
Chapter 12

Modeling of Dielectric Elastomers Accounting

for Electrostriction by Means of a Multiplicative

Decomposition of the Deformation Gradient

Tensor

Elisabeth Staudigl, Michael Krommer, and Alexander Humer

Abstract Nonlinear modeling of inelastic material behavior by a multiplicative
decomposition of the deformation gradient tensor is quite common for finite strains.
The concept has proven applicable in thermoelasticity, elastoplacticity, as well as
for the description of residual stresses arising in growth processes of biological
tissues. In the context of advanced materials, the multiplicative decomposition of
the deformation gradient tenser has been introduced within the fields of electro-
elastic elastomers, shape-memory alloys as well as piezoelastic materials. In the
present paper we apply this multiplicative approach to the special case of dielectric
elastomers in order to account for the electrostrictive effect. Therefore, we seek to
include the two main sources of electro-mechanical coupling in dielectric elastomers.
These are elastostatic forces acting between the electric charges and electrostriction
due to intramolecular forces of the material. In particular we intend to study the
significance of electrostriction for the particular case of dielectric elastomers, in the
form of a thin layer with two compliant electrodes.

12.1 Introduction

In this work we study constitutive modeling within the field of nonlinear electro-
elasticity, with special application to dielectric elastomer films. Dielectric elastomers
are capable of a mechanical response upon application of an external electric field,
which is why they are commonly termed electro-active polymers (EAPs). These
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types of actuators are predicted to have a large variety of promising application fields,
due to their characteristic to resist large strains while having a low stiffness and low
density. These features, make them especially prone to smart or bio-inspired structural
technologies e.g. artificial muscles. An EAP is typically assembled of a dielectric
film sandwiched between two electrodes. When applying a potential difference to the
electrode layers, they attract each other due to Coulomb forces, causing a pressure
on the surface of the dielectric film, enforcing a deformation. Practical applications
of this effect have been developed rather intensively, see examples such as soft and
flexible keyboards (Xu et al, 2016) or artificial caterpillars demonstrated by various
groups e.g. in SPIE (2017).

However, the full theoretical background of the deformation is yet not fully
exploited. It has been reported, that the electric field might also interact with the
dielectric layer as it gets polarized. This effect is reasoned in the micro-structure
of the material, where different polarization mechanisms prevail. Therefore, we
seek to include the two main sources of electro-mechanical coupling in dielectric
elastomers as pointed out in Mehnert et al (2016). Polarization on the molecular
level, called electrostriction, poses a process for which a full geometric nonlinear
electro-mechanically coupled theory is necessary in order to model the impact of
this effect adequately. Among the first theoretical works referring to electrostriction
we refer to Zhao and Suo (2008), while earlier Zhenyi et al (1994) already presented
experimental results.

Typical candidates for the material choice of dielectrics are silicon rubber and
polyurethane elastomers, while special graft elastomers have been developed in
the 1990s whose improved properties among high elastic-modulus count also the
capability of nonlinear behavior at large strain regimes; therefore, a geometrical
nonlinear framework is also necessary to model the mechanical behavior accurately.
Theoretical works on the field of nonlinear electro-mechanical coupling date back into
the 1950s. Toupin (1956) was among the first to address this field. A comprehensive
presentation has later been given by Landau et al (2013); Maugin and Eringen (2012).
Within the framework of nonlinear elasticity the book of Bonet and Wood (1997),
has proven to be a handy reference, while special emphasis on the electric-coupling
procedure can be found in the works of Dorfmann and Ogden (2005); Bustamante
et al (2009a); Dorfmann and Ogden (2017) as well as in McMeeking and Landis
(2004).

Constitutive modeling techniques incorporating the multiplicative decomposition
of the deformation gradient tensor are quite common for finite strains. The concept
has proven applicable in thermoelasticity, elastoplacticity, as well as for the descrip-
tion of residual stresses arising in growth processes of biological tissues (Lubarda,
2004). In the context of advanced materials, electro-elastic elastomers have been
investigated in Skatulla et al (2012), shape-memory alloys in Arghavani et al (2010)
and piezoelastic materials in Humer and Krommer (2015). A geometric nonlinear
formulation on the constitutive modeling for the coupled electrostrictive-viscoelastic
problem has been published by Ask et al (2012) using an additive decomposition of
the free energy function. However, the comparison to experimental results, published
by Diaconu and Dorohoi (2005); Diaconu et al (2006), suggest to put still further
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investigations into this field. Bortot et al (2016); Ask et al (2015) made already
use of the multiplicative decomposition of the deformation gradient tensor in their
viscoelastic constitutive relation. Applications within the fields of electro-elastic
coupled fields can be found in Zäh and Miehe (2015), and with special application to
piezoelectricity in the works of Humer and Krommer (2015). Special interest is put
on the physical bounds of the actuation at high strain magnitude. Phenomena called
pull in or ceasing instability currently limit further increase in the actuation strains,
as either imperfections or localization effects lead to the breakdown of the EAP.
Analytical efforts to investigated these phenomena were made in Xu et al (2010),
making use of the Hessian. They derived analytical expressions for the critical strain
values, above which no stable stretch configuration exists any more.

This work is organized into five sections. First, we are going to introduce the basic
electro-elastic coupled balance equations of continuum-mechanics, following Maugin
and Eringen (2012) and the recent work of Humer et al (2017). The relevant electric
quantities are reviewed and the Maxwell equations of electrostatics for dielectric
materials are addressed. Within the second part, we introduce these quantities into
the continuum mechanic theory in order to derive the spatial balance equations
rendering the basis for the electro-mechanically coupled theory. With the spatial
balance equations at hand, the material counterparts are obtained by which some
preliminary constitutive relations are derived shortly, in order to demonstrate the
general approach to the constitutive modeling framework. We close this part by
introducing the incompressibility constraint using a Lagrange multiplier, which
allows the physical interpretation of an electrostatic force. Higher order effects are
then incorporated into the theory in Sect. 12.3. There, we extend the constitutive
model by introducing the multiplicative decomposition of the deformation gradient.
Results of the derivations show, that additional electro-mechanical coupling stresses
increase the electro-elastic entanglement while still the overall physical relations can
be retained. Section 12.4 provides additional background on the electrostrictive effect,
unveiling the approach to include this effect into the constitutive model. In Sect. 12.5,
we finally apply the resulting equations to the simple example of a homogeneous
in-plane deformation of a plate. We choose this example on the one hand, as it
allows for a comparison to experimental results, while on the other hand theoretical
investigations allow for generalized statements on the impact of the electrostrictive
effect.

12.2 Electromechanical Coupling by Electrostatic Force

12.2.1 Kinematics in Nonlinear Elasticity

Beginning with the kinematic quantities required in the framework of nonlinear
continuum mechanics, we consider a material body, whose material points in the
undeformed reference configuration Vr are denoted by upper case letters X. Its bound-
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ary is referred as ∂Vr. We consider only quasi-static, time independent deformation,
which lead to a deformed current configuration, denoted by V with the boundary ∂V ,
and assume that a mapping function χ exists, such that x = χ(X) uniquely maps the
position vector of the material point into the current configuration x, see Fig. 12.1.
Hence the deformation gradient tensor F can be defined with respect to χ given by,

F = ∇0x = ∇0χ(X). (12.1)

∇0 is the differential operator with respect to the reference configuration. The volume
change throughout the configuration is defined by J = detF assuming J > 0 holds.

Knowing the deformation gradient tensor F allows to introduce the nonlinear
strain measures

B = F ·FT , C = FT ·F, (12.2)

where B is referred to as the left, and C as the right Cauchy-Green Tensor.
Orientation and position of a deformed surface element are defined by the unit

outward normal vector n on ∂V , while t is the force per unit area on ∂V , which allows
to introduce the second rank Cauchy stress tensor σ through σT ·n = t.
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Fig. 12.1: Field mapping of a general deformable body.
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12.2.2 Electro-Elastic Balance Laws

In order to derive the balance equations for the electro-elastic continuum, we start by
defining the dependent variables within the micro-continuum, which upon statistical
averaging over the continuum volume, lead to the relevant expressions of the macro-
continuum. Within the continuum mechanic framework, only the quantities arising
when applying external fields have to be taken into account, internal field quantities
are incorporated by the concepts of electro-mechanical stress and internal energy.
Upon application of an external electric field e, charges q are encouraged to move
slightly forming dipole-moments within the continuum; this process called polariza-
tion p, see Fig. 12.2, is reflected by electrostatic volume force f E , the corresponding
couple cE , and the power of the electrostatic force WE :

f E = (∇e) · p, cE = p× e, WE = ρe · d
dt

(
p
ρ

)
+ f E ·v. (12.3)

12.2.2.1 Maxwell Equation and Electric Body Forces

In case of electrostatics for an ideal dielectric, terms with free charges and magnetic
interactions can be dropped in the Maxwell equations, which then read:

∇ · d = 0, (12.4)
∇× e = 0; (12.5)

respectively, the Gauss Law and the Faraday Law of electrostatics. Here, we already
used the electric displacement vector, defined by d = ε0e+ p, in which ε0 denotes
the vacuum permittivity. One may find an exact solution for the Faraday Law imme-
diately by engaging a scalar potential function Φ, which satisfies e = −∇Φ; ∇ is the
differential operator with respect to the current configuration. Additionally, the fields
e, p and d have to satisfy the jump conditions

n · [[d]] = 0, n× [[e]] = 0. (12.6)
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Fig. 12.2: Polarization of a continuum.
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The bracketed terms denote jumps in the relevant field quantity. In case of vacuum
the fields reduce to d = ε0e. Following Bustamante et al (2009b), the boundary
conditions can be set as a function in p:

ε0[[e]] = (n · p)n, [[d]] = (n · p)n− p; (12.7)

hence, by introducing the so called Maxwell stress which is present in the free field,
the jump on the boundary ∂V of a material can be defined as:

[[σM]] ·n = 1
2
ε−1

0 (p ·n)2n. (12.8)

12.2.2.2 Conservation Laws

Turning now to the equations of the theory of electro-elasticity, we start with the
macroscopic law of conservation of mass m = ρV in form of the Continuity equation:

ṁ =
∂ρ

∂t
+∇ · (ρv) = 0, (12.9)

where v = ẋ denotes the current velocity of the continuum at the point x.
For the electro-elastic coupling, the electrostatic body-force f E of the continuum

is first introduced into the Balance of linear momentum. Hence, the momentum of
a body, which is balanced by body forces ρ f per unit volume, mechanical surface
loads t = σT · n per unit area, and the effect of the electrostatic force per unit volume
f E reads

d
dt

∫
V

ρvdV =
∫
V

(ρ f + f E)dV +
∫
∂V

tdS (12.10)

in its global form. Using the Gauss integral theorem, yields the local form,

∇ ·σ+ρ f + f E −ρv̇ = 0. (12.11)

In analogy to the pure mechanical case, also an electrostatic stress tensor f E = ∇·σE

can be introduced. Adding the electrostatic stress tensor to the Cauchy stress tensor
σ, results in the total electro-mechanical stress tensor σtot,

σtot = σ+σE , σE = e(ε0e+ p)− 1
2
ε0(e · e)I. (12.12)

Furthermore, one has to incorporate the electric couple cE in the Balance of
Moment of Momentum,

d
dt

∫
V

x×ρvdV =
∫
V

x× (ρ f + f E)dV +
∫
V

cEdV +
∫
∂V

x× tdS . (12.13)
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This yields, in contrast to the pure mechanical theory of elasticity, a non-symmetric
mechanical Cauchy stress tensor. Using the identity

∇ · (x×σ) = x× (∇ ·σ)+3 ε · ·σ, (12.14)

where 3ε is the third rank Levi-Civita tensor, and the Gauss integral theorem the
local form eventually yields to the symmetry of the sum of the Cauchy stress tensor,
and the polarization stress σP:

cE+ 3ε · ·σ = 0 , cE = p× e = 3ε · ·ep= 3ε · ·σP. (12.15)

The last equation states, that the negative antisymmetric part of the Cauchy stress
tensor is identically the antisymmetric part of the dipole moment tensor σP. Hence,

skew
(
σ+σP

)
= 0 and σS = σ+σP, (12.16)

where a symmetric stress tensor σS = (σS )T has been introduced. If we now use the
last part of Eq. (12.16) and insert it into the electro-mechanical stress tensor, we find
the famous Maxwell stress tensor σM:

σtot = σS −σP+σE = σS +σM , (12.17)

σM = σE −σP = ε0ee− 1
2
ε0(e · e)I. (12.18)

Finally, in order to get hands on a thermodynamically consistent constitutive relation,
the Balance of Energy for the electro-elastic body reads

d
dt

∫
V

ρ

(
1
2

v2+ e
)
dV =

∫
V

[(
ρ f + f E

)
·v+ρe · π̇ππ

]
dV +

∫
∂V

t ·vdS , (12.19)

which upon using the balance of momentum Eq. (12.11), yields the local form:

ρė−σ · · (∇v)T −ρe · π̇ππ = 0, (12.20)

where π̇ππ = d
dt

p
ρ . Finally, following Maugin and Eringen (2012) we change the depen-

dent variable by using a Legendre transform for the internal energy e in order to gain
the Helmholtz free energy ψ = e− 1

ρe · p

ρψ̇+
d
dt

e · p−σ · ·(∇v)T −ρe · π̇ππ = 0, (12.21)

which after differentiation gives the final form of the rate of free energy:

ρψ̇ = σ · · (∇v)T − ė · p. (12.22)
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12.2.3 Lagrangian (Material) Framework

Within this part the framework of the derivation of the constitutive relations is
presented in a generalized state, in order to present the overall procedure. We start by
transforming the relations, which were obtained previously in the current (spatial)
configuration into the reference configuration, resulting into the Lagrangian (material)
framework. The transformation rules of the dependent variables read:

ρ0 = ρJ, (12.23)
PPP = JF−1 · p, (12.24)
EEE = e ·F, (12.25)
S = JF−1 ·σ ·F−T . (12.26)

σ defines the Cauchy stress tensor and S the second Piola-Kirchoff stress tensor.
EEE andPPP define the material electric field and polarization vector respectively. The
electric displacement vector d, transforms in the same manner as the polarization
vector, using Nanson’s formula nda = JF−T ·NdA:

DDD = Jd ·F−T , DDD = ε0EEE ·C−1+PPP. (12.27)

Maxwell equations can be written as

d = ε0e+ p, ∇0 ·DDD = ∇0 · (ε0EEE ·C−1+PPP) = 0, (12.28)
∇0×EEE = 0, (12.29)

while by carefully applying the volume, surface and line element transformation
rules, on can find the electrostatic material force and couple:

FFF E = (∇0EEE) ·PPP, (12.30)
CCCE = −F−T ·EEE×PPP·FT . (12.31)

Next, we write the material form of the balance of momentum, while from the
balance of moment of momentum, the material form of the polarization stress tensor
is derived:

ρ0v = ∇0 · (S+SE)+ρ0 f , (12.32)
SP = JF−1 · ep ·F−T = C−1 ·EPEPEP (12.33)

The material electrostatic stress tensor follows to

SE = C−1 ·EEE(ε0EEE ·C−1+PPP)− 1
2
ε0J(EEE ·C−1 ·EEE) ·C−1 (12.34)

= C−1 ·EEEDDD− 1
2
ε0J(EEE ·C−1 ·EEE) ·C−1. (12.35)
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In order to obtain the material form of the free energy function, one has to incorporate
the time rate of the right Cauchy-Green strain tensor Ċ = (ḞT ·F+FT · Ḟ), which
allows to write the proper transformation of the gradient of the velocity vector
∇v = F−T · 1

2 Ċ ·F−1. Hence, the material rate of free energy function per unit mass
ψ̇(C,EEE) can be written as:

ρ0ψ̇ =
(
S+PPPEEE ·C−1

)
· ·1

2
Ċ−PPP·ĖEE. (12.36)

In the material form of the problem the boundary conditions are obtained by trans-
forming the second Piola Kirchoff stress tensor to its two-field tensor counterpart
Ptot = F ·Stot,

N · [[Ptot]] = 0, N · [[DDD]] = 0, (12.37)

and by Faraday’s law ∇0×EEE = 0,

N× [[EEE]] = 0. (12.38)

12.2.4 Constitutive Relations

In order to close the theory, the phenomenological properties of the material have
to be taken into account. We consider only small gradients in the electric field and
strains, which therefore allows to take the classical quadratic form of the generalized
thermodynamic energy function, valid in electro-elastic bodies. The free energy
function ψ is assumed to decompose additively into a mechanical part ψme(C), and
an electrical part ψel(C,EEE).

However, an additional term, called augmented free energy, motivated by the
presence of ponderomotive forces in vacuum is additionally incorporated. This
approach is suggested in Dorfmann and Ogden (2005). In order to make a clear
distinction, we indicate the sum of all free energy functions with Ω,

Ω = ψ+ψaug = ψme(C)+ψel(C,EEE)+ψaug(C,EEE), (12.39)

where the dependent variables of the augmentation term ψaug(C,EEE) are introduced
in accordance to the electrical free energy. Writing the rate of the augmented free
energy yields

Ω̇ =
∂ψme

∂C
· · Ċ+ ∂ψel

∂C
· · Ċ+ ∂ψaug

∂C
· · Ċ+ ∂ψel

∂EEE ·ĖEE+
∂ψaug

∂EEE ·ĖEE, (12.40)

or after inserting Eq. (12.36)

ρ0Ω̇ =
1
2

(
S+PPPEEE ·C−1+2ρ0

∂ψaug

∂C

)
· · Ċ−

(
PPP−ρ0

∂ψaug

∂EEE
)
· ĖEE. (12.41)

A comparison unveils
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∂ψme

∂C
=

1
2ρ0

S,
∂ψel

∂C
=

1
2ρ0

SP, −∂ψel

∂EEE =
1
ρ0
PPP, (12.42)

∂ψaug

∂C
=

1
2ρ0

SM , −∂ψaug

∂EEE =
1
ρ0

(D−PD−PD−P). (12.43)

We obtain relations for the total electric displacement and the total stress expressed
by simple addition:

DDD = −ρ0
∂ψel

∂EEE −ρ0
∂ψaug

∂EEE = −ρ0
∂Ω

∂EEE , (12.44)

Stot = 2ρ0
∂ψme

∂C
+2ρ0

∂ψel

∂C
+2ρ0

∂ψaug

∂C
= 2ρ0

∂Ω

∂C
. (12.45)

Still the specific form of the energy functions is missing. For the mechanical
part ψme any hyperelastic strain energy function can be used. In order to define the
electrical energy function, we assume the energy to take a quadratic form in EEE, and
start by transforming the heuristic relation p= χe for the polarization vector given in
the spatial framework into the material framework:

p= χe, PPP = JχC−1 ·EEE, (12.46)

ρ0ψel = −1
2
χε0EEE · (C−1 ·EEE), (12.47)

where χ is the electric susceptibility. The augmentation term reads

ρ0ψaug = −1
2
ε0JEEE · (C−1 ·EEE), (12.48)

and by taking the derivative with respect to C, while keeping in mind ∂J∂C =
1
2 JC−1,

we find

1
2ρ0

SP =
∂ψel

∂C
=

1
2ρ0
χε0C−1 ·EEEEEE ·C−1, (12.49)

1
2ρ0

SM =
∂ψaug

∂C
=

1
2ρ0
ε0J

(
C−1 ·EEEEEE− 1

2
I(EEEEEE · ·C−1)

)
·C−1, (12.50)

which are the constitutive relations for the polarization stress SP and the material
Maxwell stress tensor SM . Subsequently, we obtain the polarization vector by taking
the derivative with respect to EEE,

1
ρ0
PPP = −∂ψel

∂EEE =
1
ρ0
χε0C−1 ·EEE, (12.51)

−ρ0
∂ψaug

∂EEE = ε0JC−1 ·EEE. (12.52)

Here it should be noted, that the polarization stress SP can directly be obtained by
multiplication with EEE ·C−1. Gathering all terms one can find the constitutive relation
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for the electric displacement vectorDDD =PPP+ε0JC−1 ·EEE to

ρ0Ω̇ =

(
S+DDDEEE ·C−1− 1

2
ε0JC−1 · (EEEEEE · ·C−1)

)
· ·1

2
Ċ−DDD·ĖEE. (12.53)

The bracketed term is the total second Piola-Krichoff stress tensor Stot, which is
composed of the unsymmetric mechanical second Piola-Kirchoff stress tensor S, the
polarization stress SP and the symmetric Maxwell stress SM .

This renders the classical version of electro-mechanical coupling most commonly
used in the field of dielectric elastomers, where the major driving mechanism is
given by the electrostatic force. In case of incompressible dielectric elastomers,
the deformation gradient is oblige to detF = J = 1, hence J̇ = 0. Therefore, the
constitutive relation for the total second Piola-Kirchoff stress tensor is constrained,
and we account for the constraint by introducing a Lagrange multiplier p,

Stot = 2ρ0
∂Ω

∂C
+ pC−1, DDD = −ρ0

∂Ω

∂EEE (12.54)

and refer to Dorfmann and Ogden (2005) as well as to Wissler and Mazza (2005)
when making the interpretation of p as taking the role of a hydrostatic pressure,
which can be identified as taking a mechanical part as well as an electric part which
corresponds to the electrostatic force acting on the dielectric material, in case of
plane stress.

12.3 Electromechanical Coupling Using a Multiplicative

Decomposition of the Deformation Gradient Tensor

In order to broaden the constitutive model to nonlinear effects involving electro-
mechanical coupling on the constitutive level, we make use of the multiplicative
decomposition of the deformation gradient tensor. This idea is adopted from the fields
of thermo-elasticity and plasticity. Using this technique allows for incorporating
different or even multiple phenomena and cross effects, e.g. piezoelectricity or
electrostriction.

Obviously when dealing with electro-mechanical coupling, the deformation gradi-
ent is naturally decomposed into an elastic part Fme, called the mechanical and an
electric part Fel called the electric deformation gradient tensor,

F = Fme ·Fel, (12.55)

where Fel = Fel(EEE) is assumed to solely depend on the material electric field vector
EEE.

We apply the right (Lee-type; Lee, 1969) decomposition proposed by Skatulla
et al (2012) for dielectric elastomers, where the right Cauchy-Green tensor can then
be expressed by C = FT

el ·Cme ·Fel with the mechanical part being Cme = FT
me ·Fme.
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It is clear, that the decomposition order puts already restrictions on the choice of
dependent variables within the free energy function, resulting in a rather specific
theory. Therefore, switching the order of the multiplicative decomposition to a right
(Clifton-type; Clifton, 1972) decomposition, necessitates a completely different
modeling approach from the very beginning.

We start the derivation of the constitutive relations analogously to the previous
section 12.2, however, we drop the augmentation term temporary, the free energy
function now reads ψ = ψme(Cme)+ψel(C,EEE), while its rate computes to:

ψ̇ =
∂ψme

∂Cme
· · Ċme+

∂ψel

∂C
· · Ċ+ ∂ψel

∂EEE · ĖEE. (12.56)

Inserting C = FT
el ·Cme ·Fel the time rate of the mechanical right Cauchy-Green tensor

is:

Ċme = F−T
el · Ċ ·F−1

el −2sym
(
Cme · Ḟel ·F−1

el

)
. (12.57)

Therefore, upon applying the symmetry and cyclic permutation property of the double
dot product, and after inserting Ḟel =

∂Fel
∂EEE · ĖEE, the first, mechanical, part of the free

energy, gets:

∂ψme

∂Cme
· · Ċme = F−1

el ·
∂ψme

∂Cme
·F−T

el · · Ċ−
(
2F−1

el ·
∂ψme

∂Cme
·Cme · · ∂Fel

∂EEE
)
· ĖEE. (12.58)

This allows to rewrite the rate of the free energy Eq. (12.56), such that the global
form with regard to the double dot product can be restored:

ψ̇ =

(
F−1

el ·
∂ψme

∂Cme
·F−T

el +
∂ψel

∂C

)
· · Ċ−

(
2F−1

el ·
∂ψme

∂Cme
· ·∂Fel

∂EEE −
∂ψel

∂EEE
)
· ĖEE. (12.59)

Comparing now the coefficients of this relation to the material rate of free energy
from Eq. (12.36), the constitutive relations for the symmetric second Piola-Kirchoff
stress tensor as well as for the polarization vector can be obtained:

SS = S+PPPEEE ·C−1 = 2ρ0F−1
el ·
∂ψme

∂Cme
·F−T

el +2ρ0
∂ψel

∂C
, (12.60)

PPP = 2ρ0F−1
el ·
∂ψme

∂Cme
·Cme · ·∂Fel

∂EEE −ρ0
∂ψel

∂EEE . (12.61)

Here the pronounced coupling nature of the multiplicative decomposition becomes
clear, while the second Piola-Kirchoff stress tensor experiences a transformation by
the electrical deformation gradient, the polarization vector PPP is now composed of
two parts, an electrical onePPPel and a coupled electro-mechanical partPPPcoup.

PPPel = −ρ0
∂ψel

∂EEE , PPPcoup = 2ρ0F−1
el ·
∂ψme

∂Cme
·Cme · ·Fel

∂EEE . (12.62)
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Moreover, the corresponding polarization stress SP = Spol,el+Spol,coup is again ob-
tained by multiplication with EEE ·C−1:

Spol,el = PPPelEEE ·C−1 = −ρ0

(
∂ψel

∂EEE
)
EEE ·C−1, (12.63)

Spol,coup = PPPcoupEEE ·C−1 = ρ0

(
2F−1

el ·
∂ψme

∂Cme
·Cme · ·∂Fel

∂EEE
)
EEE ·C−1. (12.64)

The symmetric Piola-Kirchoff stress tensor composes now of three parts SS = S+

Spol,coup+Spol,el. The term Spol,el, introduces the electrostatic force into the theory,
since it has to fulfill the restriction

−∂ψel

∂EEE EEE ·C
−1 = 2

∂ψel

∂C
. (12.65)

Due to simplicity, we choose the same free energy ρ0ψel = − 1
2χε0EEE · (C−1 ·EEE) from

Sect. 12.2, since it has already been shown to be a proper choice. The variables ε0
and χ are the permittivity in vacuum and the electric susceptibility respectively.

The identification of the electrostatic force motivates further statements on the
analysis of the electro-elastic coupling nature. As the responsible term for the electro-
static force can now be excluded, still a symmetric electro-mechanical stress tensor
Sem = S+PPPcoupEEE·C−1 can be obtained, which upon comparison to Eq. (12.60) reads:

Sem = 2ρ0F−1
el ·
∂ψme

∂Cme
·F−T

el . (12.66)

By using Cme = F−T
el ·C ·F−1

el , the coupling polarization can be written as:

PPPcoup = Sem ·C ·F−1
el · ·

∂Fel

∂EEE , (12.67)

which after comparison to the balance of energy yields the symmetric second Piola-
Kirchoff stress tensor being composed of an electromechanical part Sem and the
electrical part Spol,el.

SS = S+PPPEEE ·C−1 = Sem+Spol,el, PPP =PPPel+PPPcoup (12.68)

with the specific constitutive relations:

Sem = 2ρ0F−1
el ·
∂ψme

∂Cme
·F−T

el and Spol,el = 2ρ0
∂ψel

∂C
, (12.69)

PPPel = −ρ0
∂ψel

∂EEE and PPPcoup = Sem ·C ·F−1
el · ·

∂Fel

∂EEE . (12.70)

In view of a proper thermodynamic presentation of the rate of the free energy, one
can finally write:
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ρ0ψ̇ = Fel ·Sem ·FT
el · ·

1
2

Ċme︸��������������������︷︷��������������������︸
=ρ0ψ̇me(Cme)

+Spol,el · · 1
2

Ċ−PPPel · ĖEE︸��������������������︷︷��������������������︸
=ρ0ψ̇el

. (12.71)

Consider the case Fel = I; then PPPcoup = 000,Fme = F,Cme = C and Sem = S hold, and
the previous constitutive model without constitutive coupling is found:

S = 2ρ0 · ∂ψme

∂C
, Spol =PPPEEE ·C−1 = 2ρ0

∂ψel

∂C
and PPP = −ρ0

∂ψel

∂EEE . (12.72)

12.3.1 Total Stress

It remains to incorporate the contribution of the electric field in vacuum to the con-
stitutive model. Starting at the definition for the free energy function, the objective
we want to achieve is to find some global relationships which hold when incorpo-
rating the multiplicative decomposed deformation gradient. We make use of the
augmentation term in Sect. 12.2 and write

ρ0Ω = ρ0ψ− 1
2
ε0JEEE · (C−1 ·EEE) = ρ0ψ+ρ0ψaug. (12.73)

Hence, in analogy to the electric free energy, also for the augmentation term ψaug =

ψaug(C,EEE) holds, and the rate of the augmented free energy can be expressed as:

ρ0Ω̇ = ρ0ψ̇+ρ0
∂ψaug

∂C
· ·Ċ+ρ0

∂ψaug

∂EEE ·ĖEE. (12.74)

However, in few of a uniform presentation, one might be interested to further develop
ψ̇ given in Eq. (12.59). As ψme = ψme(Cme) = ψme(Cme(C,EEE)) holds, and by using
Cme = F−T

el ·C ·F−1
el the derivative of the mechanical free energy can be expressed by

∂ψme

∂EEE =
∂ψme

∂Cme
· · ∂Cme

∂EEE =
∂ψme

∂Cme
· · ∂(F

−T
el ·C ·F−1

el )
∂EEE

= −2F−1
el ·
∂ψme

∂Cme
·
(
Cme · ∂Fel

∂EEE ·F
−1
el

)
= −2F−1

el
∂ψme

∂Cme
·Cme · ·∂Fel

∂EEE ,
(12.75)

and furthermore,

∂ψme

∂C
=
∂ψme

∂Cme
· ·∂Cme

∂C
=
∂ψme

∂Cme
· ·∂(F

−T
el ·C ·F−1

el )
∂C

= F−1
el ·
∂ψme

∂Cme
· ·F−T

el (12.76)

which finally gives



12 Modeling of Dielectric Elastomers Accounting for Electrostriction 273

DDD = −ρ0
∂ψme

∂EEE −ρ0
∂ψel

∂EEE −ρ0
∂ψaug

∂EEE = −ρ0
∂Ω

∂EEE , (12.77)

Stot = 2ρ0
∂ψme

∂C
+2ρ0

∂ψel

∂C
+2ρ0

∂ψaug

∂C
= 2ρ0

∂Ω

∂C
. (12.78)

Note, that in case of multiplicative decomposition, the electric displacement vector
contains the material derivative of the mechanical free energy with respect to the
electric field, this was not the case in the representation of the constitutive equations
in section 12.2. Inserting the quantities into the rate of augmented free energy finally
yields

ρ0Ω̇ = Stot · · 1
2

Ċ−DDD·ĖEE. (12.79)

12.3.2 Intermediate Configuration

By using a multiplicative decomposition, one equivalently introduces an intermediate
configuration, see Fig. 12.3 into the deformation path, which is a result of the
right Lee-type decomposition. In our case, the intermediate configuration might
be adopted in case when no mechanical loads are applied, hence Cme = I, and the
electro-mechanical stress, given in Eq. (12.68)

Reference configuration

Intermediate configuration

Actual configuration

F = I , SS = 0
E = 0 , P = 0

F = Fel , S
S = Spol,el

E , P = Pel

F = Fme · Fel

SS = Spol,el + Sem

E , P = Pel +Pcoup

Fel(E)

Ψel(C,E)
Fme

Ψme(Cme)

F

Ψ(C,E)

Fig. 12.3: The intermediate configuration is entered by instantaneously taking all
mechanical loads yielding to an appealing, yet unphysical state of pure electrical
origin.
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Sem = S+PPPcoupEEE ·C−1 = 2ρ0F−1
el ·
∂ψme

∂Cme
·F−T

el , (12.80)

has to vanish. This is true, because the mechanical part of the free energy ψme(Cme)
per definition depends solely on the mechanical right Cauchy-Green tensor. Hence,
the symmetric stress tensor SS for the intermediate configuration must be equal to
the electrical polarization stress tensor SS = SP = Spol,el. Moreover, as the total stress
tensor is Stot = SS −SP +SE = SE yields to Stot = SP +SM , hence, there exists a total
stress tensor in the intermediate configuration, composed of the symmetric Maxwell
stress and the unsymmetric electrical polarization stress.

Moreover, as the electro-mechanical stress tensor is composed of the second
(mechanical) Piola-Kirchoff stress and the coupling polarization stress tensor Sem =

S+Spol,coup = 0 yields in consequence that either S = −Spol,coup or both Spol,coup = 0

and S = 0 vanish. However, in either way, the total stress tensor remains apparent
because of the Maxwell stress tensor, hence the intermediate configuration cannot be
a "stress-free" configuration.

This concept of different deformation path yields to three possible configurations:

1. The unloaded reference configuration, here both the electric field vector and the
polarization vector have to vanish EEE = PPP = 0, while at the same time F = I is
prescribed, hence this configuration is stress free Stot = SS = 0.

2. Allowing a pure electric polarizationPPP =PPPel accompanied with an electric field,
yields to a configuration where stress fields Stot = Spol,coup + SM are present
yielding to a deformation field characterized by F = Fel.

3. Within the actual configuration, all physical possible combination of electric and
mechanic sources are present, allowing now the the symmetric electro-mechanical
stress tensor Sem to emerge. When starting in the intermediate configuration, the
actual configuration is attained through the mechanical energy field ψme(Cme).
When going this path one has to keep the electric field EEE constant and add the
coupled term to the polarization vector fieldPPP =PPPel+PPPcoup.

12.4 Electrostriction

Phenomenologically speaking, electrostriction is the quadratic response in the strain
field, upon application of an electric field; hence, we write a series expansion

ε ≈EEE · 3e+EEEEEE · · 4D+ ... (12.81)

for the infinitesimal strain tensor ε, where 3e is a third rank piezoelectric coefficient
tensor, and 4D a fourth rank electrostrictive parameter tensor. Therefore, electrostric-
tion renders a higher order effect, which is typically considered as negligible. How-
ever, experimental results show, that among the linear electrostatic relation, also
higher order effects contribute significantly to the strain field. As piezoelectricity is a
special topic, in this work we restrict ourselves to electrostriction, which also depends
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e
=

0

e cE

grafted polymer crystal flexible graft molecule

backbone molecule

p

Fig. 12.4: Electrostrictive graft polymer, left deformation of the whole specimen,
right reorientation of the crystal unit upon application of an electric field.

highly on the materials properties. In order to explore the origin of this effect one has
to look inside the micro-structure. Materials which exhibit a distinct electrostrictive
behavior carry typically polarized cells or crystalline groups within a matrix of long
chained elastomer molecules. In 1998 NASA (Su et al, 1999) published results on
their improved EAP material, with especially improved electrostrictive properties,
called electrostrictive graft elastomer. The key ingredients are crystalline groups
which are solvents in a flexible backbone polymer matrix. Upon application of an
external electric field, the dipole moments within the crystal cells have to reorient,
according to the induced dipole couple cE = p× e. This effect is shown in Fig. 12.4.
If the sign of the external field is changed, the dipole couple reorients in the other
direction; hence, the cells are turned around such, that the same net deformation
can be measured. As every material carries imperfections, which lead to polarized
cells within the structure, every material is capable of undergoing an electrostrictive
behavior. However, e.g. in silicon rubber one can barely find such micro defects,
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m

e2, λ2

e1, λ1

h

Fig. 12.5: Homogeneous plate in cartesian coordinates, the unit vector in thickness
direction is denoted with m.

which is why the electrostrictive effect of silicon rubber (3M VHB4910) is rather
small. Other materials which have drawn attention due to their distinct ability towards
electrostriction are polyurethane elastomers, see experimental results in Diaconu et al
(2006). We complete this introductory part by mentioning that also combinations
of electrostrictive EAPs and piezoelectric copolymers exist (so called ferroelectric-
electrostrictive materials), which allow the use of the piezoelectric polymer for
sensing and the electrostrictive one for actuation.

In order to incorporate electrostriction into the constitutive relations in the present
paper, we make use of the yet undefined electric deformation gradient tensor Fel,
which in case of electrostriction might e.g. take the form of an exponential function
suggested by Skatulla et al (2012):

Fel = expD, (12.82)

where D is a proper second rank tensor, which in turn has to satisfy D = lnFel,
such that by choosing D carefully, the electric deformation gradient might become
identical to the electric right stretch tensor Fel = RelUel := Uel, hence D becomes an
electrical logarithmic strain tensor Eel

D = lnUel = Eel, (12.83)

which then can be chosen quadratic in the material electric field vector EEE.

12.4.1 Homogeneously Deformed Plate

We turn now to the case of homogeneous in plane deformation of a plate, see Fig.
12.5, in which the coordinate system is embedded such, that one unit vector m is
aligned with the electric field vector EEE = E3m, acting in thickness direction. Hence
the electric deformation gradient takes the form Fel = Uel = λel(I−mm)+λel,3mm.

Therefore, the tensor D is taken in the form of a diagonal tensor:
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D = c1(EEE ·EEE)mm+ c2(EEE ·EEE)(I−mm), (12.84)

where the two parameter c1 and c2 are electrostrictive material parameter, which
allow to write the electrical stretches in the form:

λel = exp(c2EEE ·EEE) , λel,3 = exp(c1EEE ·EEE). (12.85)

It remains now to recall and specify the augmented free energy. Starting with the
mechanical free energy, we are using a neo-Hookean hyperelastic strain energy
function,

ρ0ψme(Cme) = ρ0ψme(ICme , IICme , IIICme ) =
μ

2
(ICme −3−2ln Jme)+K(lnJme)2;

(12.86)
the electrical and the augmented free energy are respectively:

ρ0ψel = −1
2
χε0EEE · (C−1 ·EEE) (12.87)

ρ0ψaug = −1
2

Jε0EEE · (C−1 ·EEE). (12.88)

12.4.1.1 Plane Stress

For the total stress tensor we write Stot = S2 + τm+mτ+ S 33mm, where S2 is its
plane part, τ is the total transverse shear stress vector and S 33 the magnitude of
the total stress in direction of the unit normal vector m. We use I2 = I−mm for
the plane identity tensor. The restriction to plane stress allows to set all parts in m

direction zero, hence Stot = S2. As a consequence, shear components of the right
Cauchy-Green tensor vanish; hence, it can be decomposed into an in plane part C2,
and an out of plane tensor C33mm such that C = C2+C33mm. In accordance to the
total right Cauchy-Green tensor, also the mechanical right Cauchy-Green tensor turns
into Cme =C2,me+C33,memm. By using the transformation rule Cme = F−T

el · C ·F−1
el ,

the invariants of Cme turn into functions of the total right Cauchy-Green tensor, and
the electric stretches.

ICme = trCme = λ
−2
el trC2+λ

−2
el,3C33, (12.89)

IICme = Cme · ·Cme = λ
−4
el,3C2

33+λ
−4
el C2 · ·C2, (12.90)

IIICme = detCme = λ
−4
el λ
−2
el,3C33detC2. (12.91)

12.4.1.2 Incompressibility

As dielectric elastomers are often considered incompressible, J = detF := 1, we have:

- detF = detFel = 1,
- detC = 1→C33 = detC−1

2 = III−1
C2

.
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Turning to the electric deformation gradient tensor, the incompressibility condition
already defines one of the electrostrictive material parameter c1 in terms of the second
one c2:

detFel = 1 = λ2
elλel,3 = exp((c1+2c2)E2

3) = 1 → c1 = −2c2. (12.92)

Additionally the electric in plane stretch is a direct result of the out of plane stretch:
λ−2

el = λel,3 = exp(c1E2
3). For the electric free energy function the inverse total right

Cauchy-Green tensor is needed, as C−1 = C−1
2 +C−1

33 mm holds. Upon inserting
EEE = E3m and using J = 1 the electric free energy and the augmented free energy are:

ρ0(ψel+ψaug) = −1
2
ε0(1+χ)

E2
3

C33
. (12.93)

For the mechanical free energy function the trace of the mechanical right Cauchy-
Green tensor is needed. If we make use of λ−2

el = λel,3 and C33 = detC−1
2 = III−1

C2
, the

invariants read:

ICme = λ
−2
el trC2+λ

4
elC33, (12.94)

IICme = λ
8
elC

2
33+λ

−4
el C2 · ·C2, (12.95)

IIICme = λ
−4
el λ

4
elIII−1

C2
detC2 = 1. (12.96)

We can now write the augmented free energy for the incompressible neo-Hookean
material and the plane stress case:

ρ0Ω2 =
μ

2

(
λ−2

el trC2+λ
4
elIII−1

C2
−3

)
− 1

2
εIIIC2E2

3, (12.97)

where we used the permittivity ε = ε0(χ+1) = εrε0, with the relative permittivity
εr = χ+1, and the electrical stretch λel = exp(c2E2

3) = exp((−c1/2)E2
3).

12.4.1.3 Electrostatic Force

We already reduced the augmented free energy to its plane counterpart, however,
in order to ensure incompressibility when using the constitutive relations for the
stresses one has to enforce the condition by using a Lagrange multiplier p:

S2 = 2ρ0
∂Ω2

∂C2
+ pC−1

2 , (12.98)

where p can be obtained by making use of the plane stress condition in the three
dimensional problem S 33 = 0, keeping C33 = III−1

C2
in mind yields

S 33 = 2ρ0
∂Ω2

∂C33
+ pC−1

33 = 0 → p = −2C33ρ0
∂Ω2

∂C33
. (12.99)
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Inserting p into the plane part of the total stress tensor finds

S2 = 2ρ0
∂Ω2

∂C2
−2C33ρ0

∂Ω2

∂C33
C−1

2 , (12.100)

which upon using C33 = III−1
C2

and the identity
∂III−1

C2
∂C2

= −III−1
C2

C−1
2 finally becomes

S2 = 2ρ0

⎛⎜⎜⎜⎜⎜⎜⎝ ∂Ω2

∂C2

∣∣∣∣∣
C33=III−1

C2

− ∂Ω2

∂C33

∣∣∣∣∣
C33=III−1

C2

III−1
C2

C−1
2

⎞⎟⎟⎟⎟⎟⎟⎠
= 2ρ0

(
∂Ω2

∂C2
+
∂Ω2

∂C33

∂C33

∂C2

)∣∣∣∣∣∣
C33=III−1

C2

.

(12.101)

This is however identical to
S2 = 2ρ0

∂Ω2

∂C2
, (12.102)

with the plane part of the augmented free energy. Hence, for the case of plane stress,
incompressibility is ensured by application of a pressure p. The externally applied
electric field acting in thickness direction, however yields to a stress resultant in
thickness direction whose contribution has to be balanced by the Lagrange multiplier

p = −2C33ρ0
∂Ω2

∂C33
, (12.103)

which takes part of a mixed mechanical portion on the one hand, and an electrostatic
Coulomb force resultant on the other hand.

In summery, the constitutive model for plane stress case yields the total stress
tensor Stot = Stot

2 . Because of EEE = E3m also the electric displacement vector has only
a component in the thickness direction D3; hence, the non-vanishing components
read:

Stot
2 = 2ρ0

∂Ω2

∂C2
, D3 = −ρ0

∂Ω2

∂E3
= εIIIC2E3−ρ0

∂Ω2

∂λel

∂λel

∂E3
. (12.104)

12.4.1.4 Traction Boundary Condition

Within a conducting material such as the electrodes attached on top and bottom of
the dielectric layer, the electric field has to vanish. Hence, there is no contribution
from the Maxwell stress in thickness direction, however, at the vertical boundaries
where the film and the exterior (vacuum) field share a surface, continuity in the stress
field must be ensured. Denoting with subscript 2 the plane components, for the plane
first Piola-Kirchoff [[Ptot

2 ]] ·N2 = 0 must hold, where N2 is the in plane unit normal
vector at the vertical edges. In addition, we claim also continuity of F2 as well as Stot

2
at the interface. For this reason, we can demand the continuity condition equivalently
by taking the second Piola-Kirchoff stress, and its Maxwell stress version in air SM

2 .
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Let us discuss the jump condition in more detail, for the dielectric material the
full contribution of the augmented free energy applies, while in the exterior field, all
constituents arising from the presence of material vanish, hence the only remaining
term is the augmentation term:

ρ0ΩDielectric = ρ0Ω2, ρ0Ωexterior f ield = ρ0ψaug. (12.105)

The Maxwell stress tensor is obtained by differentiating the augmented free energy,
and using C−1 = C−1

2 +C−1
33 mm with EEE ·EEE = E2

3 and EEEEEE = E2
3mm:

SM = 2
∂ψaug

∂C
=

1
2
ε0JC−1 · E3E3mm ·C−1− 1

2
ε0JC−1 · E2

3 ·C−1

=
1
2
ε0JC−2

33E2
3mm− 1

2
ε0JE2

3C−2
2 , (12.106)

such that the plane part is SM
2 = SM · I2.

We use Ptot
2 = F2 ·Stot

2 in the dielectric elastomer, and by writing the equilibrium at
the surface with the plane Maxwell stress tensor PM

2 = F2 ·SM
2 the traction boundary

condition is found to:

F2 ·Stot
2 ·N2 = F2 ·SM

2 ·N2 = −F2 · 12ε0JE2
3C−2

2 ·N2. (12.107)

12.5 Electromechanical Stability

Still, the electrostrictive material parameter c1 remains unknown, in order to define
c1 one has to rely on experimental measurements. However, proper identification
of a coefficient associated with electrostriction is difficult as also the strain coming
from Maxwell effect is quadratic in the electric field. Hence, a direct comparison to
experimental data is not possible, and a proper conversion from the measured value
to the electrostrictive parameter c1 has to be applied. Diaconu and Dorohoi (2005)
used a parameter M to relate the experimental dependence of the measured strain on
the applied electric field. We will make use of the data set obtained there and proceed
by specifying the mathematical model to the problem from the measurements.

We consider a thin plate, which is free to deform in plane upon application of an
external electric field in thickness direction E3 = V/h, where V is the magnitude of
the applied voltage, and h the thickness of the plate. For this problem, a spherical
right Cauchy-Green tensor, with the same in plane stretches due to the homogeneous
deformation, applies, hence C2 =CI2 with C = λ2. Where λ = λ1 = λ2 denotes the
principal stretch in both in-plane directions. We use I2 = I−mm the plane identity
tensor, and write the invariants for this problem,

IC2 = 2C = 2λ2 , IIIC2 =C2 = λ4. (12.108)
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By using the neo-Hookean strain energy function, specified for incompressible
materials, the expression for the augmented free energy gets,

ρ0Ω2 =
μ

2
(2λ−2

el λ
2+λ4

elλ
−4−3)− 1

2
ελ4E2

3, (12.109)

where ε = ε0(1+χ) = ε0εr. The plane total second Piola-Kirchoff stress tensor is
obtained by using implicit differentiation, and the relation ∂C2/∂λ = 2λI2:

Stot
2 = 2ρ0

∂Ω2

∂C2
= 2ρ0

∂Ω2

∂λ

∂λ

∂C2
= ρ0

1
λ

∂Ω2

∂λ
I2. (12.110)

Next, the contributing stress from the exterior field needs to be incorporated, by
making use of the traction boundary condition F2 ·Stot

2 ·N2 =F2 ·SM
2 ·N2 with F2 = λI2

and SM
2 = − 1

2ε0E2
3λ
−4I2:

ρ0
∂Ω2

∂λ
N2 = −1

2
ε0E2

3λ
−3N2 (12.111)

Integration yields the augmentation energy ρ0Ω
aug
2 = 1

4ε0λ
−2E2

3, such that the traction
boundary condition can be expressed by an overall plane energy function Ω̄2

ρ0Ω̄2 = ρ0Ω2−ρ0Ω
aug
2 = ρ0Ω2− 1

4
ε0λ
−2E2

3. (12.112)

Moreover, the traction boundary condition can be equally written in terms of a new
overall second Piola-Kirchoff type stress tensor S̄2 ·N2 = 0, where

S̄2 =
1
λ

(
∂Ω2

∂λ
+

1
2
ε0λ
−3E2

3

)
I2 =

1
λ

∂Ω̄2

∂λ
I2 (12.113)

has to vanish in the whole plate. We can now proceed to the stability analyses by
writing the equilibrium condition in form of the Principle of Gibbs (Ziegler, 1998)

∂Ω̄2

∂λ
= 0, (12.114)

yielding the equilibrium stretches λ = λ0. Furthermore, one can judge on the stability
of these stretches by making use of the Dirichlet stability criterion for conservative
problems,

∂2Ω̄2

∂λ2

∣∣∣∣∣
λ0

> 0. (12.115)

We proceed by specifying the overall free energy for the incompressible neo-Hookean
material and write the equilibrium condition:
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Fig. 12.6: Equilibrium Biot strain for Voltage driven actuation, left the linear
course of the strain upon the square electric field, right the quadratic course upon
the linear electric field. The red line corresponds to the full model, black dotted
neglects Maxwell effect, black solid line linearized problem, blue line electric
stretch.

ρ0Ω̄2 =
μ

2
(2λ−2

el λ
2 + λ4

elλ
−4−3)− 1

2
ελ4E2

3−
1
4
ε0E2

3λ
−2, (12.116)

(λ−2
el λ−λ4

elλ
−5) − λ3

(
1− 1

4εr
λ−6

)
ε

μ
E2

3 = 0 (12.117)

where we have used ε = ε0(1+χ) = ε0εr. Finally, we close the theoretical part by
specifying the material parameter using the same polyurethane elastomer reported
in Diaconu and Dorohoi (2005), with εr = 8.8,Y = 3μ and Y = 3.6MPa. Multipli-
cation of Eq. (12.117) with λ and using λ2 = λ−1

3 , which was obtained from the
incompressibility condition, yields:

(λ−2
el λ
−1
3 −λ4

elλ
2
3)−λ−2

3

(
1− 1

4εr
λ3

3

)
ε

μ
E2

3 = F(λ3,E2
3) = 0. (12.118)

In the reference, quadratic dependence of the strains was observed at low electric
field strength. To ensure comparability, we approximate the equilibrium condition
F(λ3,E2

3) in the vicinity of λ3 ≈ 1 and E2
3 ≈ 0, leading to the linear relation

ε3 = −
⎛⎜⎜⎜⎜⎜⎜⎝ε(1−

1
4εr

)

3μ
− c1

⎞⎟⎟⎟⎟⎟⎟⎠E2
3 = −ME2

3, (12.119)

which allows for incorporating the measured value M. Diaconu and Dorohoi (2005)
measured a value of M = 7.07×10−16m2V−2, which is a parameter, that still carries
the contribution from the Maxwell effect. Here, we have introduced the Biot strain
measure ε3 = λ3−1. By solving the linearized system the electrostrictive parameter
c1 = −6.86× 10−16m2V−2 can be found. Hence, the contribution of the Maxwell
effect is 3.066%, which agrees well with the value 3.07% given in Diaconu and
Dorohoi (2005). In Fig. 12.6, the equilibrium Biot strain against the square of the
electric field (left), and right the equilibrium Biot strain against the linear electric



12 Modeling of Dielectric Elastomers Accounting for Electrostriction 283

field is shown. Clearly, the electrostrictive behavior can be observed. On the left side,
the solid red line corresponds to the strain response of the whole problem, the black
line shows the linearized system giveni Eq. (12.119), and the blue line corresponds
only to the electrical Biot strain εel,3 = λ

−2
el −1 = exp(c1E2

3)−1. However, for small
strains, almost no difference is visible. In the right figure, the red line corresponds
to the problem discussed in this paper, accounting for the Maxwell effect, while the
black dotted line shows the solution of the problem if the Maxwell stress arising
from the traction boundary is neglected. Results show, there is almost no difference,
due to the prevailing electrostrictive effect.

Increasing the field strength and allowing also higher strains, the different curves
deviate from each other, unveiling the nature of each contributor, see Fig. 12.7. In
the left figure, again the red as well as the black dotted line are almost equal, as the
Maxwell effect from the boundary condition is negligibly small. The black solid line
is again the linear solution. Attention should be taken to the blue line, which shows
the electric stretch λel,3−1 in thickness direction; its nature unveils the impact of the
electrostrictive effect, which for the polyurethane material under consideration seems
to be of great importance.

Strains of such magnitude cannot be obtained in nature, as at some point the
system looses its stability. On the right hand side in Fig. 12.7 the equilibrium strains
(red, black dotted and brown) and the stability margin in black are presented. The
theoretical bounds of equilibrium stretches, and the corresponding field strength can
be obtained by using the Dirichlet criteria and are acquired for several cases:

• Considering both Maxwell effect and electrostriction, with the following equilib-
rium condition, and Dirichlet stability criterion
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Fig. 12.7: Equilibrium Biot strain considering higher electric fields, up to Biot
strain =1. On the right side, the red line corresponds to the case with electrostric-
tion, brown line only electrostatic forces, black line stability margin. Left: red and
black dotted line, equilibrium strain accounting for electrostriction with and with-
out Maxwell boundary term, black solid line linearized strain, blue line electrical
part of the Biot strain εel,3.
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(λλ−2
el −λ−5λ4

el)−λ3
(
1− 1

4εr
λ−6

)
ε

μ
E2

3 = 0, (12.120)

(λ−2
el +5λ−6λ4

el)−3λ2
(
1+

1
4εr
λ−6

)
ε

μ
E2

3 = 0. (12.121)

• Neglecting the Maxwell effect from the boundary conditions, which follows by
dropping the terms with the relative permittivity.

(λλ−2
el −λ−5λ4

el)−λ3 ε

μ
E2

3 = 0, (12.122)

(λ−2
el +5λ−6λ4

el)−3λ2 ε

μ
E2

3 = 0. (12.123)

• In order to draw a comparison to the impact of the electrostrictive effect the case
for pure electrostatic force, shown in Krommer et al (2016):

(λ−λ−5)−λ3 ε

μ
E2

3 = 0, (12.124)

(1+5λ−6)−3λ2 ε

μ
E2

3 = 0. (12.125)

The critical stretch in thickness direction is obtained by inserting λ3 = λ
−2, and

solving the equilibrium condition. Using this critical value thereafter in the Dirichlet
criterion yields the critical electric field. For the last two discussed cases, the critical
stretch λcrit along with the critical electric field E3,crit are

λ−6
crit,ES Force =

1
4
→

√
ε

μ
E3,crit,ES Force =

√
3

4
2
3

= 0.687, (12.126)

(
λcrit,DE

λe,crit,DE

)−6

=
1
4
→

√
ε

μ
(exp(−c1E2

3,crit,DE)E3,crit,DE) =

√
3

4
2
3

= 0.687. (12.127)

First the critical stretch and electric field for the electrostatic force is presented
in Eq.(12.126). For the problem accounting for electrostriction but dropping the
Maxwell effect, a very similar correlation can be found, see Eq.(12.127). However, if
considering both electrostriction and Maxwell effect, the limiting criteria turn out to
be more complicated

λ6
crit =

(
−1+8λ6

el,critεr +
√

1−20λ6
el,critεr +64λ12

el,critε
2
r

)
(4εr)−1, (12.128)

which upon using the abbreviations k = (−1+ 8εrλ6
el,crit) and s =

√
k2−4εrλ6

el,crit
yields

λ6
crit = (k+ s)(4εr)−1, (12.129)

and
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√
ε

μ
Ecrit =

√√√√√ 2
2
3 (λ6

crit −λ6
el,crit)4εr

λ2
el,crit(k−1+ s)(kε−1

r + sε−1
r )

1
3

. (12.130)

However, as it has turned out that the Maxwell effect seems to have minimal effect
on the solution, Fig. 12.7 indicates almost the same critical values, as for the case
where Maxwell effect is dropped. This can be judged, as the black line giving the
stability margin crosses the equilibrium lines where the tangent gets horizontally, in
both cases.

12.5.1 Stiffening Effect of Electrodes

Up to now, the investigations presented above, were made under the assumption, that
electrodes attached to the EAP film do not interact with the EAP other than supplying
an electric field. As this assumption is fairly crude, the last part is devoted to the
problem of a homogeneously deformed plate with electrodes attached on top and
bottom, see Fig. 12.8.

We investigate the case of compliant electrodes made of steel, hence we use a St.
Vernant-Kirchoff material model for the constitutive part of the electrodes. Due to
the in plane deformation a membrane state of stress prevails. We use ε3 = λ3−1, the
strain component in thickness direction as it correlates to the in plane stretches by
the relation λ2 = λ−1

3 .

um,2 =
1
2

(A(trε3 trε3−2(1− ν)detε3)) , A =

−h/2∫
−H/2

Y
(1+ ν)(1− ν)dz (12.131)

A denotes the tension stiffness, which is given for the lower electrode, but cor-
respondingly applies to the upper electrode by changing the sign of the bounds.
Y = 210×109Nm−2 denotes the elastic modulus, and ν = 0.33 the Poisson’s ratio of
steel. We incorporate the electrodes into our constitutive model of the dielectric by
simply adding the strain energy um,2 to the augmented free energy function Ω2 and

Fig. 12.8 Electro-active
polyurethan plate with elec-
trodes at the height 1

2 (H −h)
attached on top and bottom.

e2, λ2

e1, λ1

h H

m
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Fig. 12.9: In red, the equilibrium Biot strain for the plate with electrodes, black
plate problem without electrodes.

find

Ω2,ges =
1
2

h
(
−E2

3ε0εrλ
4+ (2λ2λ−2

el +λ
−4λ4

el−3)μ
)
+

( H
2 − h

2 )Y(λ2−1)2

(1+ ν)(1− ν) . (12.132)

As the Maxwell effect coming from the vertical boundaries has been shown to be
negligible, we dropped the term, and proceed by determining the electrostrictive
coefficient c1. Again the correlation of the experimentally known data for M to
our parameter c1 is found in a linear approximation of the equilibrium equation
∂Ω2,ges
∂λ = 0, in the vicinity of λ3 ≈ 1 and E3 ≈ 0 to

ε3 = −h(ν2−1)
(

(ε+3c1μ)
h(Y+3μ(ν2−1))−HY

)
E2

3 = −ME2
3. (12.133)

At first, the difference in the electrostrictive behavior and the stable stretch config-
uration is investigated. As for the experimental value M = 7.07× 10−16m2V−2 no
thickness of the sample was reported, we assumed a value of 1μm. The thickness
of the electrodes is derived by using the relation H = 1,00002h, which results in
an electrostrictive coefficient of c1 = −9.94×10−15m2V−2. Figure Fig. 12.9 shows
the resulting equilibrium Biot strain, the electrostrictive behavior upon the linear
electric field is still visible, furthermore, the stiffening effect of the electrodes tends
to stabilize the problem (red line) as no horizontal tangent is present any more.
Additionally to the single parameter set we are using so far, Diaconu et al (2006)
published experimental results for another set of fife different materials, given in
Tab. 12.1. Again only results for small electric fields and strains are presented in
Diaconu et al (2006). At this regime the results given in Fig. 12.10, upon the square
electric field agree very well, however at higher fields, experimental results tend to
deviate nonlinearly, which is not visible from the results of our model. The black
line in Fig. 12.10 corresponds to the pure EAP model without electrodes. Finally, the
results upon increasing the thickness of the electrodes by the factor 10 are presented
in Fig.12.11. The electrostictive behavior remains for a broadened electric field.
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Table 12.1: Material parameter taken from Diaconu et al (2006), at an electric field
of E3 = 4.5MVm−1

Sample Thickness [μm] Y [MPa] M×1016 [m2V−2] c1 ×1016 Color

1 15 6.19 3.00 2.87 Red
2 27 25.46 5.00 4.97 Green
3 33 51.03 8.00 7.89 Blue
4 49 52.39 12.28 12.27 Brown
5 110 59.5 8.92 8.91 Magenta
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Fig. 12.10: Response at small electric fields and strains above, and at large fields
bottom.

While if the thickness is decreased, the curves tend to the solution without electrodes,
presented in black.

12.6 Conclusion and Outlook

The constitutive modeling framework in the field of nonlinear electro-elasticity has
been presented in details, starting by introducing the electrostatic field quantities, the
macroscopic balance equations were derived and with clear focus on the multiplica-
tive decomposition of the deformation gradient applied to the effect of electrostriction.
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Fig. 12.11: Increasing the thickness of the electrodes by factor 10.

The application on a simple homogeneously deformed plate unveiled, that the elec-
trostrictive effect has a considerable effect on the actuation behavior of electroactive
polymers, and can be enhanced by the choice of dielectric material. In the near
future, the presented model is extended to geometrically nonlinear shells and the
implementation into a geometrically nonlinear finite element code, in order to apply
the model to more general problems. Special attention will be paid on the choice of
the specific constitutive law for the electrical part of the deformation gradient, as this
component offers access to easily incorporate different models and requires some
more investigations.
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