, x× (x+1) would always result in an even number and cube of



252 R. Krishna Ram Prakash et al.

a even number would result in an even number again. A opaque predicate can
be constructed by checking, if the result of this expression is either odd or even.
The presence of these opaque predicates can further be obfuscated by additional
transformations or even another opaque predicate.

The previous work, LOOP [7] employs a similar concept of making use of
SMT solvers to detect opaque predicates. We propose a number of improve-
ments over the idea introduced by LOOP. The entire system of opaque predi-
cate detection works by symbolic execution of the obfuscated program, which
involves dynamic analysis. Although LOOP is a very powerful tool, it carries
the same shortcomings as dynamic analysis [9]. The architecture of LOOP has
an inherent limitation that the presence of opaque predicates are checked only
in the execution path of the program. So, depending on the values of inputs
(disk, network, stdin) the detection rate might vary [1]. There is no direct way
of increasing the code coverage. We address this particular issue by making use
of static analysis to iterate over the conditions instead of dynamic analysis.

3 Proposed Solution

We detect the presence of opaque predicates with the help of a Satisfiability Mod-
ulo Theorem Solvers. In our case, just a boolean satisfiability solver is enough to
classify if a particular boolean expression is an opaque predicate or not. There are
a number of solvers available. We use STP solver [8] (Simple Theorem Prover)
for our purposes.

Satisfiability Solvers consist of an equation stack, which takes in boolean
expressions as input. The system of equations is then checked to determine
if that particular system consists of a solution or not [6]. If there is at least
one solution, which satisfies this system of equations, the system is modeled
and the solution is returned. Otherwise, the system of equations is considered
unsatisfiable or unsolvable.

We propose a two phased approach for the detection of opaque predicated
through static analysis of the obfuscated binaries. The two phases are

– Phase 1 :
• A system which extracts all the predicates present in the program from

all the control flow structures like if-else, switch-case and loops as math-
ematical expressions.

– Phase 2 :
• A decision engine which accepts a predicate as input and returns true, if

it is opaque.
• It returns false, if it is not an opaque predicate.



Opaque Predicate Detection by Static Analysis of Binary Executables 253

3.1 Extracting Predicates

In the first phase, we extract all the predicates whose evaluation results are used
for making conditional jumps in the program. These predicates usually are from
if-else, loops or control-flow structures.

To make sure that the coverage is more, instead of working with the machine-
level code for a particular architecture, we have chosen Binary Ninja’s Interme-
diate Language - LLIL [3] also known as, Low Level Intermediate Language.
This particular IL normalizes most of the different implementations and instruc-
tion sets used by different architectures under a single format. This particular
abstraction layer helps us in applying our solution to programs written for multi-
ple architectures without rewriting all the core components to make it compatible
for them.

We first generate the corresponding Intermediate Language representation of
our program from its native format through the Python APIs of Binary Ninja.
From here onwards, this representation will be known as ProgramIL.

Collecting Location of Predicates. The first step is to collect the location of
all the predicates present in the program. Once the ProgramIL is generated, we
pass it on to GetPredicatesLocation function. We also generate JumpTypesList
for the LLIL to identify conditional jumps from the rest of the code. This is gen-
erated only once and can be stored in the application for future runs. Algorithm
1 describes the logic behind the detection of location of predicates.

We create an empty list called addresses where all the locations of predicates
are stored. We iterate over the ProgramIL and any IL instruction which matches
JumpTypesList are marked as a location of a predicate. We push the location to
addresses. As the loop terminates, we would have all the location of predicates
in the program stored at addresses.

Spawning Parallel Threads for Extraction. One of the advantages of static
analysis over dynamic analysis is that we are not confined to just the execution
path of the program for a particular input. We can examine all the parts of the
code in a parallel fashion. We take full advantage of this, so that we have a total
coverage over the program and examine all parts of the code.

After the addresses are collected, we spawn multiple threads which in-turn
call Algorithm 2 which constructs the expression by backtracing.

Expression Reconstruction by Backtracing. During compilation, complex
expressions which are written in high level language are broken down into a
number of smaller assembly instructions. To check if these expressions are opaque
predicates or not, we need to reconstruct the original complex expression back
from the broken down instructions. We do this by backtracing the instructions
from the conditional jump to the declaration statements of all the variables
involved in the expression. The algorithm for reconstructing the expression from
LLIL, is described at Algorithm 2.



254 R. Krishna Ram Prakash et al.

We start at the location of the conditional jump and we keep stepping back-
wards in the code until we get to the declaration statements of all the sym-
bols contributing to the expression. As we backtrace, the each step made back-
wards, we check if the expanded expression is made out of temporary registers
or whether all the values are loaded from memory.

The aforementioned assumption works because, whatever input is received
whether from network or disk, it is stored in the stack or heap. So, any references
to memory locations can be counted as variable declarations in the high level
language. ‘isDeclaration’ function detects if any of the operands in the current
instruction under consideration references a memory location or not. It can be
easily by cross checking the operands against the known list of general purpose
registers. the IL instruction assignment at that particular location is substituted
in the master expression. This process is continued until the loop terminates.

As the loop terminates, the reconstructed predicate expression is returned,
which will be passed on to the next phase to check if it is an opaque predicate
or not.

Algorithm 1. Collect Location of Predicates
1: function GetPredicatesLocation(ProgramIL)
2: n ← ProgramIL.size
3: addresses ← emptyList()
4: for i ← 0, n do
5: if programIL[i] in JumpTypesList then
6: addresses.add(i)
7: return addresses

Algorithm 2. Reconstruct Expression By Back Tracing
1: function ReconstructExpression(ProgramIL, Address)
2: expression ← emptyString()
3: variables ← emptyList()
4: loop:
5: if isDeclaration(programIL[i]) then
6: variables.remove(programIL[i])
7: else
8: equation ← expandTempV ariables(expression, programIL[i])
9: variables ← getV ariables(expression)

10: if variables.size �= 0 then
11: i ← i − 1
12: goto loop
13: return expression



Opaque Predicate Detection by Static Analysis of Binary Executables 255

3.2 Opaque Predicate Decision Engine

The predicate expressions generated in the previous phase are checked to detect
if they are opaque predicates or not. We make use of STP (Simple Theorm
Prover) [6] to model our Opaque Predicate Decision Engine.

STP: STP or Simple Theorem Prover is a type of SAT solver which has a
sat check functionality present in it. To run a sat check, it takes a system of
equations as its input. And returns,

– sat - if there is at least one solution available such that the expression holds
true.

– unsat - if there are no possible solutions for that particular expression such
that it evaluates to true.

The Opaque Predicate detection takes place in two steps as outlined in
Algorithm 3.

Step 1 - Preliminary Check. We build a decision machine ‘is OP’, which
returns true if the input is an opaque predicate or false otherwise. Initially a sat
check is run on the original reconstructed input expression.

If the result is unsat the expression is an opaque predicate. Since, it has no
solutions, only the false branch of the if statement will be executed, irrespective
of input. The expression is marked as an opaque predicate and the decision is
returned.

If the result of the sat check is sat, the expression consists of at least one
solution which makes it evaluate to true.

Step 2 - Complimentary Functions. Consider a boolean expression f , for
which X forms the set of solutions (i.e.) for all elements in X, the boolean
function f evaluates to true.

X ⊂ Z, ∀x ∈ X, f(x) = 1 (2)

A compliment or inverse of boolean function f is defined as a function f ′

which evaluates to false for all the values present in the solution set of f . Since
f is a boolean function, the solution set (Y ) of f ′ must be the inverse of solution
set of f

Y = Z \ X (3)

To prove that an expression is an opaque predicate at this stage, we need
to prove that the expression evaluates to true for any value as input. In other
words, we need to prove that the solution set X is the same as the universal set.

X = Z (4)



256 R. Krishna Ram Prakash et al.

Setting (4) in (3),
Y = Z \ Z (5)

Y = ∅ (6)

If Y is a null set (∅) then the solution set for f is the same as the universal
set and so, f is an opaque predicate.

Complimentary Functions can easily be generated by negating the entire func-
tion. Some examples of complimentary function pairs are shown in Table 1

Table 1. Functions and their complimentary pairs

f(x) f′(x)

x ≤ 3 x > 3

x2 >= 0 x2 < 0

(x + x)mod2 = 0 (x + x)mod2 �= 0

The generated complimentary function f ′ is fed to the SAT solver and run a
sat check. If the result is sat, the function f has solutions in both X and Y and
so, it is not an opaque predicate.

If the sat check returns unsat, there are no solutions existing for f ′ and so,
all the elements in Z are solutions for f and so, f is an opaque predicate. The
entire process is summarized as Algorithm 3

Algorithm 3. Opaque Predicate Decision Engine
1: function OPDetect(Expression)
2: f ← Expression
3: if sat check(f) = unsat then
4: return true
5: else
6: f ′ ← complimentaryFunction(f)
7: if sat check(f ′) = unsat then
8: return true
9: else

10: return False

4 Results

Our opaque predicate detection algorithm OPDetect was run against the same
set of opaque predicate equations used by LOOP, and our algorithm performs
multiple times faster in terms of runtime, as shown in Table 2.



Opaque Predicate Detection by Static Analysis of Binary Executables 257

Table 2. OPDetect vs LOOP Running Time comparisons

Expression OPDetect Time (s) LOOP Time (s)

x2 ≥ 0 0.001 0.003

x(x + 1) mod 2 = 0 0.034 0.008

x(x + 1)(x + 2) mod 3 = 0 0.222 0.702

7y2 − 1 �= x2 0.101 0.008

(x2 + 1) mod 7 �= 0 0.095 17.762

(x2 + x + 7) mod 81 �= 0 0.078 22.657

(4x2 + 4) mod 19 �= 0 0.076 15.392

(x2(x + 1)(x + 1)) mod 4 = 0 0.014 0.012

(x2

2
) mod 2 = 0 0.009 0.015

The static analysis method of extracting expressions from the program,
makes sure that there is complete code coverage and all the predicates in the
program are checked. Parallel processing was also made possible as a positive
side-effect, which would enable tremendous improvement in runtime of huge pro-
grams.

The expression reconstruction works only when direct addressing methods are
used in the program. If indirect jumps are present in the code, the expression
reconstruction will fail as those jumps can only be resolved during runtime. That
is an inherent limitation of static analysis and so we will need to fall back to
dynamic analysis for these scenarios.

5 Conclusion and Future Work

We have successfully proposed and designed a system to statically analyze a
binary program and detect the presence of opaque predicates. We have well
addressed the limitations imposed by LOOP because of the underlying dynamic
analysis. A new algorithm for detecting the presence of opaque predicates has
been proposed and found out that it is more efficient and has better runtime
compared to the algorithm used by LOOP.

Although we addressed the shortcomings of LOOP by making use of static
analysis, we are plagued with a similar problem. Our method is vulnerable to
all the weaknesses of static analysis. Indirect pointer jumps cannot be resolved
through static analysis to and thus, reconstruction of expressions which involves
pointer jumps in the middle are impossible. In future, we could have a hybrid
system built with both LOOP and OPDetect together, intelligently choosing
between both depending on the difficulty faced by either of the methods.



258 R. Krishna Ram Prakash et al.

References

1. Schrittwieser, S., et al.: Protecting software through obfuscation: can it keep pace
with progress in code analysis? ACM Comput. Surveys 49(1), 4 (2016)

2. Banescu, S., Ochoa, M., Pretschner, A.: A frame- work for measuring software obfus-
cation resilience against automated attacks. In: 2015 IEEE/ACM 1st International
Workshop on Software Protection (SPRO), pp. 45–51. IEEE (2015)

3. Breaking Down Binary Ninjas Low Level IL (2017). http://bit.ly/binjaIL
4. Collberg, C.: Surreptitious Software. In: Opaque Predicates, pp. 246–253 (2009)
5. Dalla Preda, M., Madou, M., De Bosschere, K., Giacobazzi, R.: Opaque predicates

detection by abstract interpretation. In: Johnson, M., Vene, V. (eds.) AMAST 2006.
LNCS, vol. 4019, pp. 81–95. Springer, Heidelberg (2006). doi:10.1007/11784180 9

6. Ganesh, V., Dill, D.L.: A decision procedure for bit-vectors and arrays. In: Damm,
W., Hermanns, H. (eds.) CAV 2007. LNCS, vol. 4590, pp. 519–531. Springer,
Heidelberg (2007). doi:10.1007/978-3-540-73368-3 52

7. Ming, J. et al.: Loop: Logic-oriented opaque predicate detection in obfuscated binary
code. In: Proceedings of the 22nd ACM SIGSAC Conference on Computer and
Communications Security, pp. 757–768. ACM (2015)

8. STP - Simple Theorem Prover (2008). https://github.com/stp/stp
9. Xu, D., Ming, J., Wu, D.: Generalized dynamic opaque predicates: a new control flow

obfuscation method. In: Bishop, M., Nascimento, A.C.A. (eds.) ISC 2016. LNCS,
vol. 9866, pp. 323–342. Springer, Cham (2016). doi:10.1007/978-3-319-45871-7 20

http://bit.ly/binjaIL
http://dx.doi.org/10.1007/11784180_9
http://dx.doi.org/10.1007/978-3-540-73368-3_52
https://github.com/stp/stp
http://dx.doi.org/10.1007/978-3-319-45871-7_20


An Overview on Spora Ransomware

Yassine Lemmou(B) and El Mamoun Souidi

LabMIA, Faculty of Sciences, Mohammed V University in Rabat,
BP 1014 RP, Rabat, Morocco

yassine.lemmou@gmail.com, emsouidi@gmail.com

Abstract. In February 2017, our lab received an alert for a ransomware
attack when browsing one of our local websites. It’s the Spora ran-
somware, discovered by Emsisoft at the beginning of January 2017 tar-
geting mainly Russian users via emails pretending to be an invoice from
1C (a popular accounting software in Russia). The Spora version dis-
cussed in this paper is new to the version discovered by Emsisoft. There
are some differences between the two versions, for example, this variant
was propagated by EITest Chrome Font Update campaign (It wasn’t
propagated by a document trapped in e-mail attachments like the first
version). In this work, we explain the malware static and behavioral
analysis to characterize the Spora infection process. We also discuss self-
reproduction and overinfection of Spora. Furthermore, we collect some
indicators for detection according to some recent works on ransomware
detection.

Keywords: Spora · Ransomware · Infection · Behavior · Indicator ·
Detection · Self-reproduction · Overinfection

1 Introduction

Ransomware is a category of malicious computer software that generally blocks
access to your files; usually by encrypting your data, deleting your backups and
asks for a ransom in exchange for the decryption key. Security experts announced
very early that 2017 won’t be different to 2016, ransomware remains one of the
most important security threat on the internet today and it will be an interesting
kind of new crimes.

The interest of this paper is to present a static and behavioral malware analy-
sis to this version encountered on one of Moroccan websites. The ransomware
that attack Moroccan internet users when browsing a local websites are not fre-
quent, this doesn’t mean that our country is far from the ransomware attack
vector but there is a lack of statistics on the subject. Also, we are interested in
analyzing the behavior of this ransomware by keeping the link with some recent
works on ransomware detection. This paper is structured as follows: in Sect. 2 we
present the results observed on the compromised website, we perform the static
analysis to the collected samples to extract some useful information before the

c© Springer Nature Singapore Pte Ltd. 2017
S.M. Thampi et al. (Eds.): SSCC 2017, CCIS 746, pp. 259–275, 2017.
https://doi.org/10.1007/978-981-10-6898-0_22



260 Y. Lemmou and E.M. Souidi

dynamic/behavioral analysis which we cover in Sect. 3. This section discusses
also the infection process, self-reproduction, overinfection and Spora detection
indicators. Section 4 contains our conclusions.

2 The Compromised Website and Static Analysis

2.1 The Compromised Website

The compromised website is a Moroccan newspaper specialized in economic and
financial information. We didn’t know if the choice of this website is a desired
choice, especially that it targets generally users of finance and economy, which
these users can pay the ransom if they were infected. The observation of this
website lasted manually two days by Google Chrome browser (up to date). We
have the following results:

– The infection was done by a pop-up displayed on the website requesting the
download of a Chrome Font Pack update. In fact, when accessing this web-
site (only by Google Chrome browser), all its textual content was encoded
by incomprehensible characters. This is the reason why this pop-up was dis-
played asking an update for the Chrome font pack. Clicking on the download
button downloads an application named Chrome Font vx.xx.exe which in
each download the version x.xx was modified. During our analysis we were
able to download 8 different samples (different hash) of Spora.

– The downloaded samples were stored inside other websites, generally uni-
versity and school websites. In our case we found some Colombian schools
and universities. Each sample was downloaded by a post request to one of
the Spora storage websites. This post was different in each download (for
example a post to new.php, free.php and next.php).

The infection method used by this variant of Spora is known by the name of
EITest Chrome Font Update. Before a few days of the compromised website
observation, an article [3] was published on this subject explaining this method
of propagation. We refer to this article to summarize the propagation method:

– Firstly the EITest actors hack a legitimate website and add a JavaScript
code at the end of the page. This code will look the page like an encoded page
then it displays the pop-up alert in order to see the page properly. Figure 1
shows the extracted EITest script that causes the fake chrome popup in the
compromised website.

– When a visitor visits the compromised website, the script makes the page
unreadable and asks for a chrome font pack update. The downloaded pro-
gram doesn’t start automatically and the victim must manually execute the
program to be infected.

We note that Brad Duncan published on his page [4] three publications on this
method of propagation.



An Overview on Spora Ransomware 261

2.2 Static Analysis

We were able to download from the compromised website 8 different samples of
Spora which they had a different versions (x.xx) in their names1.

Fig. 1. Extracted EITest script in our compromised website.

We uploaded these collected samples to Virustotal: the detection ratio of the
samples in the first submission was between 8 and 12 of 58 available antivirus
engines, the samples were detected by a few antivirus. At the time of writing
this paper the detection ratio was between 31 and 40/59. All samples had 4
PE sections except two samples had 3 sections, these two samples also had
a compilation date different from the others. So we construct two groups of
samples: G1 ={v1.21, v3.31, v1.62, v6.87, v3.91, v6.31} and G2 ={v3.95, v5.19}.
Note that the version labeled on these samples didn’t have any relation to the
sample download order, for example the sample v6.87 was found in the first day
of observation before the sample v6.31 which was the last found.

The PE sections of G1 samples were .text, .rdata, .data, .rsrc. The
section .rsrc was identical (same MD5) for all G1 samples except the sam-
ple v6.31. Moreover, the virtual address, the raw size and the entropy of sec-
tions didn’t have difference2 between G1 samples except v6.31. So we added
another group G3 and move the sample v6.31 to G3. The imported functions
were the same for all G1 samples, for example we found GetCurrentDirectory,
GetProcAddress in kernel32.dll and other functions in msimg32.dll,
1 One sample has a name Chrome font vx.xx.exe not Chrome Font vx.xx.exe.
2 The difference was only in the virtual size of .text of all G1 samples except v6.31.



262 Y. Lemmou and E.M. Souidi

shell32.dll, shimeng.dll, user32.dll and wtsapi32.dll. For the exported
functions we found two functions for all samples: DllRegisterServer and
Yz32 1 (also for G3 sample). Here we think that each sample differs from the
others at a fixed character strings. Figure 2 shows a result part of the command
strings for all G1 samples and G3 sample.

The PE sections of G2 samples were .text, .data and .rsrc, it was
a small difference in virtual size in .text and .data sections between the
two G2 samples. Concerning the imported functions we had some func-
tions in esent.dll, kernel32.dll, odbctrac.dll and user32.dll for the
two G2 samples. mprapi.dll for v3.95 and nddeapi.dll for v5.19. Note
that the imported functions weren’t identical in kernel32.dll section, we
found WaitForSingleObjectEx and Load-LibraryExW in v3.95 and not
found in v5.19, in opposite we found SleepEx and LoadLibraryW in
v5.19. Generally LoadLibraryExW has the same role as LoadLibraryW and
WaitForSingleObjectEx has the same role as SleepEx. Concerning strings of
characters in G2, the two samples had the same strings of character except what
it was mentioned in the imported functions. We think that the two samples are
different only in imported functions (some functions was changed by other sim-
ilar functions). Finally, note that we didn’t have any exported functions in G2.

In G3, the sample had 5 imports instead of 6 imports in G1 samples:
kernel32.dll, rsaenh.dll, shlwapi.dll, user32.dll and wtsapi32.dll.
Although some G3 sample’s dlls were the same as G1 dlls but there was a differ-
ence between the imported functions in the same dlls. Concerning the strings of
characters we found that this sample had the same characteristics as the samples
of G1, see (Fig. 2).

Fig. 2. Strings command for G1 samples and G3 sample.

For all samples we weren’t able to find any information in the PE sections, nor
interesting strings (e.g. “ransom note” strings) inside the Spora samples to tell us
immediately whether these samples were a ransomware or a malicious program.
PEiD didn’t suggest any packer used for all samples except the two samples
in G2 that suggested the following signature: “fasm -> Tomasz Grysztar”, for
flat assembler developed by Tomasz Grysztar. By asInvoker in the ressource



An Overview on Spora Ransomware 263

section all samples will run with the same permission as the process that has
started them and they can potentially be elevated to a higher permission level
by selecting Run as Administrator.

3 Behavioral Analysis

We first built an isolated malware analysis sandbox environment within which
to examine the behavior of the 8 samples using VirtualBox. This environment
included a set of test data files with different file extensions and user documents
folders (Desktop, Documents...) within Windows 7 Virtual Machine (VM) con-
nected to an USB drive which contained some different data (machine/usb drive
specifications aren’t important) with no antivirus and the VirtualBoxGuest
Additions were installed. All executions of these samples ran with local adminis-
trator privileges and their first execution was performed without any connections
to outside. Also for monitoring we used Process monitor.

3.1 Description of Infection

Firstly we executed the sample v1.21∈ G1, we found the following results:

1. Despite the absence of communication, the target files encryption was carried
out. This situation is different to PrincessLocker ransomware [1].

2. The clickable sample wasn’t deleted. This behavior is similar to
PrincessLocker’s behavior [1] and different to that of TeslaCrypt ran-
somware [2]. We will demonstrate that the self-reproduction was performed
by keeping the clickable file.

3. At the end of Spora execution, the HTML page C:\Users\MyPc\
Appdata\Roaming\FRF4-78ETG-TZTHA-TXHZT-REXYY.html was displayed
which informs that all target files were encrypted using RSA-1024 algorithm.
The name of the HTML page is the ID of the victim. The use of RSA-1024
algorithm suggests that the public key was stored inside the binary. Indeed,
we can assume the following scenario according to [5]: this sample began by
generating a random key for symmetric encryption (generally AES), after
encrypting the target files, the ransomware used the embedded public key to
encrypt the random key, sometimes the encrypted random key serves to be
an id key. After paying the ransom, the victim sent3 the encrypted key to the
attacker or published it in a pre-agreed place. The attacker uses his private
key to unlock the random symmetric key and send it to the victim. Note that
the Emsisoft Spora variant analyzed in [6] is close to our hypothesis.

4. The clickable button Authorization in the HTML page was used to com-
municate with the web page spora.biz. Indeed, it was a request post to
C&C. When the victim clicked the link, a base64 data4 was submitted auto-
matically as shown in Fig. 3. It was a post of two values u and b, the value

3 Spora performs only one communication with the C&C by a POST request.
4 Note that the data in Fig. 3 is in an URL format.



264 Y. Lemmou and E.M. Souidi

transmitted u=XDATABASE64ENCRYPTED means that the data was encrypted
then encoded in base64 format, concerning b, it was the encrypted data,
precisely b=base64(Encrypted(DATA)). To send this request; the URL format
was used.

5. The displayed spora.biz page had an organized look, it informed the victims
on the amount requested which is paid by loading Bitcoin into their Spora
account. According to Bleepingcomputer [7], Spora service shows a different
price based on the amount and type of encrypted data on the target machine.
This page proposed other services like immunity against any future Spora
attack by paying an additional cost, this offer is unique compared to other
ransomware. The page also proposed two free files restore and a messaging
system that allows the communication with the developers5 of Spora to give
assistance to the victims and prove their credibility. Note that some additional
information was displayed in this page like the victim ID, date of infection,
computer name and deadline.

6. We note that the absence of ransomware payment instruction files in each
target directory. It appeared that the only file posed was the previous HTML
file. Recent works on ransomware propose a ransomware detector based on
the behaviors exchanged between the ransomware and their target machines.
Monitoring the addition of the same files (ransom instructions files) in many
directories is among the proposed indicators because this behavior is used by
many ransomware but here this indicator hasn’t any effect to detect this sam-
ple or Spora generally. So an effective detector is a detector based on many
indicators. In the same way and different to many ransomware (Table 1 shows
some examples) Spora encrypted the files silently, no extension added to the
target files, i.e. the files kept their original extensions. Therefore the behav-
ior of changing target extensions makes another indicator for ransomware
detection. Indeed, many ransomware label the target files after encryption by
an extension different from the original extension or different to any known
extensions. Spora didn’t perform this behavior which it makes this proposed
indicator without any effect on Spora detection. On other hand the behavior
that makes the target files unusable had an effect on Spora detection. Indeed,
any encrypted file by Spora had a magic number data, so the magic number
of each target file was also encrypted.

7. A second execution from an uninfected snapshot of the VM showed the
same behavior that had appeared during the previous execution, but
there was a difference in the ID (HTML page name) and the posted
data. Some results [13,14] has recently found about the ID of the pre-
vious version of Spora. We used the script at [14] on the generated ID,
we found FRA73-85OTH-TZTAH-TXOXT-RGGYY which means:Country = FR,
Hash = A7385, Office Document = 3, PDF = 5, CorelDraw AutoCAD Photo-
shop = 0, DB = 45, Image = 131, Archive = 277. These results are valid, so
what is described in [13,14] is valid for this variant.

5 During our analysis we found that the developers of Spora were reactive.



An Overview on Spora Ransomware 265

Fig. 3. Two values were posted.

Table 1. Examples of ransomwares’s extension.

Name Target’s extension

PrincessLocker Generated extension in each execution

TeslaCrypt .vvv, .ecc, .exx, .abc, .zzz, .xyz or .mp3 (in v3.1)

Cerber .cerber .cerber2 or .cerber3

8. We executed the other samples of G1, G2 and G3 in an uninfected VM, we
found the same described behavior of the sample v1.21 (ID, page’s name,
posted data were different in each execution of Spora sample). Also, the
connection to outside didn’t have any effect on the execution of Spora. We
think that the core module is the same inside the 8 samples.

The communication with the C&C was done only by the HTML page after files
encryption, so a detection based only on the exchanged network requests between
the ransomware and the C&C before the infection procedure (for CryptoWall [15])
hasn’t any effect on Spora detection. The HTML page code shows that the Spora
developers define the target machine language using JavaScript. The HTML page
was displayed by two languages, if the language is Russian, it was displayed in
Russian, if not it was displayed in English. So we assume that Spora targets
firstly Russian internet users6. Concerning the data sent, the JavaScript used
in this HTML code is responsible for the post discussed above (Fig. 4). During
the writing this article the C&C (spora.bz) was offline MalwareHunterTeam was
published on twitter [16] a tweet that Spora’s team registered a new domain
torifyme.com, we tried to redirect our collected infection from spora.bz to
torifyme.com, it worked because they have a single server where they receive
all communications from the victims.

3.2 Advanced Behavioral Analysis

We selected another sample v3.95 ∈ G2 to perform this analysis. The first inter-
esting operation was CreateFile to C:\MyPc\AppData\Roaming\1624817891
with Generic Read/Write in Desired Access and OpenIf in Disposition that
means if the file was already existed open it, else create the given file. The result
6 Spora is the Russian word for spore.



266 Y. Lemmou and E.M. Souidi

Fig. 4. Post request in HTML page source.

was SUCCESS, normally this file is suspect because it was opening at the begin-
ning of execution and this file was not closed until the end of execution. This
operation was followed by ReadFile(Offset:0,Length:4), here Sopra tries to
read 4 bytes from the beginning of this file, normally the file was empty in first
infection and it has just been created by the previous operation CreateFile, we
had END OF FILE in result. This is summarized in 1 of Fig. 5.

The file 1624817891 was fixed in all executions on the same machine. Indeed,
it’s the serial number shown by running the dir command in the cmd.exe com-
mand prompt. Spora wrote in this file by two WriteFile (2 of Fig. 5). The
previous ReadFile operation of 4 bytes wasn’t a random choice. Indeed, the
first WriteFile in 2 of Fig. 5 shows that Spora wrote the 4 bytes searched by
ReadFile operation, so these 4 bytes were a sign to doing something. Further-
more, these operations were carried out at the beginning of execution of this
sample, so we can assume that these 4 bytes were used to manage the overinfec-
tion. After, Spora continued its execution without closing this file.

Fig. 5. First Spora’s operations.

After these operations, Spora listed the target directories (without target files
encryption) by CreateFile, QueryDirectory and sometimes by ReadFile, this
listing was generally by alphabetical order and some directories weren’t listed
like Program Files (x86), Windows and Program Files. This listing started
by C: drive followed by any removable drive and finally all mounted shared
directories, but the D: drive couldn’t be accessed by this sample (this is because
D: was reserved as a media drive for VirtualBox guest). This file listing at the
beginning is similar to PrincessLocker infection [1]. Indeed, PrincessLocker
makes a listing to search the targets which were found cached in its memory in
order to encrypt them later one by one. The activity of searching/listing through
all files and directories is suspicious for any unknown program that executing on
a machine. For ransomware detection this suspicious behavior can be useful as



An Overview on Spora Ransomware 267

an indicator (with others) for behavior-based detection of ransomware. In fact
this sample (the ransomware generally) traverses at the beginning the entire file
tree in the target machine. So by this Spora’s behavior of listing procedures
we can propose another detection indicator based on files browsing. This listing
was followed by a return to the file C:\MyPc\AppData\Roaming\1624817891 to
make a ReadFile followed by 4 WriteFile and 2 other ReadFile operations.
We suggest that Spora writes in this file the listing results (Fig. 6).

Fig. 6. Operations after listing folders

The execution of Spora continued by crawling some keys/values in
HKLM\...\Wow6432Node\Microsoft\Cryptography\, this was followed by a
ReadFile of Crypt32.dll. We assumed that Spora starts the process of encryp-
tion or key generation. But an interesting task was performed after, it was the
creation of the file C:\MyPc\AppData\Roaming\<ID>, this file had the same
name as the HTML file. In the other version of Spora [6] this file is labeled with
the extension .KEY containing an encrypted data about the victim that needs
to be uploaded later to the attacker’s website. This task and the position of
creation of this file in Spora infection process (after cryptography operations)
implies that this file contains the same encrypted data about the victim as the
version discussed in [6]. This task was followed by some operations of ReadFile
and WriteFile in the file C:\MyPc\AppData\Roaming\1624817891.

The next step was the creation of the HTML file C:\MyPc\
AppData\Roaming\<ID>.html by checking the existence of this file by a
CreateFile with Open in Disposition, the result in the first infection was
NAME NOT FOUND, thus a new CreateFile with OverwriteIf in Disposition
followed by WriteFile(Offset:0,Length:16703) and CloseFile. The Length
16703 was the size of the displayed HTML file. The creation of the HTML file
means that the encrypted data was ready to be sent to the C&C, and also to
carry out the target files encryption. At this point we were able to confirm our
earlier hypothesis that at this time Spora had just finished preparing encryption
parameters. Before performing the encryption routine, Spora copied the HTML
file in C: and in the startup folder, so that the HTML page was displayed each
time the machine was restarted.



268 Y. Lemmou and E.M. Souidi

3.3 Encryption

Without repeating the previous targets listing, this sample directly accessed
the target locations (the locations of target files discovered during the
file system search phase was cached). Among the target extensions
we found .log, .sqlite, .bmp, .jpg, .zip, .rar, .cfg, .msg, .tar,
.bin, .cab, .wmv.

The encryption process of Spora didn’t perform the following behaviors:

– Deletion of target files after encryption: the C class of ransomware [9]
performs a large number of targets deletion, which it’s a secondary indicator
in CryptoLock [9]. Therefore, detection based only on deletion hasn’t any
effect to detect this sample, because Spora didn’t delete any target file.

– Renaming the encrypted files: some ransomware like 7ev3n perform a
renaming and/or a change extension of the encrypted files. If an indica-
tor based only on renaming target files, extension change to an absolutely
unknown extension or addition another extension to the file name hasn’t any
effect on Spora detection.

The encryption in Spora was done directly on the target file, no new file to receive
the encrypted data. As shown in 1 of Fig. 7, all target files had at least two
ReadFile functions: ReadFile(Offset:[EndOfFile-(128+4)],Length:128)
and ReadFile(Offset:[EndOfFile-4],Length:4). The first ReadFile reads
128 bytes from the end of the target file minus (128 + 4) bytes, the second reads
4 bytes from the end of file minus 4 octets. Furthermore Spora take for each
file at least two WriteFile (2 of Fig. 7), in fact it adds 128 bytes then 4 bytes
to the file end: WriteFile (Offset:[EndOfFile],Length:128) and WriteFile
(Offset:[EndOfFile+128],Length:4). The two WriteFile were used to label
each file after encryption as encrypted file and the two ReadFile were used to
check this label to not encrypt an already encrypted file. Note that the two
WriteFile construct a behavior indicator to detect this sample because it adds
at the end of each target file 128 bytes followed by 4 bytes. Moreover, the two
previous ReadFile can be added to this behavior indicator.

By reverse-engineering a part of this sample we found that the encryption
part wasn’t different to that of the previous version of Spora [6], this work in
malwarebyte explains the method used by Spora to encrypt the target files. In
fact for any target file, a new individual AES key was generated and used to
encrypt mapped file content. This method of infection makes Spora detection
more difficult because the encryption was written in the same target file with-
out renaming this file nor a creation file that receive the encryption data nor
WriteFile operations to write the encrypted data in the target file. The exported
representation of the individual key is encrypted by a previously generated RSA
key and then stored at the end of the encrypted file (first WriteFile) followed
by the CRC32 of this encrypted representation (second WriteFile).

The encryption process was finished by four WriteFile in the file
C:\MyPc\AppData\Roaming\1624817891 without CloseFile. We note that



An Overview on Spora Ransomware 269

Fig. 7. Target’s infection/encryption.

Spora wrote some data in this file after each task for example the first writ-
ing was at the beginning of the infection, then after the target files list-
ing and now after targets infection. Therefore, writing data after each task
in another file adds another detection indicator for this sample. After that
Spora created a new process by Process Create to start WMIC.exe by the
command ‘‘C:\Windows\SysWOW64\wbem\WMIC.exe’’ process call create
‘‘cmd.exe /c vssadmin.exe delete shadows /quiet /all’’ this command
executed vssadmin.exe to delete all shadow volume copies on the target
machine. This operation was followed by ReadFile and WriteFile operations
to the file C:\MyPc\AppData\Roaming\1624817891 then Spora ran the default
browser to display the ransom note page and it returned again to the file
C:\MyPc\AppData\Roaming\1624817891 by two WriteFile without CloseFile.
The next step was the self-reproduction process.

3.4 Self-Reproduction, Overinfection and Infection Process End

Self-reproduction is the ability of a program to reproduce itself in another loca-
tion, the majority of self-reproducing ransomware operate in a simple mode of
self-reproduction: the ransomware once executed, it controls the condition of
self-reproduction to perform the copy process. If the condition was checked; the
ransomware copies its code into the desired location and most of the time the
copy was identical to the original file. Note that checking the self-reproduction is
often done by the presence of a signature (locations, registry keys, files names...)
verified by the ransomware. Spora differs from TeslaCrypt [2] in managing
the self-reproduction. In fact, TeslaCrypt verified the self-reproduction con-
dition at the beginning of the original file execution. If a first infection, the



270 Y. Lemmou and E.M. Souidi

Fig. 8. Self-reproduction process.

self-reproduction process was performed, this process was followed by the copy
running to start/proceed the infection process and the original ransomware
deletion. Concerning Spora, it performed the self-reproduction after the infec-
tion/encryption process without removing the clickable/original ransomware.
The Fig. 8 shows the process of self-reproduction in Spora.

As shown in 1 of Fig. 8, Spora started by checking the existence of the
file C:\7072899c5ddb69209.exe, the result in a first infection was NAME NOT
FOUND. Note that the file name 7072899c5ddb69209.exe is related to the tar-
get machine like the previous name seen because it was fixed in each infec-
tion by Spora on the same machine. After that, it created a copy of the click-
able/original ransomware, this copy had the same size (2 of Fig. 8) and the same
MD5 as the original ransomware. Furthermore, Spora make this copy hidden by
SetbasicInformationFile HN operation. The self-reproduction in Spora and
TeslaCrypt was only a copy process not an evolution7. Note that, the same
operations was performed to copy the ransomware in Desktop, shared directo-
ries and any USB drive connected to the target machine.

Spora performed after other operations, for any directory in C: drive, desk-
top, USB drives and shared directories (except the sub-directories) a CreateFile
followed by SetBasicInformationFile with HN in FileAttributes to hide
any directory. To verify if they were hidden in result, these operations
were followed by a QueryBasicInformationFile, if that is the case, Spora
performed the operation CreateFile Desired Access: Read Attributes,
Disposition: Open to verify the existence of a shortcut to this direc-
tory, the result was NAME NOT FOUND in first infection. So this shortcut
was created by a following CreateFile and WriteFile. The result of this
task was: all mentioned directories were hidden and shortcuts with the
same names of these directories were created and had the options Reduced
window in Run and C:\Windows\system32\cmd.exe /c start explorer.exe
‘‘<directory>” & type‘‘7072899c5ddb69209.exe’’>‘‘%temp%\7072899
c5ddb69209.exe’’&&‘‘%temp%\7072899c5ddb69209.exe’’ in Target option.

7 Generally the evolution contains other added functions than the copy, more infor-
mation about self-reproduction (copy or evolution) we refer to [17].



An Overview on Spora Ransomware 271

So the scenario planned by Spora is hide all mentioned directories and
replace them by shortcuts with the same name and the icon of a directory.
A user wants access to these directories will click on the shortcut created,
so this shortcut will display the desired contents, but at the same time a
self-reproduction will be made of Spora binary since the copy created pre-
viously in desktop, C:drive or shared directories to %temp% directory and it
executes the new copy created. After this task Spora closed finally the file
C:\MyPc\AppData\Roaming\1624817891 by CloseFile.

As it was seen Spora performs several tasks of self-reproduction. Further-
more, many ransomware perform the process of self-reproduction generally at the
beginning, copying the code to another location. So we can say that the process
of self-reproduction in ransomware is an indicator to be monitored (with other
indicators), in this case to limit the infection propagation after the first infection
because Spora performs 4 self-reproduction tasks in C: drive, desktop, any USB
drive connected and shared directories, then it performs the self-reproduction in
%temp% directory when accessing to any created shortcut.

The execution process of all 8 variants wasn’t different as discussed above,
So we conclude that it was the same core module inside these samples and only
the obfuscation method that differs. We didn’t find any interesting thing in the
registry keys, no added value in the run key which signifies that Spora was
limited to displaying the HTML ransom file by the Startup directory. Note that
during the infection process Spora didn’t communicate with the outside, Spora
limited its communication by the post carry from the HTML page. Concerning
encryption process, we notice that two files with same data inside had different
data inside after encryption, so the encryption was done by a key for each file
(this was confirmed in encryption part). We also created a 64-byte file containing
4 similar blocks of 16 bytes. The result was a cipher file without any repetition
of blocks. From this we can say that the mode of encryption used by Spora is
other than ECB mode.

On an infected snapshot we added some target files and we executed the same
variant that infected this machine, after a few minutes we noticed that the new
files were not encrypted. By Procmon we saw that Spora performs its normal
execution. We found the same CreateFile that was seen at the beginning of
the infection to the file C:\MyPc\AppData\Roaming\1624817891, followed also
by the same ReadFile mentioned in Fig. 5. Here the result of this ReadFile was
SUCCESS (Fig. 9) instead of END OF FILE (Fig. 5).

Fig. 9. Checking overinfection.

An overinfection is any infection follows the first infection in the same
machine by the same malware. In ransomware its management means the abil-
ity of a ransomware to check if the target machine was already infected. If



272 Y. Lemmou and E.M. Souidi

its not performed the ransomware will encrypt any new target file created
between two infections in this machine independently to previous/following
infections (for each infection an ID and a ransom to pay). It is controled by
the presence of a signature introduced by the ransomware (registry keys, par-
ticular file, etc.). The overinfection in Spora is not clear, it was limited to
make shortcuts to any new directory created between two infections. The short-
cuts was created without listing directories operations, directly after the sec-
ond ReadFile (Fig. 9). We had a new infection (new ID) by removing the file
C:\MyPc\AppData\Roaming\1624817891, replacing it by another similar file of
other infection or by a modification inside the first 234 bytes in this file. This
file (precisely the 234 bytes) is responsible to determining whether Spora per-
forms an infection or an overinfection. We summarize the process of infection
and overinfection in Fig. 10.

Fig. 10. Infection/overinfection process.

3.5 Discussion About Detection

In this part we discuss about the behaviors that can be used for the Spora
detection according to some indicators posed in recent works on ransomware
detection. An indicator is a monitoring ransomware behavior that can be used
in its detection. Kharraz et al. in [10] studied the behavior of ransomware dis-
covered between 2006 and 2014 on a target machine, on the same approach
they published a second work [12] on ransomware detection. They suggest that
monitoring abnormal file system activity builds many indicators for ransomware
detection precisely by describing the interaction between the ransomware and
the file system. Also, they discussed a detection based on the use of encryption
mechanisms. These two behaviors can be used for the detection of Spora, indeed
by using Windows Crypto API each file has a new and an individual AES key
used to encrypt mapped8 file content. The encrypted exported representation
of the individual key and the Crc32 of this result are stored at the end of the
encrypted file, this generated two WriteFile for each target file. In the same
way; the use of the API Crypto, Eugene et al. [8] proposed PayBreak that pro-
tects against the threats posed by crypto-based ransomware which it observes
the use of the symmetric sessions keys and holds them in escrow, we think that

8 File mapping is a file system behavior.



An Overview on Spora Ransomware 273

Paybreak is able to hold the used keys by Spora. Nolen Scaif et al. [9] developed
a detector based on the behaviors exchanged between the ransomware and their
targets, they have divided the collected behaviors to two groups of indicators,
primary and secondary indicators. In first group we found:

– File Type Changes: monitoring this behaviour makes an indicator for Spora
detection, in fact Spora encrypted the entire file with its magic number which
allows to identify its type, by using the file Linux command we have: file
target file i �= file Encrypted(target file i).

– Similarity Measurement: Spora uses AES which produces a totally differ-
ent output at the input, these changes to the content can be suspect using
similarity-preserving hash functions.

– Shannon Entropy: the data after encryption by Spora was high entropy.

Concerning secondary indicators, Spora didn’t perform targets deletion after
encryption, this makes the deletion indicator invalid for detection. Also, it reads
many files of different types, but it wrote a raw output data without any type,
this makes the indicator of File type funneling [9] valid for its detection. Another
interesting work by Continella et al. [11] is ShieldFS based on file system activ-
ities by a different point of view. They focus on the analysis of the file system
activities of benign applications which they found crucial to build a detector.
By this analysis of Spora, we can suggest that Spora behavior on the target
machine has some difference to benign application behaviors, also the detection
of cryptographic primitives used by ShieldFS 9 we think that it is able to detect
this version, especially that it provides recovery capability for encrypted files.

4 Conclusion and Contributions

Our interest in this work is to discover a ransomware that attacked a local web-
site in our country in February 2017. The ransomware Spora in its latest version
which uses EITest Chrome Font Update to propagate. We analyzed manually
the collected samples by the two first steps of malware analysis, static analy-
sis and behavioral analysis. For reverse engineering part we referenced to the
work published in Malwarebytes [6]. In the first part we classified these samples
by three groups and we proved that the apparent structure of these samples
were different with some resemblances between the samples of each group. The
behavioral analysis in the second part showed that despite the difference at the
static level, the collected samples had the same behavior. These may be due to
different methods of obfuscation/encryption of the core module. The behavioral
analysis of Spora allowed us to understand the process of infection in order to
give some indicators of detection and discuss their validity with other indicators
proposed according to some recent works on ransomware detection. The process
of self-reproduction and overinfection also have a discussion part in this paper.

In this paper, we make the following contributions:

9 ShieldFS supports only the detection of AES which is used in Spora.



274 Y. Lemmou and E.M. Souidi

– We had collected 8 different samples of the new version of Spora from the
compromised website and we posed them for the first time in Virustotal and
analyzed them by static and behavioral analysis.

– We extracted some behaviors that can be used for Spora detection.
– Proving that self-reproduction was also an indicator that can be used to

increase detection efficiency or to limit the Spora propagation after infection,
this indicator can be generalized for some ransomware.

– Discuss the behavior of Spora according to the indicators proposed in recent
ransomware detection works. In fact our analysis is the first analysis that
discusses and values these indicators10.

References

1. Yassine, L., Souidi, E.M.: PrincessLocker analysis. In: International Conference on
Cyber Security and Protection of Digital Service, London (2017). https://doi.org/
10.1109/CyberSecPODS.2017.8074854

2. Rascagneres, P.: Analyse du rançongiciel TeslaCrypt. Misc mag N89 (2016)
3. Abrams, L.: Fake Chrome Font Pack Update Alerts Infecting Visitors with Spora

Ransomware, BleepingComputer blog (2017)
4. Duncan, B.: Eitest Hoeflertext Chrome popup leads to Spora Ransomware,

malware-traffic-analysis blog (2017)
5. Orman, H.: Evil offspring-ransomware and crypto technology. IEEE Internet Com-

put. 20, 89–94 (2016)
6. Hasherezade: Explained: Spora ransomware, malwarebytes blog (2017)
7. Cimpanu, C.: Spora Ransomware Works Offline, Has the Most Sophisticated Pay-

ment Site as of Yet, bleepingcomputer blog (2017)
8. Kolodenker, E., et al.: PayBreak: defense against cryptographic ransomware. In:

ASIA CCS 2017 (2017). https://doi.acm.org/10.1145/3052973.3053035
9. Scaife, N., et al.: CryptoLock(and drop it): stopping ransomware attacks on user

data. In: IEEE 36th International Conference on Distributed Computing Systems
(2016). https://doi.org/10.1109/ICDCS.2016.46

10. Kharraz, A., Robertson, W., Balzarotti, D., Bilge, L., Kirda, E.: Cutting the gor-
dian knot: a look under the hood of ransomware attacks. In: Almgren, M., Gulisano,
V., Maggi, F. (eds.) DIMVA 2015. LNCS, vol. 9148, pp. 3–24. Springer, Cham
(2015). https://doi.org/10.1007/978-3-319-20550-2 1

11. Continella, A., et al.: ShieldFS: a self-healing, ransomware-aware filesystem. In:
Proceedings of the 32nd Annual Conference on Computer Security Applications
(2016)

12. Kharraz, A., et al.: UNVEIL: A Large-Scale, Automated Approach to Detect-
ing ransomware. USENIX Security 2016 (2016). https://doi.org/10.1109/SANER.
2017.7884603

13. Hahn, K.: Spora - the Shortcut Worm that is also a Ransomware, G DATA Security
Blog, gdatasoftware blog (2017)

14. Coldshell: Spora-id, github (2017). https://gist.github.com/coldshell/
6204919307418c58128bb01baba6478f

10 We discussed on the proposed indicators and not the tools.

https://doi.org/10.1109/CyberSecPODS.2017.8074854
https://doi.org/10.1109/CyberSecPODS.2017.8074854
https://doi.acm.org/10.1145/3052973.3053035
https://doi.org/10.1109/ICDCS.2016.46
https://doi.org/10.1007/978-3-319-20550-2_1
https://doi.org/10.1109/SANER.2017.7884603
https://doi.org/10.1109/SANER.2017.7884603
https://gist.github.com/coldshell/6204919307418c58128bb01baba6478f
https://gist.github.com/coldshell/6204919307418c58128bb01baba6478f


An Overview on Spora Ransomware 275

15. Cabaj, K., Mazurczyk, W.: Using Software-Defined Networking for Ransomware
Mitigation: The Case of CryptoWall. IEEE Network (2016). https://doi.org/10.
1109/MNET.2016.1600110NM

16. MalwareHunterTeam: Spora’s team registered a new domain (2017). https://
twitter.com/malwrhunterteam/status/841564703881068544

17. Filiol, E.: Computer Viruses: From Theory to Applications. Springer, Heidelberg
(2005)

https://doi.org/10.1109/MNET.2016.1600110NM
https://doi.org/10.1109/MNET.2016.1600110NM
https://twitter.com/malwrhunterteam/status/841564703881068544
https://twitter.com/malwrhunterteam/status/841564703881068544


Pattern Generation and Test Compression
Using PRESTO Generator

Annu Roy1,2(&) and J.P. Anita1,2(&)

1 Department of Electronics and Communication Engineering,
Amrita School of Engineering, Coimbatore, India

annuroy26@gmail.com, jp_anita@cb.amrita.edu
2 Amrita Vishwa Vidyapeetham, Amrita University, Coimbatore, India

Abstract. The proposed work has a test pattern generator for built-in self-test
(BIST) based applications along with test data compression. Test patterns are
produced with desired levels of toggling and improved fault coverage is
obtained when compared with BIST-based pseudorandom pattern generators
(PRPG). The pattern generator comprises of a pseudorandom pattern generation
unit, a toggle generation and control unit, a hold register unit. Preselected
toggling (PRESTO) generator allows user defined levels of toggling. The pattern
generator is a linear finite state machine which drives a phase shifter, which
reduces correlation of patterns. This paper proposes a test compression method
which elevates the compression efficiency that has not been obtained by con-
ventional compression techniques. It does not need any core logic modifications
like test point insertion and thus the compression technique is nonintrusive. This
hybrid technique of BIST along with test compression achieves fault coverage
above 90%. Experimental results are obtained for ISCAS 85, ISCAS 89 and ITC
99 standard benchmark circuits. The PRESTO generator can effectively function
as a decompressor also and hence area is reduced.

Keywords: Pseudo random pattern generator (PRPG) � Built-in self-test
(BIST) � Test data compression � Preselected toggling

1 Introduction

Low-power design with high performance has become the main challenge in today’s
very large scale integration (VLSI) design. Many power reduction techniques are
available, but they are highly concentrated on power usage during normal mode
operation rather than test mode operation, whereas in most cases test mode has more
power consumption than normal mode. Toggling of the nodes of circuit under test
(CUT) highly contributes to the test mode power consumption, which is more than the
switching activity of nodes when they work in normal mode. The main objective of
manufacturing test even today is to provide reliability and high quality to the semi-
conductor products. The test solutions and market conditions are undergoing evolution
to achieve these objectives and the factors affecting the evolution are semiconductor
technology, design process and design characteristics. New defects are demanding for
new design for test methods. Test compression got introduced in the last decade, gained

© Springer Nature Singapore Pte Ltd. 2017
S.M. Thampi et al. (Eds.): SSCC 2017, CCIS 746, pp. 276–285, 2017.
https://doi.org/10.1007/978-981-10-6898-0_23



popularity and became today’s main methodology for testing, but technology is rapidly
changing and test compression may not be able to follow these changes in the next
decade. As a solution for that another prominent DFT technique, logic built-in self-test
(LBIST) is used along with test compression and thereby it is possible to achieve the
advantages of both techniques.

The bandwidth between external tester and chip is small and is a main issue in IC
testing. Every new generation technology has improved integration density than the
previous one and this results in larger designs and more faults. High fault coverage
aims at the detection of delay faults and other faults apart from the detection of stuck-at
faults and for that test pattern requirement is high [10]. External testing, the conven-
tional method stores test patterns and test responses in automatic test equipment (ATE),
the external testing equipment, but it has the disadvantage of limited speed, less I/O
channel bandwidth, and low memory. So the smaller tester-chip bandwidth is often a
major issue in deciding the speed of testing. The maximum speed testing can have is
the speed with which the test data transfers. BIST and test data compression are the
techniques to overcome this problem and the combination of BIST and test data
compression has become a main research area [3, 14]. The (Automatic test pattern
generator) ATPG patterns are compressed and stored in the chip and later on for testing
purpose they are decompressed using the existing BIST hardware [8]. Techniques that
use compressed weights to embed the deterministic stimuli are proposed in [11]. Code
based schemes are the conventional methods of compression in which patterns are
encoded into a set of code words. The data is divided into symbols and each symbol is
encoded using the specific code word for it and compression is done. By converting
back the code words in the compressed data to symbols decompression can be
achieved. In run-length coding, consecutive 0 s are encoded using code words of fixed
length and the length of runs of 0 s are increased using cyclical scan architecture [12].
Golomb coding encodes consecutive 0 s with code words whose length is different and
such code words helps achieve effective encoding even though it needs synchronization
between tester and chip [9]. Frequency-directed run-length (FDR) coding helps in
further optimization of test patterns. Dictionary coding partitions data into n-bit sym-
bols and a dictionary is used to store symbols. Here n-bit symbols are encoded using
b-bit code word, provided ‘b’ is less than ‘n’ [3]. Huffman coding partitions the data
into n-bit symbols and depending on the frequency of occurrence, code words are
provided. For symbols that occurred more frequently, smaller code words are given and
for symbols that occurred less frequently, larger code words are given [3].

Various techniques exist for reducing the power of test pattern generators. In the
scheme of [2] for scan based BIST the modes and modules that consume high power are
identified and appropriate modifications are made in the design so as to achieve power
reduction. This method reduces the power, but suffers from area overhead. For low
switching activity, a dual speed LFSR (DS-LFSR) can be used as pattern generator [4].
The technique provides good fault coverage, but suffers from slight area overhead. In
modified clock scheme PRPG uses a modified clock [5]. Another method uses a biasing
logic to supply inputs to scan chains. LFSR drives the scan chains, but has an AND gate
with k inputs and a T flip-flop in between them as biasing logic. T flip-flop outputs the
same value until it receives a ‘1’ as input. When ‘1’ is fed, the output gets inverted. So
unless a ‘1’ comes as output, the same pattern will be fed to scan chain. The chance to

Pattern Generation and Test Compression Using PRESTO Generator 277



have a ‘1’ at flip-flop input depends on the AND gate. So the factor that controls the
transitions of the CUT input is fan-in of AND gate. If k is AND gate fan-in, then 1/2k is
the chance for T flip-flop output to be ‘1’. In order to obtain very less transitions, the
AND gate inputs should be high and vice versa [6]. In LFSR with bit swapping, to
decrease the switching between patterns, bit swapping can be used. All these techniques
concentrate on reducing power between patterns. In this method, one of LFSR output is
made select line and when the select line has a value zero, the neighbouring bits are
swapped and if the select line is one, then the pattern will not be changed [7].

Code based methods makes use of the correlation in specified bits and is not
efficient in handling don’t care. As a result, the CUT may not consider test patterns as
distinct ones and will result in low fault coverage. The Embedded deterministic test
(EDT) based compressor has low linear dependency as it uses PRESTO generator.
EDT uses hybrid testing by combining both BIST and ATE. Reduced pattern appli-
cation time and low external influence are benefits of using BIST. ATE ensures
determinism in patterns and low on-chip area is achieved.

The PRPG is suitable for LP BIST applications. By using its preselected toggling
(PRESTO) levels, the switching activity of generated patterns is reduced and thereby
power dissipation is also reduced. The PRPG functions as a successful LP decom-
pressor too and thus the hybrid method of BIST and test compression is achieved.
Hence an environment is created to achieve a hybrid solution by merging LBIST and
test compression.

2 Basic Architecture

The structure of basic PRESTO generator is shown in Fig. 1. The PRPG is of n-bits
and it is connected to the phase shifter which feeds the scan chains and this arrange-
ment is the generators kernel.

Fig. 1. PRESTO generator [1]

278 A. Roy and J.P. Anita



The toggle generating and control unit, and the hold register unit together controls
the output of LFSR and feeds the phase shifter. An LFSR or ring generator can serve as
pattern generator. Between PRPG and phase shifter, n hold latches are kept. They are
controlled by n-bit toggle control register which in turn receives input from n-bit shift
register. The hold latches have two modes of operation, toggle mode and hold mode. In
toggle mode, the enable input of the latch will be high and it allows the data from
PRPG to pass through it and will be given to phase shifter whereas in hold mode, the
enable signal will be low and the output of PRPG will be hold and a constant value will
be passed to the phase shifter. The phase shifter output is taken from hold latches by
XOR-ing three of them. Toggle control register has values 0 s and 1 s and a 0 value
indicates the hold mode of the latch and toggle mode is indicated by 1 value. Shift
register feeds control register with new values for every pattern. The shift register is fed
by OR gate and the value are chosen in a probabilistic manner with programmable set
of weights by using the original PRPG. The probability of a k input AND gate to
produce 1 output is 0.5k and so the probabilities with which 1 s are produced are 0.5,
0.25, 0.125, and 0.0625. One of the four AND gates are selected by means of a
switching register, which enables only one AND gate at a time and that value will be
passed through OR gate. An example is, if 0001 is the switching code, first AND gate
will be selected and the toggle control register will have 50% of 1 s. NOR gate with
four inputs is to disable the low power mode when the switching register has 0000 in it.
The data in control register, i.e. the amount of 1 s it has is maintained in a stable level
by means of switch level selector when operating in weighted random mode. Conse-
quently, the fraction of scan chains in LP mode will roughly remain the same, though
the chains that toggle will change from one pattern to another.

3 Fully Operational Generator

The Fig. 2 shows a fully employable PRESTO generator. This scheme helps to achieve
low toggling test patterns with more flexibility. The test pattern’s period of shifting is
splitted into hold and toggle intervals, which is an alternating sequence. A T flip-flop is
used to achieve this functionality. T flip-flop toggles only when it is fed with input 1,
till then it will remain in its previous state. When T flip-flop output is 0, the hold latches
enter hold mode, the PRPG values will be holded and phase shifter receives constant
values. To achieve this AND gates are kept between toggle control register and OR
gates. When flip-flop output is 1, hold latches enter toggle mode, and LFSR outputs
reach phase shifter. At this time AND gate is transparent to the toggle control register
values. The toggle and hold registers are of four bits and they decides how long the
generator will be in each mode. In order to flip each mode, T flip-flop should have 1 as
output. The multiplexers are driven by hold and toggle registers and their select signal
is output of T flip-flop. The values fed to AND gates are chosen in a probabilistic
manner with programmable set of weights by using the original PRPG. When the
device enters toggle mode, it waits for a 1 at T flip-flop output in order to enter hold
mode which is in turn decided by the hold and toggle registers. Test patterns with
low-toggling can be achieved with this scheme by preserving the principle of operation
of the basic solution.

Pattern Generation and Test Compression Using PRESTO Generator 279



4 Decompressor Structure

The architecture of decompressor is shown in Fig. 3. In order to make the PRESTO
generator function as a decompressor, the control circuitry has to be disabled. The
crucial element for an EDT test data compression is the decompressor. The decom-
pressor should satisfy certain requirements, linear dependency between output
sequences should be low, operating speed should be high, low silicon area and the
design should have high modularity. The deployment of a new structure, ring generator
helps to achieve this application and it is a different form of LFSR. The phase shifter
input comes from ring generator to achieve the decompressor functionality and phase
shifter reduces the correlation between patterns.

Fig. 2. Fully employable PRESTO generator [1]

Fig. 3. Decompressor [13]

280 A. Roy and J.P. Anita



The decompressor is composed of an 8-bit ring generator implementing primitive
polynomial x8 + x6 + x5 + x + 1. Compressed test data is fed through input channels.
Extra XOR gates are kept between flip-flops and input channels are connected to them
and are called injectors. The input variables a0, b0,……., a12, b12 are given in pairs to
the input channels. The four phase shifter outputs are composed of the XOR gate
connections as in figure.

5 Compression of Test Patterns

The automatic test pattern generator (ATPG) patterns are treated as Boolean variables
for compressing the test cubes. Input variables are injected to the decompressor at
locations specified by the primitive polynomial. The symbolic expression of each scan
cell is a linear function of the injected input variable. By knowing the following details:
a polynomial executed by the ring generator; the phase shifter structure; injection site’s
location; and also the number of shift cycles, the linear equations of the scan cells with
specified values can be found. Consequently, by solving the linear equations, com-
pressed patterns can be obtained. By scanning these compressed patterns through
decompressor, a match of ATPG output can be obtained. The unknown bits are given
either ‘0’ or ‘1’ depending on the decompressor structure. Often test cube for a par-
ticular fault may not get compressed due to large number of specified bits or due to
linear dependency of specified bits. Those faults are retargeted and new test cube is
generated and this makes the compression algorithm complex.

6 Validating Experiments

The technique presented in Sect. 3 is validated based on the experiments performed on
standard benchmark circuits. Fault coverage (FC) and total fault coverage (TFC) is
found for ISCAS 85 circuits, ISCAS 89 circuits and ITC circuits using HOPE simu-
lator. Scan designs of ISCAS 89 circuits and ITC circuits are used for experiments and
the ring generator implements primitive polynomials. FC is the fault coverage obtained
when PRPG patterns are applied alone and TFC is the fault coverage obtained when
both PRPG and deterministic patterns are applied. Table 1 describes the fault coverage
obtained for ISCAS 85 circuits, Table 2 describes the fault coverage obtained for
ISCAS 89 circuits for scan designs and the fault coverage obtained for scan design of
ITC 99 circuit is tabulated in Table 3.

The proposed compression technique presented in Sect. 5 is validated based on the
experiments performed on standard benchmark circuits and results shown in Tables 4,
5 and 6. Total test data before compression is represented by TD. The proposed work,
EDT is compared with three existing compression techniques: Golomb encoding,
Run-length encoding and Huffman encoding. In Table 4, the column Golomb has the
number of test patterns after compression for the Golomb encoding, column
Run-length shows the number of test patterns after compression for the Run-length
encoding, column Run-length has the number of test patterns after compression for the
Run-length encoding, column Huffman has the number of test patterns after

Pattern Generation and Test Compression Using PRESTO Generator 281



compression for the Huffman encoding, and column EDT has the number of test
patterns after compression for Embedded Deterministic Test. The compression
achieved for ISCAS 85 circuits are shown in Table 4, Table 5 shows the compression
achieved for ISCAS 89 circuits and Table 6 shows the compression achieved for ITC
99 circuits. Superior results are produced by EDT for all the circuits.

Table 1. Fault coverage for ISCAS 85 circuits

Circuit Input Output FC (%) TFC (%)

c432 36 7 85.878 96.183
c499 41 32 89.842 95.383
c1355 41 32 74.905 86.595
c3540 50 22 78.034 85.152
c6288 32 32 97.521 99.561

Table 2. Fault coverage for ISCAS 89 circuits

Circuit Input Output FC (%) TFC (%)

S344 24 26 85.088 100.00
S510 25 13 82.092 93.085
S713 54 42 92.083 93.460
S1196 32 32 75.845 88.486
S1488 14 25 72.073 86.945

Table 3. Fault coverage for ITC 99 circuits

Circuit Input Output FC (%) TFC (%)

b02 5 5 96.774 100.00
b03 35 34 93.655 98.985
b05 35 70 76.577 91.248
b07 50 57 83.702 97.077
b10 28 23 87.243 99.794

Table 4. Comparison of test data compression for ISCAS 85 circuits

Circuit TD Golomb Run-length Huffman EDT (proposed)

c432 11016 9683 9060 4311 3672
c499 10373 6077 6500 4548 3542
c1355 10496 6218 6672 4625 3584
c3540 10750 7180 9915 4211 3440
c6288 11008 7091 7692 5016 2752

282 A. Roy and J.P. Anita



Tables 7, 8 and 9 shows the compression efficiency for circuits presented in
Tables 4, 5 and 6. The column Golomb represents the compression efficiency for the
Golomb encoding, column Run-length represents the compression efficiency for the
Run-length encoding, column Huffman represents the compression efficiency for the
Huffman encoding, and column EDT represents the compression efficiency for
Embedded Deterministic Test. The compression efficiency of ISCAS 85 circuits are
shown in Table 7, Table 8 shows the compression efficiency of ISCAS 89 circuits and
Table 9 shows the compression efficiency of ITC 99 circuits. It can be seen from
Tables 7, 8 and 9 that EDT compression gives a compression efficiency of 40% as
compared to Golomb encoding and 43% as compared to run-length encoding and 11%
as compared to Huffman encoding.

Table 5. Comparison of test data compression for ISCAS 89 circuits

Circuit TD Golomb Run-length Huffman EDT (proposed)

S344 12000 10822 9444 4028 3000
S510 12550 9294 10224 3794 3012
S713 10854 7634 8172 5361 3216
S1196 11328 7367 7992 5230 2832
S1488 14280 11149 10329 5188 4084

Table 6. Comparison of test data compression for ITC 99 circuits

Circuit TD Golomb Run-length Huffman EDT (proposed))

b02 835 713 705 396 334
b03 11130 6938 7508 4348 3816
b05 11690 7426 8064 5742 4008
b07 11250 7350 8052 4370 3600
b10 11200 8752 7710 5870 3200

Table 7. Compression efficiency of different techniques for ISCAS 85 circuits

Circuit Golomb (%) Run-length (%) Huffman (%) EDT (%)

c432 12.00 17.75 60.86 66.67
c499 41.41 37.33 56.15 65.85
c1355 40.75 36.43 55.93 65.85
c3540 33.20 7.76 60.82 68.00
c6288 35.58 30.12 54.43 75.00

Pattern Generation and Test Compression Using PRESTO Generator 283



The power and area obtained from Synopsys Design Compiler for basic PRESTO
Generator and fully employable PRESTO Generator is shown in Table 10.

7 Conclusion

Hence, PRESTO generator produces pseudo random patterns with low switching
activity and allows user defined levels of toggling. The control signals produce distinct
patterns and thus high fault coverage can be achieved. PRESTO generator can effec-
tively function as a decompressor, thus a combined technique which uses both LBIST
and test compression can be implemented and a hybrid solution is obtained which
combines the advantages of both the techniques. This technique can overcome the
problem of low bandwidth between the tester and chip encountered during testing when
using external testing equipment. The LFSR can be modified to reduce the switching of
patterns in the scan chains to achieve low power EDT and this can be the future scope
of this work.

Table 8. Compression efficiency of different techniques for ISCAS 89 circuits

Circuit Golomb (%) Run-length (%) Huffman (%) EDT (%)

S344 9.81 21.3 66.43 75.00
S510 25.94 18.53 69.76 76.00
S713 29.66 24.70 50.60 70.37
S1196 34.96 29.44 53.83 75.00
S1488 21.92 27.66 63.66 71.40

Table 9. Compression efficiency of different techniques for ITC 99 circuits

Circuit Golomb (%) Run-length (%) Huffman (%) EDT (%)

b02 14.61 15.56 52.57 60.00
b03 37.66 32.54 60.93 65.71
b05 36.47 31.01 50.88 65.71
b07 34.66 28.42 61.15 68.00
b10 21.85 31.16 47.58 71.42

Table 10. Comparison of area and power

Method Power (uW) Area (um2)

Basic PRESTO generator 89.4062 1814.738
Fully operational version PRESTO generator 106.24 1967.013

284 A. Roy and J.P. Anita



References

1. Filipek, M., Mukharjee, N., Mrugalski, G.: Low power programmable PRPG with test
compression capabilities. IEEE Trans. Very Large Scale Integr. 23(6), 1063–1076 (2015)

2. Gerstendorfer, S., Wunderlich, H.: Minimized power consumption for scan-based BIST. In:
Proceedings of International Test Conference (ITC), pp. 77–84 (1999)

3. Touba, N.A.: Survey of test vector compression techniques. IEEE Design Test 23(4), 294–
303 (2006)

4. Wang, S., Gupta, S.K.: DS-LFSR: a BIST TPG for low switching activity. IEEE Trans.
Comput. Aided Design Integr. Circ. Syst. 21(7), 842–851 (2002)

5. Girard, P., Guiller, L., Landrault, C., Pravossoudovitch, S., Wunderlich, H.-J.: A modified
clock scheme for a low power BIST test pattern generator. In: Proceedings of the 19th
IEEE VLSI Test Symposium (VTS), pp. 306–311 (2001)

6. Wang, S., Gupta, S.K.: LT-RTPG: a new test-per-scan BIST TPG for low switching activity.
IEEE Trans. Comput. Aided Design Integr. Circ. Syst. 25(8), 1565–1574 (2006)

7. Abu-Issa, A.S., Quigley, S.F.: Bit-swapping LFSR for low-power BIST. Electron. Lett.
44(6), 401–402 (2008)

8. Das, D., Touba, N.A.: Reducing test data volume using external/LBIST hybrid test patterns.
In: Proceedings of International Test Conference (ITC), pp. 115–122 (2000)

9. Chandra, A., Chakrabarty, K.: System-on-a-chip test-data compression and decompression
architectures based on Golomb codes. IEEE Trans. Comput. Aided Design 20(3), 355–368
(2001)

10. Anita, J.P., Sudheesh, P.: Test power reduction and test pattern generation for multiple faults
using zero suppressed decision diagrams. Int. J. High Perform. Syst. Archit. 6(1), 51–60
(2016)

11. Hakmi, A.-W., et al.: Programmable deterministic built-in self-test. In: Proceedings of
IEEE VLSI Test Symposium (VTS), pp. 1–9 (2007)

12. Jas, A., Touba, N.A.: Test vector compression via cyclical scan chains and its application to
testing core-based designs. In: Proceedings of International Test Conference, pp. 458–464
(1998)

13. Rajski, J., Tyszer, J., Kassab, M., Mukherjee, N.: Embedded deterministic test. IEEE Trans.
CAD 23, 776–792 (2004)

14. Asokan, A., Anita, J.P.: Burrows wheeler transform based test vector compression for digital
circuits. Indian J. Sci. Technol. 9(30) (2016)

Pattern Generation and Test Compression Using PRESTO Generator 285



Challenges in Android Forensics

Sudip Hazra1(B) and Prabhaker Mateti2

1 Amrita Center for Cybersecurity Systems and Networks,
Amrita School of Engineering, Amrita Vishwa Vidyapeetham,

Amrita University, Amritapuri 690525, India
hazrasudip9@gmail.com

2 Wright State University, Dayton, OH 45435, USA

Abstract. The field of Android forensics is evolving rapidly, with older
forensic techniques becoming irrelevant within a short time. In this paper,
we identify the challenges faced by the investigation agencies during
examination of Android devices. We classify the existing techniques into
Proactive Forensics and Reactive Forensics techniques. We also identify
the application based, permission based and extraction based challenges
faced by existing Android forensic tools. The results of this work illus-
trate the drawbacks of existing Android forensic tools and identify the
areas where more research is necessary to deal with the dynamic nature
of the Android ecosystem.

Keywords: Android forensics · Proactive forensics · Reactive forensics ·
Volatile memory · sqllite · adb · dd · WhatsApp forensics · Mobile
forensic tools · FOSS · Inotify · Sleuthkit · Andriller · FDE · FBE

1 Introduction

Smartphones are capable of doing a multitude of tasks not possible with conven-
tional phones. We can now send emails, engage in video chats, access satellite
navigation and remain connected to the outside world 24× 7. These devices are
key sources of evidence collection in criminal investigations. Criminals routinely
use their phones, with encrypted messages, and are now savvy enough to wipe
out the traces of their activities. Even if the phones are confiscated, it is very hard
for law-enforcement agencies to extract data from those devices. Any attempt
to get access to the device memory using brute-force could potentially wipe out
the all the data. This paper identifies the challenges faced by the investigation
agencies. We focus on Android devices as they are now dominant. Gartner [35]
reports that Android market share is 81%, IOS with 18% and Windows with
0.3% of the global smartphone market. So, there is a good chance that a seized
device will be an Android smartphone.

2 Background

Android operating system was developed by Google for touchscreen mobile
devices. Android source code is open-source. Figure 1 shows the Android archi-
c© Springer Nature Singapore Pte Ltd. 2017
S.M. Thampi et al. (Eds.): SSCC 2017, CCIS 746, pp. 286–299, 2017.
https://doi.org/10.1007/978-981-10-6898-0_24



Challenges in Android Forensics 287

tecture. Early Android devices used YAFFS2 file systems for flash storage. Cur-
rent Android kernels use EXT4 file systems. HAL layer bridges the gap between
hardware and software and allows applications to communicate with the spe-
cific device drivers. The ART JVM is specifically designed for devices with low
processing power and has lower memory requirements than traditional JVMs.
Android Native libraries handle different types of data using assembly, C and
C++ languages. Android Framework is the layer that applications directly inter-
act with. Application layer is the topmost layer in the Android architecture.
Forensically, Application layer is the most important part of the Android archi-
tecture because all user data are stored and generated in this layer.

Fig. 1. Android architecture [38]

2.1 Android Device Partitions

The following is the list of partitions found in Android devices ignoring device
manufacturer modifications.

/boot. This partition contains the boot image. It includes the kernel, and the
ramdisk. It is responsible for booting into the system. However, we can still
enter the system using recovery by pressing a couple of keys as it powers-up.

/system. This partition contains the system files which are installed when ROM
image is flashed. It is akin to the Windows C: drive where all OS files are
stored.



288 S. Hazra and P. Mateti

/recovery. The recovery partition is the alternative “system” partition, used
in case the system is not booting or for flashing custom ROM. It is one of
the partitions used by the forensic investigators to acquire an image of the
system partition.

/userdata. It is the most forensically relevant partition. All user installed appli-
cation data is stored in this partition. Erasing the userdata partition is akin to
doing a factory reset. Evidence files are acquired from this partition most of
the time.

/cache. The frequently accessed data is stored in this partition. Personal data
can also be found in this partition. It is also one of the important partitions
for evidence collection.

2.2 Android SDK

The Android Debugger Bridge, adb, is part of the Android Software Development
Kit. It is a CLI tool that connects a Linux or Windows PC as a client to an
Android device as a server, and can pull or push files, and can even invoke a
shell on the Android device. Figure 2 Illustrates what options must be enabled
in the developer settings in Android to access it via adb.

Fig. 2. Enabling developer options to access via adb



Challenges in Android Forensics 289

2.3 JTAG Forensics

JTAG forensics is a hardware based data acquisition method which involves
connecting to the test access ports (TAPs) on a device while powered on and
instructing the processor to transfer raw data stored on the memory chips. JTAG
method of memory acquisition is used only when the acquisition of data via
logical or physical extraction fails. There is much risk involved in JTAG forensics
as a special JTAG Box, e.g., RIFFBOX [29], is needed and specialized software
for the device model is needed. If a different microcode is used to extraction it can
permanently damage the device rendering it unusable. JTAG is an effective tool
to extract data locked but it must be performed by highly trained professional
otherwise there is always a risk for Evidence loss.

2.4 CHIP-OFF Forensics

CHIP-OFF forensics involves the desoldering of the memory chip from the board,
cleaned and repaired if necessary. Raw data is then extracted using specialized
tools such as HTCI Chip-Off Forensic Tool [30] and UP-828P Programmer [31].
This type of extraction is usually the last resort and any damage to the chip
during extraction process will render the chip useless.

3 Android Forensics

Forensics Investigations can be broadly divided into (i) Proactive Forensic Inves-
tigations and (ii) Reactive Forensic Investigations.

3.1 Proactive Forensics Investigations

Today technological advancements have given the anti-social elements an upper
hand. They are using technologies such as end-to-end encryption [36] in their
favour. The FBI Apple encryption dispute [37] demonstrates the difficulties faced
by law-enforcement agencies in dealing with data extraction from encrypted
smartphones. Apps like Whatsapp and Telegram are using end-to-end encryption
making the interception of network traffic harder.

Proactive Forensics anticipates questionable activity and prepares to collect
evidence. A suspect or potential terrorist is monitored proactively in real time.
In comparison to Reactive Forensics Investigation, there is much less research in
this field.

Mylonas [13] identified the data sources which could be collected in real
time from smartphones. This proposal has an independent authority overlooking
the proactive forensic service. A software agent installed on the suspects phone
sends the forensics artifacts over to the independent authority. The investigation
authority has to make an investigation request specifying the type of data to be
collected, which is then forwarded to the independent authority which activates
the software agent. The data collected from the smartphone can be message



290 S. Hazra and P. Mateti

data, device data, sim card data, usage history, application and sensor data.
The data can be sent via GSM message, PAN like bluetooth, WLAN or cellular
network. The data collected can then be classified in a taxonomy of evidence
type such as Identity evidence, Location evidence, Time evidence, Context evi-
dence, Motivation evidence and Means evidence. The data collected can then be
analyzed and presented in court.

Grover [7] made the first of its kind proactive Android forensics tool called
Droidwatch, which collected data with user consent and uploaded it to a remote
server. It was mainly designed for BYOD (Bring Your Own Devices), where orga-
nizations allow employees to bring their own device for work. Droidwatch mon-
itors using content observers, broadcast receivers and alarms from the Android
Framework. The main drawback is that these are susceptible to tampering.

Walnycky [2] took a survey of network forensics of 20 most popular Android
Messaging Apps. Only 4 apps passed the privacy test. TextMe app might be a
potential Trojan and some apps like MessageMe, MeetMe, Oovoo even send the
messages over the network in plain text. Full Video reconstruction was possible
in the cases of Tango, Nimbuzz, and MessageMe. Whatsapp successfully passed
the test. MITM (Man in the Middle) attack is perfectly possible in some apps,
They used a program called Datapp to generate the report. However with the
advent of end-to-end encryption, it will be much harder to analyze the network
packets of messengers now.

Karpisek [3] studied the calling feature in Whatsapp where they first de-
synchronised the full handshake of Whatspp and then monitored the entire
handshaking procedure. Whatsapp was using OPUS [20] voice codec in RTP
(Real-time Transport Protocol). They were able to observe the entire call process
where a connection with at least 8 Whatsapp servers were made between calls.

Vrizlynn [12] devised a live memory forensic technique for mobile phones
in which they created a framework composed of a Message Script generator,
UI/Application exerciser monkey, a memory acquisition tool (mem grab) and
a memory dump analyzer. The messages are intercepted in real time from the
shared memory regions. After sending each sets of message they performed a
memory dump, with varying time intervals, they were able to recover up to
100% of outgoing messages and 75% of incoming messages from the memory
dumps. The system is infeasible in forensic scenario because the taking memory
dumps takes significant system resources and the smartphones are not static so
we will not get optimal performance everywhere.

A proactive Android forensic ROM has been developed by Aiyyappan [15]
and Karthik [16]. Aiyyappan [15] ported the inotifywait package to Android.
File events are tracked by inotify tool and the inotify source was compiled using
NDK programming and compiled to a native shared object library. The native
function accepts a directory to track and all file events are tracked. He also
created the forensic examiner toolkit which runs on a Linux machine to image,
recover and collect device specific data from the cloud. Some amount of stealth
was also enabled using hidepid = 2, where users can only see their own processes



Challenges in Android Forensics 291

and process id’s are also hidden from /proc. The tool uses part of AFFT [39]
code. It has options to get data from cloud and retrieve all the collected data.

Karthik [16] created an Android APK that extensively tracks the user activ-
ities like GPS, sensor data, wifi metadata, SMS, call recording and a keylogger
was also included in the APK. All this is configured when the ROM is flashed.
After that there is no dialog whatsoever and the app runs in stealth mode and
saves all the forensically relevant data in /forensic partition and opportunisti-
cally uploads it to the cloud.

3.2 Reactive Forensics Investigations

Reactive Forensics is the method of traditional forensics investigation in which
after the device has been seized by the law-enforcement authorities, it is sub-
jected to forensic examinations to extract relevant forensic evidence.

The methods to extract data from the smartphones can be broadly classified
into (i) hardware acquisitions using JTAG and Chip-off, and (ii) taking physical
and logical acquisitions of the device memory for analysis.

In logical acquisition, file system partitions are imaged and data acquisition
is carried out on existing data on device. For example ADEL [9] is an sqllite
database extraction tool to pull the database artifacts from the device. It parses
the low-level data structures of the databases in READ ONLY mode and creates of
copy of the sqllite database by reading the database headers and extracting
the values of fields. ADEL works on a copy of database. The data is stored in
XML format for report generation.

In physical acquisition of memory dumps, the whole device memory is copied.
It may include unallocated spaces, and garbage files. Deleted data, which cannot
be acquired through logical acquisition, can be acquired through physical acqui-
sition. The dd command can be used to image partitions and pull the images
using adb tool. Hoogs [19], Vidas [14], Muller [11] used a modified boot.img file
to image the main storage partition to extract data. These images can then be
used for analyzing data using forensic tools like Sleuthkit [39] forensics toolkit.

Muller [11] devised a forensic image that was capable of brute-forcing pin,
direct recovery of encryption keys and decrypting user partition on the phone
itself. If the bootloader is locked then this technique is not of much use, only
option is to take memory dump. He proposed freezing the RAM to minimize
data loss and recover encryption keys from RAM.

Akarawita [8] implemented a forensic framework which can acquire data both
physically and logically from the Android smartphone. For physical acquisition
they used the dd program to copy the system image. For logical acquisition
they use adb pull to clone the file-system partition, other tools used were
logcat, demsg, dumpsys, scalpel, getprop to get device properties. They
used netcat to copy the system files to a remote server. It was better than other
open source forensic tools like Oxygen and ViaExtract CE tool. Rooting of the
phone was necessary.

Mahajan [1] has done forensic investigation on Whatsapp and Viber using
Celebrite UEFD Classic device. They were able to extract Whatsapp and Viber



292 S. Hazra and P. Mateti

Fig. 3. Memory image analysis using Sleuthkit

data using the physical analyzer software of Celebrite. It succeeded in the case
of Whatsapp but failed in the case of Viber. Manual analyses of the Viber
folder were needed. Pretty much everything was extracted such as chat mes-
sages, images videos with timestamp. However, the data in the internal sdcard
was encrypted and they did not test it after the deleting the data. Whether the
tool was able to extract data from the unallocated space is unknown.

Lamine [6] proposed acquiring device image of the MTD devices using
nanddump tool which can collect NAND data. The tool was designed for YAFFS2
file system which Google have now stopped using. The authors targeted the user
data partition. Image carving was done using tools such as scalpel which was
able to recover data regarding searched google maps locations and connected
wifi hot spots. Modern Android devices are now using eMMC devices which are
flash block devices instead of MTD because of which file systems such as EXT4
can be easily supported, which was earlier not possible.

Sylve [5] created a tool which parses the kernel iomem resource structure
to find the physical memory range, and performs physical to virtual address
translation. The tool was able to read all pages in each memory range and write
them to a file. The memory dump was directly written from kernel to limit the
amount of interaction with user space and to prevent contamination of system
and network buffers. The resultant image was then examined using volatility [33]
memory forensic toolkit and the authors added ARM address space support. The
authors developed two volatility plugins which were able to mimic the contents



Challenges in Android Forensics 293

of /proc/iomem file and the other for acquiring selective memory mapping from
specified user land process.

Andriotis [10] used open source tools like adb to do live analysis of Network
buffers in Android devices. The researchers rooted the phone and installed su and
busybox binary. Then a physical imaging of the device was done and the main
and events ring buffer is analysed. They tested it by sending files via bluetooth
and wifi to another device and took an image after 30 min, after that they did
a factory reset and again a device image was taken. The process was repeated
with time intervals of 30 min, 6 h and 12 h. The experimental results differed
from device to device because some device had larger buffer size compared to
others. They were able to recover name of the objects sent, MAC id’s, Bytes
sent and timestamp. They were also able to recover the wifi connections made
by the suspect. However on examination of the system image, lot more artifacts
such as browsing history, caches, and cloud storage could be extracted.

Quang [4] did an analysis on extracting cloud based data from Android
devices. They used a Nexus S, rooted the phone and loaded a custom image
in the volatile RAM to avoid modifications to internal partitions. Then they col-
lected a physical image via a custom boot image and analyzed it. They were able
to extract app private repositories of Dropbox, Box and Onedrive. The private
app storage folders contained files and sqllite databases which contained user
tokens, Oauth tokens and secret keys. The XML files revealed the list of objects
stored, timestamps of when they were accessed and email addresses.

A survey on commercially available forensics tool has been done by Nihar
[17] and Venkateswara [18] to find out the data extraction capabilities of the
tools. There are several free tools available like SleuthKit Forensic Toolkit [39],
Volatility [33], while tools like Andriller [34] are trial version tools. Paid tools
like Universal Forensic Extraction Device (UFED) [32] provide both standalone
tablets as well as devices to logical and physical data from devices. The authors
made a comparative study of the available tools in the market, However no
information was given on how these tools perform on various devices on cases
like when the devices are locked, the data has been deleted or when the device
is encrypted.

4 Challenges

The challenges faced by forensics investigators are increasing day by day. There
is growing pressure from privacy activist groups to make the Android platform
more secure by using end-to-end encryption and stronger encryption algorithms
for encrypting device data. Criminals are using these to their own advantage to
securely communicate over the network and also encrypt their devices.

4.1 Application Based Challenges

Criminals are increasingly becoming tech savvy and are using various apps which
provide encryption facilities as well as secure communication. This is becoming a



294 S. Hazra and P. Mateti

Fig. 4. Andriller was unable to extract data from a locked device.

problem for security agencies as they are not able to intercept the communication
channel. Some of the apps used by criminals networks are as follows:

Mappr [21]. An App that can change location data on photos, so they do not
reveal where they actually were.

Cryptophone [27]. An Android based phone with enhanced security features like
encrypted calls with 256-bit AES and twofish algorithms in addition to 4096-
bit Diffie-Hellman Key generation for each calls.

Telegram [28]. An encrypted mobile messaging app that can host different chan-
nels where members can talk in a group setting.

Firechat [26]. An App that connects to nearby devices which have firechat
installed through wifi or bluetooth and build a “mesh network” that allows
messages to be passed to other devices within vicinity without any usage of
cell phone tower.

Wickr [25]. An end-to-end encrypted messaging app that allows users to send
messages which are self-destructed after a time limit. It use strong encryption
and deletes all metadata like geotags and time stamps. It also includes a secure
shredder to erase attached files to prevent recovery.

SSE Universal Encryption [24]. An encryption app which can encrypt texts, files
and directories and provides a password vault. It encrypts with AES 256
bit encryption algorithm and also provides user an option to delete the data
sources after encryption.



Challenges in Android Forensics 295

4.2 Permission Based Challenges

Permission based challenges are hindrances faced by forensic investigators while
trying to get access to device memory. For any forensic investigation to take
place, the investigator must be able to get access the device internal memory via
adb. Most of the commercial forensic tools extract device memory in this manner
however the dynamic nature of the Android ecosystem is giving investigators a
hard time in accessing data from devices. For example, unlike earlier Android
versions, modern Android versions starting from 4.2 have given a greater control
to users regarding connecting their phones via adb.

As we can see in Fig. 4, Andriller [34] cannot access the device if the phone is
locked. So the phone unlocking must be done before the device can be accessed.
Even if the device is unlocked, Andriller will not be able to access the data if the
developer option is not enabled (Fig. 5). So a suspect, whose device settings are
locked via apps like AppLocker, or locked using a different pass-code or pattern
lock can create a hindrance in the process of forensic investigation.

Fig. 5. USB debugging must be enabled to access phone data.

4.3 Extraction Based Challenges

Extraction based challenges are hindrances faced by investigators while trying to
examine the extracted system memory or during memory extraction via recovery.
OEM Unlocking option must be enabled to unlock the bootloader without which
no custom recovery image can be flashed in the recovery partition of the device



296 S. Hazra and P. Mateti

to recover data. In addition, apps like Uninstallit can wipe out all app related
data from Android phones and in those scenarios hardware acquisition may be
the only option.

Even after the investigator has access to the device bootloader and can con-
nect the device via adb, if the suspect factory-resets the phone, then the chances
of data recovery are minimal. Figure 4 shows the data which can be recovered
from a device which has been wiped out using SleuthKit [39]. The device was
extensively used for two weeks prior to factory reset and then a physical acqui-
sition was done and the image was analyzed.

Fig. 6. Email-id’s recovered by Sleuthkit

Sleuthkit was able to extract the partition data as seen in Fig. 3. However,
when email and userdata recovery was tried, it could only provide us with one
email-id and 6 image files as seen below in Figs. 6 and 7, which was considerably
less than the original data stored in the device prior to factory reset. In these
scenario, hardware memory acquisition may be the only option left for forensic
investigators.

Fig. 7. Image files recovered by Sleuthkit from metadata



Challenges in Android Forensics 297

Sylve [5] attempted to identify the barriers in getting volatile memory data
from Android devices. The main barrier was the large number of kernel versions
currently running on Android devices, some of which are proprietary and hence
investigators face difficulty creating kernel patches since the symvers file which
contains the CRC of all kernel symbols is not available. And, module compilation
requires the kernel configuration file (.config) which can either be acquired from
the device or from kernel distributions. Last but not the least, Android security
features like FDE [22] (Full-Disk Encryption) and the FBE [23] (File Based
Encryption) can create hindrance in acquiring evidence files from the suspects
device. Android 5.0 on wards supports FDE which encrypts the whole /data
partition of the device with a single key. Starting from Android 7.0, Google has
also implemented FBE in Android phones which encrypts files with different keys
that can be unlocked independently. This means investigators will have to search
for multiple decryption keys for multiple files which can hinder the process of
investigation.

5 Conclusion and Future Work

The field of Android Forensics is evolving rapidly. Older techniques are becoming
irrelevant within a short span of time due to the dynamic nature of the Android
ecosystem. The tools which are used to root the phones for physical acquisition
are also not tested for their forensic worthiness. Are they modifying the file sys-
tem for root access in a way such that there is tampering with the userdata
partition? These tools are not tested hence research on this area is necessary.
Moreover, there is a lack of detailed comparative analysis of forensics tools avail-
able in the market. Reactive forensics tools and techniques must evolve with the
Android ecosystem and there is a need to reflect upon the growing challenges
faced by law-enforcement agencies. More research on proactive forensics investi-
gation techniques is necessary and our future work will be based on developing
a proactive Android forensic ROM capable of monitoring suspects 24× 7. On
a final note, proactive android forensics techniques should be adopted by these
agencies to monitor suspects which can pose a threat to national security while
reactive forensics can be used on less serious cases.

References

1. Mahajan, A., Dahiya, M.S., Sanghvi, H.P.: Forensic analysis of instant messenger
applications on Android devices. arXiv preprint arXiv:1304.4915 (2013)

2. Walnycky, D., Baggili, I., Marrington, A., Moore, J., Breitinger, F.: Network and
device forensic analysis of Android social-messaging applications. Digit. Invest. 14,
77–84 (2015). Elsevier

3. Karpisek, F., Baggili, I., Breitinger, F.: WhatsApp network forensics: decrypting
and understanding the WhatsApp call signaling messages. Digit. Invest. 15, 110–
118 (2015). Elsevier

4. Do, Q., Martini, B., Choo, K.-K.R.: A cloud-focused mobile forensics methodology.
IEEE Cloud Comput. 2, 60–65 (2015). IEEE

http://arxiv.org/abs/1304.4915


298 S. Hazra and P. Mateti

5. Sylve, J., Case, A., Marziale, L., Richard, G.G.: Acquisition and analysis of volatile
memory from android devices. Digit. Invest. 8, 175–184 (2012). Elsevier

6. Aouad, L.M., Kechadi, T.M.: Android forensics: a physical approach. In: Proceed-
ings of the International Conference on Security and Management (SAM), The
Steering Committee of The World Congress in Computer Science, Computer Engi-
neering and Applied Computing (WorldComp) (2012)

7. Grover, J.: Android forensics: automated data collection and reporting from a
mobile device. Digit. Invest. 10, 12–20 (2013). Elsevier

8. Akarawita, I.U., Perera, A.B., Atukorale, A.: ANDROPHSY-forensic framework
for Android. In: 2015 Fifteenth International Conference on Advances in ICT for
Emerging Regions (ICTer). IEEE (2015)

9. Freiling, F., Spreitzenbarth, M., Schmitt, S.: Forensic analysis of smartphones: the
Android Data Extractor Lite (ADEL). In: Proceedings of the Conference on Digital
Forensics, Security and Law. Association of Digital Forensics, Security and Law
(2011)

10. Andriotis, P., Oikonomou, G., Tryfonas, T.: Forensic analysis of wireless networking
evidence of Android smartphones. In: IEEE international workshop on Information
forensics and security (WIFS), pp. 109–114. IEEE (2012)

11. Müller, T., Spreitzenbarth, M.: FROST. In: Jacobson, M., Locasto, M., Mohassel,
P., Safavi-Naini, R. (eds.) ACNS 2013. LNCS, vol. 7954, pp. 373–388. Springer,
Heidelberg (2013). https://doi.org/10.1007/978-3-642-38980-1 23

12. Thing, V.L.L., Ng, K.-Y., Chang, E.-C.: Live memory forensics of mobile phones.
Digit. Invest. 7, 74–82 (2010). Elsevier

13. Mylonas, A., Meletiadis, V., Tsoumas, B., Mitrou, L., Gritzalis, D.: Smartphone
forensics: a proactive investigation scheme for evidence acquisition. In: Gritzalis,
D., Furnell, S., Theoharidou, M. (eds.) SEC 2012. IAICT, vol. 376, pp. 249–260.
Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-30436-1 21

14. Vidas, T., Zhang, C., Christin, N.: Toward a general collection methodology for
android devices. Digit. Invest. 8, 14–24 (2011). Elsevier

15. Aiyyappan, P.S.: Android forensic support framework. Masters Thesis, Advisor:
Prabhaker Mateti, Amrita Vishwa Vidyapeetham, Ettimadai, Tamil Nadu, India
(2015). http://cecs.wright.edu/∼pmateti/Students/

16. Rao, M.K.: Proactive forensic support for Android devices. Masters thesis, Advisor:
Prabhaker Mateti, Amrita Vishwa Vidyapeetham, Ettimadai, Tamil Nadu, India
(2016). http://cecs.wright.edu/∼pmateti/Students/

17. Roy, N., Ranjan, K., Anshul, K., Aneja, L.: Android phone forensic: tools and
techniques. In: International Conference on Communication and Automation, pp.
605–610. IEEE (2016)

18. Rao, V., Chakravarthy, A.S.N.: Survey on Android forensic tools and methodolo-
gies. Int. J. Comput. Appl. 154, 17–21 (2016). Foundation of Computer Science
(FCS), New York

19. Hoog, A.: Android Forensics: Investigation, Analysis and Mobile Security for
Google Android. Elsevier, Amsterdam (2011)

20. Valin, J.-M., Maxwell, G., Terriberry, T.B., Vos, K.: High-quality, low-delay music
coding in the Opus codec. arXiv preprint arXiv:1602.04845 (2016)

21. Mappr - Latergram Location Editor for Instagram. On the iTunes App Store
22. Full-Disk Encryption, Android Open Source Project. https://source.android.com/

security/encryption/full-disk
23. File-Based Encryption, Android Open Source Project. https://source.android.

com/security/encryption/file-based/

https://doi.org/10.1007/978-3-642-38980-1_23
https://doi.org/10.1007/978-3-642-30436-1_21
http://cecs.wright.edu/~pmateti/Students/
http://cecs.wright.edu/~pmateti/Students/
http://arxiv.org/abs/1602.04845
https://source.android.com/security/encryption/full-disk
https://source.android.com/security/encryption/full-disk
https://source.android.com/security/encryption/file-based/
https://source.android.com/security/encryption/file-based/


Challenges in Android Forensics 299

24. Secret Space Encryptor is a password manager, text encryption and file encryption
all-in-one solution. http://www.paranoiaworks.mobi/

25. The Wickr instant messaging app allows users to exchange end-to-end encrypted
and content-expiring messages. https://wickr.com/

26. FireChat is a proprietary mobile app, developed by Open Garden, which uses
wireless mesh networking to enable smartphones to connect via Bluetooth, WiFi.
https://www.opengarden.com/firechat.html/

27. The GSMK CryptoPhone 500i is an Android-based secure mobile phone with 360
mobile device security for secure messaging and voice over IP communication on
any network. http://www.cryptophone.de/en/products/mobile/cp500i

28. Telegram is a free cloud-based instant messaging service. Telegram also provides
optional end-to-end-encrypted messaging. http://telegram.org/

29. RIFF Box - “Best JTAG Box in this Galaxy.” http://www.riffbox.org/
30. HTCI Chip-Off Forensic Tools. http://forensicstore.com/product/

forensic-hardware/htci-chip-off-tools/
31. The UP-828P Series universal programmer to acquire data from a variety of

flash storage devices. http://www.teeltech.com/mobile-device-forensic-software/
up-828-programmer/

32. UFED Touch platform is a portable digital forensics solution. http://www.
cellebrite.com/Mobile-Forensics/Products/ufed-touch2/

33. The Volatility Foundation - Open Source Memory Forensics. http://www.
volatilityfoundation.org/

34. Andriller performs read-only, forensically sound, non-destructive acquisition from
Android devices. https://www.andriller.com/

35. Gartner says worldwide sales of smartphones grew 7 percent in the fourth quarter
of 2016. http://www.gartner.com/newsroom/id/3609817

36. Andy, G.: Whatsapp just switched on end-to-end encryption for hundreds of mil-
lions of users. http://www.wired.com/2014/11/whatsapp-encrypted-messaging/

37. Timberg, C., Miller, G.: FBI blasts Apple, Google for locking police out of phones,
The Washington Post (2014)

38. Platform Architecture. https://source.android.com/images/android framework
39. Android Free Forensic Toolkit. https://n0where.net/android-free-forensic-toolkit/

http://www.paranoiaworks.mobi/
https://wickr.com/
https://www.opengarden.com/firechat.html/
http://www.cryptophone.de/en/products/mobile/cp500i
http://telegram.org/
http://www.riffbox.org/
http://forensicstore.com/product/forensic-hardware/htci-chip-off-tools/
http://forensicstore.com/product/forensic-hardware/htci-chip-off-tools/
http://www.teeltech.com/mobile-device-forensic-software/up-828-programmer/
http://www.teeltech.com/mobile-device-forensic-software/up-828-programmer/
http://www.cellebrite.com/Mobile-Forensics/Products/ufed-touch2/
http://www.cellebrite.com/Mobile-Forensics/Products/ufed-touch2/
http://www.volatilityfoundation.org/
http://www.volatilityfoundation.org/
https://www.andriller.com/
http://www.gartner.com/newsroom/id/3609817
http://www.wired.com/2014/11/whatsapp-encrypted-messaging/
https://source.android.com/images/android_framework
https://n0where.net/android-free-forensic-toolkit/


Current Consumption Analysis of AES
and PRESENT Encryption Algorithms
in FPGA Using the Welch Method

William P. Maia1,2(&) and Edward D. Moreno2

1 Federal Institute of Acre (IFAC), Rio Branco, Brazil
willian.maia@ifac.edu.br

2 Federal University of Sergipe (UFS), Aracaju, Brazil
edwdavid@gmail.com

Abstract. This paper presents an analysis of the current consumption of
AES-128 and PRESENT-80 cryptography algorithms implemented in FPGA
(Basys 3 chip family of Artix-7 family). Consumption data were obtained using
measurements using an Adafruit INA219 (Texas Instruments chip) and Arduino
Uno microcontroller (Atmega328 - Atmel). The mathematical model based on
the Welch method was applied to the variables of current consumption during
the process of encryption of the algorithms, to obtain new curves and patterns of
current consumption. The results show curves that facilitate the interpretation of
the results, as well as the differentiation of which algorithm is being used
according to current consumption. The resource consumption data used in
FPGA hardware implementation were also measured and compared.

Keywords: AES � PRESENT � FPGA encryption � Current consumption
analysis � Welch method

1 Introduction

Encryption uses a set of methods and techniques for encoding and decoding data, in
order to guarantee the protection and access of these data only by authorized persons.
The development of cryptographic algorithms of compact size, with low cost and
consumption has been focus of researches in the area. AES is a widely-used encryption
algorithm, with several architectures implemented, even for applications that require
reduced resource consumption [1, 2]. PRESENT is a lightweight block cipher, stan-
dardized by ISO/IEC 29192-2: 2012 standardization for applications that require low
resources [3, 4]. FPGA (Field Programmable Gate Array), is a device composed
basically of a set of logic blocks organized in matrix form, programmable via software
and widely used today due to rapid prototyping and high performance for many
applications.

The modeling of variables that represent the energy consumption in cryptographic
devices, aiming at a comparison between ciphers, or as part of a Lateral Channel Attack
process, to obtain part of the cryptographic key has also been the object of research,
according [5, 6].

© Springer Nature Singapore Pte Ltd. 2017
S.M. Thampi et al. (Eds.): SSCC 2017, CCIS 746, pp. 300–311, 2017.
https://doi.org/10.1007/978-981-10-6898-0_25



The present paper presents an analysis of the current consumption through standard
curves obtained using the Welch method in AES and PRESENT encryption algorithms
implemented in hardware FPGA Xilinx Artix-7 family (Basys 3 – Digilent board), and
measurements made using a prototype with Adafruit INA219 sensor (Texas Instru-
ments chip) and Arduino Uno microcontroller.

The organization of the article is as follows: Sect. 1 (Introduction), where the
subject is presented and its contributions. An overview of implementations of AES and
PRESENT in FPGA is described in Sects. 2 and 3 presents an analysis of related
works, Sect. 4 addresses the methodological procedures of this work, Sect. 5 presents
the results and respective analysis, Finally, Sect. 6 presents the conclusions and future
work.

2 FPGA Implementations

In this section is a brief account of the architecture of AES and PRESENT algorithms,
implemented in FPGA in this work.

2.1 AES Encryption

The AES is a symmetric block cipher, officially standardized by the National Institute
of Standards and Technology (NIST) in 2001. It operates in a 128-bit data block, which
is organized in a matrix of 4 � 4 bytes, called State, where the ordering of the bytes
within the array occurs per column. Keys can be parameterized in sizes of 128, 192 and
256-bit. At each iteration, or round of encryption on each block of data (these rounds
can vary per the size of the key: 10, 12 and 14 rounds, for keys of 128, 192 and 256-bit
respectively), several operations are performed: SubByte, ShiftRow, Mixcolumns and
AddRoundKey, which occurs over in the finite field arithmetic GF (28), known as the
Galois Field, for the decryption of the data the operations are reversed. Another
important operation to consider is the process of sub-key generation, or expansion of
the key, where the key supplied as input is expanded, through a specific algorithm, into
a vector of n 32-bit words, where the value of n depends of the chosen key size (44, 52,
60 words for 128, 192 and 256-bit key respectively). In each round, 4 distinct words
(128-bit) serve as keys to the AddRoundKey operation.

In summary, the operations of the encryption process are [7]:

• SubByte (S-Box): The bytes of each block of the array (state) are replaced by their
equivalents in a substitution table (S-BOX).

• ShiftRow: A simple permutation is performed, where the bytes are rotated in
groups of four bytes.

• MixColumns: In this step, linear multiplications in GF (28) are performed on each
group of four bytes, thus providing an influence of each group byte on all other
bytes.

• AddRoundKey: At this stage, a bitwise XOR operation of the current block is
performed with one part of the expanded key (generated through another process).

Current Consumption Analysis of AES and PRESENT Encryption Algorithms 301



It is important to note that the last round of encryption is different from the others,
not performing the MixColumns operation.

In this work, a version of AES Encryption, based on [8] was implemented, using
VHDL and the software tool Vivado Design Suites (Xilinx), synthesized for the Basys
3 board FPGA (Artix-7 family).

Figure 1 illustrates the AES architecture employed.

The AES version implemented (Fig. 1) encrypts a simple text in 11 rounds, using a
128-bit data block and parameterized with a 128-bit key (AES standard).

2.2 PRESENT Encryption

Created in 2007 especially for environments with limited resources and with better
efficiency in hardware, PRESENT is an ultra-lightweight block cipher developed by
[3]. It has 64-bit block size and supports 80- or 128-bit key. It uses a
substitution-permutation network (SPN) and consists of 31 rounds for simple text
encryption.

Each of the 31 rounds consists of an XOR operation to introduce a key
(addRoundKey) Ki to 1 � i � 32 where the repeated iterations aim to ensure a high
degree of security of the encrypted block. The block (sBoxLayer) performs nonlinear
substitution operations using a 4-bit to 4-bit (S-box) replacement box. Linear permu-
tations of bits are performed by the permutation block (pLayer). Details of the PRE-
SENT encryption operations are described below:

• sBoxLayer (Substitution layer): In this step a query table (S-box) is used to sub-
stitute groups of bits, in the order of 4-bit to 4-bit.

• pLayer (Permutation layer): performs a simple permutation operation bit by bit.
• AddRoundKey (Addition of round key): in this process an XOR operation of the

round key, obtained through a specific key scaling procedure, is performed with the

Fig. 1. Overall architecture AES implementation

302 W.P. Maia and E.D. Moreno



Current State block, called ESTATE, in the case of the first state, the ESTATE will
be the plaintext.

• RoundKeys Generation (80-bit key): The generation of sub keys (round keys),
which are used at each iteration (addRoundKey) works through a specific update
process (round by round), where 64 bits MSB of the key are extracted, after pro-
cesses of permutation, substitution (S-box) and still operation XOR with the counter
of rounds.

Figure 2 illustrates the architecture of the PRESENT cipher implemented.

The PRESENT version used in this work is based on [3, 9], encrypts a simple text
in 32 rounds and operates with blocks of 64-bit for text and 80-bit for keys.

3 Related Works

The modeling of energy-related variables in cryptographic devices, especially those
with restrictions on computational power, memory and energy, has been the current
target of research in the area [10, 11].

In [12], a comparative analysis of energy and area of architectures of several
light-weight block encryption algorithms implemented in Hardware was performed.
The Cadence Encounter Compiler RTL tool was used using Faraday UMC 130 nm
low-leakage technology library and Model-Sim simulation for measuring and analyz-
ing consumption data. According to [12], not always a smaller implementation area
indicates a lower energy consumption, these values also depend on the complexity of
the encryption/decryption calculations, the architecture used, as well as on the cycles
required for the execution of the processes for each design.

An investigation into energy consumption analyzes in attacks against cryptographic
systems is reported in [13]. For the author, the energy consumption of an integrated

Fig. 2. Overall architecture PRESENT implementation

Current Consumption Analysis of AES and PRESENT Encryption Algorithms 303



circuit reflects the aggregate activity of its individual elements, for example, the
switching of the transistors may be different according to the data types, which can
reflect in a different consumption. In this context, the application of statistical tech-
niques that search for the correlation between the data of consumption during the
encryption process and other data already known, aiming at obtaining the secret key is
known as Differential Power Analysis.

According to [14], Differential Power Analysis (DPA) collects information about
the energy consumption of a physical system, performing the statistical modeling of
this data to obtain important information for the cryptographic system crash.

Differential Power Analysis attacks on lightweight cryptographic algorithms were
performed in [15]. Different optimized architectures of the AES, Camellia, xTEA,
HIGHT and PRESENT algorithms were submitted to the attacks. Implementations
were performed on low-cost Spartan-3 FPGA hardware (Xilinx). The results showed
that architectures that use records to store data and keys are more susceptible to attacks.
Algorithms that used a greater amount of XOR operations also demonstrated greater
vulnerability to attacks.

In the work [10] DPA attacks were analyzed in an area-optimized AES version. The
results showed that the low-power version of AES is more susceptible to Differential
Power Analysis. The work also proposed a design with Integrated Low-Drop-Out
Regulators to increase resistance to DPA attack from compact AES.

The researches demonstrated that most of these works analyze energy consumption
variables describing the pattern at run time. The present work, in addition to measuring
the current consumption data of the implementations of AES and PRESENT, analyzes
the characteristic curve generated during the encryption process, using the Power
Spectral Density estimator known as the Welch method.

4 Methods

In this section, these is described the steps and procedures used to create the prototype
of current measurement, the architecture of the AES and PRESENT implementations
for simulation purposes, Welch mathematical model, as well as the conditions under
which the tests were performed.

4.1 Current Meter and Monitoring

To carry out the measurements, a prototype current and voltage measurement with
serial interface was developed. An Adafruit INA219 current sensor and an Arduino
Uno open-source platform were used as well as a computer for receiving, storing and
processing this information. Figure 3 shows the system ready for current consumption
measurement.

Considering the characteristics of the current sensor (INA219), as well as the
reading and serial transmission time of the Arduino Uno, the measurements were
carried out at a clock speed of 10 kHz in the FPGA.

304 W.P. Maia and E.D. Moreno



4.2 Implementation for the Simulation

Considering also the restrictions of input/output (I/O) ports, as well as the necessity of
control of rounds and data entry, other modules were incorporated together with the
implementation of the algorithm of encryption in the FPGA, as shown in Fig. 4.

A pseudo-random binary sequence (PRBS) was implemented in order to generate
the necessary entries for the simulation. The use of registers (Reg_PlainText, Reg_Key,
and Reg_CipherText), control unit (Controller), Counter and Clock_Reduction have
also been implemented to ensure simulation functionality. The outputs of the
encryption round of the algorithms (AES and PRESENT individually) were also
configured in the FPGA, these outputs were connected to Arduino inputs in order to
measure the detailed consumption during the encryption rounds.

FPGA: AES/PRESENT
Encryption

Connections:
Encryption rounds

Current sensor 
(INA219)

Microcontroller (Arduino):
Read current sensor and
Serial interface

Fig. 3. Prototype current measurement for FPGA

Fig. 4. Overall architecture implemented for simulation

Current Consumption Analysis of AES and PRESENT Encryption Algorithms 305



4.3 Welch Method

Aiming for a better analysis and graphical interpretation of the data of the standard
consumption curve, in this work the Welch method was applied.

This method is based on the estimation of the power spectrum of a signal, which is
performed by dividing the signal time into successive blocks, forming a periodogram.
Given by the square of the magnitude of the result of the discrete Fourier transform of
the samples of the process, as shown in Eq. 1, for a given signal x [n] of size N.

Pxx fð Þ ¼ jXðf Þj2
FsN

; whereX fð Þ ¼
XN�1

n¼0
x n½ �e�j2pfn=fs ð1Þ

One of the characteristics of the Welch method is the ability to smooth the spectrum
of a signal in that it allows to reduce the variance between the estimators, in order to
obtain a better representation of the obtained signals standard.

In this work, specific functions were used in the Matlab software, which returns the
frequency response of the Welch method for the consumption data.

4.4 Test Conditions

For both AES and PRESENT algorithms, the measurements were performed per the
following conditions:

• Static: When the FPGA is configured with the encryption simulation algorithm, but
it is in the idle state (not performing encryption), observing the leakage current of
the circuit.

• Dynamic: When the FPGA is executing the encryption simulation.

In order to avoid erroneous measurements, a measurement of the FPGA board
configured without the encryption algorithm was performed, because the default
configuration of the Basys 3 FPGA board, LEDs and 7-segment display are connected
and therefore consuming power, and it is also not interesting to measure the PRBS
consumption data, loading the Registers, and other modules added to the encryption
drawing for the simulation. Thus, the value adopted for Static and Dynamic mea-
surements is the difference between the average FPGA consumption configured with
the encryption and the average consumption for the state without the encryption design.

5 Analysis of Results

The results collected are evaluated based on a significant quantity of samples for each
proposed measurement condition. For each round of encryption, AES with 11 rounds
and PRESENT with 32 rounds, 100 samples of the total measured (approximately 160
Kbytes for AES and 80 Kbytes for PRESENT) were selected, then the overall mean of
the Dynamic state and the average for each round of encryption were calculated. The
average consumption for the Static condition was also calculated, however for a
quantity of 500 samples. The FPGA clock speed configured for the simulations and
measurements was 10 kHz.

306 W.P. Maia and E.D. Moreno



Data of the resources consumed by the FPGA and performance for the imple-
mentations of the encryption algorithms are illustrated in Table 1.

The results presented show AES with high efficiency, but at a cost of slices of
approximately 5.7 times greater, while PRESENT uses a reduced number of resources,
only 65 slices, but it encrypts a simple text in approximately 3 times higher latency
cycles. These results were displayed for a maximum frequency that the design can
achieve in the FPGA used.

Figure 5 shows the current consumption data for AES (a) and PRESENT (b) during
encryption simulation.

Table 1. Implementations of Encryption in the FPGA (Device XC7A35T-CPG236-1 – 28 nm)

C
ip

he
r

Fl
ip

-F
lo

ps

L
U

T
s

Sl
ic

es

L
at

en
cy

 
cy

cl
es

M
ax

 F
re

q.
 

(M
H

z)

T
hr

ou
gh

pu
t

(G
bp

s)

E
ff

ic
ie

nc
y 

M
pb

s/
sl

ic
e

AES 260 1336 372 11 185.1 2.153 5.78
PRESENT 151 209 65 32 346.0 0.692 10.64

Fig. 5. Dynamic current consumption: (a) AES and (b) PRESENT

Current Consumption Analysis of AES and PRESENT Encryption Algorithms 307



Through the graph, it is possible to observe that the variation of current con-
sumption between the encryption rounds is very small, not greater than 0.02 mA for
both algorithms. Figure 6 shows in more detail this difference during the encryption of
a block of text.

The results show AES with a greater consumption than PRESENT, which is
consistent with the implemented AES architecture because it performs more complex
operations and also use 128-bit blocks, while PRESENT encrypts 64-bit blocks, but the
number of rounds for encrypting a plain text is much smaller in AES, 11 rounds, versus
32 rounds for PRESENT.

Figure 7 shows a detailed comparison between the means for consumption in the
Static and Dynamic states.

In the Static condition (which represents a leakage current from the circuit), the
AES consumption was 66.8 mA, whereas the PRESENT was 10.8 mA, representing a
consumption of 83.84% higher for AES.

Fig. 6. Comparison current consumption AES and PRESENT

Fig. 7. Average current consumption (AES x PRESENT)

308 W.P. Maia and E.D. Moreno



Figure 8 shows the current consumption data of the frequency domain imple-
mentations after application of the Welch method and subsequently standardized. The
data show characteristic curves generated for AES and PRESENT.

By analyzing Figs. 5 and 8 it is possible to observe the difference in the forms of
representation of current consumption signals. In Fig. 8 it is possible to observe
smooth, normalized curves in which the difference in consumption can be observed
more easily. Figure 9 shows in more detail this difference in the consumption of both
implementations, based on the Welch method applied.

Fig. 8. Normalized Welch current estimation of (a) AES and (b) PRESENT

Fig. 9. Normalized Welch comparison of AES and PRESENT

Current Consumption Analysis of AES and PRESENT Encryption Algorithms 309



Generally, the work has focused on analyzing the energy consumption of a
determinate cryptographic device, based on several samples of the power in the time
domain, seeking to find a correlation between consumption information and the stan-
dard processes performed by the algorithm during the encryption. The differential of
this work is the application of the Welch method on the energy consumption variables,
which can help in the identification and comparison of a determined algorithm of
encryption, based on a standard curve of consumption, making it easier and agile this
analysis. However, more studies are needed, for different algorithms and implemen-
tation architectures, to confirm a characteristic curve for each algorithm.

6 Conclusions and Future Work

In this work, it was presented an analysis of the energy consumption (current variable)
of the AES and PRESENT algorithms implemented in FPGA, making a comparison
between the resources used in the hardware and the forms of representation of the
current at the domain of time and frequency based on the normalized Welch method for
estimation of spectral density.

From the data obtained in the presented experiment, it is concluded that for the
architectures implemented in the FPGA, AES presents Slices consumption approxi-
mately 5.7 times greater than PRESENT, and a current consumption of approximately
33.6% higher, in addition to a high efficiency for AES compared to PRESENT. This
difference can be explained by the purpose for which the algorithms were developed,
since AES presents a greater robustness, working with a greater volume of data, while
PRESENT is designed for ultra-lightweight applications, which require the minimum
area of implementation and processing of a smaller amount of data.

With respect to the comparison between the current represented in the time domain
and the one modeled by the normalized Welch method, it was demonstrated the pos-
sibility of obtaining curves current consumption patterns for AES and PRESENT,
being the visualization of easy differentiation between the algorithms Encryption.

As a suggestion of future work, we recommend measuring for different AES and
PRESENT designs, for example for other key sizes, as well as for other encryption
algorithms, with the purpose of comparing the responses generated by the Welch
Method for the purpose of confirming a model behavior that can easily aid in the
identification of a certain encryption algorithm, and also contribute to a Side Channel
Attack process. Another suggestion is the measurement for different frequencies of
encryption, with specific equipment for this purpose.

References

1. Bogdanov, A., Mendel, F., Regazzoni, F., Rijmen, V., Tischhauser, E.: ALE: AES-based
lightweight authenticated encryption. In: Moriai, S. (ed.) FSE 2013. LNCS, vol. 8424,
pp. 447–466. Springer, Heidelberg (2014). doi:10.1007/978-3-662-43933-3_23

2. Chodowiec, P., Gaj, K.: Very compact FPGA implementation of the AES algorithm. In:
Walter, C.D., Koç, Ç.K., Paar, C. (eds.) CHES 2003. LNCS, vol. 2779, pp. 319–333.
Springer, Heidelberg (2003). doi:10.1007/978-3-540-45238-6_26

310 W.P. Maia and E.D. Moreno

http://dx.doi.org/10.1007/978-3-662-43933-3_23
http://dx.doi.org/10.1007/978-3-540-45238-6_26


3. Bogdanov, A., Knudsen, L.R., Leander, G., Paar, C., Poschmann, A., Robshaw, M.J.B.,
Seurin, Y., Vikkelsoe, C.: PRESENT: an ultra-lightweight block cipher. In: Paillier, P.,
Verbauwhede, I. (eds.) CHES 2007. LNCS, vol. 4727, pp. 450–466. Springer, Heidelberg
(2007). doi:10.1007/978-3-540-74735-2_31

4. Tay, J.J., Wong, M.L.D., Wong, M.M., Zhang, C., Hijazin, I.: Compact FPGA implemen-
tation of PRESENT with Boolean S-Box. In: 2015 6th Asia Symposium on Quality
Electronic Design (ASQED), pp. 144–148. IEEE (2015). doi:10.1109/ACQED.2015.
7274024

5. Masoumi, M., Mohammadi, S.: A new and efficient approach to protect AES against
differential power analysis. In: 2011 World Congress on Internet Security (WorldCIS),
pp. 59–66. IEEE (2011)

6. Örs, S.B., Oswald, E., Preneel, B.: Power-analysis attacks on an FPGA – first experimental
results. In: Walter, C.D., Koç, Ç.K., Paar, C. (eds.) CHES 2003. LNCS, vol. 2779, pp. 35–
50. Springer, Heidelberg (2003). doi:10.1007/978-3-540-45238-6_4

7. Moreno, E.D., Pereira, F.D., Chiaramonte, R.B.: Software and Hardware Encryption.
Novatec, São Paulo (2005)

8. Palmeira, S.I.N., Góis, A.C.D.S., Dias, W.R.A., Moreno, E.D.: An Implementation of AES
algorithm in FPGA. In: 14th Microelectronics Students Forum (SForum), at Federal
University of Sergipe, Aracaju, Brazil (2014)

9. Gajewski, K.: Present a lightweight block cipher. In: Open Cores (2014). https://opencores.
org/project,present

10. Singh, A., Kar, M., Ko, J.H., Mukhopadhyay, S.: Exploring power attack protection of
resource constrained encryption engines using integrated low-drop-out regulators. In: 2015
IEEE/ACM International Symposium on Low Power Electronics and Design (ISLPED),
pp. 134–139. IEEE (2015). doi:10.1109/ISLPED.2015.7273503

11. Deng, L., Sobti, K., Zhang, Y., Chakrabarti, C.: Accurate area, time and power models for
FPGA-based implementations. J. Signal Process. Syst. 63(1), 39–50 (2011). doi:10.1007/
s11265-009-0387-7

12. Batina, L., Das, A., Ege, B., Kavun, E.B., Mentens, N., Paar, C., Verbauwhede, I., Yalçın,
T.: Dietary recommendations for lightweight block ciphers: power, energy and area analysis
of recently developed architectures. In: Hutter, M., Schmidt, J.-M. (eds.) RFIDSec 2013.
LNCS, vol. 8262, pp. 103–112. Springer, Heidelberg (2013). doi:10.1007/978-3-642-41332-
2_7

13. Kocher, P., Jaffe, J., Jun, B., Rohatgi, P.: Introduction to differential power analysis.
J. Cryptograph. Eng. 1(1), 5–27 (2011). doi:10.1007/s13389-011-0006-y

14. Tang, M., Qiu, Z., Yang, M., Cheng, P., Gao, S., Liu, S., Meng, Q.: Evolutionary ciphers
against differential power analysis and differential fault analysis. Sci. China Inf. Sci. 55, 1–
15 (2012). doi:10.1007/s11432-012-4615-6

15. Yalla, P.S.: Differential power analysis on light weight implementations of block ciphers.
Doctoral dissertation, George Mason University (2009)

Current Consumption Analysis of AES and PRESENT Encryption Algorithms 311

http://dx.doi.org/10.1007/978-3-540-74735-2_31
http://dx.doi.org/10.1109/ACQED.2015.7274024
http://dx.doi.org/10.1109/ACQED.2015.7274024
http://dx.doi.org/10.1007/978-3-540-45238-6_4
https://opencores.org/project,present
https://opencores.org/project,present
http://dx.doi.org/10.1109/ISLPED.2015.7273503
http://dx.doi.org/10.1007/s11265-009-0387-7
http://dx.doi.org/10.1007/s11265-009-0387-7
http://dx.doi.org/10.1007/978-3-642-41332-2_7
http://dx.doi.org/10.1007/978-3-642-41332-2_7
http://dx.doi.org/10.1007/s13389-011-0006-y
http://dx.doi.org/10.1007/s11432-012-4615-6


Spiral Model for Digital Forensics
Investigation

Suvarna Kothari and Hitesh Hasija(&)

Springer-Verlag, Computer Science Editorial,
Tiergartenstr. 17, 69121 Heidelberg, Germany

suvarnakothari91@gmail.com, hitoo.hasija@gmail.com

Abstract. Digital forensics is the scientific analysis of digital crimes. It is
analogous to physical crime scene investigation, which usually consists of
collecting evidences, storing them at a proper place, documenting them, creating
a hypothesis for the crime scene to analyze the situation, and presenting them
before the court of law for jurisdiction. But, while dealing with things digitally, a
proper framework is needed which should be applicable for all the crime scenes
and for all the digital devices like mobile phones and computers, etc. This paper
proposes a framework based on the spiral model of software development,
which consist of risk analysis factor also for providing flexibility so that it can
overcome all the drawbacks of previous methodologies. The biggest advantage
of this method is its ability to plan next phase as per the outcome of previous
phase because of its agile functioning and spiral behavior, to perform investi-
gation as quickly as possible. It covers all the phases in the form of different
iterations. Hence, this paper proposed a generic framework to perform digital
forensics smoothly without any drawback at all.

Keywords: Digital forensics � Digital crime � Digital investigation � Spiral
model � Software engineering

1 Introduction

Digital Forensics is the scientific analysis of digital crimes. As the world is going
digital, the physical crimes have also been modified to be occurring at digital level.
Now, no crimes of stealing money from a bank ATM are being committed. Rather,
money is hacked either via network or by some other means with the help of computer,
or other digital devices. These kinds of crimes which involve some digital means like
computer, cell phones or other peripheral devices come under the category of digital
forensics. Computer forensics is a sub division. The term forensics implies similarity to
normal crimes, but the only difference is that we are dealing digitally. Hence, digital
investigation has to be done for digital crimes. The analysis of suspecting digital

Please note that the LNCS Editorial assumes that all authors have used the western naming
convention, with given names preceding surnames. This determines the structure of the names
in the running heads and the author index.

© Springer Nature Singapore Pte Ltd. 2017
S.M. Thampi et al. (Eds.): SSCC 2017, CCIS 746, pp. 312–324, 2017.
https://doi.org/10.1007/978-981-10-6898-0_26



crimes, doing investigation for them to determine criminal and gathering proper evi-
dences against it, is all know as process of digital forensics. Hence, digital forensics is
becoming very much popular now days to restrict digital crimes. Like normal inves-
tigation has to be done for physical crimes, digital forensics is also defined by a proper
format. But, as of now there is no proper method to be defined which could be followed
efficiently to perform digital investigation. As some of the methods fits a particular
scenario while it may not for the other cases. Some of the methods are defined for some
digital devices like computers, etc. but they are not applicable to other digital media
like cell phones and all. Hence, this paper provides a solution to all these problems. It
consists of a model to be followed that fits and is suitable for all the scenarios as well as
for all the digital devices. This model is very much flexible in nature and consists of
different paths which could be followed in case we get stuck at any situation. The
biggest advantage of this model is that, it uses previous conditions or previous itera-
tions to determine further steps to be followed. Hence, if previous process is successful,
we can move on with next step as defined. Otherwise, we also have the option of
modifying next step, as per the condition of previous step. This flexibility between
iterations makes it generic for all scenarios and for all digital devices as well.

In 2008, it had been recorded in the USA that about 98% of the documents were
created electronically. Approximately 85% of 66 million dollars were lost by the US
government due to cyber related crimes. Digital forensic is nothing but the use of
scientific methods towards the identification, preservation, collection, validation,
analysis, interpretation, documentation, and preservation of digital evidences, so that,
they could be produced in court of law properly. Digital evidences are data that
provides a link between the cause of crime and the criminal. Digital evidences are
fragile in nature. Thus, they can be modified, altered or updated by the criminal, just
like finger prints in case of physical crime. While doing digital forensic investigation,
the first and foremost task is to collect evidences, just like as that they are collected in
case of physical crimes. This task is performed by trained professionals. If we further
elaborate it, then it is similar to collecting fingerprints in physical crimes. For digital
crimes the data backup, is taken in some form of mass storage media like floppy disks
or CD drive, hard drive, etc. While doing this, one thing is to be kept in mind i.e. to
disconnect the network, so that there should not be any possibility of getting malicious
software’s into it. It is to be done to avoid any chance of allowing malicious software’s
to alter our images or whatever data we have collected. After collecting evidences, next
step is to keep a backup of that data or images. Thus, there should be a copy of original
data, which if required could be used in future for making a comparison, to know
whether our original evidences have been altered or not. Third step is to prepare a
document specifying the crime scene properly. It is done to help a person to analyze the
crime scene properly, even if he was not present at the spot where crime has been
occurred previously. Fourth step is to keep those evidences safe so that nobody can
alter them. For this either MD5 or SHA1 hash code is generated for the data or images
and stored into the database. Final step is to generate a hypothesis for that crime. For
example, if a file was found in the drive, so the hypothesis could be made that first the
malicious file was downloaded from the internet and then it was stored in the download
folder. From that folder further, the file would have been copied to some other drive.
Finally, there is a need to present all those evidences collected with suitable hypothesis

Spiral Model for Digital Forensics Investigation 313



against the criminal in the court of law for jurisdiction. Section 1 was all about the
introduction of digital forensics, Sect. 2 describes about the literature survey and
background work done so far. Section 3 consists of the proposed model to deal with
digital forensics problems, so as to successfully perform digital investigation. Section 4
provides advantages of the proposed model over other previous models. Section 5
concludes the paper. The last section provides references.

2 Background

Phase 1: -
As described in Fig. (1), Mark M. Pollitt [MP95] had proposed four different steps

for digital forensics as Acquisition, Identification, Evaluation, and Admission as evi-
dence, so that evidences could be documented in the court of law. Their outputs are
media in physical context form, information in legal context form, and evidences
respectively. But, a generalized process was not present to be followed for each and
every case.

As described in Fig. (2), Farmer and Venema [FV99] defined a methodology for
digital forensics as “secure and isolate, record the scene, conduct a systematic approach
for evidence, collect and package evidence, and maintain a chain of custody”, but the
drawback was that, it was defined mainly for UNIX forensic procedures. Mandia and
Prosise [MP01] overcomes the drawback of previous methodologies by defining steps
as “pre incident preparation, detection of incidents, initial response, response strategy
formulation, duplication, investigation security measure implementation, network
monitoring, recovery, reporting, and follow up”. But, again the drawback with this
method was that, it was applicable for only Windows NT/2000, UNIX and Cisco
Routers. Another drawback was, it was not applicable for all digital devices like
personal digital assistants, peripheral devices, cell phones or future digital technology,
and all. Then came the standard abstract model by U.S. Department of Justice
[TWG01], which includes “collection, examination, analysis, and reporting”. This
model had overcome the drawbacks by defining a generic method which could be
applied to all the digital devices. But, the analysis phase of this model was ambiguous.
Hence, the model was not properly defined at all. Finally, came the milestone for future
research work to be performed in a well-planned manner. For this, the base was given
by Digital Forensic Research Workshop [DFRW01], which was surprisingly held by
academia persons rather than law enforcement. It identifies steps as “identification,

Fig. 1. Pollitt’s model for investigation

314 S. Kothari and H. Hasija



preservation, collection, examination, analysis, presentation and decision.” Working in
this standard framework, many more models were proposed in the near future.

As described in Fig. (3), the Abstract Digital Forensics Model [ADFM02] defines
complete process of digital forensics into nine components as “identification, prepa-
ration, approach strategy, preservation, collection, examination, analysis, presentation,
and returning evidence.” Its third phase (approach strategy) was similar to that of its
second phase (preparation phase).

As described in Fig. (4), the Integrated Digital Investigation Model [IDIM03]
consists of five groups, which has been further subdivided into 17 phases. It has
“readiness phase, deployment phase, physical crime scene investigation phase, digital
crime scene investigation phase and review phase.” It was completely based on the
framework of physical crime scene investigation. It covers all the cyber terrorism
capabilities as well, and also highlights the reconstruction of events that led to the
incident. But, it does not differentiate properly between the investigation at victim’s
scene and suspect’s scene. Without a proper examination, it seems impossible to make
out whether a digital crime was committed or not.

Fig. 2. DFRWS investigative model

Fig. 3. Abstract digital forensics model

Spiral Model for Digital Forensics Investigation 315



As described in Fig. (5), a Comprehensive Approach to Digital Incident Investi-
gation [CADII03] by Stephenson proposed nine basic steps to be called as End to End
Digital Investigation process (EEDI). These nine steps has to be performed in order to
collect, analyses, examine and document digital evidences. He also defined some
critical activities to be done like, collecting the log files of affected computers, col-
lecting data from intrusion detection systems and firewalls as well. Finally, it develops
a formal representation in the document form of these nine steps by using Digital
Investigation Process Language (DIPL) and Coloured Petri-net Modelling. This
methodology mainly focused on analysis process and merging of events from different
locations.

Phase 2: 2004–2007: -
As described in Fig. (6), the framework proposed by Ciardhuain [EMCI04] could

be considered as the complete one till that date. Because, it includes activities as
“awareness, authorization, planning, notification, search and identify, collection,
transport, storage, examination, hypotheses, presentation, proof, defense and dissemi-
nation”. It provides a basis for the development of tools and techniques to support the
work of digital investigators. Baryamueeba and Tushabe [EDIP04] made some addi-
tions to the Integrated Digital Investigation Model [IDIM03] and removed one of its
disadvantages by making clear distinction between the primary and secondary crime
scene after the addition of two phases “Trace back phase and Dynamite phase”. It also
makes those phases as linear ones instead of making them iterative.

Fig. 4. Integrated digital forensic model

Fig. 5. End-to-end digital investigation process

316 S. Kothari and H. Hasija



As descried in Fig. (7), hierarchical Objectives based Framework for the Digital
Investigations Process [HOF04] by Beebe and Clark was a multi tired model opposite
to that of single tier as of discuss till now. The phases of the first tier are “preparation,
incident response, data collection, data analysis, presentation and incident closure”. In
the second tier, the data analysis phase has been further organized into the survey
phase, extract phase and examine phase. It consists of analysis task using the concept of
objective-based tasks. This framework offers unique benefits in the areas of practicality
and specificity.

As described in Fig. (8), in 2004, Carrier and Spafford [EBD04] proposed a model
consisting of 3 phases named as “Preservation, Search and Reconstruction Phase”.
Reconstruction phase is nothing but the construction of hypothesis to develop and test

Fig. 6. Integrated digital investigation model

Fig. 7. Hierarchical objectives based framework for the digital investigations process

Fig. 8. Enhanced digital forensic model

Spiral Model for Digital Forensics Investigation 317



the evidences collected based on crime scene. So, this model was completely based on
the causes and effects of events. However, completeness of each phase was not clearly
mentioned, and hence it was not clear that framework was sufficient enough or not.

As described in Fig. (9), Rubin, Yun and Gaertner [CRI05] carried on with the
work of Carrier [EBD04], [IDIM03] and Beebe [HOF04] by introducing the concept of
seek knowledge and case relevance. Seek knowledge means the investigative clues by
which the analysis of data takes place. Case relevance is the piece of information, based
on which we should be answerable to following questions like “who, what, where,
when, why and how” questions in a criminal investigation [CRI05]. There are various
levels of case relevance like, “Absolutely irrelevant, Probably Irrelevant, Possibly
irrelevant, Possibly Case-Relevant, Probably Case Relevant”. A paper based on visu-
alization of data in intrusion detection systems and network forensic situations was
proposed by Erbacher, Christensen and Sunderberg [VFTP06]. It proposed that dif-
ferent visualization techniques are required for different kind of analysis and they also
have to be integrated at the end, so as to reach with final conclusion. Kent, Chevalier,
Grance and Dang [GIF06] published four basic steps for digital forensics “Collection,
Examination, Analysis and Reporting”. It is very much similar to [MP01]. It firstly,
transforms the collected data from media into a particular format which could be
understood by forensic tools. Then, data is modified into information based on analysis
done over it. Finally, information is converted to evidence form during reporting phase
in court of las for jurisdiction. Computer Forensic Field Triage Process Model
[CFFTPM06] had been derived from IDIP framework [IDIM03]. It basically works on
the principle of performing digital investigation at onsite or field itself instead of taking
the snapshots to the lab for examination. Its major advantage was its short time frame
required to conduct digital investigation and its practical as well as pragmatic nature.
But, its drawback was that we could not apply it to all the situations.

As described in Fig. (10), digital Forensic Investigation by Kohn, Eloff and Oliver
came up with three basic stages required for digital investigation as “preparation,
investigation and presentation”. The number of steps has been reduced to three because
in all the previous models the phases had been overlapping one another and the
difference was only of the terminologies. Hence, this model comes with the advantage

Fig. 9. Computer forensic field triage model

318 S. Kothari and H. Hasija



that it has merged the unnecessary steps and more over to that it could be easily
expanded to include more number of additional phases in the future.

As described in Fig. (11), the Common Process Model for Incident and Computer
Forensics[CPM07] proposed by Freiling and Schwittay was introduced to combine the
advantages of both Incident Response and Computer Forensics in order to improve
overall process of investigation. This framework mainly consists of “Pre-Incident
Preparation, Pre-Analysis, Analysis and Post- Analysis”. Pre analysis phase consists of
all steps and activities to be performed before actual analysis like collecting evidences
and all. Post analysis consists of activities like documentation to be produced in court
of law. Actual analysis is performed in analysis phase like investigating the collected
images, etc. Hence, it combines the features of incident response performed with pre
and post analysis, as well as computer forensic performed in actual analysis.

Phase 3: 2008–2014:-
As described in Fig. (12), Perumal [DFIMP09] introduced very important stages

into digital forensics investigation as collecting live data and static data acquisition in
the model so as to focus on fragile evidence. The Digital Forensic Process Model
proposed by Cohen [TSDFE10] breaks the process into seven phases as “Identification,

Fig. 10. Framework for a digital forensic investigation

Fig. 11. Common process model for incident and computer forensics

Fig. 12. Digital forensic model based on malaysian investigation process

Spiral Model for Digital Forensics Investigation 319



Collection, Transportation, Storage, Examination and Traces, Presentation and
Destruction”. Hence, complete focus of this model was on examination of digital
evidences.

As described in Fig. (13), Agawal [SDFIM11] helped in setting up appropriate
policies and procedures in a systematic manner. It had explored the complete process
into eleven models as -“Prepartion, Securing the scene, Survey and Recognition,
Documenting the scene, Communication Shielding, Evidence Collection, Preservation,
Examination, Analysis, Presentation, Result and Review”. The model focused on
investigation cases of computer frauds and cybercrimes. It was its only drawback as the
model was applicable for cybercrimes and computer frauds only. It was not valid for
other digital devices like cell phones, etc.

3 Methodology Used to Solve the Problem

This model draws its inspiration from the spiral model for software development which
has the basic characteristic of cyclic approach for incrementally growing a system’s
degree of definition and implementation while decreasing its degree of risk. It is equally
applicable in digital forensic process as it can be defined in the following generalized
additive iterations –

• Determine objectives, alternatives and constraints
• Evaluate alternatives, identify, resolve risks
• Develop, verify, next-level phase
• Plan next phase

As described in Fig. (14), the investigation process begins, the investigator per-
forms activities that are implied by a circuit around the spiral in a clockwise direction,
beginning at the centre. 5 iterations have been proposed in the model based on the five
phases mentioned in Common Phases of Computer Forensics Investigation Process
Model.

Iteration 1: Preparation
The process starts with an investigator forming an approach strategy based on any
previous knowledge or any prior experiences. This phase involves planning the
course of action for the investigation based on the chosen strategy and gathering the
requirement.

Fig. 13. SDFIM approach proposed by Agawal.

320 S. Kothari and H. Hasija



Iteration 2: Acquisition
Based on the chosen approach strategy and the pre-analysis, next steps for acqui-
sition are chosen. Risk analysis is performed on all the available steps and the ones
that suit the situation best are chosen. The action or set of action chosen for carrying
out the acquisition is called Approach 1. After that identification of evidence is done
and preservation of evidence is done based on Approach 1.
Iteration 3: Case-Specific Analysis
Based on the evidence gathered from the previous step, a set of actions is again
chosen to carry out the case-specific analysis based on risk analysis. The set of
actions chosen are termed as Approach 2 and Examination of evidence, Hypothesis
Creation and Reconstruction of Crime Scene is done based on this approach.
Iteration 4: Presentation
As per the outcome of the Case-Specific Analysis, steps are now chosen from the
table for presentation of evidence after risk analysis has been done on them. The set
of actions chosen is grouped as Approach 3. Admission of evidence is done in the
court of law and all the proof and defense are presented.
Iteration 5: Final Step
Grouping Approach 1, Approach 2, Approach 3 into one and adding any steps that
could have been inculcated to make this investigation smoother is termed as Final

Fig. 14. Spiral model for digital forensics investigation

Spiral Model for Digital Forensics Investigation 321



Approach. After the incident response has been recorded and the evidence has been
returned, Documentation of the whole process is done and Review is made as to
what could have been done differently to arrive to the conclusion faster or more
efficiently.

4 Advantages of Proposed Model over Previous Models

The major drawbacks with all the previous models were that that the same model was
to be followed for all investigation processes irrespective of the situations. This model
provides the flexibility to the investigator to choose the next phase of how to carry
forward an investigation based on the information gathered in the previous phase.
Hence, a custom based model can be built by the investigator as per the requirements of
the crime committed. One more drawback encountered with other methods was, a
generalized strategy is required to be applicable on all the digital devices like com-
puters, cell phones etc. Hence, the proposed method should be generic in nature. As the
proposed method is flexible enough which could be changed at any time as per the
requirements, thus it is applicable for all devices. Apart from that, as spiral model
provides risk analysis factor also, this factor is an addition to determine that whether
what we have done so far is going in the right direction or not. For example, if we are
proposing a hypothesis to reconstruct the crime scene, then at this stage itself we could
do risk analysis to determine that we are proceeding in the right direction or not. We
could also make an estimation that this methodology would be going to work properly
or not. Due to all these advantages, this proposed method is much better as compared to
all the other methods. Last but not the least advantage of using spiral model over here is
that, as spiral model fits perfectly for the agile methodology. Therefore, the software’s
following spiral model are developed in a very fast way so that the prototype could be
analyzed as soon as possible. This is done, because spiral model provides a very fast
and efficient way to analyze and compare software product with business requirements.
Similarly, here also spiral model provides a very fast and efficient way to analyze the
investigation by comparing the hypothesis with the actual crime scene documented. So,
that, we could analyze the investigation again and so quickly, that it could be altered as
per the crime scene if the hypothesis is wrong. In a nutshell, this model overcomes all
the drawbacks of previous models in the best possible and smoother manner.

5 Conclusion and Future Work

Digital forensics needs a set of tools along with a proper methodology to perform
digital investigation, so as to produce evidences in court of law for proper jurisdiction.
Digital data is basically in numerical format. It is generally represented in binary format
of 0 and 1 bits. These bits are usually written into the hard disk. Thus, hard disk
represents physical evidence for digital forensics. But, we are interested more with
digital evidences. The data is written into a binary format into the hard disk repre-
senting a state of hard disk. This state gets changes as soon as more data is written into

322 S. Kothari and H. Hasija



it. So, basic motive of digital forensic is to preserve this state in the form of evidence, if
some digital crime happens so that it could be produced in court of law for jurisdiction.
In order to deal with digital investigation of digital evidences, a particular framework is
to be followed. This framework consists of gathering all evidences with the help of
experts, so that original evidences should not get disturbed. After the collection of
evidences, they are to be documented and stored properly, so as to keep a backup of it
using MD5 or SHA1 hashing algorithms and then storing them into a database. After
preservation of evidences, hypothesis generation of crime starts. In this phase,
hypothesis is generated as per the evidences obtained. Finally, the documents are
presented in court of law for jurisdiction. But, then too, in many of the cases, the
presentation fails because of many reasons like hypothesis was not correct, evidences
got altered due to improper handling, the backup of evidences was not created properly,
etc. Thus, just like waterfall model of software, it becomes unfeasible to start from the
first phase again and perform the complete process. As the solution, model proposed by
software engineering to deal with these kinds of situations is the spiral model. Hence,
we are going to follow the same model here also, in order to find a solution to this
situation. Therefore, this model proposed a spiral shape structure in which these phases
are covered again and again, so as to perform digital forensics investigation properly. It
also provides the flexibility of modifying the next phase as per the drawbacks or
shortcomings of previous phase. Hence, this model is the best way to perform digital
forensic investigation for any kind of devices like computers, mobile phones, and
above to all, applicable for all scenarios like for cloud computation and in Big Data
domain as well [22, 23].

References

[MP95] Pollitt, M.M.: Computer forensics: an approach to evidence in cyberspace. In:
National Information System Security Conference (1995)

[FV99] Farmer, D., Venema, W.: Computer Forensics Analysis Class Handouts (1999)
[MP01] Mandia, K., Prosisse, C.: Incident Response. Osbourne/McGraw-Hill (2001)
[TWG01] Technical Working Group for Electrical Crime Scene Investigation. Electronic

Crime Scene Investigation: A Guide for First Responders (2001)
[DFRW01] Digital Forensics Research Workshop. A Road Map for Digital Forensics

Research (2001)
[ADFM02] Reith, M., Carr, C., Gunsch, G.: An examination of digital forensic models. Int.

J. Digit. Evid. 1(3), 1–12 (2002)
[IDIM03] Carrier, B., Spafford, E.: Getting physical with the investigative process. Int.

J. Digital Evidence (2003)
[CADII03] Stephenson, P.: A Comprehesive Approach to Digital Incident Investigation.

Elsevier Information Security Technical report (2003)
[EMCI04] Ciardhuain, S.O.: An extended model of cybercrime investigations. Int. J. Digit.

Evid. 3(1), 1–22 (2004)
[EDIP04] Baryamureeba, V., Tushabe, F.: The enhanced digital investigation process

model. In: DFRWS (2004)
[HOF04] Beebe, N., Clark, J.: A hierarchical objectives based framework for the digital

investigations process. In: DFRWS (2004)

Spiral Model for Digital Forensics Investigation 323



[EBD04] Carrier, B., Spafford, E.: An event based digital forensic investigation
framework. In: DFRWS (2004)

[CRI05] Rubin, G., Yun, C., Gaertner, M.: Case-relevance information investigation:
binding computer intelligence to the current computer forensic framework. Int.
J. Digit. Evid. 4(1), 1–13 (2005)

[VFTP06] Erbacher, R.F., Christensen, K., Sunderberg, A.: Visual forensic techniques and
processes (2006)

[FDFI06] Kohn, M., Eloff, J.H.P., Olivier, M.S.: Framework for a digital forensic
investigation. In: Proceedings of Inforation Security South Africa (ISSA) (2006)

[GIF06] Kent, K., Chevalier, S., Grance, T., Dang, H.: Guide to Integrating Forensics into
Incident Response. NIST Special Publication 800-86 (2006)

[CFFTPM06] Rogers, M.K., Goldman, J., Mislan, R., Wedge, T., Debrota, S.: Computer
forensics field triage process model. In: Conference on Digital Forensics Security
and Law (2006)

[CPM07] Freiling, F., Schwittay, B.: A common process model for incident response and
computer forensics. In: Conference on IT Incident Management and IT Forensics
(2007)

[DFIMP09] Perumal, S.: Digital Forensic Model based on Malaysian Investigative Process
(2009)

[TSDFE10] Cohen, F.: Toward a science of digital forensic evidence examination. In: Chow,
K.-P., Shenoi, S. (eds.) DigitalForensics 2010. IFIP IAICT, vol. 337, pp. 17–35.
Springer, Heidelberg (2010). doi:10.1007/978-3-642-15506-2_2

[SDFIM11] Agarwal, A., Gupta, M., Gupta, S., Gupta, C.: Systematic digital forensic
investigation model. Int. J. Comput. Sci. Secur. 5(1), 118–131 (2011)

[22] Jones, A., Vidalis, S., Abouzakhar, N.: Information security and digital forensics
in the world of cyber physical systems. In: Eleventh International Conference on
Digital Information Management (2016)

[23] Jones, J., Etzkorn, L.: Analysis of digital forensics live system acquisition
methods to achieve optimal evidence preservation. In: Southeast con (2016)

324 S. Kothari and H. Hasija

http://dx.doi.org/10.1007/978-3-642-15506-2_2


Smart-Lock Security Re-engineered
Using Cryptography and Steganography

Chaitanya Bapat, Ganesh Baleri, Shivani Inamdar(B), and Anant V. Nimkar

Sardar Patel Institute of Technology, University of Mumbai, Mumbai, India
{chaitanya.bapat,ganesh.baleri,shivani.inamdar,anant nimkar}@spit.ac.in

Abstract. After the rise of E-commerce, social media and messenger
bots, rapid developments have been made in the field of connecting
things, gadgets, and devices, i.e., the Internet of Things (IoT). In the
fast-paced lifestyle, it is very difficult to maintain multiple keys for tra-
ditional mechanical locks. Electromagnetic smart locks are a possible
solution to this problem. To connect a smart lock with a key, Bluetooth
Low Energy (BLE) protocol can be used. BLE protocol is vulnerable to
Man-in-the-Middle (MITM) attack. Ensuring security over BLE is an
ongoing challenge. This paper aims to analyze the MITM vulnerability
of BLE and develop a possible solution for designing smart-locks with
an increased level of security. The observation shows that the combina-
tion of Image Steganography and Cryptography helps to overcome the
vulnerabilities of BLE protocol.

Keywords: Internet of Things · Security · Steganography · Cryptogra-
phy · Bluetooth Low Energy protocol

1 Introduction

The domain of Internet of Things (IoT) has shown significant capability to drasti-
cally change the technological world. IoT systems include computing and house-
hold devices, as well as sensors. It is possible to control household devices with
a tap on the mobile screen, thanks to IoT. In addition, Cisco’s Internet Business
Solutions Group has predicted that the number of IoT devices will be about
20.4 billion by the year 2020 [1]. IoT devices have made people’s lives easier in
a number of ways. Nonetheless, security experts have expresses their concerns
about the threats and vulnerabilities that these devices bring along, termed as
the ‘Insecurity of Things’.

Mobile devices that connect to Smart Locks using the Bluetooth Low Energy
(BLE) protocol are vulnerable to various security attacks like the Man-in-the-
Middle (MITM) attack. BLE is a power efficient technology which is capa-
ble of transferring data between smart-phones and IoT devices. Basically, an
intruder/attacker tries to impersonate a receiver and takes hold of the commu-
nication between two parties. Such an attack is called MITM attack and is found
to be carried out in BLE protocol.
c© Springer Nature Singapore Pte Ltd. 2017
S.M. Thampi et al. (Eds.): SSCC 2017, CCIS 746, pp. 325–336, 2017.
https://doi.org/10.1007/978-981-10-6898-0_27



326 C. Bapat et al.

When home automation and security are under consideration, locks -either
mechanical or electronic- are a necessity. However, the problem associated with
any physical lock is about the key handling and management. Humans tend to
be forgetful and multiple keys need to be managed hence it was replaced by
electromagnetic locks. However, it still didn’t address the issue of remote acces-
sibility. In the age of smart-phones and a hyper-connected world, it is essential to
control locks remotely, using hand-held devices. Hence, smart-locks have been
introduced to address this concern. But the issue is, despite the promise of
accessibility, ease of use and comfort associated with smart-locks, security is an
imminent and constant threat. So the problem is to tackle the security threats
and attacks on IoT based smart-locks.

The ongoing research in the field of Internet of Things and BLE protocol relies
heavily on the usage of Cryptography. The algorithm of Advanced Encryption
Standard is used for encryption and decryption. However, the research has found
out problems associated with cryptography algorithms like MITM attack, mas-
querade attack, etc. Moreover, few papers involve usage of one-time passwords
for securing the communication. However, OTP generation is an intensive task
and depends on network bandwidth thus suffering from latency issues.

This paper aims at investigating the working of BLE protocol and highlights
the underlying architecture designed for communication using BLE protocol. In
addition, it’s vulnerabilities have been studied and a synthesis of cryptographic
and steganographic techniques has been implemented so as to prevent MITM
attack on BLE protocol. Such a combined approach tackles the shortcomings
of the individual methods of cryptography and steganography whilst preserving
the advantages of each of them.

The paper is organized as follows. Section 2.1 focuses on the architecture of
BLE. as well as the vulnerabilities existing in BLE. Section 2.2 throws more light
on the MITM attack and it’s relevance in BLE protocol. Section 2.3 is a review of
Steganography as a possible solution to existing problems in BLE protocol. The
existing solutions in the sphere of IoT devices and BLE protocol are presented
in Sect. 3. In Sect. 4, a combination of Steganography with Cryptography as
a possible solution is proposed. The actual implementation of the system is
included in Sect. 5 followed by discussion of the results in Sect. 6. Ultimately,
the article is concluded in Sect. 7.

2 Related Work

2.1 Bluetooth Low Energy Protocol

BLE is a wireless technology which consumes less energy and supports short
range communication. This technology has can be used in various fields such as
Entertainment, Health and Sports. BLE devices have easy maintenance and can
work for years on coin-cell batteries [3]. Although low-power technologies such
as Zigbee, 6 LoWPAN and Z-wave have made their mark in the market, BLE
has greater deployment expectations [2].



Smart-Lock Security Re-engineered Using Cryptography 327

Security at the Link Layer. Authentication and encryption is done using the
Cipher Block Chaining-Message Authentication Code (CCM) algorithm and a
128-bit AES block cipher. When connection is based on encryption as well as
authentication, a 4-byte Message Integrity Check (MIC) gets appended to the
data channel PDU. The Payload and MIC fields are then encrypted. Authen-
ticated data is passed over an unencrypted channel by using digital signatures.
An algorithm which makes use of a 128-bit AES block cipher helps generate the
signature [2]. A counter is given as one of the inputs to this algorithm, that gives
protection against various replay attacks. It is assumed that a trusted source has
sent the data in case the receiver successfully verifies the signature.

For communication over BLE, pairing is an important task. Pairing in BLE
is done in 3 phases. In first phase, devices announce their input-output capabil-
ities. Subsequently, STK (Short Term Key) is generated for secure distribution
of key materials that are required for next phase. At first, both the devices agree
on Temporary Key (TK). It is done using Out of Band communication, Passkey
Entry or JustWorks. Based on the TK and random values generated by both
the devices, STK is generated. Later, in the next phase each end-point sends
to every other end-point , three 128-bit keys: Long-term key, Connection Sig-
nature Resolving Key, Identity Resolving Key. Long term key is for Link Layer
Encryption and authentication. Connection resolving key performs data signing
at ATT layer while Identity Resolving Key generates a private address based on
the public address of the device. The STK generated in PHASE II is used for
encryption while distributing these 3 keys. In all the three phases, the message
exchange is carried out by the Security Manager Protocol (SMP).

Vulnerabilities in BLE Protocol. Though BLE provides modes of security,
it is still prone to a number of vulnerabilities.

– Eavesdropping: Although BLE consists of security modes to protect it against
vulnerabilities, there are still some loopholes in the pairing phases. A BLE
device is susceptible to being tracked by a third party and subsequent eaves-
dropping.

– Man-in-the-Middle Attacks: An MITM attack takes place when an intruder
secretly relays and possibly alters the communication between two devices
which are communicating with each other. If an attacker could somehow trick
the devices into assuming that they have been disconnected from each other,
then he/she could use two Bluetooth modules to act as the master and slave
devices. This would thus enable packet injection and authentication attacks.

– Denial of Service: Denial-of-service (DoS) attacks typically flood servers, sys-
tems or networks with traffic, thereby overwhelming the victim resources. As
the victim’s resources are exhausted, it becomes difficult or nearly impossible
for legitimate users to use them. In DoS attacks, a server or system providing
some service is attacked with a large number of requests, which results in a
system crash and eventual draining of the system’s battery life.



328 C. Bapat et al.

2.2 Man-In-The-Middle Attack

In order to better understand the working of MITM attacks, the paper [4] was
reviewed. MITM attack is a prominent attack in computer security, which rep-
resents a pressing concern for security experts and the academia. MITM targets
the data flowing between two victims, thereby attacking the confidentiality and
integrity of the data itself.

Fig. 1. MITM exchange methodology

In the MITM attack,
the intruder possesses access
to the communication chan-
nel between two victims,
enabling him to manipulate
messages flowing through
the communication channel.
The visualization of MITM
attacks is as shown in Fig. 1.
Specifically, victims try to
establish a secure communi-
cation by exchanging their
own public keys (P1 and P2)
with each other. Attacker intercepts the public keys P1 and P2, and as a response
sends its own public key (P3) to both the victims. Consequently, victim 1
encrypts its message using the attacker’s public key (P3), and sends it to victim
2 (E1). Here, as the public key used for encryption was attacker’s public key,
decryption needs to be carried out using attacker’s private key. The attacker
intercepts E1, and decrypts it using the corresponding private key. The attacker
later encrypts some plain-text message using victim 2’s public key, and transmits
it to victim 2 (message E2). When victim 2 is able to decrypt the messages sent
by victim 1, it means that the attacker has been able to deceive both the victim
parties that they are communicating over a secure channel.

MITM attack can be carried out in various communication channels such as
UMTS, Long-Term Evolution (LTE), Wi-Fi, GSM, Bluetooth, and Near Field
Communication (NFC). MITM attack aims to compromise:

1. Confidentiality- by eavesdropping on the communication.
2. Integrity- by intercepting and modifying the exchanged data .
3. Availability- by intercepting, destroying and/or modifying messages, causing

one of the victims to terminate communication [5].

There are minimum three ways of characterizing MITM attacks, based on:

1. Impersonation techniques
2. Communication channel in which the attack is executed.
3. Location of intruder and victim in the network.



Smart-Lock Security Re-engineered Using Cryptography 329

2.3 Steganography

Techniques. Unlike cryptography, steganography does not transform the struc-
ture of the message but instead, hides it in such a way that its existence remains
unidentified. There are several types of steganography, but the difference between
them lies in the technique of hiding data. It is difficult to label one mechanism
as the best one since each technique is chosen as per the application it is being
used for.

Hiding a message is the basis of any steganographic technique. Steganography
can be classified into 2 types-technical and text. With technical steganography,
confidential information can be hidden in image/audio/video files.

Text steganography, on the other hand, refers to the technique of concealing
text data within a larger text. Linguistic methods are further classified into
numerous categories depending on the way in which the stego-text is exploited
for embedding the secret message in it. One such type of text steganography is
format-based methods. These methods usually manipulate the text by changing
its formatting, intentional misspelling or changing the text size. Another method
is the random and statistical generation method. It can be used to prevent any
comparison with the original text since based on a randomized algorithm.

3 Existing Solutions

Application of security techniques in the field of Internet of Things is a rather
new concept. However, it has been implemented in Internet Banking. It is a
field where security holds prime importance and like IoT devices vulnerable to
security attacks.

The AES encryption algorithm is assumed to be the most effective for high-
end security applications However, in 2011, researchers at Microsoft discovered
that AES is not completely secure [6]. Hence, alternative techniques for high-end
security were studied. One such technique found was Steganography. Steganog-
raphy is an approach of concealing secret information by embedding it in an
image, text, audio or video. The motive of steganography is to hide the very
existence of the data in any given form.

Fig. 2. Stego-layer method

Steganography has been
applied in various domains.
The paper [7] proposes a
‘stego-layer’ method which
provides a solution for MITM
attack and Session hijacking.
In the proposed method, a
new ‘stego-layer’ was intro-
duced. All the information
flowing through the client or
the server passes through the



330 C. Bapat et al.

stego-layer. Dynamic Pattern based Image Steganography algorithm is imple-
mented by the stego-layer for inserting and retrieving the message. Its function-
ality is to conceal the data to be sent between the communicating parties in an
image, prior to transmission.

The authors in paper [8] propose to improve the security of Mobile banking
through Steganography. Here, the generated key determines which pixels are
selected for embedding the secret message bits. The secret message bits are
then planted into the selected pixels at a steady rate. However, if data bits are
embedded serially in all the selected pixels, it may lead a hacker to easily hack
the message.

Hiltgen, in his paper focuses on solving MITM attack by a short-time pass-
word based on a password generating hardware token which is available from
various manufacturers such as RSA Security, Active Card or VeriSign [9]. For
example, RSA’s SecureID solution consists of an LCD display and one button
which enables the user to calculate the succeeding short-time password [10].

Short Message Service (SMS) [11] based One-Time Passwords (OTP) were
introduced to fight phishing and other threats against authentication and autho-
rization. The attacker’s target is the possession of the password. He has vari-
ous means to do so, such as a wireless interception or mobile phone Trojans.
Although not very famous, the SIM Swap Attack [12] can also be used. Through
such attacks, the attacker can obtain the OTP. AES encryption algorithm along
with Steganography ensures secure and guaranteed delivery of OTP to the user.
Thus, sending an OTP which is embedded in an image makes it difficult for an
attacker to detect the presence of private information.

Several studies conducted on mobile malware [13,14] show that the authen-
tication credential stealing mobile malware exists in the wild.

Through all the solutions that exist, all of them fail to achieve a sure-fire way
of security. May it be encryption using AES or steganography, attackers tend
to find loopholes and hence pose a security threat. Usage of short-term memory
passwords is limited by the hardware malfunctions and wireless interceptions.
The following section proposes a solution that circumvents the given problems.

4 Proposed Solution

The security and privacy of any information traveling across a channel that pro-
motes open communication results into a major problem. Hence, in order to
prevent unauthenticated and unwarranted access and usage, confidentiality and
integrity is needed. Of the many methods available, steganography and cryptog-
raphy are two of the most used ones. The first one hides the sheer existence of
the information while the second one twists the data itself [14].

The data is transformed into another incomprehensible format which is then
sent over the network, in case of cryptography. However, in case of steganog-
raphy, stego-files such as image, text, audio, video is used as a platform for
embedding the message. Later, the stego-file is transferred over the communi-
cation channel. This paper is based on harnessing the advantages of both the



Smart-Lock Security Re-engineered Using Cryptography 331

methods - steganography and cryptography which will facilitate an increase in
the level of security.

4.1 Workflow Design

Fig. 3. Workflow diagram

Once the system was
designed, the next step in
the implementation stage
was to design the workflow.
As depicted in Fig. 3 below,
the techniques of Cryptogra-
phy and Steganography are
used hand in hand to provide
security to smart-lock. User
first enters the passkey via
the Android smart-phone
application. Later, the image
is selected in which the
passkey would be embed-
ded. Using AES encryption,
the passkey is first encrypted
and then the encrypted
cipher-text is encoded in the
image. All this happens at
the client-side (Android smart-phone application). Client-server architecture is
utilized where server is the Raspberry Pi. Image is sent over the Bluetooth 4.0
(BLE) protocol. From the received image, cipher-text is then decoded. It is then
decrypted to get the passkey entered by the user. The algorithm checks for valid
passkey and accordingly takes the decision whether to open the lock or not.

In the cryptographic method, once a third party attacker or an intruder gains
access to the secret key, the data gets revealed. In case of steganography, the
presence of message itself gets concealed but the form of the message is not
changed. As a result, the moment the attacker understands the existence of a
concealed data in whichever stego-file, the message again gets revealed.

If a combination of both the methods is used, security gets enhanced con-
siderably as both steganalysis and cryptanalysis would be needed to be carried
out in synchronization so as to identify the location of original information and
the actual content itself. Combination of such techniques in the domain of secu-
rity is a relatively new direction. However, one can search for similar works in
the literature. Primarily, this work can be found in the paper [15]. A system
which enhances the least significant bit (LSB) method has been proposed by the
authors.

In the domain of integrating steganography and cryptography, the paper
[16] lends some real insight. Here, the key that is important for deciphering the
original message is also implanted in the stego-file.



332 C. Bapat et al.

5 Implementation

5.1 System Design

Fig. 4. System design

In order to create a remote-controlled
system for accessing the electro-
magnetic lock, the system was first
designed, as shown in Fig. 4. It con-
sisted of 4 main components - Android
smart-phone, Raspberry Pi, Electro-
magnetic lock and Server. The Blue-
tooth and WiFi modules in Android
are fairly robust with good documen-
tation support. Of the multiple ver-
sions of Raspberry Pi, the latest Pi 3 Model B has inbuilt WiFi and Bluetooth 4.0
(BLE). Server would be needed to log the system usage so as to provide future
scope for performing analytics and understand usage patterns and statistics.

5.2 Circuit Design

The hardware requirements involved designing the Circuit with main compo-
nents being smart-lock i.e. an electro-magnetic lock with Raspberry Pi 3 Model

Fig. 5. Circuit diagram



Smart-Lock Security Re-engineered Using Cryptography 333

B. As shown in Fig. 5, the mains 230 V alternating current is fed to the minia-
ture circuit breaker (MCB) which breaks the circuit during power failure or
short-circuit. It prevents any damage to the internal circuit components. Power
adapter facilitates conversion of 230 V power supply to 5 V as needed by Rasp-
berry Pi. Raspberry Pi provides 3.3 V with respect to its ground as an output to
general-purpose input output (GPIO) pins. A relay acts as a switch for accessing
the lock. However, the relay circuit works on 12 V supply provided by SMPS.
The circuit is completed by connecting electromagnetic lock in series with the
relay and joining the grounds of Raspberry Pi and electromagnetic lock.

6 Results and Discussion

The graph in Fig. 6 shows the relationship between image size and total time
taken. Total time taken is the time needed for image to be encoded, encrypted,
sent over BLE protocol, received, decoded and decrypted. Thus, lesser the image
file size, faster the communication and processing.

Fig. 6. Image size vs Total time taken Fig. 7. Image size vs BLE transfer time

To find out the efficiency of the BLE protocol, the time needed only for
transferring image was first tracked. The BLE transfer time takes into account
the time needed to send the image from Android smart-phone to the Raspberry
Pi 3 over BLE protocol. It was found that there exists a fairly linear relationship
between the image size and BLE transfer time. Hence lesser image sizes would
be transferred faster, as per Fig. 7.

Table 1 summarizes the relationship between the image size, its dimensions
and the time needed. It shows direct relationship between the image size and
the time needed for processing the image.



334 C. Bapat et al.

Table 1. Dimension table

Dimensions Image size (kb) Time (sec)

225 * 400 6.97 19.8

225 * 400 21.85 22.85

720 * 1280 43 36

720 * 1280 79.7 36.01

720 * 1280 224 52.27

720 * 1280 557 64

720 * 1280 1070 120.7

1200 * 1200 1100 137

(a) Preprocessing (b) Post-processing

Fig. 8. Wallpaper

Figures 8 and 9 show the difficulty an attacker will experience to find out
differences between the 2 images. With absolutely no visual differences in the pre-
processing and post-processing image, it satisfies the requirement of providing
an additional layer of security to the existing system in IoT devices.



Smart-Lock Security Re-engineered Using Cryptography 335

(a) Preprocessing (b) Post-processing

Fig. 9. Airplane

7 Conclusion

This paper is an effort to review existential security threats in the sphere of IoT,
vulnerabilities of BLE protocol and related work around MITM attacks. Having
studied the BLE protocol, various issues were found including the possibility
of MITM attack. Although existing solutions involve SMS One-Time-Password,
Cryptography, Steganography, still few vulnerabilities persist. According to the
study of these techniques, a combination of both (Cryptography and Steganog-
raphy) ensures elimination of the disadvantages of the individual methods while
retention of the advantages that these principles possess. An implementation of
such a methodology can possibly aid research in the field of Security in IoT and
fortify the future of BLE enabled IoT devices.

References

1. Gartner Says 8.4 Billion Connected. Gartner.com (2017). Accessed 8 June 2017
2. Gomez, C., Oller, J., Paradells, J.: Overview and evaluation of bluetooth low

energy: an emerging low-power wireless technology. Sensors 12(12), 11734–11753
(2012). doi:10.3390/s120911734

3. Al Hosni, S.H.: Bluetooth low energy: a survey. Int. J. Comput. Appl. (0975–8887)
162(1) (2017)

4. Conti, M., Dragoni, N., Lesyk, V.: A survey of man in the middle attacks. IEEE
Commun. Surv. Tutor. 18(3), 2027–2051 (2016)

5. Green, I.: DNS spoofing by the man in the middle (2005). http://www.sans.org/
rr/whitepapers/dns/1567.php

6. Fisher, D., et al.: New Attack Finds AES Keys Several Times Faster Than Brute
Force. Threatpost — The first stop for security news (2017). Accessed 25 Jan 2017

7. Thiyagarajan, P., Aghila, G., Venkatesan, V.P.: Stepping up internet banking secu-
rity using dynamic pattern based image steganography. In: Abraham, A., Mauri,
J.L., Buford, J.F., Suzuki, J., Thampi, S.M. (eds.) ACC 2011. CCIS, vol. 193, pp.
98–112. Springer, Heidelberg (2011). doi:10.1007/978-3-642-22726-4 12

http://dx.doi.org/10.3390/s120911734
http://www.sans.org/rr/whitepapers/dns/1567.php
http://www.sans.org/rr/whitepapers/dns/1567.php
http://dx.doi.org/10.1007/978-3-642-22726-4_12


336 C. Bapat et al.

8. Navale, G.S., Joshi, S.S., Deshmukh, A.A.: M-banking security a futuristic
improved security approach. Int. J. Comput. Sci. Issues 7(1–2) (2010)

9. Hiltgen, A., Kramp, T., Weigold, T.: Secure internet banking authentication. IEEE
Secur. Priv. 4(2), 21–29 (2006)

10. Karia, A., Patankar, A.B., Tawde, P.: SMS-based one time password vulnerabilities
and safeguarding OTP over network. Int. J. Eng. Res. Technol. 3(5) (2014)

11. Mulliner, C., Borgaonkar, R., Stewin, P., Seifert, J.-P.: SMS-based one-time pass-
words: attacks and defense. In: Rieck, K., Stewin, P., Seifert, J.-P. (eds.) DIMVA
2013. LNCS, vol. 7967, pp. 150–159. Springer, Heidelberg (2013). doi:10.1007/
978-3-642-39235-1 9

12. Online Safe Banking - SIM Swap - ICICI Bank. Icicibank.com (2017). Accessed 1
Apr 2017

13. Felt, A.P., Finifter, M., Chin, E., Hanna, S., Wagner, D.: A survey of mobile mal-
ware in the wild. In: Proceedings of the ACM Workshop on Security and Privacy
in Mobile Devices, SPSM (2011)

14. Zhou, Y., Jiang, X.: Dissecting android malware: characterization and evolution.
In: 33rd IEEE Symposium on Security and Privacy, May 2012

15. Juneja, M., Sandhu, P.: An improved LSB based steganography with enhanced
security and embedding/extraction. In: 3rd International Conference on Intelligent
Computational Systems, Hong Kong, China, January 2013

16. Kant, C., Nath, R., Chaudhary, S.: Biometrics security using steganography. Int.
J. Secur. 2(1), 1–5 (2008)

http://dx.doi.org/10.1007/978-3-642-39235-1_9
http://dx.doi.org/10.1007/978-3-642-39235-1_9


Adding Continuous Proactive Forensics
to Android

Karthik M. Rao1(B), P.S. Aiyyappan1, and Prabhaker Mateti1,2

1 TIFAC-CORE in Cyber Security, Amrita Vishwa Vidyapeetham,
Ettimadai 641105, TN, India

mrkarthik07@gmail.com
2 Department of Computer Science and Engineering, Wright State University,

Dayton, OH 45435, USA
pmateti@wright.edu

http://www.wright.edu/∼pmateti

Abstract. Criminals and terrorists have become good at using the
smartphones. The traditional reactive forensics responds only after an
incident. Smartphone OS should include proactive forensics support
(pfs), that deals with pre-incident preparation. We designed pfs for
a custom Android ROM. All configured user activities are monitored
stealthily, and opportunistically transferred to the cloud for further inves-
tigation. This includes SMS, call log, browser history, etc. We also add a
keylogger and call tapping facility. We built two Android apps + a PC
client that authenticates a forensics investigator and permits to browse,
record, save the activities of the criminal user.

Keywords: Android · Forensics · Proactive forensics · Cloud storage ·
Opportunistic uploads · Stealth file systems · Pocket spy

1 Introduction

Smartphones have become essential to not only law-abiding citizens but also to
criminals and terrorists. The typically small size of the screen helps make it a
mobile and pocketable device, ever present physically with its owner. The equip-
ment, such as GPS (location gathering), cameras (still photos and videos), micro-
phones (voice and ambient sound recording), wifi, bluetooth, NFC networking,
the various sensors, and ever increasing capacities of persistent storage (eMMC),
and multicore CPUs (e.g., Snapdragon 808 64-bit with 16 cores), included in the
phone is capable of recording all kinds of data that is highly usable as evidence
in a forensic investigation (Fig. 1).

1.1 Proactive Forensics Support (pfs)

Proactive forensics anticipatorily collects evidence data. The pfs service will con-
stantly monitor the device, gather the information, store it in a stealthy location
c© Springer Nature Singapore Pte Ltd. 2017
S.M. Thampi et al. (Eds.): SSCC 2017, CCIS 746, pp. 337–349, 2017.
https://doi.org/10.1007/978-981-10-6898-0_28



338 K.M. Rao et al.

Fig. 1. pfs based forensic
investigation

Fig. 2. pfs architecture Fig. 3. Forensic phases

within the device, and opportunistically upload to the cloud. The size of such col-
lected data may overwhelm the capacity of the device. So, pfs caches the tip of
this iceberg of data and stores the rest in the cloud. If a forensic investigation never
becomes necessary, all this effort was wasted. Proactive forensics takes this excess
resource usage risk. At the end of the day, the traditional forensics is always doable.

1.2 Paper Organization

A minimal amount of background needed for this paper is provided in Sect. 2.
Section 3 introduces our vision of proactive forensics, and the support ser-
vice named pfs. Section 4 is an architectural description of pfs, designed
as a root owned system service. Specific details of our implementation are
described in Sect. 5. Sections 6 and 7 are about related work and evaluation.
We conclude the paper with Sect. 8. Our programming work is open sourced on
GitHub/[blinded]1.

2 Background

Digital Mobile Forensics: Books such as Tamma and Tindall (2015) and
Hoog (2011) are good introductions to the (non-proactive, i.e., reactive) Android
forensics field. But, do note the year of their publication, and that Android
changes rapidly.

Android Development Overview: Familiarity with the following books
is expected. For Android internals: (Yaghmour 2013) or (Elenkov 2014); for
Android APK development: (Annuzzi Jr. et al. 2016). In Android, when one
app wishes to invoke another, it uses Broadcast Intents. A Content Provider
presents data to other applications.
1 https://github.com/psaiyappan/ and https://github.com/mrkarthik07/.

https://github.com/psaiyappan/
https://github.com/mrkarthik07/


Android Proactive Forensics 339

3 Proactive Forensics

Operating Systems, in wide use, have never included any support for forensics.
We wish to change that. Perhaps we should call pfs Proactive Provenance. For
any given item x of interest, its provenance is a history of values that x held
from the beginning to the present time. The history of x is valuable especially
when it is synchronized with those of other items.

Proactive Digital Forensics is the act of storage of time-stamped and labeled
data that could be the evidence needed in proving various accusations. Storing
the provenance of system state is the ideal, but not achievable because of size
and network usage.

3.1 Challenges of Proactive Forensics

Cloud Storage: The size of evidence collected will overwhelm the capacity of
any device. So, pfs service caches the tip of this iceberg of data, but the rest is
stored in the cloud. Uploads and downloads are encrypted using the public key
of the investigative agency. If a forensic investigation never becomes necessary,
all this effort was wasted. Proactive forensics takes this excess resource usage
risk.

Stealth Uncovered: We are using rootkit techniques to hide processes, files
and even file volumes. But, at the level of init.rc, before these techniques are
activated, there is a window where pfs service can be discovered.

Bandwidth Usage: Even though we use opportunistic (see Sect. 4.3) upload-
ing/downloading of evidence data, the higher use of bandwidth can be noticed.

CPU Lag: We expect the pfs service to be light. While the load it places can
be measured, we are confident that a typical user will not notice.

Battery Power: As above.

Data Mining: The raw data if stored as-is, even in the cloud, for weeks and
months, would be huge. We must data-mine to reduce this – a topic not addressed
in this paper.

Pocket Spy: Proactive forensics can be seen as being a pocket spy. We are
indeed treating the device owner as suspect/guilty until proven innocent. On
the other hand, there is such a thing as benevolent omnipresence; consider e.g.,
devices such as the Amazon Echo or the Google Home Speaker. But, that dis-
cussion belongs to a separate article.

3.2 Advantages over Reactive Forensics

Android Device Imaging includes (i) IMEI, SIM card details, and Android
build details, (ii) Network cell towers, WiFi APs both connected or visible, details
of network connections, sensor data providing the motion, environment, and
position of the device and its surroundings, (iii) Contacts, calls, SMS/MMS,



340 K.M. Rao et al.

emails, calendar data, photos, videos, GPS locations, browser history, cookies,
search keywords, dictionary content, installed APK details, applications’ data,
and keystrokes. Traditional forensics cannot collect this highly dynamic data.
Changes in the data of (i) and (ii) is forensically noteworthy.

Incremental Imaging: In our custom ROM (Mateti and Students 2015), the
pfs service will constantly monitor the device, gather the information listed
above and selected in a configuration file, and caches it (in a stealthy location)
within the device. It is expected that we can harvest encryption keys among
this data. Data deleted from the device can be reconstructed, in some cases,
with help of service providers, but highly problematic. To dramatize, what if the
devices were thrown in water or fire? Reactive smartphone forensics can only
gather what is leftover in a captured device. This is a non-issue in proactive
forensics.

Immune to Obfuscation: Users are also becoming increasingly knowledgeable.
Obfuscation tools and anti-forensics toolkits such as Shah (2010) provide hin-
drances to traditional forensics. Almost no app does encryption without using
libraries and syscall based encryption. We can intercept both.

Activity Monitoring: Consider what can be deduced from the uploaded
stream: What places did the owner visit? For how long? How many times a
day is the phone used? How is the phone held, at what angle? Etc. The data
gathered can be found with specific modification/creation/deletion dates.

Reactive Forensics: Although proactive forensics does change the physical/
virtual memory and file volume foot prints, it does not otherwise interfere with
traditional reactive forensics.

4 Design of PFS

Figure 2 shows the architecture of our pfs (proactive forensics service) as an
Android built-in.

4.1 Dynamic Imaging

pfs service gets hold of data in four different ways: (i) From Android
APIs, which collect data such as phone logs, SMS logs, camera events and
GPS data; (ii) From the inotify tool, and FileObserver, which collect
file system events; (iii) From SQLite database files. Android applications
store their private data using SQLite databases and these files are the main
source of information. E.g., phone logs are stored in the /data/data/com.
android.providers.contacts/databases/contacts2.db file. We collect these
SQLite files both on a schedule and event driven by their updates, so that no
data is forgotten. (iv) Other sources include the collection of the keystrokes, via
a stealthy keylogger, on the device.



Android Proactive Forensics 341

4.2 A Hidden Forensics Volume

The collected forensic data is stored temporarily on device-internal space in a
(hidden) partition of eMMC. We build a stealth file system (SFS) on partitions
that are otherwise unused. A typical Android device has many (often 20+) par-
titions on its eMMC storage. If all partitions are otherwise occupied, a new
directory is created on an existing volume. We make this a stealthy file system
(SFS) using rootkit techniques, and mount at /forensic. The volume is root
owned and cannot be accessed by apps.

4.3 Cloud Storage

There are many Android APKs that provide upload/download/sync of files
between local files and cloud storage providers. We bring these features to deep
within Android as a framework service merging the storage providers’ API into
Linux VFS. All ordinary apps will then see files that are stored on the cloud as
if they are local.

The SFS transfers itself – piece by piece, opportunistically – to the cloud
storage server. The data gets progressively cleared from /forensic as it gets
uploaded to the cloud. This Opportunistic Cloud Storage is a kernel based service
available in our custom Android ROM. We judge opportunism using factors such
as battery charge, wifi bandwidth availability, piggy-backing on other messages,
and device state.

We are able tomount cloud storagewe ownonto device localmount points. E.g.,
mount drive.google.com:userX@gmail.com at /storage/userX/Google
Drive. Authentication with different cloud providers is addressed. Permissions on
mounted cloud files are treated with the existing infrastructure. The union of cloud
storage andSFS is seamlessly integrated through cachingportions of the cloud stor-
age locally.

Evidence can be requested (Fig. 3) at any time by the investigator and the
data can be downloaded on to a local computer for further investigation and
process. The data is verified for integrity. Imaging of data includes the disk
dump (dd) of the whole device eMMC and the data dump from the cloud stor-
age, identified by device id. pfs makes it possible to not only have traditional
imaging, but also a time-stamped collection of user behavior, overcoming most of
encryption. In the recovery process all the data gets extracted from the images
and cloud data. Encryption keys of various applications are expected to have
been already collected.

5 Implementation of PFS

To detrmine the feasibilty of proactive forensics, we built not only the pfs but
also the tools described below.



342 K.M. Rao et al.

5.1 Desktop pfs-Client

pfs-Client tool (Fig. 3) is responsible for advanced imaging, recovery and analysis
of device data stored in the cloud. The tool authenticates a forensics investigator
and permits to browse, record, save the activities of the criminal user. Also, it
can further record the details of a connected device. The tool works on Linux
machines and it can browse the state of device at a particular time. pfs-Client
tool uses the Android Free Forensic Toolkit (CyberPunk 2015).

5.2 Android APKs KBO and KDC

We built two Android APKs, for our own use during construction to verify the
functioning of pfs. This includes SMS, call log, browser history, etc. We also
added a keylogger and call tapping facility. We show several screenshots of our
(rather whimsically) named APKs: KarthikBadOne (referred in text below as
KBO, Table 1) and and Daddycool (referred in text below as KDC, Table 1).

5.3 File Change Detection

File events are tracked by inotifywait (McGovern 2012). E.g.,
inotifywait-mr/home/user/tmp/-ecreate-emodify-eclose write monitors
the subdirectory tmp/ for the events of creation and modification, while log-
ging those events, with hardly any lag. We implemented a pfs module on a
Linux machine first, and then ported it to Android. The tweaked inotifywait
source code was ported, using Android NDK, to a native shared object library
(.so). Android FileObserver (Google 201x) class provides similar monitoring
mechanism as inotify does.

5.4 Imaging of the Device

pfs uploads collected data to a cloud location owned by an investigator. We
have so far explored the use of two public clouds, Google Drive and Dropbox,
but it is clear that any cloud storage provider could have been used instead.

5.4.1 Applications Installed
Starting from Activity context, we obtain an instance of PackageMan-
ager through getPackageManager(). Using that object, we get a list of
ApplicationInfo objects containing details, such as name of the app, the
packageName, MetaData, Permissions, Services and Activities.

5.4.2 SIM Details
Phones running on GSM service will usually have a SIM. We can query the
SIM details (Fig. 4) from the Telephony Manager to obtain the ISO country
code, operator name, and operator MCC and MNC for the SIM installed in
the current device. If READ PHONE STATE uses-permission is enabled, we can also
obtain the serial number for the current SIM using the getSimSerialNumber
method when the SIM is in a ready state.



Android Proactive Forensics 343

Fig. 4. SIM
details

Fig. 5. SMS Fig. 6. Sensor
data

Fig. 7. WiFi scan

5.4.3 Contacts
The ContactsContract.Data content provider stores contact details, such as
addresses, phone numbers, and email addresses using a three-tier data model to
store data, associate it with a contact, and aggregate it to a single person using
ContactsContract subclasses: Data, RawContacts, and Contacts.

5.4.4 Dictionary Word Changes
Applications and input methods can add words into the dictionary provider
UserDictionary. Words. Uri. parse (‘‘content://user dictionary/
words’’). We can obtain APP ID the uid of the application that inserted the word,
FREQUENCY the frequency column,LOCALE the locale that thiswordbelongs to,WORD
the word column, and SHORTCUT an optional shortcut for this word.

5.4.5 Sensor Data
Sensors that detect physical and environmental properties offer an exciting new
avenue for forensic investigations. We have included some 10+ sensors. We use
getSystemService (Fig. 6).

5.4.6 Wi-Fi Manager
The WifiManager configures Wi-Fi network connections, manages the current
Wi-Fi connection, scans for access points (Fig. 7) using the startScan method,
and monitors changes in Wi-Fi connectivity. We access the Wi-Fi Manager
using the getSystemService method. The getConnectionInfo method returns
WifiInfo object that includes the SSID, BSSID, MAC address, and IP address
of the current access point, as well as the current link speed and signal strength.



344 K.M. Rao et al.

5.5 Tracking User Activities

User events, such as GPS location change, SMS and call events, are tracked
by using broadcast receivers. The events such as browser data, calendar data,
dictionary words are obtained by content observers.

Call Logs: Android can access call logs (Fig. 8) with just few lines of code.

Cursor managedCursor = managedQuery
(CallLog.Calls.CONTENT_URI , null ,null , null , null);

Call Recording: Call recorder (Fig. 9) is built with broadcast receivers, which
waits for EXTRA STATE to change and then starts recording.

String extraState = intent. getStringExtra
(TelephonyManager . EXTRA_STATE);

SMS/MMS apps work with the SEND and SEND TO broadcast intents (Fig. 5).
To extract the array of SmsMessage objects packaged within the SMS Broad-
cast Intent bundle, we use the pdu key to extract PDUs (protocol data units).
Each SmsMessage contains the SMS message details, including getOriginating-
Address (phone number), getTimestampMillis, and the getMessageBody.

GPS: The GPS-info activity is implemented with Google Maps API where data
of phone travelled can be seen as a trail on the map (Figs. 12, 13, and 14).

Tracking Cell Location Changes: We can get notifications whenever the
current cell location changes by overriding onCellLocationChanged on a Phone
State Listener. The onCellLocationChanged handler receives a CellLocation
object that includes methods for extracting different location information based
on the type of phone network. In the case of a GSM network, the cell ID (getCid)

Fig. 8. Call logs Fig. 9. Recorded
calls

Fig. 10. Videos
recorded

Fig. 11.
com.android.
external storage



Android Proactive Forensics 345

Fig. 12. GPS
track line

Fig. 13.
Recorded loca-
tions

Fig. 14. GPS and
network locations

Fig. 15. URLs
visited

and the current location area code (getLac) are available. For CDMA networks,
we can obtain the current base station ID (getBaseStationId) and the latitude
(getBaseStationLatitude) and longitude (getBaseStationLongitude) of that
base station.

Browser Artifacts: The Browser Provider can give default browser’s usage
details (Fig. 15). BOOKMARKS URI gives the history of visited and bookmarked
URLs. Using SEARCHES URI we can get the history of search terms.

Calendar Data: The Calendar Content Provider includes an Intent-based
mechanism that allows common actions without the need for special permis-
sions using the Calendar application. Each table is exposed from within the
CalendarContract class, including Calendars, Events, Instances, Attendees,
and Reminders.

Video Recording: The video is stealthily recorded and saved onto a sdcard
(Fig. 10).

Keylogger: We wrote a fully functional keyboard.

6 Related Work

There is almost no prior work on proactive Android forensics work. Hence, this
section covers areas that any proactive forensics must interface with.

Smartphone Forensics: There is considerable work on iOS, and others.2 We
are, of course, focused on Android. Mylonas et al. (2012) and Grover (2013)
explain the term proactive and its significance.
2 E.g., see A Glimpse of iOS 10 from a Smartphone Forensic Perspective, by Heather

Mahalik, September 17, 2016, http://www.forensicswiki.org/wiki/Blackberry
Forensics, and https://www.gillware.com/forensics/windows-phone-forensics.

http://smarterforensics.com/category/open-source/
http://www.forensicswiki.org/wiki/Blackberry_Forensics
http://www.forensicswiki.org/wiki/Blackberry_Forensics
https://www.gillware.com/forensics/windows-phone-forensics


346 K.M. Rao et al.

Linux Forensics: There is an enormous body of free and open source Linux
forensics software, in languages ranging over C/C++, Java, and Python.3 Our
expectation is that nearly all of this code can be ported to Android, but with
varying degrees of ease. We selected inotifywait McGovern (2012), and ported
it to Android. To us: Android FileObserver.

Android Forensics: Android forensics is not only continuing the tradition of
Linux FOSS but also giving rise to commercial tools. Here we briefly describe
a select list of FOSS work. SourceForge lists4 6500+ “Android forensics tools”,
but many of them are not. The slides by Carlo (2016) do describe “Android
Forensics with Free/Open Source Tools”. DroidWatch (Grover 2013), calls itself
an enterprise monitoring tool, but it is an automated forensic tool, which
sends useful data frequently to a web server. The file volume forensic tool by
Zimmermann et al. (2012) uses yaffs2 and is now obsolete because of all
recent Android devices have switched over to eMMC and ext4. The “Open Source
Android Forensics Toolkit”5 is good even though it was developed, as an under-
graduate senior design project.

App Forensics: WhatsApp has attracted a good amount of forensic analy-
ses: WhatsApp Xtract 20126 and papers (Anglano 2014; Karpisek et al. 2015;
Shortall and Azhar 2015; Azfar et al. 2016; Anglano et al. 2016; Shuaibu and
Bala 2016), and theses (Thakur 2013; Terpstra 2013). Skype too has attracted
forensic attention. The tool named Skype Xtractor7 is a Python 2.7 applica-
tion written for the forensics focused distribution named Deft Linux.8 There is
another tool named Skyperious9.

Device Imaging is considered in (Macht 2013; Kong 2015; Guido 2016). It is
worth mentioning that Android devices do not fully wipe themselves out even
after a factory reset (Simon and Anderson 2015).

Stealth File Systems: Much work has been done in stealth file systems. For lack
of space, we limit ourselves to just citing a select few papers: (Hokke et al. 2015;
Lengyel et al. 2014; Peinado and Kim 2016; Neuner et al. 2016).

7 Evaluation

Contribution to Lag: Our GPS tracking, background syncs and video record-
ing can cause the device to never sleep or at times cause noticeable lag in the
3 E.g., see Kali Linux https://www.kali.org/ even has a boot option for forensics,

https://en.wikipedia.org/wiki/List of digital forensics tools http://forensicswiki.
org/wiki/Tools, and http://linoxide.com/linux-how-to/forensics-tools-linux/
July 20, 2016, .

4 https://sourceforge.net/directory/os:linux/?q=android%20forensics%20tools.
5 https://sourceforge.net/projects/osaftoolkit/.
6 http://blog.digital-forensics.it/2012/05/whatsapp-forensics.html.
7 http://www.slideshare.net/AlessandroRossetti/deftcon2013-ngskype.
8 http://www.deftlinux.net/.
9 https://suurjaak.github.io/Skyperious/.

https://www.kali.org/
https://en.wikipedia.org/wiki/List_of_digital_forensics_tools
http://forensicswiki.org/wiki/Tools
http://forensicswiki.org/wiki/Tools
http://linoxide.com/linux-how-to/forensics-tools-linux/
https://sourceforge.net/directory/os:linux/?q=android%20forensics%20tools
https://sourceforge.net/projects/osaftoolkit/
http://blog.digital-forensics.it/2012/05/whatsapp-forensics.html
http://www.slideshare.net/AlessandroRossetti/deftcon2013-ngskype
http://www.deftlinux.net/
https://suurjaak.github.io/Skyperious/


Android Proactive Forensics 347

Table 1. Implementation Details of KBO and KDC.

APK size KB PL nfiles blankLines commentLines codeLines

KBO 1123 Java 50 927 469 4162

XML 40 204 51 1542

KDC 6460 Java 25 584 1527 2124

XML 66 44 9 3987

running of applications. Some devices with suffer also from a low-memory issue
and perform poorly once they hit around 80% of their capacity especially in case
of larger yet to be uploaded videos. The lag caused by cloud upload is less visible
to the user as it is achieved by opportunistic uploading.

Impact on Battery Consumption: Recording of video and wifi based upload-
ing to the cloud, GPS tracking, etc. ineffective wake locks, all significantly drain
the battery. Process running in the background, careful implementation of log-
ging of events, etc. are light on battery use. The stealth, we might otherwise
have, can be lost because the drain is (often) noticeable.

Hide Forensic Processes: Extraction of data or uploading to the cloud, should
be stealthy (Fig. 11). Normal users can easily detect it with apps available on
the Play store. The typical process list command ps uses /proc file system to
get process’ details. We chose not to rootkit-edit ps to covert a process, but
instead hide the folder /proc/PID/ of specific PIDs10 The command hidepid
hides processes and its information to other users. It accepts three values. Default
is hidepid = 0, and any user can see processes running in background. When hide-
pid = 1, normal user would not see other processes but their own about ps, top,
etc., but still able to see process IDs in /proc. When hidepid = 2, user can only
able too see their own processes also the process IDs are hidden from /proc also.

8 Conclusion

We implemented a forensic framework for Android smartphones. It is proactive
in the sense that it anticipates data that could become useful as evidence and
saves the data on a stealth file location. As the gathered data will grow to a
size that cannot be stored within the device, we opportunistically upload this
evidence to a cloud storage facility. Our work supports forensic investigators in
all phases (Fig. 3) of mobile forensics.

Our programming work is open sourced on GitHub/[blinded]11. A custom
ROM (Mateti and Students 2015) we built includes the new proactive forensics
support service. Aiyyappan (2015) designed and implemented the pfs service,
and portions of data gathering. Rao (2016) designed and implemented data

10 https://sysdig.com/blog/hiding-linux-processes-for-fun-and-profit/.
11 https://github.com/psaiyappan/ and https://github.com/mrkarthik07/.

https://sysdig.com/blog/hiding-linux-processes-for-fun-and-profit/
https://github.com/psaiyappan/
https://github.com/mrkarthik07/


348 K.M. Rao et al.

gathering, and verified the feasibility of opportunistic upload. Hazra (2017) is
currently working on more sophisticated opportunistic cloud storage. It is also
possible, but postponed to future work, to build sfs using free/unused blocks
and fragments of blocks in a normally visible file system.

References

Aiyyappan, P.S.: Android Forensic Support Framework. Master’s thesis, Amrita
Vishwa Vidyapeetham, Ettimadai, Tamil Nadu, India (2015). http://cecs.wright.
edu/∼pmateti/Students/. Advisor: Prabhaker Mateti

Anglano, C.: Forensic analysis of WhatsApp messenger on android smartphones. Digit.
Invest. 11(3), 201–213 (2014)

Anglano, C., Canonico, M., Guazzone, M.: Forensic analysis of the chat secure instant
messaging application on android smartphones. Digit. Invest. 19, 44–59 (2016)

Annuzzi Jr., J., Darcey, L., Conder, S.: Introduction to Android Application Develop-
ment: Android Essentials, 5 edn., p. 672. Pearson Education, Hoboken (2016)

Azfar, A., Choo, K.-K.R., Liu, L.: An android communication app forensic taxonomy.
J. Forensic Sci. 61(5), 1337–1350 (2016)

Carlo, A.D.: Android Forensics with Free/Open Source Tools (2016). www.slideshare.
net

CyberPunk. Android Free Forensic Toolkit (2015). http://n0where.net/
Android-free-forensic-toolkit

Elenkov, N.: Android Security Internals: An In-Depth Guide to Android’s Security
Architecture. No Starch Press, San Francisco (2014)

Google, Com. android.os.FileObserver Class. Google.com (201x).
AOSP/../java/android/os/FileObserver.java

Grover, J.: Automated data collection and reporting from a mobile device. Digit. Invest.
10, S12–S20 (2013). https://github.com/jgrover/DroidWatch

Guido, M., Buttner, J., Grover, J.: Rapid differential forensic imaging of mobile devices.
Digit. Invest. 18, S46–S54 (2016)

Hazra, S.: Stealth File Systems for Proactive Forensics on Android. Master’s the-
sis, Amrita Vishwa Vidyapeetham, Amritapuri, Kerala, India (2017). http://cecs.
wright.edu/∼pmateti/Students/. Subproject: FUSE-based Mounting of Cloud Stor-
age. Advisor: Prabhaker Mateti

Hokke, O., Kolpa, A., van den Oever, J., Walterbos, A., Pouwelse, J.: A Self-Compiling
Android Data Obfuscation Tool (2015). arXiv:1502.01625

Hoog, A.: Android Forensics: Invest. Analysis and Mobile Security for Google Android.
Syngress/Elsevier, Amsterdam (2011)

Karpisek, F., Baggili, I., Breitinger, F.: WhatsApp network forensics: decrypting and
understanding the WhatsApp call signaling messages. Digit. Invest. 15, 110–118
(2015)

Kong, J.: Data Extraction on MTK-based android mobile phone forensics. J. Digit.
Forensics Secur. Law: JDFSL 10(4), 31 (2015)

Lengyel, T.K., Maresca, S., Payne, B.D., Webster, G.D., Vogl, S., Kiayias, A.: Scala-
bility, Fidelity and stealth in the DRAKVUF dynamic malware analysis system. In:
30th Annual Computer Security Applications Conference, pp. 386–395. ACM (2014)

Macht, H.: Live Memory Forensics on Android with Volatility. Master’s thesis,
Friedrich-Alexander University Erlangen-Nuremberg (2013)

http://cecs.wright.edu/~pmateti/Students/
http://cecs.wright.edu/~pmateti/Students/
www.slideshare.net
www.slideshare.net
http://n0where.net/Android-free-forensic-toolkit
http://n0where.net/Android-free-forensic-toolkit
https://github.com/jgrover/DroidWatch
http://cecs.wright.edu/~pmateti/Students/
http://cecs.wright.edu/~pmateti/Students/
http://arxiv.org/abs/1502.01625


Android Proactive Forensics 349

Mateti, P.: Design and Construction of a new Highly Secure Android ROM. Technical
report, Amrita Viswa Vidyapeetham and Wright State University, Ettimadai, Tamil
Nadu, India; Dayton, OH, USA (2015). http://cecs.wright.edu/∼pmateti/Students/
Theses/

McGovern, R.: inotifywait for Android (2012). https://github.com/mkttanabe/
inotifywait-for-Android

Mylonas, A., Meletiadis, V., Tsoumas, B., Mitrou, L., Gritzalis, D.: Smartphone foren-
sics: a proactive investigation scheme for evidence acquisition. In: Gritzalis, D., Fur-
nell, S., Theoharidou, M. (eds.) SEC 2012. IAICT, vol. 376, pp. 249–260. Springer,
Heidelberg (2012). doi:10.1007/978-3-642-30436-1 21

Neuner, S., Voyiatzis, A.G., Schmiedecker, M., Brunthaler, S., Katzenbeisser, S.,
Weippl, E.R.: Time is on my side: steganography in filesystem metadata. Digit.
Invest. 18, S76–S86 (2016)

Peinado, M., Kim, T.: System and Method for Providing Stealth Memory. US Patent
9,430,402 (2016)

Rao, K.M.: Proactive Forensic Support for Android Devices. Master’s thesis, Amrita
Vishwa Vidyapeetham, Ettimadai, Tamil Nadu, India (2016). http://cecs.wright.
edu/∼pmateti/Students/. Advisor: Prabhaker Mateti

Shah, C.: An Analysis. Technical report, McAfee.com. https://blogs.mcafee.com/
mcafee-labs/zeus-crimeware-toolkit/

Shortall, A., Azhar, M.A.H.B.: Forensic acquisitions of whatsapp. data on popular
mobile platforms. In: 2015 Sixth International Conference on Emerging Security
Technologies (EST), pp. 13–17. IEEE (2015)

Shuaibu, M.Z., Bala, A.: WhatsApp forensics and its challenges for android smart-
phone. Global J. Adv. Eng. Technol. Sci. 8 (2016)

Simon, L., Anderson, R.: Security analysis of android factory resets. In: 3rd Mobile
Security Technologies Workshop (MoST) (2015)

Tamma, R., Tindall, D.: Learning Android Forensics. Packt Publishing, Birmingham
(2015)

Terpstra, M.: WhatsApp & Privacy. Master’s thesis, Radboud University Nijmegen,
Netherlands (2013)

Thakur, N.S.: Forensic Analysis of WhatsApp on Android Smartphones. Master’s the-
sis, University of New Orleans (2013)

Yaghmour, K.: Embedded Android: Porting, Extending, and Customizing, p. 95472.
O’Reilly Media Inc., Sebastopol (2013)

Zimmermann, C., Spreitzenbarth, M., Schmitt, S., Freiling, F.C.: Forensic analysis of
YAFFS2. In: Sicherheit, pp. 59–69 (2012)

http://cecs.wright.edu/~pmateti/Students/Theses/
http://cecs.wright.edu/~pmateti/Students/Theses/
https://github.com/mkttanabe/inotifywait-for-Android
https://github.com/mkttanabe/inotifywait-for-Android
http://dx.doi.org/10.1007/978-3-642-30436-1_21
http://cecs.wright.edu/~pmateti/Students/
http://cecs.wright.edu/~pmateti/Students/
https://blogs.mcafee.com/mcafee-labs/zeus-crimeware-toolkit/
https://blogs.mcafee.com/mcafee-labs/zeus-crimeware-toolkit/


ASLR and ROP Attack Mitigations
for ARM-Based Android Devices

Vivek Parikh1,2,3(B) and Prabhaker Mateti4(B)

1 Amrita Center for Cybersecurity Systems and Networks, Amritapuri, India
2 Amrita School of Engineering, Amritapuri, India

3 Amrita Vishwa Vidyapeetham, Amrita University, Amritapuri, India
viv0411.parikh@gmail.com

4 Wright State University, Dayton, OH 45435, USA
pmateti@wright.edu

Abstract. ASLR (address space layout randomization) and ROP
(return oriented programming) attacks have been happening for years
on the PC platform. Android devices are ripe for these same attacks.
Android has made mitigation efforts, mostly in the Zygote (mother of
all Java processes), which is presently exposed to a vast number of ASLR
bypassing exploits. We carefully re-analyzed the Zygote process creation
model. We include mitigations not only for ASLR but also for ROP
attacks. We demonstrate that Android becomes robust against most of
the ROP exploits by running such attacks on the device, in the presence
of our solution. We compare our solution with existing solutions and show
that ours is a more effective approach to mitigate ASLR and ROP attacks
on ARM based Android devices. Our changes do not interfere with the
normal functioning of the Android device and can be easily incorporated
as a secure replacement for the existing Zygote that is presently exposed
to a vast number of ASLR bypassing vulnerabilities.

Keywords: Android · Android framework services · Crowd sourcing ·
Verifying trust · Security exploits · ROP · ASLR · ARM · Zygote ·
Morula

1 Introduction

Despite the tremendous efforts by the security research community in reinforcing
the security of Android, so far only a few categories of security issues pertaining
to Android have been thoroughly studied and addressed. Most of these issues are
due to the vulnerable applications and specific to the high-level design concepts
adopted in Android, such as the widely debated permission model. One such
technique that has recently been gaining popularity is the class of attack that
bypass software defense mechanisms such as non-executable memory, address
randomization etc. Return oriented programming (ROP) has emerged as one
such prime exploitation technique.

c© Springer Nature Singapore Pte Ltd. 2017
S.M. Thampi et al. (Eds.): SSCC 2017, CCIS 746, pp. 350–363, 2017.
https://doi.org/10.1007/978-981-10-6898-0_29



ASLR and ROP Attack Mitigations for ARM-Based Android Devices 351

The objective of the work reported here is to secure Android devices from
ASLR and ROP attacks. The existing (2017) Zygote model permits these attacks.
The Stagefright (Drake 2015) exploit is based on ROP attacks.

1.1 Organization

Background needed for this paper is provided in Sect. 2. Section 3 describes tools
and techniques that we use in our design. Section 6 are about related work and
evaluation. We conclude the paper with Sect. 7.

2 Background

2.1 ASLR

Address-Space Layout Randomization (ASLR) is a technique to thwart exploits
which rely on knowing the location of the target code or data. ASLR randomizes
addresses of methods and data as executable is loaded into virtual memory.
When implemented correctly, ASLR makes it impossible to infer the location of
the code and data of a program.

Android 4.0 Ice Cream Sandwich introduced ASLR. Library load ordering
randomization was accepted into the Android open-source project in 2015, and
was included in the Android 7.0 release.

The address space layout randomization also has vulnerabilities. Shacham
et al. (2004) points out that the ASLR on 32-bit architectures is limited by the
number of bits available for address randomization. Only 16 of the 32 address
bits are available for randomization, and 16 bits of address randomization can
be defeated by brute force attack in minutes. For 64-bit architectures, 40 bits
of 64 are available for randomization. In 2016, brute force attack for 40-bits
randomization are possible, but it is unlikely to go unnoticed.

2.2 ROP

Return oriented programming is a growing class of exploits in which the exploit
consists of re-using code that is already present in the virtual memory of the
system.

Return oriented programming was discovered in 2007 by Shacham (2007).
The authors used it to bypass the limitations of executable stack such as DEP,
Stack Canaries, etc. in jumping to valid code regions avoiding the need to
place shellcode on the stack. They bypassed the hardware enforced NX (non-
executable protection) in Intel, XN in ARM and software enforced DEP (Data
execution prevention) with the ROP technique. ROP was also shown to be
applicable on ARM architecture (Kornau 2010).

The most common type of attack is attack is Return-to-LibC (Ret2LibC),
where an attacker exploits a buffer overflow to redirect control flow to a library
function already present in the system. To perform a Ret2LibC attack, the



352 V. Parikh and P. Mateti

attacker must overwrite a return address on the stack with the address of a
library function. Additionally, the attacker must place the arguments of the
library function on the stack in order to control the execution of the library
function.

2.2.1 Basic Idea of an ROP Attack
First the attacker places the payload consisting of return oriented instructions
in the memory area. This payload is not the actual exploit code but merely con-
tains the pointers to gadget chains in memory. After that the attacker exploits
a heap/stack corruption vulnerability and the stack is pivoted to the attacker
region. Now the instructions (generally) ending with ret will redirect the exe-
cution flow to ROP gadgets that are placed in memory. Note that this is just
one of the many scenarios that make use of ROP gadgets.

2.2.2 ROP Gadgets
Short sequences of instructions that end with a transferring instruction (e.g.,
ret on x86, blx on ARM) are called gadgets. Shacham (2007) showed that ROP
gadgets are Turing complete, given a binary of sufficiently large size. Even when
the program is not large enough, assuming the attacker has already injected code
in a writable program area, the following steps can be taken to induce a Turing
complete behaviour:

1. Compose minimum ROP gadgets to make a call to allocate memory (Using
alloc for instance)

2. Copy shellcode which is in writable memory area to the newly allocated mem-
ory region

3. Run shellcode from the newly allocated region

There is yet another approach if the attacker has already access to mem-
ory modification routines such as VirtualProtect on Windows and mprotect on
Linux. Compose ROP shellcode that makes a call to memory modification rou-
tines such as mprotect.

We ran ARM shellcode on Android and found that ROP shellcode/payload
is perfectly possible on ARM.

Load/Store. (i) Loading a Constant (ii) Loading from Memory (iii) Storing to
Memory

Control Flow. Unconditional Jump, Conditional Jumps
Arithmetic & Logic. Add, Exclusive OR (XOR), And, Or, Not, Shift and

Rotate

The ropper1 tool discovered on the ARM /bin/ls binary a staggering 1112
ROP gadgets. This shows that the incentive for attackers is quite the same on
ARM architecture as on x86(-64) architecture.

1 https://github.com/sashs/Ropper.

https://github.com/sashs/Ropper


ASLR and ROP Attack Mitigations for ARM-Based Android Devices 353

0x0000fee4: adc.w r0 , r0 , r3; bx lr;
0x0001540e: adc.w r1 , r1 , r4 , lsl #20; orr.w r1 , r1 ,
r5; pop {r4 , r5, pc};

0x0001529e: adc.w r2 , r2 , r2; it hs; subhs.w r0 , r0 ,
r1; mov r0 , r2; bx lr;

0x0001540a: adcs r0 , r0 ,#0; adc.w r1, r1 , r4, lsl
#20; orr.w r1 , r1 , r5; pop {r4 , r5 , pc};

0x0001551a: adcs r1 , r1; it hs; orrhs r1 , r1, #0
x80000000; pop {r4 ,r5 ,pc};

Listing 1. An ROP Gadget Found in ARM /bin/ls

2.2.3 Defenses Against ROP
Several defensive approaches have been suggested: ROPDefender (Davi et al.
2011), kBouncer (Pappas et al. 2013), dynamic binary instrumentation (DBI)
based ROP protection (see Sect. 3), and instruction set randomization. Defences
like ROPDefender and kbouncer do not require any modifications to the binary.
These techniques often take into consideration ret based ROP gadgets only. But
Checkoway et al. (2010) showed that ROP is also possible when ret gadgets are
not used.

2.3 Position Independent Executables

Position Independent Executables are binaries constructed so that their entire
code base can be loaded at a random location in memory.

Position-independent executable support was added in Android 4.1. Android
5.0 dropped non-PIE support and requires all dynamically linked binaries to be
position independent.

Full ASLR is achieved when applications are compiled with PIE (-fpie -pie
flags).

2.4 ART Format

ART was introduced with Android 5.0 and is now the default runtime. ART
compiles all the code into oat format, translating a dex file with ahead-of-time
(AOT) version. The oat format is close to ELF format that Linux uses. The
opcodes from the oat file can be utilized as a ROP gadgets. In our opinion, the
new ART format has increased the attack surface in Android.

3 Binary Instrumentation

Dynamic Binary Instrumentation (DBI) (Backes et al. 2016) is an introspec-
tion technique in which a binary is re-built just before being run with added
hooks that invoke certain callback routines. These callback functions help iden-
tify events that happen during execution. These hooks can be called at various



354 V. Parikh and P. Mateti

points in the program execution to facilitate advanced tracing and analysis of
binary. DBI does not require access to source code and is therefore perfectly suit-
able for third party programs whose source code cannot be accessed. It is also
useful for legacy applications which are no longer maintained. DBI does not incur
significant performance overhead if implemented properly. The dynamic compi-
lation feature offered by DBI can be used in our case to detect ROP attacks. We
plan to use selective DBI techniques described below. Selective Monitoring takes
constant feedback from the cloud and gathers information about the current
exploitation trends (both from the user’s device as well as from national security
advisories). It monitors apps whose critical factor exceeds a certain threshold.
Critical factor is defined as the probability of the app getting exploited in wild
by the attackers. This probability will be constantly updated through inputs
from crowd sources.

3.1 Android Dynamic Binary Instrumentation

ADBI2 is a tool for dynamically tracing Android native layer. Using this tool you
can insert tracepoints (and a set of corresponding handlers) dynamically into
the process address space of a running Android system. When the tracepoint
is hit your custom handler (which can be written in C) is executed. You can
deliver your own code through the handlers. It is possible to access process
variables and memory. Host side tool written in Python communicates with the
native adbiserver process (which resembles the gdb-server in its operation) and
translates source level symbols into addresses within the final binaries.

3.2 Valgrind

Valgrind3 is a Dynamic Binary Analysis (DBA) tool that uses DBI framework
to check memory allocation, to detect deadlocks and to profile the applications.
Valgrind tool loads the application into a process, disassembles the application
code, add the instrumentation code for analysis, assembles it back and executes
the application. It uses Just In time Compiler (JIT) to embed the application
with the instrumentation code.

3.3 DynamoRIO

DynamoRIO4 is also a DBI tool. It is supported on Linux, Windows and Android.

4 Architecture and Design

We describe a method that can monitor the critical points at the time of execu-
tion of an Android binary by leveraging DBI.
2 https://github.com/Samsung/ADBI.
3 http://valgrind.org/.
4 http://www.dynamorio.org/.

https://github.com/Samsung/ADBI
http://valgrind.org/
http://www.dynamorio.org/


ASLR and ROP Attack Mitigations for ARM-Based Android Devices 355

4.1 Pre-exploitation Phase Module

• Trace execution flow using DynamoRIO to see last n branches executed.
• Check to see if the branches contain a return instruction. If they do, verify

(from the stack) if the address taken is genuine.
• Keep last N branches’ history in a remote/local database.

4.2 Post-exploitation Phase Module

We use a DynamoRIO based plugin to detect any post exploitation privilege esca-
lation. E.g., java.lang.Runtime.exec("su") is generally used for getting su
privileges using setuid(0) system call. We detect such functions using a global
hook. Another example is use of network system call after mprotect/mmap. We
intend to detect such sequences which might be harmful through our framework.

The following modules work concurrently to ensure that the ASLR is not
violated by any of the running apps.

4.2.1 ROP Gadget Database
The database contains all the latest ROP gadgets for all the apps that are
installed on the device. We plan to store ROP gadgets of all Android libraries
and store the gadgets in a cloud database. This way, during instrumentation, we
would we able to download the ROP database and compare the ROP instructions
with the binaries. We plan to use Firebase for cloud storage and retrieval. This
database will be stored.

4.3 Instruction Analyzer DBI Module

The conditional branch logger can verify whether or not an indirect branch has
been taken. It further inspects the return instruction at the end of a basic block.
It then inspects the contents of LR register to find out which address is being
returned to. The module will then analyze the instruction present at that address
to find out if its an instruction preceding by a CALL instruction (Intel) or a
BL(X) LR instruction in ARM. If they are, then its execution would be stopped.
It will be protecting against active threats by continuously monitoring execution
of each process. This tool will trigger an alert whenever a ret instruction returns
to an address which is not preceded by a call instruction.

The monitor is able to notify the background daemon in case there happens
to be a violation of integrity of app behaviour. If the monitor is able to detect
any live exploits that are taking place it will immediately notify the background
service which will terminate the application in context.

The following indirect branches (on ARM) are inspected:

• A load instruction (LDR or LDM) with the PC as one of the destination
registers

• A data operation (MOV or ADD, for example) with the PC as the destination
register



356 V. Parikh and P. Mateti

• A BX instruction, that moves a register into the PC
• A SVC instruction or an Undefined Instruction exception
• All other exceptions, such as interrupt, abort, and processor reset.

4.4 Vulnerable App Database

This database contains information about all the apps that are getting exploited,
as gathered through crowd sources. Such apps will be blacklisted and will not
be allowed to run.

4.5 Crowd Sourcing

We use crowd sources to collect trust in Android apps. We have a remote
MD5/SHA1 database which is periodically updated. We plan to improve the
database by regularly adding the latest exploits that are prevalent in the Android
ecosystem. As far as we know, this is the first implementation that leverages the
crowd sourcing philosophy to improve the existing condition of ASLR in Zygote
module and provides strong defence against current ROP exploits. Granted that
crowd sourcing will not protect against latest 0-day exploits in the wild. Against
such exploits we plan to introduce further randomization in the Android source
code (AOSP) (Fig. 1).

Fig. 1. ROP protection tool outline



ASLR and ROP Attack Mitigations for ARM-Based Android Devices 357

4.5.1 Suspicious System Call Sequence Analyzer/Database
The end goal of an attacker is generally to take control of the system after a
successful exploit attempt. In order to do so he/she must execute a series of
system calls which help him/her do exactly that. A suspicious system call is
executed in which case the information will be sent to the crowd source module
immediately.

This will feature a (nearly) comprehensive list of system calls that can be
taken by the ROP shellcode. This analyzer will constantly monitor an app for a
dangerous sequence of system calls being executed. This will work post infection
after a shellcode is able to detect the protection offered by the conditional branch
logger.

4.6 Algorithm 1

The following algorithm is adapted5

for each IMAGE
for each BLOCK in IMAGE

insert BLOCK in BLOCKLIST
for each INSTRUCTION in BLOCK

if INSTRUCTION is RETURN or BRANCH
insert retrieve SAVED_EIP from stack
insert CALL to ROP_VALIDATE(SAVED_EIP) before

INSTRUCTION
ROP VALIDATE
if SAVED_EIP not in BLOCKLIST

exit with error warning

Listing 2. Instrument Program

Notes: (i) The type of branch has not been specified. It has to be an indirect
branch. (ii) Code to retrieve saved EIP might not be easy to construct.

4.7 Algorithm 2

The following algorithm is adapted6

PRE -PROCESSING STEP
for_each image in process

for_each bb in image
Bblist.push_back(BBInfo(bb))

DETECTION STEP
for_each ins in Program

if IsIndirectBranchOrCall (ins)

5 http://www.talosintelligence.com/.
6 http://public.avast.com/caro2011/.

http://www.talosintelligence.com/
http://public.avast.com/caro2011/


358 V. Parikh and P. Mateti

if BranchDest(ins) is InsideLoadedModules ()
if BranchDest(ins) not in Bblist.

Instructions ()
ShellcodeDetected ()

Listing 3. Pre-Processing and Detection

This algorithm works for all types of branches and not just return instruc-
tions. But, as a side-effect, there is greater performance overhead.

4.8 Algorithm 3

1. Find out all valid call sites in a binary (Parse Export Add all valid call sites
to a block list.

2. If the BB ends with a call or ret instruction then (insert code to) check the
starting address of the next BB. It should either be a valid call site (from the
block list) or should be an address just below a valid call site. In ARM this
would be PC+4

3. Else Continue
4. Note: BB is computed before the image begins execution.

4.9 Algorithm 4

Criticism: Need to trace each instruction (Fig. 2).

Fig. 2. ROP detection algorithm (from Huang et al. (2012))



ASLR and ROP Attack Mitigations for ARM-Based Android Devices 359

4.10 Algorithm 5

1. Do instruction tracing (i.e., instrument each instruction to figure out the
return instruction (usually at then end of BB)

2. Find out where it is jumping (Intel: Return address is on stack, ARM: Return
address is in LR)

Criticisms: 1. Tracing each instruction will be slow. 2. Only checks return
instruction.

4.11 Algorithm 6

Algorithm of shadow stack7.

4.12 Algorithm 7

1. At the end of each basic block, we check whether a ret (return) instruction is
taken (In ARM the equivalent is the POP PC or MOV PC, LR) by analyzing
the branch instruction at the end of basic block.

2. Check the top of the stack (or LR register in case of ARM) in case a return
instruction is taken. Let the address be A.

3. If (Disassemble(A-4) == call instruction) then it is a genuine function return-
ing back from where it was called.

4. Else alert the cloud module about an ROP attack.
5. Note: A basic block is always ended by a direct/indirect branch

Comparison with Algorithm 2: This algorithm does not need to calculate
the valid call sites Might not work if lr register is updated inside a Basic Block
(For such a scenario you may need to execute the instrumentation function after
the Basic block is executed and not before) Performance is yet to be compared
between these two algorithms.

4.13 Suggested Performance Improvements

For making DBI faster we can use a technique of selective binary instrumenta-
tion that only targets critical applications in the device which may have a higher
probability of getting exploited in the wild. We are certainly aware of the perfor-
mance hit. That is why we will plan to have selective instrumentation (i.e. the
binary will not be instrumented every time it runs. e.g. if a binary runs for 100
times then at 101th time it will not be instrumented, or instrument at random
times). Also researchers have used the technique of dynamic binary instrumen-
tation in the past to detect ROP attacks. Specifically for ARM/Android the
following paper has used Valgrind based instrumentation to detect ROP.

7 https://github.com/benwaffle/DynamoRIO-shadow-stack.

https://github.com/benwaffle/DynamoRIO-shadow-stack


360 V. Parikh and P. Mateti

5 Implementation

5.1 Analysis of Zygote

Whenever a new app has to be launched, Zygote forks off its own process.
The base zygote process has already loaded most of the framework core
libraries. After forking, the process inherits all the libraries associated with par-
ent zygote process. After creating a process, the Zygote does several things
like assigning group id, etc. to the apps. In init.rc file there is a file
service Zygote /system/bin/app-process -X Zygote /system/bin --Zygote
--start-system-server. The aim is to improve the existing security of current
Zygote implementation. We will be testing existing Android ASLR exploits on
the current security implementations and demonstrate that they are not nearly
enough for security of the device. Then we will demonstrate how Zygote4 can
stop those exploits owing to its new and improved defenses against ROP init
runs /system/bin/app-process ROP is actually possible on Android ARM.

Due to Zygote design the effectiveness of ASLR is undermined as all forked
processes from Zygote inherit the same memory layout of the shared libraries.
Also multiple copies of the same process share the exact same code layout. This
greatly reduces the security provided by ASLR and makes the device vulnerable
to several kinds of attacks against randomization.

5.2 Creating Our Own ROP Sample

We were able to create a self executing ROP executable. It behaves exactly like
a ROP payload. We developed it for X86, ARM and Android (X86 and ARM).
This executable scans in the memory for /bin/sh (/system/bin/sh on Android)
and also locates the address of the system() function. It then spawns a shell
(with the same privileges as user) by pushing arguments to system() on the
stack (or on register in case of x86-64 and ARM). We use the inline assembling
capabilities of gcc (clang). For Android, we use JNI to invoke the native ROP
code.

Our POC is perhaps the simplest way of demonstrating a ROP exe-
cution without incurring any complications that may arise due to change
in addresses due to ASLR. The project is located at https://github.com/
techvoltage/addr-info. The pseudo code for the same sample is shown below.

function find_func(char *func , void *ptr) {
do {

iterate modules in virtual memory;
void *handle = dlopen (module);
ptr = dlsym(handle , func);

} while(module or !ptr);
leave;

}

function find_pattern(char *pattern , char *arg){

https://github.com/techvoltage/addr-info
https://github.com/techvoltage/addr-info


ASLR and ROP Attack Mitigations for ARM-Based Android Devices 361

arg=memmem(pattern);
call find_func("system", ptr);
call find_pattern("/bin/sh", arg);
‘mov r0 , arg ‘; //on x86: push arguments to register
‘blx ptr ‘; // call system ("/ bin/sh")
}

Listing 4. Self ROP Sample: Pseudo Code

5.3 Continuous Monitoring of App Execution on Android

We have a native Android self exploiting executable. Hello ROP is an Android
sample that uses JNI to execute code in a ROP-like manner from an Android
Java Activity. It locates system() and /system/bin/sh at runtime to execute a
shell (using inlined ARM assembly), in a ROP like manner.

We also have a DynamoRIO plugin for detecting ROP attacks on the Android
architecture. We run the executable under our DynamoRIO plugin. We are able
to run the app with our plugin with the help of setprop command which acts
as a wrapper for the app. Our DynamoRIO plugin runs in the background and
continuously monitors the executable. Now normally the app should be able
to execute its code in a ROP like fashion pretty easily but due to our plugin
verifying all the calls and returns, an assertion error is throwed when we detect
that a ROP like execution (meaning the x86(ARM) calling conventions are most
certainly violated) As soon as the attack is detected, DynamoRIO immediately
stops the executable.

DBI plugin monitors all the return instructions and checks to see whether
there is a discrepancy at the call site. If the target instruction of the return
instruction does not immediately precede a call instruction. If the heuristic fails,
the application is deemed to have been exploited. We also plan on introducing
an impact factor metric to reduce the number of false positives.

6 Related Work

6.1 Zygote to Morula Enhancements

Lee et al. (2014) demonstrate the weakness of the existing Android Zygote imple-
mentation and tries to introduce a new replacement, Morula instead of the weak
(from security perspective) Zygote model. Morula promises full ASLR support
for the processes spawned. Unlike Zygote which only uses fork() to create new
processes, Morula uses fork() along with exec() to bring full ASLR support on
Android platforms. In existing Android systems the apps have the same code
base address even when ASLR is present. In Morula there is a pool of Zygote
processes which are maintained at all times. When a new app starts, the process
will inherit from any one of these Zygote processes Legacy apps tend to have
a heavy usage of native code. This code is loaded through JNI-like interfaces.



362 V. Parikh and P. Mateti

The authors further highlight the weakened ASLR model of Android by devising
two real exploits on Android apps. These exploits break aslr and achieve ROP
on current systems They then designed Morula as a countermeasure and imple-
mented it as an extension to the Android OS. By leaking an address in his/her
own process, an attacker can relate the address to another app which needs
too be exploited, thus providing a memory disclosure vulnerability. This works
because Zygote causes two child process to have the same memory and thus
revealing memory of one sibling process will also let us find the corresponding
memory location in another sibling process.

Shetti (2015) did a further enhancement to the Morula framework. ASLR
in 32 bits is weaker even when best randomization practices are followed. This
is due to the fact that sufficient entropy is simply unattainable in 32 bit archi-
tecture. However, the same cannot be said for 64 bit architectures as a wide
address size (8 bytes) offers a considerable advantage over 32 bit architecture.
Due to the huge virtual memory it becomes relatively easy improving the existing
ASLR techniques on 64 bits. The idea of dynamic offset randomization is quite
effective against de-randomization exploits against Android Zygote. Enhanced
Morula’s process creation model and Randomization highlights shortcomings
with Morula framework. It proposes Zygote3, an enhancement of Morula which
features Dynamic offset randomization and base pointer randomization.

6.2 Kbouncer and Related ROP Mitigations

Kbouncer (Carlini and Wagner 2014) uses the last branch tracing functionality
provided by the intel architecture. Kbouncer uses hardware support for tracing
indirect branches. It inspects the history of indirect branches taken at every sys-
tem call. Their implementation consists of three components: An offline gadget
extraction and analysis toolkit, A userspace layer and a kernel module to modu-
late all the system calls being passed to the kernel and also to log all the indirect
branches being taken by the application.

7 Conclusion

In this report, we how the Android Zygote is still not secure and proposed
our new framework as a countermeasure. Our framework promises to be an
enhancement over the past work involving Zygote. The design is based on an
open source ideology and can serve as a better alternative to the traditional
ROP protections. One of the possible challenges that we face is the process
slowdown introduced by dynamic binary instrumentation. We expect to solve
such issues as we further make progress in our research. For making DBI faster
we can use a technique of selective binary instrumentation that only targets
critical applications in the device which may have a higher probability of getting
exploited in the wild.



ASLR and ROP Attack Mitigations for ARM-Based Android Devices 363

References

Drake, J.: Stagefright: scary code in the heart of Android. BlackHat USA,
August 2015. Slides: https://www.blackhat.com/docs/us-15/materials/
us-15-Drake-Stagefright-Scary-Code-In-The-Heart-Of-Android.pdf, video: https://
www.youtube.com/watch?v=71YP65UANP0

Shacham, H., Page, M., Pfaff, B., Goh, E.-J., Modadugu, N., Boneh, D.: On the effec-
tiveness of address-space randomization. In: Proceedings of the 11th ACM Confer-
ence on Computer and Communications Security, pp. 298–307. ACM (2004). http://
www.hovav.net/dist/asrandom.pdf

Shacham, H.: The geometry of innocent flesh on the bone: return-into-LIBC without
function calls (on the x86). In: Proceedings of the 14th ACM Conference on Com-
puter and Communications Security, pp. 552–561. ACM (2007)

Kornau, T.: Return oriented programming for the ARM architecture. Master’s the-
sis, Ruhr-Universitat Bochum, Germany (2010). http://zynamics.com/downloads/
kornau-tim-diplomarbeit-rop.pdf

Davi, L., Dmitrienko, A., Sadeghi, A.-R., Winandy, M.: Privilege escalation attacks
on android. In: Burmester, M., Tsudik, G., Magliveras, S., Ilić, I. (eds.) ISC
2010. LNCS, vol. 6531, pp. 346–360. Springer, Heidelberg (2011). doi:10.1007/
978-3-642-18178-8 30

Pappas, V., Polychronakis, M., Keromytis, A.D.: Transparent ROP exploit mitigation
using indirect branch tracing. Presented as Part of the 22nd USENIX Security Sym-
posium (USENIX Security 2013), pp. 447–462 (2013)

Checkoway, S., Davi, L., Dmitrienko, A., Sadeghi, A.-R., Shacham, H., Winandy, M.:
Return-oriented programming without returns. In: Proceedings of the 17th ACM
Conference on Computer and Communications Security, pp. 559–572. ACM (2010).
http://cseweb.ucsd.edu/∼hovav/dist/noret-ccs.pdf

Backes, M., Bugiel, S., Schranz, O., von Styp-Rekowsky, P., Weisgerber, S.:
ARTist: the Android runtime instrumentation and security toolkit. arXiv preprint
arXiv:1607.06619 (2016)

Huang, Z., Zheng, T., Liu, J.: A dynamic detection method against ROP attack on
ARM platform. In: Proceedings of the Second International Workshop on Software
Engineering for Embedded Systems, pp. 51–57. IEEE Press (2012)

Lee, B., Lu, L., Wang, T., Kim, T., Lee, W.: From Zygote to Morula: fortifying weak-
ened ASLR on Android. In: IEEE Symposium on Security and Privacy (2014)

Shetti, P.: Enhancing the security of Zygote/Morula in Android Lollipop. Master’s
thesis, Amrita Vishwa Vidyapeetham, Ettimadai, Tamil Nadu, India, June 2015.
Advisor: Prabhaker Mateti. http://cecs.wright.edu/∼pmateti/Students/

Carlini, N., Wagner, D.: ROP is still dangerous: breaking modern defenses. In: USENIX
Security, vol. 14 (2014)

https://www.blackhat.com/docs/us-15/materials/us-15-Drake-Stagefright-Scary-Code-In-The-Heart-Of-Android.pdf
https://www.blackhat.com/docs/us-15/materials/us-15-Drake-Stagefright-Scary-Code-In-The-Heart-Of-Android.pdf
https://www.youtube.com/watch?v=71YP65UANP0
https://www.youtube.com/watch?v=71YP65UANP0
http://www.hovav.net/dist/asrandom.pdf
http://www.hovav.net/dist/asrandom.pdf
http://zynamics.com/downloads/kornau-tim-diplomarbeit-rop.pdf
http://zynamics.com/downloads/kornau-tim-diplomarbeit-rop.pdf
http://dx.doi.org/10.1007/978-3-642-18178-8_30
http://dx.doi.org/10.1007/978-3-642-18178-8_30
http://cseweb.ucsd.edu/~hovav/dist/noret-ccs.pdf
http://arxiv.org/abs/1607.06619
http://cecs.wright.edu/~pmateti/Students/


CBEAT: Chrome Browser Extension
Analysis Tool

Sudakshina Singha Roy1,3 and K.P. Jevitha2,3(&)

1 TIFAC CORE in Cyber Security, Amrita School of Engineering,
Coimbatore, India

sudakshina28@gmail.com
2 Amrita Vishwa Vidyapeetham, Amrita University, Coimbatore, India

kp_jevitha@cb.amrita.edu
3 Department of Computer Science and Engineering,
Amrita School of Engineering, Coimbatore, India

Abstract. With exponential increased usage of browser extensions for smooth
and effortless browsing experience, preventing exposure of user’s private and
sensitive data for malicious intent becomes a perpetual challenging task for
security researchers. To address this potential threat, extensive work has been
carried out to develop a Chrome Browser Extension Analysis Tool, CBEAT.
Exclusivity of CBEAT lies in performing holistic analysis combining manifest
analysis and JavaScript static taint analysis of manifest and JavaScript files of
Chrome Extensions. CBEAT calculates an extension score based on both
analysis mentioned above. This score is subsequently used to arrive at classi-
fication of the extension and classified as high, medium and low in exposing
user’s private and sensitive data. Out of tested Chrome extensions, this paper
finds 40% of them as low, 32% as medium and 28% as high.

Keywords: Browser extensions � Chrome � JavaScript � Manifest analysis �
Taint analysis

1 Introduction

A browser extension is a plugin that broadens a web browser’s utility in a certain
manner. Browser extensions are mainly used to integrate with other services, to add
additional features to the browser, and also to modify appearance of websites in web
browsers. They are coded with the help of various web technologies such as HTML,
JavaScript, and CSS. Google chrome, one of the frequently used web browser today,
allows users to extend its functionality by means of extensions available in the Chrome
Web Store.

JavaScript is a high level dynamically typed programming language which is used
across heterogeneous platforms including creating Chrome extensions. JavaScript code
in the extensions can execute on client browsers immediately on installation and
therefore can also be used to exploit the user’s system. While certain restrictions are set
by the Chrome platform, malicious code can still be executed complying with the
restrictions set. Due to the complexity of the Chrome extensions, the detection of their
maliciousness is becoming difficult day by day.

© Springer Nature Singapore Pte Ltd. 2017
S.M. Thampi et al. (Eds.): SSCC 2017, CCIS 746, pp. 364–378, 2017.
https://doi.org/10.1007/978-981-10-6898-0_30



Chrome extensions have a manifest.json file which holds important information
about the extension in it. The manifest.json file contains various fields, each holding
some particular information about the extension. The permissions field is one of the
most important fields in the manifest file. Along with the permissions field, other fields
such as background and content scripts also give key information on what resources the
extension accesses.

The rest of this paper is ordered as follows. Section 2 explains the required
background for proposed CBEAT. Section 3 covers comprehensive review of relevant
literatures. Section 4 describes the detailed working of CBEAT. Section 5 explains the
results obtained based on the experimental work. Section 6 forms the conclusion of this
paper.

2 Background

2.1 Chrome Manifest File

Every chrome extension has JSON formatted manifest.json file which holds important
information about the extension. The fields in the manifest.json file are unique and
store certain information about the extension in them.

There are total 53 fields present in the manifest file. The manifest_version,
name and version fields are mandatory whereas the rest of the fields are included as
required by the extension. The background, content_script and permissions field give
key information about the extension. The resources used and accessed by the extension
such as Chrome APIs, hosts, JavaScript files, could be found by analyzing these fields.

Background field
Background field contains a sub field scripts containing names of the JavaScript
files which need to be executed in the background of an extension once it has been
installed in the browser. As it is not visible to the user, the background scripts are
powerful to camouflage activities that keep track of user’s private data without their
knowledge. The sub field persistent present in the background field is a Boolean
field that is set either true or false. When set as true, it implies that the JavaScript files
present in the background environment starts executing in the browser until the browser
is closed. When set as false, it implies that the JavaScript files present in the back-
ground environment executes only when the extension is used.

The background field is usually declared as follows-

"background": { 
    "scripts": ["background.js"] 
    "persistent": true 
  } 

content_script field
content_script field contains a sub field js containing names of JavaScript files which
need to be executed when a match to a URL is found. The extensions can track the

CBEAT: Chrome Browser Extension Analysis Tool 365



URLs visited by the user in the browser. Once a URL match is found from the lists of
URLs to be matched present in the matches sub field, the JavaScript files present in
the js field is executed.

The content_script field is usually declared as follows-

"content_scripts": [ 
    { 
      "matches": ["http://www.google.com/*"], 
      "js": ["jquery.js", "myscript.js"] 
    } 
  ]

Permissions field
Permissions field is one of the most important fields of the manifest.json file. The
Chrome APIs to be used by the extension are specified under the permissions field.
Permissions can be either known strings such as “tabs” or a match pattern that gives
access to one or more hosts. Example of a host declaration is “http://*.-
google.com/”.

The permissions field is usually declared as follows-

"permissions": [ 
    "tabs", "geolocation", "http://www.google.com/*" 
  ] 

Taint Analysis
An operation, or series of operations, that uses the value of some object, say x, to derive
a value for another object, say y, creates a flow from x to y. Information flows from
object x to object y, when information stored in x is transferred to object y. The object x
is called source and the object to which the information flows i.e., object y is called
sink. Taint analysis is a form of information flow analysis. If the information entering
through a source is considered untrustworthy, a taint tag is added. Thus when the
information flows from a source to a sink, it can be identified if it is tainted based on
this taint tag.

Motivating Example
Figure 1 shows an example JavaScript code snippet having the source document.
getElementById and sink addEventListener.

Fig. 1. Example JavaScript code snippet

366 S.S. Roy and K.P. Jevitha



3 Related Works

As users widely accept the use of Chrome extensions, key concern lies in how to make
them secured. Hence security scholars have shown interest to work in this area. There
are many important research works in the area of browser extension security and
information flow in JavaScript separately. In depth review of related literatures iden-
tifies the existing gap to find a single tool which combines browser extension security
and information flow in JavaScript together.

ANDROMEDA: Accurate and scalable security analysis of web applications is pro-
posed by Tripp et al. [1] ANDROMEDA produces precise and modular secured
analysis of web applications in a demand driven manner by tracing information flows
which are vulnerable, without constructing the representation of the entire target
application. A Web application together with its associated libraries is given as an input
to the ANDROMEDA algorithm to validate it against conditions in the form of security
guidelines. A security guideline contains three major information in the form (Src,
Dwn, Snk), where Src, Dwn and Snk are conditions written as patterns for corre-
sponding sources, downgraders and sinks in the target application, respectively.
Method call or field dereference is considered as a pattern match. Vulnerabilities are
stated for flows ranging between a source and a sink matching to the exact rule, except
for the downgrader from the rules Dwn set resolving the flow.

HULK: Eliciting Malicious Behavior in Browser Extensions by Kapravelos, Alexan-
dros et al. [2], is a tool for detecting malicious behaviour in Chrome extensions. It relies
on dynamic execution of extensions and uses the technique of HoneyPages that are
specifically created web pages intended to fulfill the structural conditions that initiate a
given extension. By means of this procedure, they can directly detect malicious
behaviour that inserts new iframe or div elements. Along with this, a fuzzer is made to
steer the execution of event handlers registered by extensions.

Analyzing information flow in JavaScript-based browser extensions by Dhawan
et al. [3], proposes SABRE, a system to analyze extensions by tracking in-browser
information flow. SABRE merges a tag with each in-memory JavaScript object in the
browser, which decides if the object contains sensitive information. SABRE is
implemented for tracing information flow, by altering SpiderMonkey which is the
JavaScript interpreter in Firefox. To include their security labels, they altered Java-
Script object depictions within SpiderMonkey.

An Evaluation of the Google Chrome Extension Security Architecture performed
by Carlini et al. [4], identified the vulnerabilities present in the Chrome extensions.
Using black box testing and source code analysis they had reviewed Chrome exten-
sions for identifying the vulnerabilities. Their work concentrated on mainly three types
of vulnerabilities; vulnerabilities that extensions add to websites, vulnerabilities in
content scripts and vulnerabilities in core extensions. Apart from providing information
on vulnerabilities they had listed some major defenses which could be taken to mitigate
the vulnerabilities.

The existing works mainly focus on either analysis of Chrome extension security
architecture or analysis of information flow in JavaScript discretely. As there is no

CBEAT: Chrome Browser Extension Analysis Tool 367



holistic approach to analyzing the Chrome extensions at present, this paper introduces
CBEAT, a unique Chrome Browser Extension Analysis Tool which combines Manifest
Analysis along with JavaScript analysis to give holistic analysis of Chrome extensions.

4 Proposed Framework

4.1 Architecture Diagram

Figure 2 shows the working of the CBEAT. The source code of the Chrome extension
is taken and the manifest.json and JavaScript files are taken separately. The manifest
file is analyzed to check the permissions requested by the extension, whether the
extension’s background scripts run persistently and also which URLs are tracked by the
extension. The JavaScript files are analyzed to get all possible tainted information flows
ranging between sources and sinks which might expose user private data. Finally
combining these two analysis, a score is calculated for the extension. Based on the
score, extension is classified as high, medium and low in exposing user private data.

4.2 Manifest Analysis

Background field analysis
The background field contains two sub fields-scripts and persistent. The
JavaScript file names present in the script sub field are given for JavaScript Static
Taint Analysis. The persistent sub field is analysed to check if the background
scripts run persistently or not. Background scripts do not need to run persistently in the
background. Presence of persistent when set as true indicates the background scripts
keep running in the browser until the browser is closed.

content_script field analysis
The content_script field contains two sub fields- scripts and matches. The
JavaScript file names present in the script sub field are given for JavaScript Static

Fig. 2. Architecture diagram of CBEAT

368 S.S. Roy and K.P. Jevitha



Taint Analysis. These scripts are executed only when a match to the URLs present in
the matches sub field is found. The matches sub field is analysed to check which
URLs are tracked by the extension. This helps in identifying whether all of user’s
browsing experience is tracked by the extension or not. If the content scripts are
executed at match of < all_urls > , it implies that any URL which the user visits
the extension will execute the scripts. Table 1 contains the list of content_script mat-
ches that keep track of all the URLs visited by the user.

Permissions field analysis
The permissions field contains the list of match pattern that gives access to one or more
hosts such as “http://*.google.com/”, and known strings such as geolo-
cation, tabs, cookies, bookmarks and many more. Permissions which can
be misused to keep track of user private data and expose the user’s sensitive data are
analyzed. The list of permissions, allowed Chrome API access and potential misuse of
these permissions considered for our analysis is tabulated below in Table 2.

An example of misuse of tabs permission is explained as follows. The tabs
permission allows the usage of chrome.tabs API. An extension which has
chrome.tabs API allows access to open tabs in the Chrome browser. Using this API
permission alone the extension can get URL of a page by using the chrome.
tabs.query method or even take a screenshot of the page by using chrome.
tabs.captureVisibleTab method. These two methods alone could be extremely
invasive to user’s privacy.

4.3 JavaScript Static Taint Analysis

CBEAT performs JavaScript static taint analysis of the JavaScript files which are listed
in the manifest.json file as well as all the other supporting JavaScript files of the
extension. This is performed to find the information flows from the potential sources to
sinks exposing the user private data. Taint analysis starts with defining the set of
sources and sinks. Then the call graphs [5] are constructed with the help of the WALA
[6] libraries. An inter-procedural traversal of the call graph is performed from each
source to any reachable sink. For each node of the call graph, the Single Static
Assignment instruction [7] is obtained. A regular expression matching is performed
between the tags obtained from the Single Static Assignment instructions and the tags
from the sources and sinks definitions. For every match, the particular node which is
the source is marked as a taint node. For all the marked nodes which are the sources, all

Table 1. content_script matches to URLs made by extenions

Host Corresponding match

<all_urls> Matched to all URLs
http://*/* Matched to all http URLs
https://*/* Matched to all https URLs
ftp://*/* Matched to all ftp URLs
*://*/* Matched to all URLs

CBEAT: Chrome Browser Extension Analysis Tool 369



the reaching tags are obtained. Finally the tainted information flow path from source to
sink is formed.

Sources and Sinks
Taint analysis starts with defining the set of sources and sink. It is the most important
task of the analysis since the information flows will be found based on the sources and
sinks given as an input. The sources and sinks which have the potential to expose user
private data will be matched against those present in the extensions. This will help in
identifying whether the extension contain such sources and sinks that expose user
private data. Out of total 155 sources and 225 sinks considered, a few are shown in
Fig. 3.

Table 2. Permissions and the allowed Chrome API access

Permission name Allowed Chrome API
access

Potential misuse of permission

bookmarks chrome.bookmarks To identify user’s browsing habits
browsingData chrome.browsingData To clear user’s browsing data
contextMenus chrome.contextMenus To understand and modify user’s

extension UI
cookies chrome.cookies To identify user’s browsing habits
desktopCapture chrome.desktopCapture To identify user’s visited sites
downloads chrome.downloads To identify and misuse user’s

downloaded data
fileBrowserHandler chrome.fileBrowserHandler To identify the user uploaded files
history chrome.history To identify user’s browsing habits
storage chrome.storage To retrieve details about user’s

installed extensions in the browser
tabs chrome.tabs, chrome.

windows
To identify user’s browsing habits

webNavigation chrome.webNavigation To track user’s navigation details
webRequest chrome.webRequest To analyse user’s network traffic
activeTab chrome.tabs To identify user’s browsing habits
http://*/* NA To access any http URL
https://*/* NA To access any https URL
*://*/* NA To access any URL

Fig. 3. Sources and sinks

370 S.S. Roy and K.P. Jevitha



Call Graphs Analysis
CBEAT uses libraries provided by WALA for performing call graph construction and
inter-procedural traversal of the call graphs for the JavaScript files in the Chrome
extension. Call graphs have nodes for methods or functions present in the JavaScript
file and edges for their call targets. From each source ranging to any accessible sink, an
inter-procedural traversal of the call graph is accomplished.

SSA Instruction Tag Match Based on Control Flow Graph Analysis
For each node of the call graph, the control flow graph is obtained. The analysis uses a
bit vector solver [8] which is a specialized dataflow solver [8] over the inter-procedural
control flow graph. The bit vector solver in WALA is based on IKildall framework and
it uses Kildall algorithm [9] for inter-procedural data flow analysis. From the control
flow graph, the WALA Single Static Assignment instruction is obtained. A regular
expression matching is performed between the tags obtained from the JavaScript SSA
instructions and the tags from the sources and sinks definitions.

For every match, the particular node is marked as a taint node. Example of the tags
from the sources and sink definitions are shown in Fig. 3.

Final Taint Path Formation
For all the marked nodes which are the sources, all the reaching tags are obtained.
Using the bit vector the taint chain to the sink is obtained. The taint marks are then
returned and joined to create the path. Finally the tainted information flow path from
source to sink is formed.

Figure 4 shows that the source and sink in the JavaScript code snippet shown in
Fig. 1 is matched against the source and sink tags which are given as input to CBEAT.

Figure 5 shows the final information flow formed.

Fig. 4. Source and sink match

Fig. 5. Final created path of the information flow

CBEAT: Chrome Browser Extension Analysis Tool 371



5 Experimental Evaluation

CBEAT is assessed with a set of extensions from the Chrome Web Store spread across
various genres such as accessibility, fun, productivity and social including number of
downloads made by users ranging from hundreds to millions. This variety is chosen to
validate the results across all types of extensions. The following are the list of
extensions-AlphaText, Browser Clock, Calculator, CliMate, Currency converter, Docs
Online Viewer, Emoji Keyboard, ESI Stylish, Guru, Honey, Lazarus, Liner, Mer-
curyReader, Music Bubbles, News Factory, Noisli, Notepad, Planyway, Playmoss,
Rebrandly, Remove Redirects, SmoothScroll, Spoiler Spoiler, Stock Portfolio and
Tagboard.

5.1 CBEAT Analysis Results

From the manifest analysis an overall manifest analysis score is calculated. The scoring
is calculated as follows-

background score- 0 if persistent field set to false
1 if persistent field set to true

content_script score- number of matches found from 5 considered matches
permissions score- number of permissions found from 16 considered permissions
overall score- weighted average of above 3 scores moderated to a score out of

5 as 5 is the median of single digit

The scoring for all extensions is tabulated in Table 3.
From the JavaScript Static Taint Analysis the analysis score is calculated. Based on

the number of information flows which expose user private data against the total
number of information flows found in the extension, the percentage is calculated. It is
then moderated to a score out of 5 score. The scoring for all extensions is tabulated in
Table 4.

Based on both the scores a combined score is calculated using weighted average
method as shown below-

Final Score = [(Manifest Score * 0.3) + (JavaScript Taint Analysis Score * 0.7)]/2

Equal weightage to both analysis is avoided because even a single privacy exposed
information flow in JavaScript static taint analysis suggests the extension exposes user
private data. A ratio of 3:7 in weightage is taken to fulfill the need for accurately
classifying the extensions as low, medium and high in exposing user private data.

The final score for the extension is then checked against the following range-

Low- more than 0.1 less than 0.29
Medium- more than 0.30 less than 0.50
High- more than 0.51 less than 1

Extensions classified as low indicates that they expose negligible user private data.
Extensions classified as medium indicates that they expose moderate user private data.

372 S.S. Roy and K.P. Jevitha



Table 3. Manifest analysis scoring

Chrome
extension
name

Background
analysis score
(either 0 or 1)

Content_script
analysis score
(out of 5)

Permissions
analysis score
(out of 16)

Overall manifest
analysis score
(moderated to 5)

AlphaText 0 2 4 1.04
Browser
clock

1 0 5 2.10

Calculator 0 0 6 0.60
CliMate 1 0 1 1.70
Currency
converter

0 0 5 0.50

Docs online
viewer

0 1 3 0.62

Emoji
keyboard

1 2 2 2.44

ESI stylish 1 1 4 2.32
Guru 1 2 6 2.84
Honey 0 2 5 1.14
Lazarus 0 2 3 0.94
Liner 1 4 7 3.58
Mercury
reader

1 2 4 2.64

Music
bubbles

1 1 2 2.12

News factory 1 2 10 3.24
Noisli 0 0 1 0.10
Notepad 0 0 3 0.30
Planyway 0 1 2 0.52
Playmoss 0 2 1 0.74
Rebrandly 0 1 6 0.92
Remove
redirects

1 1 1 2.02

SmoothScroll 1 3 3 2.86
Spoiler
spoiler

1 2 2 2.44

Stock
portfolio

0 0 1 0.10

Tagboard 1 2 3 2.54

CBEAT: Chrome Browser Extension Analysis Tool 373



Table 4. Javascript static taint analysis scoring

Chrome
extension
name

Number of
information
flows
detected

Number of
privacy
exposed
information
flows detected

Percentage of privacy
exposed information
flows detected from
overall information
flows

Overall
Javascript
static taint
analysis
score
(moderated
to 5)

AlphaText 58 10 17% 0.86
Browser
clock

140 7 5% 0.25

Calculator 113 8 7% 0.35
CliMate 75 3 4% 0.20
Currency
converter

125 10 8% 0.40

Docs online
viewer

123 5 4% 0.20

Emoji
keyboard

80 15 19% 0.95

ESI stylish 122 5 4% 0.20
Guru 63 9 14% 0.71
Honey 80 5 6% 0.30
Lazarus 80 3 4% 0.20
Liner 67 8 12% 0.60
Mercury
reader

87 17 20% 1.00

Music
Bubbles

80 4 5% 0.25

News factory 115 15 13% 0.65
Noisli 59 3 5% 0.25
Notepad 75 6 8% 0.40
Planyway 133 4 3% 0.15
Playmoss 69 5 7% 0.35
Rebrandly 73 11 15% 0.75
Remove
Redirects

71 2 3% 0.15

SmoothScroll 77 12 16% 0.80
Spoiler
spoiler

74 3 4% 0.20

Stock
portfolio

150 3 2% 0.10

Tagboard 62 10 16% 0.80

374 S.S. Roy and K.P. Jevitha



Similarly, extensions classified as high indicate that they expose considerable user
private data. Table 5 presents the classification of the extensions.

Figure 6 shows, 40% of the extensions are classified as low, 32% as medium and
28% as high in exposing user’s private and sensitive data.

5.2 Manifest Analysis Results

From the permissions field analysis, it is found that the maximum used permission is
storage. This reflects that the extensions have the capability to store and track changes
to user data. As shown in Fig. 7, tabs is the second highest used permission by the
extensions followed by bookmarks, cookies, contextMenus, webRequest, http://*/*,

Table 5. Extension classification based on final score

Chrome
extension name

Manifest
analysis score

JavaScript static taint
analysis score

Final
score

Extension
classification

AlphaText 1.04 0.86 0.46 Medium
Browser clock 2.10 0.25 0.40 Medium
Calculator 0.60 0.35 0.21 Low
CliMate 1.70 0.20 0.33 Medium
Currency
converter

0.50 0.40 0.22 Low

Docs online
viewer

0.62 0.20 0.16 Low

Emoji
Keyboard

2.44 0.95 0.70 High

ESI stylish 2.32 0.20 0.42 Medium
Guru 2.84 0.71 0.67 High
Honey 1.14 0.30 0.28 Low
Lazarus 0.94 0.20 0.21 Low
Liner 3.58 0.60 0.75 High
Mercury reader 2.64 1.00 0.75 High
Music bubbles 2.12 0.25 0.41 Medium
News factory 3.24 0.65 0.71 High
Noisli 0.10 0.25 0.10 Low
Notepad 0.30 0.40 0.19 Low
Planyway 0.52 0.15 0.13 Low
Playmoss 0.74 0.35 0.23 Low
Rebrandly 0.92 0.75 0.40 Medium
Remove
Redirects

2.02 0.15 0.36 Medium

SmoothScroll 2.86 0.80 0.71 High
Spoiler spoiler 2.44 0.20 0.44 Medium
Stock portfolio 0.10 0.10 0.05 Low
Tagboard 2.54 0.80 0.66 High

CBEAT: Chrome Browser Extension Analysis Tool 375



webNavigation, https://*/*, downloads, desktopCapture, activeTab, *://*/*, brows-
ingData, fileBrowserHandler and history.

From the background field analysis, Fig. 8 shows that 53% of the extensions have
persistent background pages. This shows that the extensions’ background scripts keep
running in the browser until the browser is closed.

From the content_script field analysis, Fig. 9 shows that maximum matches are
made to < all_urls > , followed by http://*/*, https://*/*, ftp://*/* and *://*/*.

The manifest analysis provides important and key information such as what URLs
are being tracked by the extensions, which permissions are being used maximum that
pose threat in exposing the user private data.

5.3 JavaScript Static Taint Analysis Results

The experiment concentrates mainly in the sources and sinks which are related to user
privacy violations including all methods of Chrome APIs whose permissions are asked
for in the manifest.json file tabulated in Table 1.

The information flows tracked here focus on whether the extension expose out user
private data such as browsing history, cookies and bookmarks. Out of all the infor-
mation flows CBEAT finds that 2% – 20% of the information flows as shown in

Fig. 6. Extension classification Fig. 7. Percentage of permissions found in
the extensions

Fig. 8. Percentage of persistent and
non-persistent extensions

Fig. 9. content_script matches to URLs

376 S.S. Roy and K.P. Jevitha



Table 4 are from the sources and sinks which violate the user privacy exposing user
private data from the extensions.

Figure 10 shows that the maximum sources and sinks are found from chrome.tabs
API followed by chrome.storage, chrome.boomarks, chrome.contextMenus, chrome.-
cookies, chrome.history, chrome.webNavigation, chrome.webRequest, chrome.back-
ground, chrome.browsingData, chrome.fileBrowserhandler and chrome.geolocation.

6 Conclusion

In current era, growing need to use browser extensions is unavoidable. The possibility
that browser extensions are collecting user private data is also a fact. There is prevailing
misunderstanding among users of Chrome extensions that their browsing experience is
safe and secured, will continue. This makes the users vulnerable and the users need to
live with such vulnerability in days to come. The only option available to users is to use
a tool to identify such malicious browser extensions. Developing such a tool capable of
identifying sophisticated, powerful browser extensions exposing user private data is a
challenge. Extensive research helped to develop CBEAT, the tool which can perform
manifest analysis and JavaScript static taint analysis. This will benefit the security
research community as well as users’ community as it provides holistic analysis of
Chrome extensions.

This paper finds from the tested Chrome extensions that the maximum used per-
mission is found to be storage, 53% of the extensions have persistent background
scripts and 36% of the extensions make matches to < all_urls > . Out of all the
information flows, 2% – 20% of the information flows are from the sources and sinks
which expose user private data from the extensions. Finally, 40% of extensions are
classified as low, 32% as medium and 28% as high in exposing user’s private and
sensitive data.

Fig. 10. Sources and sinks found from Chrome APIs

CBEAT: Chrome Browser Extension Analysis Tool 377



References

1. Tripp, O., Pistoia, M., Cousot, P., Cousot, R., Guarnieri, S.: ANDROMEDA: accurate and
scalable security analysis of web applications. In: Cortellessa, V., Varró, D. (eds.) FASE
2013. LNCS, vol. 7793, pp. 210–225. Springer, Heidelberg (2013). doi:10.1007/978-3-642-
37057-1_15

2. Kapravelos, A., Grier, C., Chachra, N., Kruegel, C., Vigna, G., Paxson, V.: Hulk: eliciting
malicious behavior in browser extensions. In: USENIX Security, pp. 641–654, August 2014

3. Dhawan, M., Ganapathy, V.: Analyzing information flow in JavaScript-based browser
extensions. In: Computer Security Applications Conference, ACSAC 2009 Annual, pp. 382–
391. IEEE, December 2009

4. Carlini, N., Felt, A.P., Wagner, D.: An evaluation of the Google Chrome extension security
architecture. In: USENIX Security Symposium, pp. 97–111, 8 August 2012

5. http://wala.sourceforge.net/wiki/index.php/UserGuide:CallGraph
6. http://wala.sourceforge.net/wiki/index.php/Main_Page#Welcome_to_the_T.J._Watson_

Libraries_for_Analysis_.28WALA.29
7. http://wala.sourceforge.net/javadocs/trunk/com/ibm/wala/ssa/SSAInstruction.html
8. http://wala.sourceforge.net/wiki/index.php/UserGuide:DataflowSolvers
9. Kildall, G.A.: A unified approach to global program optimization. In: Proceedings of the 1st

annual ACM SIGACT-SIGPLAN Symposium on Principles of Programming Languages,
pp. 194–206. ACM, October 1973

10. Dev, P.A., Jevitha, K.P.: STRIDE based analysis of the chrome browser extensions API. In:
Satapathy, S.C., Bhateja, V., Udgata, S.K., Pattnaik, P.K. (eds.) Proceedings of the 5th
International Conference on Frontiers in Intelligent Computing: Theory and Applications. AISC,
vol. 516, pp. 169–178. Springer, Singapore (2017). doi:10.1007/978-981-10-3156-4_17

11. Arunagiri, J., Rakhi, S., Jevitha, K.P.: A systematic review of security measures for web
browser extension vulnerabilities. In: Suresh, L.P., Panigrahi, B.K. (eds.) Proceedings of the
International Conference on Soft Computing Systems. AISC, vol. 398, pp. 99–112. Springer,
New Delhi (2016). doi:10.1007/978-81-322-2674-1_10

12. Shahanas, P., Jevitha, K.P.: Static analysis of Firefox OS privileged applications to detect
permission policy violations. Int. J. Control Theor. Appl. 3085–3093 (2016)

378 S.S. Roy and K.P. Jevitha

http://dx.doi.org/10.1007/978-3-642-37057-1_15
http://dx.doi.org/10.1007/978-3-642-37057-1_15
http://wala.sourceforge.net/wiki/index.php/UserGuide:CallGraph
http://wala.sourceforge.net/wiki/index.php/Main_Page#Welcome_to_the_T.J._Watson_Libraries_for_Analysis_.28WALA.29
http://wala.sourceforge.net/wiki/index.php/Main_Page#Welcome_to_the_T.J._Watson_Libraries_for_Analysis_.28WALA.29
http://wala.sourceforge.net/javadocs/trunk/com/ibm/wala/ssa/SSAInstruction.html
http://wala.sourceforge.net/wiki/index.php/UserGuide:DataflowSolvers
http://dx.doi.org/10.1007/978-981-10-3156-4_17
http://dx.doi.org/10.1007/978-81-322-2674-1_10


Hardware Trojan Detection Using Effective
Test Patterns and Selective Segmentation

K. Atchuta Sashank1(&), Hari Sivarami Reddy2, P. Pavithran1,
M.S. Akash1, and M. Nirmala Devi1

1 Department of Electronics and Communication Engineering,
Amrita School of Engineering, Amrita Vishwa Vidyapeetham,

Amrita University, Coimbatore 641112, India
atchutasashank765@gmail.com, m_nirmala@cb.amrita.edu

2 Computer Science Engineering, Amrita School of Engineering,
Amrita Vishwa Vidyapeetham, Amrita University, Coimbatore 641112, India

Abstract. Hardware Trojans (HTs) have become a major threat to the modern
fabless semiconductor industry. This has raised serious concerns over integrated
circuits (IC) outsourcing. HT detection and diagnosis is challenging due to the
diversity of HTs, large number of gates in modern ICs, intrinsic process vari-
ation (PV) in IC design and the high cost of testing. An efficient HT detection
and diagnosis scheme based on selective segmentation is proposed in this work.
It divides the large circuit into small sub-circuits and applies consistency
analysis of gate-level properties. In addition, Transition probability (TP) esti-
mation for each node is employed and performed segmentation on the least
probable transition nodes. In order to further enhance the detection, optimized
test vectors are chosen during the procedure. Based on the selected segments,
HTs are detected correctly by tracing gate level properties.

Keywords: Hardware trojan � Selective segmentation � Optimized test pattern �
Gate level properties � Transition probability

1 Introduction

Hardware Trojans (HTs) are malicious circuitry embedded by adversaries in order to
make the Integrated Circuits(IC) to malfunction or leak information. Outsourcing IC
design by the modern fabless semiconductor industries has provided the adversaries to
tamper the IC design. The HTs can be introduced during various stages of manufac-
turing process which allows an adversary to control, spy contents, monitor, commu-
nications, or to remotely enable/deactivate parts of the IC. Recently, presence of HTs in
important circuits has made the hardware security community more aware of security
threats. The goal of HT diagnosis is to detect and locate the malicious HTs on the target
circuit, so that they can be either masked or removed from the hardware. There is a
large number of factors that complicate the HT detection. One of the main causes for
this is the process variation (PV). PV widely exists due to the nature of IC manufac-
turing process. HTs can be easily hidden under the unrecognized PV.

© Springer Nature Singapore Pte Ltd. 2017
S.M. Thampi et al. (Eds.): SSCC 2017, CCIS 746, pp. 379–386, 2017.
https://doi.org/10.1007/978-981-10-6898-0_31



Power analysis of the circuit after segmentation is a key technique used to find the
presence of extra gates without the need of logical analysis of the circuit. A number of
recently published works have concentrated on the above method for Trojan detection.
There are two main drawbacks in general segmentation process: One of them is due the
overlapping of many segments since the circuit cannot be perfectly divided, the second
one is time consumption due to extra segments having redundant nodes. This new
approach for HT detection and diagnosis that employs selective segmentation of circuit
using probability of transition of gates.

The main contributions of this paper include the following: Initially the transition
probability of each node is calculated and a threshold value is set. Based on the threshold
value, the nodes are characterized into low, medium and high probability in [1]. In [2]
the segmentation of the circuit is done using the classification obtained in [1] so that
there is very less overlap of segments leading to lesser number of segments and increase
in efficiency. The method of selecting logic gates in its logical fan-out cone is utilized to
optimize the number of test nodes. In [3], a backtracking algorithm is used to find out the
test vectors which trigger each and every node so that during testing process a minimal
number of vectors can be given to reduce time consumption. This is based on the fact
that a circuit consisting of n nodes can be tested using maximum of 2n vectors because
each node needs only 2 input combination to make the output ‘0’ or ‘1’.

The circuit under consideration is subjected to segmentation by the method [2] and
power analysis is done for each segment in order to check for consistency. The power
analysis is aided by reduced test pattern obtained from [3] so that nodes in the segment
are triggered more frequently and the testing process takes less time for completion.
Overall the time constraint is greatly reduced and the accuracy of finding Trojan is also
high.

2 Related Works

Recently a number of approaches have been proposed for HT detection. A scalable and
efficient HT detection method based on segmentation and consistency analysis was
used to [1, 2] determine the locations of the HTs in the circuit; and a self-consistency
based approach to minimize the required number of power measurements in HT
detection and diagnosis. The idea of segmentation and detection of Trojan using GLC
such as leakage power is obtained from this work. The idea of increasing the activity of
low active nodes by providing appropriate test vector is mentioned in [2]. Here the time
taken for Trojan detection is reduced by triggering low activity nodes since more
number of vectors are required to activate those nodes. The fan-out cone analysis is
used, which explains the triggering of low TP nodes by triggering the parent node,
thereby optimizing the number of MUXs or vectors (in our case). The analysis of
physical characteristics of a circuit and Trojan detection by exploiting the time delay of
input and output is used to detect the presence of any extra gate. In [4] the division of
circuit into smaller segments and power analysis of each segment is explained in detail.
Also the controllability of the nodes using appropriate test vectors is stated in this work.
The classification and design of the hardware Trojan has been described in [5]. The
Finger print analysis technique with region based segmentation is explained in [6].

380 K. Atchuta Sashank et al.



3 Methodology

3.1 Calculation of Transition Probability

The calculation of the Transition Probability (TP) of the nodes in the netlist involves
several steps. Firstly, the algorithm analyses the netlist and identifies the functionality
of each individual gate. The nodes of the gates are assigned with the corresponding TPs
which are computed mathematically using Table 1. Considering a two input AND gate
with identical input signal probabilities of 0.5, the probability of output node being 1 is
0.25 and probability of output node being 0 is 0.75. So the TP for this output node is
0.25 * 0.75 which is 0.1875. Similarly the TPs are calculated for all nodes in the
circuit. The TPs in this work is calculated using the below expressions (Fig. 1).

3.2 Setting the Threshold Probability

The second step of the HT detection is to set the Threshold transition probability and
identifying least transition probable nodes. There are three steps to set the threshold.

• Levelizing the circuit
• Averaging the TPs at all levels
• Identification of least transition probable nodes

Levelizing the circuit
The gates which have inputs only from the primary inputs to the circuit are considered
to be in the first level. Any gate with one input from primary inputs and others from any

Table 1. Mathematical expressions to calculate TPs of basic gates

GATE P0!1 ¼ POUT¼0 � POUT¼1

NOR (1 − (1 − PA)(1 − PB)) � (1 − PA)(1 − PB)
OR (1 − PA)(1 − PB) � (1 − (1 − PA)(1 − PB))
NAND PAPB � (1 − PAPB)
AND (1 − PAPB) � PAPB
XOR (1 − (PA + PB − 2PAPB)) � (PA + PB − 2PAPB)

Fig. 1. TP Calculation

Hardware Trojan Detection Using Effective Test Patterns 381



other outputs do not fall under first level. If any gate has input from one lower level
(n − 1th level) and higher level (nth level) then the node falls in the level next to the
higher level (n + 1th level). This process of levelizing continues until all the nodes of
the circuit fall under some level.

Averaging the transition probability at all levels
In many of the recent works, the Threshold is often taken to be 0.5. Any node below
0.5 is considered as low TP node and any node above 0.5 are considered as high TP
node. In order to improve the accuracy of locating a low TP node, a new method of
averaging the TPs at all levels is used. The Threshold transition probability in this work
is calculated using the average of the transition probabilities at each level. The nor-
malized value obtained in the previous step is considered as the threshold transition
probability of the whole circuit. The threshold value set by the above technique is better
than the nominal value of 0.5 set in previous works in identifying the low TP nodes.

Identification of least transition probable nodes
With the threshold probability been calculated, the final step is identification of least
probable nodes. The nodes with transition probability values lesser than the threshold
values are considered to be the least transition probable nodes. Since most of the HTs
are implanted in least transition probable nodes, these nodes have more probability of
being infected by HT than other nodes. Thus the identification of least TP nodes speeds
up the process of HT detection and also improves the accuracy to greater extent
(Table 2).

3.3 Segmentation of Least Transition Probable Nodes

The next phase in the HT detection is segmentation of the circuit considering the least
transition probable nodes. Segmentation is the process of dividing a large circuit into
small sub circuits. This will improve the HT detection. The number of nodes in a
segment is dynamically allocated by the user as input. The distance of a least transition
node from both the input side and the output side are computed by considering a fan in
for the input side and the fan out for the output side. The segment is formed towards the
minimum distance from either the fan-in side or the fan-out side considering one node
at each level. If there are more than one least transition nodes in the adjacent levels then
the segments are formed considering all such nodes. The number of segments depends
on the number of least transition nodes present in the circuit.

Table 2. Threshold probability obtained from the proposed method

Benchmark Threshold probability

C17 0.1525377
C432 0.0374100
C880 0.0605971133
C1908 0.025704888
C2670 0.0417878

382 K. Atchuta Sashank et al.



3.4 Detection of HT

The presence of HT in the circuit is detected using power analysis of the segmented
circuit. All the segments obtained after segmentation are checked for variations in
power. Any slight variations in the power metrics confirm the presence of a HT. If there
is no HT detected in any of these segments, then the nodes with transition probability
higher than the previously considered nodes are analyzed. These nodes are categorized
as medium transition probable nodes. For categorizing nodes as medium probable
nodes, the threshold value is increased to a suitable amount. The process is repeated till
the HT is detected.

3.5 Effective Test Vectors to Trigger a LTP Node

To speed up the HT detection the test vectors are minimized by providing a guided set
of test vectors. The least transition probable nodes are triggered only by a certain
combination of test sequence at the primary nodes. Only a few primary nodes are
needed to trigger the LTPs. The remaining primary nodes are not significant and they
could be in any state. In order to trigger a least transition probable node the possible
input combinations of the gate are considered. The worst case combinations of parent
gates are considered at each level that could trigger the LTP node. This process is
continued until the primary level nodes are reached. This would result in a particular
value for specific input nodes that could trigger a LTP node. This would result in a
large scale reduction of number of input test vectors. These guided test vectors could be
applied instead of applying all possible test vectors to detect the presence of Trojan in
less time and with more accuracy.

In Table 3, for the benchmark circuit C17 the number of effective pattern generated
is 4 compared to 32 in the original pattern set. This has reduced test vectors by almost
87.5%. This reduction in test pattern is the result of consideration of triggering only the
LTP nodes. The test pattern is proportional to the number of LTP nodes which depends
on the threshold value.

Table 3. Comparison of generated test patterns

Circuit Number of inputs
(n)

Number of exhaustive patterns
(2n)

Number of effective
patterns

C17 5 25 4
C432 36 236 118
C499 41 241 78
C880 60 260 250
C1908 33 233 340
C2670 233 2233 386

Hardware Trojan Detection Using Effective Test Patterns 383



4 Simulation Results and Analysis

The results obtained from the proposed method shown in Table 4 containing the
number of LTP nodes, Segments formed and Test patterns generated show that the
number of nodes of interest is reduced to a considerable amount thereby decreasing the
time taken for testing. The LTPs are grouped together in segments to aid the process of
HT detection. The effective test pattern generated by the proposed method has mini-
mized the number of test patterns and aids in faster HT detection.

The data in Fig. 2 clearly shows the variation in the dynamic power of the segments
between the uninfected circuit and circuit infected with functional Trojan. The varia-
tions in the power confirms the presence an extra circuitry or probably Trojan in the
corresponding segment.

Table 4. Results of the proposed method

Benchmark Total no. of
nodes

No. of LTP
nodes

No. of Segments
formed

Test patterns
generated

C17 17 4 2 4
C432 317 166 59 118
C499 243 50 39 78
C880 614 349 125 250
C1908 791 530 170 340
C2670 1037 473 193 386

Fig. 2. Data showing power variations in Trojan infected segments of benchmark circuits

384 K. Atchuta Sashank et al.



Table 5. Segmented power analysis for infected C499

Circuit Cell
Attrs

Internal
power (W)

Switching
power (W)

Leakage
power (W)

Total power (W)

C499 U1 2.337e-12 0.0000 5.478e-08 5.478e-08 (0.44%)
C499
infected

U1 2.337e-12 0.0000 5.478e-08 5.478e-08 (0.44%)

C499 U3 2.337e-12 0.0000 5.478e-08 5.478e-08 (0.44%)
C499
infected

U3 2.337e-12 0.0000 5.478e-08 5.478e-08 (0.44%)

C499 m1 8.010e-15 1.575e-15 1.037e-05 1.037e-05 (83.65%)
C499
infected

m1 8.010e-15 1.575e-15 1.037e-05 1.037e-05 (83.07%)

C499 s5 0.0000 0.0000 2.254e-07 2.254e-07 (1.82%)
C499
infected

s5 0.0000 0.0000 2.254e-07 2.254e-07 (1.80%)

C499 s6 0.0000 0.0000 2.266e-07 2.266e-07 (1.83%)
C499
infected

s6 0.0000 0.0000 2.266e-07 2.266e-07 (1.81%)

C499 s7 0.0000 0.0000 2.266e-07 2.266e-07 (1.83%)
C499
infected

s7 0.0000 0.0000 2.266e-07 2.266e-07 (1.81%)

C499 s8 0.0000 0.0000 2.266e-07 2.266e-07 (1.83%)
C499
infected

s8 0.0000 0.0000 2.266e-07 2.266e-07 (1.81%)

C499 s1 0.0000 0.0000 2.255e-07 2.255e-07 (1.82%)
C499
infected

s1 0.0000 0.0000 3.131e-07 3.131e-07 (2.51%)

C499 s2 0.0000 0.0000 2.267e-07 2.267e-07 (1.83%)
C499
infected

s2 0.0000 0.0000 2.267e-07 2.267e-07 (1.82%)

C499 s3 0.0000 0.0000 2.267e-07 2.267e-07 (1.83%)
C499
infected

s3 0.0000 0.0000 2.267e-07 2.267e-07 (1.82%)

C499 s4 0.0000 0.0000 2.267e-07 2.267e-07 (1.83%)
C499
infected

s4 0.0000 0.0000 2.267e-07 2.267e-07 (1.82%)

C499 U2 0.0000 1.484e-10 5.333e-08 5.347e-08 (0.43%)
C499
infected

U2 0.0000 1.484e-10 5.333e-08 5.347e-08 (0.43%)

C499 U4 0.0000 1.484e-10 5.333e-08 5.347e-08 (0.43%)
C499
infected

U4 0.0000 1.484e-10 5.333e-08 5.347e-08 (0.43%)

Hardware Trojan Detection Using Effective Test Patterns 385



5 Conclusion and Future Work

An accurate method for hardware Trojan detection has been proposed in this work
using selective segmentation and effective test pattern which proves to be time efficient.
The results show that there is a better chance of finding a Trojan (if any) by this
method.

However this method is applicable for circuits with combinational logic only. There
is great scope of research to further improve the existing algorithm to test complex
circuits involving sequential logic.

The result from Table 5 using the Prime time tool, one can infer that there is a
considerable difference in leakage power of the infected segment. The total power of
the circuit and the percentage power consumed by each segments also shows a dif-
ference which aids in identifying the segment affected and to detect the HT. The
segments s1 to s8 shows the segmented dynamic power signature of the circuit whose
effective test patterns are applied to the simulation software

References

1. Wei, S., Potkonjak, M.: Self-consistency and consistency-based detection and diagnosis of
malicious circuitry. IEEE Trans. Very Large Scale Integr. (VLSI) Syst. 22(9), 1845–1853
(2013)

2. Wei, S., Potkonjak, M.: Malicious circuitry detection using fast timing characterization via
test points. In: Proceedings of the IEEE International Symposium on HOST, pp. 113–118,
June 2013

3. Zhou, B., Zhang, W., Thambipillai, S., Jin, J.T.K.: Cost-efficient acceleration of hardware
trojan detection through fan-out cone analysis and weighted random pattern technique. IEEE
Trans. Comput.-Aided Des. Integr. Circuits Syst. 35(5), 792–805 (2016)

4. Wong, J.S.J., Cheung, P.Y.K.: Timing measurement platform for arbitrary black-box circuits
based on transition probability. IEEE Trans. Very Large Scale Integr. (VLSI) Syst. 21(12),
2307–2320 (2013)

5. Wei, S., Potkonjak, M.: Scalable hardware Trojan diagnosis. IEEE Trans. Very Large Scale
Integr. (VLSI) Syst. 20(6), 1049–1057 (2012)

6. Sree Ranjani, R., Nirmala Devi, M.: Malicious hardware detection and design for trust: an
analysis. Elektrotehniski Vestn. 84(1–2), 7–16 (2017)

7. Saran, T., Sree Ranjani, R., Nirmala Devi, M.: A region based fingerprinting for hardware
Trojan detection and diagnosis. In: 4th International Conference on Signal Processing and
Integrated Networks (SPIN). IEEE (2017)

386 K. Atchuta Sashank et al.



Estimation and Tracking of a Ballistic Target
Using Sequential Importance

Sampling Method

J. Ramnarayan1,2, J.P. Anita1,2, and P. Sudheesh1,2(&)

1 Department of Electronics and Communication Engineering,
Amrita School of Engineering, Coimbatore, India

cjraman45@gmail.com,

{jp_anita,p_sudheesh}@cb.amrita.edu
2 Amrita Vishwa Vidyapeetham, Amrita University, Coimbatore, India

Abstract. This paper deals with an efficient tracking of a ballistic target by
using certain measurements from radar. An efficient non-linear model for the
target along with observed error is developed. Since different targets need dif-
ferent models, a specific target with known properties is chosen. Here the target
chosen is 9000 mm air launched ballistic missile. This generally weigh more
than 5000 kg and its velocity is 2000 m/s. Since these missiles are highly
accurate, a 2-D space is chosen as its path. The radar gives the range and the
angle of elevation of the missile. The input data processed by state approxi-
mation is called as state estimation. Particle filter is used for this non-linear
model. Here the observed noise, the processed noise and the radar noise are
taken into account. The performance of particle filter is tested and verified with
the simulation. By using this particle filter, the range and altitude of this ballistic
target can be predicted in advance. The main reason of particle filter’s popularity
is that it is very flexible and adaptive. In practical, all non-linear systems has
accurate filters.

Keywords: Particle filter � Ballistic target � Range � Angle elevation

1 Introduction

The need for tracking ballistic target arose during the testing of missiles before war.
These tracking model were used both practically as well as theoretically [1]. Since the
equations of target are non-linear, all filters cannot be used. In the early days Kalman
filter was widely used since it is cheaper and easier but since many models are
non-linear Kalman cannot satisfy them [2]. The most practical usage is in military
purposes. This can also be used for tracking old satellites, debris entering the earth. The
older satellites are not removed, this leads to increase in number of satellites in space.
The debris of the older ones which are floating in the space tend to enter the earth’s
atmosphere [3]. This model can be used to track the time and path of these pieces to
detect the landing point on earth. Our aim is to formulate filtering problem of the target
tracking and the noise affecting it [4]. Various filters can be used to track the target

© Springer Nature Singapore Pte Ltd. 2017
S.M. Thampi et al. (Eds.): SSCC 2017, CCIS 746, pp. 387–398, 2017.
https://doi.org/10.1007/978-981-10-6898-0_32



1. The extended Kalman filter (EKF),
2. The particle filters (PF),
3. The statistical linearization referred as CADET

(Covariance analysis describing function Technique),
4. Unscented Kalman filter (UKF).

Even though Kalman filter is simple and sophisticate, this cannot be used for
position estimate with noise corrupted measurement and process data since they are
non-linear. So EKF can be used to overcome this problem [5]. The initial measure-
ments are major disadvantages of EKF in real time. The initial noise covariance is
difficult to predict. So, particle filter can be used since it is more efficient and the
number of particles can also be varied [6]. The number of particles can be matched if a
variable measurement data rate is present for an optimized performance. They work for
high dimensional systems as they are independent of the size of the system [7]. The
algorithm is relatively easy to implement.

2 Existing Methods

2.1 The Extended Kalman Filter (EKF)

When all measurements at k time instant is given the prediction at k + 1 time is given
by

Skþ 1 ¼ Wkþ 1 Skð ÞþG
0
�g

� �
ð1Þ

Pkþ 1jk ¼ UþG:Fkð ÞPkjk UþG:Fkð ÞT þQ ð2Þ

Kkþ 1 ¼ Pkþ 1jkHTðHPkþ 1jkHT þRkÞ�1 ð3Þ

S
0
kþ 1jk ¼ S

0
kþ 1jk þKkþ 1 Zkþ 1 � HS

0
kþ 1jk

� �
ð4Þ

Pkþ 1jkþ 1 ¼ ðI � Kkþ 1HÞPkþ 1jk ð5Þ

The estimated state s
0
kjk

� �
is shown in Eq. (4). Jacobian is Fk. When all mea-

surements at k time instant is given the prediction at k+1 can be done after calculating
the Kalman gain as in Eq. (3) [8]. In the Taylor series only first order terms are used in
EKF for nonlinear state equations as in Eqs. (1), (2) and (5). In practical, when high
nonlinear problem occurs and the local linear assumption fails, the EKF causes high
error estimation due to filter divergence [9].

388 J. Ramnarayan et al.



3 Objective

The objective of the proposed paper is to track air launched ballistic missile. This can
be overcome by studying all filter [10]. The theoretical explanation defines the best
filter required for the system by including all approximation in the filtering algorithms.

4 Proposed Work

A missile following parabolic path is studied with air drag in order to make it realistic.
An object is being launched from one point of Earth to another with a path of ballistic
flight. Drag force and gravity are the kinematical forces acting on the ballistic target
[11]. The centrifugal acceleration effect, lift force, earth spin, projectile spin wind force
are ignored, due to negligible effect on the trajectory [12]. The earth is assumed to be
flat to use the orthogonal coordinate as reference scale.

Now the measurement and state model of the ballistic target has to be modeled.
When considering a high speed body from a very high altitude entering the atmosphere
the radar measures the range, bearing and speed [13]. Due to non-linearity of the
motion this becomes more complex. Three accounted forces acts on this body

1. Aerodynamic drag (speed function of the vehicle), it varies nonlinearly with altitude
2. Gravity which accelerates the vehicle towards the center of the earth
3. Random buffeting forces

Ballistic path is followed by the trajectory initially but due to increase in atmo-
spheric density, drag effect increases and when the motion of vehicle is almost vertical
it starts to decelerate. This causes difficulty in tracking. Without an air drag it would be
five times longer than the observed. Hence instead Radar Noise and System Noise to
the path are taken in account. The position of ballistic object in Cartesian coordinates
are shown in Fig. 1.

Where x and y are the reference axis, x0 and y0 are the target coordinate points at
initial time t0, The velocity of the target is given by V, a is the angle of elevation of the
target.

Fig. 1. The position of ballistic object

Estimation and Tracking of a Ballistic Target 389



The state equations are shown in Eq. (6)

Skþ 1 ¼ Wk Skð ÞþG
0
�g

� �
þWk ð6Þ

Where the Sk, state vector and w are shown in Eqs. (7) and (8).

Sk ,
xk
_xk
yk
_yk

2
64

3
75 ð7Þ

Wk Skð Þ ¼ USk þGfkðSkÞ ð8Þ

The radar measures the reading periodically at a time interval of T, the drag force
given by

gqv2

2b

This force is experienced opposite to the motion of the target.
Where g is acceleration due to gravity, b is the ballistic coefficient of the target and

q is the air density given by c1e�c2y, c1 and c2 are constants depending on the height the
target is flying, v is the velocity of the target.

U and G are the matrix values as shown in Eqs. (9) and (10).
In terms of state vector components the drag force is given in Eq. (11).

/ ¼
1 T 0 0
0 1 0 0
0
0

0
0

1
0

T
1

2
64

3
75 ð9Þ

G ¼
T2

2 0
T 0
0
0

T2

2
T

2
664

3
775 ð10Þ

fk Skð Þ ¼ � gq
2b

� Sk 3½ �ð Þ � S2k 3½ � þ S2k 4½ �� � � cosðarctg Sk 4½ �
Sk 2½ �

� �
Þ

sinðarctg Sk 4½ �
Sk 2½ �

� �
Þ

2
4

3
5 ð11Þ

b depends on the area of cross-section perpendicular to direction of motion, shape
of the body and mass of the target. At very high super-sonic speed these parameters are
constant, but due to shock wave, those parameters decreases when target velocity
approaches Mach 1 [14].

390 J. Ramnarayan et al.



From Eqs. (12) and (13)

cos arctg
x
y

� 	� 	
¼ xffiffiffiffiffiffiffiffiffiffiffiffiffiffi

x2 þ y2
p ð12Þ

sin arctg
x
y

� 	� 	
¼ yffiffiffiffiffiffiffiffiffiffiffiffiffiffi

x2 þ y2
p ð13Þ

So Eq. (11) becomes Eq. (14)

fk Skð Þ ¼ � gq
2b

� Sk 3½ �ð Þ �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
S2k 3½ � þ S2k 4½ �

q
� Sk½2�

Sk½4�
� �

ð14Þ

Process noise Wk is considered as a zero-mean white Gaussian process with
nonsingular covariance matrix as given in Eqs. (15) and (16).

Q ¼ q
h 0
0 h

� �
ð15Þ

h ¼
T3

3
T2

3
T2

3 T

" #
ð16Þ

Where noise intensity parameter is q. The noise includes all forces that have not
been considered in the model and reason for variation of the model from the reality.

The radar measures the range r and elevation angle a. The radar is located at the
origin (0, 0).

rr is the error standard deviations for range
ra is the error standard deviations for elevation
Radar measurements are converted to the Cartesian coordinates as in Eqs. (17) and (18).
The measurement equation vector components are given in Eqs. (19) and (20).

d ¼ rcosa ð17Þ

h ¼ rsina ð18Þ

Zk ¼ dk
hk

� �
ð19Þ

H ¼ 1 0 0 0
0 0 1 0

� �
ð20Þ

Estimation and Tracking of a Ballistic Target 391



Vk is the noise on the measured Cartesian coordinates; it does not depend on the
process noise Wk the variance is given by the Eqs. (21) (22) and (23).

r2
d ¼ r2

r cos
2 að Þþ r2r2

asin
2a ð21Þ

r2h ¼ r2r sin
2 að Þþ r2r2acos

2ðaÞ ð22Þ

rdh ¼ r2r � r2r2a
� �

sin að ÞcosðaÞ ð23Þ

An illustration ballistic target trajectory is shown in Fig. 2.

5 Particle Filter

Particle filtering is a sequential Monte Carlo method of recursive estimation of any
Hidden Markov Model (HMM) where knowledge about the state is obtained from
measurement states with additional noise present. Particle filters are based on proba-
bility distribution representation of states by a set of samples (particles), it has an edge
over other methods as nonlinear systems can also be represented as set of particles, and
multi-modal non-Gaussian density states [15]. This particle filtering algorithm is an
efficient alternative to the Markov Chain Monte Carlo (MCMC) algorithms also this
can be used to create Markov Chains [16].

From M random samples, particle filter estimates the posterior density function
with the respective weights. The sampling part is a challenge in particle filtering [15].
Sampling a particular distribution can be done in many ways. We usually perform
importance sampling.

It provides a better performance while compared to other basic filter algorithms for
non-linear problems. The state vector is approximated based on the samples taken.

Fig. 2. An illustration ballistic target trajectory

392 J. Ramnarayan et al.



The approximation error can be limited to a very small value while using this algo-
rithm. The sample weights are updated in every iteration. Performing this can give us a
set of samples close to the original value with a small error. Finally the weighted mean
can be taken as the best estimate of that state vector.

Let the state vector and the observation vector is given in Eqs. (24) and (25).

x kð Þ ¼ f ðx k � 1ð Þ; lðkÞÞ ð24Þ

y kð Þ ¼ hðx kð Þ;mðkÞÞ ð25Þ

Where l(k) and m(k) are the system noise and the observation noise respectively.
The observation equation is often written as a conditional likelihood, p(xt,yt), and the
state equation as p(xt+1,xt). Both of these distributions typically depend on the state
parameters.

The algorithm starts with the generation of an initial set of samples, called particles,
with N being the total number of particles. These particles are distributed over a region
where the state vector is assumed to be.

The first step of the prediction phase is to pass each of the initial particles through
the system model. This can generate a new set of particles for the next time step k.
According to the conditional likelihood of the observation, the weights of the particles
are updated as shown in Eq. (26).

�wi
k ¼ �wi

k�1p ykjxik
� � ð26Þ

To update the prior value for each particle, a weight �wi
k is calculated. This assigns

new weights to each particle. We normalize the weights as shown in Eq. (27).

ŵi
k ¼ �wi

k

.XN

j¼1
�wi
k ð27Þ

Now we have a new particle set. The estimated value of the state vector is given by
Eq. (28).

�xik �
XN

j¼1
ŵi

kx
i
k ð28Þ

Now the particles with insignificant weights are ignored, whereas the particles with
better weights are represented by more particles around. This process is called as
resampling.

The most computational and crucial part is resampling step in PF. Hence a suitable
choice should be justified for this, as the entire method actually benefits the system by
reducing the complexity and also improving the accuracy in the resampling step. The
most common resampling algorithms are systematic resampling, multinomial resam-
pling, residual resampling and stratified resampling [10].

After every measurement update, resampling step is performed. This is done to
reduce the computational effort by avoiding the particles with lower weights.

Estimation and Tracking of a Ballistic Target 393



If resampling is not performed then it leads to a problem called degeneracy. Degen-
eracy can be measured with the help of effective sample size, defines as Eq. (29).

N̂eff ¼ 1
�XN

j¼1
wj

k

� �2
ð29Þ

Resampling process should be carried out only when the N̂eff falls below a
threshold. After resampling, this procedure of particle filter is repeated N times to build
up a new set of particles. The new sets of particles are the samples of the required
probability density function.

6 Noise Analysis

Practically errors tend to 0, because of the Nonlinear Dynamic State Equation. The
error estimation’s standard deviation and mean are the average report of several iter-
ation [13]. The “Monte Carlo Simulation” technique has a wide range of scope and
impact in computational science. It derives its name from the casinos in Monte Carlo.
For sorting some process this uses random numbers. For the process of known prob-
ability and unknown results (difficulty in determining) this technique works
particularly.

7 Simulation and Results

All simulations are done using the MATLAB software. From Fig. 3. We can infer that
the particle filter algorithm produces accurate results with high fidelity. The error
margin is very low compared to other estimation methods. It is understood that by
Fig. 4. Where the MSE is high for KF compared to PF even when the SNR values are
increased. From Fig. 5. We can infer that increasing the number of iterations provides
lesser error therefore giving better results. Similarly, it is illustrated that in Fig. 6.
increasing the number of particles also increases the accuracy and reduces error but

Fig. 3. Output graph of estimated height versus true height

394 J. Ramnarayan et al.



Fig. 4. MSE versus SNR graph of Kalman Filter and particle filter

Fig. 5. Comparison of SNR versus MSE for different number of Iterations

Estimation and Tracking of a Ballistic Target 395



increasing number of particles and number of iterations results in increasing compu-
tation time as illustrated in table, The increase in computational time as illustrated gives
us a tradeoff between accuracy and time taken for computation, if we want faster results
there is decline in accuracy of results and for accurate results there is raise in time
taken.

Since it is simulation process the height in x axis changes up and down (non-linear)
but the real time estimation will be in linear motion.

It is noticed that the MSE value drops as the SNR increases. The continuous drop in
the MSE value proves that the filter is able to adapt to the surroundings and thus
minimizing the error. So, PF is more efficient when compared to EKF.

The Tables 1 and 2 give the details about the number of iterations and particles.

8 Conclusion

Many different filters can be used to track the object but particle seems to be more
efficient by theory given above. In the form of filter covariance almost all the filters
produce estimated error. The testing are done based on standard deviation of

Fig. 6. Comparison of SNR versus MSE for different number of Particles

Table 1. Computational time for constant number of iterations

No of iterations (T) 100 100 100
No of particles (N) 100 150 200
Computational time required 14.312 s 25.214 s 38.345 s

Table 2. Computational time for constant number of particles

No of iterations (T) 100 150 200
No of particles (N) 100 100 100
Computational time required 14.16 s 20.21 s 27.55 s

396 J. Ramnarayan et al.



measurement error; time period; ballistic coefficient of radar; initial measurements.
From the above theory and analysis we can conclude that particle filters are most
efficient non-linear filter of target tracking because it considers both cost and efficiency.
Here the ballistic coefficient is assumed or estimated. Based on this future research can
extend in comparing with other filter tracking and applied to ballistic target tracking,
refining the kinematics of target model, capability predicting ahead in time of the given
target without the measurements from radar and detecting or estimating the launching
and landing points of the target from the ballistic trajectory. It lies in the state of how
the trajectory model coincides with the reality; if the model is equipped with full
accuracy and measured data, in principle it helps in estimating the target’s ahead and
backward path.

References

1. Singh, N.K., Bhaumik, S., Bhattacharya, S.: A comparison of several non-linear filters for
ballistic missile tracking on re-entry. In: 2016 IEEE First International Conference on
Control, Measurement and Instrumentation (CMI), pp. 459–463 (2016)

2. Patral, N., Sadhu, S., Ghoshae, T.K.: Adaptive state estimation for ballistic object tracking
with nonlinear model and state dependent process noise. In: 1st IEEE International
Conference on Power Electronics. Intelligent Control and Energy Systems
(ICPEICES-2016), pp. 1–5 (2016)

3. Safarinejadian, B., Mohammadnia, F.: Distributed weighted averaging-based robust cubature
Kalman filter for state estimation of nonlinear systems in wireless sensor networks. In: 6th
International Conference on Computer and Knowledge Engineering (lCCKE 2016), 20–21
October 2016, pp. 66–71 (2016)

4. Farina, A., Immediata, S., Timmoneri, L.: Impact of ballistic target model uncertainty on
IMMUKF and IMM-EKF tracking accuracies. In: 14th European Signal Processing
Conference (EUSIPCO 2006), 4–8 September 2006, pp. 1–5 (2006)

5. Benvenuti, B., Farina, A., Ristic, B.: Estimation accuracy of a landing point of a ballistic
target. In: Proceedings of International Conference Fusion 2002, Washington D.C., pp. 2–9,
May 2002

6. Gokkul Nath, T.S., Sudheesh, P., Jayakumar, M.: Tracking inbound enemy missile for
interception from target aircraft using extended Kalman filter. In: Mueller, P., Thampi, S.M.,
Alam Bhuiyan, M.Z., Ko, R., Doss, R., Alcaraz Calero, J.M. (eds.) SSCC 2016. CCIS, vol.
625, pp. 269–279. Springer, Singapore (2016). doi:10.1007/978-981-10-2738-3_23

7. Mehra, R.: A comparison of several non-linear filters for re-entry vehicle tracking. IEEE
Trans. Autom. Control AC 16(4), 307–319 (1971)

8. Farina, A., Ristic, B., Benvenuti, D.: Tracking a ballistic target: comparison of several
nonlinear filters. IEEE Trans. Aerosp. Electron. Syst. 38(3), 854–867 (2002)

9. kumar, K.S., Dustakar, N.R., Jatoth, R.K.: Evolutionary computational tools aided extended
Kalman filter for ballistic target tracking. In: 2010 3rd International Conference on Emerging
Trends in Engineering and Technology (ICETET), 19–21 November 2010 (2010)

10. Wu, C., Han, C.: Strong tracking finite-difference extended Kalman filtering for ballistic
target tracking. In: 2007 IEEE International Conference on Robotics and Biomimetics
(ROBIO), December 2007

Estimation and Tracking of a Ballistic Target 397

http://dx.doi.org/10.1007/978-981-10-2738-3_23


11. Lin, Y.-P., Lin, C.-L., Suebsaiprom, P., Hsieh, S.-L.: Estimating evasive acceleration for
ballistic targets using an extended state observer. IEEE Trans. Aerosp. Electron. Syst. 52(1),
337–349 (2016)

12. Zhao, Z., Chen, H., Chen, G., Kwan, C., Rong Li, X.: Comparison of several ballistic target
tracking filters.In: 2006 American Control Conference, Minneapolis, MN, p. 6 (2006).
doi:10.1109/ACC.2006.165654

13. Domuta, I., Palade, T.P.: Adaptive Kalman Filter for target tracking in the UWB networks.
In: 2016 13th Workshop on Positioning, Navigation and Communications (WPNC),
Bremen, pp. 1–6 (2016). doi:10.1109/WPNC.2016.7822855

14. Vikranth, S., Sudheesh, P., Jayakumar, M.: Nonlinear tracking of target submarine using
Extended Kalman Filter (EKF). In: Mueller, P., Thampi, S.M., Alam Bhuiyan, M.Z., Ko, R.,
Doss, R., Alcaraz Calero, J.M. (eds.) SSCC 2016. CCIS, vol. 625, pp. 258–268. Springer,
Singapore (2016). doi:10.1007/978-981-10-2738-3_22

15. de Doucet, A., Freitas, N., Gordon, N.J. (eds.): Sequential Monte Carlo Methods in Practice.
Springer, New York (2001)

16. Julier, S., Uhlmann, J., Durrant-Whyte, H.F.: A new method for the non linear
transformation of means and covariances in filters and estimators. IEEE Trans. Autom.
Control AC 45(3), 477–482 (2000)

398 J. Ramnarayan et al.

http://dx.doi.org/10.1109/ACC.2006.165654
http://dx.doi.org/10.1109/WPNC.2016.7822855
http://dx.doi.org/10.1007/978-981-10-2738-3_22


An Android Application for Secret Image
Sharing with Cloud Storage

K. Praveen(B), G. Indu, R. Santhya, and M. Sethumadhavan

TIFAC-CORE in Cyber Security, Amrita School of Engineering,
Amrita Vishwa Vidyapeetham, Amrita University, Coimbatore, India

k praveen@cb.amrita.edu

Abstract. The usage of online cloud storages via Smart phones has
become popular in today’s world. This helps the people to store their
huge data in to the cloud and to access it from anywhere. The individuals
rely upon the Cloud Storage Providers (CSP) like Amazon, Dropbox,
Google Drive, Firebase etc. for storing their information in the cloud due
to the lack of storage space in their Mobile phones. The main concern
in cloud storage is its privacy. To obtain privacy the Confidentiality,
Integrity and Availability has to be maintained. This paper addresses
about the development of a new Android application that will provide
the cloud users to store the geotagged secret image in the form of shares
in to various CSP and reconstruct the secret image back by combining
the shares. This key idea will provide security to the stored data. Here
in this paper we also propose a (1, k, n) secret image sharing scheme
constructed by using (k−1, n−1) secret image sharing scheme. An image
encryption scheme is also addressed as a building block which is used for
mitigating the collusive attacks by CSPs. We have also implemented our
apk in the scenario for distributing shares by the dealer to a group of
participants within a single CSP.

Keywords: Android · Secret sharing · Dropbox · Firebase · Google
Drive · Geotagging

1 Introduction

The portability and data that are easy to backup are basic requirements for
datastorage which was provided by Cloud Storage technology [19]. The public
cloud storage is a technology where data is stored on remote servers and services
are available to the users via internet. This service allows the user to store
file online so that the user can access them from anywhere at any time. It is
maintained, operated and managed by the Cloud Service Providers (CSP) based
on virtualization techniques. Every cloud user will have a unique credentials for
storing the information and to manage them. Some CSPs provides the storage
space up to certain limit for free and beyond that we can access it by paying
them. Many of the CSPs, provide the data drag and drop, auto sync, between
c© Springer Nature Singapore Pte Ltd. 2017
S.M. Thampi et al. (Eds.): SSCC 2017, CCIS 746, pp. 399–410, 2017.
https://doi.org/10.1007/978-981-10-6898-0_33



400 K. Praveen et al.

the local devices and cloud. Some of the CSPs are Dropbox, Google Drive,
Firebase etc. Dropbox offers a storage of 2 GB which is the lowest space provided
compared to other CSPs. Google Drive provides a storage of 5 GB. Firebase
provides user authentication, cloud messaging, crashing report, notifications etc.
Storing our data in the cloud introduces a new set of security challenges. The
handling of public cloud storage typically has a lower risk profile than the private
server in the back of your office. There are some mitigation techniques such as
encryption, secret sharing mechanism, hashing etc., for protecting data from
security breaches. By splitting data into several chunks and storing parts of it
on multiple cloud providers that preserves data confidentiality, integrity and
ensures availability [15]. In case of availability, create replicas of secret shares
and distribute them among multiple resource providers to ensure availability and
also create dummy shares to find any outsiders are intercepting [18].

Nowadays, the usage of the Smart phones has been increased rapidly. Android
is one of the leading operating system in the mobile market and the recent survey
says that the Android has 88% of the market share. Apart from a mobile device,
it can do many things that a PC cannot able to perform. In today’s world,
the mobile cloud storage has gained wide popularity for storing and sharing
the data. Storing data on the cloud also saves up phone storage space. Many
android phones suffers from very limited external storage. By storing data in
the cloud, that memory space can be allocated for apps for other additional
purpose, thus improves the performance and the efficiency of the phone. Android
provides various applications (apks) that support the cloud storage and sharing.
Currently, there are so many apks available in the market which allow uploading
files to multiple clouds like Cloudii apk [7].

Here in this paper, we propose an apk to upload the geotagged secret image
shares to multiple clouds. Geotagging has become a popular feature on several
social media platforms which helps to capture GPS information at the time the
photo is taken. The secret sharing scheme is a technique used for securely sharing
data between the users. The idea of (k, n) threshold secret sharing scheme was
introduced by Adi Shamir [1] in 1979. This scheme was based on the polynomial
interpolation technique. The idea is to divide a secret in to n shares such that
it will be reconstructed only by k shares and not by less than k shares [16].
Here we depend on multiple CSPs for storing the shares of Geotagged secret
image which in turn help us as a prevention of single point of failure unlike
encrypting the image and storing in a single CSP. The cloud storage is more
secure and the risk level is also too low when compared to the local storage. But
with the multiplication of CSPs and sub-contractors in many countries, intricate
legal issues arise, as well as another fundamental issue: trust. Telling whether
trust should be placed in CSPs falls back onto end-users, with the implied costs
[13]. If the user distributes multiple secrets, reconstruction independence can be
maintained by independently [17]. By this way we could download the shares
from any of the k CSPs for reconstructing the secret image. Also if one server
is not available we can upload and share images via other CSPs. Additionally,
utilizing a multi-cloud deployment strategy can typically provide users with a



An Android Application for Secret Image Sharing with Cloud Storage 401

simple, easy interface for accessing and taking advantage of the public cloud’s
scalability as needed through the apk. The protection of contents using the
secret sharing scheme in multi-cloud storages are addressed in papers [9,10].
The Shamir’s secret sharing algorithm has a good foundation that provides an
excellent platform for proofs and applications [11]. This scheme’s security rests
on the fact that at least k points are needed to uniquely reconstruct a polynomial
of degree k − 1 [21]. A technique to outsource a database using Shamir’s secret-
sharing scheme to public clouds, and then, provide privacy-preserving algorithms
for performing search and fetch, equijoin, and range queries using MapReduce in
discussed in [12]. Inorder to provide privacy and also to ensure security, two types
of secure cloud computing: one is with trusted third party (TTP) and the other
is without TTP in a more efficient way [14]. A notable work on development
of Android apk’s uses secret sharing to split the file and then stores each of
the shares on a separate remote storage service was done in NEWCASTLE
University [8]. But integration of the secret image sharing scheme with multi
cloud storage functionality into an Android apk is been addressed for the first
time in the literature compared to other related works.

One of the disadvantages of the above proposal is that, there is a less probable
scenario where if any of the k shares stored over multiple CSPs while combining,
will disclose the secret image to CSPs. So in order to mitigate this we propose a
(1, k, n) secret image sharing scheme using (k − 1, n − 1) secret image sharing
scheme and an image encryption scheme as building block. There are studies
in the literate to construct shares for binary images using deterministic [2] and
probabilistic [3,4] (1, k, n) visual cryptographic scheme [20]. Let us divide the
n shares generated using (1, k, n) secret image sharing scheme in to two sets
E = {e0} and R = {r1, r2, r3, ..., rn−1}. So the reconstruction of secret image is
done using e0 share from set E and any of the (k − 1) shares out of (n − 1)
shares from set R. So (n − 1) shares from set R can be stored in multiple CSPs
and e0 share from set E can be stored in our own multiple private clouds as
replicas which mitigate the single point of failure. So when any k shares stored
over multiple CSPs combines, will not disclose the secret image to CSPs. For the
implemented apk we have used one of the efficient (k, n) secret image sharing
scheme by Thien and Lin [5] and image encryption scheme by Alhusainy [6] from
the literature.

The paper is organized in the following way. Section 2 gives an explanation
of (k, n) secret image sharing scheme of Thien and Lin [5] and image encryption
scheme by Alhusainy [6]. Section 3 presents a detailed explanation of our apk
which is implemented in a (1, k, n) secret image sharing model. Section 4 shows
the implementation of our apk in concern with distribution of shares by the dealer
to a group of participants in a single CSP. Conclusions are given in Sect. 5.



402 K. Praveen et al.

2 Background

2.1 (k, n) Secret Image Sharing Scheme by Thien and Lin

Initially, this (k, n) secret image sharing algorithm divide the secret grey level
image into m blocks, where m = l/k, l is the total number of pixels in the
grey level image. Then all the grey values between 251–255 in each block is
truncated to 250. For each dth block (1 ≤ d ≤ m), we define the following
(k−1) degree polynomial Sd(y) = (p0d+p1d(y)+ ....+pk−1

d (yk−1)) mod 251, where
p0d, p

1
d, ..., p

k−1
d are pixels of dth block. Then the n shares for the dth block are

Sd(1),Sd(2),Sd(3), ....,Sd(n). So k pixels in a block is converted to single pixel.
So the shares contain m pixels in total. During reconstruction phase, use any of
the k values from Sd(1),Sd(2),Sd(3), ....,Sd(n) with Lagrange’s interpolation [1]
to find the pixels of dth block.

2.2 Image Encryption Scheme by Alhusainy

Initially this encryption algorithm will divide the secret grey level image into
m blocks B0, B1, B2, B3,....., Bm each of size 16 × 16 bytes. Then randomly
select a secret key SK0 of size 16 × 16 bytes. Initially the block B0 is encrypted
with SK0. For encrypting the remaining blocks B0, B1, B2, B3,....., Bm differ-
ent secret keys are generated from SK0. The abstract way for encrypting blocks
B0, B1, B2, B3,....., Bm is E (Bi) = Transposition (Substitution (Bi, SKi)) for
(1 ≤ i ≤ m). The same step is used in reverse order on the encrypted block
E (Bi) for decrypting the secret block B0. The following operation need to be
done during the encryption and decryption process for constructing new secret
key block, SKi+1 = Transposition (Substitution (E (Bi), SKi)). So the encryp-
tion/decryption of the block Bi+1 is done only after encrypting/decrypting block
Bi. The detailed explanation of the algorithm and the advantages of this algo-
rithm are listed in paper [6]. The following are,

– To encrypt a grey level secret image of any size w × h with 16 × 16 bytes key.
– This algorithm is equally secure compared to data encryption standard and

advanced encryption standard when analyzing the results for visual and sta-
tistical test, signal to noise ratio, peak signal to noise ratio and normalized
mean absolute error.

– The time taken for encryption is less when compared to other methods.

3 Working of Our Apk in Concern with Preserving
the Privacy of Secret Image

Initially the user who is using this application has to register and get their
own credentials for authenticating them as a legitimate user. This credentials
will be given by the trusted authority who has developed this application.
The user will not able to authenticate themself without the valid credentials.



An Android Application for Secret Image Sharing with Cloud Storage 403

The credentials of the user will be stored in the cloud named Firebase (since
user authentication facility is provided by firebase), at the time of initial regis-
tration. Whenever the user is entering their information that information will
be verified with the data that is been stored in the cloud. If the credentials are
matched, then the user is successfully logged in to the application which allows
the user to upload and download the image. The user has to choose whether
he/she needs to upload/download a picture. If the user opting to upload the
picture then he/she needs to choose whether the picture has to captured lively
or to choose from the gallery where the existing images will be stored. If the
picture has to be captured lively then that can be done by enabling the camera
feature of the application which also tags the GPS location in it. Then that cap-
tured image is been separated as shares using the (1, k, n) secret image sharing
scheme and it will be stored in the gallery. If the user is preferred to upload the
share images then he/she can directly choose it from the gallery for storing in to
the separate multi clouds Dropbox, Firebase, Google Drive etc. The major goal
of multi-cloud is to provide “computing”, “storage”, and “software” as a service
[22] Fig. 1 shows the architecture of our apk.

The idea behind this GPS camera is that, when the user is uploading the
live image of him/her then the user will be selecting the option “Take Photo” in
the Android Apk as shown in the Fig. 9. Usually, while choosing that particular
“Take Photo” option the inbuilt camera will get triggered with the help of library
called “import android.hardware.camera”, but it is not possible for the developer
to change the behavior of the inbuilt camera. To add the additional features to
the camera, the developer need to develop another camera instead of calling the
inbuilt one. Here, in this application we are trying to make use of an secondary
camera which helps us in Geotagging. The functionality of the secondary camera
say GPS camera is to get the GPS location information of the image. The GPS
information includes the information of latitude and longitude of the position
from where the image is being clicked. This Latitude and longitude information
can be get with the help of the package called “android.location”. The idea
behind this GPS camera is that, whenever the user is clicking a photo, the
location details will be tagged with the image i.e., Current Address of the user
where he/she is clicking the photo and the map of the current location will be
shown as in Fig. 2. Along with these information the image will be captured.

3.1 Proposed (1, k, n) Secret Image Sharing Scheme

Share Distribution Phase

1. Extract the Red, Green and Blue channels of the Geotagged color image (GI )
each of size w × h bytes.

2. Then select three key shares KR, KG, KB of size w × h/16 × 16 bytes and
store it in any of our own multiple private clouds as replicas to avoid single
point failure.

3. Then encrypt the Red, Green and Blue channels using the key shares KR,
KG, KB respectively using secret image sharing scheme [6] to generate the
encrypted channels as ERed, EGreen and EBlue.



404 K. Praveen et al.

Fig. 1. System architecture

Fig. 2. Geotagging

4. Generate (n−1) shares ER1, ER2,....., ER(n−1) from ERed, (n−1) shares EG1,
EG2,....., EG(n−1) from EGreen and (n− 1) shares EB1, EB2,....., EB(n−1) from
EBlue using (k − 1, n − 1) secret image sharing scheme [5].

5. Then combine the grey levels (ER1, EG1, EB1), (ER2, EG2, EB2),....., (ER(n−1),
EG(n−1), EB(n−1)) to form the color images EGI1, EGI2,....., EGIn−1.

6. Then store EGI1, EGI2,....., EGIn−1 into CSP1, CSP2,....., CSPn−1 respec-
tively.



An Android Application for Secret Image Sharing with Cloud Storage 405

Secret Reconstruction Phase

1. Extract the grey levels (ER1, EG1, EB1), (ER2, EG2, EB2),....., (ER(k−1),
EG(k−1), EB(k−1)) form the color images EGI1, EGI2,....., EGIk−1 stored in
multiple CSPs.

2. Reconstruct ERed, EGreen and EBlue.
3. Decrypt Red, Green and Blue channels using the key shares KR, KG, KB

stored in our own private cloud from ERed, EGreen and EBlue.
4. Then combine the grey levels (ERed, EGreen and EBlue) to generate GI.

Fig. 3. GUI of our APK

So based on the above algorithm it is evident that in our own private cloud
we have stored only three 16 × 16 bytes of key shares and the (n−1) shares of the
GI each of size 3 ×w × h bytes are stored in multiple CSPs. So the huge amount
of data is outsourced into the public cloud and small amount is stored in our
own private cloud or devices which can maintain the privacy of the secret image.
The user interface for our apk is shown in Fig. 3. We have implemented a (1,
3, 4) secret image sharing scheme using the (2, 3) secret image sharing scheme
of Thien and Lin [5] and image encryption scheme by Alhusainy [6]. Since we
are using a (2, 3) secret image sharing scheme of Thien and Lin [5] the image
shares are of 1/2 the size of the geotagged image as shown in Fig. 3. First the
geotagged image is encrypted with three 16 × 16 bytes of key shares. Then the
three shares are generated and stored in Firebase, Google Drive and Dropbox as
shown in Figs. 4, 5 and 6 respectively. Regarding the implementation, our apk
will create shares of geotagged image and store into any one of the CSPs (either
Dropbox, Google Drive or Firebase) in a single run. In order to upload the share
to another CSP we need to start our apk again. Implementation of uploading
shares to multiple CSPs in a single run is in progress.



406 K. Praveen et al.

Fig. 4. Share stored in Firebase

Fig. 5. Share stored in Google Drive

Fig. 6. Share stored in Dropbox



An Android Application for Secret Image Sharing with Cloud Storage 407

4 Working of Our Apk in Concern with Distribution
of Shares to a Group of Participants by the Dealer

In this scenario, (k, n) secret image sharing scheme [5] is used. The dealer can
able to share a secret with group of participants and when k participants com-
bine, they can reconstruct back the secret. So our apk can be used for this
scenario in an assumption that we are trusting our CSP. Assume in CSP the
dealer and remaining participants have account. So the dealer will use our apk
to create n secret shares of geotagged image and upload all the n secret shares
to his own account. Then the dealer will take each secret share and share it
with the corresponding participant. Now each participant can view their share
which is distributed by the dealer. The secret will be reconstructed when any k
participants download their own shares and combine it. We have implemented
this scenario in Dropbox for (2, 3) scheme and the experimental results are given
in Figs. 7, 8, 9, 10, 11, 12, 13, 14, 15, and 16.

Fig. 7. Initial login Fig. 8. Image Upload

Fig. 9. Pick image Fig. 10. Internal storage directory



408 K. Praveen et al.

Fig. 11. Create share Fig. 12. Dropbox Activity

Fig. 13. Authenticating with Dropbox Fig. 14. Giving Permission

Fig. 15. Uploaded three shares in the Dropbox



An Android Application for Secret Image Sharing with Cloud Storage 409

Fig. 16. Request by the dealer to view the share in Gmail

5 Conclusion

This paper proposes a novel Android apk which integrates the secret image
sharing method and multi cloud storage functionalities in to a single architecture
with a GEOTAGGING feature. This apk facilitates to quickly upload the shares
of the geotagged secret pictures into multiple CSPs independent of the location
and time when mobile data or Wi-Fi is available. The (1, k, n) secret image
sharing scheme proposed in this paper mitigate the problem of privacy issues
when multiple CSPs collusively try to identify the cloud users original secret.
Also using a limited key size, huge image is encrypted which reduce the burden
of the key storage in the device or private cloud. The apk is also implemented
which is compatible to a scenario where the dealer create secret shares from the
image and distribute it to a group of participants in Dropbox.

References

1. Shamir, A.: How to share a secret. Commun. ACM 22(11), 612–613 (1979)
2. Arumugam, S., Lakshmanan, R., Nagar, A.K.: On (k, n)*-visual cryptography

scheme. Des. Codes Crypt. 1–10 (2012)
3. Praveen, K., Rajeev, K., Sethumadhavan, M.: On the extensions of (k, n)*-visual

cryptographic schemes. In: Mart́ınez Pérez, G., Thampi, S.M., Ko, R., Shu, L.
(eds.) SNDS 2014. CCIS, vol. 420, pp. 231–238. Springer, Heidelberg (2014).
https://doi.org/10.1007/978-3-642-54525-2 21

4. Praveen, K., Sethumadhavan, M.: A probabilistic essential visual cryptographic
scheme for plural secret images. In: Kumar Kundu, M., Mohapatra, D.P., Konar,
A., Chakraborty, A. (eds.) Advanced Computing, Networking and Informatics-
Volume 2. SIST, vol. 28, pp. 225–231. Springer, Cham (2014). https://doi.org/10.
1007/978-3-319-07350-7 25

https://doi.org/10.1007/978-3-642-54525-2_21
https://doi.org/10.1007/978-3-319-07350-7_25
https://doi.org/10.1007/978-3-319-07350-7_25


410 K. Praveen et al.

5. Thien, C.C., Lin, J.C.: Secret image sharing. Comput. Graph. 26(5), 765–770
(2002)

6. Al-Husainy, M.A.F.: A novel image encryption algorithm based on the extracted
map of overlapping paths from the secret key. RAIRO-Theor. Inf. Appl. 50(3),
241–249 (2016)

7. https://apkpure.com/cloudii/com.getcloudii.android
8. https://www.futurelearn.com/courses/cyber-security/0/steps/19605
9. Chong, J., Wong, C.J., Ha, S., Chiang, M.: CYRUS: Towards client defined Cloud

storage. In: Proceedings of EuroSys (2015)
10. Pundkar, S.N., Shekokar, N.: Cloud computing security in multi-clouds using

Shamir’s secret sharing scheme. In: Electrical, Electronics, and Optimization Tech-
niques (ICEEOT), pp. 392–395 (2016)

11. Muhil, M., Krishna, U.H., Kumar, R.K., Anita, E.M.: Securing multi-cloud using
secret sharing algorithm. Procedia Comput. Sci. 50, 421–426 (2015)

12. Dolev, S., Li, Y., Sharma, S.: Private and secure secret shared MapRe-
duce (Extended abstract). In: Ranise, S., Swarup, V. (eds.) DBSec 2016.
LNCS, vol. 9766, pp. 151–160. Springer, Cham (2016). https://doi.org/10.1007/
978-3-319-41483-6 11

13. Attasena, V., Harbi, N., Darmont, J.: A novel multi-secret sharing approach
for secure data warehousing and on-line analysis processing in the cloud. arXiv
preprint arXiv:1701.05449 (2017)

14. Yang, C.N., Lai, J.B., Fu, Z.: Protecting user privacy for cloud computing by
bivariate polynomial based secret sharing. CIT J. Comput. Inf. Technol. 23(4),
341–355 (2015)

15. Morozan, I.: A new model to provide security in cloud computing. Vrije Universiteit
16. Takahashi, S., Iwamura, K.: Secret sharing scheme suitable for cloud computing.

In: 2013 IEEE 27th International Conference on Advanced Information Networking
and Applications (AINA), pp. 530–537. IEEE, March 2013

17. Takahashi, S., Kobayashi, S., Kang, H., Iwamura, K.: Secret sharing scheme for
cloud computing using IDs. In: 2013 IEEE 2nd Global Conference on Consumer
Electronics (GCCE), pp. 528–529. IEEE, October 2013

18. Pal, D., Khethavath, P., Thomas, J.P., Chen, T.: Multilevel threshold secret shar-
ing in distributed cloud. In: Abawajy, J.H., Mukherjea, S., Thampi, S.M., Ruiz-
Mart́ınez, A. (eds.) SSCC 2015. CCIS, vol. 536, pp. 13–23. Springer, Cham (2015).
https://doi.org/10.1007/978-3-319-22915-7 2

19. Wu, H.L., Chang, C.C.: A robust image encryption scheme based on RSA and
secret sharing for cloud storage systems. J. Inf. Hiding Multimedia Sig. Process.
6(2), 288–296 (2015)

20. Dong, X., Jiadi, Y., Luo, Y., Chen, Y., Xue, G., Li, M.: P2E: privacy-preserving
and effective cloud data sharing service. In: 2013 IEEE Global Communications
Conference (GLOBECOM), pp. 689–694. IEEE, December 2013

21. Dautrich, J.L., Ravishankar, C.V.: Security limitations of using secret sharing for
data outsourcing. In: Cuppens-Boulahia, N., Cuppens, F., Garcia-Alfaro, J. (eds.)
DBSec 2012. LNCS, vol. 7371, pp. 145–160. Springer, Heidelberg (2012). https://
doi.org/10.1007/978-3-642-31540-4 12

22. Kaufman, L.M.: Data security in the world of cloud computing. IEEE Secur. Priv.
7(4) (2009)

https://apkpure.com/cloudii/com.getcloudii.android
https://www.futurelearn.com/courses/cyber-security/0/steps/19605
https://doi.org/10.1007/978-3-319-41483-6_11
https://doi.org/10.1007/978-3-319-41483-6_11
http://arxiv.org/abs/1701.05449
https://doi.org/10.1007/978-3-319-22915-7_2
https://doi.org/10.1007/978-3-642-31540-4_12
https://doi.org/10.1007/978-3-642-31540-4_12


Tracking of GPS Parameters
Using Particle Filter

M. Nishanth, J.P. Anita, and P. Sudheesh(&)

Department of Electronics and Communication Engineering,
Amrita School of Engineering, Coimbatore, Amrita Vishwa Vidyapeetham,

Amrita University, Coimbatore, India
nishanth7msd@gmail.com,

{jp_anita,p_sudheesh}@cb.amrita.edu

Abstract. For proper functioning of the GPS system, tracking the code and
carrier effectively in GPS receivers is important. The time taken for a signal to
propagate from a satellite is calculated by a GPS receiver by analyzing the
“pseudo random code” it generates, to that of code generated in the signal from
the satellite. So it is important to effectively track the code before they become
out of phase. The tracking medium synchronizes consecutively, the acquired
satellite signal with the code and carrier frequencies that are locally generated.
To track these parameters Kalman filter is used. To improve the efficiency of
estimation and to obtain faster and accurate results particle filter (PF) is pro-
posed, which further reduces the complexity as compared to that of the Kalman
filter.

Keywords: Particle filter � Costas loop � Comparing filters � Code tracking

1 Introduction

The global positioning system (GPS) is a satellite based network. This system provides
precise 3-Dimensional position and velocity estimate of a person (or) an object any-
where on earth. It operates by tracking the time-of-arrival of spread spectrum signals.
The use of satellite is that it transmits radio signals which provide the precise position
and other parameters [1]. By using the method of triangulation, GPS receivers calculate
the user’s accurate location. GPS receiver operates in two portions: hardware and
software. Tracking and acquisition falls in the software part of the receiver. First
objective of the software part is determining the signal (satellite signal) availability [2].
After the completion of the above task GPS receiver works in tracking the signal’s code
and carrier components. The tracking uses a delay lock loop (DLL) and a Costas loop,
where the former is used in tracking of the coarse/acquisition (C/A) code sequence and
the later in tracking the received satellite signal’s carrier [3]. The output of the loops is
the decrypted form of the navigation message. Using pseudo range measurements from
the above loops, position of the user is calculated. The code and carrier must be in lock
for a receiver to track the path. The loops begin to get rid of the lock whenever the
signals become weak. When this happens the receiver cannot track further, until the
signal becomes stronger again.

© Springer Nature Singapore Pte Ltd. 2017
S.M. Thampi et al. (Eds.): SSCC 2017, CCIS 746, pp. 411–421, 2017.
https://doi.org/10.1007/978-981-10-6898-0_34



The GPS space vehicles (satellites) transmits two carrier frequencies L1 and L2
which are known as primary and secondary frequencies respectively [4]. The carrier
frequencies are modulated by spread spectrum codes with a unique pseudo random
noise sequence that is associated with each satellite and by the navigation data message
[5]. BPSK modulation is carried out. All satellites transmit at the same carrier fre-
quencies but their signals do not interfere with each other due to the PRN code
modulation. By a technique called code division multiple access (CDMA) the satellite
signals are separated and detected [6]. CDMA is a type of a spread spectrum multiple
access technique. The GPS signal is demodulated through a series of steps. First by
acquisition, followed by tracking and then demodulating. The acquisition is carried out
in order to identify the satellites that are notable by the users. Acquisition determines
the frequency and code phase of the signal. Frequency of signals from different
satellites varies from its nominal values. When down conversion takes place, the GPS
signal’s frequency points to the IF. Code phase is used to denote the point where the
C/A code starts.

2 Tracking Channel

The signal received from the satellite is always a mixture of the carrier signal, PRN
code and also the navigation data. [7] Tracking a channel is important since it necessary
to process the common values of frequency and code phase. Navigation data must be
discarded from the combination for obtaining the position of a GPS receiver. This is
done by the tracking channel, generating two replicas for the carrier and code as shown
in Fig. 1. After a receiver gets synchronized with the signal received, it has to continue
operating in locked state with the sequence of codes of that of the incoming message
signal. Pseudo random noise are deterministic that are generated with the help of a
clocked feedback shift register.

Incoming Message 
ataDnoitagivaNlangis

      Replication of Carrier wave           Replication of PRN code

Fig. 1. Basic demodulation of navigation data

412 M. Nishanth et al.



3 Code Tracking

For obtaining a perfect replica of the code, tracking of code is implied. The code is
mostly actualized as a delay lock loop (DLL) [7]. Here 3 code replications are gen-
erated and then it is correlated with the incoming signal. The three codes are distinct by
a half chip length. DLL allows the generating of a local PN-sequence that is aligned
with time to that of the received direct sequence. For estimating the time delay between
the received and local signals, the reception signal is correlated with the local
PN-sequence [8]. Considering the security aspects of the system, spoofing is the
method used to create false signals that sends incorrect data to the receivers. Datas
include time and location. To prevent spoofing, manufacturers should employ
encryption technologies which makes it impossible to spoof.

4 Carrier Tracking

For data demodulation with the help of frequency lock loop (or) phase locked loop, an
exact replication of the carrier wave is generated. The input signal’s carrier and the
PRN code are wiped off when the first two multiplications are carried out. The gen-
erated local carrier wave frequency is adapted as per the feedback given by the change
in phase error.

5 Costas Loop

A Costas loop is generally used by receivers which reconstructs a carrier reference from
an input signal, where the carrier component of the input signal is totally suppressed
[9]. Costas loop is widely used in carrier tracking since it is unresponsive to 180° phase
shifts and also does not change much when there is a transition in phase due to the
message data. The local carrier wave has a phase error which is given by Eq. (1)
[10, 11].

U ¼ arctan
Qp

Ip

� �
ð1Þ

In the Costas loop as shown in Fig. 2, the locally generated carrier and the input
signal are multiplied first followed by the multiplication of the 90 degree phase shifted
wave with the input signal.

Tracking of GPS Parameters Using Particle Filter 413



6 Signal Model

The GPS coarse/acquisition code signal is modeled as shown in Eq. (2)

S tð Þ ¼ Refp2
p
Psd tð ÞPN tð Þexpðj2pfctÞg ð2Þ

where,

Ps is power of the signal that is transmitted
d(t) is the Binary Phase-Shifted Keyed (BPSK)
fc is the carrier frequency
PN(t) is the pseudorandom noise (PRN)

Pseudo Random Noise (PRN) is modeled as a equation as shown in Eq. (3)

PN tð Þ ¼
Xþ1

�1
XLca�1

0
CKPT0 t � KTc � mTcað Þ ð3Þ

where,

Tca is the period of the C/A PRN sequence, which is measured in seconds.
Tc is the chip duration given by

Tc ¼ Tca=Lca

Ck is the C/A code sequence.

To perform particle filtering we need measurement and update equations. Navi-
gation systems find a wide range of applications. It is widely used in weather science
manufacturing, marine and so on. The functioning of a GPS is interrupted due to
buildings and tunnels. At such cases, the inertial navigation system (INS) complements
the GPS for effective performance. Hence particle filter is needed.

Fig. 2. Block diagram of carrier tracking that is being used in the Costas loop.

414 M. Nishanth et al.



The state space equations are as shown in Eqs. (4) and (5)

hk
Fk
DFk

 !
¼

1 Dt Dt2=2
0 1 Dt
0 0 1

0
@

1
A hk�1

Fk�1

DFk�1

 !
ð4Þ

Zð Þ ¼ 1 0 0ð Þ
hk
Fk
DFk

 !
ð5Þ

where

hk is the phase change of the received carrier.
Fk is the carrier’s frequency that is determined from the rate of change of the phase
of the carrier.
ΔFk is the derivative of the carrier frequency that varies linearly with time.

7 Estimation methods

7.1 Kalman Filter

Kalman filtering (KF) based estimator is extensively proposed in [18, 19]. In this paper
with the methodology of KF based estimator and the equations related to its algorithm
are also discussed.

The tracking loops cannot be used at all circumstances. They certainly have some
flaws. Generally loops use filters of fixed bandwidth. So this makes them unusable for
high user dynamics [12]. The tracking loop filter’s order provides the dynamic that the
loop tracks with zero steady state error. So designer is left off in trade-off state. The
only solution to the above problem is increasing the bandwidth of the filter to operate.
Bandwidths of filters are increased so that there is an improvement in the loop’s
tracking ability for high user dynamics. But in doing so, makes the loop susceptible to
noise. So Kalman filter was used whose gain varies with time. When this filter is given
with relevant process and measurement noise matrices, it can easily distinguish the
signal from noise [13].

The Kalman filter equations are as shown in Eqs. (6) and (7).

xk ¼ A � xk�1 þB � uk þwk�1 ð6Þ

zk ¼ H � xk þVk ð7Þ

Where,

A is a n*n matrix which relates the output at instant k-1 to the present instant k.
B is a matrix which forms a relation between predicted state(x) to the control input.
H is a matrix which forms the relation between measurement (zk) and state.
wk-1 and Vk are two random variables which represents process and measurement
noise.

Tracking of GPS Parameters Using Particle Filter 415



The noises are assumed to be a white and Gaussian. Even though Kalman filter is
used, it is best only in estimating linear systems with Gaussian noise [14]. When the
system becomes nonlinear, particle filters are used which are more flexible.

7.2 Particle Filter

Particle filtering is the general sequential Monte Carlo method of recursive Bayesian
estimation form Hidden Markov Model (HMM) where the noisy measurements are
used to obtain information about the state as shown in Fig. 3. Particle filters are based
on probability distribution representation of the states as a group of samples (i.e.)
particles. It is distinguished from other methods since non-linear systems can also be
represented as a set of particles and multi modal non-Gaussian density states [14]. This
particle filtering algorithm is a better alternate compared to the Markov Chain Monte
Carlo (MCMC) algorithms [15]. In the Bayesian approach to dynamic state estimation
(particle filtering), one’s objective is to build the posterior probability density function
(PDF) of the state using the available information, which also includes the collection of
received measurements [15].

For predication and estimation of the posterior density function we have two
models: system model and measurement model in the probabilistic form. Generally in a
Bayesian approach we consider all models and state variations in probabilistic form.
The particle filter is a recursive filtering approach that has two stages, namely pre-
diction and update, that utilizes the system model and measurement model respectively.

Fig. 3. Graphical representation of sequential importance sampling of particles using particle
filter algorithm.

416 M. Nishanth et al.



For estimation we define a vector xk that represents the state of system at an instant k,
as shown in Eq. (8).

xk ¼ fK xk�1; vk�1ð Þ ð8Þ

where, Vk represents the Gaussian noise present and xk is a state vector that is defined
by a non linear and time varying function fk [16]. The state variable can be estimated
using noisy measurements of zk which is governed by Eq. (9) as shown.

zk ¼ hk xk; nkð Þ ð9Þ

Measurement states are used here, which we denote by z1:k. This is done by
computing the probability distribution of p xkjz1:kð Þ which is done recursively in two
steps

Prediction step:
p xkjz1:k�1ð Þ is computed from p xk�1jz1:k�1ð Þ at k-1 instant as shown in Eq. (10).

p xkjz1:k�1ð Þ ¼ Z
pðxkjxk�1Þpðxk�1jz1:k�1Þdxk�1 ð10Þ

Update step:
The prior estimate is updated with new measurements Zk which further obtains the

posterior estimate state as shown in Eq. (11).

p xkjz1:kð Þ � p zkjxkð Þp xkjz1:k�1ð Þ ð11Þ

But the problem is that we cannot directly compute or operate on these functions fk
and hk. Hence we resort to approximate method which is sequential importance sam-
pling (SIS). The aim of SIS is in finding the posterior distribution at k-1 instant,
p x0:k�1jz1:k�1ð Þ, with a set of samples (known as particles) and updating the particles
repeatedly so that an proximate posterior distribution is achieved [17]. Particles are
generated by taking samples from the a proposal distribution q(x) and updating them
relating to the target distribution p(x). Weight of each particle is represented by wi. This
is obtained by the relation as shown in Eq. (12).

wi ¼ pðxiÞ=qðxiÞ ð12Þ

where p(x) is a distribution proportional to p(x).
Thus importance sampling results in

pðxo:k�1jzi:k�1Þ �
XN

i¼1
xi

k�1d
i
x0:k�1

ð13Þ

Where dx is delta function centered at xi0:k�1

Tracking of GPS Parameters Using Particle Filter 417



The weight of the particles is recursively updated using Eqs. (6) and (7) and this
results in, as shown in Eq. (14)

xi
k ¼ xi

k�1

p zkjxik
� �

p xikjxik�1

� �
q xikjxi0:k�1; z1:k
� �

 !
ð14Þ

In practice, we face the degeneracy problem [13]. The problem is where only some
of the particles having significant weights and rest having smaller weights. The
effective sample size is given by

Neff ¼ 1PN
i¼1ðxi

kÞ2
ð15Þ

where the weights have larger variance when Neff is small which implies there will be
more degeneracy.

Steps of particle filtering

(a) Initiate a set of Np particles by using any random distribution. Assign each particle
with initial weight of 1/Np.

(b) Obtain the Non linear/linear update and measurement equations for estimation.
(c) Using these equations estimate the kth step xk value.
(d) Update the weight of particles as shown in Eq. (16)

wp
n ¼ wp

n�1
1ffiffiffiffiffiffi
2p

p
r
x�ðjzn�xnjÞ2=2r ð16Þ

(e) Normalize each weight.
(f) Calculate the effective particle size, if the effective particle size is larger than

threshold then proceed to the next step, otherwise resample and initialize the
weights again.

8 Simulation and Results

In this section we have studied the simulation results obtained. All simulations are done
using the MATLAB software. From Fig. 4 we can infer that increasing the number of
iterations provides lesser error therefore giving better results. Similarly, it is illustrated
that in Fig. 5 that, increasing the number of particles also increases the accuracy and
reduces error but increasing number of particles and number of iterations results in
increase in computation time as illustrated in Tables 1 and 2. From Fig. 6 we can infer
that the particle filter algorithm produces accurate results with high fidelity. The error
margin is very low compared to other estimation methods. It is elucidated in Fig. 7
where the MSE is high for Kalman filter (KF) compared to particle filter (PF) even
when the SNR values are increased. The increase in computational time as illustrated
gives us a trade-off between accuracy and time taken for computation, if we want faster

418 M. Nishanth et al.



Fig. 4. Comparison of SNR versus MSE for 100, 150 and 200 iterations.

Fig. 5. Comparison of SNR versus MSE for 50, 100 and 200 particles.

Table 1. Computational time for constant number of iterations.

No of iterations (T) 100 100 100

No of particles (N) 100 150 200
Computational time required 14.236 s 25.312 s 38.346 s

Table 2. Computational time for constant number of particles.

No of iterations (T) 100 150 200

No of particles (N) 100 100 100
Computational time required 14.16 s 20.21 s 27.55 s

Tracking of GPS Parameters Using Particle Filter 419



results there is a decline in accuracy of results and for accurate results there is raise in
time taken.

9 Conclusion

The tracking of code and carrier using particle filtering method has been discussed in
this paper. The phase change in a GPS receiver is estimated for a better communication
between the satellite and the user. There were different techniques discussed, but the
proposed particle filtering method is proved to produce better and accurate results.
MATLAB simulations are used to support this. From the above results it can be
concluded that particle filter is superior and provides high fidelity and statistical effi-
ciency, even though it has high computational cost as compared to others.

Fig. 6. Output graph of estimated phase change versus received phase change.

Fig. 7. Plot of MSE versus SNR graph for Kalman Filter and particle filter.

420 M. Nishanth et al.



References

1. Ward, P.M.: GPS Receivers, Receiver Signals and Principals of Operation. The Abdus
Salam International Centre for Theoretical Physics, January 1997

2. Kim, S.-J., Iltis, R.A.: STAP for GPS Receiver Synchronization. IEEE Trans. Aerosp. Elec-
tron. Syst. 40(1), 132–144 (2004)

3. Soubielle, J., Fijalkow, I., Duvaut, P., Bibaut, A.: GPS Positioning in a Multipath
Environment. IEEE Trans. Signal Process. 50(1), 141–150 (2002)

4. Matosevic, M., Salcic, Z., Berber, S.: A Comparison of Accuracy Using a GPS and a
Low-Cost DGPS. IEEE Trans. Instrum. Meas. 55(5), 1677–1683 (2006)

5. Al Rashed, M.A., Oumar, O.A., Singh, D.: A real time GSM/GPS based tracking system
based on GSM mobile phone

6. Enge, P., Misra, P.: Scanning the Issue/Technology. Proc. IEEE 87(1), 1–13 (1999)
7. Misra, R., Palod, S.: Code and Carrier Tracking Loops for GPS C/A Code. Int. J. Pure Appl.

Sci. Technol. 6(1), 1–20 (2011)
8. Wilde, A.: The Generalized Delay Locked Loop. Wirel. Pers. Commun. 8, 113–130 (1998)
9. Cahn, C.R.: Improving Frequency Acquisition of a Costas Loop. IEEE Trans. Commun. 25

(12), 1453–1459 (1911)
10. Marvin, M.K.: Simon: The Effects of Residual Carrier on Costas Loop Performance as

Applied to the Space Shuttle Orbiter S-Band Uplink. IEEE Trans. Commun. 26(11), 1542–
1548 (1978)

11. Simon, M.K.: Tracking Performance of Costas Loop with Hard-Limited In-phase Channel.
IEEE Trans. Commun. 26(4), 420–432 (1978)

12. Kumar, J.P., Rarotra, N., Maheswari, U.: Design and Implementation of Kalman Filter for
GPS Receivers. Indian J. Sci. Technol. 8(25), 1–5 (2015)

13. Lashley, M.: Kalman Filter Based Tracking Algorithms For Software GPS Receivers. IEEE
Trans. Commun. (1978)

14. Doucet, A., de Freitas, N., Gordon, N.: An Introduction to Sequential Monte Carlo Methods.
In: Doucet, A., de Freitas, N., Gordon, N. (eds.) Sequential Monte Carlo Methods in
Practice. ISS. Springer, New York (2001). doi:10.1007/978-1-4757-3437-9_1

15. Arulampalam, M.S., et al.: A tutorial on particle filters for online nonlinear/non-Gaussian
Bayesian tracking. IEEE Trans. Signal Process. 50(2), 174–188 (2002)

16. Yang, T., Mehta, P.G., Meyn, S.P.: Feedback particle filter for a continuous-time Markov
chain. IEEE Trans. Autom. Control 61(2), 556–561 (2016)

17. Greg, W., Bishop, G.: An introduction to the Kalman filter (1995)
18. Seshadri, V., Sudheesh, P., Jayakumar, M: Tracking the variation of tidal stature using

Kalman filter. In: International Conference on Circuit, Power and Computing Technologies
(ICCPCT 2016) (2016)

19. Nair, N., Sudheesh, P., Jayakumar, M.: 2-D tracking of objects using Kalman filter. In:
International Conference on circuit, Power and computing Technologies (ICCPCT 2016)
(2016)

Tracking of GPS Parameters Using Particle Filter 421

http://dx.doi.org/10.1007/978-1-4757-3437-9_1


Author Index

Aiyyappan, P.S. 337
Akash, M.S. 379
Amritha, P.P. 250
Anita, J.P. 276, 387, 411
Anjali, T. 226
Anto, Ajay 236
Atchuta Sashank, K. 379
Atul, K.R. 195

Baleri, Ganesh 325
Bapat, Chaitanya 325
Belavagi, Manjula C. 170
Bezawada, Bruhadeshwar 179
Biswas, Sandipan 65
Bopche, Ghanshyam S. 1

Chaudhary, Divya 109

Deekshatulu, B.L. 1

Gayathri, N.B. 28

Hasija, Hitesh 312
Hazra, Sudip 286

Inamdar, Shivani 325
Indu, G. 399

Jabbar, M.A. 1
Jain, Ashu 16
Jevitha, K.P. 195, 364

Kalpika, Ramesh 54
Khanna, Rahul 109
Kittur, Apurva S. 16
Kothapalli, Kishore 179
Kothari, Suvarna 312
Krishna Rao, R.R.V. 28
Krithika, R. 146
Kumar, Abhilash 215
Kumar, Alok 122
Kumar, Bijendra 109

Lakshmi, S. 205
Lakshmy, K.V. 205
Lemmou, Yassine 259
Li, Rui 179

Maia, William P. 300
Mali, Amit 134
Mateti, Prabhaker 286, 337, 350
Maurya, Anup Kumar 39, 79
Mehtre, B.M. 1
Menon, Vijay Krishna 226
Mohan, Ashok Kumar 146
Moreno, Edward D. 300
Muniyal, Balachandra 170

Nathezhtha, T. 159
Neogy, Sarmistha 65
Nimkar, Anant V. 325
Nimkar, Anant 134
Nirmala Devi, M. 379
Nishanth, M. 411

Pais, Alwyn Roshan 16, 122, 236
Pareek, Gaurav 95
Parikh, Vivek 350
Pavithran, P. 379
Prakash, R. Krishna Ram 250
Praveen, K. 399
Purushothama, B.R. 95, 215

Rahul, R.K. 226
Raman, Dugyala 179
Ramnarayan, J. 387
Rao, Karthik M. 337
Rao, R. Srinivasa 236
Reddy, Hari Sivarami 379
Roy, Annu 276
Roy, Sudakshina Singha 364

Sadhukhan, Pampa 65
Santhya, R. 399
Sastry, V.N. 39, 79
Sawant, Sarvesh V. 95
Sethumadhavan, M. 146, 250, 399
Sindhu, M. 205



Soman, K.P. 226
Souidi, El Mamoun 259
Srinivasan, Chungath 205
Sudheesh, P. 387, 411

Vaidehi, V. 159
Vasudeva Reddy, P. 28
Vasudevan, A.R. 54
Verma, Arun Prakash 215

424 Author Index


	Preface
	Organization
	Contents
	Diversity-aware, Cost-effective Network Security Hardening Using Attack Graph
	1 Introduction
	2 Related Work
	3 Attack Graph and Running Example
	4 Proposed Solution
	5 A Case Study
	6 Conclusion
	References

	Fast Verification of Digital Signatures in IoT
	1 Introduction
	1.1 Security in IoT
	1.2 Batch Verification in IoT

	2 Related Work
	3 Definitions
	4 Proposed Method
	4.1 Algorithms Considered for Study
	4.2 Hardware Specifications
	4.3 Workflow

	5 Results
	6 Security Analysis
	7 Conclusion and Future Scope
	References

	Efficient and Provably Secure Pairing Free ID-Based Directed Signature Scheme
	Abstract
	1 Introduction
	1.1 Related Work
	1.2 Motivation
	1.3 Our Contribution
	1.4 Paper Organization

	2 Preliminaries
	2.1 Elliptic Curve Group
	2.2 Elliptic Curve Discrete Logarithm Problem (ECDLP)
	2.3 Syntax and Security Model

	3 Proposed IDBDS Scheme Without Pairings
	3.1 Proposed IDBDS Scheme
	3.2 Correctness of the Proposed Scheme
	3.3 Security of the IDBDS Scheme

	4 Efficiency Analysis
	5 Conclusions
	Acknowledgements
	References

	User Authentication Scheme for Wireless Sensor Networks and Internet of Things Using LU Decomposition
	1 Introduction
	2 Related Work
	3 List of Symbols and Some Mathematical Expressions Used
	3.1 Secure Cryptographic Hash Function

	4 Discussions and Proposal
	4.1 Fuzzy Extractor for Authenticating the User Ui
	4.2 LU Decomposition of Mat and Secret Sharing
	4.3 Pre-deployment Scheme:
	4.4 User Registration
	4.5 Ui's Authentication and Secure Session Key Exchange with SNj
	4.6 User's Credential Update Phase

	5 Security Analysis
	5.1 Informal Security Analysis
	5.2 Security Verification Using Scyther and AVISPA Tool

	6 Performance Comparison
	7 Conclusion
	References

	Detection of Zeus Bot Based on Host and Network Activities
	1 Introduction
	2 Related Works
	3 Zeus Bot and Its Activities
	4 Proposed System
	4.1 Module 1 - Folder Monitoring
	4.2 Module 2 - Host Network Monitoring
	4.3 Module 3: API Hook Monitoring
	4.4 Integrated Decision Module
	4.5 Implementation

	5 Results and Discussion
	6 Conclusion
	References

	An Asymmetric Key Based Efficient Authentication Mechanism for Proxy Mobile IPv6 Networks
	1 Introduction
	2 Related Work
	3 Proposed Authentication Mechanism for PMIPv6 Handover Procedure
	3.1 System Setup Phase
	3.2 Proposed Asymmetric Key Based Efficient Authentication (AKEAuth) Scheme

	4 Security Analysis
	5 Numerical Analysis
	5.1 Analysis of the Computational Cost Scheme
	5.2 Analysis of Handover Latency
	5.3 Analysis of Cost of Control Messages

	6 Conclusion
	References

	User Authentication Scheme for Wireless Sensor Networks and Internet of Things Using Chinese Remainder Theorem
	1 Introduction
	2 Related Work
	3 List of Symbols and Some Mathematical Expressions Used
	4 Review of Das's Scheme
	5 Cryptanalysis of Das's Scheme
	5.1 Presumption
	5.2 Attacks on Das's Scheme

	6 Proposed Scheme
	6.1 Pre-Deployment Phase
	6.2 Registration Phase
	6.3 Authenticated Key Establishment Phase
	6.4 User's Credential Update Phase

	7 Security Analysis
	7.1 Informal Security Analysis
	7.2 Security Verification Using Scyther and AVISPA Tool:

	8 Performance Comparison
	9 Conclusion
	References

	A Ringer-Based Throttling Approach to Mitigate DDoS Attacks
	1 Introduction
	2 Problem Description
	3 Related Work
	4 Proposed Solution
	4.1 Notations and Proposed Approach
	4.2 Solution Description
	4.3 Detailed Algorithmic Description of the Proposed Solution

	5 Implementation and Results
	6 Security and Comparative Analysis
	6.1 Security Analysis
	6.2 Comparative Analysis

	7 Conclusion
	References

	NPSO Based Cost Optimization for Load Scheduling in Cloud Computing
	Abstract
	1 Introduction
	2 Particle Swarm Optimization Based Load Scheduling
	3 Proposed New Particle Swarm Optimization Algorithm for Load Scheduling
	4 Results and Analysis
	5 Conclusion
	References

	Multi-sink En-Route Filtering Mechanism for Wireless Sensor Networks
	1 Introduction
	2 En-Route Filtering
	2.1 Key Exchange Phase
	2.2 En-Route Filtering Phase
	2.3 Sink Collection and Verification Phase

	3 Analysis and Simulated Results
	3.1 Key Overhead
	3.2 Filtering Efficiency
	3.3 Energy Saving
	3.4 Resiliency
	3.5 Effect of Selective Forwarding Attack

	4 Related Work
	5 Discussion
	6 Conclusion and Future Work
	References

	Security Schemes for Constrained Application Protocol in IoT: A Precise Survey
	1 Introduction
	2 Constarined Application Protocol
	2.1 CoAP Architecture
	2.2 Security in CoAP

	3 Existing Security Scheme for CoAP
	3.1 Security Using DTLS
	3.2 Security Using Key Management
	3.3 Message Authentication in CoAP

	4 Research Issues in CoAP
	5 Conclusion
	References

	Jordan Center Segregation: Rumors in Social Media Networks
	Abstract
	1 Introduction
	2 Related Works
	3 Proposed Methodology
	4 Conclusion and Future Work
	References

	Honeyword with Salt-Chlorine Generator to Enhance Security of Cloud User Credentials
	Abstract
	1 Introduction
	2 Honeyword and Hashing
	3 Proposed Salt-Chlorine Generator
	4 Honeyword with Salt-Chlorine Generator
	5 Security Analysis
	6 Conclusion
	References

	Multi Class Machine Learning Algorithms for Intrusion Detection - A Performance Study
	1 Introduction
	2 Intrusion Detection System
	2.1 Data Set for IDS

	3 Related Work
	4 Machine Learning Techniques
	4.1 Logistic Regression
	4.2 Gaussian Naive Bayes
	4.3 Support Vector Machine
	4.4 Random Forest

	5 Methodology
	6 Results and Analysis
	7 Conclusion
	References

	Symmetric Key Based Secure Resource Sharing
	1 Introduction
	2 System Model
	2.1 Background
	2.2 System Model
	2.3 Related Work

	3 Our Approach
	3.1 Flattening Access Hierarchies
	3.2 Logarithmic Keying for Securing Single Owner Resources
	3.3 Securing All Shared Resources

	4 Experimental Results
	5 Security Analysis of Our Framework
	5.1 Soundness
	5.2 Completeness and Collusion Resistance

	6 Conclusion and Future Work
	References

	Prevention of PAC File Based Attack Using DHCP Snooping
	1 Introduction
	2 Related Work
	3 Problem Outline
	4 Proposed System
	4.1 DHCP Server Installation
	4.2 Web Server and PAC File Configuration
	4.3 Proxy Server Implementation
	4.4 Configuration of Snooping Feature in Network Switch

	5 Results and Discussion
	6 Conclusion
	References

	A Quasigroup Based Synchronous Stream Cipher for Lightweight Applications
	1 Introduction
	2 Quasigroups
	2.1 Shapeless Quasigroups
	2.2 n-ary Quasigroups

	3 Specifications of the Proposed Design
	3.1 Initialization Phase
	3.2 Keystream Generation and Encryption

	4 Design Rationale
	4.1 Quasigroups
	4.2 S-box
	4.3 Initialization and Keystream Generation

	5 Security Analysis
	5.1 Randomness Testing Using NIST-STS
	5.2 Structural Analysis
	5.3 Results
	5.4 Algebraic Attacks

	6 Conclusion
	References

	Security Analysis of Key Management Schemes Based on Chinese Remainder Theorem Under Strong Active Outsider Adversary Model
	1 Introduction
	2 Security Analysis of CRT Based Key Management Scheme
	2.1 Analysis of the Scheme Under Strong Active Attack Model

	3 Security Analysis of Key Tree and CRT Based Key Management Scheme
	3.1 Analysis of the Scheme Under Strong Active Attack Model

	4 Security Analysis of Key Transport Protocol Based on CRT
	4.1 Analysis of the Scheme Under Strong Active Adversary Model

	5 Approach to Make the CRT Based Group Key Management Schemes Secure Against Active Adversary
	5.1 Adversary Point of View
	5.2 Reason for Insecurity

	6 Conclusion
	References

	Deep Learning for Network Flow Analysis and Malware Classification
	1 Introduction
	2 Methodology and Reasoning 
	2.1 Protocol Classification Using Metadata
	2.2 Payload Data Collection and Data Preprocessing for Network Application Classification 
	2.3 Malware Classification Using Kaggle Data
	2.4 Different Convolutional Neural Networks Implemented
	2.5 Implemented Autoencoder Architecture

	3 Results and Discussions
	3.1 Protocol Classification
	3.2 Network Application Classification
	3.3 Malware Classification

	4 Conclusion
	5 Future Work
	References

	Kernel Modification APT Attack Detection in Android
	1 Introduction
	2 Literature Survey
	3 Kernel Level APT Attack Implementation in Android Devices
	4 Detection of APT
	4.1 Generation of Signature for APT Detection
	4.2 APT Detection Algorithms
	4.3 Complexity Analysis of the APT Detection Algorithms
	4.4 Detection of New APTS

	5 Implementation and Results
	5.1 APT Attack Implementation
	5.2 Implementation of APT Detection

	6 Conclusion and Future Work
	References

	Opaque Predicate Detection by Static Analysis of Binary Executables
	1 Introduction
	1.1 Opaque Predicates

	2 Background
	3 Proposed Solution
	3.1 Extracting Predicates
	3.2 Opaque Predicate Decision Engine

	4 Results
	5 Conclusion and Future Work
	References

	An Overview on Spora Ransomware
	1 Introduction
	2 The Compromised Website and Static Analysis
	2.1 The Compromised Website
	2.2 Static Analysis

	3 Behavioral Analysis
	3.1 Description of Infection
	3.2 Advanced Behavioral Analysis
	3.3 Encryption
	3.4 Self-Reproduction, Overinfection and Infection Process End
	3.5 Discussion About Detection

	4 Conclusion and Contributions
	References

	Pattern Generation and Test Compression Using PRESTO Generator
	Abstract
	1 Introduction
	2 Basic Architecture
	3 Fully Operational Generator
	4 Decompressor Structure
	5 Compression of Test Patterns
	6 Validating Experiments
	7 Conclusion
	References

	Challenges in Android Forensics
	1 Introduction
	2 Background
	2.1 Android Device Partitions
	2.2 Android SDK
	2.3 JTAG Forensics
	2.4 CHIP-OFF Forensics

	3 Android Forensics
	3.1 Proactive Forensics Investigations
	3.2 Reactive Forensics Investigations

	4 Challenges
	4.1 Application Based Challenges
	4.2 Permission Based Challenges
	4.3 Extraction Based Challenges

	5 Conclusion and Future Work
	References

	Current Consumption Analysis of AES and PRESENT Encryption Algorithms in FPGA Using the Welch Method
	Abstract
	1 Introduction
	2 FPGA Implementations
	2.1 AES Encryption
	2.2 PRESENT Encryption

	3 Related Works
	4 Methods
	4.1 Current Meter and Monitoring
	4.2 Implementation for the Simulation
	4.3 Welch Method
	4.4 Test Conditions

	5 Analysis of Results
	6 Conclusions and Future Work
	References

	Spiral Model for Digital Forensics Investigation
	Abstract
	1 Introduction
	2 Background
	3 Methodology Used to Solve the Problem
	4 Advantages of Proposed Model over Previous Models
	5 Conclusion and Future Work
	References

	Smart-Lock Security Re-engineered Using Cryptography and Steganography
	1 Introduction
	2 Related Work
	2.1 Bluetooth Low Energy Protocol
	2.2 Man-In-The-Middle Attack
	2.3 Steganography

	3 Existing Solutions
	4 Proposed Solution
	4.1 Workflow Design

	5 Implementation
	5.1 System Design
	5.2 Circuit Design

	6 Results and Discussion
	7 Conclusion
	References

	Adding Continuous Proactive Forensics to Android
	1 Introduction
	1.1 Proactive Forensics Support (pfs)
	1.2 Paper Organization

	2 Background
	3 Proactive Forensics
	3.1 Challenges of Proactive Forensics
	3.2 Advantages over Reactive Forensics

	4 Design of PFS
	4.1 Dynamic Imaging
	4.2 A Hidden Forensics Volume
	4.3 Cloud Storage

	5 Implementation of PFS
	5.1 Desktop pfs-Client
	5.2 Android APKs KBO and KDC
	5.3 File Change Detection
	5.4 Imaging of the Device
	5.5 Tracking User Activities

	6 Related Work
	7 Evaluation
	8 Conclusion
	References

	ASLR and ROP Attack Mitigations for ARM-Based Android Devices
	1 Introduction
	1.1 Organization

	2 Background
	2.1 ASLR
	2.2 ROP
	2.3 Position Independent Executables
	2.4 ART Format

	3 Binary Instrumentation
	3.1 Android Dynamic Binary Instrumentation
	3.2 Valgrind
	3.3 DynamoRIO

	4 Architecture and Design
	4.1 Pre-exploitation Phase Module
	4.2 Post-exploitation Phase Module
	4.3 Instruction Analyzer DBI Module
	4.4 Vulnerable App Database
	4.5 Crowd Sourcing
	4.6 Algorithm 1
	4.7 Algorithm 2
	4.8 Algorithm 3
	4.9 Algorithm 4
	4.10 Algorithm 5
	4.11 Algorithm 6
	4.12 Algorithm 7
	4.13 Suggested Performance Improvements

	5 Implementation
	5.1 Analysis of Zygote
	5.2 Creating Our Own ROP Sample
	5.3 Continuous Monitoring of App Execution on Android

	6 Related Work
	6.1 Zygote to Morula Enhancements
	6.2 Kbouncer and Related ROP Mitigations

	7 Conclusion
	References

	CBEAT: Chrome Browser Extension Analysis Tool
	Abstract
	1 Introduction
	2 Background
	2.1 Chrome Manifest File

	3 Related Works
	4 Proposed Framework
	4.1 Architecture Diagram
	4.2 Manifest Analysis
	4.3 JavaScript Static Taint Analysis

	5 Experimental Evaluation
	5.1 CBEAT Analysis Results
	5.2 Manifest Analysis Results
	5.3 JavaScript Static Taint Analysis Results

	6 Conclusion
	References

	Hardware Trojan Detection Using Effective Test Patterns and Selective Segmentation
	Abstract
	1 Introduction
	2 Related Works
	3 Methodology
	3.1 Calculation of Transition Probability
	3.2 Setting the Threshold Probability
	3.3 Segmentation of Least Transition Probable Nodes
	3.4 Detection of HT
	3.5 Effective Test Vectors to Trigger a LTP Node

	4 Simulation Results and Analysis
	5 Conclusion and Future Work
	References

	Estimation and Tracking of a Ballistic Target Using Sequential Importance Sampling Method
	Abstract
	1 Introduction
	2 Existing Methods
	2.1 The Extended Kalman Filter (EKF)

	3 Objective
	4 Proposed Work
	5 Particle Filter
	6 Noise Analysis
	7 Simulation and Results
	8 Conclusion
	References

	An Android Application for Secret Image Sharing with Cloud Storage
	1 Introduction
	2 Background
	2.1 (k, n) Secret Image Sharing Scheme by Thien and Lin
	2.2 Image Encryption Scheme by Alhusainy

	3 Working of Our Apk in Concern with Preserving the Privacy of Secret Image
	3.1 Proposed (1, k, n) Secret Image Sharing Scheme

	4 Working of Our Apk in Concern with Distribution of Shares to a Group of Participants by the Dealer
	5 Conclusion
	References

	Tracking of GPS Parameters Using Particle Filter
	Abstract
	1 Introduction
	2 Tracking Channel
	3 Code Tracking
	4 Carrier Tracking
	5 Costas Loop
	6 Signal Model
	7 Estimation methods
	7.1 Kalman Filter
	7.2 Particle Filter

	8 Simulation and Results
	9 Conclusion
	References

	Author Index



