
Chapter 4

Hybrid-Mixed Solid-Shell Element for Stress

Analysis of Laminated Piezoelectric Shells

through Higher-Order Theories

Gennady M. Kulikov, Svetlana V. Plotnikova, and Erasmo Carrera

Abstract A geometrically exact hybrid-mixed four-node piezoelectric solid-shell
element by using the sampling surfaces (SaS) method is developed. The SaS formu-
lation is based on choosing inside the layers the arbitrary number of SaS parallel to
the middle surface and located at Chebyshev polynomial nodes in order to introduce
the displacements and electric potentials of these surfaces as basic shell unknowns.
The external surfaces and interfaces are also included into a set of SaS because of
the variational formulation. Such a choice of unknowns with the consequent use of
Lagrange polynomials in the through-thickness approximations of displacements,
strains, electric potential and electric field leads to a very compact piezoelectric
shell element formulation. To implement the efficient analytical integration through-
out the element, the enhanced assumed natural strain (ANS) method is employed.
The proposed hybrid-mixed four-node piezoelectric shell element is based on the
Hu-Washizu variational equation and exhibits a superior performance in the case of
coarse meshes. It could be useful for the three-dimensional (3D) stress analysis of
thick and thin doubly-curved laminated piezoelectric shells since the SaS formulation
gives the possibility to obtain the numerical solutions with a prescribed accuracy,
which asymptotically approach the exact solutions of piezoelectricity as the number
of SaS tends to infinity.
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4.1 Introduction

A large number of works has been carried out on 3D continuum-based finite elements
(Sze and Yao, 2000; Sze et al, 2000; Lee et al, 2003; Zheng et al, 2004; Klinkel and
Wagner, 2006, 2008; Kulikov and Plotnikova, 2008; Lentzen, 2009) that can handle
the analysis of thin laminated piezoelectric shells satisfactorily. These elements
are typically defined by two layers of nodes at the bottom and top surfaces with
three translational and one electric degrees of freedom (DOF) per node and known
as 6-parameter piezoelectric solid-shell elements because of the total number of
translational DOF. Unfortunately, the 6-parameter solid-shell element formulation
based on the complete 3D constitutive equations of piezoelectricity is deficient
because thickness locking occurs. This is due to the fact that the linear displacement
field in the thickness direction results in a constant transverse normal strain, which
in turn causes artificial stiffening of the shell element in the case of non-vanishing
Poisson’s ratios. To prevent thickness locking, the 3D constitutive equations have
to be modified employing the generalized plane stress conditions (Lee et al, 2003;
Kulikov and Plotnikova, 2008). The hybrid stress method (Sze and Yao, 2000; Sze
et al, 2000) in which the transverse normal stress is constant through the shell
thickness and the enhanced assumed strain method in which the transverse normal
strain is enriched in the thickness direction by a linear term (Zheng et al, 2004;
Klinkel and Wagner, 2006, 2008; Lentzen, 2009) can be also utilized.

An efficient way of using the complete 3D constitutive equations for the analysis
of piezoelectric shells is to employ the first-order equivalent single layer (ESL)
theory with seven translational DOF (Kulikov and Plotnikova, 2010, 2011a). The
7-parameter ESL shell model is based on choosing six displacements and two electric
potentials of the bottom and top surfaces and a transverse displacement of the middle
surface as basic shell unknowns. Such a model is optimal with respect to the number
of DOF. The more general 9-parameter ESL shell model is based on considering the
external and middle surfaces and choosing the displacements and electric potentials of
these surfaces as shell unknowns (Kulikov and Plotnikova, 2011b, 2015). Such choice
of unknowns with the consequent use of Lagrange polynomials of the second order in
the through-thickness approximations of displacements, strains, electric potential and
electric field leads to a robust piezoelectric shell formulation. Moreover, this approach
allows the derivation of the objective strain-displacement equations, which exactly
represent all rigid-body shell motions in any convected curvilinear coordinate system.
Taking into account that the displacement vectors of reference surfaces are resolved
in the middle surface frame, the higher-order shell formulation with nine DOF is
very promising for developing the exact geometry or geometrically exact (GeX)
piezoelectric solid-shell elements. The term GeX implies that the parametrization of
the middle surface is known a priori and, therefore, the coefficients of the first and
second fundamental forms are taken exactly at element nodes.

Note that the above solid-shell elements (Sze and Yao, 2000; Sze et al, 2000;
Lee et al, 2003; Zheng et al, 2004; Klinkel and Wagner, 2006, 2008; Kulikov and
Plotnikova, 2008; Lentzen, 2009; Kulikov and Plotnikova, 2010, 2011a,b, 2015)
do not describe properly the transverse stresses in a laminated piezoelectric shell.



4 Hybrid-Mixed Solid-Shell Element 47

To calculate them a post-processing stress recovery technique has to be employed.
However, to evaluate the distribution of transverse stresses through the thickness
of the laminated piezoelectric shell, higher-order layer-wise (LW) models have
to be utilized. Robust GeX nine-node piezoelectric shell elements with a variable
number of DOF per node have been developed in contributions (Carrera et al, 2011,
2014; Cinefra et al, 2015; Carrera and Valvano, 2017) through Carrera’s unified
formulation (Carrera, 1999, 2003). The shear and membrane locking phenomena
(Carrera et al, 2014; Cinefra et al, 2015; Carrera and Valvano, 2017) are prevented
by using the MITC technique (Bathe and Dvorkin, 1986; Bathe et al, 2003). These
finite elements exhibit an excellent performance and can be recommended for the 3D
stress analysis of piezoelectric shells. At the same time, Cinefra et al (2015) report
that the piezoelectric shell element based on the fourth-order LW theory does not
provide the continuity of the transverse normal stress and electric displacement on
interfaces especially in the case of thin shells.

The present paper is intended to overcome the aforementioned difficulties and
develop a piezoelectric solid-shell element that makes it possible to evaluate all
stress and electric displacement components effectively for thick and very thin
shells. To solve such a problem, the GeX four-node solid-shell element using the
sampling surface (SaS) method (Kulikov and Plotnikova, 2013) is proposed. The
SaS formulation is based on choosing inside the nth layer In not equally spaced
surfacesΩ(n)1, Ω(n)2, . . . , Ω(n)In parallel to the middle surface in order to introduce the
displacements and electric potentials of these surfaces as basic shell variables, where
In ≥ 3. Such choice of unknowns with the consequent use of Lagrange polynomials of
degree In−1 in the assumed distributions of displacements, strains, electric potential
and electric field through the thickness yields a very compact piezoelectric shell
formulation. Recently, the SaS formulation has been employed to analyze analytically
the electroelastic and thermoelectroelastic stress fields in laminated and functionally
graded shells (Kulikov and Plotnikova, 2014; Kulikov et al, 2015; Kulikov and
Plotnikova, 2017). However, the piezoelectric shell elements via the SaS technique
have not been developed yet.

The origin of the SaS concept can be traced back to contributions (Kulikov, 2001;
Kulikov and Carrera, 2008) in which three, four and five equally spaced SaS are
utilized. The SaS formulation with an arbitrary number of equispaced SaS is con-
sidered in (Kulikov and Plotnikova, 2011d). The more general approach with the
SaS located at Chebyshev polynomial nodes (roots of the Chebyshev polynomial)
(Bakhvalov, 1977) was developed later (Kulikov and Plotnikova, 2013, 2014) be-
cause the SaS formulation with equispaced SaS does not work properly with the
higher-order Lagrange interpolation. The use of the Chebyshev polynomial nodes
improves significantly the behavior of the higher-degree Lagrange polynomials since
such choice makes possible to minimize uniformly the error due to the Lagrange in-
terpolation. This fact gives an opportunity to calculate the displacements and stresses
with a prescribed accuracy employing the sufficiently large number of SaS. Thus,
the solutions based on the SaS concept can asymptotically approach the 3D exact
solutions of piezoelectricity as the number of SaS tends to infinity.
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Here, the GeX hybrid-mixed four-node piezoelectric solid-shell element formula-
tion is developed with the SaS located inside the layers at Chebyshev polynomial
nodes (Kulikov and Plotnikova, 2013). To circumvent shear and membrane lock-
ing, the assumed interpolations of displacement-independent strains and stresses
are utilized through the Hu-Washizu variational principle. Such an approach ex-
hibits an excellent performance in the case of coarse mesh configurations and has
computational advantages compared to conventional isoparametric hybrid-mixed
piezoelectric solid-shell element formulations (Sze and Yao, 2000; Sze et al, 2000;
Lee et al, 2003; Zheng et al, 2004; Klinkel and Wagner, 2006, 2008), because it
reduces the computational cost of the numerical integration in the evaluation of the
element stiffness matrix. This is due to the fact that all element matrices require
only direct substitutions, i.e., no expensive numerical matrix inversion is needed.
Second, the GeX four-node solid-shell element formulation is based on the effective
analytical integration throughout the finite element by using the enhanced ANS
method (Kulikov and Plotnikova, 2015, 2011c). The latter has a great meaning for
the numerical modeling of doubly-curved shells with variable curvatures.

4.2 Sampling Surface Shell Formulation

Consider a laminated shell of the thickness h. Let the middle surface Ω be described
by orthogonal curvilinear coordinates θ1 and θ2, which refer to the lines of principal
curvatures of its surface. The coordinate θ3 is oriented along the unit vector e3(θ1, θ2)
normal to the middle surface. We introduce the following notations: eα(θ1, θ2) are
the orthonormal base vectors of the middle surface; Aα(θ1, θ2) are the coefficients
of the first fundamental form; kα(θ1, θ2) are the principal curvatures of the middle
surface; cα = 1+ kαθ3 are the components of the shifter tensor; c(n)in

α (θ1, θ2) are the
components of the shifter tensor at SaS defined as

c(n)in
α = cα(θ

(n)in
3 ) = 1+ kαθ

(n)in
3 , (4.1)

where θ(n)in
3 are the transverse coordinates of the SaS inside the nth layer given by

θ(n)1
3 = θ[n−1]

3 , θ(n)In
3 = θ[n]

3 , (4.2)

θ(n)mn
3 =

1
2

(θ[n−1]
3 + θ[n]

3 )− 1
2

hn cos
(
π

2mn−3
2(In−2)

)
, (4.3)

in which θ[n−1]
3 and θ[n]

3 are the transverse coordinates of interfaces Ω[n−1] and Ω[n]

depicted in Fig. 4.1; hn = θ
[n]
3 −θ[n−1]

3 is the thickness of the nth layer. Here and in the
following derivations, the index n identifies the correspondence of any quantity to the
nth layer and runs from 1 to N, where N is the number of layers; NSaS =

∑
n In−N +1

is the total number of SaS; the indices in and introduced later jn, kn identify the
correspondence of any quantity to the SaS of the nth layer and run from 1 to In; the
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Fig. 4.1: Geometry of the laminated shell

index mn identifies the belonging of any quantity to the inner SaS of the nth layer
and runs from 2 to In − 1; Latin indices i, j, k, l range from 1 to 3; Greek indices
α, β range from 1 to 2.

Remark 4.1. It is seen from Eq. (4.3) that the transverse coordinates of inner SaS
θ(n)in

3 coincide with the coordinates of Chebyshev polynomial nodes This fact has a
great meaning for the convergence of the SaS method

The through-thickness SaS approximations (Kulikov and Plotnikova, 2013) can
be written as[

u(n)
i ε

(n)
i j σ

(n)
i j ϕ

(n) E(n)
i

]
=
∑

in

L(n)in
[
u(n)in

i ε(n)in
i j σ(n)in

i j ϕ(n)in E(n)in
i

]
, (4.4)

where u(n)
i , ε

(n)
i j , σ

(n)
i j , ϕ

(n), E(n)
i are the displacements, strains, stresses, electric po-

tential and electric field of the nth layer; u(n)in
i (θ1, θ2), ε(n)in

i j (θ1, θ2), σ(n)in
i j (θ1, θ2),

ϕ(n)in(θ1, θ2) and E(n)in
i (θ1, θ2) are the displacements, strains, electric potential and

electric field of SaS of the nth layer Ω(n)in ; L(n)in(θ3) are the Lagrange basis polyno-
mials of degree In−1 related to the nth layer:

L(n)in =
∏
jn�in

θ3− θ(n) jn
3

θ(n)in
3 − θ(n) jn

3

. (4.5)

In the orthonormal basis ei, the relations between strains and displacements of
SaS of the nth layer are written as
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2ε(n)in
αβ =

1

c(n)in
β

λ(n)in
αβ +

1

c(n)in
α

λ(n)in
βα ,

2ε(n)in
α3 =

1

c(n)in
α

λ(n)in
3α +β

(n)in
α , ε(n)in

33 = β(n)in
3 , (4.6)

where λ(n)in
iα (θ1, θ2) are the strain parameters of SaS of the nth layer; β(n)in

i (θ1, θ2) are
the values of the derivative of displacements with respect to thickness coordinate on
SaS:

λ(n)in
αα =

1
Aα

u(n)in
α,α +Bαu

(n)in
β + kαu

(n)in
3 for β � α,

λ(n)in
βα =

1
Aα

u(n)in
β,α −Bαu

(n)in
α for β � α,

λ(n)in
3α =

1
Aα

u(n)in
3,α − kαu

(n)in
α , Bα =

1
AαAβ

Aα,β for β � α, (4.7)

β (4.8)

where the symbol (. . .),i stands for the partial derivatives with respect to coordinates
θi; M(n) jn = L(n) jn

,3 are the derivatives of Lagrange basis polynomials, which are
calculated at the SaS as follows:

M(n) jn (θ(n)in
3 ) =

1

θ
(n) jn
3 − θ(n)in

3

∏
kn�in, jn

θ(n)in
3 − θ(n)kn

3

θ
(n) jn
3 − θ(n)kn

3

for jn � in,

M(n)in (θ(n)in
3 ) = −

∑
jn� in

M(n) jn (θ(n)in
3 ) . (4.9)

In the orthonormal basis ei, the relations between the electric field and electric
potentials of the SaS of the nth layer (Kulikov and Plotnikova, 2013) are expressed as

E(n)in
α = − 1

Aαc
(n)in
α

ϕ(n)in
,α ,

E(n)in
3 = −

∑
jn

M(n) jn (θ(n)in
3 )ϕ(n) jn . (4.10)

4.3 Hu-Washizu Variational Equation

The proposed hybrid-mixed piezoelectric solid-shell element is based on the modified
Hu-Washizu variational equation of piezoelectricity in which displacements, strains,
stresses and electric potential are utilized as independent variables (Kulikov and
Plotnikova, 2015):
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δJ = 0, (4.11)

J =
�

Ω

∑
n

θ[n]
3∫

θ[n−1]
3

[
1
2
η(n)

i j C(n)
i jklη

(n)
kl −E(n)

k e(n)
ki jη

(n)
i j −

1
2

E(n)
i ε

(n)
i j E(n)

j

− σ(n)
i j

(
η(n)

i j −ε(n)
i j

)]
dV −W, (4.12)

where dV = A1A2c1c2dθ1dθ2dθ3 is the infinitesimal volume element; ε(n)
i j and η(n)

i j
are the displacement-dependent and displacement-independent strains of the nth
layer; C(n)

i jkl, e(n)
ki j and ε(n)

i j are the elastic, piezoelectric and dielectric constants of the
nth layer; W is the work done by external electromechanical loads. As usual, the
summation on repeated Latin indices is implied.

Following the SaS technique (4.4), we introduce the next assumption of the hybrid-
mixed solid-shell element formulation. Assume that the displacement-independent
strains are distributed through the thickness of the nth layer by

η(n)
i j =
∑

in

L(n)inη(n)in
i j , (4.13)

where η(n)in
i j (θ1, θ2) are the displacement-independent strains of SaS of the nth layer.

Substituting the through-thickness distributions (4.4) and (4.13) in Eq. (4.12) and
introducing

Λ(n)in jn =

θ[n]
3∫

θ[n−1]
3

L(n)in L(n) jnc1c2dθ3, (4.14)

one can write the Hu-Washizu mixed functional in terms of SaS variables as

J =
�

Ω

∑
n

∑
in

∑
jn

Λ(n)in jn

[
1
2

(η(n)in )TC(n)η(n) jn − (E(n)in )Te(n)η(n) jn

− 1
2

(E(n)in )Tε(n)E(n) jn − (σ(n)in )T(η(n) jn −ε(n) jn )
]
A1A2dθ1dθ2−W, (4.15)

where
ε(n)in =

[
ε(n)in

11 ε(n)in
22 ε(n)in

33 2ε(n)in
12 2ε(n)in

13 2ε(n)in
23

]T
,

η(n)in =
[
η(n)in

11 η(n)in
22 η(n)in

33 2η(n)in
12 2η(n)in

13 2η(n)in
23

]T
,

σ(n)in =
[
σ(n)in

11 σ(n)in
22 σ(n)in

33 σ(n)in
12 σ(n)in

13 σ(n)in
23

]T
,

E(n)in =
[
E(n)in

1 E(n)in
2 E(n)in

3

]T
,
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C(n) =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

C(n)
1111 C(n)

1122 C(n)
1133 C(n)

1112 0 0
C(n)

2211 C(n)
2222 C(n)

2233 C(n)
2212 0 0

C(n)
3311 C(n)

3322 C(n)
3333 C(n)

3312 0 0
C(n)

1211 C(n)
1222 C(n)

1233 C(n)
1212 0 0

0 0 0 0 C(n)
1313 C(n)

1323
0 0 0 0 C(n)

2313 C(n)
2323

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
,

e(n) =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
0 0 0 0 e(n)

113 e(n)
123

0 0 0 0 e(n)
213 e(n)

223
e(n)

311 e(n)
322 e(n)

333 e(n)
312 0 0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦ ,

ε(n) =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
ε(n)

11 ε
(n)
12 0

ε(n)
21 ε

(n)
22 0

0 0 ε(n)
33

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦ . (4.16)

4.4 Hybrid-Mixed Solid-Shell Element Formulation

The finite element formulation is based on a simple interpolation of the shell via GeX
four-node piezoelectric solid-shell elements

u(n)in
i =

∑
r

Nru
(n)in
ir , ϕ

(n)in =
∑

r

Nrϕ
(n)in
r , (4.17)

where Nr (ξ1, ξ2) are the bilinear shape functions of the element; u(n)in
ir and ϕ(n)in

r are
the displacements and electric potentials of SaS Ω(n)in at element nodes; ξ1, ξ2 are
the normalized curvilinear coordinates θ1, θ2 (Fig. 4.2); the nodal index r runs from
1 to 4.

To implement the efficient analytical integration throughout the finite element, the
enhanced ANS method (Kulikov and Plotnikova, 2011c) is adopted

ε(n)in =
∑

r

Nrε
(n)in
r , (4.18)

ε(n)in
r =

[
ε(n)in

11r ε
(n)in
22r ε

(n)in
33r 2ε(n)in

12r 2ε(n)in
13r 2ε(n)in

23r

] T
,

E
(n)in
=
∑

r

NrE
(n)in
r , (4.19)

E
(n)in
r =

[
E(n)in

1r E(n)in
2r E(n)in

3r

] T
,

where ε(n)in
i jr and E(n)in

ir are the strains and electric field of SaS of the nth layer at
element nodes.
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Fig. 4.2: Biunit square in (ξ1, ξ2)-space mapped into the middle surface of the GeX
four-node solid-shell element in (x1, x2, x3)-space

Remark 4.2. The main idea of such approach can be traced back to the ANS method
developed by many scientists for the isoparametric finite element formulation (Bathe
and Dvorkin, 1986; Hughes and Tezduyar, 1981; Macneal, 1982; Park and Stanley,
1986; Ko et al, 2017; Betsch and Stein, 1995). In contrast with above formulation,
we treat the term ANS in a broader sense. In the proposed GeX four-node solid-shell
element formulation, all components of the displacement-dependent strain tensor
and electric field are assumed to vary bilinearly throughout the biunit square in
(ξ1, ξ2)-space. This implies that instead of the expected non-linear interpolations due
to Eqs. (4.6), (4.7) and (4.10) the more suitable bilinear interpolations (4.18) and
(4.19) are utilized.

The strain vectors of the SaS at element nodes can be expressed as

ε(n)in
r = B

(n)in
ur U , (4.20)
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where B
(n)in
ur are the constant inside the finite element matrices of order 6×12NSaS;

U is the element displacement vector given by

U =
[
UT

1 UT
2 UT

3 UT
4

]T
,

Ur =

[(
u

[0]
r

)T (
u

(1)2
r

)T
. . .
(
u

(1)I1−1
r

)T (
u

[1]
r

)T (
u

(2)2
r

)T
. . .
(
u

(N−1)IN−1−1
r

)T (
u

[N−1]
r

)T (
u

(N)2
r

)T
. . .
(
u

(N)IN−1
r

)T (
u

[N]
r

)T]T
,

u
[m]
r =

[
u[m]

1r u[m]
2r u[m]

3r

]T
, u

(n)mn
r =

[
u(n)mn

1r u(n)mn
2r u(n)mn

3r

]T
, (4.21)

where u[m]
ir are the displacements of external surfaces and interfaces at element nodes

(m = 0, 1, ..., N).
The electric field vectors of SaS at element nodes are

E
(n)in
r = −B

(n)in
ϕr Φ, (4.22)

where B
(n)in
ϕr are the constant inside the finite element matrices of order 3×4NSaS; Φ

is the element electric field vector defined as

Φ =
[
ΦT

1 Φ
T
2 Φ

T
3 Φ

T
4

] T
,

Φr =
[
ϕ[0]

r ϕ
(1)2
r . . . ϕ

(1)I1−1
r ϕ[1]

r ϕ
(2)2
r

... ϕ
(N−1)IN−1−1
r ϕ[N−1]

r ϕ(N)2
r . . . ϕ

(N)IN−1
r ϕ[N]

r

]T
, (4.23)

where ϕ[m]
r are the electric potentials of external surfaces and interfaces at element

nodes.
From a computational point of view, it is convenient to write the ANS interpolation

(4.18) in the following form:

ε(n)in =
∑
r1,r2

(ξ1)r1 (ξ2)r2 ε(n)in
r1r2 , ε(n)in

r1r2 = B
(n)in
ur1r2U, (4.24)

where
ε(n)in

r1r2 =
[
ε(n)in

11r1r2
ε(n)in

22r1r2
ε(n)in

33r1r2
2ε(n)in

12r1r2
2ε(n)in

13r1r2
2ε(n)in

23r1r2

] T
,

B
(n)in
u00 =

1
4

(
B

(n)in
u1 +B

(n)in
u2 +B

(n)in
u3 +B

(n)in
u4

)
,

B
(n)in
u01 =

1
4

(
B

(n)in
u1 +B

(n)in
u2 −B

(n)in
u3 −B

(n)in
u4

)
,

B
(n)in
u10 =

1
4

(
B

(n)in
u1 −B

(n)in
u2 −B

(n)in
u3 +B

(n)in
u4

)
,
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B
(n)in
u11 =

1
4

(
B

(n)in
u1 −B

(n)in
u2 +B

(n)in
u3 −B

(n)in
u4

)
. (4.25)

Here, and below the indices r1 and r2 run from 0 to 1. The same concerns the ANS
interpolation (4.19), that is,

E(n)in =
∑
r1,r2

(ξ1)r1 (ξ2)r2 E
(n)in
r1r2 , with E

(n)in
r1r2 = −B

(n)in
ϕr1r2Φ, (4.26)

where
E

(n)in
r1r2 =

[
E(n)in

1r1r2
E(n)in

2r1r2
E(n)in

3r1r2

] T
,

B
(n)in
ϕ00 =

1
4

(
B

(n)in
ϕ1 +B

(n)in
ϕ2 +B

(n)in
ϕ3 +B

(n)in
ϕ4

)
,

B
(n)in
ϕ01 =

1
4

(
B

(n)in
ϕ1 +B

(n)in
ϕ2 −B

(n)in
ϕ3 −B

(n)in
ϕ4

)
,

B
(n)in
ϕ10 =

1
4

(
B

(n)in
ϕ1 −B

(n)in
ϕ2 −B

(n)in
ϕ3 +B

(n)in
ϕ4

)
,

B
(n)in
ϕ11 =

1
4

(
B

(n)in
ϕ1 −B

(n)in
ϕ2 +B

(n)in
ϕ3 −B

(n)in
ϕ4

)
. (4.27)

To overcome shear and membrane locking and introduce no spurious zero energy
modes, the robust displacement-independent strain and stress interpolations are
utilized:

η(n)in =
∑

r1+r2<2

(ξ1)r1 (ξ2)r2 Qr1r2η
(n)in
r1r2 , (4.28)

η(n)in
00 =

[
ψ(n)in

1 ψ(n)in
2 ψ(n)in

3 ψ(n)in
4 ψ(n)in

5 ψ(n)in
6

] T
,

η(n)in
01 =

[
ψ(n)in

7 ψ(n)in
9 ψ(n)in

11

] T
, η(n)in

10 =
[
ψ(n)in

8 ψ(n)in
10 ψ(n)in

12

] T
,

σ(n)in =
∑

r1+r2<2

(ξ1)r1 (ξ2)r2 Qr1r2σ
(n)in
r1r2 , (4.29)

σ(n)in
00 =

[
μ(n)in

1 μ(n)in
2 μ(n)in

3 μ(n)in
4 μ(n)in

5 μ(n)in
6

]T
,

σ(n)in
01 =

[
μ(n)in

7 μ(n)in
9 μ(n)in

11

] T
, σ(n)in

10 =
[
μ(n)in

8 μ(n)in
10 μ(n)in

12

] T
,

where Qr1r2 are the projective matrices given by

Q00 =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 0 0 0 0 0
0 1 0 0 0 0
0 0 1 0 0 0
0 0 0 1 0 0
0 0 0 0 1 0
0 0 0 0 0 1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
, Q01 =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 0 0
0 0 0
0 1 0
0 0 0
0 0 1
0 0 0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
, Q10 =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 0 0
1 0 0
0 1 0
0 0 0
0 0 0
0 0 1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
. (4.30)
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Remark 4.3. The assumed interpolations (4.28) and (4.29) provide a correct rank of
the element stiffness matrix.

Substituting interpolations (4.17), (4.24), (4.26), (4.28) and (4.29) in the Hu-
Washizu variational equation (4.11) and (4.15), replacing the metric product A1A2
in surface integrals by its value at the element center and integrating analytically
throughout the finite element, the following equilibrium equations of the GeX hybrid-
mixed four-node solid-shell element are obtained:

η(n)in
r1r2 =QT

r1r2
B

(n)in
ur1r2U for r1+ r2 < 2, (4.31)

σ(n)in
r1r2 =QT

r1r2

(
C(n)Qr1r2η

(n)in
r1r2 + (e(n))TB

(n)in
ϕr1r2Φ

)
for r1+ r2 < 2, (4.32)

∑
n

∑
in

∑
jn

Λ(n)in jn
∑

r1+r2<2

1
3r1+r2

(B(n)in
ur1r2 )TQr1r2σ

(n) jn
r1r2 = Fu, (4.33)

∑
n

∑
in

∑
jn

Λ(n)in jn
∑

r1+r2<2

1
3r1+r2

(B(n)in
ϕr1r2 )T

(
e(n)Qr1r2η

(n) jn
r1r2

−ε(n)B
(n) jn
ϕr1r2Φ

)
= Fϕ, (4.34)

where Fu and Fϕ are the element-wise mechanical and electric surface vectors.
Eliminating vectors η(n)in

r1r2 and σ(n)in
r1r2 from Eqs. (4.31)-(4.34), one arrives at the

system of linear equations [
Kuu Kuϕ
Kϕu Kϕϕ

] [
U

Φ

]
=

[
Fu
Fϕ

]
, (4.35)

where Kuu, Kuϕ, Kϕu =KT
uϕ and Kϕϕ are the mechanical, piezoelectric and dielectric

stiffness matrices defined as

Kuu =
∑

n

∑
in

∑
jn

Λ(n)in jn
∑

r1+r2<2

1
3r1+r2

(
B

(n)in
ur1r2

)T
Qr1r2QT

r1r2
C(n)Qr1r2 QT
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(n) jn
ur1r2 ,

Kuϕ =
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∑
in

∑
jn

Λ(n)in jn
∑

r1+r2<2

1
3r1+r2

(
B

(n)in
ur1r2

)T
Qr1 r2QT

r1 r2
(e(n))TB

(n) jn
ϕr1r2 ,

Kϕϕ = −
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n

∑
in

∑
jn

Λ(n)in jn
∑

r1+r2<2

1
3r1+r2

(
B

(n)in
ϕr1r2

)T
ε(n)B

(n) jn
ϕr1r2 . (4.36)

Remark 4.4. It is worth noting that all stiffness matrices are evaluated without the
expensive numerical matrix inversion that is impossible in available isoparametric
hybrid-mixed finite element formulations.
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4.5 Numerical Examples

The performance of the developed GeX four-node piezoelectric solid-shell element
denoted by GeXPS4 element is evaluated with the help of several exact solutions of
piezoelectricity extracted from the literature (Heyliger, 1997; Chen et al, 2001).

4.5.1 Three-Layer Piezoelectric Cylindrical Shell

Consider a simply supported three-layer cylindrical shell with equal ply thicknesses
under the imposed transverse deformation on the top surface

u+3 = u0 sin
πθ1
L

cos2θ2, (4.37)

where L is the length of the shell and u0 = 10−8 m. The both outer layers are composed
of PZT-4 with the material properties presented in Table 4.1 and Heyliger (1997).
The middle layer is made of fictitious material (Heyliger, 1997) with elastic constants
exactly half of PZT-4 and the piezoelectric and dielectric constants exactly double of
those of PZT-4. The bottom and top surfaces are assumed to be electrically grounded
and traction free.

Table 4.1: Elastic, piezoelectric and dielectric properties of materials∗

Material PZT-4 PZT-4 BaTiO3
(Heyliger, 1997) (Dunn and Taya, 1994) (Dunn and Taya, 1994)

C1111, GPa 139.0 139.0 150.0
C2222, GPa 139.0 139.0 150.0
C3333, GPa 115.0 115.0 146.0
C1122, GPa 77.8 77.8 66.0
C1133, GPa 74.3 74.3 66.0
C2233, GPa 74.3 74.3 66.0
C1313, GPa 25.6 25.6 44.0
C2323, GPa 25.6 25.6 44.0
C1212, GPa 30.6 30.6 42.0
e311, C/m2 -5.2 -5.2 -4.35
e322, C/m2 -5.2 -5.2 -4.35
e333, C/m2 15.08 15.1 17.5
e113, C/m2 12.72 12.7 11.4
e223, C/m2 12.72 12.7 11.4
ε11/ε0 1475 730 1115
ε22/ε0 1475 730 1115
ε33/ε0 1300 635 1260

* Vacuum permittivity ε0=8.854 pF/m
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Due to symmetry of the problem, only one octant of the shell (L/2 ≤ θ1 ≤ L,
0 ≤ θ2 ≤ π/2) is modeled by a regular mesh consisting of 48× 96 GeXPS4
elements. To compare the results with the exact solution of Heyliger (1997), we take
L = R+ = 0.01m and introduce the scaled variables as functions of the dimensionless
thickness coordinate as follows:

ū1 = 1011×u1(L, 0, z), ū3 = 1011×u3(L/2, 0, z),
σ̄11 = 10−3×σ11(L/2, 0, z), σ̄22 = 10−3×σ22(L/2, 0, z),
σ̄13 = 10−3×σ13(L, 0, z), σ̄23 = 10−3×σ23(L/2, π/4, z),
σ̄33 = 10−3×σ33(L/2, 0, z),
ϕ̄ = ϕ (L/2, 0, z), D̄3 = 106×D3(L/2, 0, z), z = θ3/h ,

(4.38)

where R+ is the radius of the top cylindrical surface.
Tables 4.2 and 4.3 list the results of the convergence study due to increasing the

number of SaS In inside each layer for two values of the slenderness ratio S = R+/h.
A comparison with the exact SaS solution (Kulikov and Plotnikova, 2013) is also
given. Fig. 4.3 shows the distributions of displacements, transverse stresses, electric
potential and electric displacement through the thickness for different slenderness
ratios by taking five SaS for each layer. These results demonstrate convincingly the
high potential of the proposed GeX hybrid-mixed solid-shell element formulation.
This is due to the facts that the boundary conditions on external surfaces for the
transverse stresses and the continuity conditions on interfaces for the transverse
stresses and electric displacement are satisfied for thick and thin shells properly.

The results of the convergence study due to mesh refinement are presented in
Fig. 4.4. The analytical answer is provided by the exact SaS solution (Kulikov and
Plotnikova, 2013). In this study, we consider five regular meshes with 3×6, 6×12,
12×24, 24×48 and 48×96 finite elements, which are characterized by the mesh
parameter k running from 1 to 5. It is seen that the GeXPS4 element behaves well
even in the case of coarse meshes except for the transverse normal stress for thin
shells.

Table 4.2: Results for a three-layer cylindrical shell with S = 2 under mechanical
loading

In ū1(−0.5) ū3(−0.5) ϕ̄ (0) σ̄22(−0.5) σ̄13(0) σ̄23(0) σ̄33(0) D̄3(0)

3 -251.6 740.2 2.849 -136.3 -56.80 -40.70 40.48 15.22
4 -254.6 742.2 2.851 -131.2 -57.71 -40.98 42.50 16.11
5 -254.3 742.1 2.851 -127.9 -57.57 -41.20 42.23 15.98
Exact -254.3 742.1 2.851 -127.7 -57.59 -41.21 42.25 15.98

Next, we study the same three-layer piezoelectric cylindrical shell subjected to
electric loading on the top surface whereas the bottom surface is electrically grounded

ϕ− = 0, ϕ+ = ϕ0 sin
πθ1
L

cos2θ2, (4.39)
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Fig. 4.3: Through-thickness distributions of displacements, transverse shear
stresses, electric potential and electric displacement for a three-layer cylindri-
cal shell subjected to mechanical loading for I1 = I2 = I3 = 5: GeXPS4 element
(—), exact SaS solution (Kulikov and Plotnikova, 2013) (◦) and Heyliger’s exact
3D solution (Heyliger, 1997) (�)
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Fig. 4.4: Convergence study due to mesh refinement for a three-layer cylindrical
shell subjected to mechanical loading for I1 = I2 = I3 = 5; the reference solution (—)
is provided by the exact SaS solution (Kulikov and Plotnikova, 2013)
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Table 4.3: Results for a three-layer cylindrical shell with S = 10 under mechanical
loading

In ū1(−0.5) ū3(−0.5) ϕ̄ (0) σ̄22(−0.5) σ̄13(0) σ̄23(0) σ̄33(0) D̄3(0)

3 -139.7 1026. 0.1780 -1.784 -5.352 -3.168 1.691 -7.452
4 -139.7 1026. 0.1779 -1.591 -5.445 -3.216 1.659 -7.444
5 -139.7 1026. 0.1779 -1.574 -5.443 -3.220 1.656 -7.445
Exact -139.7 1026. 0.1779 -1.564 -5.440 -3.221 1.656 -7.449

where ϕ0 = 10V. The external surfaces are assumed to be traction free. Here, again
one octant of the shell is modeled by a regular mesh with 48×96 GeXPS4 elements.

Table 4.4 lists the results of the convergence study for the moderately thick
shell by increasing the number of SaS In inside each layer. The obtained results
are compared with the exact SaS solution (Kulikov and Plotnikova, 2013). Figure
4.5 shows the through-thickness distributions of displacements, transverse stresses,
electric potential and electric displacement (4.38) for different slenderness ratios S
by choosing five SaS for each layer. It is seen that the boundary conditions on bottom
and top surfaces and the continuity conditions at interfaces for transverse stresses
and electric displacement are satisfied again correctly.

Table 4.4: Results for a three-layer cylindrical shell with S = 10 under electric
loading

In ū1(−0.5) ū3(−0.5) ϕ̄ (0) σ̄11(−0.5) σ̄13(0) σ̄23(0) σ̄33(0) D̄3(0)

3 216.2 1664. 5.239 -12.12 -9.910 -5.866 -1.527 -221.2
4 216.1 1664. 5.239 -12.14 -10.11 -5.979 -1.535 -221.1
5 216.1 1664. 5.239 -12.14 -10.11 -5.977 -1.535 -221.1
Exact 216.2 1665. 5.239 -12.15 -10.11 -5.979 -1.545 -221.2

4.5.2 Three-Layer Piezoelectric Spherical Shell

Consider a three-layer piezoelectric spherical shell with ply thicknesses [0.4h/0.2h/0.4h]
subjected to a localized uniform pressure symmetrically distributed on the top surface
by

p+3 = −p0 for 0 ≤ θ1 ≤ θ0, π− θ0 ≤ θ1 ≤ π and 0 ≤ θ2 ≤ 2π, (4.40)

where θ1 and θ2 are the spherical coordinates of the middle surface; p0 = 1N/m2 and
θ0 = arccos(0.75). The bottom and top layers are made of the BaTiO3 whereas the
middle layer of the PZT-4 with the material properties given in Table 4.4 and (Dunn
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Fig. 4.5: Through-thickness distributions of displacements, transverse shear
stresses, electric potential and electric displacement for a three-layer cylindri-
cal shell subjected to electric loading for I1 = I2 = I3 = 5: GeXPS4 element (—) and
exact SaS solution (Kulikov and Plotnikova, 2013) (◦)
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Table 4.5: Results for a three-layer piezoelectric spherical shell with R/h = 1.5

In ū1(0.5) ū3(0.5) ϕ̄ (0.5) σ̄11(0.5) σ̄22(0.5) σ̄13(0) σ̄33(0) D̄3(0)

3 -0.7592 -3.572 4.131 -10.98 -9.862 -0.5407 -4.367 -1.062
5 -0.7655 -3.582 4.119 -10.78 -9.725 -0.5491 -4.370 -1.097
7 -0.7655 -3.582 4.120 -10.79 -9.738 -0.5490 -4.370 -1.096
9 -0.7655 -3.582 4.120 -10.79 -9.738 -0.5490 -4.370 -1.096

and Taya, 1994). This problem is a good benchmark to test the proposed analytical
integration scheme because in the literature an exact 3D solution is available (Chen
et al, 2001).

Owing to symmetry, we consider a part of the shell (θ∗ ≤ θ1 ≤ 90◦, 0 ≤ θ2 ≤
10◦) depicted in Fig. 4.6, which is modeled by a fine mesh with 450×1 GeXPS4
elements to describe correctly the boundary conditions on external surfaces and the
continuity conditions at interfaces for transverse components of stresses and electric
displacement, where θ∗ = 0.001◦. To analyze the results efficiently, we introduce the
following dimensionless variables as functions of the thickness coordinate:

ū1 = 10c44u1(π/6, 0, z)/RS p0, ū3 = 10c44u3(π/6, 0, z)/RS p0,
σ̄11 = 10σ11(π/6, 0, z)/S p0, σ̄22 = 10σ22(π/6, 0, z)/S p0,
σ̄13 = 10σ13(π/6, 0, z)/p0, σ̄33 = σ33(π/6, 0, z)/p0,
ϕ̄ = 100e33ϕ(π/6, 0, z)/Rp0, D̄3 = 10S c44D3(π/6, 0, z)/e33 p0, z = θ3/h,

(4.41)

where S = R/h is the slenderness ratio; R = 1m is the radius of the middle surface;
c44 = 44.0GPa and e33 = 17.5C/m2 are the representative moduli.

The data listed in Table 4.5 show that the GeXPS4 element allows reproducing
the 3D solution of piezoelectricity (Chen et al, 2001) for a thick spherical shell with a
high accuracy by using the sufficiently large number of SaS inside the layers. Figures

Fig. 4.6 A part of the three-
layer piezoelectric spherical
shell modeled by regular k×1
meshes
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Fig. 4.7: Through-thickness distributions of displacements, electric potential and
electric displacement for a three-layer piezoelectric spherical shell for I1 = I2 = I3 =

9: GeXPS4 element (—) and exact 3D solution (Chen et al, 2001) (◦)

4.7 and 4.8 display the distributions of displacements, electric potential, electric
displacement and stresses (4.41) through the thickness for various slenderness ratios
by choosing nine SaS inside each layer. A comparison with the exact 3D solution
(Chen et al, 2001) is also presented. One can see that the results for a thick shell are
very close.

Figure 4.9 shows the results of the convergence study through the use of the
normalized transverse displacement, electric potential and stresses for thick and thin
shells with nine SaS for each layer. The regular 30k×1 meshes are utilized with the
mesh parameter k that runs from 1 to 5. The reference values for the displacement,
electric potential and stresses are listed in Table 4.6. They have been obtained by
using a fine 450×1 mesh. As can be seen, the GeXPS4 element demonstrates again
good convergence characteristics.
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Table 4.6: Reference values of basic variables for a three-layer piezoelectric spheri-
cal shell for I1 = I2 = I3 = 9 by using a fine 450×1 mesh

S ūref
3 (0.5) ϕ̄ref (0.5) σ̄ref

11 (0.5) σ̄ref
33 (0)

1.5 -3.582 4.120 -10.79 -0.5490
4 -3.486 4.607 -8.748 -0.4539
10 -3.638 2.970 -8.544 -0.4037
100 -4.239 5.429 -5.589 -0.4870

4.6 Conclusions

The paper presents a geometrically exact hybrid-mixed four-node piezoelectric solid-
shell element (GeXPS4) based on the SaS formulation in which displacements and
electric potentials of SaS are utilized as fundamental shell unknowns. The SaS are
located at Chebyshev polynomial nodes inside the layers and interfaces as well that
improves significantly the behavior of the higher-order Lagrange interpolations. To
implement the efficient analytical integration throughout the element, the enhanced
ANS method for all components of the strain tensor and electric field is employed.
The feature of the GeXPS4 element is that the element stiffness matrices are evaluated
without the use of expensive numerical matrix inversion. As a result, the GeXPS4
element exhibits a superior performance in the case of coarse mesh configurations.
Therefore, it can be recommended for the 3D stress analysis of thick and thin doubly-
curved shells.
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