
Chapter 8

Impact-Induced Internal Resonance Phenomena

in Nonlinear Doubly Curved Shallow Shells with

Rectangular Base

Yury A. Rossikhin (†), Marina V. Shitikova, and Mohammed Salih Khalid

Abstract The problem of the low-velocity impact of an elastic sphere upon a non-
linear doubly curved shallow shell with a rectangular platform is investigated. The
approach utilized in the present paper is based on the fact that during impact only
the modes strongly coupled by some internal resonance condition are initiated. Such
an approach differs from the Galerkin method, wherein resonance phenomena are
not involved. Since is it assumed that shell’s displacements are finite, then the lo-
cal bearing of the shell and impactor’s materials is neglected with respect to the
shell deflection in the contact region. In other words, the Hertz’s theory, which is
traditionally in hand for solving impact problems, is not used in the present study;
instead, the method of multiple time scales is adopted, which is used with much
success for investigating vibrations of nonlinear systems subjected to the conditions
of the internal resonance. The influence of impactor’s mass on the phenomenon of
the impact-induced internal resonance is revealed.

8.1 Introduction

Doubly curved panels are widely used in aeronautics, aerospace and civil engineering
and are subjected to dynamic loads that can cause vibration amplitude of the order of
the shell thickness, giving rise to significant non-linear phenomena (Amabili, 2005;
Alijani and Amabili, 2012; Leissa and Kadi, 1971; Volmir, 1972). A review of the
literature devoted to dynamic behavior of curved panels and shells could be found
in Amabili and Paidoussis (2003); Amabili (2005), wherein it has been emphasized
that free vibrations of doubly curved shallow shells were studied in the majority of
papers either utilizing a slightly modified version of the Donnell’s theory taking into
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account the double curvature (Chia, 1988; Leissa and Kadi, 1971) or the nonlinear
first-order theory of shells (Abe et al, 2000; Kobayashi and Leissa, 1995).

Large-amplitude vibrations of doubly curved shallow shells with rectangular
base, simply supported at the four edges and subjected to harmonic excitation were
investigated in Amabili (2005), while chaotic vibrations were analyzed in Alijani and
Amabili (2012). It has been revealed that such an important nonlinear phenomenon as
the occurrence of internal resonances in the problems considered in Amabili (2005);
Alijani and Amabili (2012) is of fundamental importance in the study of curved
shells.

In spite of the fact that the impact theory is substantially developed, there is
a limited number of papers devoted to the problem of impact over geometrically
nonlinear shells. Literature review on this subject could be found in Kistler and Waas
(1998a,b). An analysis to predict the transient response of a thin, curved laminated
plate subjected to low velocity transverse impact by a rigid object was carried out by
Ramkumar and Thakar (1987), in so doing the contact force history due to the impact
phenomenon was assumed to be a known linear-dependent input to the analysis.
The coupled governing equations, in terms of the Airy stress function and shell
deformation, were solved using Fourier series expansions for the variables.

A methodology for the stability analysis of doubly curved orthotropic shells with
simply supported boundary condition and under impact load from the viewpoint of
nonlinear dynamics was suggested in Zhang et al (2001). The nonlinear governing
differential equations were derived based on a Donnell-type shallow shell theory, and
the displacement was expanded in terms of the eigenfunctions of the linear operator
of the motion equation. To analyze the influence of each single mode on the response
to impact loading, only one term composed of two half-waves was used in developing
the governing equation, whereas the contact force was proposed to be a sine function
during the contact duration.

The review of papers dealing with the impact response of curved panels and shells
shows that a finite element method and such commercial finite element software as
ABAQUS or LS-DYNA and its modifications are the main numerical tools adopted
by many researchers, among them: Chandrashekhara and Schoeder (1995); Liu and
Swaddiwudhipong (1997); Cho et al (2000); Fu et al (2008); Fu and Mao (2008); Fu
et al (2010); Gong et al (1995); Goswami (1998); Antoine and Batra (2015).

Thus, the nonlinear impact response of laminated composite cylindrical and
doubly curved shells was analyzed using a modified Hertzian contact law in Chan-
drashekhara and Schoeder (1995) via a finite element model, which was developed
based on Sander’s shell theory involving shear deformation effects and nonlinearity
due to large deflection. The nonlinear time dependent equations were solved using
an iterative scheme and Newmark’s method. Numerical results for the contact force
and center deflection histories were presented for various impactor conditions, shell
geometry and boundary conditions.

Later large deflection dynamic responses of laminated composite cylindrical shells
under impact have been analyzed in Cho et al (2000) by the geometrically nonlinear
finite element method based on a generalized Sander’s shell theory with the first
order shear deformation and the von Kármán large deflection assumption.
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Nonlinear dynamic response for shallow spherical moderate thick shells with
damage under low velocity impact has been studied in Fu and Mao (2008) by using
the orthogonal collocation point method and the Newmark method to discrete the
unknown variable function in space and in time domain, respectively, and the whole
problem is solved by the iterative method. Further this approach was generalized
for investigating dynamic response of elasto-plastic laminated composite shallow
spherical shell under low velocity impact (Fu et al, 2010), and for functionally graded
shallow spherical shell under low velocity impact in thermal environment (Mao et al,
2011).

The nonlinear transient response of laminated composite shell panels subjected to
low velocity impact in hygrothermal environments was investigated in Swamy Naidu
and Sinha (2005) using finite element method considering doubly curved thick shells
involving large deformations with Green-Lagrange strains. The analysis was carried
out using quadratic eight-noded isoparametric element. A modified Hertzian contact
law was incorporated into the finite element program to evaluate the impact force.
The nonlinear equation was solved using the Newmark average acceleration method
in conjunction with an incremental modified Newton-Raphson scheme. A parametric
study was carried out to investigate the effects of the curvature and side to thickness
ratios of simply supported composite cylindrical and spherical shell panels.

The impact behavior and the impact-induced damage in laminated composite
cylindrical shell subjected to transverse impact by a foreign object were studied
in Kumar et al (2007); Kumar (2010) using three-dimensional non-linear transient
dynamic finite element formulation. Non-linear system of equations resulting from
non-linear strain displacement relation and non-linear contact loading was solved
using Newton-Raphson incremental-iterative method. Some example problems of
graphite/epoxy cylindrical shell panels were considered with variation of impactor
and laminate parameters and influence of geometrical non-linear effect on the impact
response and the resulting damage was investigated.

The Sander’s shallow shell theory in conjunction with the Reissner-Mindlin shear
deformation theory was employed in Maiti and Sinha (1996a) to develop a finite
element analysis procedure to study the impact response of doubly curved laminated
composite shells, in so doing the nine-noded quadratic isoparametric elements of
Lagrangian family were utilized. Modified Hertzian contact law is used to calculate
the contact force. Numerical results were obtained for cylindrical and spherical shells
to investigate the effects of various parameters, such as radius to span ratio, span to
thickness ratio, boundary condition and stacking sequence on the impact behavior of
the target structure (Maiti and Sinha, 1996c,b).

A 4-noded 48 degree-of-freedom doubly curved quadrilateral shell finite element
based on Kirchhoff-Love shell theory was used in Ganapathy and Rao (1998) for
the nonlinear finite element analysis to predict the damage of laminated composite
cylindrical and spherical shell panels subjected to low velocity impact. The large
displacement stiffness matrix was formed using Green’s strain tensor based on total
Lagrangian approach with further utilization of an iterative scheme for solving
resulting nonlinear algebraic equation by Newton-Raphson method. The load due to
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low velocity impact was treated as an equivalent quasi-static load and Hertzian law
of contact was used for finding the peak contact force.

Recently a new approach has been proposed for the analysis of the impact in-
teractions of nonlinear doubly curved shallow shells with rectangular base under
the low-velocity impact by an elastic sphere (Rossikhin et al, 2014). It has been
assumed that the shell is simply supported and partial differential equations have been
obtained in terms of shell’s transverse displacement and Airy’s stress function. The
local bearing of the shell and impactor’s materials has been neglected with respect to
the shell deflection in the contact region. The equations of motion have been reduced
to a set of infinite nonlinear ordinary differential equations of the second order in time
and with cubic and quadratic nonlinearities in terms of the generalized displacements.
Assuming that only two natural modes of vibrations dominate during the process
of impact and applying the method of multiple time scales, the set of equations has
been obtained, which allows one to find the time dependence of the contact force and
to determine the contact duration and the maximal contact force.

In the present paper, the approach proposed by Rossikhin et al (2014) has been
generalized for studying the influence of the impact-induced internal resonances
on the low velocity impact response of a nonlinear doubly curved shallow shell
with rectangular platform. Such an additional nonlinear phenomenon as the internal
resonance could be examined only via analytical treatment, since any of existing
numerical procedures could not catch this subtle phenomenon. Impact-induced
internal resonance phenomena should be studied as their initiation during impact
interaction may lead to the fact that the impacted shell could occur under extreme
loading conditions resulting in its invisible and/or visible damage and even failure.

8.2 Problem Formulation and Governing Equations

In this section, first of all we recall the problem formulation following reasoning
presented in Rossikhin et al (2014, 2015). Assume that a sphere (or a body of arbitrary
shape but with a rounded end) of mass M moves along the z-axis towards a thin-
walled doubly curved shell with thickness h, curvilinear lengths a and b, principle
curvatures kx and ky and rectangular base, as shown in Fig. 8.1. Impact occurs at the
moment t = 0 with the low velocity εV0 at the point N with Cartesian coordinates
x0,y0, where ε is a small dimensionless parameter.

According to the Donnell-Mushtari nonlinear shallow shell theory, the equations
of motion could be obtained in terms of lateral deflection w and Airy’s stress function
φ (Mushtari and Galimov, 1957)

D
h

(
∂4w
∂x4 +2

∂4w
∂x2∂y2 +

∂4w
∂y4

)
=
∂2w
∂x2
∂2φ

∂y2 +
∂2w
∂y2
∂2φ

∂x2 −2
∂2w
∂x∂y

∂2φ

∂x∂y

+ky
∂2φ

∂x2 + kx
∂2φ

∂y2 +
F
h
−ρẅ, (8.1)
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Fig. 8.1 Geometry of a doubly
curved shallow shell.

1
E

(
∂4φ

∂x4 +2
∂4φ

∂x2∂y2 +
∂4φ

∂y4

)
= −∂

2w
∂x2
∂2w
∂y2 +

(
∂2w
∂x∂y

)2
− ky
∂2w
∂x2 − kx

∂2w
∂y2 , (8.2)

where D = Eh3

12(1−ν2) is the cylindrical rigidity, ρ is the density, E and ν are the elastic
modulus and Poisson’s ratio, respectively, t is time, F = P(t)δ(x− x0)δ(y− y0) is the
contact force, P(t) is yet unknown function, δ is the Dirac delta function, x and y are
Cartesian coordinates, overdots denote time-derivatives, φ(x,y) is the stress function
which is the potential of the in-plane force resultants

Nx = h
∂2φ

∂y2 , Ny = h
∂2φ

∂x2 , Nxy = −h
∂2φ

∂x∂y
. (8.3)

The equation of motion of the sphere is written as

Mz̈ = −P(t) (8.4)

subjected to the initial conditions

z(0) = 0, ż(0) = εV0, (8.5)

where z(t) is the displacement of the sphere, in so doing

z(t) = w(x0,y0, t). (8.6)

Considering a simply supported shell with movable edges, the following condi-
tions should be imposed at each edge:
at x = 0, a
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w = 0,

b∫
0

Nxydy = 0, Nx = 0, Mx = 0, (8.7)

and at y = 0, b

w = 0,

a∫
0

Nxydx = 0, Ny = 0, My = 0, (8.8)

where Mx and My are the moment resultants.
The suitable trial function that satisfies the geometric boundary conditions is

w(x,y, t) =
p̃∑

p=1

q̃∑
q=1

ξpq(t) sin
( pπx

a

)
sin
(qπy

b

)
, (8.9)

where p and q are the number of half-waves in x and y directions, respectively, and
ξpq(t) are the generalized coordinates. Moreover, p̃ and q̃ are integers indicating the
number of terms in the expansion. Substituting (8.9) in (8.6) and using (8.4), we
obtain

P(t) = −M
p̃∑

p=1

q̃∑
q=1

ξ̈pq(t) sin
( pπx0

a

)
sin
(qπy0

b

)
. (8.10)

In order to find the solution of the set of Eqs. (8.1) and (8.2), it is necessary first
to obtain the solution of Eq. (8.2). For this purpose, let us substitute (8.9) in the
right-hand side of Eq. (8.2) and seek the solution of the equation obtained in the form

φ(x,y, t) =
m̃∑

m=1

ñ∑
n=1

Amn(t) sin
(mπx

a

)
sin
(nπy

b

)
, (8.11)

where Amn(t) are yet unknown functions.
Substituting (8.9) and (8.11) in Eq. (8.2) and using the orthogonality conditions

of sines within the segments 0 ≤ x ≤ a and 0 ≤ y ≤ b, we have

Amn(t) =
E
π2 Kmnξmn(t)+

4E
a3b3

(
m2

a2 +
n2

b2

)−2∑
k

∑
l

∑
p

∑
q

Bpqklmnξpq(t)ξkl(t),

(8.12)
where

Bpqklmn = pqklB(2)
pqklmn− p2l2B(1)

pqklmn,

B(1)
pqklmn=

a∫
0

b∫
0

sin
( pπx

a

)
sin
(qπy

b

)
sin
(

kπx
a

)
sin
(

lπy
b

)
sin
(mπx

a

)
sin
(nπy

b

)
dxdy,

B(2)
pqklmn=

a∫
0

b∫
0

cos
( pπx

a

)
cos
(qπy

b

)
cos
(

kπx
a

)
cos
(

lπy
b

)
sin
(mπx

a

)
sin
(nπy

b

)
dxdy,
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Kmn =

(
ky

m2

a2 + kx
n2

b2

)2 (m2

a2 +
n2

b2

)−2

.

Substituting then (8.9)–(8.12) in Eq. (8.1) and using the orthogonality condition
of sines within the segments 0 ≤ x ≤ a and 0 ≤ y ≤ b, we obtain an infinite set of
coupled nonlinear ordinary differential equations of the second order in time for
defining the generalized coordinates

ξ̈mn(t)+Ω2
mnξmn(t)+

8π2E
a3b3ρ

∑
p

∑
q

∑
k

∑
l

Bpqklmn

(
Kkl−1

2
Kmn

)
ξpq(t)ξkl(t)

+
32π4E
a6b6ρ

∑
r

∑
s

∑
i

∑
j

∑
k

∑
l

∑
p

∑
q

Brsi jmnBpqkli jξrs(t)ξpq(t)ξkl(t)

+
4M

abρh
sin
(mπx0

a

)
sin
(nπy0

b

)∑
p

∑
q

ξ̈pq(t) sin
( pπx0

a

)
sin
(qπy0

b

)
=0, (8.13)

where Ωmn is the natural frequency of the mnth mode of the shell vibration defined
as

Ω2
mn =

E
ρ

⎡⎢⎢⎢⎢⎢⎣ π4h2

12(1− ν2)

(
m2

a2 +
n2

b2

)2
+Kmn

⎤⎥⎥⎥⎥⎥⎦ . (8.14)

The last term in each equation from (8.13) describes the influence of the coupled
impact interaction of the target with the impactor of the mass M applied at the point
with the coordinates x0, y0.

Note that at M = 0 Eqs. (8.13) are reduced to the equations describing free
vibrations of shallow shells with a rectangular platform, which have been proposed in
Kobayashi and Leissa (1995); Leissa and Kadi (1971) and wherein curvature effects
on shallow shell vibrations, and in particular on natural frequencies (8.14), have been
studied.

It is known (Anderson et al, 1994; Nayfeh, 1973a) that during nonstationary
excitation of thin bodies not all possible modes of vibration would be excited.
Moreover, the modes which are strongly coupled by any of the so-called internal
resonance conditions are initiated and dominate in the process of vibration, in so
doing the types of modes to be excited are dependent on the character of the external
excitation.

Thus, in order to study the additional nonlinear phenomenon induced by the
coupled impact interaction due to Eq. (8.13), we suppose that only two natural modes
of vibrations are excited during the process of impact, namely, Ωαβ and Ωγδ.

Then the set of Eqs. (8.13) is reduced to the following two nonlinear differential
equations (Rossikhin et al, 2014):

p11ξ̈αβ+ p12ξ̈γδ+Ω
2
αβξαβ+ p13ξ

2
αβ+ p14ξ

2
γδ+ p15ξαβξγδ+ p16ξ

3
αβ+ p17ξαβξ

2
γδ = 0,

(8.15)
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p21ξ̈αβ+ p22ξ̈γδ+Ω
2
γδξγδ+ p23ξ

2
γδ+ p24ξ

2
αβ+ p25ξαβξγδ+ p26ξ

3
γδ+ p27ξ

2
αβξγδ = 0,

(8.16)
where

p11 = 1+
4M
ρhab

s2
1, p22 = 1+

4M
ρhab

s2
2, p12 = p21 =

4M
ρhab

s1s2,

s1 = sin
(
απx0

a

)
sin
(
βπy0

b

)
, s2 = sin

(
γπx0

a

)
sin
(
δπy0

b

)
,

p13 =
8π2E
a3b3ρ

Bαβαβαβ
1
2

Kαβ, p14 =
8π2E
a3b3ρ

Bγδγδαβ

(
Kγδ− 1

2
Kαβ

)
,

p15 =
8π2E
a3b3ρ

[
Bγδαβαβ

1
2

Kαβ+Bαβγδαβ

(
Kγδ− 1

2
Kαβ

)]
,

p23 =
8π2E
a3b3ρ

Bαβαβγδ

(
Kαβ− 1

2
Kγδ

)
, p24 =

8π2E
a3b3ρ

Bγδγδγδ
1
2

Kγδ,

p25 =
8π2E
a3b3ρ

[
Bαβγδγδ

1
2

Kγδ+Bγδαβγδ

(
Kαβ− 1

2
Kγδ

)]
,

p16 =
32π2E
a3b3ρ

∑
i

∑
j

Bαβi jαβBαβαβi j, p26 =
32π2E
a3b3ρ

∑
i

∑
j

Bγδi jγδBγδγδi j,

p17 =
32π2E
a3b3ρ

∑
i

∑
j

(
Bαβi jαβBγδγδi j+Bγδi jαβBαβγδi j+Bγδi jαβBγδαβi j

)
,

p27 =
32π2E
a3b3ρ

∑
i

∑
j

(
Bαβi jγδBγδγδi j+Bγδi jγδBαβγδi j+Bγδi jγδBγδαβi j

)
.

8.3 Method of Solution

In order to solve a set of two nonlinear Eqs. (8.15) and (8.16), we apply the method
of multiple time scales (Nayfeh, 1973b) via the following expansions:

ξi j(t) = εX1
i j(T0,T1,T2)+ε2X2

i j(T0,T1,T2)+ε3X3
i j(T0,T1,T2), (8.17)

where i j = αβ or γδ, Tn = ε
nt are new independent variables, among them: T0 = t

is a fast scale characterizing motions with the natural frequencies, and T1 = εt and
T2 = ε

2t are slow scales characterizing the modulation of the amplitudes and phases
of the modes with nonlinearity.

Considering that

d2

dt2 = D2
0+2εD0D1+ε

2
(
D2

1+2D0D2
)
,
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where i j = αβ or γδ, and Dn
i = ∂

n/∂T n
i (n = 1,2, i = 0,1), and substituting the

proposed solution (8.17) in (8.15) and (8.16), after equating the coefficients at like
powers of ε to zero, we are led to a set of recurrence equations to various orders:
to order ε

p11D2
0X1

1 + p12D2
0X1

2 +Ω
2
1X1

1 = 0, (8.18)

p21D2
0X1

1 + p22D2
0X1

2 +Ω
2
2X1

2 = 0; (8.19)

to order ε2

p11D2
0X2

1 + p12D2
0X2

2 +Ω
2
1X2

1 = −2p11D0D1X1
1 −2p12D0D1X1

2

− p13(X1
1)2− p14(X1

2)2− p15X1
1 X1

2 , (8.20)

p21D2
0X2

1 + p22D2
0X2

2 +Ω
2
2X2

2 = −2p21D0D1X1
1 −2p22D0D1X1

2

− p23(X1
1)2− p24(X1

2)2− p25X1
1 X1

2 , (8.21)

to order ε3

p11D2
0X3

1 + p12D2
0X3

2 +Ω
2
1X3

1 = −2p11D0D1X2
1 −2p12D0D1X2

2

− p11
(
D2

1+2D0D2
)
X1

1 − p12
(
D2

1+2D0D2
)
X1

2 −2p13X1
1 X2

1

− 2p14X1
2 X2

2 − p15
(
X1

1 X2
2 +X2

1 X1
2

)
− p16

(
X1

1

)3− p17X1
1

(
X1

2

)2
, (8.22)

p21D2
0X3

1 + p22D2
0X3

2 +Ω
2
2X3

2 = −2p21D0D1X2
1 −2p22D0D1X2

2

− p21
(
D2

1+2D0D2
)
X1

1 − p22
(
D2

1+2D0D2
)
X1

2 −2p23X1
2 X2

2

− 2p24X1
1 X2

1 − p25
(
X1

1 X2
2 +X2

1 X1
2

)
− p26

(
X1

2

)3− p27
(
X1

1

)2
X1

2 , (8.23)

where for simplicity is it denoted X1
1 = X1

αβ, X1
2 = X1

γδ, X2
1 = X2

αβ , X2
2 = X2

γδ, Ω1 =Ωαβ,
and Ω2 = Ωγδ.

8.3.1 Solution of Equations at Order of ε

We seek the solution of (8.18) and (8.19) in the form:

X1
1 = A1 (T1,T2) eiω1T0 +A2 (T1,T2)eiω2T0 + cc, (8.24)

X1
2 = α1A1 (T1,T2) eiω1T0 +α2A2 (T1,T2)eiω2T0 + cc, (8.25)

where A1(T1,T2) and A2(T1,T2) are unknown complex functions, cc is the complex
conjugate part to the preceding terms, and Ā1(T1,T2) and Ā2(T1,T2) are their complex
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conjugates, ω1 and ω2 are unknown frequencies of the coupled process of impact
interaction of the impactor and the target, and α1 and α2 are yet unknown coefficients.

Substituting (8.24) and (8.25) in (8.18) and (8.19) and gathering the terms with
eiω1T0 and eiω2T0 yield(
−p11ω

2
1− p12α1ω

2
1+Ω

2
1

)
A1eiω1T0+

(
−p11ω

2
2− p12α2ω

2
2+Ω

2
1

)
A2eiω2T0+cc= 0,

(8.26)

(
−p21ω

2
1− p22α1ω

2
1+α1Ω

2
2

)
A1eiω1T0+

(
−p21ω

2
2− p22α2ω

2
2+Ω

2
2α2
)
A2eiω2T0+cc= 0.

(8.27)
In order to satisfy Eqss (8.26) and (8.27), it is a need to vanish to zero each bracket

in these equations. As a result, from four different brackets we have

α1 = −
p11ω

2
1−Ω2

1

p12ω
2
1

, (8.28)

α1 = −
p21ω

2
1

p22ω
2
1−Ω2

2

, (8.29)

α2 = −
p11ω

2
2−Ω2

1

p12ω
2
2

, (8.30)

α2 = −
p21ω

2
2

p22ω
2
2−Ω2

2

. (8.31)

Since the left-hand side parts of relationships (8.28) and (8.29), as well as (8.30)
and (8.31) are equal, then their right-hand side parts should be equal as well. Now
equating the corresponding right-hand side parts of (8.28), (8.29) and (8.30), (8.31),
we are led to one and the same characteristic equation for determining the frequencies
ω1 and ω2: (

Ω2
1 − p11ω

2
) (
Ω2

2 − p22ω
2
)
− p2

12ω
4 = 0, (8.32)

hence it follows that

ω2
1,2 =

(
p22Ω

2
1 + p11Ω

2
2

)
±
√(

p22Ω
2
1 − p11Ω

2
2

)2
+4Ω2

1Ω
2
2 p2

12

2
(
p11 p22− p2

12

) . (8.33)

Reference to relationships (8.33) shows that the frequencies of the mechanical
system "target+impactor", ω1 and ω2, depend on the natural frequencies of the target,
Ω1 and Ω2, and coefficients p11, p12 and p22, which in their turn depend on the
impactor’s mass M and coordinates of the point of impact. Therefore, as the impactor
mass M→ 0, the frequencies ω1 and ω2 tend to the natural frequencies of the shell
vibrations Ω1 and Ω2, respectively. Coefficients s1 and s2 depend on the numbers of
the natural modes involved in the process of impact interaction, αβ and γδ, and on
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the coordinates of the contact force application x0, y0, resulting in the fact that their
particular combinations could vanish coefficients s1 and s2 and, thus, coefficients
p12= p21= 0.

8.3.2 Solution of Equations at Order of ε2

Now substituting (8.24) and (8.25) in (8.20) and (8.21), we obtain

p11D2
0X2

1 + p12D2
0X2

2 +Ω
2
1X2

1 = −2iω1(p11+α1 p12)eiω1T0 D1A1

−2iω2(p11+α2 p12)eiω2T0 D1A2− (p13+α
2
1 p14+α1 p15)A1

[
A1e2iω1T0 + Ā1

]
−(p13+α

2
2 p14+α2 p15)A2

[
A2e2iω2T0 + Ā2

]
−2
[
p13+α1α2 p14+ (α1+α2)p15

]
A1
[
A2ei(ω1+ω2)T0 + Ā2ei(ω1−ω2)T0

]
+ cc,

(8.34)

p21D2
0X2

1 + p22D2
0X2

2 +Ω
2
2X2

2 = −2iω1(p21+α1 p22)eiω1T0 D1A1

−2iω2(p21+α2 p22)eiω2T0 D1A2−(p23+α
2
1 p24+α1 p25)A1

[
A1e2iω1T0 + Ā1

]
−(p23+α

2
2 p24+α2 p25)A2

[
A2e2iω2T0 + Ā2

]
−2
[
p23+α1α2 p24+ (α1+α2)p25

]
A1
[
A2ei(ω1+ω2)T0 + Ā2ei(ω1−ω2)T0

]
+ cc.

(8.35)
Reference to Eqs. (8.34) and (8.35) shows that the following two-to-one internal
resonance could occur:

ω1 = 2ω2. (8.36)

8.3.3 Impact-induced internal resonance ω1 = 2ω2

Suppose that, when the frequencies ω1 and ω2 are coupled by the two-to-one in-
ternal resonance (8.36), the functions A1 and A2 depend only on the time T1. Then
Eqs. (8.34) and (8.35) could be rewritten in the following form:

p11D2
0X2

1 + p12D2
0X2

2 +Ω
2
1X2

1 = B1 exp(iω1T0)+B2 exp(iω2T0)+Reg+ cc, (8.37)

p21D2
0X2

1 + p22D2
0X2

2 +Ω
2
2X2

2 = B3 exp(iω1T0)+B4 exp(iω2T0)+Reg+ cc, (8.38)

where all regular terms are designated by Reg, and

B1 = −2iΩ2
1ω
−1
1 D1A1−

(
p13+α

2
2 p14+α2 p15

)
A2

2,



160 Yury A. Rossikhin (†), Marina V. Shitikova, and Mohammed Salih Khalid

B2 = −2iΩ2
1ω
−1
2 D1A2−2[p13+α1α2 p14+ (α1+α2) p15]A1Ā2,

B3 = −2iΩ2
2ω
−1
1 α1D1A1−

(
p23+α

2
2 p24+α2 p25

)
A2

2,

B4 = −2iΩ2
2ω
−1
2 α2D1A2−2[p23+α1α2 p24+ (α1+α2) p25]A1Ā2.

Let us show that the terms with the exponents exp(±iωiT0) (i = 1,2) produce
circular terms. For this purpose we choose a particular solution in the form

X2
1 p =C1 exp(iω1T0)+ cc,

X2
2 p =C2 exp(iω1T0)+ cc, (8.39)

or
X2

1 p =C′1 exp(iω2T0)+ cc,
X2

2 p =C′2 exp(iω2T0)+ cc, (8.40)

where C1, C2 and C′1, C′2 are arbitrary constants.
Substituting the proposed solution (8.39) or (8.40) in (8.37) and (8.38), we are led

to the following sets of equations, respectively:⎧⎪⎪⎨⎪⎪⎩p12ω
2
1 (α1C1−C2) = B1,

p21ω
2
1

(
−C1+

1
α1

C2
)
= B3,

(8.41)

or ⎧⎪⎪⎨⎪⎪⎩p12ω
2
2

(
α2C′1−C′2

)
= B2,

p21ω
2
2

(
−C′1+

1
α2

C′2
)
= B4.

(8.42)

From the sets of Eqs. (8.41) and (8.42) it is evident that the determinants comprised
from the coefficients standing at C1, C2 and C′1, C′2 are equal to zero, therefore, it is
impossible to determine the arbitrary constants C1, C2 and C′1, C′2 of the particular
solutions (8.39) and (8.40), what proves the above proposition concerning the circular
terms.

In order to eliminate the circular terms, the terms proportional to eiω1T0 and eiω2T0

should be vanished to zero putting Bi = 0 (i = 1,2,3,4). So we obtain four equations
for defining two unknown amplitudes A1(t) and A2(t). However, it is possible to show
that not all of these four equations are linear independent from each other. For this
purpose, let us first apply the operators (p22D2

0 +Ω
2
2) and (−p12D2

0) to (8.37) and
(8.38), respectively, and then add the resulting equations. This procedure will allow
us to eliminate X2

2. If we apply the operators (−p12D2
0) and (p11D2

0 +Ω
2
1) to (8.37)

and (8.38), respectively, and then add the resulting equations. This procedure will
allow us to eliminate X2

1 . Thus, we obtain[
(p11 p22−p2

12)D4
0+(p11Ω

2
2+p22Ω

2
1)D2

0+Ω
2
1Ω

2
2

]
X2

1

=
[
(p22D2

0+Ω
2
2)B1− p12D2

0B3
]
exp(iω1T0)

+
[
(p22D2

0+Ω
2
2)B2− p12D2

0B4
]
exp(iω2T0)+Reg+ cc,

(8.43)
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[
(p11 p22−p2

12)D4
0+(p11Ω

2
2+p22Ω

2
1)D2

0+Ω
2
1Ω

2
2

]
X2

2

=
[
−p12D2

0B1+ (p11D2
0+Ω

2
1)B3
]
exp(iω1T0)

+
[
−p12D2

0B2+ (p11D2
0+Ω

2
1)B4
]
exp(iω2T0)+Reg+ cc.

(8.44)

To eliminate the circular terms from Eqs. (8.43) and (8.44), it is necessary to vanish
to zero the terms in each square bracket. As a result we obtain⎧⎪⎪⎨⎪⎪⎩(Ω

2
2 − p22ω

2
1)B1+ p12ω

2
1B3 = 0

p12ω
2
1B1+ (Ω2

1 − p11ω
2
1)B3 = 0

(8.45)

and ⎧⎪⎪⎨⎪⎪⎩(Ω
2
2 − p22ω

2
2)B2+ p12ω

2
2B4 = 0

p12ω
2
2B2+ (Ω2

1 − p11ω
2
2)B4 = 0

(8.46)

From Eqs. (8.45) and (8.46) it is evident that the determinant of each set of
equations is reduced to the characteristic Eq. (8.32), whence it follows that each
pair of equations is linear dependent, therefore for further treatment we should take
only one equation from each pair in order that these two chosen equations are to be
linear independent. Thus, for example, taking the first equations from each pair and
considering relationships (8.29) and (8.31), we have

B1+α1B3 = 0, (8.47)

B3+α2B4 = 0. (8.48)

Substituting values of B1-B4 in (8.47) and (8.48), we obtain the following solv-
ability equations:

2iω1k1D1A1+b1A2
2 = 0, (8.49)

2iω2k2D1A2+b2A1Ā2 = 0, (8.50)

where

ki =
Ω2

1 +α
2
iΩ

2
2

ω2
i

(i = 1,2), b1 = p13+α
2
2 p14+α2 p15+α1(p23+α

2
2 p24+α2 p25),

b2 = 2 {p13+α1α2 p14+ (α1+α2)p15+α2[p23+α1α2 p24+ (α1+α2)p25]} .
Let us multiply Eqs. (8.49) and (8.50) by Ā1 and Ā2, respectively, and find their

complex conjugates. After adding every pair of the mutually adjoint equations with
each other and subtracting one from another, as a result we obtain

2iω1
(
Ā1D1A1−A1D1Ā1

)
+

b1

k1

(
A2

2Ā1+Ā2
2A1
)
=0, (8.51)
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2iω1
(
Ā1D1A1+A1D1Ā1

)
+

b1

k1

(
A2

2Ā1−Ā2
2A1
)
=0, (8.52)

2iω2
(
Ā2D1A2−A2D1Ā2

)
+

b2

k2

(
A1Ā2

2+Ā1A2
2

)
=0, (8.53)

2iω2
(
Ā2D1A2+A2D1Ā2

)
+

b2

k2

(
A1Ā2

2−Ā1A2
2

)
=0. (8.54)

Representing A1(T1) and A2(T1) in Eqs. (8.51)–(8.54) in the polar form

Ai(T1) = ai(T1)eiϕi(T1) (i = 1,2), (8.55)

we are led to the system of four nonlinear differential equations in a1(T1), a2(T1),
ϕ1(T1), and ϕ2(T1)

(a2
1). = − b1

k1ω1
a1a2

2 sinδ, (8.56)

ϕ̇1− b1

2k1ω1
a−1

1 a2
2 cosδ = 0, (8.57)

(a2
2). =

b2

k2ω2
a1a2

2 sinδ, (8.58)

ϕ̇2− b2

2k2ω2
a1 cosδ = 0, (8.59)

where δ = 2ϕ2−ϕ1, and a dot denotes differentiation with respect to T1.
From Eqs. (8.56) and (8.58) we could find that

b2

k2ω2
(a2

1).+
b1

k1ω1
(a2

2). = 0. (8.60)

Multiplying Eq. (8.60) by MV0 and integrating over T1, we obtain the first integral
of the set of Eqs. (8.56)–(8.59), which is the law of conservation of energy,

MV0

(
b2

k2ω2
a2

1+
b1

k1ω1
a2

2

)
= K0, (8.61)

where K0 is the initial energy. Considering that K0 =
1
2 MV2

0 , Eq. (8.61) is reduced to
the following form:

b2

k2ω2
a2

1+
b1

k1ω1
a2

2 =
V0

2
. (8.62)

Let us introduce into consideration a new function ξ(T1) in the following form:

a2
1 =

k2ω2

b2
E0ξ(T1), a2

2 =
k1ω1

b1
E0
[
1− ξ(T1)

]
, (8.63)

where E0 = V0/2.
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It is easy to verify by the direct substitution that Eqs. (8.63) satisfy Eq. (8.62),
while the value ξ0 = ξ(0) (0 ≤ ξ(0) ≤ 1) governs the energy distribution between two
subsystems, X1

1 and X1
2 , at the moment of impact. Substituting (8.63) in (8.56) yields

ξ̇ = −b
√
ξ(1− ξ) sinδ, (8.64)

where

b =

√
b2

k2ω2

√
E0.

Subtracting Eq. (8.57) from the doubled Eq. (8.59), we have

δ̇ = −b
1−3ξ
2
√
ξ

cosδ. (8.65)

Equation (8.65) could be rewritten in another form considering that

δ̇ =
dδ
dξ
ξ̇,

or with due account for (8.64)

δ̇ = −dδ
dξ

b
√
ξ(1− ξ) sinδ. (8.66)

Substituting (8.66) in Eq. (8.65) yields

√
ξ(1− ξ)d cosδ

dξ
+

1−3ξ
2
√
ξ

cosδ = 0. (8.67)

Integrating (8.67), we have

cosδ =
G0√
ξ(1− ξ) , (8.68)

where G0 is a constant of integration to be determined from the initial conditions.
Based on relationship (8.68), it is possible to introduce into consideration the

stream function G(δ,ξ) of the phase fluid on the plane δξ such that

G(δ,ξ) =
√
ξ(1− ξ)cosδ =G0, (8.69)

which is one more first integral of the set of Eqs. (8.56)–(8.59). It is easy to verify
that the function (8.69) is really a stream function, since

vδ = δ̇ = −b
∂G
∂ξ
, vξ = ξ̇ = b

∂G
∂δ
. (8.70)

It is interesting to note that the stream function G(δ,ξ) (8.69) obtained for the doubly
curved shallow shell being under conditions of the two-to-one internal resonance
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coincides with that for a suspension bridge subjected to the two-to-one internal
resonance analyzed in Rossikhin and Shitikova (1995).

In order to find the T1-dependence of ξ, it is necessary to express sinδ in terms of
ξ in Eq. (8.64) with a help of relationship (8.68). As a result we obtain

ξ̇ = −b
√
ξ(1− ξ)2−G2

0,

or
ξ∫
ξ0

dξ√
ξ3−2ξ2+ ξ−G2

0

= −bT1, (8.71)

where ξ0 is the initial magnitude of the function ξ = ξ(T1). In other words, the
calculation of the T1-dependence of ξ is reduced to the calculation of the incomplete
elliptic integral in the left hand-side of (8.71).

For the case of two-to-one internal resonance (8.36), the stream-function G(ξ,δ)
is constructed according to (8.69), and its phase portrait showing the stream-lines of
the phase fluid in the phase plane ξ− δ is presented in Fig. 8.2, which for the first
time was presented in Rossikhin and Shitikova (1995) for the two-to-one internal
resonance during nonlinear vibrations of suspension bridges. Magnitudes of G are

Fig. 8.2: Phase portrait: ω1 = 2ω2.

indicated by digits near the curves which correspond to the stream-lines; the flow
direction of the phase fluid elements are shown by arrows on the stream-lines.
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Figure 8.2 shows that the phase fluid flows within the circulation zones, which
tend to be located around the perimeter of the rectangles bounded by the lines ξ = 0,
ξ = 1, and δ = ±(π/2)±2πn (n = 0,1,2, ...). As this takes place, the flow in each such
rectangle becomes isolated. On all four rectangle sides G = 0 and inside it, the value
G preserves its sign. The function G attains its extreme magnitudes at the points with
the coordinates ξ = 1

3 , δ = ±πn (n = 0,1,2, ...). Stream-lines give a pictorial estimate
of the connection of G with all types of the energy-exchange mechanism. Thus,
the points with the coordinates ξ0 = 1

3 , δ0 = ±πn (n = 0,1,2, ...) correspond to the
stationary regime, since δ̇ = 0 and ξ̇ = 0 according to (8.64) and (8.65). The stationary
points ξ0 = 1

3 , δ0 = ±πn are centers, as with a small deviation from a center, a phase
element begins to move around the stationary point along a closed trajectory. Closed
stream-lines correspond to the periodic change of both amplitudes and phases.

Along the lines δ = ±(π/2)±2πn (n = 0,1,2, ...) pure amplitude modulated aperi-
odic motions are realized, since with an increase in time t from 0 to ∞ the value ξ
increases from ξ0 to 1 (along the line δ = −π/2) or decreases from ξ0 to 0 (along the
line δ = π/2), and from Eq. (8.64) it follows that

ξ =

[
1+
√
ξ0− (1− √ξ0)exp(−b

√
E0 T1)

1+
√
ξ0+ (1− √ξ0)exp(−b

√
E0 T1)

]2
, (8.72)

δ(T1) = δ0 =
π

2
±πn, n = 0,1,2, ...

Along the line ξ = 1 only phase modulated motions are realized, because when
ξ = ξ0 = 1 the amplitudes a1 = const and a2 = 0, and from (8.64) and (8.65) we could
find that

b
√

E0 T1 = ln
tan
(
δ
2 +

π
4

)
tan
(
δ0
2 +

π
4

) , ξ(T1) = ξ0 = 1. (8.73)

The transition of fluid elements from the points ξ = 0, δ = π/2±2πn to the points
ξ = 0, δ = −π/2±2πn proceeds instantly, because according to the distribution of the
phase velocity (8.70) along the section δ = 0 the magnitude of v tends to infinity as
ξ→ 0. The distribution of the velocity along the vertical lines δ = ±πn (n = 0,1,2, ...)
has the aperiodic character, while in the vicinity of the line ξ = 1/3 it possesses the
periodic character.

8.3.3.1 Initial Conditions

In order to construct the final solution of the problem under consideration, i.e. to
solve the set of Eqs. (8.56)–(8.59) involving the functions a1(T1), a2(T1), or ξ(T1),
as well as ϕ1(T1), and ϕ2(T1), or δ(T1), it is necessary to use the initial conditions

w(x,y,0) = 0, (8.74)
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ẇ(x0,y0,0) = εV0, (8.75)

b2

k2ω2
a2

1(0)+
b1

k1ω1
a2

2(0) = E0. (8.76)

The two-term relationship for the displacement w (8.9) within an accuracy of ε
according to (8.17) has the form

w(x,y, t) = ε
[
X1
αβ(T0,T1)sin

(
απx

a

)
sin
(
βπy
b

)
+X1
γδ(T0,T1)sin

(
γπx

a

)
sin
(
δπy
b

)]
+O(ε2).

(8.77)

Substituting (8.24) and (8.25) in (8.77) with due account for (8.55) yields

w(x,y, t) = 2ε
{
a1(εt)cos

[
ω1t+ϕ1(εt)

]
+a2(εt)cos

[
ω2t+ϕ2(εt)

]}
sin
(
απx

a

)
sin
(
βπy
b

)
+2ε
{
α1a1(εt)cos

[
ω1t+ϕ1(εt)

]
+α2a2(εt)cos

[
ω2t+ϕ2(εt)

]}
sin
(
γπx

a

)
sin
(
δπy
b

)]
+O(ε2).

(8.78)

Differentiating (8.78) with respect to time t and limiting ourselves by the terms of
the order of ε, we could find the velocity of the shell at the point of impact as follows

ẇ(x0,y0, t) = −2ε
{
ω1a1(εt) sin

[
ω1t+ϕ1(εt)

]
+ω2a2(εt) sin

[
ω2t+ϕ2(εt)

]}
s1

−2ε
{
α1ω1a1(εt) sin

[
ω1t+ϕ1(εt)

]
+α2ω2a2(εt) sin

[
ω2t+ϕ2(εt)

]}
s2+O(ε2).

(8.79)
Substituting (8.78) in the first initial condition (8.74) yields

a1(0)cosϕ1(0)+a2(0)cosϕ2(0) = 0, (8.80)

α1a1(0)cosϕ1(0)+α2a2(0)cosϕ2(0) = 0. (8.81)

From Eqs. (8.80) and (8.81) we find that

cosϕ1(0) = 0, cosϕ2(0) = 0, (8.82)

whence it follows that
ϕ1(0) = ±π

2
, ϕ2(0) = ±π

2
, (8.83)

and
cosδ0 = cos

[
2ϕ2(0)−ϕ1(0)

]
= 0, (8.84)

i.e.,
δ0 = ±π2 ±2πn. (8.85)
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The signs in (8.83) should be chosen considering the fact that the initial amplitudes
are positive values, i.e. a1(0) > 0 and a2(0) > 0. Assume for definiteness that

ϕ1(0) = −π
2
, ϕ2(0) = −π

2
. (8.86)

Substituting now (8.79) in the second initial condition (8.75) with due account for
(8.86), we obtain

ω1(s1+α1s2)a1(0)+ω2(s1+α2s2)a2(0) = E0. (8.87)

From Eqs. (8.76) and (8.87) we could determine the initial amplitudes

a2(0) =
E0

ω2(s1+α2s2)
− ω1(s1+α1s2)
ω2(s1+α2s2)

a1(0), (8.88)

c1a2
1(0)+ c2a1(0)+ c3 = 0, (8.89)

where

c1 = 1+
b1k2ω1(s1+α1s2)2

b2k1ω2(s1+α2s2)2 , c2 = −b1k2(s1+α1s2)2E0

b2k1ω2(s1+α2s2)2 ,

c3 =
b1k2E2

0

b2k1ω1ω2(s1+α2s2)2 −
k2ω2E0

b2
.

From Eqs. (8.88) and (8.89) it is evident that the initial magnitudes depend on the
mass and the initial velocity of the impactor, on the coordinates of the point of impact,
as well as on the numbers of the two modes induced by the impact.

Considering (8.84), from (8.68) we find the value of constant G0

G0 = 0. (8.90)

Reference to (8.69) shows that G0 could be zero in three cases: at ξ0 = 0, ξ0 = 1, or
when cosδ0 = 0. The above analysis of the phase portrait has revealed that the case
ξ0 = 0 is not realized. As for the case ξ0 = 1, then the solution for the phase modulated
motion takes the form of (8.73). However, for the found magnitudes of the initial
phase difference δ0 (8.85), the value of tan

(
δ0
2 +

π
4

)
in (8.73) is either equal to zero

or to infinity, what means that this case could not be realized as well. That is why
in further treatment we will analyze only the third case, resulting in the amplitude
modulated motion (8.72) with

δ(T1) = δ0 = const. (8.91)

Thus, we have determined all necessary constants from the initial conditions, there-
fore we could proceed to the construction of the solution for the contact force.
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8.3.3.2 Contact Force and Shell’s Deflection at the Point of Impact

Substituting relationship (8.79) differentiated one time with respect to time t in (8.4),
we could obtain the contact force P(t)

P(t) = 2εM
{
ω2

1a1(εt)cos
[
ω1t+ϕ1(εt)

]
+ω2

2a2(εt)cos
[
ω2t+ϕ2(εt)

]}
s1

+2εM
{
α1ω

2
1a1(εt)cos

[
ω1t+ϕ1(εt)

]
+α2ω

2
2a2(εt)cos

[
ω2t+ϕ2(εt)

]}
s2+O(ε2).

(8.92)
From Eqs. (8.57) and (8.59) with due account for (8.91) it follows that

ϕ1(T1) = const = ϕ1(0), ϕ2(T1) = const = ϕ2(0). (8.93)

Considering (8.93) and (8.86), Eq. (8.92) is reduced to

P(t) = 2εMω2
2

{
8(s1+α1s2)a1(εt)cosω2t+ (s1+α2s2)a2(εt)

}
sinω2t. (8.94)

Substituting (8.63) in (8.94), we finally obtained

P(t) = 2εMω2
2
√

E0
{
8(s1+α1s2)

√
k2ω2

b2

√
ξ(εt)cosω2t

+(s1+α2s2)
√

k1ω1
b1

√
1− ξ(εt)

}
sinω2t,

(8.95)

where the function ξ(εt) is defined by (8.72).
Since the duration of contact is a small value, what is evident from experimental

data (Kistler and Waas, 1998a; Kunukkasseril and Palaninathan, 1975; Rossikhin and
Shitikova, 2007), then P(t) could be calculated via an approximate formula, which is
obtained from (8.94) at εt ≈ 0

P(t) ≈ 16εMω2
2

(
cosω2t+

1
8
κ
)
(s1+α1s2)a1(0)sinω2t+O(ε2), (8.96)

where the dimensionless parameter κ

κ =
(s1+α2s2)
(s1+α1s2)

a2(0)
a1(0)

(8.97)

is defined by the parameters of two impact-induced modes coupled by the two-to-one
internal resonance (8.36), as well as by the coordinates of the point of impact and the
initial velocity of impact. The deflection of the shell at the point of impact could be
determined from (8.78) with due account for the found initial values of the phases

w(x0,y0, t) ≈ 4ε
(
cosω2t+

1
2
κ
)
(s1+α1s2)a1(0)sinω2t+O(ε2). (8.98)

The dimensionless time τ =ω2t dependence of the dimensionless contact force P∗
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P∗(τ) ≈
(
cosτ+

1
8
κ

)
sinτ, (8.99)

where
P∗(t) =

P(t)
16εMω2

2(s1+α1s2)a1(0)
,

and the dimensionless deflection of the target at the point of impact

w∗(τ) =
(
cosτ+

1
2
κ

)
sinτ, (8.100)

where
w∗(t) =

w(x0,y0, t)
4ε(s1+α1s2)a1(0)

,

are shown, respectively, in Figs. 8.3 (a) and (b) for the different magnitudes of the
parameter κ: 0, 2, 4, and 8. Figures 8.3 (a) and (b) show that the increase in the
parameter κ results in the increase of the maximal contact force, the duration of
contact, and the maximal deflection of the target at the point of impact. In other
words, from Figure 3 it is evident that the peak contact force, the duration of contact
and shell’s deflection depend essentially upon the parameters of two impact-induced
modes coupled by the two-to-one internal resonance (8.36).

Fig. 8.3: Dimensionless time dependence of (a) the dimensionless contact force
and (b) the target deflection at the point of impact for the case of the internal reso-
nance ω1 = 2ω2.
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8.3.4 Solution of Equations at Order of ε3

In order to study internal resonances of the order of ε3, in further treatment we
assume that ω1 � 2ω2. In this case in order to eliminate secular terms in Eqss (8.34)
and (8.35), it is sufficient to fulfill the following equations:

D1A1 = 0, D1A2 = 0, (8.101)

whence it follows that the functions A1 and A2 are T1-independent, i.e.,

A1 = A1(T2), A2 = A2(T2). (8.102)

To solve Eqs. (8.34) and (8.35) with due account for (8.101) and (8.102), let us
first apply the operators (p22D2

0+Ω
2
2) and (−p12D2

0) to (8.34) and (8.35), respectively,
and then add the resulting equations. This procedure will allow us to eliminate X2

2 . If
we apply the operators (−p12D2

0) and (p11D2
0 +Ω

2
1) to (8.34) and (8.35), respectively,

and then add the resulting equations. This procedure will allow us to eliminate X2
1 .

Thus, we obtain[
(p11 p22− p2

12)D4
0+ (p11Ω

2
2 + p22Ω

2
1)D2

0+Ω
2
1Ω

2
2

]
X2

1

= −
[
(p13+α

2
1 p14+α1 p15)(p22D2

0+Ω
2
2)

−(p23+α
2
1 p24+α1 p25)p12D2

0

]
A1
[
A1e2iω1T0 + Ā1

]
−
[
(p13+α

2
2 p14+α2 p15)(p22D2

0+Ω
2
2)− (p23+α

2
2 p24+α2 p25)p12D2

0

]
×A2
[
A2e2iω2T0 + Ā2

]
−2
{[

p13+α1α2 p14+ (α1+α2)p15
]

(p22D2
0+Ω

2
2)

− [p23+α1α2 p24+ (α1+α2)p25
]

p12D2
0

}
×A1
[
A2ei(ω1+ω2)T0 + Ā2ei(ω1−ω2)T0

]
+ cc,

(8.103)

[
(p11 p22− p2

12)D4
0+ (p11Ω

2
2 + p22Ω

2
1)D2

0+Ω
2
1Ω

2
2

]
X2

2

= −
[
(p23+α

2
1 p24+α1 p25)(p11D2

0+Ω
2
1)

−(p13+α
2
1 p14+α1 p15)p12D2

0

]
A1
[
A1e2iω1T0 + Ā1

]
−
[
(p23+α

2
2 p24+α2 p25)(p11D2

0+Ω
2
1)− (p13+α

2
2 p14+α2 p15)p12D2

0

]
×A2
[
A2e2iω2T0 + Ā2

]
−2
{[

p23+α1α2 p24+ (α1+α2)p25
]

(p11D2
0+Ω

2
1)

− [p13+α1α2 p14+ (α1+α2)p15
]

p12D2
0

}
×A1
[
A2ei(ω1+ω2)T0 + Ā2ei(ω1−ω2)T0

]
+ cc.

(8.104)

The solution of (8.103) and (8.104) has the form
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X2
1 = F1 (T2) eiω1T0 +F2 (T2)eiω2T0 +N1A2

1e2iω1T0 +N2A2
2e2iω2T0

+N3A1Ā1+N4A2Ā2+N5A1A2ei(ω1+ω2)T0 +N6A1Ā2ei(ω1−ω2)T0 + cc,
(8.105)

X2
2 = α1F1 (T2) eiω1T0 +α2F2 (T2)eiω2T0 +E1A2

1e2iω1T0 +E2A2
2e2iω2T0

+E3A1Ā1+E4A2Ā2+E5A1A2ei(ω1+ω2)T0 +E6A1Ā2ei(ω1−ω2)T0 + cc,
(8.106)

where F1(T2) and F2(T2) are unknown complex functions, and coefficients Ni and
Ei (i = 1,2, ...,6) are presented in Appendix.

Now substituting (8.24), (8.25), (8.105), and (8.106) in (8.20) and (8.21), we
obtain (Rossikhin et al, 2015)

p11D2
0X3

1 + p12D2
0X3

2 +Ω
2
1X3

1 = −
[
2iω1(p11+α1 p12)D2A1

+K1A2
1Ā1+K2A1A2Ā2

]
eiω1T0

−
[
2iω2(p11+α2 p12)D2A2+L1A2

2Ā2+L2A1Ā1A2
]
eiω2T0

−
{
M1A3

2e3iω2T0 +M2A1Ā2
2ei(ω1−2ω2)T0

}
−R1A2

1Ā2ei(2ω1−ω2)T0 +Reg+ cc,

(8.107)

p21D2
0X3

1 + p22D2
0X3

2 +Ω
2
2X3

2 = −
[
2iω1(p21+α1 p22)D2A1

+K3A2
1Ā1+K4A1A2Ā2

]
eiω1T0

−
[
2iω2(p21+α2 p22)D2A2+L3A2

2Ā2+L4A1Ā1A2
]
eiω2T0

−
{
M3A3

2e3iω2T0 +M4A1Ā2
2ei(ω1−2ω2)T0

}
−R2A2

1Ā2ei(2ω1−ω2)T0 +Reg+ cc,

(8.108)

where all regular terms are designated by Reg, and coefficients Ki, Li, Mi, and Ri
(i = 1,2,3,4) are given in Appendix.

Reference to Eqs. (8.107) and (8.108) shows that the following three-to-one
internal resonance could occur on this step:

ω1 = 3ω2. (8.109)

8.3.4.1 Impact-Induced Three-to-One Internal Resonance

Suppose that ω1 ≈ 3ω2 (8.109). Then Eqs. (8.107) and (8.108) could be rewritten in
the following form:

p11D2
0X3

1 + p12D2
0X3

2 +Ω
2
1X3

1 = B1 exp(iω1T0)+B2 exp(iω2T0)+Reg+cc, (8.110)

p21D2
0X3

1 + p22D2
0X3

2 +Ω
2
2X3

2 = B3 exp(iω1T0)+B4 exp(iω2T0)+Reg+cc, (8.111)
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where

B1 = −2iω1(p11+α1 p12)D2A1−K1A2
1Ā1−K2A1A2Ā2−M1A3

2,

B2 = −2iω2(p11+α2 p12)D2A2−L1A2
2Ā2−L2A1Ā1A2−M2A1Ā2

2,

B3 = −2iω1(p21+α1 p22)D2A1−K3A2
1Ā1−K4A1A2Ā2−M3A3

2,

B4 = −2iω2(p21+α2 p22)D2A2−L3A2
2Ā2−L4A1Ā1A2−M4A1Ā2

2.

It could be shown in the same manner, as it has been done above for the case of the
two-to-one internal resonance, that the terms with the exponents
exp(±iωiT0) (i = 1,2) produce circular terms in Eqs. (8.110) and (8.111).

In order to eliminate them, the terms proportional to eiω1T0 and eiω2T0 should be
vanished to zero putting Bi = 0 (i = 1,2,3,4). So we obtain four equations for defining
two unknown amplitudes A1(t) and A2(t). However, it is possible to show, once again
similarly to the above case of the two-to-one internal resonance, that not all of these
four equations are linear independent from each other, and therefore to obtain the
following solvability equations:

2iω1D2A1+ p1A2
1Ā1+ p2A1A2Ā2+ p3A3

2 = 0, (8.112)

2iω2D2A2+ p4A2
2Ā2+ p5A1Ā1A2+ p6A1Ā2

2 = 0, (8.113)

where

p1 =
K1+α1K3

k1
, p2 =

K2+α1K4

k1
, p3 =

M1+α1M3

k1
, p4 =

L1+α2L3

k2
,

p5 =
L2+α2L4

k2
, p6 =

M2+α2M4

k2
, k1 =

Ω2
1 +α1Ω

2
2

ω2
1

, k2 =
Ω2

1 +α2Ω
2
2

ω2
2

.

Let us multiply Eqs. (8.112) and (8.113) by Ā1 and Ā2, respectively, and find their
complex conjugates. After adding every pair of the mutually adjoint equations with
each other and subtracting one from another, as a result we obtain

2iω1
(
Ā1D2A1−A1D2Ā1

)
+2p1A2

1Ā2
1+2p2A1Ā1A2Ā2+ p3

(
Ā1A3

2+A1Ā3
2

)
= 0,
(8.114)

2iω1
(
Ā1D2A1+A1D2Ā1

)
+p3
(
Ā1A3

2−A1Ā3
2

)
=0, (8.115)

2iω2
(
Ā2D2A2−A2D2Ā2

)
+2p4A2

2Ā2
2+2p5A1Ā1A2Ā2+ p6

(
A1Ā3

2+ Ā1A3
2

)
= 0,
(8.116)

2iω2
(
Ā2D2A2+A2D2Ā2

)
+p6
(
A1Ā3

2−Ā1A3
2

)
=0. (8.117)
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Representing A1(T2) and A2(T2) in Eqs. (8.114)–(8.117) in the polar form

Ai(T2) = ai(T2)eiϕi(T2) (i = 1,2), (8.118)

we are led to the system of four nonlinear differential equations in a1(T2), a2(T2),
ϕ1(T2), and ϕ2(T2)

(a2
1). = − p3

ω1
a1a3

2 sinδ, (8.119)

2ϕ̇1− p1

ω1
a2

1−
p2

ω1
a2

2−
p3

ω1
a−1

1 a3
2 cosδ = 0, (8.120)

(a2
2). =

p6

ω2
a1a3

2 sinδ, (8.121)

2ϕ̇2− p5

ω2
a2

1−
p4

ω2
a2

2−
p6

ω2
a1a2 cosδ = 0, (8.122)

From Eqs. (8.119) and (8.121) we could find that

p6

ω2
(a2

1).+
p3

ω1
(a2

2). = 0 (8.123)

Multiplying (8.123) by MV0 and integrating over T2, we obtain the first integral of
the set of Eqs. (8.119)–(8.122), which is the law of conservation of energy,

MV0

(
p6

ω2
a2

1+
p3

ω1
a2

2

)
= K0, (8.124)

where K0 is the initial energy. Considering that K0 =
1
2 MV2

0 , Eq. (8.124) is reduced
to the following form:

p6

ω2
a2

1+
p3

ω1
a2

2 =
V0

2
. (8.125)

Let us introduce into consideration a new function ξ(T2) in the following form:

a2
1 =
ω2

p6
E0ξ(T2), a2

2 =
ω1

p3
E0
[
1− ξ(T2)

]
. (8.126)

It is easy to verify by the direct substitution that formulas (8.126) satisfy Eq. (8.125),
while the value ξ(0) (0 ≤ ξ(0) ≤ 1) governs the energy distribution between two
subsystems, X1

1 and X1
2 , at the moment of impact.

Substituting (8.126) in (8.119) yields

ξ̇ = −bE0(1− ξ)√ξ(1− ξ) sinδ, (8.127)

where

b =
√
ω1 p6

ω2 p3
.

Subtracting Eq. (8.120) from the triple Eq. (8.122), we have
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δ̇ = bE0

(
3
2
ξ− 1

2
(1− ξ)

) √
1− ξ
ξ

cosδ+E0

(
3p5

2ω2
− p1

2ω1

)
ω2

p6
ξ

+E0

(
3p4

2ω2
− p2

2ω1

)
ω1

p3
(1− ξ). (8.128)

Equation (8.128) could be rewritten in another form considering that

δ̇ =
dδ
dξ
ξ̇,

or with due account for (8.127)

δ̇ = −bE0(1− ξ)√ξ(1− ξ) dδ
dξ

sinδ. (8.129)

Substituting (8.129) in Eq. (8.128) yields

d cosδ
dξ

+
1−4ξ

2ξ(1− ξ) cosδ− Γ1√
ξ(1− ξ) −

Γ2

1− ξ

√
ξ

1− ξ = 0, (8.130)

where

Γ1 =
1
b

(
3p4

2ω2
− p2

2ω1

)
ω1

p3
, Γ2 =

1
b

(
3p5

2ω2
− p1

2ω1

)
ω2

p6
.

Integrating (8.130), we have

cosδ =
G0

(1− ξ)√ξ(1− ξ) − Γ1

2

√
1− ξ
ξ
+
Γ2

2
ξ

(1− ξ)

√
ξ

1− ξ , (8.131)

where G0 is a constant of integration to be determined from the initial conditions.
Based on relationship (8.131), it is possible to introduce into consideration the stream
function G(δ,ξ) of the phase fluid on the plane δξ such that

G(δ,ξ) = (1− ξ)√ξ(1− ξ)cosδ+
Γ1

2
(1− ξ)2− Γ2

2
ξ2 =G0, (8.132)

which is one more first integral of the set of Eqs. (8.119)–(8.122).
It is easy to verify that the function (8.132) is really a stream function, since

vδ = δ̇ = −bE0
∂G
∂ξ
, vξ = ξ̇ = bE0

∂G
∂δ
. (8.133)

In order to find the T2-dependence of ξ, it is necessary to express sinδ in terms of ξ
in Eq. (8.127) with a help of relationship (8.131). As a result we obtain

ξ̇ = −bE0

√
ξ(1− ξ)3−

[
G0−Γ1

2
(1− ξ)2+

Γ2

2
ξ2
]2
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or
ξ∫
ξ0

dξ√
ξ(1− ξ)3−

[
G0− Γ1

2 (1− ξ)2+
Γ2
2 ξ

2
]2 = −bE0T2, (8.134)

where ξ0 is the initial magnitude of the function ξ = ξ(T2). In other words, the
calculation of the T2-dependence of ξ is reduced to the calculation of the incomplete
elliptic integral in the left hand-side of (8.134).

8.3.4.2 Phase Portraits

The qualitative analysis of the case of the three-to-one internal resonance (8.109)
could be carried out with the be constructed according to (8.132) depends essentially
on the magnitudes of the coefficients Γ1 and Γ2. Let us carry out the phenomenologi-
cal analysis of the phase portraits constructing them at different magnitudes of the
system parameters.

• The case when Γ1 = Γ2 = 0.
Let us first consider the case when Γ1 = Γ2 = 0. Then (8.132) is reduced to

G(δ,ξ) = (1− ξ)√ξ(1− ξ)cosδ =G0, (8.135)

and the stream-lines of the phase fluid in the phase plane ξ−δ for this particular
case are presented in Fig. 8.4. Magnitudes of G are indicated by digits near the
curves which correspond to the stream-lines; the flow direction of the phase fluid
elements are shown by arrows on the stream-lines.
Reference to Fig. 8.4 shows that the phase fluid flows within the circulation zones,
which tend to be located around the perimeter of the rectangles bounded by the
lines ξ = 0, ξ = 1, and δ = ±(π/2)±2πn (n = 0,1,2, ...). As this takes place, the
flow in each such rectangle becomes isolated. On all four rectangle sides G = 0
and inside it the value G preserves its sign. The function G attains its extreme
magnitudes at the points with the coordinates ξ = 1

4 , δ = ±πn (n = 0,1,2, ...).
Along the lines δ = ±(π/2)±2πn (n = 0,1,2, ...) the solution could be written as

ξ =

[
1+

1
[c0+ f (T2)]2

]−1

, δ(T2) = δ0 =
π

2
±πn, n = 0,1,2, ...

where

f (T2) = −bE0T2, c0 =

√
ξ0

1− ξ0 .

Along the line ξ = 1 the stationary boundary regime is realized, because when
ξ = ξ0 = 1 the amplitudes a1 = const and a2 = 0, and from (8.127) and (8.129) it
follows that ξ̇ = δ̇ = 0. The transition of fluid elements from the points ξ = 0, δ =
π/2±2πn to the points ξ = 0, δ = −π/2±2πn (n = 0,1,2...) proceeds instantly,
because according to the distribution of the phase velocity along the section δ = 0
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Fig. 8.4: Phase portrait for the case of 1:3 internal resonance at Γ1 = Γ2 = 0.

(see Fig. 8.4) the magnitude of v tends to infinity as ξ→ 0. The distribution of the
velocity along the vertical lines δ = ±πn has the aperiodic character, while in the
vicinity of the line ξ = 1/4 it possesses the periodic character.

• The case when Γ1 = 0 and Γ2/2 = 1.
In this case, the stream-function is defined as

G(ξ,δ) = ξ1/2(1− ξ)3/2 cosδ+ (1− ξ)2 =G(ξ0, δ0),

and Fig. 8.5 shows the streamlines of the phase fluid in the phase plane.
As in the previous case, the phase fluid flows in an infinitely long channel, the
boundaries of which are the straight lines ξ = 0 and ξ = 1, corresponding to
the phase modulated motions. In one part the streamlines are non-closed, what
corresponds to the periodic change of amplitudes and the aperiodic change of
phases; in another part they are closed, what corresponds to the periodic change
of both amplitudes and phases. The aperiodic regime lines are the boundaries of
the closed and unclosed streamline areas. From the phase portrait in Figure 5 it is
seen that the circulation zones are located in a staggered arrangement by the right
and left channel sides (this configuration resembles that of von Kármán staggered
vortex tracks).
Each zone by the side ξ = 1 is surrounded by a line with the value G = 0. This
line consists of two parts connected with each other at the branch points with the
coordinates ξ = 1, δ = π/2±πn (n = 0,1,2...). One branch of this line corresponds
to the phase-modulated regime ξ = 1, and the other to the aperiodic regime,
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Fig. 8.5 Phase portrait for the
case of 1:3 internal resonance
at Γ1 = 0, and Γ2/2 = 1.

wherein ξ varies from ξmin = 0.5 to ξmax = 1. At the branch point itself, the phase
fluid flow velocity is equal to zero. Along the separatrix, the analytic solution can
be constructed in the following form:

2
√

2
1− ξ

√
(1− ξ)(2− ξ)

∣∣∣∣ξ
ξ0
= −bE0T2, cosδ = −

√
1− ξ
ξ
.

The circulation zones by the side ξ = 0 are surrounded by the line with the value
G = 1. However, only those parts of the line G = 1 which bound these zones from
above and come closer to the side ξ = 0 at the points ξ = 0, δ = π/2±πn belong
to the domain of the fluid flow. The transition of fluid elements from the points
ξ = 0, δ = (π/2)±πn to the points ξ = 0, δ = (3π/2)±πn proceeds instantly. The
line G = 1 conforms to the periodic change of the amplitudes and the aperiodic
change of the phase. The separatrix G = 1 is defined by the following equations:

ξ∫
ξ0

dξ√
ξ(1−7ξ+7ξ2−2ξ3)

=

ξ∫
ξ0

dξ√
ξ(0.170515− ξ)(2ξ2−6.659ξ+5.865)

= −bE0T2, cosδ =
2− ξ
1− ξ

√
ξ

1− ξ ,

wherein ξ varies from ξmin = 0 to ξmax = 0.170515.
Inside the both circulation zones there are points with the extreme values of the
stream-function: maximal Gmax = 1.11 and minimal Gmin = −0.0475, respectively.
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These points are the centers corresponding to the stable stationary regimes ξ =
ξ0 = 0.0443, δ = δ0 = ±2πn and ξ = ξ0 = 0.7057, δ = δ0 = π±2πn, respectively.
Between the lines corresponding to G = 0 and G = 1, unclosed streamlines are
located which are in accordance with the periodic change of the amplitudes and
the aperiodic change of the phase difference.

• The case when Γ1/2 = Γ2/2 = 1.
In this case, the stream-function is defined as

G(ξ,δ)=ξ1/2(1− ξ)3/2 cosδ− ξ2+ (1− ξ)2=G(ξ0, δ0),

and Fig. 8.6 shows the streamlines of the phase fluid in the phase plane.
From Fig. 8.6 it is seen that, unlike the previous case presented in Fig. 8.6, the
circulation zones by the side ξ = 1 and the aperiodic regime disappear. If ξ→ 1,
then the streamlines level off and tend to the line ξ = 1 where G = −1. If ξ→ 0,
then the streamlines tend to the piecewise continuous line G = 1 determined on
the segments [−(π/2)±2πn, (π/2)±2πn]. The transition of fluid elements from
the points ξ = 0, δ = (π/2)±2πn to the points ξ = 0, δ = (3π/2)±2πn proceeds
instantly. The line G = 1 conforms to the periodic change of the amplitudes and
the aperiodic change of the phase difference. The separatrix G = 1 is defined by
the following equations:

ξ∫
ξ0

dξ√
ξ(1−7ξ+3ξ2− ξ3)

=

ξ∫
ξ0

dξ√
ξ(0.1523− ξ)(ξ2−2.8477ξ+6.5663)

Fig. 8.6 Phase portrait for the
case of 1:3 internal resonance
at Γ1/2 = Γ2/2 = 1.
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= −bE0T2, cosδ =
2

1− ξ

√
ξ

1− ξ ,

wherein ξ varies from ξmin = 0 to ξmax = 0.1523.
Inside each circulation zone there is a point with the maximal value of the stream-
function Gmax = 1.108. These points are the centers corresponding to the stable
stationary regimes ξ = ξ0 = 0.04, δ = δ0 = ±2πn.
Between the lines corresponding to G = −1 and G = 1, unclosed streamlines are
located which are in accordance with the periodic change of the amplitudes and
the aperiodic change of the phase difference.

• The case when Γ1 = −21.84 and = Γ2 = 0.01.
In this case, the stream-function is defined as

G(ξ,δ) = ξ1/2(1− ξ)3/2 cosδ−0.005ξ2−10.92(1− ξ)2 =G(ξ0, δ0),

and Fig. 8.7 shows the streamlines of the phase fluid in the phase plane. Figure
8.7 illustrates the phase portrait with only unclosed phase fluid streamlines along
which the fluid flows in the direction of an increase in δ. With ξ→ 0 and ξ→ 1,
the streamlines level off and tend, respectively, to the lines ξ = 0 with G =Gmin =

Γ1/2 = −10.92 and ξ = 1 with G =Gmax = −Γ2/2 = −0.005.

Fig. 8.7: Phase portrait for the case of 1:3 internal resonance at Γ1 = −21.84 and
Γ2 = 0.01.
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8.3.4.3 Initial Conditions

In order to construct the final solution of the problem under consideration, i.e. to
solve the set of Eqs. (8.119)-(8.122) involving the functions a1(T2), a2(T2), or ξ(T2),
as well as ϕ1(T2), and ϕ2(T2), or δ(T2), it is necessary to use the initial conditions

w(x,y,0) = 0, (8.136)

ẇ(x0,y0,0) = εV0, (8.137)

p6

ω2
a2

1(0)+
p3

ω1
a2

2(0) = E0. (8.138)

The two-term relationship for the displacement w (8.9) within an accuracy of ε
according to (8.17) has the form

w(x,y, t) = ε
[
X1
αβ(T0,T2)sin

(
απx

a

)
sin
(
βπy
b

)
+X1
γδ(T0,T2)sin

(
γπx

a

)
sin
(
δπy
b

)]
+O(ε3).

(8.139)

Substituting (8.24) and (8.25) in (8.139) with due account for (8.118) yields

w(x,y, t) = 2ε
{
a1(ε2t)cos

[
ω1t+ϕ1(ε2t)

]
+a2(ε2t)cos

[
ω2t+ϕ2(ε2t)

]}
sin
(
απx

a

)
sin
(
βπy
b

)
+2ε
{
α1a1(ε2t)cos

[
ω1t+ϕ1(ε2t)

]
+α2a2(ε2t)

×cos
[
ω2t+ϕ2(ε2t)

]}
sin
(
γπx

a

)
sin
(
δπy
b

)
+O(ε3).

(8.140)

Differentiating (8.140) with respect to time t and limiting ourselves by the terms
of the order of ε, we could find the velocity of the shell at the point of impact as
follows

ẇ(x0,y0, t)= −2ε
{
ω1(s1+α1s2)a1(ε2t)sin

[
ω1t+ϕ1(ε2t)

]
+ω2(s1+α2s2)

×a2(ε2t) sin
[
ω2t+ϕ2(ε2t)

]}
+O(ε3).

(8.141)

Substituting (8.140) in the first initial condition (8.136) and assuming that a1(0) >
0 and a2(0) > 0, we have

cosϕ1(0) = 0, cosϕ2(0) = 0, (8.142)

whence it follows that
ϕ1(0) = ±π

2
, ϕ2(0) = ±π

2
, (8.143)

and
cosδ0 = cos

[
3ϕ2(0)−ϕ1(0)

]
= ∓1, (8.144)
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i.e.,
δ0 = ±π(n+1) (n = 0,1,2, ...). (8.145)

The signs in (8.143) should be chosen considering the fact that the initial ampli-
tudes are positive values, i.e. a1(0) > 0 and a2(0) > 0. Assume for definiteness that

ϕ1(0) = −π
2
, ϕ2(0) = −π

2
. (8.146)

Substituting now (8.141) in the second initial condition (8.137) with due account
for (8.146), we obtain

ω1(s1+α1s2)a1(0)+ω2(s1+α2s2)a2(0) = E0. (8.147)

From Eqs. (8.138) and (8.147) we could determine the initial amplitudes

a2(0)=
E0

ω2(s1+α2s2)
− ω1(s1+α1s2)
ω2(s1+α2s2)

a1(0), (8.148)

d1a2
1(0)+d2a1(0)+d3 = 0, (8.149)

where

d1 = 1+
ω2

1(s1+α1s2)2

b2ω2
2(s1+α2s2)2

, d2 = −2E0ω1(s1+α1s2)
b2ω2

2(s1+α2s2)2
,

d3 =
E2

0

b2ω2
2(s1+α2s2)2

− E0ω2

p6
.

It should be noted that the initial amplitudes depend not only on the initial
velocity of the impactor, but according to (8.148) and (8.149) they are defined also
by the parameters of two impact-induced modes coupled by the three-to-one internal
resonance (8.109).

Considering (8.144), from (8.132) we find the value of constant G0, which defines
the trajectory of a point on the phase plane

G0 =
4

V2
0

⎡⎢⎢⎢⎢⎢⎣± p3

ω1

√
p3 p6

ω1ω2
a1(0)a3

2(0)+
Γ1 p2

3

2ω2
1

a4
2(0)− Γ2 p2

6

2ω2
2

a4
1(0)

⎤⎥⎥⎥⎥⎥⎦ . (8.150)

Thus, we have determined all necessary constants from the initial conditions,
therefore we could proceed to the construction of the solution for the contact force.

8.3.4.4 The Contact Force and Shell’s Deflection at the Point of Contact

Now knowing a1(0), a2(0), ϕ1(0), and ϕ2(0), it is possible to calculate the value P(t),
which within an accuracy of ε has the form:

P(t)=−εM
[
Ẍ1

1(t)s1+ Ẍ1
2(t)s2

]
+O(ε3), (8.151)
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or with due account for (8.141)

P(t) = 2εM
{
ω2

1 (s1+α1s2)a1(ε2t)cos
[
ω1t+ϕ1(ε2t)

]
+ω2

2 (s1+α2s2)a2(ε2t)cos
[
ω2t+ϕ2(ε2t)

]}
+O(ε3).

(8.152)

Considering (8.146) and (8.109), Eq. (8.152) is reduced to

P(t) = 2εMω2
2[9a1(0)(s1+α1s2)sin3ω2t+a2(0)(s1+α2s2)sinω2t]

= 18Mε(s1+α1s2)ω2
2a1(0)sinω2t

(
3−4sin2ω2t+

1
9
κ

)
+O(ε3), (8.153)

where the dimensionless coefficient κ is calculated according to (8.97) and is defined
by the parameters of two impact-induced modes coupled by the three-to-one internal
resonance (8.109), as well as by the coordinates of the point of impact and the initial
velocity of impact.

The deflection of the shell at the point of impact could be determined from (8.140)
with due account for the found initial values of the phases

w(x0,y0, t) ≈ 2ε
(
sinω1t+ κ sinω2t

)
(s1+α1s2)a1(0)+O(ε2). (8.154)

The contact force in the dimensionless form could be written as

P∗(τ) =
(

3
4
+

1
36
κ− sin2 τ

)
sinτ, (8.155)

where
P∗(t) =

P(t)
72εMω2

2(s1+α1s2)a1(0)
,

while the dimensional deflection for the case of the three-to-one internal resonance
has the form

w∗(τ) =
(

3
4
+

1
4
κ− sin2 τ

)
sinτ, (8.156)

where
w∗(t) =

w(x0,y0, t)
2ε(s1+α1s2)a1(0)

.

The dimensionless time τ = ω2t dependence of the dimensionless contact force
P∗ defined by (8.155) and of the dimensionless deflection of the target at the point of
impact w∗ governed by (8.156) are shown, respectively, in Fig. 8.8 (a) and (b) for the
different magnitudes of the parameter κ: 0, 3, 6, and 9.

Reference to Fig. 8.8 shows that the increase in the parameter κ results in the
increase of the maximal contact force, the duration of contact, as well as the peak of
the shell deflection. In other words, from Figure 8 it is evident that the peak contact
force and the duration of contact depend essentially upon the parameters of two
impact-induced modes coupled by the three-to-one internal resonance (8.109).
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Fig. 8.8: Dimensionless time dependence of (a) the dimensionless contact force
and (b) deflection of the target at the point of impact for the case of the internal
resonance ω1 = 3ω2.

8.4 Conclusion

In the present paper, a new approach has been proposed for the analysis of the impact
interactions of nonlinear doubly curved shallow shells with rectangular base under
the low-velocity impact by an elastic sphere. It has been assumed that the shell is
simply supported and partial differential equations have been obtained in terms of
shell’s transverse displacement and Airy’s stress function. The equations of motion
have been reduced to a set of infinite nonlinear ordinary differential equations of
the second order in time and with cubic and quadratic nonlinearities in terms of the
generalized displacements.

The approach utilized in the present paper is based on the fact that during impact
only two modes strongly coupled by the two-to-one or three-to-one internal resonance
are initiated by the impactor. The influence of impactor’s mass on the phenomenon
of the impact-induced internal resonance is revealed.

Such an approach differs from the Galerkin method, wherein resonance phenom-
ena are not involved (Zhang et al, 2001). Since it is assumed that shell’s displacements
are finite, then the local bearing of the shell and impactor’s materials is neglected
with respect to the shell deflection in the contact region. In other words, the Hertz’s
theory, which is traditionally in hand for solving impact problems, was not used
in the present study; instead, the method of multiple time scales has been adopted,
which is used with much success for investigating vibrations of nonlinear systems
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subjected to the conditions of the internal resonance, as well as to find the time
dependence of the contact force.

It has been shown that the time dependence of the contact force depends essen-
tially on the position of the point of impact and the parameters of two impact-induced
modes coupled by the internal resonance. Besides, the contact force depends es-
sentially on the magnitude of the initial energy of the impactor. This value governs
the place on the phase plane, where a mechanical system locates at the moment of
impact, and the phase trajectory, along which it moves during the process of impact.

It is shown that the intricate P(t) dependence at impact-induced internal resonance
(8.92) gives way to rather simple sine dependence, what is an accordance with a
priori assumption of some researchers about a sine character of the contact force with
time (Goldsmith, 1960; Gong et al, 1995; Kunukkasseril and Palaninathan, 1975;
Lennertz, 1937; Zhang et al, 2001).

Table 8.1 summarizes the assumptions and principles which are the basis of the
theory of impact on thin nonlinear bodies proposed in the present paper. It shows
also its distinctive features in comparison with the traditional impact theory for
linear thin bodies (a comprehensive review of papers in the field could be found
in Rossikhin and Shitikova (2007)), which is based on the principles suggested by
Timoshenko in his classical paper on the impact of an elastic sphere upon an elastic
beam (Timoshenko, 1913).

Table 8.1: Comparison of main assumptions and principles used in the theories of
low-velocity impact upon linear and nonlinear thin bodies

Linear thin body (target) Nonlinear thin body (target)

1. Displacement of an impactor during the pro-
cess of impact is the sum of two displacements:
displacement of a target at the point of impact
and local bearing of impactor and target’s mate-
rials, i.e. impactor’s indentation into the target

1. Displacement of an impactor during the pro-
cess of impact coincides with target’s displace-
ment at the point of impact; local bearing is
ignored, since it is assumed that target displace-
ment is much larger than local bearing

2. Local bearing is defined via the Hertzian
theory

2. Local bearing is equal to zero

3. It is assumed that all natural modes of vibra-
tions are generated during impact, and there-
fore target’s displacement is expanded over all
modes

3. Under nonstationary excitation, only those
modes, the natural frequencies of which sat-
isfy certain resonant relationships (conditions
of internal resonances), are generated and dom-
inate, resulting in energy interchange between
coupled modes

4. In order to obtain the solution, the method
of expansion in terms of eigen functions and
Hertz contact theory are employed

4. In order to obtain the solution, the method
of multiple time scales in combination with
different conditions of internal resonances is
utilized

5. Contact force and local bearing of the im-
pactor and target’s materials are determined
from nonlinear integro-differential equations

5. Contact force and target displacement at the
place of contact are defined by a set of nonlin-
ear algebraic equations
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The procedure suggested in the present paper could be generalized for the analysis
of impact response of plates and shells when their motions are described by three or
five nonlinear differential equations.
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Appendix

N1 = −
[
(p13+α

2
1 p14+α1 p15)(Ω2

2 −4ω2
1 p22)+ (p23+α

2
1 p24+α1 p25)4ω2

1 p12
]

×
[
16ω4

1(p11 p22− p2
12)−4ω2

1(p11Ω
2
2 + p22Ω

2
1)+Ω2

1Ω
2
2

]−1
,

(8.157)

N2 = −
[
(p13+α

2
2 p14+α2 p15)(Ω2

2 −4ω2
2 p22)+ (p23+α

2
2 p24+α2 p25)4ω2

2 p12
]

×
[
16ω4

2(p11 p22− p2
12)−4ω2

2(p11Ω
2
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2
1)+Ω2

1Ω
2
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,

(8.158)

N3 = −
p13+α

2
1 p14+α1 p15

Ω2
1

, N4 = −
p13+α

2
2 p14+α2 p15

Ω2
1

, (8.159)

N5 = −2
{[

p13+α1α2 p14+ (α1+α2)p15
] [
Ω2

2 − p22(ω1+ω2)2
]
+ p12(ω1+ω2)2

× [p23+α1α2 p24+ (α1+α2)p25
]}

×
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N6 = −2
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(8.162)

E2 = −
[
(p23+α
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1 −4ω2
2 p11)+ (p13+α

2
2 p14+α2 p15)4ω2
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×
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2
2

]−1
,

(8.163)

E3 = −
p23+α

2
1 p24+α1 p25

Ω2
2

, E4 = −
p23+α

2
2 p24+α2 p25

Ω2
2

, (8.164)
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E5 = −2
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E6 = −2
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(8.166)

K1 = 3
(
p16+α

2
1 p17
)
+ (2p13+α1 p15)(D1+2D3)+ (2α1 p14+ p15)(E1+2E3),

(8.167)

K2 = 6p16+2α2 (2α1+α2) p17+ (2p13+α1 p15)2D4+ (2p13+α2 p15)(D5+D6)
+(2α1 p14+ p15)2E4+ (2α2 p14+ p15)(E5+E6),

(8.168)

K3 = 3α1
(
α2

1 p26+ p27
)
+ (2α1 p23+ p25)(E1+2E3)+ (2p24+α1 p25)(D1+2D3),

(8.169)

K4 = 6α1α
2
2 p26+2p27(α1+2α2)+ (2p24+α1 p25)2D4+ (2p24+α2 p25)(D5+D6)

+(2α1 p23+ p25)2E4+ (2α2 p23+ p25)(E5+E6),
(8.170)

L1 = 3
(
p16+α

2
2 p17
)
+ (2p13+α2 p15)(D2+2D4)+ (2α2 p14+ p15)(E2+2E4),

(8.171)

L2 = 6p16+2α1 (α1+2α2) p17+ (2p13+α2 p15)2D3+ (2p13+α1 p15)(D5+D6)
+(2α2 p14+ p15)2E3+ (2α1 p14+ p15)(E5+E6),

(8.172)

L3 = 3α2
(
α2

2 p26+ p27
)
+ (2p24+α2 p25)(D2+2D4)+ (2α2 p23+ p25)(E2+2E4),

(8.173)

L4 = 6α2
1α2 p26+2p27(2α1+α2)+ (2p24+α2 p25)2D3+ (2p24+α1 p25)(D5+D6)

+(2α2 p23+ p25)2E3+ (2α1 p23+ p25)(E5+E6),
(8.174)
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M1 = p16+α
2
2 p17+ (2p13+α2 p15)D2+ (2α2 p14+ p15)E2, (8.175)

M2 = 3p16+α2 (2α1+α2) p17+ (2p13+α1 p15)D2+ (2α1 p14+ p15)E2

+(2p13+α2 p15)D6+ (2α2 p14+ p15)E6,
(8.176)

M3 = α2
(
α2

2 p26+ p27
)
+ (2p24+α2 p25)D2+ (2α2 p23+ p25)E2, (8.177)

M4 = 3α1α
2
2 p26+ p27(α1+2α2)+ (2p24+α1 p25)D2+ (2α1 p23+ p25)E2

+(2p24+α2 p25)D6+ (2α2 p23+ p25)E6.
(8.178)

R1 = 3p16+α
2
1 p17+ (2p13+α2 p15)D1+ (2α2 p14+ p15)E1

+(2p13+α1 p15)D6+ (2α1 p14+ p15)E6,
(8.179)

R2 = 3α2
1α2 p26+ p27(2α1+α2)+ (2p24+α2 p25)D1+ (p25+2α2 p23)E1

+(2p24+α1 p25)D6+ (p25+2α1 p23)E6.
(8.180)
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