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Abstract The problem of material properties identification for modern active compos-
ites is closely connected to the state of the art methods of design and manufacturing
using composite and smart materials. This chapter deals with computer design of
multiscale two-phase piezomagnetoelectric (magnetoelectric) bulk composites in
finite element software ACELAN-COMPOS. These composites consist of piezomag-
netic and piezoelectric fractions of irregular structures. The complex approach for the
homogenization problem of such composites include the effective moduli method,
computer modeling of the representative volumes with microstructure features, and
the finite element technologies for solving the static problems for the representative
volumes. Representative volumes are widely used as geometrical models for such
problems. The three-dimensional application is demonstrated for piezomagnetoelec-
tric and piezoelectric materials. A specific set of boundary conditions applied to the
representative volume enables us to determine effective moduli of the material. The
first step of such modeling consists in describing a material distribution inside the
representative volumes with a known percentage of each material. Three algorithms
were created to simulate random material distribution for specific patterns: biphasic
composite with connectivity of each phase, granules of predefined size and regular
rods.
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5.1 Introduction

Inhomogeneous and porous active materials are widely used in modern material
science and technique. Thus, two-phase piezomagnetoelectric (magnetoelectric)
composites consisting of active piezoelectric and piezomagnetic phases demonstrate
the ability to mutual transformation of magnetic and electric fields, although each
separate phase does not have such property. Modern magnetoelectric composites have
high effectiveness of the magnetoelectric transformation, relatively high temperatures
of phase transitions and long process life (Nan et al, 2008).

Piezoceramic composite materials and, in particular, porous piezoceramic ma-
terials also have been actively developed in the last years (Ringgaard et al, 2015;
Rybyanets, 2010, 2011). Porous piezoceramics have a lower impedance than dense
ceramics. Therefore, the impedance mismatch between the piezoelectric device and
the surrounding acoustic medium is decreased. On the other hand, its longitudinal
piezomodulus d33, which determines the efficiency of mechanical and electrical
energy transformations for thickness vibrations, remains almost the same as for
the dense piezoceramics. This properties allows to create high-intensity ultrasound
transducers.

Recently magnetoelectric composites became of interest to many researchers
which resulted in considerable increase in the number of works devoted to the
modeling of the effective properties of these composites (see Lee et al, 2005; Li,
2000; Nan et al, 2008; Tang and Yu, 2008; Zhang and Soh, 2005, etc.). Piezoelectric
composites are studied much better (see Bowen et al, 2001; Iyer and Venkatesh, 2014;
Martínez-Ayuso et al, 2017; Nguyen et al, 2016; Ramesh et al, 2005; Rybyanets,
2010; Rybyanets et al, 2015; Topolov and Bowen, 2009, etc.). Example of such
materials can be seen in Figs. 5.1 and 5.2.

Mathematical models of such materials are complicated and usually require
additional modeling step to define physical properties of composite. In this paper
we consider homogenization models and the finite element method as a tool for

Fig. 5.1 Scanning electron
microscope (SEM) picture of
a high-porous PZT material
with 95 % of porosity syn-
thesized by foam reticulation
technique.
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Fig. 5.2: Piezoceramics with different size of pores and pores percentage.

representative volume modeling and properties identification of piezoelectric and
magnetoelectric materials.

5.2 Piezomagnetoelectric Boundary Problems

In ACELAN we use the original models of piezomagnetoelectric (magnetoelectric)
materials with damping similar described in Nasedkin et al (2014).

Let Ω be a region occupied by a piezomagnetoelectric material; Γ = ∂Ω is the
boundary of the region; n is the vector of the external unit normal to Γ; x= {x1, x2, x3};
t is the time; u = u(x, t) is the vector of mechanical displacements; ϕ = ϕ(x, t) is the
electric potential; φ = φ(x, t) is the magnetic potential. The system of differential
equations for piezomagnetoelectric body with damping effects in Ω can be written in
the following vector–matrix form

L∗(∇) ·T+ρ f = ρ (ü+αdu̇), ∇ ·D = σΩ, ∇ ·B = 0 , (5.1)

T = c · (S+βdṠ)− e∗ ·E−h∗ ·H , (5.2)

D+ ζdḊ = e · (S+ ζdṠ)+κ ·E+α ·H , (5.3)

B+γdḂ = h · (S+γdṠ)+α∗ ·E+μ ·H , (5.4)

S = L(∇) ·u, E = −∇ϕ, H = −∇φ, (5.5)

L∗(∇) =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣
∂1 0 0 0 ∂3 ∂2
0 ∂2 0 ∂3 0 ∂1
0 0 ∂3 ∂2 ∂1 0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦ . (5.6)

Here L(a) is a matrix operator for the vector a, L∗(a) is the transposed operator,
T = {σ11,σ22,σ33,σ23,σ13,σ12} denotes the array of the stress components; S = {ε11,
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ε22, ε33, 2ε23, 2ε13, 2ε12} is the array of the strain components; D and E are the
electric flux density vector or the electric displacement vector and the electric field
vector; B and H are the magnetic flux density vector and the magnetic field vector; ρ is
the mass density of the material; c= cE,H is the 6×6 matrix of elastic stiffness moduli;
e = eH is the 3×6 matrix of piezoelectric moduli; h = hE is the the 3×6 matrix of
magnetostriction moduli (piezomagnetic moduli); κ = κS ,H = εS ,H is the the 3× 3
matrix of dielectric permittivity moduli; α = αS is the 3×3 matrix of magnetoelectric
coupling coefficients; μ = μS ,E is the 3×3 matrix of magnetic permeability moduli;
αd, βd, ζd, γd are the damping coefficients; f is the vector of mass forces; σΩ is the
density of free electric charges (usually, σΩ = 0); (...)∗ is the transpose operation;
(...) : (...) is the double scalar product operation.

We suppose that the material moduli have the usual symmetry properties: cαβ = cβα,
κkl = κ lk, μkl = μlk. In addition to this for the positive definiteness of the intrinsic
energy for the piezomagnetoelectric medium the following inequalities must be
satisfied (∀ S, E, H), ∃W0 > 0:

S∗ · c ·S+E∗ ·κ ·E+2E∗ ·α ·H+H∗ ·μ ·H ≥W0(S∗ ·S+E∗ ·E+H∗ ·H) .

In Eqs. (5.1)–(5.6) for the piezomagnetoelectric material, we use a generalized
Rayleigh method of damping evaluation, see Belokon et al (2002); Nasedkin (2010)
for the case of piezoelectric material and Nasedkin et al (2014) for the case of ther-
mopiezomagnetoelectric material with equations in tensor form. When ζd = γd = 0 in
Eqs. (5.3), (5.4), we have the model for taking into account of mechanical damping in
piezomagnetoelectric media which is adopted in the case of elastic and piezoelectric
materials in several well-known finite element packages. A more complicated model
(5.2)–(5.4) extends Kelvin’s model to the case of piezomagnetoelectric media. It
has been shown that the model (5.1)–(5.6) with βd = ζd = γd satisfies the conditions
of the energy dissipation and has the possibility to apply the mode superposition
method for transient and harmonic problems.

The boundary and the initial conditions should be added to the system of differen-
tial equations (5.1)–(5.6). The boundary conditions are of three types: mechanical,
electric and magnetic. To formulate the mechanical boundary conditions we assume
that the boundary Γ is divided in two subsets Γσ and Γu (Γ = Γσ ∪Γu). We will
assume that at the part of the boundary Γσ the vector of mechanical stress pΓ is
known

L∗(n) ·T = pΓ, x ∈ Γσ . (5.7)

On the remaining part Γu of the boundary Γ we pose known the mechanical displace-
ments vector uΓ

u = uΓ, x ∈ Γu, (5.8)

where L∗(n) is the matrix as in (5.6) with replace ∂k by nk. To set the electric
boundary conditions we assume that the surface Γ is also subdivided in two subsets:
ΓD and Γϕ (Γ = ΓD∪Γϕ). The regions ΓD does not contain electrodes and hold the
following conditions

n ·D = −σΓ, x ∈ ΓD , (5.9)
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where σΓ is the known surface density of electric charge, and usually, σΓ = 0.
The subset Γϕ is the union of M + 1 regions Γϕ j ( j ∈ JQ ∪ JV , JQ = {1,2, ...,m},
JV = {0,m,m+ 1, ...,M}), that does not border on each other and are covered with
infinitely thin electrodes. At these regions we set the following boundary for the
electrical field conditions

ϕ =Φ j, x ∈ Γϕ j, j ∈ JQ , (5.10)

∫
Γϕ j

n ·DdΓ = −Q j, I j = ±Q̇ j, x ∈ Γϕ j, j ∈ JQ , (5.11)

ϕ = V j, x ∈ Γϕ j, j ∈ JV , Γ j0 � ∅ , (5.12)

where the variables Φ j, V j do not depend on x; Q j is the overall electric charge on
Γϕ j, and the sign "±" in (5.11) is chosen in accordance with the accepted direction of
the current I j in the electric circuit. For magnetic boundary condition we suppose
that on the boundary Γ hold the following condition

n ·B = 0, x ∈ Γ . (5.13)

For transient problems it is also necessary to pose initial conditions, which can be
written as

u = u∗(x), u̇ = v∗(x), ϕ = ϕ∗(x), φ = φ∗(x), t = 0, x ∈ Ω, (5.14)

where u∗(x), v∗(x), ϕ∗(x), φ∗(x) are the known initial values of the corresponding
fields.

Equations (5.1)–(5.14) represent the statement of the transient problem for piezo-
magnetoelectric body with the generalized Rayleigh damping. We can also consider
the particular cases of this model without tacking into account the connectivity
between some physical fields (models of piezoelectric, piezomagnetic, and elastic
materials).

5.3 Finite Element Approximations

For solving problems for the piezomagnetoelectric body in weak forms we will
use classical finite element approximation techniques (Bathe and Wilson, 1976;
Zienkewicz and Morgan, 1983). Let Ωh be a region of the corresponding finite
element mesh Ωh ⊆ Ω, Ωh = ∪kΩ

ek, where Ωek is a separate finite element with
number k. On the finite element mesh Ωh = ∪kΩ

ek we will find the approximation to
the weak solution {uh ≈ u, ϕh ≈ ϕ, φh ≈ φ} for the transient problem in the form

uh(x, t) = N∗u(x) ·U(t), ϕh(x, t) = N∗ϕ(x) ·Φ(t), φh(x, t) = N∗φ(x) ·A(t) , (5.15)
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where N∗u is the matrix of the shape functions for the displacements, N∗ϕ is the
row vector of the shape functions for the electric potential, N∗φ is the row vector
of the shape functions for the magnetic potential, U(t), Φ(t), A(t) are the global
vectors of the nodal displacements, the electric potential, and the magnetic potential,
respectively.

In accordance with conventional finite element technique we approximate the con-
tinuous weak formulation by the problem in finite-dimensional spaces. Substituting
(5.15) and similar representations for project functions into the weak formulation
of the problem for the magnetoelectric body on Ωh, without taking into account the
principal boundary conditions we obtain

Muu · Ü+Cuu · U̇+Kuu ·U+Kuϕ ·Φ+Kuφ ·A = Fu , (5.16)

−K∗uϕ · (U+ ζdU̇)+Kϕϕ ·Φ+Kϕφ ·A = Fϕ+ ζdFt
ϕ , (5.17)

−K∗uφ · (U+γdU̇)+K∗ϕφ ·Φ+Kφφ ·A = 0 , (5.18)

with the initial conditions

U(0) = U0, U̇(0) = Ut
0, Φ(0) =Φ0, A(0) = A0 , (5.19)

where the vector of the nodal initial displacements U0, the vector of the nodal
initial velocities Ut

0, the vector of the nodal initial electric potentials Φ0, and the
vector of the nodal initial magnetic potentials A0 are derived from the corresponding
continuous initial conditions (5.14).

Here, Muu =
∑a Mek

uu, Cuu =
∑a Cek

uu, Kuu =
∑a Kek

uu, Kuϕ =
∑a Kek

uϕ, Kuφ =
∑a Kek

uφ
etc. are the global matrices, obtained from the assembly of the corresponding element
matrices. The element matrices are provided in the following form:

Mek
uu =

∫
Ωek

ρNe
u ·Ne∗

u dΩ, Cek
uu = αdMek

uu+βdKek
uu , (5.20)

Kek
uu =

∫
Ωek

Be∗
u · c ·Be

u dΩ, Kek
uϕ =

∫
Ωek

Be∗
u · e∗ ·Be

ϕ dΩ, (5.21)

Kek
ϕϕ =

∫
Ωek

Be∗
ϕ ·κ ·Be

ϕ dΩ, Kek
ϕφ =

∫
Ωek

Be∗
ϕ ·α ·Be

φ dΩ, (5.22)

Kek
φφ =

∫
Ωek

Be∗
φ ·μ ·Be

φ dΩ, Be
u = L(∇) ·Ne∗

u , Be
ϕ = ∇Ne∗

ϕ , Be
φ = ∇Ne∗

φ , (5.23)
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where Ne∗
u , Ne∗

ϕ , Ne∗
φ are the matrices and the row vectors of approximate shape

functions, respectively, defined on separate finite elements. The vectors Fu, Fϕ, Ft
ϕ

in (5.16), (5.17) are obtained from the boundary conditions, the corresponding right
parts of the weak statements, and the finite element approximations.

Note that in ACELAN we use an effective algorithm for symmetric positive def-
inite and quasi-definite matrices (Belokon et al, 2000, 2002; Nasedkin, 2010) for
solving finite element Eqs. (5.16)–(5.18) (Benzi et al, 2005; Benzi and Wathen, 2008;
Vanderbei, 1995). For example we can use the Newmark method for integrating
Cauchy problem (5.16)–(5.19) with symmetric quasidefinite effective stiffness matri-
ces in a formulation where the velocities and the accelerations at the time layers are
not given explicitly (Belokon et al, 2002; Nasedkin, 2010). We can also implement in
a symmetric form the most important procedures of finite element technologies such
as the rotations of the degrees of freedom, the realizations of mechanical and electric
boundary conditions, etc. ACELAN package also provides a two-dimensional version
(Fig. 5.3) for non-homogeneously polarized materials.

5.4 Homogenization of Two-Phase Piezomagnetoelectric

Materials

Let Ω be a representative volume of a two-phase composite heterogeneous body
composed of two materials Ωe and Ωm (Ω = Ωe∪Ωm), where the phase Ωe has the
piezoelectric properties and the phase Ωm has the piezomagnetic properties. Both
phases Ωe and Ωm can consist of separate, generally speaking, disjointed subregions
Ωe = ∪iΩei, Ωm = ∪ jΩe j, that in the aggregate have common boundaries and do not

Fig. 5.3: 2D ACELAN package graphical user interface.
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overlap each other. Thus, here we consider a two-phase mixture composite with
piezoelectric and piezomagnetic fractions.

We assume that the both phases separately do not have magnetoelectric coupling.
Then, for static homogenization problem we have the following system of equations

L∗(∇) ·T = 0, ∇ ·D = 0, ∇ ·B = 0 , (5.24)

T = c ·S− e∗ ·E−h∗ ·H , (5.25)

D = e ·S+κ ·E+α ·H , (5.26)

B = h ·S+α∗ ·E+μ ·H , (5.27)

S = L(∇) ·u, E = −∇ϕ, H = −∇φ , (5.28)

where c = ca, e = ea, h = ha, κ = κa, α = αa, μ = μa for x ∈ Ωa, a = e,m.
We note that em = 0 and αm = 0 for x ∈ Ωm, he = 0 and αe = 0 for x ∈ Ωe, that is

both phases separately do not have magnetoelectric coupling. However for composite
magnetoelectric medium due to the coupling of the magnetic and mechanical fields at
the piezomagnetic phase Ωm and the coupling of the electric and mechanical fields at
the piezoelectric phase Ωe as the result we get the coupling of magnetic and electric
fields that does not exist at each separate phase.

We will determine the effective moduli c̃, ẽ, h̃, κ̃, α̃, μ̃ by the following technique
(Nasedkin, 2014a,b) similarly for elastic and piezoelectric composites. Let us put
some “equivalent” homogeneous piezomagnetoelectric medium Ω with the effective
moduli c̃, ẽ, h̃, κ̃, α̃, μ̃ into correspondence with initial heterogeneous medium. The
constitutive equations for “equivalent” medium, similar to (5.25)–(5.27) for static
problem, are given in the forms (with (5.28)):

T = c̃ ·S− ẽ∗ ·E− h̃∗ ·H , (5.29)

D = ẽ ·S+ κ̃ ·E+ α̃ ·H , (5.30)

B = h̃ ·S+ α̃∗ ·E+ μ̃ ·H . (5.31)

We consider the static magnetoelectroelastic problems for representative volume
with Eqs. (5.24)–(5.28) for composite medium and with Eqs. (5.24), (5.29)–(5.31),
(5.28) for homogeneous medium, and with the following boundary conditions at the
external boundary Γ = ∂Ω

u = L∗(x) ·S0, ϕ = −x ·E0, φ = −x ·H0, x ∈ Γ , (5.32)
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where S0 = {ε011, ε022, ε033, 2ε023, 2ε013, 2ε012}; ε0i j are some constant values that
do not depend on x; E0 and H0 are some constant vectors.

Thus, the static problem for an “equivalent” medium is the problem with the
effective moduli. It is obvious that the solution of the problem (5.24), (5.29)–(5.31),
(5.28), (5.32) has the following form: u = u0, u0 = L∗(x) ·S0, ϕ = ϕ0, ϕ0 = −x ·E0,
φ = φ0, φ0 = −x ·H0, S = S0, E = E0, H =H0, T = T0, T0 = c̃ ·S0 − ẽ∗ ·E0 − h̃∗ ·H0,
D = D0, D0 = ẽ ·S0+ κ̃ ·E0+ α̃ ·H0, B = B0, B0 = h̃ ·S0+ α̃

∗ ·E0+ μ̃ ·H0.
From the solution of problem (5.24)–(5.28), (5.32) for a heterogeneous repre-

sentative volume we find the fields ε, E, H, σ, D and B. We note that for problem
for a heterogeneous medium the equalities 〈ε〉 = ε0, 〈E〉 = E0 and 〈H〉 = H0 hold
(Kurbatova et al, 2017; Nasedkin, 2014a,b; Nasedkin and Shevtsova, 2011), where
the broken brackets denote the volume-averaged quantities

〈(...)〉 = 1
|Ω|
∫
Ω

(...)dΩ. (5.33)

For problem for the heterogeneous medium we accept the following equations for
the determination of effective moduli: 〈T〉 = T0, 〈D〉 = D0, 〈B〉 = B0. Note that due
to Kurbatova et al (2017); Nasedkin (2014a,b); Nasedkin and Shevtsova (2011) the
average energies are equal for both heterogeneous and “equivalent” homogeneous
piezomagnetoelectric media: 〈T ·S+D ·E+B ·H〉/2 = (T0 ·S0 +D0 ·E0 +B0 ·H0)/2.

Now, by using Eqs. (5.32), we can select such boundary conditions, that enable us
to obtain obvious expressions for the effective moduli. Indeed, setting in (5.32)

S0 = S 0pζ , ζ = 1,2, ...,6, S 0 = const, E0 = 0, H0 = 0 , (5.34)

where ζ is fixed index ranging from 1 to 6; pζ is the vector from six-dimensional
basic set for the components of the strain tensor basic set; p j = e je j, j = 1,2,3;
p4 = (e2e3 + e3e2)/2; p5 = (e1e3 + e3e1)/2; p6 = (e1e2 + e2e1)/2; e j are the basic
vectors of the Cartesian coordinate system. From the solution of problem (5.24)–
(5.28), (5.32), (5.34) we obtain the calculation formulas for the effective elastic
stiffness moduli, piezoelectric moduli and piezomagnetic moduli:

c̃βζ = 〈Tβ〉/S 0, β = 1, ...,6, ẽ jζ = 〈D j〉/S 0, h̃ jζ = 〈Bj〉/S 0, j = 1,2,3 . (5.35)

If we assume that E0 = const in Eq. (5.32)

S0 = 0, E0 = E0em, m = 1,2,3, H0 = 0 , (5.36)

then from the solution of problem (5.24)–(5.28), (5.32), (5.36) we find the effective
piezoelectric moduli, dielectric permittivity moduli and magnetoelectric coupling
coefficients

ẽmβ = −〈Tβ〉/E0, β = 1,2, ...,6, κ̃ jm = 〈D j〉/E0, α̃ jm = 〈Bj〉/E0, j = 1,2,3 .
(5.37)

If we assume that H0 = const in Eq. (5.32)
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S0 = 0, E0 = 0, H0 = H0el l = 1,2,3 , (5.38)

then from the solution of problem (5.24)–(5.28), (5.32), (5.38) we find the effective
piezomagnetic moduli, magnetoelectric coupling coefficients and magnetic perme-
ability moduli

h̃lβ =−〈Tβ〉/H0, β= 1,2, ...,6, α̃ jl = 〈D j〉/H0, μ̃ jl = 〈Bj〉/H0, j= 1,2,3 . (5.39)

Thus, we can find the full set of the effective moduli of piezomagnetoelectric com-
posite mediim with arbitrary anisotropy class. For that we solve six problems (5.24)–
(5.28), (5.32), (5.34), obtain the solutions of these problems, calculate the averaged
by (5.33) mechanical stresses, electric flux densities, magnetic flux densities, and
find the moduli from (5.35). Similarly, we solve three problems (5.24)–(5.28), (5.32),
(5.36), obtain the solutions of these problems, and find the moduli from (5.37). Fi-
nally we solve three problems (5.24)–(5.28), (5.32), (5.38), obtain the solutions of
these problems, and find the moduli from (5.39). Note, that the quantities 〈Tβ〉, 〈D j〉
and 〈Bj〉 in ((5.35), (5.37), (5.39) are different, since they are calculated from the
solutions of the problems (5.24)–(5.28), (5.32) with different boundary conditions
(5.32): (5.34), (5.36) and (5.38).

For the homogenization problems for two-phase piezomagnetoelectric composites
in ACELAN-COMPOS package we can also use other less popular boundary condi-
tions. Namely, instead of principal boundary conditions (5.32) with linear functions
we can accept natural boundary conditions with constant quantities T0, D0 and B0

L∗(n) ·T = L∗(n) ·T0, n ·D = n ·D0, n ·B = n ·B0, x ∈ Γ , (5.40)

and the mixed boundary conditions from (5.32), (5.40)

L∗(n) ·T = L∗(n) ·T0, ϕ = −x ·E0, n ·B = n ·B0, x ∈ Γ , (5.41)

or
u = L∗(x) ·S0, n ·D = n ·D0, n ·B = n ·B0, x ∈ Γ , (5.42)

or the other boundary conditions with use the relation φ = −x ·H0 instead of n ·B =
n ·B0 in (5.32), (5.40)–(5.42).

In ACELAN-COMPOS package we can also consider the particular cases of this
model without taking into account the connectivity between some physical fields.
For example, we can obtain the model of piezoelectric material, if we assume h = 0,
α in (5.24), (5.25), and if we ignore the equations for magnetic fields.

5.5 Inhomogenious Polarization

The possibility to solve polarization definition problems in package ACELAN is
based on the study by A.S. Skaliukh (Belokon and Skaliuh, 2010; Skaliukh et al,
2015; Soloviev et al, 2015). In this study a representative volume of polycrystalline
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Fig. 5.4: Structure of perovskite-type polycrystalline ferroelectric material on ex-
ample of barium titanate ceramic: a – ceramic sample; b – representative volume; c
– dipoles in the crystallite; d – nuclear cell (Belokon and Skaliuh, 2010).

ferroelectric continuum which contains a great number of crystallites is analyzed.
Each crystallite contains a great number of domains, and each domain has a set of
cells with the same direction of spontaneous polarization, as shown in Fig. 5.4.

Each of the domains in the ferroelectric phase has the spontaneous polarization
ps and the spontaneous deformation εs, and one of the principal axes coincides with
the direction of the spontaneous polarization. The domain switching process begins
inside all crystallites when the electric field E is applied to the sample. All domains
are arranged in a direction close to the direction of the electric field as the internal
crystalline structure allows them. Fig. 5.5a shows a representative volume in the
depolarized state, and Fig. 5.5b shows the pattern distribution of the domains after
polarization. It was established experimentally that the domain switching begins only
when the electric field reaches certain "threshold" values.

Numerical experiments were conducted with plain piezoelectric transducer (see
Fig. 5.6) with stress free boundaries and with electrodes on upper and lower surfaces
on the transducer. Material was PZT-4, the model included a study of damping
with coefficients α = 2.7 ·10−2, β = ζ = 3.84 ·10−8. Length of the rod was 1 cm, its
thickness changed in numerical experiments from 0.025 to 0.200 cm. Oscillations
were excited by the voltage of 200 V.

The first part of the study consisted in analyzing mode shapes of the rod. In this
research the longitudinal oscillations with coupled electro-mechanical fields were
observed. We suggested that the polarization field corresponded to the strain field.
This type of functions can be described as F(x) = sin(πkx/l), where l is the length of
the rod. Effectiveness of piezoelectric device can be estimated by electro-mechanical
coupling coefficient. We used the following representation:

Fig. 5.5 Direction of the
vectors of spontaneous polar-
ization in domains: a – before
polarization; b – after polar-
ization Belokon and Skaliuh
(2010).
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Fig. 5.6 Scheme of piezoelec-
tric rod.

K2 =
f 2
a − f 2

r

f 2
a
, (5.43)

where fr is the resonance frequency and fa is the antiresonance frequency. Some of
observed polarization fields are present in Fig. 5.7.

Three resonance and antiresonance frequencies were analyzed for each case of
polarization field. We estimated effectiveness of the transducer by comparing electro-
mechanical coupling coefficient of the heterogeneously polarized specimen with a
uniformly polarized one. Frequency differences between different cases were less
than 5 %, but electro-mechanical coupling coefficient growth was large in some cases.
For the first eigenmode no better scheme was found than the case of polarization
field shown in Fig. 5.7 (top). Fig. 5.7 (middle) shows the most effective polarization
field obtained for the second mode, and Fig. 5.7 (bottom) shows the best field for the
third mode. In all cases the specimens of different thickness were analyzed.

In most cases the polarization of porous ceramics is considered as uniform over
the body, directed along the applied electric field. However numerical experiments
with finite element models in ACELAN package showed that in some cases these
observation do not take place. Let us consider some example of the representative
volumes. Top and bottom sides of the bodies have electrodes. Potentials applied to
these electrodes creates polarization field in the material, transforming ceramics into

Fig. 5.7: Some inhomogeneous polarization fields.
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Fig. 5.8: Polorized porous ceramics with round pores.

Fig. 5.9: Polorized porous ceramics with different types of pores.

piezoceramics. Pores are modeled as void areas without any material. Figures 5.8
and 5.9 shows examples of polarization field in bodies with different geometry and
porosity percentage.

These models demonstrates that there are areas in the bodies where polarization
direction is not the same with applied external field. In some areas there are no
polarization at all. This fact has significant influence on piezoelectric properties of
the bodies. Detailed study is presented in Vernigora et al (2011).

5.6 Three-Dimensional Models for Composite Materials

In 3D models the most common way to build a representative volume is to simulate a
cube with predefined or randomized geometrical entities inside (Skaliukh et al, 2015).
Representative volume technique is widely used in material science. Specialized mod-
ule ACELAN-COMPOS consists of common finite element library, representative
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volume generator and graphical user interface (GUI) for user interaction. The user
has possibilities to choose among one of three basic two-phase models of material
distribution in ACELAN package (Fig. 5.10): granules in the matrix, composites
with two connected phases and rods (pillars) in the matrix. Each model is based on
the enumeration algorithm which decides if the finite element belongs to material A
or to material B.

ACELAN package was developed using .NET platform and C#. ACELAN has
advanced program interfaces for exporting and importing models and meshes in .stl,
.inp, .gmsh formats, and internal binary format developed for the package. ACELAN
package has fully functional models for finite element analysis of generic meshes,
but the main feature of new ACELAN-COMPOS package concern to design of active
composites with tacking into account their internal structures.

In case of different types of materials in single composite (e.g. elastic and piezo-
electric, piezomagnetic and piezoelectric, etc.) the number of degrees of freedom for
each material can be different. This fact is taken into account during the assembly of
global stiffness matrix to reduce its size.

Three algorithms were created to describe random material distribution for specific
patterns: biphasic composite with connectivity of each phase, granules of predefined
size, and rods of the second material in the matrix. Both patterns are inspired by
well-known classes of composites: the first one can be classified as 3-3 or mixed
(bulk) composite, the second one – as 3-0 composite, and last case as 3-1 composite
(rods in polymer) in terms described by Newnham et al (1978).

Let us assume that the representative volume consists of clusters, each cluster
consists of 512 equal cubes which are elements with regular distribution. Each
cluster is randomly generated and placed in the representative volume. The number
of clusters can vary from 1 to 8n, as far as we suggest that all clusters are of the

Fig. 5.10: 3D ACELAN package graphical user interface.
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same size and the shape of the volume is predefined. The presented algorithms can
be modified by changing assumptions about cluster size. Let’s also state that the
connectivity of material is a possibility to reach any element of the phase from any
other element of the phase by passing through planes of elements. Connection of
edges or nodes is not regarded as connectivity. Key point is considered as an element
with predefined materials that cannot be changed. To make a random distribution
of a biphasic composite made from materials A and B, we place 8 key points of the
material A near each of the cube vertices and a starting point somewhere inside the
cluster.

The connectivity of material B inside the cluster is guaranteed by the algorithm,
the connectivity between clusters is achieved by adding 6 key points of material B,
one for each external plane of cluster (Fig. 5.11). After that we make the shortest
path between the starting point and the key point of the material A. The shortest path
gives us about 15 % of the material A (Fig. 5.12). After that we add more elements
to the path until the needed percentage reached.

The iterative process of adding new elements to the material A selects possible
candidates on each step. The candidate element is an element that does not belong to
the material A and can be removed from material B without disrupting the connectiv-
ity of the materials. Selecting such candidates is a basic problem of the graph theory.
After the set of candidates is build, the algorithm randomly selects one candidate,
adds it to the material A and starts the next iteration. A 2D example of a single step of
this process is presented in Fig. 5.13. Examples of different representative volumes
are shown in Fig. 5.14.

The described algorithm can be used independently in each part of the repre-
sentative volume starting from d = 4. This fact allows us to use simple parallel
computational techniques to increase the speed of numerical calculations. The sec-

Fig. 5.11: Green elements represent material B, gray elements represent material
A. The key points of the material B guarantee that the neighboring elements are
connected by both phases.
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Fig. 5.12: Green elements represent material A, gray elements represent material B.
Initial distribution (up to 15 % of material A).

Fig. 5.13 The layer of the
representative volume during
some algorithm step of mate-
rials distribution. Dark blue
color denotes the material A,
light blue color denotes the
candidates to be added to the
material A, red color denotes
the candidates that would
disrupt the connectivity of the
material B if added to A, and
white denotes the material B.

ond algorithm is designed for the cases where material or pores are distributed in the
form of isolated areas in the shape of granules. Granular composites are widely used
in engineering and industry. As an example we consider granular composite polyester
resin with the addition of calcium carbonate with mixtures of magnesium carbonate
in the form of granules. The maximal and minimal sizes and overall percentage of
granules can be set as input. On each step of iteration process, we select random key
point in the cluster, with restriction that forbids the merging of granules (Fig. 5.15).
Using this restriction, we select candidates for the next element to join the granule.
There are up to six possible directions (Fig. 5.16) in which we can add new element.
Random distribution for each candidate allows us to construct granules of natural
form. 3D examples shown in Fig. 5.17.

The third type of representative volume contains rods placed in the skeleton of
the main material. This is a straightforward algorithm based on placing 2D pattern
on the bottom of the volume and extruding it through the body (Fig. 5.18).
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Fig. 5.14: Different representative volumes with two phases for composites of 3–3
connectivities.

Fig. 5.15: Granules are distinguished by 1 element thick area.

Fig. 5.16: Adding elements to the granule in 2D case.
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Fig. 5.17: Example: granular composite polyester resin with the addition of cal-
cium carbonate with mixtures of magnesium carbonate in the form of granules.
The maximal and minimal sizes and overall percentage of granules can be set as
user input.

Fig. 5.18: Rods of different size in representative volumes with different meshes.

5.7 Conclusions

In the current paper we have described the models of active (piezomagnetoelectric
and piezoelectric) composites and the possibilities of their simulation in the finite
element software ACELAN and ACELAN-COMPOS.

The presented methods and programs are capable of solving the problems of
definition of effective material characteristics for representative volumes with elec-
troelastic and magnetoelastic properties. Both 2D and 3D cases we considered in
the developed algorithms. Different types of the material distribution inside the
representative volume were simulated in the mesh generating module. ACELANs
program interfaces allows us to use generated meshes and models from external
software packages and to use the imported meshes from other CAD/CAE software.
ACELAN-COMPOS package allows us to determine the properties of two-phase
active materials with 3–0, 3–3 and 3–1 connectivities.

Future possibilities of ACELAN-COMPOS package will be associated with the
other types of the representative volumes and with the modeling of surface effects
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and surface finite elements for piezoelectric and piezomagnetoelectric composite
media on the micro- and nanoscale (Eremeyev and Nasedkin, 2017; Nasedkin, 2017).
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