
Chapter 6

Robust Displacement and Mixed CUF-Based

Four-Node and Eight-Node Quadrilateral Plate

Elements

Thi Huyen Cham Le, Michele D’Ottavio, Philippe Vidal, and Olivier Polit

Abstract This paper presents two classes of new four-node and eight-node quadri-
lateral finite elements for composite plates. Variable kinematics plate models are
formulated in the framework of Carrera’s Unified Formulation, which encompass
Equivalent Single Layer as well as Layer-Wise models, with the variables that are
defined by polynomials up to 4th order along the thickness direction z. The two
classes refer to two variational formulations that are employed to derive the finite ele-
ments matrices, namely the Principle of Virtual Displacement (PVD) and Reissner’s
Mixed Variational Theorem (RMVT). For the PVD based elements, the main novelty
consists in the extension of two field compatible approximations for the transverse
shear strain field, referred to as QC4 and CL8 interpolations, which eliminate the
shear locking pathology by constraining only the z−constant transverse shear strain
terms, to all variable kinematics plate elements. Moreover, for the first time the QC4
and CL8 interpolations are introduced for the transverse shear stress field within
RMVT based elements. Preliminary numerical studies are proposed on homogeneous
isotropic plates that demonstrate the absence of spurious modes and of locking prob-
lems as well as the enhanced robustness with respect to distorted element shapes. The
new QC4 and CL8 variable kinematics plate elements display excellent convergence
rates and yield accurate responses for both, thick and thin plates.

6.1 Introduction

Composite laminates and sandwich structures are increasingly used in engineering
application because of their excellent mechanical properties such as high specific
stiffness and strength. Due to geometric considerations, these structures are often
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described by two-dimensional plate or shell models for the design and simulation
aspects. It is necessary to develop the computational models for accurate knowledge
of both global and local response. However, the classical approaches, i.e., the Classi-
cal Laminate Plate Theory (CLPT) and the First-order Shear Deformation Theory
(FSDT) (Reddy, 2004), are not sufficient for a predictive and accurate modeling
due to complicating effects, such as anisotropy, heterogeneity and transverse shear
compliance. Based on Kirchhoff-Love assumptions, CLPT neglects transverse shear
deformation in the laminates. FSDT is based on Reissner-Mindlin plate theory and
the transverse shear strain is assumed to be constant over the entire plate thickness.
A shear correction factor is thus required to tune the accuracy of transverse shear
deformation of the model.

Various two-dimensional plate theories categorize into two groups as (i) Equiva-
lent Single Layer (ESL) and (ii) Layer-Wise (LW) models (Reddy, 1993). In the ESL
approach, the number of unknowns is independent of the number of layers constitut-
ing the plate. CLPT, FSDT and the high-order shear deformation theories (HSDT)
are mostly used for ESL models. HSDT are constructed by enhancing the kinematics
for the transverse shear deformation and retaining the plane stress condition. No
shear correction factors are required in HSDT. Several representative HSDT have
been developed, e.g., Reddy’s third-order theory (Reddy, 1984) and the Sinus model
of Touratier (1991). An overview of ESL models can be found in Sayyad and Ghugal.
(2015).

By employing a single approximation for the displacement field across all layers of
the laminate, the continuity of the transverse shear and normal stress at the interface
between adjacent layers with different material properties cannot be fulfilled. Zig-
Zag theories describe a piece-wise continuous displacement field in the thickness
direction and are, hence, able to satisfy the interlaminar continuity condition for
the transverse stresses (Demasi, 2012). Note that several Zig-Zag theories have
been proposed, which do not exactly fulfill the interlaminar continuity of transverse
stresses, see, e.g., Barut et al (2013). The paper by Carrera (2003a) reviews several
independent ways of introducing Zig-Zag theories proposed for the analysis of
multilayered plates and shells. An interesting approach relies on the use of Reissner’s
Mixed Variational Theorem (RMVT) (Reissner, 1984), which allows to introduce
independent approximations for the displacement and transverse stress fields (Carrera,
2001). Tessler (2015) proposed a Zig-Zag theory by employing RMVT in a two-step
procedure. In the context of RMVT, the so-called Murakami’s Zig-Zag function
(MZZF) provides a simple means for representing displacement fields with a slope
discontinuity at the layers’ interfaces (Murakami, 1986). More recently, MZZF has
been used to enhance displacement-based ESL models (Carrera, 2004; Vidal and
Polit, 2011).

More accurate predictions of short wavelength responses, however, require an
explicit representation of individual layers, which calls for a LW approach, see, e.g.,
the seminal paper by Sun and Whitney (1973) and the comprehensive discussion
by Robbins Jr and Reddy (1993). Several works develop the LW models within a
displacement-based approach (Reddy, 1987; Ferreira, 2005) and within the mixed
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RMVT formulation (Toledano and Murakami, 1987; Carrera, 1998, 2000; Rao and
Desai, 2004).

The resulting computational model of a LW approach has a number of unknowns
that depends on the number of constituting layers, which can become very large.
Several approaches have been thus proposed in order to reduce the computational
cost by limiting the use of the expensive high-order models to small regions hosting
the local stress gradient of interest, while lower-order models are used for large
portions of the structure characterized by smooth, long wavelength gradients. In the
framework of the finite element method we can mention the direct interface coupling
(Robbins Jr and Reddy, 1996; Carrera et al, 2013), which can be enhanced on the
basis of an extended variational formulation (Wenzel et al, 2014), the transition
element approach (Feng and Hoa, 1998; Carrera et al, 2017), and the overlapping
mesh approach based on Arlequin method (Hu et al, 2009).

A flexible manner for introducing a general description of two-dimensional formu-
lations for modeling the composite structures has been proposed by Carrera thanks
to a dedicated Unified Formulation (Carrera, 2003b). By an extensive use of com-
pact index notations, Carrera’s Unified Formulation (CUF) permits to implement a
series of hierarchical, variable kinematics models within a single program by using
a limited number of model-invariant 3×3 fundamental nuclei. In CUF, the model
is constructed by using the order N for the polynomial expansion for all unknown
functions; different models can be then obtained upon penalizing some specific terms
(Carrera et al, 2014, 2015). Further generalizations of CUF have been proposed in
Demasi (2008, 2010, 2013); Botshekanan Dehkordi et al (2013); D’Ottavio (2016);
D’Ottavio et al (2016).

The first FEM application of variable kinematics CUF models has been pro-
posed by Carrera and Demasi (2002a,b), where the matrices of plate elements have
been obtained by referring to the weak forms expressed by the Principle of Virtual
Displacement (PVD) and Reissner’s Mixed Variational Theorem (RMVT). The dis-
placement field can be described in an ESL or LW manner, with the possibility of
superposing MZZF to an ESL description, whereas transverse stresses are always
described in an LW sense. Four-, eight- and nine-node elements have been presented
with C0 isoparametric interpolations for all unknown functions.

A robust finite element (FE) should overcome numerical pathologies, i.e., it should
have only six rigid body modes without spurious zero-energy modes and it should
be free from numerical lacks that could degrade the solution’s accuracy in case of
distorted element geometries or extreme thickness ratios.

It is well known that C0 isoparametric displacement approximations for shear
deformable plates cause a spurious over-constraint in the thin-plate limit, which
dramatically underestimates the bending deformation: the transverse shear locking.
Several techniques have been proposed in order to prevent this pathology affecting
FSDT-based plate/shell element, most of which can be stated from hybrid-mixed
approaches (Pian and Sumihara, 1995). The most commonly used techniques are
reduced integration methods, which, however, entail spurious zero-energy modes
(Belytschko et al, 2000), and so-called B-bar techniques (Hughes, 1987), which
employ a specific constraint for transverse shear strain field. Examples of such B-bar
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methods are given by the so-called Kirchhoffmode (Hughes and Tezduyar, 1981), the
Assumed Natural Strain (ANS) method (MacNeal, 1982; Park et al, 1989), the Mixed
Interpolation of Tensorial Components (MITC) approach (Bathe and Dvorkin, 1985),
the interpolations constructed using the field-consistency paradigm (Somashekar
et al, 1987), the Discrete Shear elements (Batoz and Lardeur, 1989) or the Discrete
Shear Gap (DSG) elements (Bletzinger et al, 2000).

All methods mentioned above were developed for FSDT kinematics and only few
works are available on variable kinematics models. A selective reduced quadrature has
been used in Robbins Jr and Reddy (1993); Carrera and Demasi (2002a); D’Ottavio
et al (2006). Rectangular four- and nine-node elements have been proposed upon
extending the MITC approach to CUF-based displacement-based models (Carrera
et al, 2010; Cinefra et al, 2013). Kulikov and Plotnikova (2016) proposed a four-node
quadrilateral plate element employing a hybrid-mixed ANS approach in conjunction
with a variable kinematics approach formulated in terms of Sampling Surfaces (SaS).
In these works, all transverse shear strain terms issued from the high-order kinematics
are constrained according to the adopted MITC or ANS approach. However, since
high-order shear deformation terms depend on the plate thickness and will vanish in
thin-plate limit, the locking behavior is produced by the first-order Reissner-Mindlin
kinematics only. As a matter of fact, the convergence rates of CUF elements do not
depend on the polynomial order N defining the plate kinematics (D’Ottavio et al,
2006).

Concerning RMVT-based elements, it is worth reporting the hybrid-mixed devel-
opments by Li (1989); Pian and Li (1990); Hoa and Feng (1998), whose assumed
transverse stress fields lead to robust finite elements for laminated plates. More
recently, nine-node plate/shell element have been proposed in which the MITC tech-
nique is employed to interpolate the transverse shear stresses (Chinosi et al, 2013;
Cinefra et al, 2014).

Based on the classical CUF-based FEM of Carrera and Demasi (2002a,b), the
authors have recently proposed a new robust four-node quadrilateral plate element
(Le et al, 2017): a special transverse shear locking correction, denoted QC4, is
formulated by referring to the field consistency paradigm and applied only to the
thickness-independent part of the transverse shear strain. This method was firstly
proposed by Polit et al for FSDT (Polit et al, 1994), and subsequently extended to
a refined Sinus-based kinematics (Polit et al, 2012). The previous paper (Le et al,
2017) was limited to four-node elements and to displacement-based CUF models.
The purpose of this paper is to extend the methodology for obtaining robust FE to
eight-node finite elements as well as to variable kinematics CUF models based on
the mixed RMVT formulation.

This paper is organized as follows: the CUF-based variable kinematics approach
is recalled in Sect. 6.2 and the QC4 and CL8 FE approximations are presented for
displacement- and mixed-based formulations in Sect. 6.3. The numerical results
are discussed in Sect. 6.4, where a comprehensive investigation is proposed that
concerns the rank of the stiffness matrix, the robustness of the element with respect
to length-to-thickness ratio and mesh distortion. Finally, Sect. 6.5 summarizes the
main conclusions and proposes an outlook towards further studies.



6 Robust CUF-Based Plate Elements 93

6.2 Variable Kinematics Plate Model

Let us consider a multilayered plate occupying the domain V = Ω×
{
− e

2 ≤ x3 ≤ e
2

}
in

a Cartesian coordinate system (x,y,z) = (xi), see Fig. 6.1. Unless otherwise stated,
Latin indices range in {1,2,3}, Greek indices range in {1,2} and tensorial repeated
index convention is employed. Ω is the reference surface of arbitrary shape lying
in the (x1, x2)−plane located for convenience at x3 ≡ z = 0. The plate has constant
thickness e, which is composed of k = 1,2, . . .NL orthotropic, elastic and perfectly
bonded layers, each with a thickness e(k) and with an orientation of the material
orthotropy axes defined by the rotation angle θ(k) about the thickness direction z.

6.2.1 Variational Statements

The weak forms of the governing equations suitable for obtaining the FE matrices are
derived from variational statements. The plate models are constructed by referring
to the displacement-based approach expressed by the PVD as well as to the mixed
approach expressed by the RMVT.

6.2.1.1 The Principle of Virtual Displacements

The displacement-based approach is expressed in terms of admissible virtual dis-
placement δui as

�

Ω

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
e/2∫
−e/2

δε(G)
αβ σ

(H)
αβ +δε

(G)
i3 σ

(H)
i3 dz

⎫⎪⎪⎪⎪⎬⎪⎪⎪⎪⎭ dx dy =
�

Ω

δui t̄i dx dy (6.1)

Fig. 6.1: Coordinates and notation used for the description of the composite plate.
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where the imposed surface loads are denoted by t̄i. Eq. (6.1) yields the weak form of
the equilibrium equations and traction boundary conditions once the strain field is
related to the displacement by the geometric relations (superscript G)

ε(G)
αβ =

1
2

(
uα,β +uβ,α

)
; ε(G)

i3 =
1
2

(
ui,3 +u3,i

)
(6.2)

and the in-plane and transverse stresses are defined by means of the linear elastic
constitutive law in terms of the actual strains (superscript H)⎡⎢⎢⎢⎢⎢⎢⎣�σ

(H)
αβ

�σ(H)
i3

⎤⎥⎥⎥⎥⎥⎥⎦ =
⎡⎢⎢⎢⎢⎢⎣ C̃αβλμ C̃αβ j3

C̃i3λμ C̃i3 j3

⎤⎥⎥⎥⎥⎥⎦
⎡⎢⎢⎢⎢⎢⎢⎢⎣�ε

(G)
λμ

�ε(G)
j3

⎤⎥⎥⎥⎥⎥⎥⎥⎦ (6.3)

Exploiting the symmetry of the stress and strain tensors, Voigt compact notation
is introduced for using the conventional matrix notation instead of the more cum-
bersome tensor notation for the description of the constitutive law Eq. (6.3). The
constitutive law is obviously defined for each layer k for it depends on the layer’s
orthotropic elastic properties C(k)

PQ (P,Q ∈ {1,6} according to Voigt notation) and on
the orientation angle θ(k). The generic layer k is thus assumed to have a monoclinic
material symmetry in the plate’s reference frame (xα,z).

6.2.1.2 Reissner’s Mixed Variational Theorem

In the framework of RMVT, the transverse stresses σi3 are assumed as independent
variables. The weak form of the problem can be written in terms of admissible virtual
displacement δui and of virtual transverse stresses δσi3 as

�

Ω

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
e/2∫
−e/2

δε(G)
αβ σ

(H)
αβ +δε

(G)
i3 σi3+δσi3

(
ε(G)

i3 − ε(H)
i3

)
dz

⎫⎪⎪⎪⎪⎬⎪⎪⎪⎪⎭ dx dy =
�

Ω

δui t̄i dx dy

(6.4)
where the transverse strains denoted by ε(H)

i3 and in-plane stresses σ(H)
αβ are evaluated

by the following mixed constitutive law⎡⎢⎢⎢⎢⎢⎣�σ(H)
αβ

�ε(H)
i3

⎤⎥⎥⎥⎥⎥⎦ =
⎡⎢⎢⎢⎢⎢⎣ Cαβλμ Cαβ j3

Ci3λμ Ci3 j3

⎤⎥⎥⎥⎥⎥⎦
[
�ε(G)
λμ

�σ j3

]
(6.5)

where ⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Cαβλμ = C̃αβλμ− C̃αβi3 C̃−1
i3 j3 C̃ j3λμ

Cαβi3 = C̃αβ j3 C̃−1
j3i3

Ci3αβ = −C̃−1
i3 j3 C̃ j3αβ

Ci3 j3 = C̃−1
i3 j3

(6.6)
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Voigt notation is again employed to express Eq. (6.5) and Eq. (6.6) in terms of
matrices instead of fourth-order tensors. Eq. (6.4) yields the weak form of the
equilibrium equations, of the traction boundary conditions and of the constitutive
equations related to only the transverse stresses, i.e., the second row of Eq. (6.5).
Subsidiary conditions are the geometric relations Eq. (6.2) and the constitutive
equations associated to the in-plane stresses, i.e., the first row of Eq. (6.5).

6.2.2 Variable Kinematics Assumptions

According to Carrera’s Unified Formulation (CUF), the two-dimensional variable
kinematics plate model is formulated upon separating the in-plane variables xα
from the thickness direction z, along which a generic variable g, which may be a
component of the displacement field or of the transverse stress field, i.e., g ∈ {ui,σi3},
is a priori postulated by known functions F(z):

g(xα,z) = Fτ(z) ĝτ(xα), (6.7)

where τ = 0,1, . . . ,N is the summation index and the order of expansion N is a free
parameter of the formulation. In this work N can range from 1 to 4, in agreement
with the classical CUF implementation (Carrera and Demasi, 2002a).

In order to deal with both ESL and LW descriptions within a unique notation, it is
convenient to refer to a layer-specific thickness coordinate zk ∈ {z(k)

b ,z
(k)
t } that ranges

between the z-coordinates of the bottom (subscript b) and top (subscript t) planes
delimiting the kth layer, see Fig. 6.1. Equation (6.7) can thus be formally re-written
for each layer as

g(k)(xα,zk) = Ft(zk)ĝ(k)
t (xα)+Fb(zk)ĝ(k)

b (xα)+Fr(zk)ĝ(k)
r (xα) (6.8)

with τ = t,b,r and r = 2, . . .N. The variable g for the whole multilayered stack is then
defined through an opportune assembly procedure of the layer-specific contributions
g(k), which depends on the ESL or LW description.

In an ESL approach, the thickness functions are defined as Taylor-type expansion
and only one variable ĝτ is used for the whole multilayer, i.e., the layer index (k) in
Eq. (6.8) may be dropped off and the following thickness functions are used:

Fb = 1, Ft = zN , Fr = zr (r = 2, . . .N −1) (6.9)

The ESL description can be enhanced by including the Zig-Zag function FZZ(z)
proposed by Murakami (1986) in order to allow slope discontinuities at layers’
interfaces. In this case, the Zig-Zag function replaces the highest expansion order
and the following functions are used:

Fb = 1, Ft = FZZ(z), Fr = zr (r = 2, . . .N −1) (6.10)
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where Murakami’s ZigZag Function (MZZF) is defined as

FZZ(z) = (−1)k ζk(z) with ζk(z) =
2

z(k)
t − z(k)

b

⎛⎜⎜⎜⎜⎜⎜⎝z− z(k)
t + z(k)

b

2

⎞⎟⎟⎟⎟⎟⎟⎠ (6.11)

Note that FZZ(z) is expressed in terms of the non-dimensional layer-specific coordi-
nate −1 ≤ ζk ≤ +1 and it provides a linear piecewise function of bi-unit amplitude
across the thickness of each layer k.

The assumptions for a LW description are formulated in each layer k as in Eq.
(6.8), where the thickness functions are defined by linear combinations of Legendre
polynomials Pr(ζk) as follows:

Ft(ζk) =
P0(ζk)+P1(ζk)

2
; Fb(ζk) =

P0(ζk)−P1(ζk)
2

;

Fr(ζk) = Pr(ζk)−Pr−2(ζk) (r = 2, . . .N)
(6.12)

where ζk is the non-dimensional coordinate introduced in Eq. (6.11). The Legendre
polynomials of degree 0 and 1 are P0(ζk) = 1 and P1(ζk) = ζk, respectively; higher-
order polynomials are defined according to the following recursive formula:

Pn+1(ζk) =
(2n+1)ζk Pn(ζk)−nPn−1(ζk)

n+1
(6.13)

which leads to the following expressions for the polynomials employed if N = 4:

P2(ζk) =
3ζ2

k −1
2

; P3(ζk) =
5ζ3

k −3ζk
2

; P4(ζk) =
35ζ4

k

8
− 15ζ2

k

4
+

3
8

(6.14)

It is finally emphasized that the chosen thickness functions for a LW model satisfy
the following properties

ζk = 1 : Ft = 1, Fb = 0, Fr = 0
ζk = −1 : Ft = 0, Fb = 1, Fr = 0

(6.15)

Therefore, ĝ(k)
t and ĝ(k)

b are the physical displacement or transverse stress components
at the top and bottom of the kth layer, respectively, and Ft(ζk) and Fb(ζk) are the
corresponding linear Lagrange interpolation functions.

6.2.3 The Stress and Strain Fields

The contributions to the strain and stress fields in each layer k are identified with
respect to the in-plane (p), i.e., membrane and bending, transverse normal (n) and
transverse shear (s) deformation of the plate:
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�ε(k)
p =

[
ε(k)

1 ε
(k)
2 ε

(k)
6

]
; �ε(k)

n = ε
(k)
3 ; �ε(k)

s =
[
ε(k)

5 ε
(k)
4

]
�σ(k)

p =
[
σ(k)

1 σ
(k)
2 σ

(k)
6

]
; �σ(k)

n = σ
(k)
3 ; �σ(k)

s =
[
σ(k)

5 σ
(k)
4

] (6.16)

where Voigt notation has been used.

6.2.3.1 PVD Formulation

Recalling the separation of the in-plane variables from the thickness direction, em-
ployed for expressing the assumed displacement field as in Eq. (6.8), the bending,
transverse normal and transverse shear components of the strains in the displacement-
based formulation are recast in the following matrix notation

�εp(xα,zk) = F puτ(zk) �V (k)
τ (xα)

�εn(xα,zk) = Fnuτ(zk) �V (k)
τ (xα)

�εs(xα,zk) = Fsuτ(zk) �V (k)
τ (xα)

(6.17)

where �V (k)
τ (xα) is the generalized strain vector of each layer defined as

�V (k)
τ (xα) =

[
û(k)

1τ
û(k)

1τ,1
û(k)

1τ,2

... û(k)
2τ

û(k)
2τ,1

û(k)
2τ,2

... û(k)
3τ

û(k)
3τ,1

û(k)
3τ,2

]T

(6.18)

In order to introduce the transverse shear locking correction proposed in the next
section, the transverse shear strain field given in Eq. (6.17) is split into the classical
z−constant contribution �γ0 of standard FSDT, and a contribution �γh that depends on
the thickness coordinate z and is related to high-order terms:

�εs(xα,zk) = γ0(xα)+γh(xα,zk) = Fs0
uτ
�V (k)
τ (xα)+Fsh

uτ(zk) �V (k)
τ (xα) (6.19)

Note that Fs0
uτ is a matrix containing only constant values for all z−dependency is

contained in the matrix Fsh
uτ(zk) = Fsuτ(zk)−Fs0

uτ. The explicit expressions for the
matrices F puτ,Fnuτ, Fsuτ and Fs0

uτ can be found in Le et al (2017). The stress field
is obtained by the linear elastic constitutive law Eq. (6.3).

6.2.3.2 RMVT Formulation

In addition to the compatible strains defined by Eq. (6.17), the transverse stress
components are expressed in CUF as follows

�σn(xα,zk) = Fnστ(zk) �S (k)
τ (xα)

�σs(xα,zk) = Fsστ(zk) �S (k)
τ (xα) (6.20)

where �S (k)
τ (xα) is the generalized transverse stress vector of each layer defined as
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�S (k)
τ (xα) =

[
σ̂(k)

13τ

... σ̂(k)
23τ

... σ̂(k)
33τ

]T

(6.21)

and

Fnστ =
[
0 0 Fτ

]
, Fsστ =

[
0 Fτ 0

Fτ 0 0

]
(6.22)

The conjugated in-plane stresses as well as the transverse strains defined in terms
of the in-plane strains and of the transverse stresses are expressed by the mixed
constitutive law Eq. (6.5).

6.3 Finite Element Approximations

It is well known that the isoparametric interpolation for the transverse shear field ap-
plied to the classical displacement-based formulation leads to a locking phenomenon
because of the incompatibility of the polynomial spaces defined by the sum of ûατ
and the in-plane derivative û3τ,α (α = 1,2 for γ0

13 and γ0
23, respectively) (Polit et al,

2012). The locking pathology is associated only to the z−constant part, because
higher-order contributions depend on the plate thickness and vanish naturally in the
thin plate limit. Thus a new field-compatible interpolation for the four-node element
is constructed for the z−constant part �γ0: this is an extension to arbitrary variable
kinematics plate models of the approach proposed in Polit et al (1994) for FSDT
plate elements and in Polit et al (2012) to a refined plate element.

The formulation for the four-node quadrilateral FE for PVD-based CUF plate
models has been reported in Le et al (2017). Therefore, this section presents at first
the eight-node quadrilateral FE approximation, referred to as CL8 approximation, for
avoiding transverse shear locking problems and minimizing the convergence rate loss
for distorted meshes in the framework of PVD-based plate models. Subsequently,
the QC4 and CL8 interpolations are employed to approximate the transverse shear
stresses in the context of RMVT-based plate elements.

6.3.1 Displacement-Based Finite Elements

The CL8 interpolation is constructed as follows:

• In order to enhance the element’s robustness for distorted shapes, the z−constant
part of transverse shear strain components is written in the element’s natural
coordinate system (ξ,η) ∈ [−1,+1]2 as:

[
γ0
ξ (ξ,η)
γ0
η(ξ,η)

](k)

= Fs0
uτ
�U(k)
τ (ξ,η) (6.23)

where
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�U(k)
τ (ξ,η) =

[
û(k)
ξτ

û(k)
ξτ,ξ

û(k)
ξτ,η

... û(k)
ητ û(k)

ητ,ξ û(k)
ητ,η

... û(k)
3τ

û(k)
3τ,ξ

û(k)
3τ,η

]T

(6.24)

is the projection onto the reduced natural coordinates ξ,η of the generalized strain
vector �V (k)

τ .
• The field-compatible approximation shall be constructed upon enhancing the

polynomial space of the transverse deflection û(k)
3τ

so that its derivative matches

the serendipity quadratic approximation of the in-plane displacements û(k)
ξτ

and

û(k)
ητ that contribute to the z−constant reduced transverse shear strains γ0

ξ and γ0
η.

For this, a cubic polynomial interpolation is assumed for û(k)
3τ

by introducing four

supplementary DOFs, (û3τ,ξ )
(k)
5 , (û3τ,η )

(k)
6 , (û3τ,ξ )

(k)
7 and (û3τ,η )

(k)
8 , which correspond

to the tangential derivatives of û3τ with respect to the natural coordinates at the
mid-side nodes of the reference domain, see Fig. 6.2. The supplementary DOFs
are subsequently expressed in terms of the DOFs at the nodes by imposing a linear
variation of the z−constant reduced tangential transverse shear strain at each side
of the elementary domain: γ0

ξ should be linear along ξ at η = ±1 and γ0
η should be

linear along η at ξ = ±1. The resulting eight-node FE shall be denoted CL8 due
to the initial Cubic approximation for û3τ and the subsequent Linear constraint
imposed on the tangential transverse shear strains at the element’s edges Polit
et al (1994).

• The new field-compatible interpolation for γ0
ξ ,γ

0
η is defined by the polynomial

basis obtained from the intersection sets of monomial terms in ξ and η:

B(γ0
ξ ) = B(uξτ )∩B(u3τ,ξ ) =

{
1, ξ,η,ξη,η2

}
B(γ0

η) = B(uητ )∩B(u3τ,η ) =
{
1, ξ,η,ξη,ξ2

} (6.25)

Fig. 6.2: Eight-node element in the physical Cartesian frame x1, x2 and in the
natural frame ξ,η.
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Fig. 6.3: Sampling points for CL8 finite element.

• According to the polynomial basis, five sampling points are required for each
reduced transverse shear strains as illustrated in Fig. 6.3, see also Polit et al (1994).
The z−constant reduced transverse shear strains are then obtained as follows

γ0
ξ (ξ,η) =

5∑
I=1

CξI(ξ,η)γ0
ξI ; γ0

η(ξ,η) =
5∑

J=1

CηJ(ξ,η)γ0
ηJ (6.26)

where the interpolating functions CξI and CηJ are given Appendix 1.
• The physical transverse shear strains are finally deduced from the reduced trans-

verse shear strains in the reference domain as[
γ0

13(xα)
γ0

23(xα)

]
= J−1

[
γ0
ξ (ξ,η)
γ0
η(ξ,η)

]
(6.27)

where

J =
[
x1,ξ x2,ξ
x1,η x2,η

]
(6.28)

is the Jacobian matrix that will be evaluated at the 3×3 Gauss points used for
integrating the stiffness matrix.

The expression for the CL8 approximation for the z−constant transverse shear strain
field can be finally written as

�γ0 = J−1 Fs0
uτ B̄i �q

(k)
τ i (6.29)

where �q(k)
τ i = [u(k)

1τ
u(k)

2τ
u(k)

3τ
]T
i is the DOF vector of the node i related to the layer k and

the expansion order index τ. B̄i (i = 1,8) is the matrix containing the modified CL8
interpolation functions and their derivatives with respect to the physical coordinates
xα. The explicit expression of the B̄i matrices can be found in Appendix 2.
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Starting from the integral expression Eq. (6.1), the isoparametric FE interpolations
are introduced for the in-plane and transverse normal strain energy contributions,
and the QC4/CL8 interpolations are introduced for the transverse shear strain en-
ergy contributions. The integral over the thickness is carried out upon assembling
all layers’ contributions in the appropriate manner depending on the ESL or LW
description (Carrera and Demasi, 2002a,b); the integral over the in-plane domain of
each finite element constituting the mesh is carried out numerically. The weak form
of the equilibrium equations issued from the PVD yields thus the following standard
matrix system for each finite element

K �q = �f (6.30)

where �q and �f are the vectors of the nodal displacements and nodal forces. These
elemental arrays are subsequently assembled over the whole mesh following the
standard FEM procedure.

6.3.2 RMVT-Based Finite Elements

After introducing FE interpolations for the displacement and transverse stress fields,
carrying out the integrals across the thickness (including the assembly over all layers)
and the integrals over the element domain Ωe, the RMVT integral Eq. (6.4) yields
the following matrix system for each finite element[

Kuu Kuσ
Kuσ

T Kσσ

] [
�q
�g

]
=

⎡⎢⎢⎢⎢⎣ �f�0
⎤⎥⎥⎥⎥⎦ (6.31)

where �q and �g are the vectors of the nodal displacements and nodal transverse stresses,
respectively, and �f is the nodal force vector, see also Carrera and Demasi (2002a,b).
The first hyper-row corresponds to the virtual variations of the displacements and
represents the weak form of the equilibrium equation for the finite element, the
second hyper-row corresponds to the virtual variation of the transverse stresses and
represents the weak form of the transverse part of the constitutive equation of the
finite element. The element contributions expressed by Eq. (6.31) can be directly
assembled for the whole FE mesh, which leads to a mixed system whose unknowns
are the displacements and transverse stresses at each node of the mesh.

An alternative strategy consists in statically condensing out the nodal stress
unknowns of each finite element according to

�g = −Kσσ−1 Kuσ
T�q (6.32a)

which defines a mixed-hybrid formulation with only displacement DOF according to

�KC �q = �f with �KC = �Kuu− �Kuσ �Kσσ
−1 �Kuσ

T
(6.32b)



102 Thi Huyen Cham Le, Michele D’Ottavio, Philippe Vidal, and Olivier Polit

The mixed-hybrid formulation Eq. (6.32) yields an element that suffers transverse
shear locking if isoparametric interpolations are used for both, the displacement and
the transverse stress fields (Zienkiewicz and Taylor, 2000). In order to enhance the el-
ement robustness, several strategies may be devised. One of these consists in adopting
the previously discussed QC4/CL8 interpolation for the z−constant transverse shear
strains inside the Kuu matrix, i.e., in correcting the compatible transverse shear strain
field as in the conventional displacement-based FEM. A more interesting approach is
to take profit of the mixed nature of the RMVT statement and to adopt an opportune
interpolation scheme for the transverse shear stresses in conjunction with standard
isoparametric interpolations for the displacement and transverse normal stress fields.
It turns out that adopting the QC4 and CL8 interpolations for the transverse shear
stresses yields a shear-locking-free mixed-hybrid finite element, see also Hoa and
Feng (1998); Li (1989); Zienkiewicz and Taylor (2000). Therefore, the following
interpolation is used in the natural reference frame for the reduced transverse shear
stresses

σξ(ξ,η) =
np∑
I=1

CξI(ξ,η)σξI ; ση(ξ,η) =
np∑

J=1

CηJ(ξ,η)σηJ (6.33)

where np (np = 2 for QC4 and np = 5 for CL8) is the number of sampling points,
which are located at the mid-sides of the edges for the four-node element (Le et al,
2017) and as illustrated in Fig. 6.3 for the eight-node element. An opportune tensorial
transformation by means of the Jacobian matrix is required to map the reduced
transverse shear stresses onto the physical domain.

6.4 Numerical Results

Several numerical benchmark problems are considered for displaying the accuracy
and robustness of the proposed QC4 and CL8 CUF-based plate elements. The clas-
sical CUF acronyms are used for naming the various plate models: the polynomial
order N is appended to a string that identifies whether the description of the displace-
ment field is ESL (E{D,M}N), Zig-Zag (E{D,M}ZN) or LW (L{D,M}N). A capital
“D” is used for PVD-based elements, while capital “M” identifies RMVT-based
elements. In these latter models, the transverse stress field is always described in a
LW sense. If the mixed-hybrid formulation is used for RMVT-based elements, a “c”
is appended at the end of the model acronym.

Since the objective of this paper is focused on the performance of the FE ap-
proximation, the problems involve a simple homogeneous and isotropic plate. At
first, the properties of the stiffness matrix are considered via an eigenvalue analysis.
Subsequently, the convergence rate for thin and thick plates is investigated. Finally,
the sensitivity with respect to distorted element shapes is assessed through numerical
tests conducted on a square plate with distorted mesh and a circular plate. Most of
the numerical tests are performed with an ESL model with expansion order N = 2,
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which retains the three-dimensional constitutive law and avoids the occurrence of
spurious Poisson locking. Table 6.1 lists the acronyms used for denoting the vari-
ous configurations of boundary conditions and type of loading. Whenever possible,
the computational model is reduced through application of opportune symmetry
boundary conditions on the displacement field.

Present results are compared against solutions obtained with the following isopara-
metric approaches:

ISO full-integrated isoparametric element
ISO-SI isoparametric element with selective integration

All elements are implemented as user subroutines into the commercial ABAQUS
software. A dedicated pre-processing tool allows to prepare the FE model within the
ABAQUS/CAE graphical interface. Therefore, the conventional shell elements of
ABAQUS will be included in the comparison, which are the general-purpose four-
node elements S4 and S4R and the thick-shell eight-node element S8R. It should
be noted that the S4 and S4R elements can be used for modeling thin and thick
shells and both use the same transverse shear treatment, which consists in a modified
version of the MITC4 assumed strain method with one Gauss point evaluation plus
hourglass stabilization; the primary difference between the S4 and S4R elements is
in their membrane strain field treatment (N., 2016). According to N. (2016), the use
of the the S8R element should be limited to shells with non-negligible transverse
shear flexibility and within a regular mesh.

6.4.1 Eigenvalues of the Stiffness Matrix

The eigenvalues of the stiffness matrix of a square element are analyzed for a thin
and a thick plate, according to the following configuration

geometry square element a×a (a = 1), thickness e = 10−n (n = 1,3)
material properties isotropic with E = 10.92 and ν = 0.3

The eigenvalues of four-node displacement-based elements (ED2 model) are
reported for thick and thin plates in Figs. 6.4 and 6.5, respectively. The eigenvalues
of the ABAQUS general-purpose elements S4 and S4R (FSDT model) are also
presented. The proposed graphics allow to recognize at a glance the eigenvalues
associated to rigid-body modes as well as the gap between them and those associated
to deformation modes. It is apparent that the present full integrated QC4 and ISO

Boundary conditions Loading

(SA) Simply supported (P) Uniform load q0 at top surface
(CL) Clamped (C) Concentrated force P̄ at plate center

Table 6.1: Acronyms for boundary conditions and type of loading.
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Fig. 6.4: Eigenvalues of the stiffness matrix for thick plate (S = 10): ED2 model,
four-node FE.
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Fig. 6.5: Eigenvalues of the stiffness matrix for thin plate (S = 1000): ED2 model,
four-node FE.

elements have the correct number of rigid-body modes (i.e., 6) regardless of the
element’s slenderness S = a/e. Similarly, the ABAQUS elements S4 and S4R do not
show hourglass modes. On the contrary, the selective reduced integration scheme
entails 3 spurious zero-energy modes, which indicates the possibility of an unstable
behavior of both, thick and thin elements.

The same analysis is conducted on the eight-node PVD-based finite elements
and the eigenvalues obtained for the thick (S = 10) and thin (S = 103) elements are
reported in Figs. 6.6 and 6.7, respectively. As expected, the full integrated CL8 and
ISO elements have six rigid-body modes independently of the plate thickness. The
selective integrated eight-node element appears to have a correct rank in the thick
plate case, but shows several spurious zero-energy modes in the thin plate case.The
stiffness matrix of the ABAQUS S8R element shows two spurious zero-energy modes
for both, the thick and the thin plate cases.

The eigenvalues of the stiffness matrix of a four-node mixed RMVT-based element
are reported in Fig. 6.8 for a thick plate case and an EM2 model. The resulting FE
has 36 transverse stress DOF and 36 displacement DOF, the mixed matrix has thus 72
eigenvalues. The left graphic of Fig. 6.8 reports the 36 eigenvalues that are negative
and associated to the transverse stress DOF, which are thus shown to play the role
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Fig. 6.6: Eigenvalues of the stiffness matrix for thick plate (S = 10): ED2 model,
eight-node FE.
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Fig. 6.7: Eigenvalues of the stiffness matrix for thin plate (a/e = 1000): ED2 model,
eight-node FE.

of Lagrange multipliers. The graphic on the right of Fig. 6.8 displays the positive
eigenvalues that are associated to the displacement DOF and shows that the proposed
mixed FE with a QC4 interpolation of the transverse shear stresses has a correct
rank with 6 eigenvalues that are numerically zero. It may be noted that mixed finite
elements derived from Hellinger-Reissner principle possess negative eigenvalues
that are related to displacement DOF, see, e.g., Mijuca (2004). Figure 6.9 reports the
eigenvalues of the stiffness matrices for a mixed-hybrid 4-node element in which
the transverse shear stresses are approximated either with the isoparametric or with
the QC4 interpolation (the displacement field and the transverse normal stress are
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Fig. 6.8: Negative (left) and positive (right) eigenvalues of the stiffness matrix for
thick plate (S = 10) for the full mixed EM2 model with QC4 interpolation for the
transverse shear stresses.

interpolated with an isoparametric scheme). In either case, 36 positive eigenvalues
are recovered, 6 of which are numerically zero. It is worth noticing that the spectra
of the ISO-EM2c and of the ISO-ED2 stiffness matrices are very similar.

6.4.2 Transverse Shear Locking Test

A numerical test is carried out to assess the sensitivity of the proposed QC4 and CL8
elements to the transverse shear locking. The test is described as follows:

geometry square plate a×a (a = 1), thickness e = 10−n with n ∈ {0,4}
boundary conditions (SA) on all sides

loading (P)

material properties isotropic with E = 10.92 and ν = 0.3

mesh regular with N = 1,2,4,8,16,32 (see Fig. 6.10)

Fig. 6.9 Eigenvalues of the
stiffness matrices of a mixed-
hybrid 4-node EM2c element
with QC4 and ISO approxima-
tions for the transverse shear
stresses (S = 10).
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results transverse displacement U3 at the center of the plate

reference values Kirchhoff-Love theory (Timoshenko and Woinowsky-Krieger,
1959):
Ua

3(a/2,a/2,0) = 0.00406 q0
da4

dt e3 D (with D = E
12(1−ν2) )

The results are summarized in the two different ways.

1. Investigation of the accuracy of the FEM for a constant mesh density and varying
slenderness ratio. In this case, the quarter plate is regularly meshed with N = 4
four-node elements or N = 2 eight-node elements (see Fig. 6.10). The result is the
ratio between the deflection U3 obtained by the present FEM and the reference
thin plate solution Ua

3 for an increasing length-to-thickness (slenderness) ratio
S = a/e.

2. Investigation of the convergence of the FEM for a thin plate (S = 100). In this
case, the result is reported in terms of relative error |U3−Ua

3 |/Ua
3 with respect to

the number N of elements used for the regular mesh of the quarter plate.

6.4.2.1 PVD Based Elements: ED2 Model

Figure 6.11 reports the ratio between the deflection U3 obtained by the present
FEM with an ED2 model and the reference thin plate solution Ua

3 for an increasing
length-to-thickness (slenderness) ratio S = a/e. Results for four-node elements and a
regular mesh with N = 4 are given on the left, those for eight-node elements and a
regular mesh with N = 2 are illustrated on the right.

The full integrated ISO elements are shown to suffer a very strong locking as the
plate becomes thin: the linear four-node element locks severely already for S ≥ 102,
while the quadratic eight-node element delays the severe locking for S ≥ 103. An
excellent agreement with the reference Kirchhoff-Love solution is found with the
new interpolation schemes QC4 and CL8, which are thus locking-free. The selective
reduced quadrature scheme is shown to be effective for the linear Lagrangean four-
node element, but it does not eliminate the locking pathology for the quadratic

Fig. 6.10: Regular meshes for a quarter of the plate.
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Fig. 6.11: Accuracy for a fixed mesh for thick to very thin plates: four-node (left)
and eight-node (right) elements, ED2 model.

serendipity eight-node element: a severe locking is still found for ISO-SI eight-node
element as S ≥ 103. This difficulty is probably at the origin for the ABAQUS element
S8R to be reported as suitable only for thick plates, for which the transverse shear
flexibility is non-negligible.

Convergence curves for a thin plate (S = 100) are reported in Fig. 6.12 for the four-
node elements (on the left) and the eight-node elements (on the right). Concerning
the four-node FE, the locking pathology is clearly visible for the isoparametric
formulation (ISO) and a good convergence rate is recovered by resorting to the
selective quadrature scheme (ISO-SI) and by the present QC4 interpolation. Accurate
results, with relative errors of approximately 10−3 in the transverse displacement, are
obtained with N = 8 elements for the quarter plate. Concerning the eight-node FE
(Fig. 6.12, right), a rather satisfying convergence rate is found for S = 100 and for all
element formulations (ISO, ISO-SI and CL8). The new CL8 element is shown to be
more accurate than the isoparametric elements, as it provides accurate results already
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Fig. 6.12: Convergence of the transverse displacement for a thin plate (S = 100):
four-node (left) and eight-node (right) elements, ED2 model.
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with a N = 2 mesh for the quarter plate. As can be inferred from the right graphic of
Fig. 6.11, the convergence rate of eight-node ISO and ISO-SI elements will be worse
for thinner plates (S ≥ 103).

6.4.2.2 RMVT Based Elements: EM2 and EM2c Models

The same analysis is carried out for RMVT based mixed-hybrid elements (EM2c
model) and full mixed elements (EM2 model), where only results for the four-node
elements are given for the sake of brevity. Results obtained by the mixed-hybrid
approach are reported in terms of accuracy with respect to the plate slenderness and in
terms of convergence towards the reference Kirchhoff-Love solution in Fig. 6.13 left
and right, respectively. These results confirm that the element locks if the isoparamet-
ric interpolation is used for the displacement field and the same bi-linear interpolation
is employed for the transverse shear stresses. Indeed, the EM2c ISO element behaves
in exactly the same manner as the ED2 ISO element. The locking pathology can
be thus corrected by resorting to a selective quadrature scheme, as first pointed
out in Carrera and Demasi (2002a). More interesting, the locking pathology of the
mixed-hybrid elements is eliminated by adopting the QC4 interpolation scheme for
the transverse shear stresses and a full quadrature.

Results obtained by the full mixed elements EM2 are reported in Fig. 6.14. These
demonstrate that the ISO element does not suffer transverse shear locking if the
transverse stress DOF are not condensed out at element level. ISO elements are here
shown to be merely slightly less accurate than the locking-free QC4 and ISO-SI
elements.
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Fig. 6.13: Results of the shear locking test for the mixed-hybrid EM2c model.
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Fig. 6.14: Results of the shear locking test for the full mixed EM2 model.

6.4.2.3 Effectiveness of the QC4/CL8 Approach for Variable Kinematics

Models

The shear locking test is carried out for various CUF-based elements in order to
demonstrate the effectiveness of the proposed QC4 and CL8 approach irrespective of
the employed plate kinematics. Only results for the four-node are shown, the very
similar results obtained for the CL8 elements are omitted for the sake of brevity.
Figure fig:validCUF-ShearLock illustrates the results obtained with several LW as
well ESL models, formulated in the framework of PVD and RMVT, with the new
QC4 finite element approximations. All curves are sensibly overlapped, which thus
validates the proposed approach for all CUF-based variable kinematics models. In
particular, for displacement-based elements, it is clearly sufficient to correct only
the z−constant part of the transverse shear strain in order to eliminate the locking
pathology. The independence of the FE approximation from any refinement of the
FSDT kinematics has been already pointed out in D’Ottavio et al (2006).
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Fig. 6.15: Results of the shear locking test for various CUF models and QC4 ap-
proximation.
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6.4.3 The Distortion Tests

In this section, the sensitivity of the present FE to the mesh distortion is illustrated on
two test cases widely used in open literature, namely the square plate with distorted
mesh and the circular plate.

6.4.3.1 The Square Plate Test

This standard test is classically used in order to investigate the mesh sensitivity in
plate bending problems. The data are given as follows:

geometry square plate a×a with a = 100 and thickness e = 1

boundary conditions (SA) on all sides

loading (C)

material properties isotropic with E = 10.92 and ν = 0.3

mesh N = 2 for the quarter plate, with the distortion parameter
s ∈ {−12,−8,−4,0,4,8,12} – see Fig. 6.16

results transverse displacement U3 = u3(a/2,a/2,0)

reference value transverse displacement U(0)
3 for the regular mesh (s = 0)

The distorted meshes are characterized by the parameter s defining the coordinates
of the mid-node of the quarter plate, which is located in the undistorted mesh (s = 0)
at X1 = X2 = a/4. The parameter s may be positive or negative, as illustrated in
Fig. 6.16, and it defines the coordinates of the mid-node as (a/4+ s,a/4+ s): by
taking a = 100, for the most distorted meshes (s = ±12) the mid-node is hence
located at (±37,±37). Note that it is not usual in open literature to consider positive
and negative values for the parameter s. Since a concentrated load is applied at
X1 = X2 = a/2, the results obtained for positive and negative values of s may not be
symmetric.

Fig. 6.16: Mesh for the quarter plate with distortion defined by the parameter s.
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The transverse displacement U3 at the center node is normalized with respect to
the value U0

3 obtained with the regular, undistorted mesh (s = 0). Fig. 6.17 shows the
results obtained by the ED2 model: on the left are reported the curves obtained by
the four-node elements while on the right those obtained by the eight-node elements.
The ABAQUS finite elements S4R and S8R, are included in the comparison. The
results show that the proposed QC4 and CL8 are the most robust elements with
respect to mesh distortion, in particular CL8 results to be practically insensitive to
the mesh distortion parameter. The highest distortion sensitivity is displayed by the
full-integrated ISO elements. Selective reduced quadrature elements ISO-SI perform
better than the ISO elements: in the four-node case the enhancement is seen only
for s > 0. The ABAQUS S4R element has very similar performances of the QC4
element, whereas the S8R element closely follows the behavior of the eight-node
ISO-SI element and is thus outperformed by the proposed CL8 element.

6.4.3.2 The Circular Plate Test

Another mesh distortion sensitivity test is considered, which concerns the bending of
a clamped circular isotropic plate subjected to a uniform pressure load according to
the following data:

geometry circular plate of radius R = 5 and thickness e = 0.1

boundary conditions (CL) on the external perimeter

loading (P)

material properties isotropic with E = 1.7472 107 and ν = 0.3

mesh N = 3,12,28,60 elements for a quarter plate – see Fig. 6.18

results deflection U3 = u3(0,0,0) at the center of the plate
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Fig. 6.17: Square plate test (SA-C): variation of the normalized central deflection
with respect to the mesh distortion parameter s. Four-node (left) and eight-node
elements (right), ED2 model.
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Fig. 6.18: FE meshes with N = 3,12,28 elements for a quarter of the circular plate:
8-node elements (continuous line) and 4-node elements (dotted line).

reference value Kirchhoff-Love theory Uref
3 = 0.61147 10−6 Batoz and Dhatt

(1990)

The evolution of the ratio between the central deflection and the Kirchhoff-Love
solution with respect to the mesh density is reported in Fig. 6.19. The ED2 kinematics
is again used and the results obtained by ABAQUS finite elements S4R and S8R are
also shown for comparison.

Concerning the four-node elements (Fig. 6.19, left), it has been already shown
that the ISO element suffers the distorted shapes, and for the present case it shows
errors exceeding 90% even with the more refined mesh. It can be noticed that the
QC4 element has a good convergence rate and its accuracy is very satisfactory. In
particular, the error becomes less than 3% for N ≥ 30, whereas the converged result
of the four-node ISO-SI FE is still affected with an error of about 10%. The ABAQUS
S4R element shows a higher accuracy than the present QC4 element for coarser
meshes, but the differences between S4R and QC4 are negligible as the mesh is
refined.

Observing the results for the eight-node elements (Fig. 6.19, right), it is noted that
the ISO element suffers the distorted shapes, but the deflection tends towards the
solution as the mesh is refined (N ≥ 28). It is further confirmed that the CL8 element
is very robust, with performances that in this case are slightly better compared to
those of the ABAQUS S8R element.

6.5 Conclusion

This paper has introduced robust FE interpolations for four-node and eight-node
quadrilateral plate elements with variable kinematics expressed through Carrera’s
Unified Formulation. A previous work focused on four-node PVD-based elements Le
et al (2017), has been thus extended to eight-node serendipity FE approximations
as well as to RMVT-based plate models. In the framework of displacement-based
models, two field-consistent transverse shear strain approximations referred to as QC4
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Fig. 6.19: Convergence study of the central deflection for the circular plate. Four-
node (left) and eight-node elements (right), ED2 model.

and CL8 Polit et al (1994) have been extended to plate models of arbitrary kinematic
order, including ESL and LW descriptions, by modifying only the z−constant part of
the transverse shear strain. In the framework of RMVT based models, it has been
shown that the full mixed formulation with isoparametric approximations does not
show any shear locking pathology, but that the corresponding mixed-hybrid FEM
requires an opportune correction. An enhanced mixed-hybrid FEM has been thus
proposed by adopting for the transverse shear stress field the interpolation schemes
resulting from the QC4 and CL8 formulations.

First results have been presented in view of assessing the robustness and accuracy
of the proposed elements. For this, a number of numerical tests have been considered
that are recommended whenever FE applications are proposed: eigenvalue counts to
ensure the proper rank of the stiffness matrices, convergence behavior for thin and
thick plates, as well as two case studies involving distorted meshes. The numerical
results confirmed the superiority of the proposed FEs in comparison to classical
isoparametric approaches with full or reduced integrations, i.e., they have a correct
rank, are free of transverse shear locking and are less sensitive to distorted element
shapes. The proposed variable kinematics FEs, implemented as a user subroutine
into ABAQUS, provide a robust tool for the analysis of composite laminates, for
which different models may be used for adapting the computational cost in case of
thin or thick plates or whether a global or local response is required.

The preliminary results shown in this paper shall be completed by further anal-
yses of RMVT based elements and of composite plates, including laminates and
sandwich configurations. Furthermore, the optimization of the computational cost
for FE models of composite structures shall be considered: on the one hand, the
FE implementation of a more general variable kinematics modeling approach will
be considered D’Ottavio (2016); the variable kinematics models shall, on the other
hand, be effectively employed within a global-local approach that limits the use of
expensive, highly accurate and quasi-3D models to small model portions.
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Appendix 1

The interpolation functions on the elementary domain are defined as follows

Cξ1(ξ,η) =
1
4

(−η− √3ξ)(1−η); Cη1(ξ,η) =
1
4

(−ξ− √3η)(1− ξ)

Cξ2(ξ,η) =
1
4

(−η+ √3ξ)(1−η); Cη2(ξ,η) =
1
4

(ξ− √3η)(1+ ξ)

Cξ3(ξ,η) =
1
4

(η+
√

3ξ)(1+η); Cη3(ξ,η) =
1
4

(ξ+
√

3η)(1+ ξ)

Cξ4(ξ,η) =
1
4

(η− √3ξ)(1+η); Cη4(ξ,η) =
1
4

(−ξ+ √3η)(1− ξ)
Cξ5(ξ,η) = 1−η2; Cη5(ξ,η) = 1− ξ2

(6.34)

Appendix 2

The non-zero terms of the 9 x 3 matrices B̄i (i = 1,8) defining the CL8 interpolation
for �γ0 as in Eq. (6.29) are

B̄i(1,1) =
5∑

I=1

CξI
(
Ni(ξI ,ηI) J(I)

11 (ξI ,ηI)+NRT
i,ξ (ξI ,ηI)

)

B̄i(1,2) =
5∑

I=1

CξI
(
Ni(ξI ,ηI) J(I)

12 (ξI ,ηI)+NS T
i,ξ (ξI ,ηI)

)

B̄i(8,3) =
5∑

I=1

CξI Ni(ξI ,ηI)

B̄i(4,1) =
5∑

J=1

CηJ
(
Ni(ξJ ,ηJ) J(J)

21 (ξJ ,ηJ)+NRT
i,η (ξJ ,ηJ)

)

B̄i(4,2) =
5∑

J=1

CηJ
(
Ni(ξJ ,ηJ) J(J)

22 (ξJ ,ηJ)+NS T
i,η (ξJ ,ηJ)

)

B̄i(9,3) =
5∑

J=1

CηJ Ni(ξJ ,ηJ)

(6.35)

where J(p)
αβ (p = 1,5) is the Jacobian at sampling points. The isoparametric interpola-

tion functions for node i are denoted Ni. The functions NRT
i and NS T

i are given as
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NRT
i (i=1,2,3,4)(ξ,η) =

1
12

[
−JNi

11 ξ
(
ξ2−1

)
(1+ηiη)− JNi

21 (1+ ξiξ) η
(
η2−1

)]
NRT

i (i=5,7)(ξ,η) =
1
6

[
JNi

11 ξ
(
ξ2−1

)
(1+ηiη)

]
NRT

i (i=6,8)(ξ,η) =
1
6

[
JNi

21 (1+ ξiξ) η
(
η2−1

)]
NS T

i (i=1,2,3,4)(ξ,η) =
1
12

[
−JNi

12 ξ
(
ξ2−1

)
(1+ηiη)− JNi

22 (1+ ξiξ) η
(
η2−1

)]
NS T

i (i=5,7)(ξ,η) =
1
6

[
JNi

12 ξ
(
ξ2−1

)
(1+ηiη)

]
NS T

i (i=6,8)(ξ,η) =
1
6

[
JNi

22 (1+ ξiξ) η
(
η2−1

)]

(6.36)

where JNi
αβ (i = 1,8) is the Jacobian at nodes i.
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