
Chapter 7

Effect of Magnetic Field on Free and Forced

Vibrations of Laminated Cylindrical Shells

Containing Magnetorheological Elastomers

Gennadi Mikhasev, Ihnat Mlechka, and Svetlana Maevskaya

Abstract Free and forced vibrations of thin medium-length laminated cylindrical
shells and panels assembled from elastic materials and magnetorheological elastomer
(MRE) embedded between elastic layers are studied. The equivalent single layer
model based on the generalized kinematic hypotheses of Timoshenko is used for the
dynamic simulation of laminated shells. The full system of differential equations tak-
ing into account transverse shears, written in terms of the generalized displacements,
is used to study free vibrations of long sandwich cylindrical shells with the MRE
cores. To predict free and forced vibrations of medium-length sandwich cylindrical
shells and panels, the simplified equations in terms of the force and displacement
functions are utilized. The influence of an external magnetic field on the natural fre-
quencies and logarithmic decrement for the MRE-based sandwich cylindrical shells
is analyzed. If an applied magnetic field is nonuniform in the direction perpendicular
to the shell axis, the natural modes of the medium-length cylindrical sandwich with
the homogeneous MRE core are found in the form of functions decreasing far away
from the generatrix at which the real part of the complex shear modulus has a local
minimum. The high emphasis is placed on forced vibrations and their suppressions
with the help of a magnetic field. Damping of medium-length cylindrical panels with
the MRE core subjected to an external vibrational load is studied. The influence of
the MRE core thickness, the level of an external magnetic field and the instant time
of its application on the damping rate of forced vibrations is examined in details.
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7.1 Introduction

Magnetorheological elastomers (MREs) belong to a new class of smart materials
which due to their unique properties are gaining high interest in various areas of the
structural mechanics (Gibson, 2010). MREs are composite materials consisting of a
matrix (either rubbery polymer or deformed inorganic polymer) and magnetizable
particles molded in this matrix. The principal mechanical characteristics of these
materials are the storage and loss moduli, represented by the complex shear mod-
ulus, which are varied in a wide range when subjected to a magnetic field (Ginder,
1996; Jolly et al, 1999; Davis, 1999; Ginder et al, 2001). The MREs controllable
viscoelastic properties as well as a light weight make these materials ideal to use
as damping treatments or core elements in thin-walled structures experiencing an
external vibrational load.

For the recent fifteen years, a considerable number of research has been carried
out to observe the controllable properties and the vibration suppression capabilities
of MREs embedded between elastic layers in sandwich or multilayered beams (see,
among many others, Sun et al, 2003; Zhou and Wang, 2005; Howson and Zare, 2005;
Zhou and Wang, 2006; Banerjee et al, 2007; Lara-Prieto et al, 2010; Korobko et al,
2012). There are much less papers on free and forced vibrations of MRE-based plates.
Yeh (2013, 2014) studied the effect of different magnetic field on the modal damping
and the natural frequencies for sandwich plates containing MRE cores and Aguib
et al (2014); Ying et al (2014) considered forced vibrations of magnetorheological
(MR) sandwich plates excited by deterministic and stochastic forces, respectively.

To the authors’ best knowledge, there are only a few available papers related to
the dynamic analysis of laminated shells containing cores made of a smart material
with controllable elastic and rheological properties. In Yeh (2011), a three layered
orthotropic cylindrical shell with an electrorheological (ER) core and outer con-
straining layers was considered. Introducing the complex shear modulus for the ER
core and utilizing the discrete layer finite element method, the author studied the
vibration and damping characteristics of the smart sandwich under different levels
of applied electric fields. Mikhasev et al (2011a), applying the equivalent single
layer (ESL) model for multilayered cylindrical shells, studied free vibrations of thin
laminated circular cylinders with MR layers under different levels of magnetic fields.
The authors concluded that an applied magnetic filed may have a significant effect on
the vibration characteristics of thin MRE-based laminated cylinders. An interesting
effect of distortion of natural modes in a thin medium-length cylindrical sandwich
containing a polarized MRE core has been captured in Mikhasev et al (2014): an
applied magnetic field may result in localization of natural modes near some lines
where the real part of the reduced complex shear modulus reaches a local minimum.
Recently, Mikhasev et al (2011b) studied a response of a MRE-based laminated
cylindrical shell with local disturbances in their surface to an applied not stationary
magnetic field. It has been shown that slowly growing magnetic fields may be used
with success in order to ensure the soft suppression of running localized vibrations
in thin-walled structures.
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In our view, a large range of problems on free and forced vibrations of MRE-based
laminated shells is not studied yet. In particular, the effect of a magnetic field on free
low-frequency vibrations of medium-length cylindrical sandwich panels with MRE
cores is worthy of close attention owing to a wide application of laminated panels
as members of many engineering structures. Problems on the modal damping of
oscillations of laminated shells with controllable MRE cores subjected to a harmonic
vibrational load deserves also special attention.

A lack of detailed studies on the aforementioned and many other problems may
be explained by the complexity of available models for laminated shells assembled
from elastic and viscoelastic MRE laminas. In the most general terms, the known
theories for multilayered shells proceed from the order of shell equations depending
on a number of stacked layers (Hsu and Wang, 2005; Bolotin and Novichkov, 1980).
These theories as well as available high accurate layer-wise theories (Carrera, 1999,
2002, 2003; Ferreira et al, 2011)) are rather sophisticated for practical application.
The additional complexity is introduced by the coupling of the mechanical and
physical (magnetic or electric) fields.

In our paper, we proceed from the idea to replace an original laminated shell
containing a MRE core or layers by an equivalent single layer shell with the reduced
complex moduli affected by an external magnetic field. The ESL model is expected
to be more perspective for the dynamic simulation of tunable laminated thin-walled
structures containing MR layers (survey articles and monographs devoted to ESL
theories are, e.g., Grigolyuk and Kulikov, 1988a,b; Toorani and Lakis, 2000; Reddy,
2003; Qatu, 2004; Qatu et al, 2010). Based on the assumptions of the generalized
kinematic hypothesis of Timoshenko for a whole package of a laminated shell
(Grigolyuk and Kulikov, 1988b), we assume differential equations written in terms
of displacements (or in terms of the force and shear functions where it is required)
for the reference surface of a laminated shell as the governing equations. These
equations contain coefficients depending on the complex Young’s and shear moduli
and the magnetic field induction as well, they being the generalization (Mikhasev
et al, 2011a) of analogous equations derived in Grigolyuk and Kulikov (1988b) for
elastic laminated shells. The basic purpose of the paper is to study free vibrations of
sandwich cylindrical shells and panels with the MRE cores under various levels of
applied external magnetic fields. The effect of a nonuniform magnetic field on the
natural modes corresponding to low-frequency vibrations of a thin medium-length
circular cylindrical sandwich shell containing the MRE core is also analyzed. The
special attention is focused on the problem of suppression of forced vibrations in
MRE panels subjected to a harmonic vibrational load under an external magnetic
field.

7.2 Structure of Laminated Shell

Consider a thin laminated package in the form of a circular cylinder or panel of the
length L (see Fig. 7.1). Let it consist of N isotropic or transversely isotropic layers
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Fig. 7.1: Laminated cylindrical shell with a curvilinear coordinate system

characterized by thickness hk, density ρk, Young’s modulus Ek, shear modulus Gk
and Poisson’s ratio νk, where k = 1,2, . . . ,N, and N is an odd number. The middle
surface of any fixed layer is taken as the reference surface. We introduce a local
orthogonal coordinate system by means of unit vectors e1,e2 and n = e1 × e2 with
an origin in the point O at the reference surface as shown in Fig. 7.1. Let α1 and α2
be the axial and circumferential coordinates, respectively, and α3 = z is the normal
coordinate. The radius of curvature of the reference surface is R = 1/k22.

Laminas with odd numbers (numbering begins with the innermost layer) are made
of an elastic material, while layers with even numbers are made of a magnetorhe-
ological elastomer (MRE) whose rheological properties depend on intensity of an
applied magnetic field. For layers made of a MRE, the Young’s and shear moduli,
Ek,Gk, are assumed to be complex functions of the magnetic field induction B:

Ek = E′k(B)+ iG′′k (B), Gk =G′k(B)+ iG′′k (B), (7.1)

where i =
√−1 is the imaginary unite. If the MRE layer is considered as an isotropic

material, then

Gk =
Ek

2(1+ νk)
,

otherwise (for a transversally isotropic layer), Ek and Gk are independent magnitudes.
Here, each viscoelastic MRE layer is considered as the isotropic material with
Poissons’s ratio (White and Choi, 2005) νv = 0.4 and the shear modulus Gv =G′v+ iG′′v
specified in Korobko et al (2012). For this MRE, the dependence of the storage and
loss moduli, G′v, G′′v , on the magnetic field induction B are shown in Fig. 7.2. If
an applied magnetic field is non-homogeneous, then Ev[B(α1,α2)], Gv[B(α1,α2)]
corresponding to the MRE layers are functions of coordinates α1,α2.
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Fig. 7.2: Storage and loss moduli G′v,G′′v (kPa) of the MRE vs. the magnetic field
induction B (mT)

7.3 Basic Hypotheses

To study vibrations of multilayered shells, we will use the ESL model (Grigolyuk
and Kulikov, 1988b) based on the generalized hypothesis of Timoshenko. Let z = δk
be the coordinate of the upper bound of the kth layer, ui and w the tangential and
normal displacements of the reference surface points, respectively, u(k)

i the tangential
displacements of points of the kth layer, σi3 the transverse shear stresses, Θi the
angles of rotation of the normal n about the vector ei (see Fig. 7.1). Here i = 1,2;k =
1,2, . . . ,N.

Let us assume the following hypothesis (Grigolyuk and Kulikov, 1988b):

1. The distribution law of the transverse tangent stresses across the thickness of the
kth layer is assumed to be of the form

σi3 = f0(z)μ(0)
i (α1,α2)+ fk(z)μ(k)

i (α1,α2) , (7.2)

where f0(z), fk(z) are continuous functions introduced as follows

f0(z) =
1
h2 (z−δ0)(δN − z),

fk(z) =
1
h2

k

(z−δk−1)(δk − z)
(7.3)
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2. Normal stresses acting on the area elements parallel to the reference one are
negligible with respect to other components of the stress tensor.

3. The normal deflection w does not depend on the co-ordinate z.
4. The tangential displacements are distributed across thickness of the layer package

as follows:

u(k)
i (α1,α2,z) = ui(α1,α2)+ zΘi(α1,α2)+g(z)ψi(α1,α2) (7.4)

where

g(z) =

z∫
0

f0(x)dx.

In Eq. (7.4), ψi are required parameters characterizing the transverse shears in
the shell. Hypothesis (7.4) permits to describe the non-linear dependence of the
tangential displacements on z; at g ≡ 0 it turns into the linear Timoshenko hypothesis
coinciding with the classical Kirchhoff-Love hypothesis since θi are functions of the
tangential displacements and derivatives of the normal deflection. Assumption (7.4)
is called the generalized kinematic hypothesis of Timoshenko.

7.4 Governing Equations

7.4.1 Governing Equations in Terms of Stress Resultants and
Couples

Using the variational principle and based on the aforementioned hypotheses,
Grigoliuk and Kulikov have derived the equations in terms of the membrane stress
resultants Ti j and the reduced stress couples L̂i j, M̂i j (Grigolyuk and Kulikov, 1988b):

T1i,1+T2i,2 = qi(α1,α2, t)−
N∑

k=1

ρkhk
∂2ûi

∂t2 = 0, i = 1,2,

L̂1i,1+ L̂2i,2 = Q0i, i = 1,2,

M̂11,11+2M̂12,12+ M̂22,22− k22T22 = qn(α1,α2, t)−
N∑

k=1

ρkhk
∂2w
∂t2 = 0,

(7.5)

where Z, i designates the derivative of a function Z by αi, t is time, qi,qn are the
tangential and normal components of an external force, Q0i is the generalized shear
stress resultant. The stress resultants and couples Ti j, Q0i, L̂i j, M̂i j are linked with
the normal, tangential and shear displacements w, ui,ψi by the following equations:
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Tii =
Eh

1− ν2

[
ûi, i+ ν

(
û j, j+ k22w

)]
, Ti j =

Eh
2(1+ ν)

(
ûi, j+ û j, i

)
,

M̂ii = − Eh3

12(1− ν2)

[
η3(w, ii+ νw, j j)−η2(ψi, i+ νψ j, j)

]
,

M̂i j = − Eh3

12(1+ ν)

[
η3w, i j− 1

2
η2(ψi, j+ψ j, i)

]
,

L̂ii = − Eh3

12(1− ν2)

[
η2(w, ii+ νw, j j)−η1(ψi, i+ νψ j, j)

]
,

L̂i j = − Eh3

12(1+ ν)

[
η2w, i j− 1

2
η1(ψi, j+ψ j, i)

]
, Q0i = q44ψi,

(7.6)

where

h =
N∑

k=1

hk, E =
1− ν2

h

N∑
k=1

Ekhk

1− ν2
k

, ν =

N∑
k=1

Ekhkνk

1− ν2
k

⎛⎜⎜⎜⎜⎜⎜⎝ N∑
k=1

Ekhk

1− ν2
k

⎞⎟⎟⎟⎟⎟⎟⎠
−1

(7.7)

are the total thickness, reduced Young’s modulus and Poisson’s ratio, respectively,

ûi = ui− 1
2

hc13w, i− 1
2

hc12ψi (7.8)

is the generalized displacements, and parameters η1,η2,η3,c12,c13 are introduced as
follows:

c12 =

N∑
k=1

ξ−1
k π3kγk, c13 =

N∑
k=1

(ζk−1+ ζk)γk,

1
12

h3π1k =

δk∫
δk−1

g2(z)dz,
1
12

h3π2k =

δk∫
δk−1

zg(z)dz,

1
2

h2π3k =

δk∫
δk−1

g(z)dz, η1 =

N∑
k=1

ξ−1
k π1kγk −3c2

12,

η2 =

N∑
k=1

ξ−1
k π2kγk −3c12c13, η3 = 4

N∑
k=1

(
ξ2

k +3ζk−1ζk
)
γk −3c2

13,

hξk = hk, hζn = δn (n = 0, k), q44 =

⎡⎢⎢⎢⎢⎢⎣ N∑
k=1

⎛⎜⎜⎜⎜⎜⎝λk −
λ2

k0

λkk

⎞⎟⎟⎟⎟⎟⎠
⎤⎥⎥⎥⎥⎥⎦
2

N∑
k=1

(
λk − λ

2
k0
λkk

)
G−1

k

+

N∑
k=1

λ2
k0

λkk
Gk,

λk =

δk∫
δk−1

f 2
0 (z)dz, λkn =

δk∫
δk−1

fk(z) fn(z)dz, (n = 0,k).

(7.9)
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In what follows, the magnitude G = q44/h will be called the reduced shear modulus
for the laminated package. Here, the reduced moduli E, ν,G and parameters η1,η2,η3
are functions of the induction B.

From all variants of boundary conditions, we consider here the simply supported
edges with diaphragms. In terms of displacements, stress resultants and stress couples
these conditions read:

w = û2 = ψ2 = M̂11 = T11 = L̂11 = 0 at α1 = 0,L. (7.10)

7.4.2 Governing Equations in Terms of Displacements

Let the MRE be a homogeneous and isotropic material, and an applied magnetic field
is uniform. Then the substitution of Eqs. (7.11), (7.6) into Eqs. (7.5) results in the
following system of differential equations:

∂2û1

∂α2
1

+
1− ν

2
∂2û1

∂α2
2

+
1+ ν

2
∂2û2

∂α1∂α2
+ νk22

∂w
∂α1
+
ρ0(1− ν2)

E
∂2û1

∂t2 = q1,

1+ ν
2

∂2û1

∂α1∂α2
+

1− ν
2
∂2û2

∂α2
1

+
∂2û2

∂α2
2

+
∂(k22w)
∂α2

+
ρ0(1− ν2)

E
∂2û2

∂t2 = q2,

η2
∂(�w)
∂α1

−η1

⎛⎜⎜⎜⎜⎜⎝∂2ψ1

∂α2
1

+
1+ ν

2
∂2ψ2

∂α1∂α2
+

1− ν
2
∂2ψ1

∂α2
2

⎞⎟⎟⎟⎟⎟⎠+ 12(1− ν2)q44

Eh3 ψ1 = 0,

η2
∂(�w)
∂α2

−η1

⎛⎜⎜⎜⎜⎜⎝∂2ψ2

∂α2
2

+
1+ ν

2
∂2ψ1

∂α1∂α2
+

1− ν
2
∂2ψ2

∂α2
1

⎞⎟⎟⎟⎟⎟⎠+ 12(1− ν2)q44

Eh3 ψ2 = 0,

h2

12(1− ν2)
�
[
η3�w−η2

(
∂ψ1

∂α1
+
∂ψ2

∂α2

)]

+
k22

1− ν2

(
ν
∂û1

∂α1
+
∂û2

∂α2
+ k22w

)
+
ρ0

E
∂2w
∂t2 = qn,

(7.11)

where

ρ0 =

N∑
k=1

ρkξk

is the reduced density of the laminated shell.
When introducing the stress-displacement relations (7.6) into (7.10), one obtains

the boundary conditions in terms of displacements:
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w = û2 = ψ2 = 0,

η3

⎛⎜⎜⎜⎜⎜⎝∂2w
∂α2

1

+ ν
∂2w
∂α2

2

⎞⎟⎟⎟⎟⎟⎠−η2

(
∂ψ1

∂α1
+ ν
∂ψ2

∂α2

)
= 0,

∂û1

∂α1
+ ν
∂û2

∂α2
+
ν

Rw
= 0,

η2

⎛⎜⎜⎜⎜⎜⎝∂2w
∂α2

1

+ ν
∂2w
∂α2

2

⎞⎟⎟⎟⎟⎟⎠−η1

(
∂ψ1

∂α1
+ ν
∂ψ2

∂α2

)
= 0 at α1 = 0,L.

(7.12)

Equations (7.11) are sufficiently complicated for analyzing both free and forced
vibrations of MRE-based cylindrical shells. However, they will be useful to study
free axisymmetric vibrations of circular cylindrical shells or beam-like modes of
length cylinders. To predict eigenmodes corresponding to low-frequency vibrations
of thin medium-length cylindrical shells, we will apply to equations of the technical
shell theory.

7.4.3 Equations of Technical Shell Theory

Let us introduce the index of variation ι of the stress-strain state as

max
{|Z,1|, |Z,2|} ∼ h−ι∗ Z, (7.13)

where h∗ = h/R is the dimensional thickness which is assumed as a small parameter.
We will consider here the stress state which is characterized by the index of variation
ι = 1/2 and the following asymptotic estimates:

w ∼ h∗R, k22 ∼ R−1, ui� w. (7.14)

It is obvious that ûi� w also. Let

max{ûi} ∼ hζu∗ R, max{ψi} ∼ hζψ∗ , G ∼ hζG∗ E, (7.15)

where ζu, ζψ are the indexes of intensity of the quantities ûi,ψi, respectively, and hζG∗
is the order of the reduced shear modulus G with regard to the reduced Young’s
modulus E. Then, analyzing the orders of all terms in Eqs. (7.11), we find

ζu = 3/2, ζψ = 1/2, ζG = 1. (7.16)

Let qi = 0 and the inertia forces in the tangential directions be very small. Then
the first two equations of system (7.5) or (7.11) become homogeneous. They are
identically satisfied by the following functions:

Ti j = δi j�F −F, i j, (7.17)
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where δi j is the Kronecker delta, and F is the required stress function.
To couple the introduced stress function with the unknown displacements, we con-

sider the strain compatibility conditions. They results in the well-known differential
equation

�2F −Ehk22w,11 = 0. (7.18)

Considering the residual equations from (7.5), Grigolyuk and Kulikov (1988b)
have derived the following equations:

D
(
1− θh

2

β
�
)
�2χ− k22F,11 = qn−ρ0h

∂2

∂t2

(
1− h2

β
�
)
χ,

w =
(
1− h2

β
�
)
χ,

(7.19)

where

D =
Eh3η3

12(1− ν2)
,

β =
12(1− ν2)q44

Ehη1

(7.20)

are the reduced bending stiffness and shear parameter, respectively.
From the third and fourth equations of (7.11), one can find the shear displacements

ψ1 = a,1+φ,2,
ψ2 = a,2−φ,1, (7.21)

where

a = −η2

η1

h2

β
�χ, (7.22)

and φ is the shear function which is defined from the additional equation

1− ν
2

h2

β
�φ = φ. (7.23)

Equation (7.23) describes the shear edge effect and should be taken into account
if a simply supported edge is free of a diaphragm preventing transverse shears
(Mikhasev and G., 2017). If all simply supported edges have the diaphragms, one
can assume (Grigolyuk and Kulikov, 1988b) φ ≡ 0. The correspondent boundary
conditions in terms of functions χ, F read

χ = �χ = �2χ = F = �F = 0 at α1 = 0,L1. (7.24)

If the shell is not closed in the circumferential direction, then the boundary conditions
for the simply supported edges α2 = 0,L2 with diaphragms are the same.
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7.4.4 Error of Governing Equations

The determination of an exact error of the above equations based on the ESL model
is a complicated problem. One way to estimate their error is to compare eigenvalues
of some boundary-value problem on buckling or vibrations with results obtained
with the help of the 3D FEM simulation. Similar comparative analysis (Mikhasev
et al, 2001) has shown that accuracy of these equations is satisfactory if a shell is
sufficiently thin and its vibrations occur with minor sizes of deflections or wave
length. In this subsection, we aim only to give some asymptotic estimations of errors.

It is known that an error δe of the Kirchhoff-Love hypotheses has the order
δe ∼ h∗. It maybe expected that accepted here the generalized Timoshenko hypotheses
improves an accuracy of the governing equations and results in the error δe ∼ hq

∗,
where q ≥ 1. However, as has been shown by Gol’denveiser (1961); Koiter (1966), the
index of variation ι of an expected solution may give the conclusive contribution in
the estimation of an error. If ι < 1, then within the framework of the Kirchhoff-Love
hypotheses, this estimation is found as

δe ∼max
{
h∗,h2−2ι∗

}
.

For Eqs. (7.11) based on the generalized Timoshenko hypotheses, we have

δe ∼max
{
hq
∗,h2−2ι∗

}
, (7.25)

where q ≥ 1. The peculiarity of Eqs. (7.11) is that due to shears they have solutions
with very high index of variation. So, for an elastic, isotropic and homogeneous shell
with Young’s and shear moduli E, G of the same asymptotic order (E ∼ G), one
obtains additional integrals which account for shears and have the index of variation
ι= 1. Then δe ∼ 1 and Eqs. (7.11) as well as Eqs. (7.18)-(7.23) become asymptotically
incorrect. But if

Gr ∼ hζG∗ Er,

where ζG > 0, then ι = 1− ζG/2 < 1. Here, Er =�E,Gr =�G are the real parts of
the complex moduli E,G for viscoelastic shells.

Now, consider Eqs. (7.18)-(7.23) which are analogous to the well-known Mushtari-
Donnell-Vlasov type equations (Mushtari and Galimov, 1961; Donnell, 1976; Wlas-
sow, 1958). They were obtained after significant simplifications which introduced
the error of an order h2ι∗ . It is seen that the error of these equations is

δe ∼max
{
h2ι∗ ,h2−2ι∗

}
. (7.26)

We remind that Eqs. (7.18)-(7.23) were derived under assumptions that ι = 1/2,
ζG = 1. Hence, for vibration modes with the index ι = 1/2, one obtains the error
δe ∼ h∗. However, Eqs. (7.18)-(7.23) can be also used to describe the semi-momentless
dynamic stress state characterized by the index of variation ι = 1/4 for a shear pliable
shell with ζG ≥ 1. However, for solutions having the index of variation ι = 1/4 (at
ζG = 3/2), the error increases and reaches the order δe ∼ h1/2

∗ .
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Note also that Eqs. (7.11) and Eqs. (7.18)-(7.23) as well have been derived
for cases when all the reduced moduli are constant (not dependent of coordinates
α1,α2). However, Eqs. (7.18)-(7.23) may be utilized for the analysis of low-frequency
vibrations of medium-length thin laminated cylindrical shell if MRE layers are
nonhomogeneous and/or an applied magnetic field is nonuniform. In Mikhasev et al
(2011a) have generalized Eqs. (7.18)-(7.23) for the case when the reduced moduli
E,G, ν and shear parameters ηk,β are functions of coordinates α1,α2 and the magnetic
field induction B and time t. It has been also shown that if

y ∼ R
∂y
∂αi

,

where y is any of the functions E,G, ν,ηk,β of coordinates α1,α2, and ι = 1/4, then
the generalized equations (with variable coefficients) written in terms of functions
χ,F,φ (Mikhasev et al, 2011a) may be substituted by the simplified Eqs. (7.18)-(7.23)
derived in Grigolyuk and Kulikov (1988b), these simplified equations giving the
error of an order h1/4

∗ . In what follows, Eqs. (7.18)-(7.23) will be used to analyse free
vibrations of MRE sandwiches in a nonuniform magnetic field.

7.5 Free Vibrations of MRE-based Laminated Cylindrical Shells

and Panels

7.5.1 Lengthy Simply Supported Cylinders

At first, let us consider Eqs. (7.11) at qn = 0. They allow to describe any type of free
vibrations of a shell of an arbitrary length. We will study here vibrations of long
MRE-based cylindrical shells and show the effect of a magnetic field on the long
wave modes.

For free linear vibrations, the solution of Eqs. (7.11) is written as

{ûi,ψi,w} = R {Ui(α1,α2),Ψi(α1,α2),W(α1,α2)}exp(iΩt), (7.27)

where Ω = ω+ iα is the required complex natural frequency, and functions Ui,Ψi,W
satisfying the boundary conditions (7.12) are as follows:

U1 = U◦1 cos
πnα1

L
cos

mα2

R
, U2 = U◦2 sin

πnα1

L
sin

mα2

R
,

W =W◦ sin
πnα1

L
cos

mα2

R
,

Ψ1 = Ψ
◦
1 cos

πnα1

L
cos

mα2

R
, Ψ2 = Ψ

◦
2 sin

πnα1

L
sin

mα2

R
,

(7.28)

where n is a number of semi-waves in the axial direction, m is a number of waves in
the circumferential direction, and U◦i ,W

◦,Ψ◦i are constant values.
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The substitution of (7.25), (7.26) into Eqs. (7.11) yields the system of algebraic
equations

AXT = 0, (7.29)

where X = (U◦1 ,U
◦
2 ,W

◦,Ψ◦1 ,Ψ
◦
2 ) is the five-dimensional vector, and A is the 5× 5

matrix with the elements ai j:

a11 = −δ2
n−

1− ν
2

m2− (1− ν2)
d

Ω2

ω2
0

, a12 =
1+ ν

2
δnm,

a13 = νδn, a14 = a15 = 0, a21 =
1+ ν

2
δnm,

a22 = −1− ν
2
δ2

n−m2− (1− ν2)
d

Ω2

ω2
0

, a23 = −m, a24 = a25 = 0,

a31 = a32 = 0, a33 = −η2δn(δ2
n+m2),

a34 = η1

(
δ2

n+
1− ν

2
m2

)
+

q44R2η3

D
,

a35 = −η1(1+ ν)
2

δnm, a41 = a42 = 0, a43 = −η2m(δ2
n+m2),

a44 = −η1(1+ ν)
2

δnm, a45 = η1

(
m2+

1− ν
2
δ2

n

)
+

q44R2η3

D
,

a51 = − ν

1− ν2 δn, a52 =
m

1− ν2 ,

a53 = ε
8 g (δ2

n+m2)2+
1

1− ν2 −
Ω2

ω2
0 d
,

a54 = −ε
8 gη2

η3
δn(δ2

n+m2), a55 =
ε8 gη2m
η3

(δ2
n+m2),

(7.30)

where

δn =
πn
l
, l =

L
R
, d =

E

E(0)
r

, g =
η3[1− (ν(0)

r )2]

η(0)
3r (1− ν2)

,

ε8 =
h2∗η

(0)
3r

12[1− (ν(0)
r )2]

,

ω2
0 =

E(0)
r

ρ0R2 .

(7.31)

Here, ε is a small parameter, ω0 is the characteristic frequency, and E(0)
r , ν

(0)
r ,η

(0)
3r are

the real parts for the complex Young’s modulus E, Poisson’s ratio ν and parameter η3,
respectively, calculated at the zeroth level of an applied magnetic field (B = 0 mT).
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The equation
detA = 0 (7.32)

serves as the existence condition of a nontrivial solution of the homogeneous sys-
tem (7.26). In the general case, it is a cubic equation with respect to the required
frequency parameter

Λ =
(1− ν2)Ω2

dω2
0

. (7.33)

As a particular case, we consider the axisymmetric vibrations for which

m = U◦2 = Ψ
◦
2 = 0.

Then, the cubic equation (7.32) degenerates into the quadratic one:

Λ2+
(
δ2

n−1−μ1δ
4
nrn

)
Λ−

[
(1− ν2)δ2

n+μ1δ
6
nrn

]
= 0, (7.34)

where

μ1 = (1− ν2)ε8 g, rn =
π2+ θKδ2

n

π2+Kδ2
n
, K =

π2h2∗
β
, θ = 1− η2

2

η1η3
. (7.35)

For any fixed number n, there is only one the positive root

Λ =
1
2

{
1−δ2

n+μ1rnδ
4
n+

[
(1−δ2

n+μ1rnδ
4
n)2+4(1− ν2)δ2

n+4μ1rnδ
6
n

]1/2
}
. (7.36)

If μ1→ 0, one obtains the simple formula

Λ = 1−δ2
n+

√
(1−δ2

n)2+4(1− ν2)δ2
n (7.37)

corresponding to the membrane shell theory. It is seen that the natural frequencies
for the membrane modes do not depend on the shear parameter K.

As K→ 0, Eq. (7.36) gives the frequency parameter for an isotropic shell without
taking into account shears. Because a parameter θ is small, it may be concluded that
the incorporation of the shear parameter K into the shell model results in the reduction
of the natural frequencies for any δn, the influence of K on eigenfrequencies being
very weak for modes with small parameter δn and becoming essential at large δn
and, particularly, for modes with very large number of waves n in the axial direction
(and/or for a very short cylindrical shell). We note that the influence of a magnetic
field on the reduced Young’s modulus E is very weak and the shear parameter K
is more affected by the variation of B (Mikhasev et al, 2014). Thus, changing the
induction B and, in such a way, the complex shear parameter K, we can effect slightly
low-frequency modes and high-frequency ones to a greater extent.

Example 7.1. Consider a cylindrical sandwich shell assembled from two stiffen
outermost and innermost sheets and a soft MRE core. The face sheets are made of
the ABS-plastic SD-0170 which is treated as an elastic material with the Young’s
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modulus E1 = E3 = 1.5 ·109 Pa, Poison’s ratio ν1 = ν2 = 0.4 and density ρ1 = ρ3 =

1.4 ·103 kg/m3. Viscoelastic properties of the MRE are as specified in Fig. 7.2, and
density is ρ2 = 2.65 ·103 kg/m3.

In Fig. 7.3, the real and imaginary parts of the reduced Young’s modulus, Er =�E,
Ei = �E, are plotted as the functions of the magnetic field induction B for the sand-
wiches with the thickness h1 = h2 = 0.5 mm of the face sheets and different thicknesses
h2 = 3,5,8,11 mm for the MRE core. Figure 7.4 demonstrates the behaviour of the
real and imaginary parts Kr =�K,Ki = �K of the parameter K versus the induction
B for the same sandwiches with the thicknesses h1,h2 specified above. Here, the
imaginary magnitudes Ei and Ki characterize the damping capability of the MRE
core embedded between two elastic sheets. It is seen that the effect of a magnetic
field on Er is very weak for all thicknesses h2 of the MRE core considered. And the
function Ei(B), demonstrating the visible dependence on B, is small with respect to
Er and its contribution to damping of vibrations is expected to be minor. Also, it may
be concluded from Fig. 7.4: the thicker the MRE core is, the stronger the effect of an
applied magnetic field on the shear parameter becomes.
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Figure 7.5 shows the influence of the induction B on the natural frequencyω=�Ω
and logarithmic decrement

Dl =
ωi√
ω2−ω2

i

(7.38)

corresponding to the axially symmetric modes (m = 0), where ωi = �Ω. The calcula-
tions were performed by Eq. (7.36) for h2 = 11 mm, R = 1 m and different values
of a dimensionless parameter δn = 0.5;1;3;5;8;11. It is seen that the effect of a
magnetic field on modes corresponding to small values of δn (here, for δn = 0.5;1;3)
is negligibly small, and it reveals itself for modes beginning approximately with
δn ≥ 5, see Fig. 7.5 (b).

7.5.2 Medium-Length Cylindrical Panels

Consider a medium-length circular cylindrical panel with edges bounded by the
curves α1 = 0,L1 and generatrices α2 = 0,L2, where L1,L2 are the panel length in the
axial and circumferential directions, respectively. Physical parameters for all layers
are assumed to be not dependent of coordinates α1,α2. To analyse free low-frequency
vibrations, we consider Eqs. (7.18), (7.19), where qn = 0.

Let all edges be simply supported and contain diaphragms.Then the natural modes
with n and m semi-waves in the axial and circumferential directions are readily
written down:

χ = χa exp(iΩt) sin
πnα1

L1
sin
πmα2

L2
,

F = Fa exp(iΩt) sin
πnα1

L1
sin
πmα2

L2
,

(7.39)
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Fig. 7.5: Natural frequency ω (a) and logarithmic decrement Dl (b) vs. induc-
tion B for the axially symmetric modes and different values of a parameter
δn = 0.5 (line 1); 1 (2); 3 (3); 5 (4); 8 (5); 11 (6)
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where i =
√−1, and Ω is the required complex natural frequency. The substitution

of (7.39) into Eqs. (7.18), (7.19) results in the following formula for eigenfrequency:

Ω = Ωnm =

√√
E
ρR2

⎧⎪⎪⎨⎪⎪⎩ E
ρR2

[1+ θK�nm]�2
nm

1+K�nm
+

n4

l41�2
nm

⎫⎪⎪⎬⎪⎪⎭, (7.40)

where

η =
π4η3

(1− ν2)
, �nm =

(
n
l1

)2

+

(
m
l2

)2

, l j =
L j

R
. (7.41)

Example 7.2. The series of calculations of the natural frequencies ω and logarithmic
decrements Dl for cylindrical MRE-based sandwich panels with different opening
angles ϕ2 = L2/R and the same length L1 = 1 m and radius R = 0.5 m were performed.
The material properties of the face sheets and MRE core are the same as in Exam-
ple 7.1. Thicknesses of elastic layers and viscoelastic core are h1 = h3 = 0.5 mm and
h2 = 11 mm, respectively. Figures from 7.6 to 7.8 show the influence of the induction
B on ω and Dl corresponding to natural modes with one semi-wave (n = 1) in the
axial direction and m = 1;2;3;4;5 semi-waves in the circumferential direction for
the three panels with ϕ2 = π/3,π/2,π.

As seen, for the panel with a small opening angle ϕ2, the mode corresponding to
the lowest eigenfrequency has the one semi-wave in both the axial and circumferential
directions, and the effect of magnetic field on this mode turns out to be weak (see
Fig. 7.6). For medium-length panels with a large value of ϕ2 as well as for closed
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Fig. 7.6: Natural frequency ω (a) and logarithmic decrement Dl (b) for cylindri-
cal panel with the opening angle ϕ2 = π/3 vs. induction B for modes with one
semi-wave (n = 1) in the axial direction and m = 1; 2; 3; 4; 5 semi-waves in the
circumferential direction (lines 1, 2, 3, 4, 5, respectively)
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Fig. 7.7: Natural frequency ω (a) and logarithmic decrement Dl (b) for cylindri-
cal panel with the opening angle ϕ2 = π/2 vs. induction B for modes with one
semi-wave (n = 1) in the axial direction and m = 1; 2; 3; 4; 5 semi-waves in the
circumferential direction (lines 1, 2, 3, 4, 5, respectively)

cylindrical shells, the natural modes corresponding to the lowest eigenfrequencies
are characterized by a number of the circumferential semi-waves of the order m ∼
h1/4
∗ (Mikhasev and Tovstik, 2009); so, for ϕ2 = π, one has m = 4, although for
ϕ2 = π/3, m = 1. As expected, the influence of a magnetic field on modes with a large
number of semi-waves m are more essential than on modes with a small index of
variation ι. The damping capability of the MRE core is different for panels with small
and large opening angles and depends on the level of an applied magnetic field: for
ϕ2 = π/3, the logarithmic decrement of low-frequency vibrations (m = 1) is a slowly
increasing function of B and reaches its maximum Dl ≈ 8 · 10−3 at large value of
B = 200 mT; and for ϕ2 = π/3, the decrement for the mode with m = 4 has the local
maximum Dl ≈ 13 · 10−3 at a low level of an applied magnetic field (B ≈ 35 mT).
This conclusion is important and may be used in problems on suppression of low-
frequency vibration of medium-length MRE-based cylindrical panels and shells.

7.5.3 Vibrations of Medium-Length Cylindrical Shells in
Nonuniform Magnetic Field

If any layer in a sandwich or multilayered cylindrical shell is made of a polarized
MRE, then the effect of an applied magnetic may be different in various parts of
a shell. Indeed, an angle between the force lines of magnetic field and alignment
of magnetizable particles in a polarized MRE varies from point to point in the MR
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Fig. 7.8: Natural frequency ω (a) and logarithmic decrement Dl (b) for cylindrical
panel with the opening angle ϕ2 = π vs. induction B for modes with one semi-
wave (n = 1) in the axial direction and m = 1; 2; 3; 4; 5 semi-waves in the circumfer-
ential direction (lines 1, 2, 3, 4, 5, respectively)

layer (Boczkowska et al, 2012). Even if a magnetic field is uniform, the complex shear
modulus of the polarized MRE turns out to be a function of curvilinear coordinates.
In this case, an applied magnetic field may result in strong distortion of eigenmodes
and, particularly, in localization of natural modes in the neighborhood of a generatrix
where the real part of the shear modulus has a local minimum (Mikhasev et al,
2014). In this subsection, we aim to show that a nonuniform magnetic field may
lead to the same effect, that is the localization of the natural modes corresponding to
low-frequency vibrations of the medium-length sandwich cylindrical shell containing
a homogeneous and isotropic MRE.

Let the applied magnetic field be nonuniform so that the induction B(ϕ) in the
MRE core is a function of an angle ϕ = α2/R. Then all the magneto-sensitive com-
plex magnitudes ν,η3,E, θ,β appeared in Eqs. (7.19), (7.20) are functions of ϕ. We
introduce a small parameter

ε8 =
h2∗η

(0)
3r

12
[
1−

(
ν(0)

r

)2
] , (7.42)

and assume that the shell is sufficiently thin so that h∗ is a quantity of the order ∼ 0.01
or less. In Eq. (7.42) and below, the superscript (0) means that an appropriate param-
eter is calculated at B = 0. Here, η3r =�η3, νr =�ν, ν(0)

r ≈ 0.4. It is also assumed
that the thickness h2 of the MRE corer is not less then 70% from the total thickness
h of the shell. Then the analysis of the the magneto-sensitive complex magnitudes
for the sandwich under consideration implies the following estimations (Mikhasev
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et al, 2014)

ν = ν(0)
r

[
1+ε4δν(ϕ)

]
, θr ∼ ε3, θi ∼ ε4,

η3 = η
(0)
3r

[
1+ε2δη3(ϕ)

]
, η(0)

3r = π
−4η(0)

r

[
1− (ν(0)

r )2
]
,

Er = E(0)
r d(ϕ) = E(0)

r [1+εd1(ϕ)], Ei/E
(0)
r ∼ ε4,

π−2K = ε2κ(ϕ) = ε2[κ0(ϕ)+ iεκ1(ϕ)]

(7.43)

at ε→ 0. In Eqs. (7.43), δν,δη3 and d1, κ0, κ1 are the complex and real functions of
ϕ, respectively, so that their absolute magnitudes are quantities of the order O(1) at
ε→ 0. In (7.43), the last estimate for K means that ζG = 3/2 (see relation (7.15)).

The solution of Eqs. (7.19), (7.20) at qn = 0 with the boundary conditions (7.24)
is readily represented in the form

χ = ε−4Rχ∗(s,ϕ)exp(iΩt), F = E(0)
r hR2F∗(s,ϕ)exp(ıΩt), (7.44)

where s = α1/R is a dimensionless axial co-ordinate, Ω is an unknown complex
natural frequency, and χ∗,F∗ are dimensionless displacement and stress functions.

The substitution of (7.44) into Eqs. (7.19), (7.20) results in the following system
of differential equations with respect to χ∗,F∗:

ε4d(ϕ)�2
ϕχ
∗ −δ2

nF∗ −Λ[1−ε2κ(ϕ)�ϕ]χ∗ = 0,

ε4�2
ϕF∗+δ2

n[1−ε2κ(ϕ)�ϕ]χ∗ = 0,
(7.45)

where

�ϕ =
(

d2

dϕ2 +δ
2
n

)
. (7.46)

δn is defined by (7.31) and

Λ =
ρR2Ω2

ε4E(0)
r

is a dimensionless frequency parameter. When deriving Eqs. (7.45) from Eqs. (7.19),
(7.20), we have omitted the operator KθΔ3χ because of smallness of the coefficient
Kθ and disregarded by very small dimensionless parameters ε4δν,ε2δη3,Ei/E

(0)
r .

Let ϕ = ϕ0 be a generatrix where the function B(ϕ) has a local minimum. Because
the storage modulus G′v of the MRE is the increasing function of the induction B (see
Fig. 7.2), then the dimensionless shear parameter κ satisfies the following conditions:

κ′0(ϕ0) = 0, κ′′0 (ϕ0) < 0. (7.47)

The problem is to find the minimum eigenvalue�Λ for Eq. (7.45) satisfying the
conditions

|χ∗|, |F∗| → 0 at |ϕ−ϕ0| → ∞. (7.48)
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The generatrix ϕ = ϕ0 is called the weakest one. The required eigenfunctions χ∗,F∗
satisfying (7.48) may be found in the form of asymptotic series (Mikhasev and
Tovstik, 2009):

χ∗ =
∞∑
j=0

ε j/2χ j(ζ)exp
{
i
(
ε−1/2 pζ +1/2bζ2)},

F∗ =
∞∑
j=0

ε j/2F j(ζ)exp
{
i
(
ε−1/2 pζ +1/2bζ2)}, (7.49)

Λ = Λ0+εΛ1+ . . . , , (7.50)

where ζ = ε−1/2(ϕ−ϕ0), p is the real wave parameter, b is the complex number with a
positive imaginary part (�b > 0), and χ j,F j are polynomials in ζ. Here the parameter
b characterizes the width of an area where more intensive vibrations occur.

The substitution of (7.49), (7.50) into Eqs. (7.45) generates the sequence of
algebraic equations with respect to unknown χ j,F j,Λ j. The stepwise consideration
of these equations (see the details of this procedure in Tovstik and Smirnov, 2001;
Mikhasev and Tovstik, 2009) results in the following formulae:

F0 = −δ2
n p−4[1+ p2κ0(ϕ0)]χ0,

λr =�Λ = f 1/2+
ε

2 f 1/2

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
(1+2m)p3

√
− fppκ

′′
0 (ϕ0)

2[1+ p2κ0(ϕ0)]
+d1(ϕ0)p4

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦+O(ε2),

λi = �Λ = − ε f 1/2κ1(ϕ0)p2

2[1+ κ0(ϕ0)p2]
+O(ε2), b =

i p3

1+ p2κ0(ϕ0)

√
−κ
′′
0 (ϕ0)

fpp
,

(7.51)

where

f (p,ϕ0;n) =
δ4

n

p4 +
p4

1+ κ0(ϕ0)p2 , (7.52)

and the wave number p is determined from the equation

δ−4
n κ0(ϕ0)p10+2p8−2κ2

0(ϕ0)p4−4κ0(ϕ0)p2−2 = 0. (7.53)

In Eq. (7.51), m is a nonnegative integer number, χ0(ζ) is the Hermitian polynomial
of the mth degree, (. . .)′ means differentiation with respect to ϕ0, the subscript p
denotes the partial derivatives of f with respect to p. For the mode corresponding to
the lowest frequencies, one needs to assume m = 0, and χ0 ≡ 1.

The magnitude

κ′′0 (ϕ0) =
B′′(ϕ0)
π2ε2

dKr

dB

∣∣∣∣∣
B=B(ϕ0)

(7.54)

depends on the rate of inhomogeneity of an applied magnetic field. The derivative
dKr/dB is calculated using the data presented in Fig. 7.4 (a). As seen form Eq. (7.51),
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it influences on both the correction for the natural frequency and the parameter b,
while the parameter κ1(ϕ0) defines the damping ratio of vibrations localized near the
generatrix ϕ = ϕ0 with the lowest level of the applied magnetic field.

The following example illustrates the effect of a nonuniform magnetic field on the
lowest natural frequencies and modes.

Example 7.3. Let the MRE-based sandwich cylindrical shell of the length L = 1.5 m
and radius R = 1 m be in the nonuniform magnetic field. The mechanical properties
and thicknesses of the face sheets and MRE core are the same as in Example 7.2.
In the domain occupied by the core, the magnetic induction is assumed to be the
function

B(ϕ) = B0
[
1− ξ exp(−cϕ2)

]
, (7.55)

where B0 > 0, 0 < ξ ≤ 1, c > 0. Then the weakest generatrix is the line ϕ = ϕ0 ≡ 0.
Table 7.1 shows the behaviour of parameters p, λr0, λr, λi, �b, Dl with increas-

ing the induction (parameter B0) and constant parameters c, ξ characterizing the
rate of the magnetic field inhomogeneity. Here, λr0 =

√
f (p,0;1) gives the zeroth

approximation for the eigenvalue Λ. Then Ω0 =

√
ε4E(0)

r λr0/(ρR2) is the lowest
natural frequency for the shell placed in the uniform magnetic field of the induc-
tion B = B0(1− ξ) mT. It may be seen that increasing the magnetic field with fixed
parameters c, ξ (defining the rate of inhomogeneity of magnetic field ) results in
increasing all parameters except the wave parameter p which shows slight decreasing.
As expected, the parameter �b, damping ratio λi and logarithmic decrement Dl are
monotonically increasing functions of the induction.

Table 7.2 demonstrates the influence of a parameter c on p, λr0, λr, λi, �b, Dl at
the fixed value of B0 = 80 mT. A parameter c specifies the rate of inhomogeneity of
the applied magnetic field. As seen, it does not effect on the wave parameter p and
zeroth approximation λr0 of the eigenvalue. But it essentially affects the parameter
�b, correction Λ1 and the frequency parameter λr in the end. As opposed to the data
from Table 7.1, the damping ratio λi and logarithmic decrement Dl are monotonically
decreasing functions of c.

The above examples allow concluding that a nonuniform magnetic field may es-
sentially disturb the low-frequency modes in thin medium-length sandwich cylinders
containing a MRE core. In particular, a magnetic field not uniformly distributed in

Table 7.1: Parameters p, λr0, λr, λi, �b, Dl vs. induction B0 for the MRE shell in
nonuniform magnetic field with parameters ξ = 0.9, c = 2

B0, mT p λr0 λr λi �b Dl

20 1.509 2.799 3.446 0.0114 0.197 0.0208
40 1.506 2.808 3.657 0.0126 0.262 0.0216
80 1.500 2.823 3.893 0.0143 0.331 0.0230
100 1.497 2.830 3.968 0.0148 0.351 0.0234
200 1.488 2.855 4.173 0.0159 0.394 0.0239
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Table 7.2: Parameters p, λr0, λr , λi, �b, Dl vs. parameter c for the MRE shell in
nonuniform magnetic field with parameters B0 = 80 mT, ξ = 0.9

c p λr0 λr λi �b Dl

0.5 1.500 2.823 3.409 0.0163 0.165 0.0301
1 1.500 2.823 3.617 0.0153 0.234 0.0267
2 1.500 2.823 3.893 0.0143 0.331 0.0230
3 1.500 2.823 4.091 0.0136 0.405 0.0208
4 1.500 2.823 4.250 0.0131 0.468 0.0193

the circumferential direction can result in strong localization of modes in the shell
areas where the effect of a magnetic field is weak.

7.6 Forced Vibrations

In this section, we consider forced vibrations of a thin medium-length sandwich
cylindrical panel containing the MRE-core under the external harmonic force

qn = Q+(α1,α2) exp(iωe t)+Q−(α1,α2) exp(−iωe t), (7.56)

where 0 < ωe is the frequency of excitation, and Q±(α1,α2) are complex functions of
the curvilinear coordinates α1,α2.

Let all the edges α1 = 0,L1, α2 = 0,L2 be simply supported and have diaphragms
preventing the edge shears, see Eqs. (7.24). Then the solution of the governing
equations (7.19) may be represented in the form:

χ(α1,α2, t) =
∞∑

n=1

∞∑
m=1

sin
πnα1

L1
sin
πmα2

L2
χnm(t),

F(α1,α2, t) =
∞∑

n=1

∞∑
m=1

sin
πnα1

L1
sin
πmα2

L2
fnm(t),

(7.57)

Let us expend the functions Q± into the double Fourier series

Q±(α1,α2) =
∞∑

n=1

∞∑
m=1

q±nm sin
πnα1

L1
sin
πmα2

L2
, (7.58)

where

q±nm =
4

L1L2

L1∫
0

L2∫
0

Q±(α1,α2) sin
πnα1

L1
sin
πmα2

L2
dα1dα2. (7.59)
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The substitution of Eqs. (7.56)-(7.58) into Eqs. (7.19) leads to the sequence of
differential equations

q̈±nm+Ω
2
nm q±nm = q̂±nm e±iωet, (n = 1,2, . . . ; m = 1,2, . . .) (7.60)

where Ωnm are the complex natural frequencies defined by (7.40), and

q̂±nm =
q±nm

ρh(1+K�nm)
(7.61)

are the complex magnitudes depending on the complex shear parameter K introduced
by Eq. (7.35).

The partial solution of Eq. (7.60) reads

q±p =
q̂±nm

Ω2
nm−ω2

e
e±iωet. (7.62)

Then the general solution of Eqs. (7.19) is

χ = χg+χp,

χg =

∞∑
n=1

∞∑
m=1

(
c+nmeiΩnm t + c−nme−iΩnm t

)
sin
πnα1

L1
sin
πmα2

L2
,

χp =

∞∑
n=1

∞∑
m=1

(
q̂+nmeiωe t + q̂−nme−iωe t

Ω2
nm−ω2

e

)
sin
πnα1

L1
sin
πmα2

L2
,

(7.63)

where c±nm are arbitrary complex constants which are determined from the initial
conditions. If ωe =�Ωnm for any fixed n,m, then one has resonance vibrations by the
mode with numbers n,m. As Ωnm is complex, the amplitude of resonance vibrations
is always a bounded magnitude.

Example 7.4. Consider a MRE sandwich with the opening angle ϕ2 = π and thickness
h2 = 11mm of the MRE core. Other geometrical and physical properties are as
specified in Example 7.2. The sandwich is assumed to be motionless at t ≤ 0 so that

χ|t=0 = χ̇|t=0 = 0. (7.64)

Let the external force be the pulsing hydrostatic pressure qn = qa sinωet (here,
Q± = ∓1/2iqa) which will excite vibrations in the MRE sandwich at t > 0. On
account of the linearity of equations and nil initial conditions, the amplitude qa is
not specified here. Figure 7.9 shows the scaled maximum amplitude A of forced
vibrations for ωe = 40 Hz and different values of the magnetic field induction B =
0(a),40(b),200(c) mT applied at t = 0. In all cases, the double infinite series in (7.63)
were replaced by double finite series with 20 terms in each series. As seen, the
applied external harmonic force excites the intensive vibrations in the form of the
superposition of natural modes and forced vibrations. Due to viscosity of the MRE
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Fig. 7.9 Scaled maximum
amplitude A of forced vibra-
tions of MRE sandwich vs.
time t(s) for different values
of induction B of magnetic
field applied at t = 0: (a) -
B = 0 mT, (b) - B = 40 mT,
(c) - B = 200 mT
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core, the excited natural modes attenuates during time with damping rate depending
on the intensity of applied magnetic field, the higher the level of magnetic field is, the
faster decaying of natural modes becomes. Suppression of forced vibrations of the
frequency ωe = 40 Hz are also influenced by the induction B. However, the nature
of this vibration damping is another: increasing the magnetic field induction leads
to increasing eigenfrequencies for all modes, see Fig. 7.6 (b), and results in fast
decreasing the amplitudes

∞∑
n=1

∞∑
m=1

q̂±nm(|Ω2
nm| −ω2

e)−1

in the end.

In the above calculations, the magnetic field and external force were applied at
once. Consider the next example illustrating the response of the MRE sandwich to
the magnetic field and external force applied at different points of time.

Example 7.5. Let the initial conditions be again given by (7.64), the harmonic force
qn = qa sinωet is applied at t = 0, while the magnetic field of the induction B= 200 mT
is supplied at t = tk > 0. The frequency ωe is the same as in Example 7.4. Let
χ(1)(α1,α2, t) be the solution of the initial value problem (7.19), (7.64) at the interval
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0 ≤ t ≤ tk. Consider the following initial conditions:

χ|t=tk = χ
(1)(α1,α2, tk), χ̇|t=tk = χ̇

(1)(α1,α2, tk). (7.65)

The solution of the initial value problem (7.19), (7.65) at t ≥ tk and B = 200 mT is
designated by χ(2)(α1,α2, t). After applying the magnetic field at t = tk the viscoelastic
properties of the sandwich are changed instantaneously. So, to use formula (7.63) at
t ≥ tk, one needs to recalculate at first all natural frequencies for the sandwich and
then complex magnitudes (7.61) at B = 200 mT. The parametric impact caused by
the suddenly applied magnetic field is not taking into account here (see an example
in Korobko et al, 2012).

Figure 7.10 shows the response of the MRE sandwich in two cases, when t =
t1 = 0.1s (a) and t = t2 = 0.2s (b). The drawn lines at 0 ≤ t < tk represent the scaled
maximum amplitudes for the displacement functions χ(1) without a magnetic field,
while the lines for t ≥ tk correspond to χ(2) calculated at B = 200 mT. In the both
cases, the application of a magnetic field results in the rapid and effective suppression
of vibrations consisting of the superposition of the natural modes and the essential
reduction of the forced vibrations as well. The comparison of Figs. 7.10(a) and
(b) allows to conclude: for the effective suppression of excited natural modes the
magnetic field should be supplied as soon as possible.

Fig. 7.10 Response of MRE
sandwich to harmonic force
and magnetic field applied at
different points of time tk: (a) -
tk = 0.1 s, (b) - tk = 0.2 s
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7.7 Conclusions

The equivalent single layer theory based on the assumptions of the generalized
kinematic hypotheses of Timoshenko for laminated shells was used to study both
free and forced vibrations of sandwich cylindrical shells and panels containing MRE
cores under various levels of applied magnetic fields. To analyze free vibrations
of length cylindrical shells, the system of five differential equations accounting
transverse shears and written in terms of generalized displacements was assumed as
the system of governing equations. To predict free and forced vibrations of medium-
length cylindrical shells and panels, the simplified equations with respect to the
displacement and force functions were used.

Assuming the boundary conditions of simply supported edges with diaphragms,
formulae for complex natural frequencies for both length and medium-length cylin-
drical shells and panels were obtained. The analysis of performed calculations for a
long sandwich cylinder has shown that the influence of an applied magnetic field on
the natural frequencies corresponding to modes with small numbers of waves in the
axial and circumferential directions is weak. In particular, the damping effect of the
MRE core turns out to be small for axially symmetric modes with number of waves
in the axial direction varying from one to four. The analysis of the natural modes for
medium-length cylindrical panels has revealed that the damping capability of the
MRE core is different for panels with small and large opening angles and strongly
depends on the level of an applied magnetic field. It has been also displayed that a
nonuniform magnetic field may result in the localization of the low-frequency natural
modes in the medium-length circular sandwich cylinder containing the MRE core,
the localization taking place in the neighborhood of the generatrix at which the real
part of the reduced shear modulus has a local minimum.

The special attention has been given to the analysis of forced vibrations of the
MRE-based sandwich cylindrical panels subjected to the external pulsing pressure.
The initial conditions for displacement and velocities were assumed to be zero. A
solution of the initial nonhomogeneous boundary-value problem has been found
in the form of series by the natural modes of the shell and represented by the
sum of the general solution of homogeneous equations and the partial solution of
nonhomogeneous equations. In the first example, the external force and magnetic
field were applied simultaneously. Due to controllable viscosity of the MRE core,
the excited natural modes corresponding to the general solution of the homogeneous
equations attenuated with the damping rate depending on the induction of an applied
magnetic field. The attenuation of amplitudes of forced vibrations given by the partial
solution of the nonhomogeneous equations is also governed by the magnetic field,
however the nature of this damping is another: it is explained by increasing the
storage modulus of the MRE core under increasing the magnetic field induction.
In the second example, the magnetic fields were applied at different points of time
tk. The solutions found at the segment 0 ≤ t ≤ tk and calculated for t = tk were
assumed then as the initial conditions for another problem considered for t ≥ tk.
At that, to predict the response of the sandwich at t ≥ tk, the natural modes were
recalculated taking into account the new viscoelastic properties acquired by the



146 Gennadi Mikhasev, Ihnat Mlechka, and Svetlana Maevskaya

shell after switching the magnetic field on. The comparative analysis of performed
calculations has shown that for the effective suppression of excited vibrations the
magnetic field should be supplied as soon as possible, the damping rate depending
on the level of the applied magnetic field.
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