
Chapter 9

Ferrous Material Fill: Magnetization Channels,

Layer-by-Layer and Average Permeability,

Element-to-Element Field

Anna A. Sandulyak, Darya A. Sandulyak, Vera A. Ershova, and Alexander V.
Sandulyak

Abstract For the magnetic samples of heterogeneous (including bulk) ferrous-
materials, a qualitative, and according to the data on the demagnetization factor
N of finely dispersed samples quantitative assessment of the volume fraction is
provided for the characteristic intervals γ of the ferrous component. There are three
intervals: the first one is γ ≤ 0.2, the second one is 0.2 < γ ≤ 0.4−0.45, and the third
one is γ > 0.4−0.45 (up to γ � 0.6 for a material filled with "densely packed" gran-
ules or grains). It should be noted that samples of heterogeneous ferrous materials
within the third interval γ, according to the stabilization of N and its proximity to
the N-value for a uniform sample (which indicates a "magnetic splicing" of the fer-
roelements in the heterogenous material), possess the features of a uniform magnetic
sample and, therefore, they fully correspond to the notion of a quasi-uniform object.
Special attention is paid to filling of granules or grains (with their inherently stable
value of γ) as a completely independent class of heterogeneous ferrous materials.

In order to solve the actual problems related to the determination of magnetic
properties for the filling of ferroelements (granules, grains), it is preferable to use the
model of selective, channeled magnetization. At the same time, the concept of this
model implies obtaining necessary theoretical and experimental solutions both for
the channel as a whole and for its parts (conditional cores and tube layers of different
radius). In addition, such key parameters of the model as magnetic permeability
of channel tube layers μ̃ and their cores < μ̃ > (averaged data of μ̃) depending on
their radius and intensity of magnetization field will be analyzed. It is shown the
compliance of experimental data with theoretical data. The physical meaning of
the parameter μ̃ reveals: it corresponds to the relative field strength h in the pores
between granules.
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9.1 Introduction. Qualitative Assessment of Typical Intervals for

the Volume Fraction of a Ferrous Component

Progressive multi-purpose use of various heterogeneous ferrous materials (dispersed,
with a ferrous magnetic component) (Ravnik and Hriberšek, 2013; Nielsch et al,
2002; Lacoste and Lubensky, 2001; Diguet et al, 2010; Anhalt et al, 2008; Anhalt
and Weidenfeller, 2007; Schulz et al, 2010; Bottauscio et al, 2009), including solid
composite and bulk (granular, acinose, powder) materials, magnetic suspensions
and colloids, requires the solution of a number of physical problems. One of those
problems is the determination of the averaged magnetic properties of these materials,
for example, averaged (per volume) magnetic permeability and susceptibility (Ravnik
and Hriberšek, 2013; Nielsch et al, 2002; Diguet et al, 2010; Anhalt et al, 2008;
Anhalt and Weidenfeller, 2007; Ngo and Pileni, 2001; Schulz et al, 2010; Hultgren
et al, 2005; Daniel and Corcolle, 2007; Bottauscio et al, 2009). Furthermore, the
problem of obtaining information on the field between the elements of a ferrous
magnetic material (in particular, between mutually contacting ferrous granules) is
also in high demand, especially for magnetophoresis when magnetizable granular fill
media are used as filter matrices of magnetic separators, analyzers of filter matrices
of magnetic separators and analyzers of ferroimpurities disperse phase of various
media (Sandulyak et al, 2015c, 2017a,c).

From the standpoint of these problems, the issue of universal modeling of such
ferrous materials and their magnetization with obtaining theoretical and experimental
solutions, which simultaneously cover the entire range of volume concentration of
the ferrous magnetic component γ, i.e. within 0 ≤ γ ≤ 1, is recognized as complex,
and hardly solvable. This is due to specific features of ferrous material magnetization
at those or other values of γ, i.e. at any mutual distancing of elements in the ferrous
magnetic component (what determines the degree of mutual magnetic influence for
the ferroelements).

More preferable is to make separately the task definition and solution of specified
problems for the certain characteristic γ intervals. Based on the existing concepts,
there should be three basic γ intervals that are different in their roles. The two of
these are the intervals below and above the critical, percolation transition between
the states of so-called "giant magnetoresistance" and "total" metallic conductivity.
Another one interval corresponds to this very (not abrupt) transition. In this case, the
"giant magnetoresistance" (we should note that this term is not traditional concept
of conventional magnetic resistance but high electrical resistance of a heterogenous
ferrous material sample in a magnetic field exposure) is inherent, of course, to
samples with relatively low γ-values, i.e. with guaranteed mutual separation of
ferroelements in it. And the state of metallic conductivity is caused by the occurrence
and further increase (with increasing γ) in the number of direct contacts between
the ferrous elements, the emergence and increase in the number of "through target"
chains of ferrous granules and ensembles of such chains, up to the limit (inherent in
filling) coordination number of ferroelements.
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9.2 Quantitative Assessment of Characteristic Intervals for the

Volume Fraction of a Ferrous Component and its Values for

the Filling Materials

Convincing concretization of three characteristic intervals for the volume fraction
of ferrous component γ, mainly quantitative, directly follows from the results of
the determination of demagnetization factor N for a fine-grained material sample
(ferrous particles sizes are 3-100 μm Mattei and Floc’h, 2003). Thus, this factor, as
an inherent property of any magnetic sample of certain sizes and shapes, can serve
as a kind of indicator for the mutual magnetic influence of ferroelements during
magnetizing the sample of a heterogenous ferromaterial.

The results (Mattei and Floc’h, 2003) indeed indicate the three typical intervals
of γ, which are given below. The first: γ ≤ 0.2, where N = 0. The second: 0.2 <
γ ≤ 0.4− 0.45, where N is a variable increasing from zero to a certain value. The
third: γ > 0.4−0.45 (and up to the limit value for granular or grained filling medium:
γ � 0.6), here N maintains a stable N-value which is achieved at the end of the
previous γ interval.

Let us give some comments to these statements.

• In the first interval with γ ≤ 0.2 the ferroelements are clearly at a significant mutual
distance within the sample: for the ferroelements of conventionally spherical shape
(π/6γ)1/3 = 1.4 and more times greater than their own size. As a consequence,
they are magnetized fully autonomously, practically without affecting magnetic
influence on each other - with the demagnetizing factor inherent to each individual
ferroelement (rather than the sample as a whole). The absence of such an influence
caused by the segregation of ferroelements does not give reasons to speak here
that such a sample is a magnetic body (due to the absence of N which means the
lack of features for this). In this case it is just a sample representing a "set" of
individual, spatially and functionally scattered ferroelements.

• In the second interval with 0.2 < γ ≤ 0.4−0.45 (characterized by mutual approach
of ferroelements, by appearing of contacts with each other), mutual magnetic
influence already manifests itself judging by the fact that here N � 0. With in-
creasing γ it is amplified and since in this interval the value of N is not yet stable
(varies), we can speak here only that one gets a sample formation as a magnetic
body.

• In the third interval with γ > 0.4−0.45 (characterized by forming a plurality of
mutual contacts between the ferroelements until reaching a maximum possible
coordination number here), the mutual magnetic influence becomes so significant
that, in fact, "magnetic splicing" of ferroelements takes place in the sample. In
this case, it is quite possible to speak already about the fact of magnetic body
formation. Such a sample according to N = const acquires properties of a uniform
magnetic body (a body of a certain shape, for example, cylindrical - with a certain
ratio of length to diameter). Moreover, in studies (Mattei and Floc’h, 2003) with a
fine-grained sample of cylindrical shape (length l = 2 cm and diameter d = 0.4 cm,
hence: l/d = 5) the obtained values of N = 0.058−0.066 were comparable with
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the values of N = 0.04−0.05 for a uniform sample of the same relative dimensions
l/d (Sandulyak et al, 2015a). Such a sample can also be described as a kind of
"uniform" (more accurately - quasi-uniform) sample. In this third interval there
are the so-called "densely packed" (formed during filling into a container) granular
or grained media, constituting a rather extensive class of industrial purpose media.

The structures of granular (grained), in particular, classical poly-spherical media lend
themselves to modeling, especially for known versions of their artificial ordering.
At the same time, basic parameters of such structures are determined in the most
rational way, for example, packing density, porosity, co-ordination number, equivalent
diameter of pores, their tortuosity, etc., only on the basis of a model with fractional
(allowing the presence of conditionally fractional parts of pellet balls) cells of such
structures (Sandulyak et al, 2008, 2016a,b, 2017b,d). These are the quasi-bound
parallelepiped cells with vertices at the centers of eight neighboring pellet balls
which completely satisfy the principle of the structure block layout as a whole. Thus,
for example, the model provides quite expected (in accordance with other models)
values of the volume fraction γ of spheres: from γ � 0.52 for the simplest cubic
packing of spheres to γ = 0.74 for the packing of spheres with a more complex
geometry of their relative position. Hence, the interval of possible γ variation for the
granular (grained) packages, even for artificially ordered ones, is relatively small.

As for the actual and widely used filling of granules (grains), γ interval for them
is further narrowed and it actually equals γ = 0.55− 0.64 (Sandulyak et al, 2008,
2016a,b, 2017b,d; Bennacer et al, 2013; Zhang and M., 2003; Kim and Whittle, 2006).
And within this narrowed γ interval the value of γ has only a weak dependence on
the overall dimensions (diameter D) of the container, where the pellet balls with
a diameter d - ranged as D/d = 4− 30 are filled (Sandulyak et al, 2016b, 2017b).
For a specific value of D/d the said γ interval, essentially, ceases to be such, and
it is degenerated into one or another particular γ-value. In this case, according to
the obtained γ values (average γ � 0.6), there is an objective reason to consider the
filling of granules (grains) close to one of the ordered granules, not the most dense
packing of spheres - with a simple chess-corridor order of their mutual arrangement
(Sandulyak et al, 2008, 2016a,b, 2017b,d).

9.3 Selective (in the Form of Chains of Channels) Magnetization

of Ferrous Material. Concept of Layer-Tube Channels

In order to solve the above-stated problems with respect to the ferrous material in
the form of filling granules or grains ("densely packed", contacting each other), it
is expedient to use the model of channeled magnetization of this ferrous material.
In Sandulyak (1983, 1982, 1984) it was shown that granular ferrous material, in
particular, the poly-ball medium is magnetized in a selective manner through efficient
"elementary" channels in accordance with magnetization direction. Among the set of
granules-links of the branched skeletal structure of the granular medium there are
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always real straight or sinuous chains of granules corresponding to this direction. In
other words, such a medium is a kind of bundle of effective "elementary" channels
that penetrate the fill medium along magnetization direction.

The development of such a model is the concept in Sandulyak (1983, 1984); San-
dulyak et al (2009, 2007, 2010), according to which the effective elementary channels
of magnetization are not equivalent in cross-section but have a definite magnetization
profile (by analogy with the profile of the fluid flow rate in a pipe). So, this channel
(conducting magnetic flux), although it can in principle be characterized by averaged
values of magnetic induction and permeability (Sandulyak, 1982). Nevertheless, in
the cross-section significant differences in the values of these parameters can be
observed.

In other words, if the effective channel is conventionally represented in the form of
concentric layer-tubes, then as the radius increases, the ability to conduct the magnetic
flux decreases. This is due to the fact that the magnetic resistance of each of these
artificially isolated, quasi-uniform tubular layers of the channel’s cross section (Fig.
9.1) is clearly not the same1 (Sandulyak, 1983; Sandulyak et al, 2009). Thus, as the
radius of the "incremental" tubular layer increases, its magnetic resistance increases
due to the increasing distance between the surfaces of adjacent granules-links (Fig.
9.1). As a consequence, the average magnetic permeability of the layer-tubes (and
induction in them) decreases, and, therefore, their ability to conduct magnetic flux
decreases.

Suppose that one thin tube (Fig. 9.1a) of arbitrary radius r is selected artificially
from such effective channel and is considered as quasi-uniform in length. Then we
can operate with such a characteristic as the magnetic permeability of this thin tube
(Sandulyak, 1983, 1984; Sandulyak et al, 2009, 2007). Naturally, tubes of different
radius r will be characterized by different permeability μ̃ (due to a variable thickness
of the space between the balls surfaces), which increases as the channel axis is
approached and decreases as it moves away from it (Fig. 9.1b). This determines the

Fig. 9.1 The module (seg-
ment) of the chain of the balls
with dedicated elementary
layered tube of the effective
magnetization channel (a) and
illustration of the extreme
permeability profile (b) of the
channel in its cross section (in
the radial direction).

1 Hereinafter we mean the magnetic resistance in its classical definition, i.e. as the ratio of the
magnet length to its cross-section and absolute magnetic permeability, but not in the often used,
mentioned earlier, interpretation of the "giant magnetoresistance" - as the relative change in the
electrical resistivity under magnetic conditions.
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presence of a radial, extreme by shape permeability profile μ̃ (and corresponding
induction B) for the effective channel. In this case, according to the mentioned
formal analogy with the velocity profile of a fluid flow in a pipe, the analog of
velocity here is, of course, magnetic induction (as the magnetic flux per area unit).
As for the magnetic permeability - as induction, referred to the product μ0H (where:
μ0 = 4π10−7 H/m - magnetic constant, H - magnetizing field strength), then such a
comparison is valid up to a multiplier 1/μ0H.

The parameters here and hereinafter (in the framework of the channeled magne-
tization model), namely the average permeability of the layer-tubes of an effective
magnetization channel, its cores (and associated average induction in the layer-
tubes and core) are amenable to the corresponding experimental determination and
theoretical calculation.

9.4 Data of the In-Channel (Core and Layer-Tube) Magnetic

Flux, Average Induction, and Permeability

To obtain the necessary information on the magnetization channel and its features one
can experimentally use, for example, magnetizable straight chain of balls (Sandulyak,
1983, 1984; Sandulyak et al, 2007, 2009). It should be like any magnet used to
study the magnetic properties of its material (in this case quasi-uniform material)
sufficiently long, self-sufficient to minimize the demagnetizing factor (as experiments
show - with a number of balls not less than 8-10) magnetized in the solenoid with
greater length.

Then, using the concentric flow-measuring loops of this or that radius r (section
s) placed in the middle of this chain (Fig. 9.2) between adjacent balls of radius R,
and micro-webermeter, one can obtain the data of the corresponding magnetic flux Φ
through each of these loops (Fig. 9.3). However, because of the limited dimensions
of the inter-ball area where the loops are placed from considerations of obtaining
data it is advisable to use balls with increased radius also as close as possible to the
contact point of the granule-balls, for example, R = 16.65 mm (Sandulyak, 1983,
1984; Sandulyak et al, 2007, 2009).

Measured data Φ are the starting point for calculating the average induction
B =Φ/s in the core of a certain radius r and magnetic permeability < μ̃ >= B/μ0H =
Φ/sμ0H of this core (Fig. 9.4). The use hereinafter of unusual designation of the

Fig. 9.2 Magnetizable chain
of the balls with a system of
concentric flow loops located
on the plane of symmetry
between two central balls.



9 Ferrous Material Fill 197

Fig. 9.3 The magnetic flow
data obtained through the
use of loops in the core of
different cross-section (rela-
tive radius) of the effective
channel of magnetization of
the chain of the balls - for
different values of the intensity
of the magnetizing field H, 1 -
H = 18 kA/m, 2 - 36, 3 - 70, 4
- 105, 5 - 140, 6 - 175.

effective magnetization channel quasi-uniform core magnetic permeability, i.e. < μ̃ >,
is semantic. It corresponds to the result of averaging of this channel magnetic
permeability radial profile μ̃ within limits of one or another of its cores.

In connection with the obtaining of field dependencies of induction B and perme-
ability < μ̃ > for various (by radius r and section s) cores (Fig. 9.4, curves 1-4), the
field dependencies of induction B and permeability μm for granular filling media are
of interest (Fig. 9.4, curves 5), as well as the known field dependencies of induction
B and permeability μ for a material close to the ball material - low-alloyed steel (Fig.
9.4, curves 6).

The comparison of all these dependencies clearly illustrates the quite expected
fact: curves B and < μ̃ > for the magnetization channel cores as if fill the vast "vacant"
area between the curves 6 and 5 for poly-ball medium (Fig. 9.4a) and the curves 6
and 5 for the balls material (Fig. 9.4b). Indeed, as the core radius r (relative to the
radius r/R) increases, the induction and permeability curves 1-4 become similar to
the corresponding curves 5 for the poly-ball medium, since in this case the core more
and more reproduces the effective channel of the poly-ball medium. With decreasing
r/R these curves 1-4 approach the corresponding curves 6 for the uniform metal,
since for an increasingly thin core the gap between the granules decreases. In this
case, in the limit (r/R→ 0), a complete concordance of the curves can be expected.
In this case, in order to obtain curves 6 in Fig. 9.4 it would be necessary to use (as it
is hardly possible) such a control uniform sample that would accurately reproduce
the alternation of real untempered and hardened areas (as in balls), or carry out
investigations using annealed balls. At the same time, the available known curve for
B (Fig. 9.4a, curve 6) is an acceptable approximation to the specific curve of our
interest.

Having the field dependencies of induction B and permeability < μ̃ > for various
in-channel cores (Fig. 9.4, curves 1-4), we note a remarkable fact of the decrease
in the values of B and < μ̃ > with an increase in the radius r (relative radius r/R)
of the cores. Thus, already here, i.e. at the stage of the corresponding quantitative
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Fig. 9.4 Field dependencies
of the average induction (a)
in the core of radius r of the
effective magnetization chan-
nel and average permeability
(b) of this core (1 - r/R =
0.17, 2 - 0.42, 3 - 0.59, 4 -
0.87), and here are the corre-
sponding dependencies for the
polishing environment (5) and
low-alloyed steel (6).

characterization of the cores of the magnetization channel magnetic properties (which
deteriorate as they thicken) one can ascertain the existence of the radial profile of this
channel magnetic properties. This is illustrated visually (in particular, in coordinates
< μ̃ > vs. r/R) in Fig. 9.5a (points).

In addition, an indicative evidence (even more visually) of the existence of the
channel magnetic properties profile is the layer-by-layer (for artificial tubes of this
channel) field dependencies B and μ̃ (Fig. 9.6). They characterize the local (corre-
sponding to a certain radius r of layer-tube) level of effective channel magnetization.
To obtain these layer-by-layer field dependencies B and μ̃ (Fig. 9.6) one need, us-
ing the experimental data of magnetic fluxes Φ (Fig. 9.3), just find the difference
data (Φi+1 −Φi) of fluxes between adjacent, i.e. (i+ 1)th and ith concentric loops
of radius ri+1 and ri (cross-section si+1 and si). On the basis of these data it is easy
to obtain the values B = (Φi+1 −Φi)/(si+1 − si), as well as μ̃ = B/μ0H (hereinafter
the previously introduced designation of the layer-tube magnetic permeability is
used: μ̃). Just such local data of induction B and permeability μ̃ at one or another
distance r (relative distance r/R) from the axis of the effective magnetization channel,
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Fig. 9.5: The radial profile of the magnetic permeability of quasi-uniform effective
magnetization channel (a) and average permeability of the core (of a certain radius)
of this channel (b): 1 - H = 18 kA/m, 2 - 36, 3 - 70, 4 - 105, 5 - 140, 6 - 175; points
- experimental data (Figs. 9.4b and 9.6b), lines - calculation from Eqs. (9.1) and
(9.5).

as already stated, reflects the very important property of the channel itself - radial
profile of its magnetization. In particular, as it indirectly follows from the family
of curves B and μ̃ decomposing by r/R (Fig. 9.6), values B and μ̃ for the effective
magnetization channel decreases with increasing of r/R.

More clearly (in particular, in coordinates μ̃ of r/R) the radial profile of the
magnetic properties of the effective magnetization channel can be traced in Fig.
9.5b (points). In this case, note that despite the formal similarity, here the parameter
r/R characterizes not the relative radius of the core-magnet, as it was before, but
the average relative radius of the layer-tube of the effective magnetization channel
(including the minimum in the experiments of a tube with zero internal radius).

9.5 Magnetizing Channel Layer Tubes: Local Permeability,

Radial Profile

To obtain the calculated dependencies characterizing the magnetic properties of quasi-
uniform layer-tubes (in particular, their magnetic permeability μ̃) we first note that in
the space between the adjacent balls of the magnetizable chain of balls, especially at
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Fig. 9.6 The field dependen-
cies of the average induction
(a) in the layer-tube of medium
radius r (between the radiuses
of the cores, including the
smallest core with zero in-
ternal radius) of the effective
magnetization channel and the
average permeability (b) of the
tube layer (1 - r/R = 0.09, 2 -
0.3, 3 - 0.51, 4 - 0.73).

elevated values r/R, of course, there is a barrel-like course of magnetic force lines
(Fig. 9.1a, dashed lines). In this case, according to the law of their refraction, because
of relatively high values of the magnetic permeability of the balls metal these lines
emerge from the ball (and enter to the ball) almost normally to its surface. At the
same time, the magnetic induction vector, which is tangent to the force line, as it
is known, varies not only in direction but also in magnitude. As for the numerical
values of induction, at the output of the magnetic force lines from certain ball points
located at a distance r from the channel axis (Fig. 9.1a) they practically correspond to
the numerical values of induction at the same distance in the middle of the inter-ball
space. In this sense the "form" of magnetization channel layer-tubes is actually close
to cylindrical. Consequently, if we proceed from this justified simplification (Fig.
9.1a), then the problem of obtaining the calculated dependence for the radial profile
of permeability μ̃ becomes completely solvable (Sandulyak, 1983, 1984; Sandulyak
et al, 2007, 2009).

To do this, first, from an infinite set of thin (conditional) concentric layer-tubes of
the effective magnetization channel you should select one tube (Fig. 9.1a) with radius
r and small cross-section s̃, likening it to such a quasi-uniform (along the length) tube



9 Ferrous Material Fill 201

whose magnetic resistance is equivalent to the total resistance of the corresponding
real areas. In this case, the magnetic resistances of a typical link (between adjacent
balls centers) of the quasi-uniform tube, section (sections) of the tube in the body of
adjacent balls and section of this tube between the balls are, respectively,

2R/μ0μ̃s̃, (2R− l)/μ0μs̃, l/μ0 s̃,

where l - tube length between adjacent balls’ surfaces (Fig. 9.1a). Secondly, it is
necessary to take into account the purely geometrical constraint (Fig. 9.1a):

l/2R = 1− [1− (r/R)2]0.5

Then simple transformations of indicated condition for the equivalence of mag-
netic resistances give an expression reflecting the regularity of the change in the
magnetic permeability of quasi-uniform effective magnetization channel in its radial
direction

μ̃ =
μ

μ− √1− (r/R)2(μ−1)
(9.1)

or, in other words, an expression for the radial profile of the channel magnetic
permeability.

Figure 9.5b shows the calculated data μ̃ (lines) obtained by Eq. 9.1, revealing a
bell-shaped profile μ̃ (outwardly similar to the Gaussian normal probability law).
It can be seen that these calculated data μ̃ (lines) are in a good agreement with the
experimental data μ̃ (points), thereby confirming validity of Eq. 9.1 that followed
from the model under consideration.

It must also be said that the value l (Fig. 9.1a) for simplicity can also be expressed
in terms of the distance rx from the point of contact of the balls to the point of
tube intersection with the ball surface, i.e. l = r2

x/R, and for relatively small r it is
often convenient to assume that rx � r. Then an alternative to Eq. (9.1), somewhat
simplified version of the formula for calculating the radial profile of the magnetic
permeability of the effective magnetization channel, will follow:

μ̃ =
μ

1+0.5(r/R)2(μ−1)
(9.2)

Values μ̃ calculated by Eqs. (9.1) and (9.2) are close, especially when r/R ≤ 0.5 and
their difference does not exceed 3-6%.

9.6 Magnetization Channel Core: Average Magnetic

Permeability

The calculated dependencies for the average magnetic permeability < μ̃ > of the
core with the arbitrary radius r of the effective magnetization channel can be found
by typical averaging for such cases, in this case - by averaging the local (for tube
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layers) values of the magnetic permeability μ̃. In this case we can use two obvious
and independent expressions for the magnetic flow through the core:

Φ = μ0 < μ̃ > Hπr2, Φ = μ0H2π

r∫
0

μ̃rdr, (9.3)

from which follows necessary expression for the averaging:

< μ̃ >=
2
r2

r∫
0

μ̃rdr (9.4)

After the corresponding integration, taking into account Eq. (9.1) for μ̃, follows
the formula for the determining of the magnetic permeability < μ̃ > of the certain
core (radius r) of the effective magnetization channel:

< μ̃ >=
2μ

(r/R)2(μ−1)

⎧⎪⎪⎨⎪⎪⎩ μμ−1
ln

⎡⎢⎢⎢⎢⎢⎣μ− (μ−1)

√
1−
( r
R

)2⎤⎥⎥⎥⎥⎥⎦+
√

1−
( r
R

)2
−1

⎫⎪⎪⎬⎪⎪⎭ (9.5)

Figure 9.5a shows the calculated data < μ̃ > (lines) obtained with the use of Eq. (9.5).
It can be seen that these data match previously discussed experimental data < μ̃ >
(points), thereby confirming the validity of this calculation Eq. (9.5), which followed
from the model considered.

A similar integration can also be performed taking into consideration the simplified
Eq. (9.2) for μ̃, this leads to a simplified formula for < μ̃ >:

< μ̃ >�
2μ

(r/R)2(μ−1)
ln
[
1+

1
2

( r
R

)2
(μ−1)

]
(9.6)

Values < μ̃ > calculated in accordance with Eqs. (9.5) and (9.6) are close to each
other. For example, for r/R = 0.5, they differ by 1-2% and even for r/R = 1 - by up
to 7-9%. This indicates the possibility of using (where it makes sense) a simpler Eq.
(9.6) in a wide range of r/R.

If the values of the magnetic permeability of a metal μ ≥ 10−20 are really high
(as it is seen in Fig. 9.4b), Eq. (9.6) can be even more simplified by taking μ � (μ−1),
then

< μ̃ >�
2μ

(r/R)2 ln
[
1+
μ

2

( r
R

)2]
(9.7)

In this case the values < μ̃ > calculated by the simplified Eq. (9.7) and the original
Eq. (9.5) are sufficiently close to each other; up to the limiting experimental values
r/R = 0.87 they differ for not more than 3-4%.
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Fig. 9.7 Illustration of the
generalization of the data in
Fig. 9.3 in the coordinates
according to Eq. (9.8).

9.7 Generalized Dependencies for Comparison of the Calculated

and Experimental Data

The above-mentioned relevance between calculated and experimental data is witness-
ing the accuracy of the model, it can be also judged by the generalized (common)
dependence. Thus, based on the first of the expressions (9.3) and obtained convenient
simplified Eq. (9.7), simplified but still acceptable for the description of all the pri-
mary experimental data which is shown in Fig. 9.3, the expression for the magnetic
flow Φ in the core of the channel is written. The obtained expression presented later
as: [

2
μ

(
exp

Φ

2πR2μ0H
−1
)]0.5
�

r
R

(9.8)

is quite suitable for the generalization of the whole data array.
For the illustration of such generalization (in the form of common dependence)

all the numerous primary experimental data of magnetic flows Φ (Fig. 9.3) and other
data included in (9.8), such as the radius of the flow-measuring loops r, the radius
of balls R, the intensity of the magnetizing field H, magnetic permeability of the
material of the balls μ must be processed in the specific coordinates on which the left
and right parts of Eq. (9.8) point out. In fact, the coordinates here (dimensionless) are
tied to the radius of the flow-measuring loop, as seen by the right side of expression.

Indeed, in such coordinates the experimental and calculated data must obey (and
in fact obey, as seen in Fig. 9.7) to the bisectrix of the right angle of this coordinate
system, and this fact with such a generalized analysis confirms the validity of the
considered model.
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Another example of a demonstrative proof of generalization is similar to the
previous one and here can be used similar approach, also using the first of Eqs. (9.3)
and simplified Eq. (9.7) - to obtain such an expression:

Φ

πR2 � 2μ0H ln
[
1+
μ

2

( r
R

)2]
(9.9)

As seen from the left side of Eq. (9.9), the coordinates of this variant of generalization
are tied to some formal induction (as a magnetic flow through a loop with radius r
and which is related to the cross section of the ball).

Figure 9.8 shows that in such generalizing coordinates, the experimental and
calculated data (here, in contrast to the previous version, in a more dispersed form),
too, are expectedly comply with the bisectrix of the right angle of this coordinate
system, which one more time confirms the validity of the considered model.

Fig. 9.8 Illustration of the
generalization of the data in
Fig. 9.3 in the coordinates
according to Eq. (9.9).

9.8 Magnetization Channel and Harness of the Channels (in the

Ferromaterial Filling): Average Magnetic Permeability

One of the important consequences of Eqs. (9.5)-(9.7) is that they can be used to
obtain the values of the magnetic susceptibility < μ̃ > of the entire effective channel of
magnetization (here - the straightened chain of the pellet balls). For this, in (9.5)-(9.7),
we only need to take r/R = 1, i.e. to use any of these formulas:



9 Ferrous Material Fill 205

< μ̃ > =
2μ
μ−1

(
μ

μ−1
lnμ−1

)
,

< μ̃ > �
2μ
μ−1

ln
(
μ+1

2

)
,

< μ̃ > � 2ln
(
1+
μ

2

)
(9.10)

Equations (9.10) can become the basis for obtaining formulas that allow the cal-
culation of the magnetic susceptibility of the dispersed ferromaterial μm (filling of
granules or grains) - as a harness of the magnetization channels. For this, in Eq.
(9.9) the factor 1.44 (Sandulyak et al, 2007) should be used, taking into account the
difference (note - up to a constant) of the harness of the branched chain channels
(in filling, for example, pellet balls, i.e. in the structure of meandering chains of
granules) in the comparison with the analyzed solitary channel here (in the chain of
rectified pellet balls). Then the desired formulas will be:

μm =
2.9μ
μ−1

(
μ

μ−1
lnμ−1

)
, μm �

2.9μ
μ−1

ln
(
μ+1

2

)
, μm � 2.9ln

(
1+
μ

2

)
(9.11)

Consequently, it becomes possible to describe analytically the magnetization curve
(B vs. H) of such a material - based on the well-known expression

B = μmμ0H, (9.12)

but with the use of Eq. (9.11) for μm. Of course, we must bear in mind that shown
in (9.11) and, consequently, in the corresponding ones, written according to (9.12)
with respect to (9.11), in formulas for the desired average induction B, the magnetic
permeability of the substance of the balls (low-carbon steel) μ has an individual
relationship with the intensity of the magnetizing field H. This can be seen, in
particular, from curve 6 in Fig. 9.4b, the data of which should be taken into account
directly or by means of an additional calculation from the formula:

μ = (Hμ/H)0.9 (9.13)

on the basis that the field dependencies of the magnetic permeability of steels in
the post-extremal region are subject to a power-law coupling of the type (9.13)
(Sandulyak et al, 2010, 2015b), up to the parameter Hμ (here Hμ = 24.4 ·105 A/m).

The calculated field dependencies of the induction B (magnetization curves of
the spherical environment) obtained using Eqs. (9.11) - (9.13) agree with the experi-
mental dependence (Fig. 9.4a, curve 5), which confirms the validity of these (and
preceding) calculation formulas that followed from the considered model.

We note that the representation of the scattered formulas (9.11)-(9.13) in the form
of one or another desired common expression was not realized here because of the
obvious cumbersomeness of this expression. At the same time, it is possible to avoid
such defect if in Eqs. (9.11) it is justified (as for the actually high values of μ, as
seen in Fig. 9.4b), as before, assume that (μ−1) � μ, and also (μ+1) � μ. Then, in
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particular, using Eq. (9.12), the first and the second of Eqs. (9.11) and also Eq. (9.13),
one can obtain such compact original formulas for calculating the magnetization
curve of a granular (grainy) filling environment:

B = 2.9μ0H
(
0.9ln

Hμ
H
−1
)
, B = 2.6μ0H ln

(
0.46

Hμ
H

)
(9.14)

9.9 The Physical Meaning of the Profile Permeability. Relative

Field Strength Between Ferroelements

Equations (9.1) and (9.2) for the magnetic permeability of a layer-tube μ̃ with radius
r, as a matter of fact, turn to become passing decisions of one more key problem.
Thus, they are formulas for calculating the field strength between ferroelements h
(related to the magnetizing, i.e. external field H) at a particular point at a distance r
from the point of contact of ferroelements-balls of radius R in the area between them,
and more exactly:

h
H
= μ̃ =

μ

μ− √1− (r/R)2(μ−1)
,

h
H
= μ̃ �

μ

1+0.5(r/R)2(μ−1)
(9.15)

This, in particular, follows from the identical expressions for magnetic induction: in
the quasi-uniform tube such as B = μ0μ̃H and in the inter-sphere region as B = μ0h.

Actually, the simple expression (relation) obtained here μ̃ = h/H also reveals the
physical meaning of a such parameter, inherent exclusively to the model of channeled
magnetization, as a profile (local, characterizing quasi-uniform layer-tubes) magnetic
permeability μ̃. As already noted, the parameter μ̃ characterizes the relative field
strength in the area between the ferroelements (granules, grains).

On the basis of (9.15), it is not difficult to verify (also using the data in Fig. 9.5b)
which is located in the vicinity of the point of contact of the ferroelements (up to
r/R = 0.4− 0.5): h� H (Fig. 9.9a). In this case, the values of the field strength
between the ferroelements h can significantly differ (Fig. 9.10a) even at relatively
moderate values of the magnetizing (external) field strength H.

Having the calculated Eqs. (9.15), it is not difficult to find the dependencies of the
heterogeneity in the area between ferroelements (they are particular necessary for
magnetophoresis problems), to be more specific, in the radial direction of the plane of
symmetry, i.e. moving away along (by r) from the point of contact of ferroelements
(Fig. 9.1a) - as the derivative dh/dr:∣∣∣∣∣dh

dr

∣∣∣∣∣ RH = μ(μ−1)(r/R)√
1− (r/R)2

[
μ− √1− (r/R)2(μ−1)

]2 (9.16)

∣∣∣∣∣dh
dr

∣∣∣∣∣ RH = μ(μ−1)(r/R)[
1+0.5(r/R)2(μ−1)

]2 (9.17)
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Fig. 9.9 The relative values
of the field strength h/H
(a) and the heterogeneities
|dh/dr|R/H (b) between the
balls-elements of the chain
of balls - as r is moved away
from the point of contact of
the balls for different magnetic
field strength H (magnetic
permeability of the metal of
the balls μ), 1 - H = 40 kA/m
(μ � 40), 2 - H = 55 kA/m
(μ � 30), 3 - H =85 kA/m
(μ � 20).

Fig. 9.10 The same as in Fig.
9.9 but for absolute values of
the field strength h (a) and
heterogeneity |dh/dr| (b) -
with a radius of ferroelements-
balls R = 3 mm.
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An illustration of the dependencies (9.16) and (9.17) which indicates their extreme
form, is shown in Fig. 9.9b. Moreover, from the simplified formula (9.17), and also
using the link (9.13) and assuming, as before (μ−1) � μ, followed by convenient
expressions for the abscissa and the ordinates of the extreme:

( r
R

)
extr
=

1√
1.5(μ−1)

� 0.82
(

H
Hμ

)0.45

, (9.18)

(
dh
dr

R
H

)
extr
= 0.46μ

√
μ−1 � 0.46

(
Hμ
H

)1.35

, (9.19)

Equations (9.15)-(9.19) allow us to obtain important information (and to analyze
it) about the field strength and its heterogeneity both in the relative, dimensionless
(written here and shown in Fig. 9.9a, b), as well as in dimensional form (Fig. 9.10a,
b). In the latter case, i.e. at the corresponding values of the characteristic dimensions
of the ferroelements, in particular, the radius R of the pellet balls (Fig. 9.10a, b),
the user receives an additional amount of necessary information: about the actual
current values of the field strength and its heterogeneity, about the individual values
of the ordinates and abscissas of the extremal values of heterogeneity, the width of
the bands in the area of extremes, etc.

9.10 Conclusions

An attempt has been made to classify heterogenous, disperse ferromaterials based on
the characteristic values of the volume fraction of the ferrocomponent γ. An estimate
was made for the three expressed (especially from the position of the behavior of the
demagnetizing factor of the "short" sample of such material) intervals of γ. In this
case, such classification is due to the corresponding location of the ferroelements
(including contact-less and contact), on which the degree of their mutual magnetic
influence depends.

It has been established that materials in the form of fillings of ferroelements
(granules, grains), as a widespread class of such ferromaterials, are characterized
by practically constant value of γ � 0,6. These materials are of independent interest
for research, in particular, for the purpose of determining the averaged magnetic
properties (magnetic permeability, induction) and obtaining information (especially
important in the field of filtering magnetophoresis) about the field between ferroele-
ments.

Conceptually and in details (on the example of a chain of contacting balls) the
productive model of the channeled magnetization of these "tightly packed" ferro-
materials is stated. It allows us to establish analytical expressions and calculated
dependencies (consistent with the experimental data) for the average magnetic per-
meability of the magnetization channel and its parts (cores, tube layers of different
radius r), and also dispersed ferromaterial as a whole (as a "harness" of branched
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channels). The compliance of the results of the experiments and calculations is also
illustrated in the form of generalizing dependencies.

It is shown that in the physical sense the magnetic permeability of a layer-tube
with radius r of the magnetization channel characterizes the relative (related to the
intensity of the magnetizing field) field strength between contacting ferroelements
(for example, balls) at a distance r from their point of contact. This also makes it
possible to obtain expressions characterizing the heterogeneity of the field between
ferroelements.
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