
Chapter 15

Refined One-Dimensional Models for the

Multi-Field Analysis of Layered Smart

Structures

Enrico Zappino and Erasmo Carrera

Abstract The analysis of layered structures requires the use of numerical tools that
able to describe the complex behavior that can appear at the interface between two
different materials. The use of the Finite Element Method can only lead to accurate
results if the kinematic assumptions of the structural models allow complex deforma-
tion fields to be evaluated, and as a consequence classical models are often ineffective
in the analysis of such structures. The use of the Carrera Unified Formulation pro-
vides a general tool that can be used to derive refined one-dimensional models in a
compact form. The use of a refined kinematic description over the cross-section of
an element leads to accurate results even when multi-field problems are considered,
that is when complex stress fields appear. A comprehensive derivation of a class of
refined one-dimensional models, which are able to deal with multilayer structures
and multi-field problems, is presented in this section. Thermal and piezoelectric
effects are considered, and a fully coupled thermo-piezo-elastic model is presented.
Finally, some benchmarks are shown in order to verify the accuracy of the presented
models.

15.1 Introduction

The development of innovative structures requires the use of numerical tools that
are able to deal with the complexities introduced by innovative materials. Laminated
materials are used extensively in all engineering fields, and they can appear in many
different forms. The most common layered structures are made up of composite
materials, see Fig. 15.1a, that exploit the orthotropic properties of the fiber reinforced
layers to increase the stiffness of the structural component in the desired direction.
When the weight of the structure is one of the design parameters, the use of sandwich
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(a) Composite Material (b) Sandwich Material (c) Piezo-layered beam

Fig. 15.1: Examples of layered structures.

materials, see Fig. 15.1b, may lead to an improvement in the bending resistance
without increasing the total weight of the structure. Sandwich materials exploit a thick
soft core and two external skins. The core, in addition to absorbing the shear load,
increases the distance of the skins from the neutral axis. Another example of layered
material is that used in smart structures, see Fig. 15.1c. In this case, a layer or a patch
of active material, e.g. piezoelectric material, is bonded onto a structure with the
purpose of exploiting the piezo-elastic effect as an actuator or a sensor. Piezo-layered
structures have become very important over the last few decades because they are at
the basis of the development of MEMS (Micro Electro-Mechanical Systems) devices.
The present work has focused on piezo-layered structures, although it is common to
find piezoelectric patches on composite materials and sandwich panels.

The analysis of layered beam structures involves evaluating complex stress fields.
When the Euler-Bernoulli (Euler, 1744) beam model is used, it is accepted that the
solution can only be considered accurate for slender bodies and isotropic materials,
that is, it cannot be applied to layered structures. If moderately stubby structures are
considered the model proposed by Timoshenko (1921) has to be used to include shear
effects, and in this case, the use of a shear correction factor, see Timoshenko (1921);
Cowper (1966); Dong et al (2010), is required to overcome the approximation of
a constant shear distribution over the cross-section. Even though the Timoshenko
model is more accurate than the Euler-Bernoulli theory, neither of these classical
models is suitable for the stress analysis of layered structures because they are not
able to properly describe the layers interfaces. The introduction of refined structural
models allows the limitations introduced by the fundamental assumptions of the
classical models to be overcome and the stress singularities due to local effects to be
dealt with. Carrera (1997a) pointed out that the analysis of layered structures requires
a numerical model that is able to fulfill the C0

z requirement, that is, the continuity of
the transversal stress component has to be ensured to obtain reliable results.

Many refined one-dimensional models have been proposed over the last few
decades, e.g. the use of warping functions, as proposed by Vlasov (1984), which
allows the cross-section deformation to be included in beam models. Cross-sectional
warping plays an essential role in thin-walled structures, as shown in the work by
Friberg (1985); Ambrosini (2000), where the warping function approach was used.
Schardt (1966) proposed a one-dimensional model for the thin-walled structures
analysis where the displacement field was considered as an expansion around the mid-
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plane of the thin-walled cross-section. This approach, which is called the generalized
beam theory (GBT), was also used by Davies and Leach (1994); Davies et al (1994),
and an extension to the analysis of composite material was proposed by Silvestre et al
(2002). The Variation Asymptotic Method, VAM, proposed by Berdichevsky (1976),
uses a characteristic cross-section parameter to build an asymptotic expansion of the
solution. The application of this approach to one-dimensional structures can be seen
in the work by Giavotto et al (1983). Volovoi (1999); Yu et al (2002); Yu and Hodges
(2004) have extended this method to composite materials and beams with arbitrary
cross-sections.

All these methods allow the accuracy of one-dimensional models to be improved.
The development of these models has been crucial in the design of innovative
structures that make use of innovative materials. One of these applications is the
development of piezoelectric devices. Figure 15.2 shows how the analysis of a
piezo-layered structure requires many aspects to be take into account, such as the
material interfaces and the orthotropy of the material. The piezoelectric effect has
been known since the 19th century, when the Curie brothers first noticed it. This
effect pertains to the conversion of mechanical to electrical energy and vice-versa.
The use of piezoelectric materials in structural design is very interesting because of
their properties, and a great deal of effort has been made to include the piezoelectric
contribution in structural models. Crawley and Luis (1987); Bailey and Hubbard
(1985) considered the piezoelectric contribution as an additional strain which had to
be added to the inactive structure. Classical structural models were used extensively
to analyze piezoelectric materials; as shown by Sarvanos and Heyliger (1999) in
their review. In the past, classical three-dimensional (Dong et al, 2006; Xu and
Koko, 2004), two-dimensional (Kim and Kim, 2005; Moitha et al, 2004) and one-
dimensional models were used to study structures with piezoelectric effects. The
use of refined structural models improves the accuracy of the stress and strain fields,
especially when complex structures, such as multi-layered structures, are considered.
A great deal of effort has been focused on the extension of these models to the analysis
of piezoelectric materials. One of the most critical points is the interface between
the structure and piezoelectric patches, as shown by (Zhou and Tiersten, 1994).
The introduction of shear effects (see Caruso et al, 2003; Kumar and Narayanan,

Fig. 15.2: Example of a piezo-layered structure.
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2007; Kusculuoglu and Royston, 2005; Liu et al, 2004; Vasques and Rodrigues,
2006), makes it possible to have a more accurate description of the stress field of the
problem. More refined approaches have been proposed in the last few years (see Zhou
et al, 2000; Moita et al, 2005; Vidal et al, 2011); in these cases, a first order theory
has been considered. Carrera (1997b); Robaldo et al (2006); Carrera et al (2007)
proposed the use of refined two-dimensional models for the analysis of multi-layered
structures, including piezoelectric materials. The use of a refined model over the
whole structural domain requires more computational costs than those necessary. The
best solution would be to use refined models only in the region in which they are
required and classical models elsewhere. The problem of mixing or joining different
structural models is a well-known topic in literature as shown by Kim et al (1997).
Biscani et al (2012) proposed an approach that is able to increase the accuracy of the
model, but only where the piezoelectric elements are located. The coupling between
of piezo-ceramic and metallic materials can be an problematic when the device has
to operate at high temperatures. The large difference between the thermal expansion
coefficients (CTE) could lead to large deformations, which in turn could overcome
the stroke of the actuator. Accurate numerical models may be used to predict the
behavior of these devices, and they can be used in the design process. The use of
classical beam models for the thermo-piezo-elastic analysis of multilayer structures
can be found in the work by Tzou and Ye (1994); Ahmad et al (2006). (Carrera and
Robaldo, 2007) presented a class of refined two-dimensional models for the accurate
analysis of plates and shells including thermal and piezoelectric effects.

A unified approach to the development of refined one-dimensional models, which
is suitable for multi-field analyses is presented in the following pages. The structural
model is based on the Carrera Unified Formulation (CUF), a numerical tool that
can be used to derive any order of structural model in a compact and unified form.
CUF was firstly developed for two-dimensional models by Carrera (2003) and was
extended to the thermal-elastic problem by Carrera (2000); Robaldo et al (2005).
The piezo-elastic formulation was introduced by Robaldo et al (2006). The fully
coupled piezo-thermo-mechanical expansion of the CUF was presented by Carrera
and Boscolo (2007). This numerical approach was extended to the one-dimensional
model by Carrera et al (2010, 2011b, 2012a,b),more details can be found in the books
by Carrera et al (2014a, 2011a).

The displacement field above the cross-section was described in the work by
Carrera and Petrolo (2012) through the use of Lagrange-type polynomials. The
extension of this model to a multi-field analysis was presented by Miglioretti et al
(2014) for the piezo-mechanical problem, and was used by Zappino et al (2016).

15.2 Thermo-Piezo-Elastic One-Dimensional Model

This section presents the refined one-dimensional model used in the following
analyses. The coordinate reference frame is shown in Fig. 15.3. The displacement
three-dimensional field is described using the vector uuu:
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Fig. 15.3 Beam reference
system.
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uuuT =
{
ux, uy, uz

}
(15.1)

In the thermo-piezo-elastic formulation, in addition to the mechanical variables, also
the temperature variation,ϑ, and the electric potential, φ, must be considered. The
solution of the thermo-piezo-elastic problem requires to define five quantities in each
point:

uuuT =
{
ux, uy, uz, ϑ, φ

}
(15.2)

where vector uuu contains the unknown quantities.

15.2.1 Kinematic Approximation

The one-dimensional approximation requires to assume a known displacement field,
a temperature variation and a electric potential over the cross-section. Different
formulation can be used, in the following pages a review of the classical models
and the details of the refined kinematic assumptions used in the present work are
presented.

15.2.1.1 Classical Beam Models

Classical beam models are subject to a number of fundamental assumptions that limit
the use of these models to a small number of applications.

The Euler-Bernoulli beam theory, EBBT, does not consider shear effects and the
warping of the cross-section, which is considered rigid in- and out-of-plane. The
displacement field of the cross-section can be written as:

ux = ux1

uy = uy1 + x
∂uz1

∂y
+ z

∂ux1

∂y
(15.3)

uz = uz1
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This model has only three degrees of freedom, DOF, over the cross-section because
the rotation of the cross-section is considered as the derivatives of the rigid translation.

The Timoshenko beam theory, TBT, includes the effects of the shear but it is
considered constant over the cross-section. In this case, the displacement field of the
cross-section can be written as:

ux = ux1

uy = uy1 + x uy2 + z uy3 (15.4)
uz = uz1

The TBT has five DOFs, because the cross-sectional rotation is a free parameter.
The use of these models is limited to slender (EBBT) and moderately slender (TBT)
bodies, because the fundamental assumptions are only verified for these geometries.
In the present form these models can be used to describe the bending of prismatic
beam. The torsional effects can be included considering the contributions introduced
by de Saint-Venant (1856) or, in the case of thin-walled structures, by Vlasov (1984).

The use of refined one-dimensional models allows the range of applicability of
these models to be extended to a large number of applications. In this work the
refined one-dimensional models derived from using the CUF are used to build node-
dependent kinematic one-dimensional models. A brief review of these models is
presented in the following section.

15.2.1.2 Refined One-Dimensional Models

The one-dimensional approximation requires a known displacement field to be
assumed over the cross-section. A function expansion can be used to describe properly
the behavior of the beam cross-section. This approach, suggest by Washizu (1968),
leads to write the three-dimensional displacement field as:

u = uτ(y)Fτ(x,z), τ = 1 . . .M. (15.5)

where Fτ(x,z) is the function expansion over the cross-section, uτ(y) is the unknown
vector along the beam axis, and M is the number of terms in the functions expansion
Fτ(x,z). The choice of the functions expansion allows the kinematic of the model to
be modified. A number of possible choices were presented by Carrera et al (2014c).
In the present work Taylor and Lagrange expansions are considered, more details are
reported in the next sections.

The displacements approximation introduced in Eq. (15.5) leads to a one-
dimensional problem. The solution of this problem can be obtained using the Finite
Element Method, FEM, which allows the system of partial derivative functions to be
reduced to an algebraic system. FEM approximates the axial unknowns uτ(y) using
the one-dimensional shape functions Ni, that is, the displacement field assumes the
formulation:
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u = uiτNi(y)Fτ(x,z), τ = 1 . . .M; i = 1 . . .Nn. (15.6)

where Ni are the shape functions introduced by the FE model, Nn is the number
of nodes of the element and uiτ are the nodal unknowns. The virtual variation of the
displacement can be written as:

δu = δu jsN j(y)Fs(x,z), s = 1 . . .M; j = 1 . . .Nn. (15.7)

15.2.1.3 Taylor Expansion Models (TE)

The one-dimensional TE model consists of an expansion that uses 2D polynomials
xm zn, as Fτ, where m and n are positive integers. For instance, the second-order
displacement field is:

ux = ux1 + x ux2 + z ux3 + x2 ux4 + xz ux5 + z2 ux6

uy = uy1 + x uy2 + z uy3 + x2 uy4 + xz uy5 + z2 uy6

uz = uz1 + x uz2 + z uz3 + x2 uz4 + xz uz5 + z2 uz6

(15.8)

Figure 15.4 shows a representation of a two nodes element based on the TE expansion.
In this case, the Fτ and Fs functions are used to expand the solution from the beam
node to the cross-section.

15.2.1.4 Lagrange Expansion Models (LE)

In the case of LE models, Lagrange polynomials are used to build refined one-
dimensional models. The iso-parametric formulation is exploited to deal with arbi-
trary cross-section shaped geometries. For instance, the linear interpolation functions
are:

F1 =
1
4 (1− ξ) (1−η); F2 =

1
4 (1+ ξ) (1−η);

F3 =
1
4 (1+ ξ) (1+η); F4 =

1
4 (1− ξ) (1+η)

(15.9)

where ξ and η are the coordinates in the natural reference system. Equation (15.9)
coincides with the linear Lagrange polynomial in two dimensions. In this paper a
quadratic element with nine nodes, LE9, is used. When LE is used the unknowns are
only the displacements of the cross-sectional nodes.

Fig. 15.4 A two-nodes beam
based on the Taylor expansion.
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Figure 15.5 shows a representation of a two nodes element based on the LE. In this
case the Fτ and Fs functions are used to expand the solution from the cross-sectional
nodes to the cross-section area.

This approach is very effective when layered structure are considered. Fig. 15.6
shows a layered beam, the beam has two layer but there is a patch at one end, that
is, in that area three layer are present. Figure 15.6 shows how each layer can be
represented with a different element over the cross section. This approach allow the
accuracy of the results to be increased because a zig-zag displacement field can be
predicted.

15.2.2 Geometrical Relations

The geometrical relations in the case of the thermo-piezo-elastic model allow the
strain (εεε), the spatial thermal variations (θθθ) and the electric field (EEE) to be evaluated.
The strain vector, εεε, can be written as:

εεεT = {εxx εyy εzz εxz εyz εxy } =DDDuuuu (15.10)

where DDDu is:

DDDT
u =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣
0 0 ∂z ∂x ∂y 0
0 ∂y 0 0 ∂z ∂x
∂x 0 0 ∂z 0 ∂y

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦ (15.11)

The spatial temperature variation, θθθ, can be written as:

θθθ =

{
∂ϑ

∂x
∂ϑ

∂y
∂ϑ

∂z

}T

=DDDϑϑ (15.12)

where ϑ is the temperature and DDDϑ is:

Fig. 15.5 A two-nodes beam
based on the Lagrange expan-
sion.

Fig. 15.6 Example of the
cross-sectional discretization
of a layered structure.
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DDDT
ϑ =
[
∂x ∂y ∂z

]
(15.13)

The electric field, EEE , can be expressed as:

EEE =
{
∂φ

∂x
∂φ

∂y
∂φ

∂z

}T

=DDDφφ (15.14)

where DDDφ is equal to DDDϑ. The symbol ∂ stands for partial derivative, that is: ∂x =
∂
∂x ,

∂y =
∂
∂y and ∂z =

∂
∂z

15.2.3 Constitutive Relations

The constitutive equation for the thermo-piezo-elastic model have been derived in
according with the work presented by Carrera et al (2008).

The stress, σσσ can be written in the following form:

σσσ =CCCεεε−λλλϑ−eeeEEE (15.15)

The first contribution comes from the Hook’s law and derives from the mechanical
problem. ⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

σxx
σyy
σzz
σxz
σyz
σxy

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭
=

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

C11 C12 C13 0 0 C16
C21 C22 C23 0 0 C26
C31 C32 C33 0 0 C36

0 0 0 C44 C45 0
0 0 0 C54 C55 0

C61 C62 C63 0 0 C66

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

εxx
εyy
εzz
εxz
εyz
εxy

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭
(15.16)

The second therm, λλλϑ, comes from the thermo-mechanical coupling. The vector λλλ
can be written as:

λλλ =CCCααα =CCC{α1 α2 α3 0 0 0 }T (15.17)

Where CCC is the matrix with the elastic coefficients of the material, and ααα is the vector
of the thermal expansion coefficients. The last term, eeeEEE, comes from the electro-
mechanical coupling. The matrix eee contains the piezoelectric stiffness coefficients
and can be written as:

eee =CCCddd =CCC

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣
0 0 0 0 d15 0
0 0 0 d24 0 0

d31 d32 d33 0 0 0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦
T

(15.18)

where ddd is the matrix of the piezoelectric coefficients.
The electric displacement, DDD, can be written in the following form:

DDD = eeeεεε+χχχEEE+ pppϑ (15.19)
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The first term, eeeεεε, comes from the electro-mechanical coupling. The second contribu-
tion, χχχEEE, is due to the electric problem, χχχ is to the dielectric permittivity matrix of
the material:

χ =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣
χ11 χ12 0
χ21 χ22 0
0 0 χ33

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦ (15.20)

The last term, pppϑ, comes from the thermo-electric problem and ppp is the vector of the
pyro-electric coefficients.

The last constitutive equation describe the heat flux, hhh:

hhh = κκκθθθ (15.21)

where κκκ is the conductivity coefficients matrix:

κ =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣
κ11 κ12 0
κ21 κ22 0
0 0 κ33

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦ (15.22)

15.2.4 Governing Equation

The governing equation can be written using the virtual displacements principle,
PVD:

δLint = δLext (15.23)

where δLint is the variation of the internal work while, δLext is the variation of the
external work.

In explicit form the PVD can be written as:

δLint =

∫
V

(δεεεTσσσ−δθθθThhh−δEEET DDD)dV = δLext (15.24)

If geometrical and constitutive equation are substituted in Eq. (15.24) the following
equation is obtained:

δLint =

∫
V

(δεεεTCCCεεε−δεεεTλλλϑ−δεεεTeeeEEE+δθθθTκκκθθθ

− δEEETeeeεεε−δEEETχχχEEE−δEEET pppϑ)dV
(15.25)

If the kinematic approximation introduced before is used the terms that compose the
variation of the internal work can be written in matrix form.

The first term, δεεεTCCCεεε, represents the mechanical problem. The strain can be
expressed in therm of derivatives of the displacements, moreover the displacements
can be written using the shape functions Ni and Fτ.
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V

δεεεTCCCεεε = δqqqu
T
js

∫
V

N jFsIIIDDDT
u CCCDDDuIIIFτNidVqqquiτ = δqqqu

T
jskkk

i jτs
uu qqquiτ (15.26)

kkki jτs
uu is the fundamental nucleus of size 3× 3 of the stiffness matrix of the pure

mechanical problem. qqquiτ is the part of the unknown vector related to the mechanical
variables.

The term δεεεTλλλϑ can be written as:∫
V

δεεεTλλλϑ = δqqqu
T
js

∫
V

N jFsIIIDDDT
uλλλIIIFτNidVqqqϑiτ = δqqqu

T
jskkk

i jτs
uθ qqquiτ (15.27)

kkki jτs
uθ is the fundamental nucleus of size 3×1 of the stiffness matrix of the thermo-

elastic problem. qqqϑiτ is the part of the unknown vector related to the thermal variable.
The term δεεεTeeeEEE can be written as:∫

V

δεεεTeeeEEE = δqqqu
T
js

∫
V

N jFsIIIDDDT
u eeeDDDφIIIFτNidVqqqφiτ = δqqqu

T
jskkk

i jτs
uφ qqquiτ (15.28)

kkki jτs
uφ is the fundamental nucleus of size 3×1 of the stiffness matrix of the piezo-elastic

problem. qqqφiτ is the part of the unknown vector related to the electrical variable.
The term δθθθTκκκθθθ can be written as:∫

V

δθθθTκκκθθθ = δqqqϑT
js

∫
V

N jFsIIIDDDT
ϑκκκDDDϑIIIFτNidVqqqϑiτ = δqqqu

T
jskkk

i jτs
θθ qqquiτ (15.29)

kkki jτs
θθ is the fundamental nucleus of size 1×1 of the stiffness matrix of the pure thermal

problem.
The term δEEETeeeεεε can be written as:∫

V

δEEETeeeεεε = δqqqφT
js

∫
V

N jFsIIIDDDT
φeeeDDDuIIIFτNidVqqquiτ = δqqqφ

T
jskkk

i jτs
φu qqquiτ (15.30)

kkki jτs
φu is the fundamental nucleus of size 1×3 of the stiffness matrix of the piezo-elastic

problem.
The term δEEETχχχEEE can be written as:∫

V

δEEETχχχEEE = δqqqφT
js

∫
V

N jFsIIIDDDT
φχχχDDDφIIIFτNidVqqqφiτ = δqqqφ

T
jskkk

i jτs
φφ qqqφiτ (15.31)

kkki jτs
φφ is the fundamental nucleus of size 1×1 of the stiffness matrix of the pure electric

problem.
The term δEEET pppϑ can be written as:
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V

δEEET pppϑ = δqqqφT
js

∫
V

N jFsIIIDDDT
φ pppDDDθIIIFτNidVqqqθiτ = δqqqφ

T
jskkk

i jτs
φθ qqqθiτ (15.32)

kkki jτs
φθ is the fundamental nucleus of size 1×1 of the stiffness matrix of the pyro-electric

problem.
All the fundamental nucleus can be assembled together in fundamental nucleus of

the multi-field problem:

δLint = δuuuT
js

kkki jτs︷�������������������������������︸︸�������������������������������︷⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
. . .

kkkuu
. . .

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
...

kkkuθ
...

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
...

kkkuφ
...

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
[
· · · 0 · · ·

] [
kkkθθ
] [

0
]

[
· · · kkkφu · · ·

] [
Kφθ
] [

kkkφφ
]

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
uuuiτ (15.33)

The contributions kkkθφ and kkkθu can be neglected when an external temperature is
imposed as boundary condition, as in the present paper. As can be seen in Eq.
(15.33), when the multi-field case is considered the nucleus is no more symmetric,
as a consequence the global stiffness matrix loses the properties that come from the
symmetry, this can reduce the efficiency of the numerical solution and an appropriate
solver must be used.

15.2.5 Loading Vector

The virtual work due to the load P = {Px,Py,Pz,Pθ,Pφ} can be expressed as:

δLext =

∫
V

δuT PdV (15.34)

Considering the displacement function the external work can be written as:

δLext = δuT
s j

∫
V

F j
sN j PdV = δuT

s j · ps j (15.35)

where ps j is the expression of the fundamental nucleus of the load vector.
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15.2.6 Rotation and Assembly of the Fundamental Nucleus

The analysis of complex structures requires finite elements to be rotated in any
direction and the stiffness to be computed in a given reference system, that is,
the displacements have to be expressed in the same, global reference system. The
matrices can be written in the global reference system using a rotation matrix, with
respect to the local reference system. The rotation matrices are:

ΛΛΛx =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣
1 0 0
0 cos(θ) sin(θ)
0 −sin(θ) cos(θ)

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦ , (15.36)

ΛΛΛy =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣
cos(φ) 0 sin(φ)

0 1 0
−sin(φ) 0 cos(φ)

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦ , (15.37)

ΛΛΛz =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣
cos(ξ) −sin(ξ) 0
sin(ξ) cos(ξ) 0

0 0 1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦ (15.38)

where θ, φ and ξ are the rotation angles around the x,y, and z axis, as shown in Fig.
15.7. The displacement vector in the global reference system, uuuglob, can be written as:

uuuglob =ΛΛΛxΛΛΛyΛΛΛzuuuloc =ΛΛΛuuuloc (15.39)

Therefore, the mechanical part of the fundamental nucleus in the global reference
system becomes:

kkki jτs
uuglob =ΛΛΛ

Tkkki jτs
uulocΛΛΛ (15.40)

The coupling terms can be rotated using the following equations:

Fig. 15.7 Representation of
the rotation angles.
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kkki jτs
uΘglob

=ΛΛΛTkkki jτs
uΘloc

(15.41)

kkki jτs
uφglob

=ΛΛΛTkkki jτs
uφloc

(15.42)

kkki jτs
φuglob

= kkki jτsT

φuloc
ΛΛΛ (15.43)

The terms kkkφφ, kkkφθ and kkkθθ are related to scalar fields therefore do not need to be
rotated. Once all the elements have been expressed in the same reference system, the
global stiffness matrix can be assembled using the classical FEM approach.

15.2.7 The Stiffness Matrix Assembly

The fundamental nuclei introduced in the previous section, that are discussed ex-
tensively in Carrera et al (2014b), can be used as bricks to build the matrix of the
complete structure. Figure 15.8 shows the procedure used to build the stiffness ma-
trix, starting from the fundamental nucleus. The loops on τ and s allow to build the
stiffness matrix at the node level while the loops on i and j make it possible to create
the stiffness matrix at the element level. The assembly on the global stiffness matrix
can be done summing the stiffness of the nodes shared by more then one element.

15.3 Numerical Results

The results obtained using the previously introduced structural model are reported
in this section. The structural model has been assessed, and the results have been
compared with those presented in literature using classical approaches. The Piezo-
elastic model has been assessed considering the benchmark proposed by Zhang and

Fig. 15.8: Stiffness matrix assembly.
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Sun (1996b). A second case, a beam with piezo-patches, has been considered and
the results have been compared with those by Kpeky et al (2017). Finally, the results
from the thermo-piezo-elastic model have been compared with those by Tzou and Ye
(1994).

15.3.1 Piezo-Elastic Model Assessment

A piezo-elastic model has been assessed in this section. The sandwich beam con-
sidered in the analysis is shown in Fig. 15.9. The beam has a length, L, of 0.1 m, a
thickness of the metallic core, hc, of 16 mm and two external piezo-patches which
have a thickness, hp, equal to 1 mm. The width is considered equal to 1 m. A poten-
tial of 10 V is applied to the face of the interface between the piezoelectric patch
and the internal core, while, the external free faces have a potential set equal to
0 V. The piezoelectric patches are polarized in the z direction. The properties of
the piezoelectric material used in the patches are reported in Table 15.1, while the
properties of the aluminum alloy used in the core are reported in Table 15.2.

The displacements due to the applied voltage, have been evaluated. The results
have been compared with those of Zhang and Sun (1996b). Figure 15.10 shows the
vertical displacement of the beam along the length of the beam. The results are in
agreement with those present in literature. This assessment proves that the present
beam formulation is able to provide an accurate description of piezo-elastic coupling.

Fig. 15.9 Geometry of the
sandwich beam used in the
piezo-elastic assessment

Table 15.1: Material properties of PZT-5H

C11,C22,C33 C12 C13,C23 C44,C55,C66 e15,e24 e31,e32 e33 χ11,χ22 χ33
[GPa] [GPa] [GPa] [GPa] [C/m2] [C/m2] [C/m2] [F/m] [F/m]
126 79.5 84.1 23.0 17.0 -6.5 23.3 1.503×10−8 1.30×10−8
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Table 15.2: Aluminum alloy 1 material properties

aluminum alloy 1
Mechanical properties
E 70.3 GPa
ν 0.345 -

Fig. 15.10 Vertical displace-
ment of the beam along the
y-axis.
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15.3.2 Cantilever Beams with Piezo-Patches

A cantilevered beam with two piezo-patches has been considered in this section.
Benchmark cases of this type have been studied by various researchers such as Sun
and Zhang (1995); Zhang and Sun (1996a); Benjeddou et al (1997), as well as Kpeky
et al (2017). The beam geometry is shown in Fig. 15.11.

Fig. 15.11: Geometrical feature of slender beams with piezo-patches.
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The piezoelectric components are poled in the thickness direction z. A voltage
equal to Δφ= φbottom−φtop = 10 V has been applied for the upper patch and Δφ =−10
V for the lower one to actuate the beam. The piezoelectric components are made of
PZT-5H, whose material coefficients are listed in Table 15.1, The substrate structures
employ aluminum which has the Young modulus E = 70.3GPa and a Poisson ratio
ν = 0.345. Two cases are considered:

• Case A: the piezo-patches cover the whole length of the beam;
• Case B: the piezoelectric components have a length c = 0.01 m and variable

positions along the axial direction from d = 0.01 m to d = 0.09m.

The numerical results for Case A were obtained with uniform LE nodal kinemat-
ics, denoted as “12LE9”, which discretizes the cross-section into 12 sub-domains.
It should be noted that when Lagrange expansions are adopted to describe the kine-
matics on a cross-section of a beam, each expansion term possesses specific physical
coordinates. The structure is divided into 20 beam elements along the longitudinal
direction, and each element has 4 FEM nodes. The obtained results have been com-
pared with the solutions provided by Benjeddou et al (1997); Kpeky et al (2017) as
well as with those obtained from ABAQUS 3D modelling. The ABAQUS models
employ eight layers of C3D20R mechanical brick elements and another eight layers
of C3D20RE piezoelectric brick elements, uniformly distributed 8×40 (x× y) along
each layer. The results given by Benjeddou et al (1997) were obtained using a beam
element model in which the displacement assumptions were layer-wisely defined (in
other words the Bernoulli-Euler theory was used for the faces while the Timoshenko
theory was adopted for the cores), and displacement continuity was enforced at
the layer interfaces. Kpeky et al (2017) reached their solution through solid-shell
piezoelectric elements, that is, SHB8PSE and SHB20E.

The variation in deflection along the beam axis at the central cross-sectional
point (lines A) and at one of the upper corners (lines B) are shown in Fig. 15.12 for
Case A. Table 15.3 compares the deflection on two sets of locations on the free-end
cross-sections. The current solution for the shear configuration in Case A shows good
agreement with those of Benjeddou et al (1997); Kpeky et al (2017).

The models with the same uniform 12LE9 sectional kinematics were also applied
to obtain the numerical solutions to Case B, and the results are shown in Fig. 15.13.
It can be observed that the results based on 12LE9 are in good agreement with the
reference solutions taken from literature (Kpeky et al, 2017).

A frequency response analysis, in which the patches were closer to the beam root,
has been performed using the present model. In this case, the two patches were used

Table 15.3: Tip deflection of the cantilevered beam in Case A

w[10−7m]
(0,b,0) ( a

2 ,b,
he
2 )

ABAQUS 3.749 3.913
12LE9 3.748 3.897
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Fig. 15.13: Tip deflection of the cantilever beams with piezo-patches in Case B.

as sensors and an external force was applied at the tip of the beam. Figure 15.14
shows the frequency response of the cantilevered beam. The dashed line shows the
mechanical response, and it can be seen that it identifies the natural frequencies of
the structure reported in Table 15.4. The solid line represents the electric response
evaluated on the outer surface of the piezo-patch. It can be seen that the resonances
of the electric response just appear when the mechanical modes stretch the piezo-
patches during the deformation. In the other cases the deformation does not produce
an electric response.

Fig. 15.12 Vertical displace-
ment along the beam beam,
piezo-patches cover the entire
length (Case A).
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Fig. 15.14: Frequency response of the cantilever beams with piezo-patches

Table 15.4: First six natural frequency of the cantilever beams with piezo-patches

Natural Frequency LE Model
1 1363.1
2 1637.2
3 7214.3
4 7460.0
5 8744.9
6 12941.5

15.3.3 Thermo-Piezo-Elastic Model Assessment

The fully coupled thermo-piezo-elastic model has been assessed in this section. The
structure reported in Fig. 15.15 has been considered. This is once again a sandwich
beam but with the following dimensions: L equal to 1 m, b equal to 0.0508 m, the
core thickness, hc, equal to 3.36 mm and the thickness of two external piezo-patches,
hp, equal to 0.254 mm.

The internal core has the properties that are reported in Table 15.5, while the
external piezoelectric patches have been built using the same material that was used
in the previous assessment, that is PZT-5H. The thermal properties of this material
are reported in Table 15.6.
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Fig. 15.15 Geometry of
the sandwich beam used
in the thermo-piezo-elastic
assessment

Table 15.5: Aluminum alloy 2 material properties

aluminum alloy 1
Mechanical properties
E 68.95 GPa
ν 0.292 -

Thermal properties
α 11×10−6 oC−1

Table 15.6: PZT-5H material thermal properties

PZT-5H
Thermal properties

λ1 2×105 Nm2 oC−1

λ2 2×105 Nm2 oC−1

λ3 −2.7×105 Nm2 oC−1

Pyro-electric properties
p3 25×10−6 Cm2 oC−1

The structure is subjected to a homogeneous thermal environment, that is, at each
point the same value of temperature has been imposed. An electric potential of 0 V
as been considered at the interfaces between the core and the patches, as shown in
Fig. 15.15. The voltage of the external layer faces, due to the deformation caused by
the thermal load, has been evaluated. The results have been compared with those of
Tzou and Ye (1994).

Figure 15.16 shows the variation of the electric potential at different temperatures.
It is possible to see that there is a linear correlation between the temperature and the
potential. The small difference between the present results and the reference values
is due to the different kinematic model that has been adopted. While the reference
results were obtained using classical models, the present approach takes into account
a quasi three-dimensional deformation that produces a slightly higher potential.
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Fig. 15.16 Upper face poten-
tial at different temperature.
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15.4 Conclusions

The multi-field analysis of layered structures requires the use of refined structural
models. Finite elements based on a layer-wise approach are able to describe the
complex displacement fields due to the variations in the material properties at each
layer. In these cases, it is important to have a zig-zag capability in the kinematic
description, that is, the C0

z requirement can be fulfilled. The refined one-dimensional
models presented in the present work uses a Lagrange expansion over the cross-
section that allows each layer to be described with an independent expansion, or
Lagrange element. The computational model has been developed in the framework of
the Carrera Unified Formulation, which allows refined structural models to be derived
in compact form. The results shown in the present work highlight the following
points:

• the present one-dimensional model can provide three-dimensional results in the
case of thermo-piezo-elastic analysis;

• the present model can deal with the analysis of layered structures with piezo-
patches;

• both sensor and actuator patches can be considered;
• the computational costs can be reduced whit respect to full three-dimensional

models.

In short the present formulation can be considered a valid option for the multi-field
analysis analysis of layered structures.
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