
Chapter 11

Mathematical Modelling of Piezoelectric

Generators on the Base of the Kantorovich

Method

Arkadiy N. Soloviev, Valerii A. Chebanenko, and Ivan A. Parinov

Abstract In this chapter, applied semi-analytical theories were constructed, allow-
ing preliminary estimations of the output characteristics of piezoelectric generators
(PEG) of various configurations. The developed theories are based on the Hamil-
tonian principle, extended to the theory of electroelasticity. In the first part of the
work, within the framework of the Euler-Bernoulli hypotheses, a model for a can-
tilever PEG was developed. The main model’s peculiarity is the consideration of the
structural features of cantilever PEGs. In the second part, a model was developed
for multilayer stacked PEGs, where the energy generation process was considered as
forced oscillations of an electroelastic rod. Solutions for both cases were carried out
using the Kantorovich method. The adequacy of the theories obtained in both cases
was verified by comparison with finite-element calculations.

11.1 Introduction

In recent years, research of piezoelectric transducers that convict mechanical energy
into electrical energy has been actively developed. This type of transducers is called
piezoelectric generator (PEG). The basic information about PEG, as well as the

Arkadiy Nikolaevich Soloviev
Don State Technical University, Gagarin sq., 1 &
I. I. Vorovich Institute of Mathematics, Mechanics and Computer Sciences, Southern Federal
University, Milchakov st., 8A, Rostov-on-Don, Russia
e-mail: solovievarc@gmail.com

Valerii Alexandrovich Chebanenko
Southern Scientific Center of Russian Academy of Science, Chekhov st., 41, Rostov-on-Don, Russia
e-mail: valera.chebanenko@yandex.ru

Ivan Anatolievich Parinov
I. I. Vorovich Institute of Mathematics, Mechanics and Computer Sciences, Southern Federal
University, Milchakov st., 8A, Rostov-on-Don, Russia
e-mail: parinov_ia@mail.ru

© Springer Nature Singapore Pte Ltd. 2018
H. Altenbach et al. (eds.), Analysis and Modelling of Advanced
Structures and Smart Systems, Advanced Structured Materials 81,
https://doi.org/10.1007/978-981-10-6895-9_11

227

solovievarc@gmail.com
valera.chebanenko@yandex.ru
parinov_ia@mail.ru


228 Arkadiy N. Soloviev, Valerii A. Chebanenko, and Ivan A. Parinov

problems arising in different development stages of energy harvesting devices, are
given in the review papers Liu et al (2009); Liao and Sodano (2009); Han et al (2013);
Chebanenko et al (2015), as well as in the monographs Erturk and Inman (2011);
Elvin and Erturk (2013).

PEGs are divided into two configurations: stack and cantilever. Most of the works
are devoted to the study of the characteristics of cantilever type PEGs. There are
several ways of modeling PEGs: a mathematical model with lumped parameters,
a mathematical model with distributed parameters and a finite element model. In
Dutoit et al (2005); Dutoit and Wardle (2007); Adhikari et al (2009); Roundy and
Wright (2004) the focus is on the construction of PEG models based on oscillations
of a mechanical system with lumped parameters. The use of such systems is a
convenient modeling approach, since it allows obtaining analytical dependencies
between the output parameters of PEG (potential, power, etc.) and the electrical and
the mechanical characteristics as well as the resistance of the external electric circuit.

The modeling with the use of lumped parameters provides initial representations
on the problem, allowing one to use simple expressions for the description of the
system. However, it is approximate and restricted to only one oscillation mode. This
description does not take into account important aspects of the system.

Another type of modelling is distributed parameter modeling. Based on the Euler-
Bernoulli hypotheses for beams, analytical solutions of the coupled problem have
been obtained in Erturk and Inman (2008); Deng et al (2014); Soloviev et al (2017)
for different configurations of cantilever type PEGs. They obtained explicit expres-
sions for the output voltage on resistive electric loads and for console displacements.
In addition, the authors studied in detail behavior of PEGs with short-circuited and
open-circuited electric circuits, and the influence of piezoelectric coupling effects
and flexoelectric effects Deng et al (2014); Soloviev et al (2017). Nevertheless, in
these studies, the case where the piezoelectric element does not completely cover
the substrate has not been considered. In Nechibvute et al (2012); Soloviev et al
(2013); Solovyev and Duong (2016); Yu et al (2010) the finite element modeling of
the different types of cantilever PEGs are discussed. The case where the piezoelectric
element does not completely cover the substrate is easily solved by this modelling ap-
proach. Nevertheless, obtaining a semi-analytical solution for the case of incomplete
covering of the substrate by a piezoelectric element is of interest.

Several papers are devoted to the investigation of stack-type PEGs based on finite
element modelling Feenstra et al (2008); Baker et al (2005); Cavallier et al (2005);
Shevtsov et al (2016); Solovyev et al (2016) and lumped parameter modeling Dutoit
et al (2005); Zhao and Erturk (2014); Goldfarb and Jones (1999). Recently, attention
has been directed to analytical studies of stack type generators. Due to the fact
that the stack PEGs can carry high compression levels that allows their integration
in different infrastructure objects (for example, transportable roads and rail-roads.
Therefore, the necessity arises to develop mathematical models for prediction of
output characteristics of PEGs.

Various models of stack type PEGs have been proposed in Zhao and Erturk (2014);
Wang et al (2013). The model submitted in Zhao and Erturk (2014) depends on the
initial experimental data and does not provide information about displacements. The



11 Mathematical Modelling of Piezoelectric Generators 229

model proposed in Wang et al (2013) does not have such disadvantages. However, it
is very tedious for analysis due to its recursive type

The above brief analysis of known works has shown that the problem of modeling
PEG of various configurations with the help of analytical methods in full is not yet
solved, although it is quite relevant.

11.2 Mathematical Modelling of PEG

11.2.1 The Boundary-Value Problem in the Theory of
Electroelasticity

Consider a piezoelectric body of volume V bounded by a surface S , subjected to
external loads and located in an electromagnetic field. External loads include mass
forces X and surface loads p. The basic equations in the theory of electroelasticity
are the equations of motion and the electric field equations (Vatulyan and Soloviev,
2009):

σ ji, j+Xi = ρüi ,

Di,i = 0 , x ∈ V , t > 0 , (11.1)

where σi j denotes the components of the stress tensor, Xi represents the components
of the vector of mass forces, ui is a components of the displacement vector, Di
stands for a component of the electric displacement vector. To these equations the
constitutive laws (Vatulyan and Soloviev, 2009) are added:

σi j = cE
i jklεkl− eki jEk ,

Di = eiklεkl+ �
s
ik Ek , (11.2)

where cE
i jkl is the tensor of elastic moduli measured at a constant electric field, εkl the

components of the linear deformation tensor, eki j the tensor of piezoelectric constants,
Ekthe components of the electric field vector, and �s

ik the tensor of dielectric constants
measured at constant displacement. The components εkl and Ek are given by:

εi j =
1
2

(
ui, j+u j,i

)
,

Ei = −ϕ,i , (11.3)

where ϕ electrical potential.
Substituting (11.2) and (11.3) into (11.1) we obtain a system of coupled equations

in which the unknowns are the displacements ui and the electric potential ϕ:

cE
i jkluk,l j+ eki jϕ,k j+Xi = ρüi ,

eikluk,li− �s
ik ϕ,ki = 0 . (11.4)
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The first equation describes the motion, and the second describes the quasistatic
electric field.

Mechanical and electrical boundary conditions are added to these equations
(Vatulyan and Soloviev, 2009). In the case when the electrodes are connected to an
external circuit, the following condition must be added:

ϕ|S E
= v ,�

S E

Ḋinids = I , (11.5)

where S E is the area of the electrode, v denotes the unknown potential, which is
found from the second condition, I is the electric current. Thus, we have completed
the formulation of the linear problem of electroelasticity.

11.2.2 Modeling of Cantilever Type PEGs

We consider the functional Soloviev and Vatulyan (2011)

Π =

�
V

(H−Xiui)dV −
�

S

(piui+σϕ)dS , (11.6)

where H is the electric enthalpy. The Hamiltonian principle, generalized to the theory
of piezoelectricity, has the form

δ

t2∫
t1

(K −Π)dt = 0 , (11.7)

where K is the kinetic energy, and t2− t1 stands for the time interval.
Substituting (11.6) into (11.7), we obtain the following expression for the Hamil-

tonian principle:

t2∫
t1

dt
�

V

(δK −δH)dV +

t2∫
t1

dt

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣
�

V

XiδuidV +
�

S

(piδui+σδϕ)dS

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦ = 0 .

(11.8)
The variation of the electric enthalpy in linear electroelasticity is:

δH = σi jδεi j−DiδEi . (11.9)

The variation of the kinetic energy is
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δ

t2∫
t1

Kdt = −ρ
t2∫

t1

dt
�

V

üiδuidV . (11.10)

To these equations we add the constitutive equations (11.2).
Let us consider the case when there are no mass forces, external loads, and surface

charge densities are applied. Then, taking into account the governing equations (11.2)
and the equations (11.3), as well as the expressions for the variations (11.9) and
(11.10), the Hamiltonian principle (11.8) takes the form

t2∫
t1

dt
�

V

[
−
(
ci jkluk,l+ eki jϕ,k

)
δui, j− (

eikluk,l− �ik ϕ,k
)
δϕ,i

]
dV−

−
t2∫

t1

dt

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣
�

V

ρüiδuidV +
�

S

σδϕdS

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦ = 0 .

(11.11)

Let us consider the simplest bimorph design of cantilever PEG, presented in Fig. 11.1.
The cantilever bimorph PEG consists of two piezoelements (Fig. 11.1 points 1 and 3)
glued to the substrate (Fig. 11.1 point 2), which is clamped at one end. The thickness
of the electrodes and the adhesive layer, due to the smallness of their values, can be
neglected.

Since this construction is nothing more than a laminated beam, to simplify the
problem, we introduce the Euler-Bernoulli hypotheses The excitation of oscillations
in PEGs, shown in Fig. 11.1, occurs through the movement of the base with respect
to a certain plane. Therefore, the absolute displacement of the cantilever along the x3
coordinate will consist of displacement of the base wc(t) and relative movement of
the cantilever w(x1, t). Taking into account the foregoing, the displacement vector u
takes the following form:

u =
{
−x3

∂w(x1, t)
∂x1

,0,w(x1, t)−wc(t)
}T

. (11.12)

The transition to the consideration of the one-dimensional case also simplifies the
governing equations (11.2)

Fig. 11.1 Bimorph cantilever
PEG: 1 and 3 — piezoele-
ments, 2 — substrate
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σ11 = cE∗
11 ε11− e∗31E3 ,

D3 = e∗31ε11+ �
S ∗
33 E3 , (11.13)

where the material constants are expressed as follows:

cE∗
11 =

1
sE

11

, e∗31 =
d31

sE
11

, �S ∗
33=�

T
33 −

d2
31

sE
11

. (11.14)

Substituting (11.12) into (11.11), taking into account (11.13) we obtain:

t2∫
t1

dt
�

V

⎡⎢⎢⎢⎢⎢⎣
⎛⎜⎜⎜⎜⎜⎝−cE∗

11 x2
3
∂2w(x1, t)
∂x2

1

+ e∗31x3ϕ,3

⎞⎟⎟⎟⎟⎟⎠δ
⎛⎜⎜⎜⎜⎜⎝∂2w(x1, t)

∂x2
1

⎞⎟⎟⎟⎟⎟⎠
⎤⎥⎥⎥⎥⎥⎦dV+

+

t2∫
t1

dt
�

V

⎡⎢⎢⎢⎢⎢⎣
⎛⎜⎜⎜⎜⎜⎝e∗31x3

∂2w(x1, t)
∂x2

1

+ �S ∗
33 ϕ,3

⎞⎟⎟⎟⎟⎟⎠δϕ,3
⎤⎥⎥⎥⎥⎥⎦dV+

+

t2∫
t1

dt

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣
�

V

{−ρ (ẅ(x1, t)− ẅc(t))δw(x1, t)}dV +
�

S

σδϕdS

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦ = 0 .

(11.15)

In the PEG under investigation, the polarization vector is directed along the x3
coordinate axis (see Fig. 11.2). Electrodes are applied to large sides perpendicular
to the x3 axis, and therefore, it makes sense to consider only the components of the
electric potential along the axis x3.

Since the piezoelectric element is assumed to be thin and there are no free charges
inside, we suggest that the electric field is distributed linearly along the thickness of
the piezoceramic element:

ϕ =
v(t)x3

h
, ϕ,3 =

v(t)
h
, (11.16)

where v(t) denates the potential difference between the upper and lower electrode of
the piezoelectric element, h is the thickness of the piezoelectric element.

Taking into account (11.16), the expression (11.15) takes the form:

Fig. 11.2 Wiring diagram of
PEG
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t2∫
t1

dt
�

V

⎡⎢⎢⎢⎢⎢⎣
⎛⎜⎜⎜⎜⎜⎝−cE∗

11 x2
3
∂2w(x1, t)
∂x2

1

+ e∗31x3
v(t)
h

⎞⎟⎟⎟⎟⎟⎠δ
⎛⎜⎜⎜⎜⎜⎝∂2w(x1, t)

∂x2
1

⎞⎟⎟⎟⎟⎟⎠
⎤⎥⎥⎥⎥⎥⎦dV+

+

t2∫
t1

dt
�

V

⎡⎢⎢⎢⎢⎢⎣
⎛⎜⎜⎜⎜⎜⎝e∗31x3

h
∂2w(x1, t)
∂x2

1

+ �S ∗
33

v(t)
h2

⎞⎟⎟⎟⎟⎟⎠δ (v(t))

⎤⎥⎥⎥⎥⎥⎦dV+

+

t2∫
t1

dt

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣
�

V

{−ρ (ẅ(x1, t)− ẅc(t))δw(x1, t)}dV +
�

S

σx3

h
δv(t)dS

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦ = 0 .

(11.17)

To solve the problem of forced oscillations of cantilever bimorph PEGs, we will
use the Kantorovich method (Kerr and Alexander, 1968). We represent the relative
displacements of a beam as a series expansion:

w(x1, t) =
N∑

i=1

ηi(t)φi(x1) , (11.18)

where N is the number of modes considered, ηi(t) are the unknown generalized coor-
dinates, φi(x1) denotes the known test functions that satisfy the boundary conditions.

Substituting the representation (11.18) in (11.17) and equating the coefficients
with independent variations of δv and to zero δη, we obtain a system of differential
equations describing the forced oscillations of the bimorph PEG connected to the
resistor:

Mη̈(t)+Dη̇(t)+Kη(t)−Θv(t) = p,

Cpv(t)+ΘTη(t) = −q , (11.19)

where D = μM+γK is the Rayleigh-type damping matrix, and the remaining coeffi-
cients are:
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Cp =
bL
h
�

S ∗
33 ,

Mi j =

L∫
0

mφi(x1)φ j(x1)dx1,

Ki j =

L∫
0

EIφ′′i (x1)φ′′j (x1)dx1,

pi = −ẅc(t)

L∫
0

mφi(x1)dx1,

θi =

L∫
0

Jpφ
′′
i (x1)dx1 ,

(11.20)

where Cp is the electric capacity, Mi j denotes the elements of the mass matrix, Ki j
are the elements of the stiffness matrix, θi represents the elements of the electrome-
chanical coupling vector, pi are the elements of the effective mechanical load vector,
m is the specific weight, EI stands for the bending stiffness, M denotes the proof
mass.

Differentiating with time the second equation in system (11.19), taking into
account the fact that q̇ = I, we will satisfy condition (11.5). Using Ohm’s law, we
obtain the equation for the electric circuit in the following form:

Cpv̇(t)+ΘT η̇(t)+
v(t)
R
= 0 , (11.21)

where R is the electrical resistance (the resistor on which the voltage is measured see
Fig. 11.2).

Figure 11.1 shows the simplest case of a bimorph cantilever PEG, but in reality
the production of such a structure is rather difficult. It becomes necessary to take into
account such design features as incomplete covering of the piezoelectric element of
the substrate. In addition, to adjust the resonance frequency and increase the output
power, proof mass is often used. In view of the foregoing, we will consider the PEG
shown in Fig. 11.3. Hereinafter, the subscripts p, s and m will denote that the variable
corresponds to the piezoelectric element, substrate and mass, respectively.

Fig. 11.3 Bimorph cantilever
PEG with piezoelement and
proof mass displaced relative
to the clamp

L

LpL0

M

Lm

bs

bp

hp hs



11 Mathematical Modelling of Piezoelectric Generators 235

The search for a solution for this design is associated with the need to divide
the beam into four segments. The first segment begins at the clamp and contains to
the beginning of the piezoelement. The second segment is the part of the substrate
covered with a piezoelectric element. The third segment is the free part of the beam,
following the piezoelement up to the attachment point of the proof mass (mass is
considered as a point). The fourth segment starts right after the proof mass and
contains to the end of the beam. Taking into account the division of the beam
described above, the piecewise-defined function φi(x1) takes the following form:

φi (x1) =

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩
φ(1)

i (x1) , x1 ≤ L0

φ(2)
i (x1) ,L0 < x1 ≤ Lp+L0

φ(3)
i (x1) ,Lp+L0 < x1 ≤ Lm

φ(4)
i (x1) , x1 > Lm

, (11.22)

where φ(1)
i , φ(2)

i , φ(3)
i , φ(4)

i correspond to the modes of oscillation of the first, second,
third and fourth segments, respectively. We write the solution in a general form for
each part of the beam:

φ(1)
i (x1) = a1,i sin(βi x1)+a2,i cos(βi x1)+a3,i sinh(βi x1)+a4,i cosh(βi x1)

φ(2)
i (x1) = a5,i sin(βi x1)+a6,i cos(βi x1)+a7,i sinh(βi x1)+a8,i cosh(βi x1)

φ(3)
i (x1) = a9,i sin(βi x1)+a10,i cos(βi x1)+a11,i sinh(βi x1)+a12,i cosh(βi x1)

φ(4)
i (x1) = a13,i sin(βi x1)+a14,i cos(βi x1)+a15,i sinh(βi x1)+a16,i cosh(βi x1) .

(11.23)

Next, we write down the boundary conditions:

φ(1)
i (0) = 0 ,φ

′(1)
i (0) = 0 , φ

′′(4)
i (L) = 0 ,φ

′′′(4)
i (L) = 0 . (11.24)

In addition, we will need the conjugation conditions for the beam segments:
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φ(1)
i (L0) = φ(2)

i (L0)

φ
′(1)
i (L0) = φ

′(2)
i (L0)

φ
′′(1)
i (L0) =

EI(2)

EI(1) φ
′′(2)
i (L0)

φ
′′′(1)
i (L0) =

EI(2)

EI(1) φ
′′′(2)
i (L0)

φ(2)
i

(
L0+Lp

)
= φ(3)

i

(
L0+Lp

)
φ
′(2)
i

(
L0+Lp

)
= φ

′(3)
i

(
L0+Lp

)
φ
′′(2)
i

(
L0+Lp

)
=

EI(1)

EI(2) φ
′′(3)
i

(
L0+Lp

)
φ
′′′(2)
i

(
L0+Lp

)
=

EI(1)

EI(2) φ
′′′(3)
i

(
L0+Lp

)
φ(3)

i (Lm) = φ(4)
i (Lm)

φ
′(3)
i (Lm) = φ

′(4)
i (Lm)

φ
′′(3)
i (Lm) = φ

′′(4)
i (Lm)

φ
′′′(3)
i (Lm) = φ

′′′(4)
i (Lm)−αβ4φ(3)

i (Lm)

α =
M
mL

,

(11.25)

where EI(1) and EI(2) are bending stiffness of segments.
Adding a proof mass to the model requires considering its effect on the system of

equations (11.19), since it is an additional inertial load that affects the kinetic energy.
Taking into account the proof mass, the expressions for some components of (11.20)
change as follows:

Mi j =

L∫
0

mφi(x1)φ j(x1)dx1+Mφi(Lm)φ j(Lm),

pi = −ẅc(t)

L∫
0

mφi(x1)dx1+Mφi(Lm) .

(11.26)

Satisfying the boundary conditions, we obtain a homogeneous system of 16
equations with 16 unknowns:

Λ =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
a1,1 . . . a1,16
...
. . .

...
a16,1 · · · a16,16

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠ , (11.27)

The specific weight m(x1), for the case under consideration, is calculated as
follows:
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m(x1) = ρsAs+2ρpAp
(
H(x1−L0)−H(x1−L0−Lp)

)
, (11.28)

where H(x1) is the Heaviside function.
The bending stiffness EI for the model under consideration is calculated as follows:

EI(x1) = cp

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
�
S p1

x2
3dS +

�
S p2

x2
3dS

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
(
H(x1−L0)−H(x1−L0−Lp)

)
+ cs

�
S s

x2
3dS ,

(11.29)
where cp and cs are elastic constants of piezoelements and substrate, respectively, S p1,
S p1 and S s are cross-section areas of upper and lower piezoelements and substrate,
respectively. The function Jp(x1) is equal to

Jp(x1) =
e∗31

hp

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
�
S p1

x3dS +
�
S p2

x3dS

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
(
H(x1−L0)−H(x1−L0−Lp)

)
. (11.30)

After all the preliminary steps have been taken, we proceed directly to solving the
system of equations (11.19). We assume that the excitation is harmonic:

wc (t) = w̃ceiωt

p = p̃eiωt .
(11.31)

Then we seek the solution in the form

η (t) = η̃eiωt

v (t) = ṽeiωt .
(11.32)

A tilde above a variable indicates the amplitude. After substituting (11.31) and
(11.32), the system of equations (11.19) takes the form[

−ω2M+ iω (μM+γK)+K
]
η̃−Θṽ = p̃,(

iωCp+
1
R

)
ṽ+ iωΘT η̃ = 0 .

(11.33)

From the second equation in system (11.33) we obtain ṽ

ṽ = − iωΘT η̃

iωCp+
1
R

. (11.34)

Then we substitute (11.34) into the first equation of the system (11.32) and express η̃

η̃ =

⎡⎢⎢⎢⎢⎢⎢⎣−ω2M+ iω (μM+γK)+K +
iωΘΘT

iωCp+
1
R

⎤⎥⎥⎥⎥⎥⎥⎦
−1

p̃ . (11.35)
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Substituting expression for η̃ back into (11.34), we get a new expression for ṽ

ṽ = − iωΘT

iωCp+
1
R

⎡⎢⎢⎢⎢⎢⎢⎣−ω2M+ iω (μM+γK)+K +
iωΘΘT

iωCp+
1
R

⎤⎥⎥⎥⎥⎥⎥⎦
−1

p̃ . (11.36)

The obtained expressions (11.35) and (11.36) are solutions of the system of
equations (11.33).

11.2.2.1 Numerical Experiment

We will consider a bimorph cantilever PEG, manufactured using the PKR-7M ce-
ramic, which has the geometric and physical properties given in Table 11.1. The
excitation of the system is given by a harmonic displacement of the base wc = w̃ceiωt,
whose amplitude is w̃c = 0.1 mm, and the coefficients of the modal damping are equal
ξ1 = ξ2 = 0.02.

The first step in the research is the construction of amplitude-frequency charac-
teristics (AFC) of displacements, potentials arising on electrodes, etc. Figure 11.4
shows the frequency response of the voltage, on the external electrodes, and the
displacement of the end of the beam. In the literature (Erturk and Inman, 2011; Elvin
and Erturk, 2013), the main performance characteristics of PEGs are the depen-
dence of voltage and power on electrical resistance. Here are dependencies of the
main characteristics of the PEG on the electrical resistance. All characteristics were
investigated at the first resonant frequency.

Figure 11.5 is a typical dependence of the output electric voltage on electrical
resistance. With increasing resistance, the voltage rises to a certain limiting value.
This limit value corresponds to the open circuit condition.

The output power is calculated by the formula:

P =
v2

R
. (11.37)

Table 11.1: PEG Parameters

Substrate Piezoelement

Geometrical dimensions (L0 ×b×h) 110×10×1 mm3 56×6×0.5 mm3

Density (ρ) 1650 kg/m3 8000 kg/m3

The Young’s modulus and Poisson’s ratio (E, ν) 15 GPa and 0.12 —
Elastic compliance

(
sE

11

)
— 17.5×10−12 Pa

Relative permittivity
(
εS

33/ε0
)

— 5000
Piezoelectric module (d31) — -350 pC/N
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Fig. 11.4: Amplitude-frequency response of the voltage and the displacement of
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Fig. 11.5: Dependence of voltage on electrical resistance

In addition to the dependence of the output power on the electrical resistance, we
shall construct the dependence of the displacement of the end of the beam on the
electrical resistance.

Figure 11.6 shows a typical dependence of output power on electrical resistance.
This dependence for power is characterized by the presence of a maximum, the
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Fig. 11.6: Dependencies of output power and displacement of the beam’s end from
resistance

position of which depends on the electrical capacity of the piezoelements and the
excitation frequency of the PEG. The dependence of the displacement of the free end
of the beam on the electrical resistance has a minimum, the position of which coin-
cides with the maximum of power. This indicates that the conversion of mechanical
energy into electrical energy, at a given value of electrical resistance, is maximized.

11.2.2.2 Comparison with Finite Element

In the literature there are mathematical models of PEGs with lumped parameters.
They are convenient for describing the stack type PEGs. In the case of generators of
the cantilever type, they give inaccurate results. There is work in which corrective
coefficients for these models are given, but they are suitable for the case when the
piezoelectric element completely covers the surface of the substrate. In the case of
incomplete coverage, preliminary experiments are required to identify the parameters
of the five model parameters. This is the obstacle to design. Therefore, we compare
the obtained mathematical model with a finite element model (cf. Fig. 11.7).

Soloviev et al (2013) deals with the finite element modeling of the laboratory
model of cantilever PEG. The calculation was made for the cantilever model de-
scribed at the beginning of previous paragraph. The value of the proof mass was 5 g.

Measurements were made in conditions of an open circuit when the cantilever
base was excited by a displacement of 0.1 mm. Dependencies for the first resonant
frequencies and the output electric potential were obtained, depending on the thick-
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Fig. 11.7 Finite element
model in ANSYS
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Fig. 11.8: Dependence of the first resonance frequency on the thickness of the
substrate: dashed line —- model, solid — finite element simulation

ness of the substrate. We perform similar calculations and compare the obtained data.

As can be seen from Fig. 11.8 with increasing substrate thickness, the value of
the first resonant frequency also increases. The difference between the finite element
calculation and the model does not exceed 5%, which indicates a sufficient accuracy
of the constructed model.

From Fig. 11.9, it follows that as the thickness of the substrate increases, the value
of the output electric potential increases. The difference between the finite element
calculation and the model does not exceed 7%, which indicates a sufficient accuracy
of the constructed model.
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Fig. 11.9: Dependence of the output electric potential on the thickness of the sub-
strate: dashed line — model, solid line — finite element simulation

11.2.2.3 Parametric Studies

Next, we will investigate the dependencies of the main performance characteristics
of cantilever PEGs (resonance frequency, beam tip’s displacement, output voltage
and power) on the position of the proof mass, and the position of the piezoelement.

Consider the effect of the position of the proof mass M of 3 g on the performance
of the PEG. As the main parameter we will use the relative position of the proof
mass, i.e. normalized with respect to the coordinate of the end of the substrate.

As can be seen from Fig. 11.10 with increasing distance between clamped end and
the proof mass, the first resonance frequency of the beam decreases. From Fig. 11.11
we can conclude that at some position of the proof mass, the maximum displacement
of the end of the beam is achieved. From Fig. 11.12 it follows that at some position
of the proof mass, there are local maxima of the output voltage and the maximum of
the output power (with the optimum electrical resistance). Since the power directly
depends on the electrical resistance, it makes sense to consider the value of the
resistance at which power is maximal i.e. optimum electrical resistance. Figure 11.13
demonstrates that the closer the proof mass is to the end of the beam, the higher
the value of the optimum electrical resistance. Analyzing the obtained data, we can
conclude that there is a certain value of the position of the proof mass, at which the
maximum output power is reached.

Next, we consider the case when the length of the piezoelement is fixed. We will
investigate the effect of repositioning of the piezoelectric element relative to the
clamped end on the performance of the PEG, taking into account the presence of
the proof mass of 3 g. As the main parameter, we will use the relative offset, i.e.
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normalized with respect to the length of the substrate. This parameter is responsible
for the coordinate of the beginning of the piezoelement. From Fig. 11.14 it can
be seen that as the position of piezoelectric element becomes more indented, the
first resonance frequency decreases monotonically. Figure 11.15 shows that with

Fig. 11.14: Dependence of the first resonance frequency on the offset from clamp

increasing offset of the piezoelectric element from the clamp displacement of the
end of the beam decreases slightly at a small interval, and then increases. This may
indicate that the bending stiffness of the beam near the clamping zone decreases.
In Fig. 11.16 it is shown that with an increase in the piezoelectric element’s offset
from the clamped end, the output voltage drops noticeably. Moreover, the maximum
voltage is observed when the offset is minimal. The maximum output power demon-
strates similar behavior. The dependence of the value of the electrical resistance, at
which the maximum power is reached, on the amount of offset of the piezoelectric
element from the clamped end, depicted in Fig. 11.17, has a monotonous increasing
character. The obtained data on the influence of the position of the piezoelectric
element on the output characteristics of the PEG indicate that it is most advantageous
from the point of view of obtaining maximum power to position the piezoelectric
element near the clamp.
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Fig. 11.15: Dependence of the displacement of the beam’s end on the position of
the piezoelectric element

Fig. 11.16: Dependence of the maximum output voltage and power on the amount
of indentation of the piezoelectric element from the termination
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Fig. 11.17: Dependence of the resistance value, at which the maximum power is
reached, on the offset from clamp

11.2.3 Modelling of Stack Type PEG

The derivation of the equations describing the behavior of the stack-type PEG, shown
in Fig. 11.18, is also based on the Hamiltonian principle given earlier. This PEG is
subjected to an external mechanical loading p(t) along the coordinate axis x3.

Fig. 11.18 Stack PEG scheme

p(t)

x1

x3

x2

Rv(t)

Therefore, repeating the calculations (11.6)–(11.11), we obtain the following
equation:



248 Arkadiy N. Soloviev, Valerii A. Chebanenko, and Ivan A. Parinov

t2∫
t1

dt
�

V

[
−
(
ci jkluk,l+ eki jϕ,k

)
δui, j− (

eikluk,l− �ik ϕ,k
)
δϕ,i

]
dV−

−
t2∫

t1

dt

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣
�

V

ρüiδuidV +
�

S

(piδui+σδϕ)dS

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦ = 0 ,

(11.38)

where, in contrast to (11.11), external loads pi are conserved.
Let us consider the construction of PEGs of the stack type, shown in Fig. 11.18.

The simplest stacked PEG consists of several piezoceramic plates connected to each
other (either glued at the production stage, or stapled mechanically). The thickness
of the electrodes can, due to the smallness of its values, be neglected.

After introducing the assumption of small deformations, the problem reduces to
forced longitudinal vibrations of the rod along the x3 coordinate. Taking into account
the foregoing, the displacement vector u takes the following form:

u = {0,0,w(x3, t)}T . (11.39)

The transition to the consideration of the one-dimensional case also simplifies the
governing equations (11.2):

σ11 = cE∗
33 ε33− e∗33E3 ,

D3 = e∗33ε33+ �
S ∗
33 E3 , (11.40)

where the material constants are expressed as follows:

cE∗
33 =

1
sE

33

, e∗33 =
d33

sE
33

, �S ∗
33=�

T
33 −

d2
33

sE
33

. (11.41)

Substituting (11.39) into (11.38), taking into account (11.40), we obtain:

t2∫
t1

dt
�

V

[(
−cE∗

33
∂w(x3, t)
∂x3

+ e∗33ϕ,3

)
δ

(
∂w(x3, t)
∂x3

)]
dV+

+

t2∫
t1

dt
�

V

[(
e∗33
∂w(x3, t)
∂x3

+ �S ∗
33 ϕ,3

)
δϕ,3

]
dV+

+

t2∫
t1

dt

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣
�

V

{−ρẅ(x3, t)δw(x3, t)}dV +
�

S

(p3δw(x3, t)+σδϕ)dS

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦ = 0 .

(11.42)

In the studied PEG, the polarization vector is directed along the coordinate axis
x3. The electrodes are applied to the long sides of piezoceramic plates perpendicular
to the axis x3. They are connected in parallel (see Fig. 11.18). Accordingly, it makes
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sense to consider only the components of the electric potential gradient along the
axis x3.

Since the piezoelements are assumed to be thin and there are no free charges
inside, we assume that the electric field is distributed linearly along the thickness of
each piezoceramic element:

ϕ =
v(t)x3

h
, ϕ,3 =

v(t)
h
, (11.43)

where v(t) is the potential difference between the upper and lower electrode of the
piezoelectric element, h denotes the thickness of the single piezoelectric layer. Taking
into account (11.43), the expression (11.41) takes the form:

t2∫
t1

dt
�

V

[(
−cE∗

33
∂w(x3, t)
∂x3

+ e∗33
v(t)
h

)
δ

(
∂w(x3, t)
∂x3

)]
dV+

+

t2∫
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dt
�

V

[(e∗33

h
∂w(x3, t)
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33

v(t)
h2

)
δv(t)
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dV+

+

t2∫
t1

dt

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣
�

V

{−ρẅ(x3, t)δw(x3, t)}dV +
�

S

(
p3δw(x3, t)+

σx3

h
δv(t)

)
dS

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦ = 0 .

(11.44)

To solve the problem of forced longitudinal oscillations of stacked PEGs, we will
also use the Kantorovich method. Further, repeating the calculations similarly to the
derivation of equations (11.18)–(11.21), we obtain a system of differential equations
describing the forced oscillations of the stacked PEG connected to the resistor:

Mη̈(t)+Dη̇(t)+Kη(t)−Θv(t) = p,

Cpv̇(t)+ΘT η̇(t)+
v(t)
R
= 0 . (11.45)

Coefficients of (11.45) are equal to:
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Cp = Np
bl
h
�

S ∗
33 ,

Mi j =
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0

mφi(x3)φ j(x3)dx3,

Ki j =

H∫
0

Yφ′i (x3)φ′j(x3)dx3,

pi = −p0φi(x3),

θi =
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0

Jpφ
′
i (x3)dx3,

Y =
�

S

cE∗
33 dS ,

Jp =

�
S

e∗33

h
dS ,

(11.46)

where Np is the number of piezoelectric layers, b, l and h are the width, length and
height of single piezoelement, H denotes the height of the whole stack, Y stands for
the rigidity of the cross section of the stack.

Now it remains to find a set of test functions satisfying the boundary conditions.
The search for test functions satisfying the boundary conditions is connected to
the solution of the eigenvalue problem for the rod. We solve the problem of free
vibrations of the rod shown in Fig. 11.18. Let us write out the solution in general
form:

φi (x3) = a1,i sin(βi x3)+a2,i cos(βi x3) . (11.47)

Boundary conditions in the considered case are:

φi (0) = 0 , φ′i (H) = 0 . (11.48)

We can find the eigenvalues βi and coefficients ai.
After this we obtain a homogeneous system of 4 equations with 4 unknowns

which is given in matrix form:

Λ =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
a1,1 . . . a1,4
...
. . .

...
a4,1 · · · a4,4

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠ = 0 . (11.49)

This system has nonzero solutions when its determinant is zero. The determinant of
the system yields a characteristic equation that needs to solve in order to compute
the eigenvalues βi:

1+ cosβi coshβi = 0 . (11.50)
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Equation (11.50) is transcendental. Therefore we will solve it with numerical methods.
Knowing βi, we can find the coefficients ai for the required number of vibration
modes N.

For the case of harmonic loading, obtaining the solution of the system (11.45)
is analogous to the solution for harmonic loading of the cantilever PEG (11.31)-
(11.36). Here, the loading of an arbitrary shape, in particular the impulse form, will
be considered.

To consider a load p(t) having an arbitrary shape, we represent its amplitude
values with a set of discrete values, and then interpolate it using Fourier series:

p(t)�m0+

N∑
k=1

[
mk cos

(
k

2πt
T

)
+nk sin

(
k

2πt
T

)]
, (11.51)

where m0 is the average value, T denotes the loading duration, nk,mk are Fourier
coefficients.

m0 =
1
T

T∫
0

p(t)dt, mk =
2
T

T∫
0

p(t)cos
(
k

2πt
T

)
dt, nk =

2
T

T∫
0

p(t) sin
(
k

2πt
T

)
dt .

(11.52)
Then, we substitute the obtained approximation (11.51) into (11.45) and solve the
system numerically by the Runge-Kutta method.

11.2.3.1 Parametric Studies

As input parameters of the model, we use the initial data from the experiment. We will
consider stack PEG, made using disk elements from ceramics PZT-19. The model of
PEG considered in Fig. 11.19, is a stack of piezoelements of the ring type, connected
together by a coupling bolt. Above and below are metal discs that distribute the

Fig. 11.19 Schematic model
of the stacked PEG

Piezoelement

Coupling
bolt

~

applied load evenly over the section, and protect against direct mechanical action
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on the piezoelements. The metal discs are followed by an insulating spacer, which
prevents electrical shorting. Between the piezoelements are located electrodes. They
are connected in parallel. In order to take into account the influence of the metal core
(clamping bolt) in the cross section of the PEG, we add to the rigidity of the cross
section Y one more term:

Y =
�
S p

cE∗
33 dS +

�
S c

ccdS , (11.53)

where S p and S c are the areas of the section of the stack and bolt, respectively, cE∗
33

and cc represent the modulus of elasticity of the piezoceramic and steel, respectively.
This PEG will be subjected to a pulsed loading, the shape of which is shown

in Fig. 11.20. The main geometric and physical properties of the generator model
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Fig. 11.20: Shape of the loading force

under study are given in Table 11.2. The modal damping coefficients are equal
ξ1 = ξ2 = 0.02.

Investigations of the dependence of the main characteristics of the stacked PEG
(output voltage and power) on various parameters (geometric sizes of piezoelements
and the number of piezoelements) were carried out. Figure 11.21 shows the depen-
dence of the maximum output voltage and the power on the number of layers of PEG.
The geometry of the layers is assumed to be unchanged. From the above dependence,
it follows that with an increase in the number of layers, the output voltage and power
increase. The behavior of the obtained dependencies is similar to the behavior of
the square root function. The dependence shown in Fig. 11.22, demonstrates the
effect of the outer diameter of the disk on the maximum output voltage and power. It
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Fig. 11.21: Dependence of output voltage and output power of stacked PEG on the
number of layers
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Table 11.2: PEG Parameters

Core Piezoelement

Geometrical dimensions(D×d×h) 6 mm 18×8×1 mm3

Density (ρ) 7800 kg/m3 7500 kg/m3

The Young’s modulus and Poisson’s ratio (E, ν) 210 GPa and 0.3 —
Elastic compliance

(
sE

33

)
— 17×10−12 Pa

Relative permittivity
(
εS

33/ε0
)

— 1500
Piezoelectric module (d33) — -307 pC/N

follows from the figure that with an increase in the external diameter of the disk, the
output voltage and power increase to a certain value, after which the recession occurs.
From Fig. 11.23, which shows the dependence of the maximum output voltages
and power on the height of each layer, it follows that as the height of the layers
increases, the output voltages and power increase. This dependence is close to linear.
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Fig. 11.23: Dependence of output voltage and output power of stacked PEG on the
height of each layer

In addition, the influence of the number of layers on the output characteristics of
PEG was investigated at a fixed total height of the entire piezostack. The results are
shown in Fig. 11.24. It turned out that there is a number of layers, in which the output
characteristics will be maximum.
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Fig. 11.24: Dependence of the output voltage and output power of the stacked
PEG on the number of layers, provided that the height of the entire packet remains
unchanged

11.2.3.2 Comparison With Finite Element

Let us compare the derived model for stack PEG with finite-element calculations.
In Solovyev et al (2016), a finite element simulation of the stack PEG impulse
loading experiment was carried out. In the ANSYS package, the generator model was
constructed. The model is presented in Fig. 11.25. In the course of the experiment,
a pulse excitation aplied to the PEG was recorded, which was shown earlier in
Fig. 11.20. This impulse was used in ANSYS as an excitation force. Calculation of
the output electric potential was made with three values of electrical resistance: 374
kOhm, 2.6 MOhm, 22.7 MOhm. A comparison of the results obtained with finite
element modeling and the analytical model is shown in Fig. 11.26. From Fig. 11.26
it follows that the model obtained coincides, with a sufficient degree of accuracy,
with the finite-element calculation. The average error did not exceed 5%.

11.3 Summary

In this work, applied numerical theories were constructed, allowing preliminary
estimations of the output characteristics of the PEG of various configurations. The
developed theories are based on the Hamiltonian principle, extended to the theory
of electroelasticity. The solution was carried out using the Kantorovich method. In
the first part of the work, within the framework of the Euler-Bernoulli hypotheses, a
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Fig. 11.25 Axisymmetric
finite element model of PEG
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model of a cantilever PEG was created. The main model’s peculiarity is the consider-
ation of structural features. In the second part, a model was developed for multilayer
stacked PEG, where the energy generation process was considered as forced oscilla-
tions of an electroelastic rod. The adequacy of the obtained theories in both cases
was verified by comparison with finite-element modelling. The characteristics of
PEGs (resonant frequencies, output voltage and power) are calculated depending on
geometric parameters such as the dimensions, location of piezoelements, the number
of piezolayers, etc. The results are presented in the form of graphs of possible options
for optimal parameters of PEG.
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